WorldWideScience

Sample records for residual topography beneath

  1. Extreme Short Scale Variations in D" Topography Beneath the Pacific Ocean Just West of Central America

    Science.gov (United States)

    Garnero, E. J.; Thomas, C.; Lay, T.

    2003-12-01

    In this study we use a wavefield migration technique to infer D" reflectance and topography in a densely sampled region just west of Central America beneath the Cocos plate. High quality broadband waveforms from seismic networks in California of 13 deep focus South American earthquakes are instrument and source wavelet deconvolved to displacement, aligned on ScS as a reference phase, then studied for coherency of energy between ScS and S. A search for potential lowermost mantle reflector locations is achieved by migrating the wavefield for each earthquake to each node of a 3D grid of potential reflector locations, with spacing every 1 deg laterally and 10 km vertically (with ranges: -2 to 18 deg N; -100 to -80 deg E, 2200 to 2888 km depth). Grouping our data into densely sampled latitudinal bins resulted in 41 clusters of bounce points between 0 and 15 deg N. The migrated images for all bounce point clusters show an abrupt increase in velocity that is thickest to the north in our study area (up to 300 km and greater) and dramatically reduces to as thin as 100 km thick in the south. We also see evidence for the main positive velocity increase being underlain by a negative velocity discontinuity in the northern half of our study region, though this feature is not visible in all migrations. These results are compatible with the general picture from simpler 1D studies (which indicate a thicker high velocity D" layer to the north beneath the neighboring Central American and Caribbean than that to the south) but demonstrate increased complexity at shorter scale lengths. The thickening of the D" layer to the north coincides with inference for higher velocities there implied by ScS-S and S-SKS differential travel time residuals. Evidence for out of plane reflections is also visible in some migrated images. Such strong topographical variations (~200 km change over several hundred km laterally) are likely intimately coupled to overlying mantle currents related to subduction

  2. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  3. Topography of the crust-mantle boundary beneath the Black Sea Basin.

    NARCIS (Netherlands)

    Starostenkp, V.; Buryanov, V.; Makarenko, I.; Rusakov, O.M.; Stephenson, R.A.; Nikishin, A.M.; Georgiev, G.; Gerasimov, M.; Dimitriu, R.; Legostaeva, O.V.; Pchelarov, V.; Sava, C.S.

    2004-01-01

    A map of Moho depth for the Black Sea and its immediate surroundings has been inferred from 3-D gravity modelling, and crustal structure has been clarified. Beneath the basin centre, the thickness of the crystalline layer is similar to that of the oceanic crust. In the Western and Eastern Black Sea

  4. Ps receiver function imaging of crustal structure and Moho topography beneath the Northeast Caribbean

    Science.gov (United States)

    Ntuli, G.; Agrawal, M.; Pulliam, J.; Huerfano Moreno, V. A.; Polanco Rivera, E.

    2015-12-01

    Due to its tectonic history, the Caribbean plate contains complex fault systems that are likely to have disrupted the Moho. To study the region's subsurface structure we computed a 3D image of the Northeast Caribbean via "velocity analysis" with Ps receiver functions. In this technique we simultaneously find, via an optimization procedure, depths to major discontinuities (in this case the Moho) and P and S velocity profiles beneath each seismic station. Ps receiver functions are time series computed from three-component seismograms that identify waves converted from P- to S-type at velocity discontinuities, such as the Moho and subducting lithosphere. Data were requested from the IRIS Data Management Center for events that occurred in the 2005-15 time period with magnitudes of 5.5-8.0 and epicentral distances of 30°-95° from stations in the study region. Data pre-processing steps include tapering, removing the trend and mean, and rotating from Z-N-E to L-Q-T (ray-based) coordinate systems. Ps receiver functions were then computed via iterative deconvolution in the time domain and the best receiver functions were stacked and modeled to generate a 3D image of the subsurface. Shear velocity profiles for each station are varied in a procedure, driven by simulated annealing, that seeks to optimize the correlation of a target feature—in this case the Moho—in the set of pre-processed Ps receiver functions. This procedure is feasible only when station spacing is relatively dense, which limits its success in this region to the islands of Puerto Rico and Hispaniola. Individual receiver functions were computed for isolated stations in the NE Caribbean, as well, but velocity analysis is limited to the two islands that have the densest station coverage. Moho depths beneath Puerto Rico range from 24 km, in the north, to 37 km, in the south. Moho depths beneath Hispaniola range from 23 km to 36 km but exhibit a more complex pattern of variation than beneath Puerto Rico

  5. Bedrock topography beneath uppermost part of Aletsch glacier, Central Swiss Alps, revealed from cosmic-ray muon radiography

    Science.gov (United States)

    Nishiyama, Ryuichi; Ariga, Akitaka; Ariga, Tomoko; Käser, Samuel; Lechmann, Alessandro; Mair, David; Scampoli, Paola; Vladymyrov, Mykhailo; Ereditato, Antonio; Schlunegger, Fritz

    2017-04-01

    In mountainous landscapes such as the Central Alps of Europe, the bedrock topography is one of the most interesting subjects of study since it separates the geological substratum (bedrock) from the overlying unconsolidated units (ice). The geometry of the bedrock topography puts a tight constraint on the erosional mechanism of glaciers. In previous studies, it has been inferred mainly from landscapes where glaciers have disappeared after the termination of the last glacial epoch. However, the number of studies with a focus on the structure beneath active glaciers is limited, because existing exploration methods have limitation in resolution and mobility. The Eiger-μ project proposes a new technology, called muon radiography, to investigate the bedrock geometry beneath active glaciers. The muon radiography is a recent technique that relies on the high penetration power of muon components in natural cosmic rays. Specifically, one can resolve the internal density profile of a gigantic object by measuring the attenuation rate of the intensity of muons after passing through it, as in medical X-ray diagnostic. This technique has been applied to many fields such as volcano monitoring (eg. Ambrosino et al., 2015; Jourde et al., 2016; Nishiyama et al., 2016), detection of seismic faults (eg. Tanaka et al., 2011), inspection inside nuclear reactors, etc. The first feasibility test of the Eiger-μ project has been performed at Jungfrau region, Central Swiss Alps, Switzerland. We installed cosmic-ray detectors consisting of emulsion films at three sites along the Jungfrau railway tunnel facing Aletsch glacier (Jungfraufirn). The detectors stayed 47 days in the tunnel and recorded the tracks of muons which passed through the glacier and bedrock (thickness is about 100 m). Successively the films were chemically developed and scanned at University of Bern with microscopes originally developed for the analysis of physics experiments on neutrino oscillation. The analysis of muon

  6. Topography of the Mantle Transition Zone Discontinuities Beneath Alaska and Its Geodynamic Implications: Constraints From Receiver Function Stacking

    Science.gov (United States)

    Dahm, Haider H.; Gao, Stephen S.; Kong, Fansheng; Liu, Kelly H.

    2017-12-01

    The 410 and 660 km discontinuities (d410 and d660, respectively) beneath Alaska and adjacent areas are imaged by stacking 75,296 radial receiver functions recorded by 438 broadband seismic stations with up to 30 years of recording period. When the 1-D IASP91 Earth model is used for moveout correction and time depth conversion, significant and spatially systematic variations in the apparent depths of the d410 and d660 are observed. The mean apparent depth of the d410 and d660 for the entire study area is 417 ± 12 km and 665 ± 12 km, respectively, and the mean mantle transition zone (MTZ) thickness is 248 ± 8 km which is statistically identical to the global average. For most of the areas, the undulations of the apparent depths of the d410 and d660 are highly correlated, indicating that lateral velocity variations in the upper mantle above the d410 contribute to the bulk of the observed apparent depth variations by affecting the traveltimes of the P-to-S converted phases from both discontinuities. Beneath central Alaska, a broad zone with greater than normal MTZ thicknesses and shallower than normal d410 is imaged, implying that the subducting Pacific slab has reached the MTZ and is fragmented or significantly thickened. Within the proposed Northern Cordilleran slab window, an overall thinner than normal MTZ is observed and is most likely the result of a depressed d410. This observation, when combined with results from seismic tomography investigations, may indicate advective thermal upwelling from the upper MTZ through the slab window.

  7. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya

    Science.gov (United States)

    Molnar, P.; Chen, W.-P.

    1984-01-01

    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  8. Nontarget effects of ivermectin residues on earthworms and springtails dwelling beneath dung of treated cattle in four countries.

    Science.gov (United States)

    Scheffczyk, Adam; Floate, Kevin D; Blanckenhorn, Wolf U; Düring, Rolf-Alexander; Klockner, Andrea; Lahr, Joost; Lumaret, Jean-Pierre; Salamon, Jörg-Alfred; Tixier, Thomas; Wohde, Manuel; Römbke, Jörg

    2016-08-01

    The authorization of veterinary medicinal products requires that they be assessed for nontarget effects in the environment. Numerous field studies have assessed these effects on dung organisms. However, few studies have examined effects on soil-dwelling organisms, which might be exposed to veterinary medicinal product residues released during dung degradation. The authors compared the abundance of earthworms and springtails in soil beneath dung from untreated cattle and from cattle treated 0 d, 3 d, 7 d, 14 d, and 28 d previously with ivermectin. Study sites were located in different ecoregions in Switzerland (Continental), The Netherlands (Atlantic), France (Mediterranean), and Canada (Northern Mixed Grassland). Samples were collected using standard methods from 1 mo to 12 mo after pat deposition. Ivermectin concentrations in soil beneath dung pats ranged from 0.02 mg/kg dry weight (3 mo) to typically Earthworms were abundant and species-rich at the Swiss and Dutch sites, less common with fewer species at the French site, and essentially absent at the Canadian site. Diverse but highly variable communities of springtails were present at all sites. Overall, results showed little effect of residues on either earthworms or springtails. The authors recommend that inclusion of soil organisms in field studies to assess the nontarget effects of veterinary medicinal products be required only if earthworms or springtails exhibit sensitivity to the product in laboratory tests. Environ Toxicol Chem 2016;35:1959-1969. © 2015 SETAC. © 2015 SETAC.

  9. Negative dynamic topography of the East European Craton: metasomatised cratonic lithosphere or mantle downwelling?

    Science.gov (United States)

    Artemieva, I. M.

    2010-12-01

    While most of the East European Craton lacks surface topography, the topography of its basement exceeds 20 km, the amplitude of topography undulations at the crustal base reaches almost 30 km with an amazing amplitude of ca. 50 km in variation in the thickness of the consolidated crust, and the amplitude of topography variations at the lithosphere-asthenosphere boundary exceeds 200 km. This paper examines the relative roles of the crust, the subcrustal lithosphere, and the dynamic support of the sublithospheric mantle in maintaining surface topography, using regional seismic data on the structure of the consolidated crust and the sedimentary cover, and thermal and large-scale seismic tomography data on the structure of the lithospheric mantle. The isostatic contribution of the crust to the surface topography of the East European Craton is almost independent of age (ca. 4.5 km) due to an interplay of age-dependent crustal and sedimentary thicknesses and lithospheric temperatures. On the contrary, the contribution of the subcrustal lithosphere to the topography strongly depends on the age, being slightly positive (+0.3+0.7 km) for the regions older than 1.6 Ga and negative (-0.5-1 km) for younger structures. This leads to age-dependent variations in the contribution of the sublithospheric mantle to the topography (residual, or dynamic topography). Positive dynamic topography at the cratonic margins, which exceeds 2 km in the Norwegian Caledonides and in the Urals, clearly links their on-going uplift with deep mantle processes. Negative residual topography beneath the Archean-Paleoproterozoic cratons (-1-2 km) indicates either smaller density deficit (ca. 0.9 per cent) in their subcrustal lithosphere than predicted by petrologic data or the presence of a strong downwelling in the mantle. Dynamic topography in the southern parts of the craton may be associated with the Peri-Tethys collisional tectonics. (Artemieva I.M., Global and Planetary Change, 2007, 58, 411-434).

  10. Topography Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  11. Flow Around Steep Topography

    Science.gov (United States)

    2015-09-30

    Flow around steep topography T. M. Shaun Johnston Scripps Institution of Oceanography University of California, San Diego 9500 Gilman Drive, M...tall, steep, submarine topography and islands. During the Flow Encountering Abrupt Topography (FLEAT) DRI, investigators will determine: • Whether...estimates from making accurate statistical/deterministic predictions at ᝺ km resolution around submarine topography and islands? How can we

  12. Reconciling Long-Wavelength Dynamic Topography, Geoid Anomalies and Mass Distribution on Earth

    Science.gov (United States)

    Hoggard, M.; Richards, F. D.; Ghelichkhan, S.; Austermann, J.; White, N.

    2017-12-01

    Since the first satellite observations in the late 1950s, we have known that that the Earth's non-hydrostatic geoid is dominated by spherical harmonic degree 2 (wavelengths of 16,000 km). Peak amplitudes are approximately ± 100 m, with highs centred on the Pacific Ocean and Africa, encircled by lows in the vicinity of the Pacific Ring of Fire and at the poles. Initial seismic tomography models revealed that the shear-wave velocity, and therefore presumably the density structure, of the lower mantle is also dominated by degree 2. Anti-correlation of slow, probably low density regions beneath geoid highs indicates that the mantle is affected by large-scale flow. Thus, buoyant features are rising and exert viscous normal stresses that act to deflect the surface and core-mantle boundary (CMB). Pioneering studies in the 1980s showed that a viscosity jump between the upper and lower mantle is required to reconcile these geoid and tomographically inferred density anomalies. These studies also predict 1-2 km of dynamic topography at the surface, dominated by degree 2. In contrast to this prediction, a global observational database of oceanic residual depth measurements indicates that degree 2 dynamic topography has peak amplitudes of only 500 m. Here, we attempt to reconcile observations of dynamic topography, geoid, gravity anomalies and CMB topography using instantaneous flow kernels. We exploit a density structure constructed from blended seismic tomography models, combining deep mantle imaging with higher resolution upper mantle features. Radial viscosity structure is discretised, and we invert for the best-fitting viscosity profile using a conjugate gradient search algorithm, subject to damping. Our results suggest that, due to strong sensitivity to radial viscosity structure, the Earth's geoid seems to be compatible with only ± 500 m of degree 2 dynamic topography.

  13. Mixing Over Rough Topography

    Science.gov (United States)

    2017-10-25

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Mixing Over Rough Topography Michael C. Gregg APL/UW...OBJECTIVES To understand mixing over rough topography. APPROACH To supplement NRL’s Mixing Over Rough Topography (MORT) measurements over ...to 1) Assess hydraulic control along lines crossing the bank, and 2) Measure turbulent dissipation rates over the bank. WORK COMPLETED The

  14. Dynamic Topography Revisited

    Science.gov (United States)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The

  15. Moire topography in odontology

    Science.gov (United States)

    Moreno Yeras, A.

    2001-08-01

    For several decades measurement optical techniques have been used in different branches of Science and Technology and in medicine. One of these techniques is the so-called Moire topography that allows the accurate measurement of different parts of the human body topography. This investigation presents the measurement of topographies of teeth and gums using an automated system of shadow moire, with which precision can be reached up to the order of the microns by the phase shift instrumentation in an original way. Advantages and disadvantages of using the Moire topography and its comparison with other techniques used in the optical metrology are presented. Also, some positive and negative aspects of the implementation of this technique are shown in dentistry.

  16. Hot upwelling conduit beneath the Atlas Mountains, Morocco

    Science.gov (United States)

    Sun, Daoyuan; Miller, Meghan S.; Holt, Adam F.; Becker, Thorsten W.

    2014-11-01

    The Atlas Mountains of Morocco display high topography, no deep crustal root, and regions of localized Cenozoic alkaline volcanism. Previous seismic imaging and geophysical studies have implied a hot mantle upwelling as the source of the volcanism and high elevation. However, the existence, shape, and physical properties of an associated mantle anomaly are debated. Here we use seismic waveform analysis from a broadband deployment and geodynamic modeling to define the physical properties and morphology of the anomaly. The imaged low-velocity structure extends to ~200 km beneath the Atlas and appears ~350 K hotter than the ambient mantle with possible partial melting. It includes a lateral conduit, which suggests that the Quaternary volcanism arises from the upper mantle. Moreover, the shape and temperature of the imaged anomaly indicate that the unusually high topography of the Atlas Mountains is due to active mantle support.

  17. Decoding Dynamic Topography: Geologic and Thermochronologic Constraints From Madagascar

    Science.gov (United States)

    Stephenson, S.; White, N.

    2017-12-01

    Madagascar's topography is characterized by flights of low relief peneplains separated by escarpments. Remarkably, nearly 50% of the landscape is higher than 500 m despite being surrounded by passive margins. Eocene marine limestones crop out at elevations of 400-800 m, staircases of Pleistocene marine terraces fringe the coastline and longitudinal river profiles are disequilibrated. Together, these observations suggest that Madagascar has experienced Neogene epeirogenic uplift. Positive oceanic residual depth anomalies surrounding the island, long wavelength free-air gravity anomalies, Neogene basaltic volcanism and slow sub-plate shear wave velocities show that Neogene uplift is generated by convective circulation within the upper mantle. However, the landscape's erosional response to long wavelength uplift is poorly known. Here, we present 18 apatite fission track and apatite He analyses of granitoid samples from sub-vertical transects in central and northern Madagascar. Apatite fission track ages are 200-250 Ma with mean track lengths of 12 μm. Apatite He ages are highly dispersed in samples from the highlands (i.e. AHe age > 150 Ma) but a narrower, younger range of 30-60 Ma is found on the coastal lowlands. Joint inverse modeling was carried out using the QTQt transdimensional reversible jump Markov Chain Monte Carlo (MCMC) algorithm to determine time-temperature histories. Results show that the coastal lowlands experienced up to 1 km of exhumation during the Neogene Period, whilst the central highlands experienced either very slow or negligible exhumation. This spatial distribution is expected when kinematic waves of incision propagate through a fluvially eroding landscape from coast to interior. Inverse modeling of suites of river profiles and forward landscape simulations support this interpretation. Our results show that the landscape response to modest (i.e. 1 km) regional uplift is diachronous and that thermochronologic observations can be used to

  18. Universal multifractal Martian topography

    Science.gov (United States)

    Landais, F.; Schmidt, F.; Lovejoy, S.

    2015-11-01

    In the present study, we investigate the scaling properties of the topography of Mars. Planetary topographic fields are well known to roughly exhibit (mono)fractal behavior. Indeed, the fractal formalism reproduces much of the variability observed in topography. Still, a single fractal dimension is not enough to explain the huge variability and intermittency. Previous studies have claimed that fractal dimensions might be different from one region to another, excluding a general description at the planetary scale. In this article, we analyze the Martian topographic data with a multifractal formalism to study the scaling intermittency. In the multifractal paradigm, the apparent local variation of the fractal dimension is interpreted as a statistical property of multifractal fields. We analyze the topography measured with the Mars Orbiter Laser altimeter (MOLA) at 300 m horizontal resolution, 1 m vertical resolution. We adapted the Haar fluctuation method to the irregularly sampled signal. The results suggest a multifractal behavior from the planetary scale down to 10 km. From 10 to 300 m, the topography seems to be simple monofractal. This transition indicates a significant change in the geological processes governing the Red Planet's surface.

  19. Structure and Evolution of the North American Upper Mantle: Insight from Integrative Modeling of Gravity, Topography and Seismic Tomography Data

    Science.gov (United States)

    Mooney, W. D.; Kaban, M. K.; Tesauro, M.

    2014-12-01

    A limitation on the application of geophysical methods for the study of the upper mantle is the effect of lateral variations in the structure of the overlying crust that obscure the signal from the mantle. However, the North American upper mantle is particularly well-suited for geophysical study because crustal corrections can be made based on the results from numerous active- and passive-source seismic investigations that have determined lateral variations in crustal properties, including crustal thickness, P- and S-wave velocities, and crustal density estimated from empirical velocity-density relations. We exploit this knowledge of the crust of North America to construct an integrated 3D model of variations in density, temperature and composition within the upper mantle to a depth of 250 km. Our model is based on a joint analysis of topography, gravity, and seismic tomography data, coupled with mineral physics constraints. In the first step we remove the effect of the laterally-varying crust from the observed gravity field and topography (assuming Airy isostasy) using our crustal model NACr2014 (Tesauro et al., submitted). In the second step the residual mantle gravity field and residual topography (obtained in the first step) are inverted to obtain a 3D density model of the upper mantle. Thermal effects dominate this initial density model. To compensate for the thermal effects we invert for mantle temperatures based on the S-wave velocities determined by two seismic tomography models (S40RTS and NA2007). After removing the thermal effect from the mantle gravity anomalies we are left with the upper mantle density variations that are due to compositional variations. We recover two long-wavelength (5°-10°) features in the upper mantle compositional density model that are not evident in seismic tomography models: (1) a strong (+200 mgal) positive compositional anomaly beneath the Gulf of Mexico, perhaps due to eclogite in the uppermost mantle, and (2) a NE

  20. The Dawn Topography Investigation

    Science.gov (United States)

    Raymond, C. A.; Jaumann, R.; Nathues, A.; Sierks, H.; Roatsch, T.; Preusker, E; Scholten, F.; Gaskell, R. W.; Jorda, L.; Keller, H.-U.; hide

    2011-01-01

    The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids' landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn's framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta's geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.

  1. The idol beneath the altar.

    Science.gov (United States)

    Clemens, Norman A

    2014-03-01

    Drawing on the imagery of a Mayan idol hidden beneath the altar of a Catholic mission church imposed on a Mayan city by Spanish conquerors, the author discusses the role of deeply rooted core beliefs that are not always evident on the surface-and the observation that, in clinical practice, things are not always as they seem. Psychotherapists may unconsciously be seen as invading cultural enemies.

  2. Slow upper mantle beneath Southern Norway from surface waves

    Science.gov (United States)

    Weidle, C.; Maupin, V.

    2009-04-01

    A recent regional surface wave tomography for Northern Europe revealed unprecedented images of the upper mantle beneath the (Tertiary) North Atlantic and the bordering Fennoscandian craton of Archean-Proterozoic age. With respect to the circum-Atlantic regions of uplift, no common mantle pattern supporting the uplift of these regions is observed. The western boundary of the thick cratonic lithosphere follows the trend of the continental margin offshore northern Norway (i.e. the northern Scandes are underlain by thick lithosphere) whereas further south the boundary of the craton is located further east beneath southwestern Sweden. SV shear wave velocities beneath southern Norway are 10% slower than ak135 (at 70-115 km depth) and these low-velocities are clearly connected to the North Atlantic low-velocity regime through a ~ 400 km wide "channel". The low-velocity anomaly beneath Southern Norway coincides in geometry roughly with the dome-like high topography of the southern Scandes and may thus have a non-negligible contribution to the isostatic balance of the region. The amplitude and depth-distribution of this anomaly are due to be further constrained by new data that were acquired during the MAGNUS experiment in 2006-2008. The temporary seismic network, consisting of 40 broadband seismometers covers to a large extent the location of the anomaly as imaged by the regional tomography. This enables us to get unique control on the tomographic model at improved lateral and vertical resolution. Preliminary analysis of surface wave phase velocities yields an average 1-D shear wave velocity profile for southern Norway as a first step to constrain the presence and depth extent of this low-velocity anomaly.

  3. Fast optical computerized topography

    Science.gov (United States)

    Pinhasi, S. V.; Alimi, R.; Eliezer, S.; Perelmutter, L.

    2010-06-01

    The topography of samples is recovered from the phase reconstruction by solving the Transport Intensity Equation (TIE). The TIE is solved by expanding the equation into a series of Zernike polynomials, leading to a set of appropriate algebraic equations. In the experiments laser light was used and the illuminated region defined the boundary conditions on the target. The phase was uniquely reconstructed and the geometry of the target was calculated. The novel technique has been successfully tested on a transparent phase plate as well as on a gold coated one. Using this technique with illumination of a short laser pulse makes it well suited for reconstructing surfaces of moving objects.

  4. What compensates the topography of southern Norway? Insights from thermo-isostatic modeling

    Science.gov (United States)

    Kolstrup, Marianne L.; Pascal, Christophe; Maupin, Valerie

    2012-10-01

    The origin of the high topography of the Norwegian Mountains is currently much debated. Several geophysical studies show that the uppermost mantle below southern Norway has anomalously low velocities as compared to other parts of the Baltic Shield. This study aims to shed lights on the structure of the lithospheric mantle below southern Norway by adapting and further refining a method based on isostatic and thermal equilibrium to compute temperature, temperature-related density and synthetic S-wave velocity in stable continental domains. The one-dimensional steady-state heat equation is used with topographic, Moho depth, crustal density and surface heat flow data. A condition of local isostasy is assumed and geoid undulations are used to constrain the range of possible lithosphere models. Results derived from this method suggest a thickening of the thermal lithosphere below southern Norway from west to east. The western part is found to have higher temperatures, lower densities and lower synthetic S-wave velocities than the eastern part, compatible with results from a recent P-wave travel time residual study. Comparison of the synthetic shear-velocity profiles beneath southwestern Norway with velocity profiles inverted from Rayleigh wave dispersion data suggests that the higher temperatures associated with a thinner lithosphere can explain parts of the seismic low-velocity anomaly. The inferred lithospheric structure is sensitive to uncertainties in the crustal input model, but the main features remain undisturbed by changes in the input data. The results show that the lithosphere of southwestern Norway can be in local isostatic equilibrium, if it is thinner and warmer than the lithosphere of eastern Norway. The present-day high topography may therefore be partially sustained by lower densities in the mantle lithosphere.

  5. Crustal structure beneath Eastern Greenland

    DEFF Research Database (Denmark)

    Reiche, Sönke; Thybo, H.; Kaip, G.

    2011-01-01

    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice......The conjugate Atlantic passive margins of western Norway and eastern Greenland are characterized by the presence of coast-parallel mountain ranges with peak elevations of more than 3.5 km close to Scoresby Sund in Eastern Greenland. Knowledge about crustal thickness and composition below...

  6. How to handle topography in practical geoid determination: three examples

    DEFF Research Database (Denmark)

    Omang, O.C.D.; Forsberg, René

    2000-01-01

    Three different methods of handling topography in geoid determination were investigated. The first two methods employ the residual terrain model (RTM) remove-restore technique, yielding the quasi-geoid, whereas the third method uses the classical Helmert condensation method, yielding the geoid. A...

  7. Metabolic topography of Parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism.

  8. Metabolic topography of Parkinsonism

    International Nuclear Information System (INIS)

    Kim, Jae Seung

    2007-01-01

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism

  9. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  10. Modelling Earth's surface topography: decomposition of the static and dynamic components

    DEFF Research Database (Denmark)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2016-01-01

    topography maps and perform instantaneous mantle flow modelling to calculate the dynamic topography. We explore the effects of proposed mantle 1-D viscosities and also test a 3D pressure- and temperature-dependent viscosity model. We find that the patterns of residual and dynamic topography are robust.......19). The correlation slightly improves when considering only the very long-wavelength components of the maps (average = ∼0.23). We therefore conclude that a robust determination of dynamic topography is not feasible since current uncertainties affecting crustal density, mantle density and mantle viscosity are still......Contrasting results on the magnitude of the dynamic component of topography motivate us to analyse the sources of uncertainties affecting long wavelength topography modelling. We obtain a range of mantle density structures from thermo-chemical interpretation of available seismic tomography models...

  11. Transient slab flattening beneath Colombia

    Science.gov (United States)

    Wagner, L. S.; Jaramillo, J. S.; Ramírez-Hoyos, L. F.; Monsalve, G.; Cardona, A.; Becker, T. W.

    2017-07-01

    Subduction of the Nazca and Caribbean Plates beneath northwestern Colombia is seen in two distinct Wadati Benioff Zones, one associated with a flat slab to the north and one associated with normal subduction south of 5.5°N. The normal subduction region is characterized by an active arc, whereas the flat slab region has no known Holocene volcanism. We analyze volcanic patterns over the past 14 Ma to show that in the mid-Miocene a continuous arc extended up to 7°N, indicating normal subduction of the Nazca Plate all along Colombia's Pacific margin. However, by 6 Ma, we find a complete cessation of this arc north of 3°N, indicating the presence of a far more laterally extensive flat slab than at present. Volcanism did not resume between 3°N and 6°N until after 4 Ma, consistent with lateral tearing and resteepening of the southern portion of the Colombian flat slab at that time.

  12. Geochemical and Isotopic Variations Along the Southeast Indian Ridge (126°-140°E) Related to Mantle Flow Originating from Beneath Antarctica

    Science.gov (United States)

    Hanan, B. B.; Graham, D. W.; Hemond, C.; Dufour, F.; Briais, A.; Ceuleneer, G.; Maia, M.; Park, S. H.; Revillon, S.; Yang, Y. S.

    2017-12-01

    We present data for glassy basalts from 37 localities along the spreading axis of the Southeast Indian Ridge (SEIR) between 126°-140°E, eastward of the Australian-Antarctic Discordance (AAD). Each of the five ridge segments (A1 to A5, west to east) show well-defined major element trends. An isotopic and negative axial depth anomaly is present, centered on the overlapping tips of segments A3 and A4 at 135°E. Segment A4 basalts have distinct radiogenic Pb and He isotopes plus enriched MORB-like ɛHf, relative to segments to the west and east. Crystal fractionation is more extensive at the A3 and A5 overlapping segment tips adjacent to A4, and decreases both to the west and east. The along axis pattern suggests a mantle heterogeneity located beneath the A3-A4 segments. Pb-Pb isotopic co-variations for the 5 segments define two linear arrays, with a western trend (A1-A3) and an eastern trend (A4-A5) that intersects it at the composition of the anomalous A4 segment, at a 206Pb/204Pb 19. The western trend has higher 208Pb/204Pb for a given 206Pb/204Pb, revealing a gradient in the asthenosphere, with Δ208Pb/204Pb decreasing to the east away from the AAD. Overall, 206,207,208Pb/204Pb and 4He/3He of the A4 anomaly define trends that vector toward the fields for Cenozoic lavas from west Antarctica (Marie Byrd Land and Balleny Islands). West Antarctica has a history of mantle plume underplating and lithosphere modification by subduction [1,2], and there is a broad seismic anomaly below 250 km underlying the West Antarctic Rift system [3]. Our data supports a model in which flow of underplated material plus lithosphere may be guided by the underside topography of the lithosphere beneath the Transantarctic mountains. This flow emerges from beneath east Antarctica, where it leads to volcanism in the Balleny Islands [4]. The material apparently continues to flow northward to the SEIR at 135°E. The geochemical anomaly beneath Zone A is potentially explained by the presence of

  13. Buried topography of Utopia, Mars: Persistence of a giant impact depression

    International Nuclear Information System (INIS)

    McGill, G.E.

    1989-01-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48 degree N, 240 degree W. This implies the existence of a circular depression about 3,300 km in diameter buried beneath Utopia Planitia that is here interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars

  14. Buried topography of Utopia, Mars - Persistence of a giant impact depression

    Science.gov (United States)

    Mcgill, George E.

    1989-01-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48 deg N, 240 deg W. This implies the existence of a circular depression about 3300 km in diameter buried beneath Utopia Planitia that is interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars.

  15. Impact of the lithosphere on dynamic topography: Insights from analogue modeling

    OpenAIRE

    Sembroni, Andrea; Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Becker, Thorsten W.; Goblig, Jan; Fernandez, Manel

    2017-01-01

    Density anomalies beneath the lithosphere are expected to generate dynamic topography at the Earth's surface due to the induced mantle flow stresses which scale linearly with density anomalies, while the viscosity of the upper mantle is expected to control uplift rates. However, limited attention has been given to the role of the lithosphere. Here we present results from analogue modeling of the interactions between a density anomaly rising in the mantle and the lithosphere in a Newtonian sys...

  16. Modeling Earth's surface topography: decomposition of the static and dynamic components

    Science.gov (United States)

    Guerri, M.; Cammarano, F.; Tackley, P. J.

    2017-12-01

    Isolating the portion of topography supported by mantle convection, the so-called dynamic topography, would give us precious information on vigor and style of the convection itself. Contrasting results on the estimate of dynamic topography motivate us to analyse the sources of uncertainties affecting its modeling. We obtain models of mantle and crust density, leveraging on seismic and mineral physics constraints. We use the models to compute isostatic topography and residual topography maps. Estimates of dynamic topography and associated synthetic geoid are obtained by instantaneous mantle flow modeling. We test various viscosity profiles and 3D viscosity distributions accounting for inferred lateral variations in temperature. We find that the patterns of residual and dynamic topography are robust, with an average correlation coefficient of 0.74 and 0.71, respectively. The amplitudes are however poorly constrained. For the static component, the considered lithospheric mantle density models result in topographies that differ, on average, 720 m, with peaks reaching 1.7 km. The crustal density models produce variations in isostatic topography averaging 350 m, with peaks of 1 km. For the dynamic component, we obtain peak-to-peak topography amplitude exceeding 3 km for all the tested mantle density and viscosity models. Such values of dynamic topography produce geoid undulations that are not in agreement with observations. Assuming chemical heterogeneities in the lower mantle, in correspondence with the LLSVPs (Large Low Shear wave Velocity Provinces), helps to decrease the amplitudes of dynamic topography and geoid, but reduces the correlation between synthetic and observed geoid. The correlation coefficients between the residual and dynamic topography maps is always less than 0.55. In general, our results indicate that, i) current knowledge of crust density, mantle density and mantle viscosity is still limited, ii) it is important to account for all the various

  17. Topography-modified refraction (TMR): adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK.

    Science.gov (United States)

    Kanellopoulos, Anastasios John

    2016-01-01

    To evaluate the safety, efficacy, and contralateral eye comparison of topography-guided myopic LASIK with two different refraction treatment strategies. Private clinical ophthalmology practice. A total of 100 eyes (50 patients) in consecutive cases of myopic topography-guided LASIK procedures with the same refractive platform (FS200 femtosecond and EX500 excimer lasers) were randomized for treatment as follows: one eye with the standard clinical refraction (group A) and the contralateral eye with the topographic astigmatic power and axis (topography-modified treatment refraction; group B). All cases were evaluated pre- and post-operatively for the following parameters: refractive error, best corrected distance visual acuity (CDVA), uncorrected distance visual acuity (UDVA), topography (Placido-disk based) and tomography (Scheimpflug-image based), wavefront analysis, pupillometry, and contrast sensitivity. Follow-up visits were conducted for at least 12 months. Mean refractive error was -5.5 D of myopia and -1.75 D of astigmatism. In group A versus group B, respectively, the average UDVA improved from 20/200 to 20/20 versus 20/16; post-operative CDVA was 20/20 and 20/13.5; 1 line of vision gained was 27.8% and 55.6%; and 2 lines of vision gained was 5.6% and 11.1%. In group A, 27.8% of eyes had over -0.50 diopters of residual refractive astigmatism, in comparison to 11.7% in group B ( P Topography-modified refraction (TMR): topographic adjustment of the amount and axis of astigmatism treated, when different from the clinical refraction, may offer superior outcomes in topography-guided myopic LASIK. These findings may change the current clinical paradigm of the optimal subjective refraction utilized in laser vision correction.

  18. Evolution of Neogene Dynamic Topography in Madagascar

    Science.gov (United States)

    Paul, J. D.; Roberts, G.; White, N. J.

    2012-12-01

    Madagascar is located on the fringes of the African superswell. Its position and the existence of a +30 mGal long wavelength free-air gravity anomaly suggest that its present-day topography is maintained by convective circulation of the sub-lithospheric mantle. Residual depth anomalies of oceanic crust encompassing the island imply that Madagascar straddles a dynamic topographic gradient. In June-July 2012, we examined geologic evidence for Neogene uplift around the Malagasy coastline. Uplifted coral reef deposits, fossil beach rock, and terraces demonstrate that the northern and southern coasts are probably being uplifted at a rate of ~0.2 mm/yr. Rates of uplift clearly vary around the coastline. Inland, extensive peneplains occur at elevations of 1 - 2 km. These peneplains are underlain by 10 - 20 m thick laterite deposits, and there is abundant evidence for rapid erosion (e.g. lavaka). Basaltic volcanism also occurred during Neogene times. These field observations can be combined with an analysis of drainage networks to determine the spatial and temporal pattern of convectively driven uplift. ~100 longitudinal river profiles were extracted from a digital elevation model of Madagascar. An inverse model is then used to minimize the misfit between observed and calculated river profiles as a function of uplift rate history. During inversion, the residual misfit decreases from ~20 to ~4. Our results suggest that youthful and rapid uplift of 1-2 km occurred at rates of 0.2-0.4 mm/yr during the last ˜15 Myr. The algorithm resolves distinct phases of uplift which generate localized swells of high topography and relief (e.g. the Hauts Plateaux). Our field observations and modeling indicate that the evolution of drainage networks may contain useful information about mantle convective processes.

  19. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  20. Topography-modified refraction (TMR: adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2016-11-01

    Full Text Available Anastasios John Kanellopoulos1,2 1LaserVision Clinical and Research Institute, Athens, Greece; 2Department of Ophthalmology, NYU Medical School, New York, NY, USA Purpose: To evaluate the safety, efficacy, and contralateral eye comparison of topography-guided myopic LASIK with two different refraction treatment strategies. Setting: Private clinical ophthalmology practice. Patients and methods: A total of 100 eyes (50 patients in consecutive cases of myopic topography-guided LASIK procedures with the same refractive platform (FS200 femtosecond and EX500 excimer lasers were randomized for treatment as follows: one eye with the standard clinical refraction (group A and the contralateral eye with the topographic astigmatic power and axis (topography-modified treatment refraction; group B. All cases were evaluated pre- and post-operatively for the following parameters: refractive error, best corrected distance visual acuity (CDVA, uncorrected distance visual acuity (UDVA, topography (Placido-disk based and tomography (Scheimpflug-image based, wavefront analysis, pupillometry, and contrast sensitivity. Follow-up visits were conducted for at least 12 months. Results: Mean refractive error was -5.5 D of myopia and -1.75 D of astigmatism. In group A versus group B, respectively, the average UDVA improved from 20/200 to 20/20 versus 20/16; post-operative CDVA was 20/20 and 20/13.5; 1 line of vision gained was 27.8% and 55.6%; and 2 lines of vision gained was 5.6% and 11.1%. In group A, 27.8% of eyes had over -0.50 diopters of residual refractive astigmatism, in comparison to 11.7% in group B (P<0.01. The residual percentages in both groups were measured with refractive astigmatism of more than –0.5 diopters. Conclusion: Topography-modified refraction (TMR: topographic adjustment of the amount and axis of astigmatism treated, when different from the clinical refraction, may offer superior outcomes in topography-guided myopic LASIK. These findings

  1. Mapping the mantle transition zone beneath the central Mid-Atlantic Ridge using Ps receiver functions.

    Science.gov (United States)

    Agius, M. R.; Rychert, C.; Harmon, N.; Kendall, J. M.

    2017-12-01

    Determining the mechanisms taking place beneath ridges is important in order to understand how tectonic plates form and interact. Of particular interest is establishing the depth at which these processes originate. Anomalies such as higher temperature within the mantle transition zone may be inferred seismically if present. However, most ridges are found in remote locations beneath the oceans restricting seismologists to use far away land-based seismometers, which in turn limits the imaging resolution. In 2016, 39 broadband ocean-bottom seismometers were deployed across the Mid-Atlantic Ridge, along the Romanche and Chain fracture zones as part of the PI-LAB research project (Passive Imaging of the Lithosphere and Asthenosphere Boundary). The one-year long seismic data is now retrieved and analysed to image the mantle transition zone beneath the ridge. We determine P-to-s (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities using the extended multitaper deconvolution. The data from ocean-bottom seismometers have tilt and compliance noise corrections and is filtered between 0.05-0.2 Hz to enhance the signal. 51 teleseismic earthquakes generated hundreds of good quality waveforms, which are then migrated to depth in 3-D. The topography at the d410 deepens towards the west of the Romanche and Chain fracture zone by 15 km, whereas the topography of d660 shallows beneath the ridge between the two zones. Transition zone thickness thins from 5 to 20 km. Thermal anomalies determined from temperature relationships with transition zone thickness and depth variations of the d410 and d660 suggests hotter temperatures of about 200 K. Overall, the result suggests mid-ocean ridges may have associated thermal signatures as deep as the transition zone.

  2. Modeling 3-D density distribution in the upper mantle beneath the Yellowstone from inversion of geoid anomaly data

    Science.gov (United States)

    Moreno Chaves, C. M.; Ussami, N.

    2011-12-01

    We developed a simple three-dimensional scheme to invert geoid anomalies, aiming to map density variations in the lower crust and the upper mantle. Using a flat-Earth approximation, the model space is represented by a finite set of rectangular prisms. The linear inversion algorithm is based on Tikhonov regularization and the convergence of the solution is controlled by the Levenberg-Marquardt method. Our linear inversion algorithm does not require an initial density model, allowing it to be used where geological constraints on density are not available. To analyze the quality of the model density obtained by the inversion algorithm, we used the resolution and the covariance matrices. In order to study the thermal and the composition state beneath the Yellowstone and to test our algorithm inversion, geoid anomalies were inverted and modeled. Yellowstone exhibits a high geoid anomaly (~13 m), with a topographic swell of about 500 km wide. Residual geoid anomalies were obtained using the EGM2008 [Pavlis et al., 2008] geopotential model expanded up to degree 2160 after removing the long-wavelength component (degree 10). Lower crust and mantle-related geoid anomalies with -80 m amplitude were obtained after removing crustal effects (topographic masses, sediments and crustal thickness variations). The center of the negative geoid anomaly coincides geographically with the low velocity body (Yuan and Dueker [2005] and Waite et al. [2006]) in the upper mantle and with a depression of 12 km of the 410 km discontinuity detected by Fee and Dueker [2004]. Our results show that the lower crust and the upper mantle of the Yellowstone have a predominantly negative density contrast (-10 to -75 kg/m3) relative to the surrounding mantle. The mass deficiency mapped beneath the Yellowstone suggests the mantle to be hotter (-200 to -300 °C) and buoyant to isostatically sustain the high topography of this province (> 3000 m above sea level). The density model shows that the negative

  3. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  4. Crawling beneath the free surface: Water snail locomotion

    Science.gov (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-08-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  5. Role of percent tissue altered on ectasia after LASIK in eyes with suspicious topography.

    Science.gov (United States)

    Santhiago, Marcony R; Smadja, David; Wilson, Steven E; Krueger, Ronald R; Monteiro, Mario L R; Randleman, J Bradley

    2015-04-01

    To investigate the association of the percent tissue altered (PTA) with the occurrence of ectasia after LASIK in eyes with suspicious preoperative corneal topography. This retrospective comparative case-control study compared associations of reported ectasia risk factors in 129 eyes, including 57 eyes with suspicious preoperative Placido-based corneal topography that developed ectasia after LASIK (suspect ectasia group), 32 eyes with suspicious topography that remained stable for at least 3 years after LASIK (suspect control group), and 30 eyes that developed ectasia with bilateral normal topography (normal topography ectasia group). Groups were subdivided based on topographic asymmetry into high- or low-suspect groups. The PTA, preoperative central corneal thickness (CCT), residual stromal bed (RSB), and age (years) were evaluated in univariate and multivariate analyses. Average PTA values for normal topography ectasia (45), low-suspect ectasia (39), high-suspect ectasia (36), low-suspect control (32), and high-suspect control (29) were significantly different from one another in all comparisons (P topography ectasia groups, and CCT was not significantly different between any groups. Stepwise logistic regression revealed the PTA as the most significant independent variable (P topography. Less tissue alteration, or a lower PTA value, was necessary to induce ectasia in eyes with more remarkable signs of topographic abnormality, and PTA provided better discriminative capabilities than RSB for all study populations. Copyright 2015, SLACK Incorporated.

  6. Interplay between tectonics and topography: Topographic stress controls on bedrock fractures and surface processes

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.; Holbrook, W. S.; St Clair, J. T.; Singha, K.

    2016-12-01

    The interaction of tectonics, topography, and surface processes influences the evolution of landscapes in tectonically active regions. Though tectonic controls on topography have been extensively studied, the influence of topography on tectonics has been examined less. Theoretical studies have suggested that topography can perturb the tectonic and gravitational stress fields in landscapes, which can influence bedrock fracture patterns and in turn influence erosion. This hypothesis implies that there could be a feedback between topographic stress and landscape evolution such that topographically induced bedrock fractures influence and are influenced by surface processes in evolving topography. In this work, we explore the predictions of a three-dimensional topographic stress model and illustrate how different topographic forms and tectonic settings could influence bedrock fracture patterns. We show that the stress field is most sensitive to topographic perturbations if the most compressive horizontal tectonic stress is oriented perpendicular to the long axis of elongated landforms such as ridges and valleys, and that topographic stress perturbations are most pronounced beneath landforms with higher mean curvatures, such as channel junctions and ridge crests. The shape of a predicted fracture-rich zone in the subsurface depends mainly on the orientation of landforms relative to the most compressive horizontal tectonic stress direction and a dimensionless ratio that expresses the relative magnitudes of topographic stresses associated with tectonics and topographic relief. Variations in this dimensionless ratio can also change the predicted orientations of potential opening-mode fracture planes beneath ridges and valleys. We use these model results to illustrate how topographic perturbations of three-dimensional tectonic and gravitational stresses could influence landscape evolution by altering the rates and spatial heterogeneity of surface processes such as

  7. Structure of Lithospheric and Upper Mantle Discontinuities beneath Central Mongolia from Receiver Functions

    Science.gov (United States)

    Cui, Z.; Meltzer, A.; Fischer, K. M.; Stachnik, J. C.; Munkhuu, U.; Tsagaan, B.; Russo, R. M.

    2017-12-01

    The origin and preservation of high-elevation low-relief surfaces in continental interiors remains an open questions. Central Mongolia constitutes a major portion of the Mongolian Plateau and is an excellent place to link deep earth and surface processes. The lithosphere of Mongolia was constructed through accretionary orogenesis associated with the Central Asian Orogenic Belt (CAOB) from the late Paleozoic to the early Triassic. Alkaline volcanic basalt derived from sublithospheric sources has erupted sporadically in Mongolia since 30 Ma. Constraining the depth variation of lithospheric and upper mantle discontinuities is crucial for understanding the interaction between upper mantle structure and surface topography. We conducted receiver functions (RF) analyses suitable data recorded at112 seismic broadband stations in central Mongolia to image the LAB and mantle transition zone beneath Central Mongolia. A modified H-κ stacking was performed to determine crustal average thickness (H) and Vp/Vs ratio (κ). Central Mongolia is characterized by thick crust (43-57 km) enabling use of both P wave RF and to S wave RF to image the LAB. The PRF traces in the depth domain are stacked based on piercing point locations for the 410 and 660 discontinuities using 0.6 ° × 0.6 ° bins in a grid. From south to north, the average lithospheric thickness is 85km in Gobi Altai gradually thinning northeastward to 78km in the southern Hangay Dome, 72 km in the northern Hangay Dome then increases to 75km in Hovsgol area. While there is overall thinning of the lithosphere from SW to NE, beneath the Hangay, there is a slight increase beneath the highest topography. The thickness of the mantle transition zone (MTZ) beneath central Mongolia is similar to global averages. This evidence argues against the hypothesis that a mantle plume exists beneath Central Mongolia causing low velocity anomalies in the upper mantle. To the east of the Hovsgol area in northern Mongolia, the MTZ thickens

  8. Inner core boundary topography explored with reflected and diffracted P waves

    Science.gov (United States)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  9. Causes and Consequences of Time-Varying Dynamic Topography

    Science.gov (United States)

    White, Nicky

    2013-04-01

    Convective circulation of the Earth's mantle maintains plate motion but we know little about the spatial and temporal details of this circulation. Accurate maps of the spatial and temporal pattern of dynamic topography will profoundly affect our understanding the the relationship between surface geology and deep Earth processes. A major difficulty is the 'tyranny of isostasy'. In other words, dynamic topography is difficult to measure because crustal and lithospheric thickness and density changes are the dominant control of surface elevation. Some progress can be made along continental margins by measuring residual depth anomalies of the oldest oceanic floor on newly available seismic reflection and wide-angle profiles. These estimates of dynamic topography have amplitudes of ±1 km and wavelengths of 102-104 km. They mostly, but not always, correlate with long wavelength free-air gravity anomalies. Correlation with seismic tomographic images is much poorer. The distribution of dynamic topography throughout the rest of the oceanic realm can be supplemented by using ship-track data in regions with sparse sedimentary cover and by exploiting the mid-oceanic ridge system. On the continents, it is more difficult to measure dynamic topography with the same accuracy since the density structure of continental lithosphere is so variable but progress can be made on three fronts. First, long-wavelength gravity anomalies which straddle continental margins are an obvious and important guide. Secondly, stratal geometries across continental shelves contain information about positive and negative surface elevation changes. In several cases, 2- and 3-D seismic surveys calibrated by boreholes can be used to constrain spatial and temporal patterns of dynamic topography. In the North Atlantic Ocean, examples of buried ephemeral landscapes suggest that dynamic topography can grow and decay on timescales as short as a few million years. Recognition of positive and negative vertical

  10. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  11. 3D thermal structure of the continental lithosphere beneath China and adjacent regions

    Science.gov (United States)

    Sun, Yujun; Dong, Shuwen; Zhang, Huai; Li, Han; Shi, Yaolin

    2013-01-01

    Based on the Crust2.0 model and the topography data of Chinese continent and its adjacent regions, a three-dimensional finite element model is constructed in terms of the spherical coordinate system. In our numerical model, the average annual ground temperature from 195 meteorological stations and temperature of upper mantle derived from the seismic velocities are adopted as the top and bottom boundary conditions, respectively. The observed thermal conductivity and heat production from P wave velocity based on empirical formula are employed in our numerical model as well. The comparison between the calculated and observed surface heat flow proved that our results are reliable. The temperature beneath the Precambrian cratons is lower than that of other areas for 100-300 °C also. The typical temperature rang at the Moho is estimated to be 800-1000 °C beneath the Tibetan plateau and 500-700 °C beneath the Precambrian cratons (such as Indian plate, Sichuan basin, South China, North China and Tarim), respectively. The thermal state in the eastern part of Sino-Korean craton at the depth deeper than 60 km indicates that it was destructed. The thermal structure in center of Tibetan plateau (especially beneath Qiangtang area) supports the proposed flow of lower crustal or upper mantle material to the east. Generally, the distribution of volcanoes in Chinese continent is consistent with the high temperature areas in the crust or upper mantle. There are many obvious thermal transition zones across the orogenic belts. The thermal transition zone between eastern and western parts in the crust of Chinese continent is consistent with the north-south seismic zone.

  12. Multiscale Study of Currents Affected by Topography

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ...the effects of topography on the ocean general and regional circulation with a focus on the wide range of scales of interactions. The small-scale...details of the topography and the waves, eddies, drag, and turbulence it generates (at spatial scales ranging from meters to mesoscale) interact in the

  13. Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth

    Science.gov (United States)

    Richards, F. D.; Hoggard, M.; White, N. J.

    2017-12-01

    Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long

  14. Analysis of groundwater flow beneath ice sheets

    International Nuclear Information System (INIS)

    Boulton, G. S.; Zatsepin, S.; Maillot, B.

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix

  15. BSRF X-ray topography experimental system

    International Nuclear Information System (INIS)

    Wang Gongli; Jiang Jianhua; Tian Yulian; Han Yong; Wang Zhouguang

    1997-01-01

    The article presents the BSRF white beam topography experimental system, including a white radiation topography camera, a versatile environmental chamber, an X-ray video imaging system and an image processing facility. The specification of the experimental system and some physical results have been discussed

  16. Decoupling of modern shortening rates, climate, and topography in the Caucasus

    Science.gov (United States)

    Forte, Adam M.; Whipple, Kelin X.; Bookhagen, Bodo; Rossi, Matthew W.

    2016-09-01

    The Greater and Lesser Caucasus mountains and their associated foreland basins contain similar rock types, experience a similar two-fold, along-strike variation in mean annual precipitation, and were affected by extreme base-level drops of the neighboring Caspian Sea. However, the two Caucasus ranges are characterized by decidedly different tectonic regimes and rates of deformation that are subject to moderate (less than an order of magnitude) gradients in climate, and thus allow for a unique opportunity to isolate the effects of climate and tectonics in the evolution of topography within active orogens. There is an apparent disconnect between modern climate, shortening rates, and topography of both the Greater Caucasus and Lesser Caucasus which exhibit remarkably similar topography along-strike despite the gradients in forcing. By combining multiple datasets, we examine plausible causes for this disconnect by presenting a detailed analysis of the topography of both ranges utilizing established relationships between catchment-mean erosion rates and topography (local relief, hillslope gradients, and channel steepness) and combining it with a synthesis of previously published low-temperature thermochronologic data. Modern climate of the Caucasus region is assessed through an analysis of remotely-sensed data (TRMM and MODIS) and historical streamflow data. Because along-strike variation in either erosional efficiency or thickness of accreted material fail to explain our observations, we suggest that the topography of both the western Lesser and Greater Caucasus are partially supported by different geodynamic forces. In the western Lesser Caucasus, high relief portions of the landscape likely reflect uplift related to ongoing mantle lithosphere delamination beneath the neighboring East Anatolian Plateau. In the Greater Caucasus, maintenance of high topography in the western portion of the range despite extremely low (<2-4 mm/y) modern convergence rates may be related

  17. P-wave and S-wave traveltime residuals in Caledonian and adjacent units of Northern Europe and Greenland

    Science.gov (United States)

    Hejrani, Babak; Balling, Niels; Holm Jacobsen, Bo; Kind, Rainer; Tilmann, Frederik; England, Richard; Bom Nielsen, Søren

    2014-05-01

    This work combines P-wave and S-wave travel time residuals from in total 477 temporary and 56 permanent stations deployed across Caledonian and adjacent units in Northern Europe and Greenland (Tor, Gregersen et al. 2002; SVEKALAPKO, Sandoval et al., 2003; CALAS, Medhus et al, 2012a; MAGNUS, Weidle et al. 2010; SCANLIPS south, England & Ebbing 2012; SCANLIPS north, Hejrani et al. 2012; JULS Hejrani et al. 2013; plus permanent stations in the region). We picked data from 2002 to 2012 (1221 events) using a cross correlation technique on all waveforms recorded for each event. In this way we achieve maximum consistency of relative residuals over the whole region (Medhus et al. 2012b). On the European side 18362 P-wave travel time residuals was delivered. In East Greenland 1735 P-wave residuals were recovered at the Central Fjord array (13 stations) and 2294 residuals from the sparse GLISN-array (23 stations). Likewise, we picked a total of 6034 residuals of the SV phase (For the Tor and SVEKALAPKO projects we used data from Amaru et al. 2008). Relative residuals within the region are mainly due to sub-crustal uppermost mantle velocity anomalies. A dominant subvertical boundary was detected by Medhus et al. (2012), running along the Tornquist zone, east of the Oslo Graben and crossing under high topography of the southern Scandes. We delineated this boundary in more detail, tracking it towards the Atlantic margin north of Trondheim. Further north (Scanlips north), a similar subvertical upper mantle boundary seems to be present close to the coast, coinciding with the edge of the stretched crust. The North German Caledonides were probed by the new JULS (JUtland Lower Saxony) profile which closes the gap between Tor and CALAS arrays. Mantle structure found by the Tor project was confirmed, and modelling was extended to the eastern edge of the North Sea. References: Amaru, M. L., Spakman, W., Villaseñor, A., Sandoval, S., Kissling, E., 2008, A new absolute arrival time data

  18. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  19. Topography and Landforms of Ecuador

    Science.gov (United States)

    Chirico, Peter G.; Warner, Michael B.

    2005-01-01

    EXPLANATION The digital elevation model of Ecuador represented in this data set was produced from over 40 individual tiles of elevation data from the Shuttle Radar Topography Mission (SRTM). Each tile was downloaded, converted from its native Height file format (.hgt), and imported into a geographic information system (GIS) for additional processing. Processing of the data included data gap filling, mosaicking, and re-projection of the tiles to form one single seamless digital elevation model. For 11 days in February of 2000, NASA, the National Geospatial-Intelligence Agency (NGA), the German Aerospace Center (DLR), and the Italian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed SRTM DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Ecuador DEM was gap-filling areas where the SRTM data contained a data void. These void areas are a result of radar shadow, layover, standing water, and other effects of terrain, as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:50,000 - scale topographic maps which date from the mid-late 1980's (Souris, 2001). Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and remote sensing image-processing techniques

  20. Stability of ice on the Moon with rough topography

    Science.gov (United States)

    Rubanenko, Lior; Aharonson, Oded

    2017-11-01

    The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer

  1. Decompression Melting beneath the Indonesian Volcanic Front

    Science.gov (United States)

    Kelley, K. A.; Colabella, A.; Sisson, T. W.; Hauri, E. H.; Sigurdsson, H.

    2006-12-01

    Subduction zone magmas are typically characterized by high concentrations of dissolved H2O (up to 6-7 wt%), presumably derived from the subducted plate and ultimately responsible for melt generation in this tectonic setting. Pressure-release melting from upward mantle flow, however, is increasingly cited as a secondary driver of mantle wedge melting. Here we report new SIMS volatile and LA-ICP-MS trace element data for olivine-hosted melt inclusions from Galunggung (GG) and Tambora (TB) volcanoes in the Indonesian subduction zone to evaluate the relative importance of decompression vs. H2O-flux melting beneath arc volcanoes. Prior studies of melt inclusions from Galunggung showed unusually low primary H2O concentrations (~0.5 wt%), implicating decompression as a significant mechanism of mantle melting beneath this volcano (Sisson &Bronto, 1998). Our new data from a larger suite of Galunggung melt inclusions show a bimodal distribution of H2O concentrations: a dominant population with ~0.5 wt% H2O, and a small group with 1.5-2.5 wt% H2O, indicating that a small amount of H2O addition from the slab may also contribute to mantle melting here. New volatile data from Tambora melt inclusions also indicate low primary H2O contents (1-2 wt%), suggesting that decompression melting may be a large-scale characteristic of the Indonesian volcanic front. Our new trace element data show both volcanoes are LREE enriched relative to MORB, but Tambora melts show greater LREE enrichment (La/Sm=1.7-2.7[GG]; 6.0- 9.5[TB]). Galunggung melts have Nb/Y in the range of NMORB (0.1-0.2), whereas Tambora Nb/Y is similar to EMORB (0.3-0.5). Most Tambora melt inclusions also have H2O/Y (Y (200-1000) and H2O/Ce (100-1400) relative to NMORB, suggesting a larger influence from slab-derived H2O despite having lower average H2O concentrations than Tambora. The range of H2O/Y and H2O/Ce at Galunggung, however, is largely within the range of back-arc basin basalts and does not preclude a major

  2. Ocular globe topography in radiotherapy

    International Nuclear Information System (INIS)

    Karlsson, Ulf; Kirby, Thomas; Orrison, William; Lionberger, Margaret

    1995-01-01

    Purpose: Ocular lens, retina, and olfactory bulb exposure are common concerns in contemporary radiotherapy practice. Methods to clinically localize soft tissue structures (i.e., lens and retina) are varied and often imprecise. We hypothesized that eyelid markers constituted a better reference point than the commonly used lateral canthus marker for lateral beam simulations, unless diagnostic computed tomography or ultrasound examinations were available and/or used. Methods and Materials: Sixty-six pre-Magnetic Resonance Image, normal, orbital computed tomography scans from adult patients were used to measure (a) sagittal distances from eyelid to posterior lens surface, from lateral canthus to posterior lens surface and to the globe's posterior pole, (b) supero-inferior distances in the lateral projection from the lens to the cribriform plate, and (c) common dimensions to establish internal validity of the measurements. Results: The eyelid to lens and retina topography is individually more constant than that from the canthus. There is little if any supero-inferior separation between the lens and the cribriform plate lateral projections. Conclusions: The lateral canthus does not specify lens or retina locations. Eyelid markers of known size provide more accurate anatomical information. Lateral beam ocular globe shielding has to be individualized. Lens shielding is questionable if the olfactory bulb needs to be irradiated by a lateral beam

  3. Topography-guided laser refractive surgery.

    Science.gov (United States)

    Pasquali, Theodore; Krueger, Ronald

    2012-07-01

    Topography-guided laser refractive surgery seeks to correct vision by altering the major refractive surface of the eye. Whereas results are not significantly different from current treatment options for primary surgery, topography-guided treatment is uniquely effective in eyes with corneal irregularity. This review highlights topography-guided ablations, emphasizing recent advances in treating highly aberrated eyes, including treatment for corneal ectasia in conjunction with collagen cross-linking (CXL). Studies continue to document similar outcomes between topography-guided and wavefront-guided customized corneal ablations while exploring the indications for each modality. Topography-guided ablations demonstrate good outcomes for the correction of astigmatism after penetrating keratoplasty, laser-assisted in-situ keratomileusis (LASIK) flap or interface complications, post-radial keratotomy eyes, and other highly aberrated corneas, many of which are poor candidates for wavefront-guided therapy. The use of topography-guided ablations with CXL seeks to address both the refractive and structural abnormalities of corneal ectasias. This combination therapy has shown promising results for keratoconus, post-LASIK ectasia, and pellucid marginal degeneration. Topography-guided customized corneal ablation is well tolerated and effective. Recent attention has been focused on the unique therapeutic benefits of this treatment for highly irregular and ectatic corneas with encouraging results.

  4. Long wavelength mantle transition zone structure beneath Europe as seen by Pds receiver functions

    Science.gov (United States)

    Cottaar, Sanne; Deuss, Arwen

    2015-04-01

    The mantle is delineated by seismic discontinuities between 300 and 800 km depth. Variations in topography, width and occurrence of the discontinuities indicate lateral variations in temperature, composition and water content, as these variations influence the mantle phase transitions. Seismic studies of the conversions of pressure to shear waves (Pds phases) are an important tool to observe lateral variations in these discontinuities. Here we collect a Pds data set across all European seismic stations since 2000 that are available through ORFEUS or IRIS; resulting in ~500,000 event-station pairs. We deconvolve the radial component by the vertical component - assumed to represent the source component- using the iterative deconvolution method to obtain receiver functions. We assess the quality of a receiver function by the signal-to-noise ratio and by evaluating how well the radial component is reproduced when reconvolving the receiver function with the vertical component. This results in ~45,000 high quality receiver functions across Europe. Here we present the large scale variations in the discontinuities around 410 and 660 km across Europe. The seismic discontinuities beneath the Eastern European craton show little topography and the mantle transition zone thickness is thinner compared to the thickness beneath the rest of Europe. Observing discontinuities within the mantle transition zone is complicated by arriving reverberations from strong shallow structure of the craton. The mantle transition zone around the Mediterranean is thicker and a lot more complexities are observed. The main discontinuities are generally weaker, and other discontinuities around 300 km and a negative jump around 600 km are observed.

  5. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry......, optical scanning techniques, and scanning probe microscopy (SPM). These methods, based on acquisition of topography data from point by point scans, give quantitative information of heights with respect to position. Based on a different approach, the so-called integral methods produce parameters...

  6. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    Science.gov (United States)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  7. Controlling droplet spreading with topography

    Science.gov (United States)

    Kant, P.; Hazel, A. L.; Dowling, M.; Thompson, A. B.; Juel, A.

    2017-09-01

    We present an experimental system that can be used to study the dynamics of a picoliter droplet (in-flight radius of 12.2 μ m ) as it spreads over substrates with topographic variations. We concentrate on the spreading of a droplet within a recessed stadium-shaped pixel, with applications to the manufacture of polymer organic light-emitting-diode displays, and find that the sloping sidewall of the pixel can either locally enhance or hinder spreading depending on whether the topography gradient ahead of the contact line is positive or negative, respectively. Locally enhanced spreading occurs via the formation of thin pointed rivulets along the sidewalls of the pixel through a mechanism similar to capillary rise in sharp corners. We demonstrate that a simplified model involving quasistatic surface-tension effects within the framework of a thin-film approximation combined with an experimentally measured dynamic spreading law, relating the speed of the contact line to the contact angle, provides excellent predictions of the evolving liquid morphologies. A key feature of the liquid-substrate interaction studied here is the presence of significant contact angle hysteresis, which enables the persistence of noncircular fluid morphologies. We also show that the spreading law for an advancing contact line can be adequately approximated by a Cox-Voinov law for the majority of the evolution. The model does not include viscous effects in the bulk of the droplet and hence the time scales for the propagation of the thin pointed rivulets are not captured. Nonetheless, this simple model can be used very effectively to predict the areas covered by the liquid and may serve as a useful design tool for systems that require precise control of liquid on substrates.

  8. Mantle upwelling beneath Madagascar: evidence from receiver function analysis and shear wave splitting

    Science.gov (United States)

    Paul, Jonathan D.; Eakin, Caroline M.

    2017-07-01

    Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.

  9. Topographic effect in marine magnetotelluric data and implications to the electrical conductivity structure of the mantle beneath the Tristan da Cunha hotspot area in southern Atlantic

    Science.gov (United States)

    Baba, K.; Chen, J.; Jegen, M. D.; Utada, H.; Kammann, J.; Geissler, W. H.

    2015-12-01

    Kiyoshi Baba1,2, Jin Chen2, Marion Jegen2, Hisashi Utada1, Janina Kammann3, and Wolfram H. Geissler4 1. Earthquake Research Institute, The University of Tokyo2. GEOMAR, Helmholtz Centre for Ocean Research Kiel3. University of Hamburg4. Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchTristan da Cunha Island is one of the hot spots in the Atlantic Ocean. The discussion about its source have not reached consensus yet whether it is in shallow asthenosphere or deeper mantle, because of lack of the geophysical observations in the area. A marine magnetotelluric (MT) experiment was conducted together with seismological observations in the area in 2012-2013 by collaboration between Germany and Japan, in order to give further constraints on the physical state of the mantle beneath the area. A total of 26 seafloor stations were deployed around the Tristan da Cunha islands and available data were retrieved from 23 stations. The MT responses were estimated for those available sites. The detailed data processing will be presented by Chen et al. in this meeting. In this study, we report on the topographic effect on the observed MT responses. During the cruises for seafloor instruments deployment and recovery, detailed bathymetry data were collected around the stations by onboard multi-narrow beam echo sounding (MBES) system. We compiled the MBES data and ETOPO1 data to incorporate the local and regional topography. Then, we applied iterative topographic effect correction and one-dimensional (1-D) conductivity structure inversion. The MT responses of each station were simulated by three-dimensional (3-D) forward modeling. Preliminary results show the overall feature of the observed MT responses at some stations were qualitatively well explained by the seafloor topography included in the conductivity structure model over the 1-D mantle structure. An extreme example is the station near the Tristan da Cunha Island. The impedance phases varies ~300 degrees in

  10. Topology of convection beneath the solar surface

    International Nuclear Information System (INIS)

    Stein, R.F.; Nordlund, A.

    1989-01-01

    It is shown that the topology of convection beneath the solar surface is dominated by effects of stratification. Convection in a strongly stratified medium has: (1) gentle expanding structureless warm upflows and (2) strong converging filamentary cool downdrafts. The horizontal flow topology is cellular, with a hierarchy of cell sizes. The small density scale height in the surface layers forces the formation of the solar granulation, which is a shallow surface phenomenon. Deeper layers support successively larger cells. The downflows of small cells close to the surface merge into filamentary downdrafts of larger cells at greater depths, and this process is likely to continue through most of the convection zone. Radiative cooling at the surface provides the entropy-deficient material which drives the circulation. 13 refs

  11. Bubble streams rising beneath an inclined surface

    Science.gov (United States)

    Bird, James; Brasz, Frederik; Kim, Dayoung; Menesses, Mark; Belden, Jesse

    2017-11-01

    Bubbles released beneath a submerged inclined surface can tumble along the wall as they rise, dragging the surrounding fluid with them. This effect has recently regained attention as a method to mitigate biofouling in marine environment, such as a ship hull. It appears that the efficacy of this approach may be related to the velocity of the rising bubbles and the extent that they spread laterally as they rise. Yet, it is unclear how bubble stream rise velocity and lateral migration depend on bubble size, flow rate, and inclination angle. Here we perform systematic experiments to quantify these relationships for both individual bubble trajectories and ensemble average statistics. Research supported by the Office of Naval Research under Grant Number award N00014-16-1-3000.

  12. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  13. Sensory properties of menthol and smoking topography

    Directory of Open Access Journals (Sweden)

    Hoffman Allison C

    2011-05-01

    Full Text Available Abstract Although there is a great deal known about menthol as a flavoring agent in foods and confections, less is known about the particular sensory properties of menthol cigarette smoke. Similarly, although smoking topography (the unique way an individual smokes a cigarette has been well studied using non-menthol cigarettes, there is relatively less known about how menthol affects smoking behavior. The objective of this review is to assess the sensory properties of menthol tobacco smoke, and smoking topography associated with menthol cigarettes. The cooling, analgesic, taste, and respiratory effects of menthol are well established, and studies have indicated that menthol’s sensory attributes can have an influence on the positive, or rewarding, properties associated smoking, including ratings of satisfaction, taste, perceived smoothness, and perceived irritation. Despite these sensory properties, the data regarding menthol’s effect on smoking topography are inconsistent. Many of the topography studies have limitations due to various methodological issues.

  14. Advanced Metrologies for Topography and Thickness Measurements

    Science.gov (United States)

    Riou, G.; Acosta, P.; Darwin, M.; Kamenev, B.

    2011-11-01

    Despite its limitations, like the low through put, Atomic force microscopy (AFM) is in common use in the semiconductor industry for surface geometry characterization. Recent development in optical profilometry, Index Corrected Topography (ICT), further expands the technique by analysis of the collected interferograms to extract films parameters (thickness, for instance) and surface topography. This model based technique delivers literally complete information (e.g. topography, roughness, filmstack properties) of measured structure with sub-micron lateral resolution and angstrom vertical resolution. The approach is a strong asset since it allows contact less topography measurement of wafer surfaces. In this paper we will show how this specific metrology can meet the aforementioned stringent requirements. The comparison with both the AFM and the spectroscopic ellipsometry will be presented.

  15. Surface Topography Hinders Bacterial Surface Motility.

    Science.gov (United States)

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  16. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  17. Corneal topography measurements for biometric applications

    Science.gov (United States)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  18. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  19. Seasonal Greenland Ice Sheet ice flow variations in regions of differing bed and surface topography

    Science.gov (United States)

    Sole, A. J.; Livingstone, S. J.; Rippin, D. M.; Hill, J.; McMillan, M.; Quincey, D. J.

    2015-12-01

    The contribution of the Greenland Ice Sheet (GrIS) to future sea-level rise is uncertain. Observations reveal the important role of basal water in controlling ice-flow to the ice sheet margin. In Greenland, drainage of large volumes of surface meltwater to the ice sheet bed through moulins and hydrofracture beneath surface lakes dominates the subglacial hydrological system and provides an efficient means of moving mass and heat through the ice sheet. Ice surface and bed topography influence where meltwater can access the bed, and the nature of its subsequent flow beneath the ice. However, no systematic investigation into the influence of topographic variability on Greenland hydrology and dynamics exists. Thus, physical processes controlling storage and drainage of surface and basal meltwater, and the way these affect ice flow are not comprehensively understood. This presents a critical obstacle in efforts to predict the future evolution of the GrIS. Here we present high-resolution satellite mapping of the ice-surface drainage network (e.g. lakes, channels and moulins) and measurements of seasonal variations in ice flow in south west Greenland. The region is comprised of three distinct subglacial terrains which vary in terms of the amplitude and wavelength and thus the degree to which basal topography is reflected in the ice sheet surface. We find that the distribution of surface hydrological features is related to the transfer of bed topography to the ice sheet surface. For example, in areas of thinner ice and high bed relief, moulins occur more frequently and are more uniformly dispersed, indicating a more distributed influx of surface-derived meltwater to the ice sheet bed. We investigate the implications of such spatial variations in surface hydrology on seasonal ice flow rates.

  20. Magmatic underplating beneath the Rajmahal Traps: Gravity ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    surface correlative basalt in seismic and drilling results is ..... 2-D gravity model, partially constrained by available seismic section, along the DSS profile-II. SP is the DSS ... interpretation. One established procedure is to sep- arate regional and residual fields through convo- lution. Another common procedure is the manual.

  1. Lithospheric structure of southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data

    Science.gov (United States)

    Kumar, Niraj; Zeyen, H.; Singh, A. P.; Singh, B.

    2013-07-01

    For the present 2-D lithospheric density modelling, we selected three geotransects of more than 1000 km in length each crossing the southern Indian shield, south of 16°N, in N-S and E-W directions. The model is based on the assumption of local isostatic equilibrium and is constrained by the topography, gravity and geoid anomalies, by geothermal data, and where available by seismic data. Our integrated modelling approach reveals a crustal configuration with the Moho depth varying from ˜40 km beneath the Dharwar Craton, and ˜39 km beneath the Southern Granulite Terrane to about 15-20 km beneath the adjoining oceans. The lithospheric thickness varies significantly along the three profiles from ˜70-100 km under the adjoining oceans to ˜130-135 km under the southern block of Southern Granulite Terrane including Sri Lanka and increasing gradually to ˜165-180 km beneath the northern block of Southern Granulite Terrane and the Dharwar Craton. This step-like lithosphere-asthenosphere boundary (LAB) structure indicates a normal lithospheric thickness beneath the adjoining oceans, the northern block of Southern Granulite Terrane and the Dharwar Craton. The thin lithosphere below the southern block of Southern Granulite Terrane including Sri Lanka is, however, atypical considering its age. Our results suggest that the southern Indian shield as a whole cannot be supported isostatically only by thickened crust; a thin and hot lithosphere beneath the southern block of Southern Granulite Terrane including Sri Lanka is required to explain the high topography, gravity, geoid and crustal temperatures. The widespread thermal perturbation during Pan-African (550 Ma) metamorphism and the breakup of Gondwana during late Cretaceous are proposed as twin cause mechanism for the stretching and/or convective removal of the lower part of lithospheric mantle and its replacement by hotter and lighter asthenosphere in the southern block of Southern Granulite Terrane including Sri Lanka

  2. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone

    Science.gov (United States)

    Zhou, Q.; Liu, L.

    2015-12-01

    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  3. Overthrusting versus subduction beneath southern Hispaniola

    Science.gov (United States)

    Llanes Estrada, M.; Carbó-Gorosabel, A.; ten Brink, U. S.; Granja Bruña, J.; Flores, C. H.; Villasenor, A.; Davila, J. M.; Pazos, A.

    2011-12-01

    Recent observations of the deformational features on the Muertos compressive margin together with sandbox kinematic and gravity modeling question the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc. With the aim of testing such subduction, we carried out a wide-angle seismic transect across the widest part of the Muertos compressive margin (longitude 69°W) in the spring of 2009. Shots were fired along the 200 km transect every 90 seconds from the R/V Hesperides' 3850 cubic inches water-gun array, which, towed at 5 knots, resulted in a shot spacing of ~ 230 m. The seismic signal was recorded by five ocean-bottom seismometers deployed at distance intervals from 30 to 50 km. Adjacent reprocessed reflection seismic lines and previous works provided an initial model of the sediment column and the geometry of upper crustal reflectors. A 2-D forward ray-tracing model of the wide-angle transect outlines the broad-scale crustal structure across the Muertos margin. The Caribbean oceanic slab is imaged underneath the Muertos margin to about 50 km north of the deformation front and up to 19 km depth. A change in crustal p-wave velocity at ~60 km from the deformation front is interpreted to be the boundary between the arc crust and the compressive deformed belt. The Caribbean oceanic crust is not seen extending farther north. Results from gravity modeling using ship data acquired on the seismic profile corroborate a model of an overthrusted Caribbean oceanic slab extending a few tens of km northward from the compressive deformation front and rejects a subduction process, independently of the geometry of the slab used or its angle. In addition to the seismic experiment and the gravity modeling, vertical cross-sections of p-wave global tomography do not show northward inclination of a fast velocity layer into the upper mantle suggesting that the Caribbean plate's interior does not subduct under the Muertos margin. Overall

  4. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  5. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)

    2012-05-15

    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  6. Magmatic unrest beneath Mammoth Mountain, California

    Science.gov (United States)

    Hill, David P.; Prejean, Stephanie

    2005-09-01

    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ˜57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small ( M ≤ 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO 2, and fumarole gases with elevated 3He/ 4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO 2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO 2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  7. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.

    2015-11-11

    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  8. Exploring scaling laws in surface topography

    International Nuclear Information System (INIS)

    Abedini, M.J.; Shaghaghian, M.R.

    2009-01-01

    Surface topography affects many soil properties and processes, particularly surface water storage and runoff. Application of fractal analysis helps understand the scaling laws inherent in surface topography at a wide range of spatial scales and climatic regimes. In this research, a high resolution digital elevation model with a 3 mm resolution on one side of the spectrum and large scale DEMs, with a 500 m spatial resolution on the other side were used to explore scaling laws in surface topography. With appropriate exploratory spatial data analysis of both types of data sets, two conventional computational procedures - variogram and Box Counting Methods (BCM) - address scaling laws in surface topography. The results respect scaling laws in surface topography to some extent as neither the plot treatment nor the direction treatment has a significant impact on fractal dimension variability. While in the variogram method, the change in slope in Richardson's plots appears to be the norm rather than the exception; Richardson's plots resulting from box counting implementation lack such mathematical behavior. These breaks in slope might have useful implications for delineating homogeneous hydrologic units and detecting change in trend in hydrologic time series. Furthermore, it is shown that fractal dimension cannot be used to capture anisotropic variabilities both within and among micro-plots. In addition, its numerical value remains insignificant at the 5% level in moving from one direction to another and also from one spatial scale to another while the ordinate intercept could discriminate the surface roughness variability from one spatial scale to another.

  9. Electronic Cigarette Topography in the Natural Environment.

    Science.gov (United States)

    Robinson, R J; Hensel, E C; Morabito, P N; Roundtree, K A

    2015-01-01

    This paper presents the results of a clinical, observational, descriptive study to quantify the use patterns of electronic cigarette users in their natural environment. Previously published work regarding puff topography has been widely indirect in nature, and qualitative rather than quantitative, with the exception of three studies conducted in a laboratory environment for limited amounts of time. The current study quantifies the variation in puffing behaviors among users as well as the variation for a given user throughout the course of a day. Puff topography characteristics computed for each puffing session by each subject include the number of subject puffs per puffing session, the mean puff duration per session, the mean puff flow rate per session, the mean puff volume per session, and the cumulative puff volume per session. The same puff topography characteristics are computed across all puffing sessions by each single subject and across all subjects in the study cohort. Results indicate significant inter-subject variability with regard to puffing topography, suggesting that a range of representative puffing topography patterns should be used to drive machine-puffed electronic cigarette aerosol evaluation systems.

  10. Electronic Cigarette Topography in the Natural Environment.

    Directory of Open Access Journals (Sweden)

    R J Robinson

    Full Text Available This paper presents the results of a clinical, observational, descriptive study to quantify the use patterns of electronic cigarette users in their natural environment. Previously published work regarding puff topography has been widely indirect in nature, and qualitative rather than quantitative, with the exception of three studies conducted in a laboratory environment for limited amounts of time. The current study quantifies the variation in puffing behaviors among users as well as the variation for a given user throughout the course of a day. Puff topography characteristics computed for each puffing session by each subject include the number of subject puffs per puffing session, the mean puff duration per session, the mean puff flow rate per session, the mean puff volume per session, and the cumulative puff volume per session. The same puff topography characteristics are computed across all puffing sessions by each single subject and across all subjects in the study cohort. Results indicate significant inter-subject variability with regard to puffing topography, suggesting that a range of representative puffing topography patterns should be used to drive machine-puffed electronic cigarette aerosol evaluation systems.

  11. Moiré topography in odontology

    Science.gov (United States)

    Moreno Yeras, A.

    2003-07-01

    For several decades, measurement of optical techniques has been used in different branches of science and technology. One of these techniques is the so-called moiré topography (MT) that enables the accurate measurement of different parts of the human body topography. This investigation presents the measurement of topographies of teeth and gums using an automated system of shadow moiré and the phase shift method in an original way. The fringe patterns used to compute the shape and the shape matrix itself are presented in the article. The phase shift method ensures precisions up to the order of microns. Advantages and disadvantages of using the MT are included. Besides, some positive and negative aspects concerned with the implementation of this technique in odontology are shown in the article.

  12. Residual risk

    African Journals Online (AJOL)

    ing the residual risk of transmission of HIV by blood transfusion. An epidemiological approach assumed that all HIV infections detected serologically in first-time donors were pre-existing or prevalent infections, and that all infections detected in repeat blood donors were new or incident infections. During 1986 - 1987,0,012%.

  13. The global topography mission gains momentum

    Science.gov (United States)

    Farr, Tom; Evans, Diane; Zebker, Howard; Harding, David; Bufton, Jack; Dixon, Timothy; Vetrella, S.; Gesch, Dean B.

    1995-01-01

    An accurate description of the surface elevation of the Earth is of fundamental importance to many branches of Earth science. Continental topographic data are required for studies of hydrology, ecology, glaciology, geomorphology, and atmospheric circulation. For example, in hydrologic and terrestrial ecosystem studies, topography exerts significant control on intercepted solar radiation, water runoff and subsurface water inventory, microclimate, vegetation type and distribution, and soil development. The topography of the polar ice caps and mountain glaciers directly reflects ice-flow dynamics and is closely linked to global climate and sea level change.

  14. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings

    Science.gov (United States)

    Agius, Matthew R.; Rychert, Catherine A.; Harmon, Nicholas; Laske, Gabi

    2017-09-01

    Hawaii is the archetypal example of hotspot volcanism. Classic plume theory suggests a vertical plume ascent from the core-mantle boundary to the surface. However, recently it has been suggested that the plume path may be more complex. Determining the exact trajectory of the Hawaiian plume seismic anomaly in the mantle has proven challenging. We determine P-to-S (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities beneath the Hawaiian Islands using waveforms recorded on land and ocean-bottom seismometers, applying new corrections for tilt and coherence to the ocean bottom data. Our 3-D depth-migrated maps provide enhanced lateral resolution of the mantle transition zone discontinuities. The 410 discontinuity is characterised by a deepened area beneath central Hawaii, surrounded by an elevated shoulder. At the 660 discontinuity, shallow topography is located to the north and far south of the islands, and a deep topographic anomaly is located far west and east. The transition zone thickness varies laterally by ±13 km depth: thin beneath north-central Hawaii and thick farther away in a horseshoe-like feature. We infer that at 660-km depth a broad or possibly a double region of upwelling converges into a single plume beneath central Hawaii at 410-km depth. As the plume rises farther, uppermost mantle melting and flow results in the downwelling of cold material, down to at least 410 km surrounding the plume stem. This result in the context of others supports complex plume dynamics including a possible non-vertical plume path and adjacent mantle downwellings.

  15. Receiver function imaging of mantle transition zone discontinuities beneath the Tanzania Craton and the Eastern and Western Branches of the East African Rift System

    Science.gov (United States)

    Sun, M.; Liu, K. H.; Fu, X.; Gao, S. S.

    2017-12-01

    To investigate the mechanism of initiation and development of the Eastern African Rifting System (EARS) circumfluent the Tanzania Craton (TC), over 7,100 P-to-S radial receiver functions (RFs) recorded by 87 broadband seismic stations are stacked to map the topography of mantle transition zone (MTZ) discontinuities beneath the TC and the Eastern and Western Branches of the EARS. After time-depth conversion using the 1-D IASP91 Earth model, the resulting 410 km (d410) and 660 km (d660) discontinuity apparent depths are found to be greater than the global averages beneath the whole study area, implying slower than normal upper mantle velocities. The mean thickness of the MTZ beneath the Western Branch and TC is about 252 km, which is comparable to the global average and is inconsistent with the existence of present-day thermal upwelling originating from the lower mantle. In contrast, beneath the Eastern Branch, an 30 km thinning of the MTZ is observed from an up to 50 km and 20 km apparent depression of the d410 and d660, respectively. On the basis of previous seismic tomographic results and empirical relationships between velocity and thermal anomalies, we propose that the most plausible explanation for the observations beneath the volcanic Eastern Branch is the existence of a low-velocity layer extending from the surface to the upper MTZ, probably caused by decompression partial melting associated with continental rifting. The observations are in general agreement with an upper mantle origin for the initiation and development of both the Western and Eastern Branches of the EARS beneath the study area.

  16. Removal and Repositioning of Intracorneal Ring Segments: Improving Corneal Topography and Clinical Outcomes in Keratoconus and Ectasia.

    Science.gov (United States)

    Chan, Kahei; Hersh, Peter S

    2017-02-01

    To evaluate the efficacy of removal and relocation of intracorneal ring segments for improving outcomes in treatment of keratoconus and corneal ectasia. This is a retrospective case series conducted at a cornea and refractive surgery subspecialty practice setting. Patients with previous insertion of 2 intracorneal ring segments underwent surgical removal and repositioning of segments because of unsatisfactory visual and topographic outcomes. The principal outcomes included uncorrected and corrected visual acuities, manifest refraction, topography-derived maximum keratometry (Kmax), inferior-superior topography power difference (I - S), and higher-order aberration profile derived from wavefront analysis. Three patients are presented in this case series. Uncorrected visual acuity improved in all eyes by an average of 2.75 lines. Corrected visual acuity improved in 2 eyes and remained unchanged in 1 eye. Refractive astigmatism decreased in all patients by an average of 2.50 D. Kmax decreased by an average of 1.43 D. All patients had improvement in the I - S value with a mean decrease of 5.13 D. Topography-guided repositioning and/or replacement of corneal ring segments can result in improved topographic, optical, and visual outcomes in patients in whom the initial result is suboptimal. In these cases, a single segment repositioned beneath the cone resulted in an improved outcome. Analysis of corneal topography can guide the surgeon in treatment planning and can suggest patients in whom such an effort will be rewarded with better results.

  17. Imaging Laser Altimetry in the Amazon: Mapping Large Areas of Topography, Vegetation Height and Structure, and Biomass

    Science.gov (United States)

    Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.

    2002-01-01

    A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.

  18. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  19. Geomagnetic and Geoelectric determination of Topography and ...

    African Journals Online (AJOL)

    Geomagnetic and geoelectric surveys were executed in a complex zone with the aim of determining the topography and estimated depth of constituent bedrock in the study area. The ground magnetic and geoelectric – Schlumberger's vertical electrical sounding – methods were applied for this study. The presence of a ...

  20. X-ray topography and multiple diffraction

    International Nuclear Information System (INIS)

    Chang, S.-L.

    1983-01-01

    A short summary on X-ray topography, which is based on the dynamical theory of X-ray diffraction, is made. The applications and properties related to the use of the multiple diffraction technique are analized and discussed. (L.C.) [pt

  1. Mapping Bedrock Topography using Electromagnetic Profiling ...

    African Journals Online (AJOL)

    Electromagnetic profiling method was used in Echara Unuhu, within the Abakaliki Urban, to map the bedrock topography which also aids us to determine the position of the deepest fractured shale where a productive borehole will be constructed The area under study is within the Abakaliki Shales Geologic Formation.

  2. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    , the topography itself, and other factors were also investigated. The experimental work is based on a multi-purpose experimental injection mould with a collection of test surface inserts manufactured by EDM (electrical discharge machining). Experimental production took place with an injection moulding machine...

  3. Small-angle scattering, topography and radiography

    International Nuclear Information System (INIS)

    Schelten, J.

    1978-01-01

    A table is given showing scattering and imaging methods for X-rays and neutrons, followed, by a discussion of such topics as 1. Radiography 2. Topography 3. Small-angle scattering 3.1. The differential cross section 3.2. Comparison of X-ray and neutron small-angle scattering 3.3. Examples of small-angle scattering. (orig.) [de

  4. Major disruption of D'' beneath Alaska: D'' Beneath Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daoyuan [Laboratory of Seismology and Physics of Earth' s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei Anhui China; National Geophysics Observatory at Mengcheng, Anhui China; Helmberger, Don [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA; Miller, Meghan S. [Department of Earth Sciences, University of Southern California, Los Angeles California USA; Jackson, Jennifer M. [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA

    2016-05-01

    D'' represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D'' come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D'': (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D'' (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  5. Orogen-parallel Variation in Flexure of the Arabian Plate Beneath the Zagros Mountains

    Science.gov (United States)

    Pirouz, M.; Avouac, J. P.; Simpson, G.; Hassanzadeh, J.; Herman, F.; Sternai, P.

    2014-12-01

    The Zagros Mountains are the part of the Alpine-Himalayan chain that forms the northern margin of the Arabian plate and comprises a Neogene-Recent sedimentary basin that is forming in response to ongoing Arabia-Eurasia collision. Flexure of the Arabian lithosphere beneath the Zagros forms one of largest and most active basins in the world at which a backstripped deflection of a competent layer just below the foreland deposits represents its total amount of tectonic subsidence. As such, the Asmari Fm. can be used to analyze flexural bending and subsequently the amount of loading and elastic thickness of the Arabian lithosphere since the continent-continent collision started. In this study, flexure of the Arabian lithosphere is investigated using more than 100 boreholes and 60 interpreted seismic lines which show that the flexure is shallower (~ 1 km) and wider in the east and deeper (~6 km) and narrower towards the west (Figure 1). The shallow and wide eastern foredeep has little accommodation space due to small tectonic loads and the thick lithosphere in this region. In addition, viscous strength in the eastern sector leads to a wide deformation belt with low topography and low surface slopes. These factors, combined with arid climatic conditions, produce low sediment supply to the foreland basin so that it remains under-filled even though the foreland basin is shallow. In contrast, the western part of the Zagros region shows much larger accommodation space due to the combination of large loads and a relatively thin elastic plate. In the western sector, frictional basal strength and steeper topography along with more humid climatic conditions leading to a large supply of sediment to the foreland which is completely filled even though the foreland basin is deep. Our results also show that the Zagros foreland basin migrated towards south through the Neogene; however, the way of propagation is not fully understood yet. The eastern depocenter of the Zagros foreland

  6. Velocity Models of the Upper Mantle Beneath the MER, Somali Platform, and Ethiopian Highlands from Body Wave Tomography

    Science.gov (United States)

    Hariharan, A.; Keranen, K. M.; Alemayehu, S.; Ayele, A.; Bastow, I. D.; Eilon, Z.

    2016-12-01

    The Main Ethiopian Rift (MER) presents a unique opportunity to improve our understanding of an active continental rift. Here we use body wave tomography to generate compressional and shear wave velocity models of the region beneath the rift. The models help us understand the rifting process over the broader region around the MER, extending the geographic region beyond that captured in past studies. We use differential arrival times of body waves from teleseismic earthquakes and multi-channel cross correlation to generate travel time residuals relative to the global IASP91 1-d velocity model. The events used for the tomographic velocity model include 200 teleseismic earthquakes with moment magnitudes greater than 5.5 from our recent 2014-2016 deployment in combination with 200 earthquakes from the earlier EBSE and EAGLE deployments (Bastow et al. 2008). We use the finite-frequency tomography analysis of Schmandt et al. (2010), which uses a first Fresnel zone paraxial approximation to the Born theoretical kernel with spatial smoothing and model norm damping in an iterative LSQR algorithm. Results show a broad, slow region beneath the rift with a distinct low-velocity anomaly beneath the northwest shoulder. This robust and well-resolved low-velocity anomaly is visible at a range of depths beneath the Ethiopian plateau, within the footprint of Oligocene flood basalts, and near surface expressions of diking. We interpret this anomaly as a possible plume conduit, or a low-velocity finger rising from a deeper, larger plume. Within the rift, results are consistent with previous work, exhibiting rift segmentation and low-velocities beneath the rift valley.

  7. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis

    Science.gov (United States)

    Xu, C.; Luo, Z.; Sun, R.; Li, Q.

    2017-12-01

    The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

  8. Using cross-correlation to map the Transition Zone thickness beneath the Iberian Peninsula and Morocco

    Science.gov (United States)

    Bonatto, L.; Schimmel, M.; Gallart, J.; Morales, J.

    2012-12-01

    Iberia project. A total of 260 broad band seismic stations have been used which were deployed in Spain, Portugal and north Africa. We focus on the converted phases P410s and P660s, and map the corresponding discontinuities beneath Spain and north Africa. Clear P-to-s conversions at the 660 km depth discontinuity were detected beneath the studied region. The P410s phase is less well observed. Both discontinuities show topography which are within the expected depth variations observed in global studies. We will present maps of the Transition zone thickness and their interpretation using all available data.

  9. Life in and Beneath Glacial Ice -- Implications for Earth, Mars, and Europa

    Science.gov (United States)

    Allen, C.

    Earth history apparently includes several periods of essentially total glaciation. Ice is present in the subsurface of Mars, and may have discharged liquid water in the recent past. The crust of Jupiter's satellite Europa is composed of water ice, apparently overlying a liquid ocean, and cracks in this ice crust may have allowed repeated releases of water to the surface. Bacteria adapted to survive and grow at low temperatures are found throughout the Earth's oceans and polar regions. Such bacteria have been recovered from marine and freshwater ice, glacial ice and meltwater, and permafrost. Microbes, some possibly viable, have been recovered from an Antarctic ice core over 3,500 m deep and from the refrozen water of subglacial Lake Vostok. Chemolithotrophic bacteria, analogous to those at terrestrial deep sea vents, could have survived beneath the ice of "Snowball Earth", and life forms with similar characteristics might exist beneath the ice of Mars or Europa. These sub-ice bacteria could exist i isolation from sunlight, protected from extremes of temperature,n desiccation, and radiation. Periodic discharges of water to the surface could provide accessible evidence for the existence of such life beneath the ice. We are investigating a contemporary terrestrial analog - a set of springs that deposit sulfur and carbonate minerals on the surface of a glacier in the Canadian arctic. The deposits contain psychrophilic microorganisms.A variety of evidence supports the interpretation that native sulphur and associated deposits in these springs are related to bacterially m diated reduction and oxidation of sulphur below the glacier. Thise work provides evidence that a non-volcanic, topography driven geothermal system, that harbors microbiological commu nities, can operate in extreme cold environments and discharge through solid ice. This conclusion supports the idea that life can exist in isolated geothermal refuges despite subfreezing surface conditions such as those on

  10. Description of two-process surface topography

    International Nuclear Information System (INIS)

    Grabon, W; Pawlus, P

    2014-01-01

    After two machining processes, a large number of surface topography measurements were made using Talyscan 150 stylus measuring equipment. The measured samples were divided into two groups. The first group contained two-process surfaces of random nature, while the second group used random-deterministic textures of random plateau parts and portions of deterministic valleys. For comparison, one-process surfaces were also analysed. Correlation and regression analysis was used to study the dependencies among surface texture parameters in 2D and 3D systems. As the result of this study, sets of parameters describing multi-process surface topography were obtained for two-process surfaces of random and of random-deterministic types. (papers)

  11. Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation

    Science.gov (United States)

    Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.

    2012-12-01

    Venus' atmosphere is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Since the surface of the planet is both a source and sink of atmospheric angular momentum it is important to understand and properly account for the interactions at the surface-atmosphere boundary. A key aspect of the surface-atmosphere interaction is the topography. Topography has been introduced into different general circulation models (GCMs) of Venus' atmosphere, producing significant, but widely varying effects on the atmospheric circulation. The reasons for the inconsistencies among model results are not well known, but our studies suggest they might be related to the influences of different dynamical cores. In our recent study, we have analyzed the angular momentum budget for two Venus GCMs, the Venus Community Atmosphere model (Venus CAM) and the Laboratoire de Meteorologie Dynamique (LMD) Venus GCM. Because of Venus' low magnitude surface winds, surface friction alone supplies only a relatively weak angular momentum forcing to the atmosphere. We find that if surface friction is introduced without including surface topography, the angular momentum balance of the atmosphere may be dominated by effects such as numerical diffusion, a sponge layer, or other numerical residuals that are generally included in all GCMs, and can themselves be sources of angular momentum. However, we find the mountain torque associated with realistic Venus surface topography supplies a much larger source of angular momentum than the surface friction, and dominates nonphysical numerical terms. (A similar effect occurs for rapidly rotating planets like Earth, but in this case numerical errors in the angular momentum budget are relatively small even in the absence of mountain torque). Even if surface friction dominates numerical terms in the angular

  12. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    Science.gov (United States)

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  13. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1995-01-01

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  14. Refining the ischemic penumbra with topography.

    Science.gov (United States)

    Thirugnanachandran, Tharani; Ma, Henry; Singhal, Shaloo; Slater, Lee-Anne; Davis, Stephen M; Donnan, Geoffrey A; Phan, Thanh

    2018-04-01

    It has been 40 years since the ischemic penumbra was first conceptualized through work on animal models. The topography of penumbra has been portrayed as an infarcted core surrounded by penumbral tissue and an extreme rim of oligemic tissue. This picture has been used in many review articles and textbooks before the advent of modern imaging. In this paper, we review our understanding of the topography of the ischemic penumbra from the initial experimental animal models to current developments with neuroimaging which have helped to further define the temporal and spatial evolution of the penumbra and refine our knowledge. The concept of the penumbra has been successfully applied in clinical trials of endovascular therapies with a time window as long as 24 h from onset. Further, there are reports of "good" outcome even in patients with a large ischemic core. This latter observation of good outcome despite having a large core requires an understanding of the topography of the penumbra and the function of the infarcted regions. It is proposed that future research in this area takes departure from a time-dependent approach to a more individualized tissue and location-based approach.

  15. Triangular Quantum Loop Topography for Machine Learning

    Science.gov (United States)

    Zhang, Yi; Kim, Eun-Ah

    Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems there has been little success in training neural networks to identify topological phases. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of non-local properties. Here we introduce triangular quantum loop (TQL) topography: a procedure of constructing a multi-dimensional image from the ''sample'' Hamiltonian or wave function using two-point functions that form triangles. Feeding the TQL topography to a fully-connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish Chern insulator and fractional Chern insulator from trivial insulators with high fidelity. Given the versatility of the TQL topography procedure that can handle different lattice geometries, disorder, interaction and even degeneracy our work paves the route towards powerful applications of machine learning in the study of topological quantum matters.

  16. Coarsely resolved topography along protein folding pathways

    Science.gov (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen

    2000-03-01

    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  17. Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan

    Science.gov (United States)

    Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.

    2018-02-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.

  18. Topography-modified refraction: adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK

    OpenAIRE

    Alpins,Noel

    2017-01-01

    Noel Alpins1,2 1NewVision Clinics, Melbourne, VIC, Australia; 2Department Ophthalmology, Melbourne University, Melbourne, VIC, Australia It is encouraging to see the results in the article by Kanellopoulos “Topography-modified refraction (TMR): adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK”,1 where the combination of refractive and corneal data in the treatment parameters pro...

  19. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    High-resolution topography data acquired with lidar (light detection and ranging) technology are revolutionizing the way we study the Earth's surface and overlying vegetation. These data, collected from airborne, tripod, or mobile-mounted scanners have emerged as a fundamental tool for research on topics ranging from earthquake hazards to hillslope processes. Lidar data provide a digital representation of the earth's surface at a resolution sufficient to appropriately capture the processes that contribute to landscape evolution. The U.S. National Science Foundation-funded OpenTopography Facility (http://www.opentopography.org) is a web-based system designed to democratize access to earth science-oriented lidar topography data. OpenTopography provides free, online access to lidar data in a number of forms, including the raw point cloud and associated geospatial-processing tools for customized analysis. The point cloud data are co-located with on-demand processing tools to generate digital elevation models, and derived products and visualizations which allow users to quickly access data in a format appropriate for their scientific application. The OpenTopography system is built using a service-oriented architecture (SOA) that leverages cyberinfrastructure resources at the San Diego Supercomputer Center at the University of California San Diego to allow users, regardless of expertise level, to access these massive lidar datasets and derived products for use in research and teaching. OpenTopography hosts over 500 billion lidar returns covering 85,000 km2. These data are all in the public domain and are provided by a variety of partners under joint agreements and memoranda of understanding with OpenTopography. Partners include national facilities such as the NSF-funded National Center for Airborne Lidar Mapping (NCALM), as well as non-governmental organizations and local, state, and federal agencies. OpenTopography has become a hub for high-resolution topography

  20. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  1. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    2016-01-01

    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen......A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed...

  2. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  3. Short wavelength lateral variability of lithospheric mantle beneath the Middle Atlas (Morocco) as recorded by mantle xenoliths

    Science.gov (United States)

    El Messbahi, Hicham; Bodinier, Jean-Louis; Vauchez, Alain; Dautria, Jean-Marie; Ouali, Houssa; Garrido, Carlos J.

    2015-05-01

    The Middle Atlas is a region where xenolith-bearing volcanism roughly coincides with the maximum of lithospheric thinning beneath continental Morocco. It is therefore a key area to study the mechanisms of lithospheric thinning and constrain the component of mantle buoyancy that is required to explain the Moroccan topography. Samples from the two main xenolith localities, the Bou Ibalghatene and Tafraoute maars, have been investigated for their mineralogy, microstructures, crystallographic preferred orientation, and whole-rock and mineral compositions. While Bou Ibalghatene belongs to the main Middle Atlas volcanic field, in the 'tabular' Middle Atlas, Tafraoute is situated about 45 km away, on the North Middle Atlas Fault that separates the 'folded' Middle Atlas, to the South-East, from the 'tabular' Middle Atlas, to the North-West. Both xenolith suites record infiltration of sub-lithospheric melts that are akin to the Middle Atlas volcanism but were differentiated to variable degrees as a result of interactions with lithospheric mantle. However, while the Bou Ibalghatene mantle was densely traversed by high melt fractions, mostly focused in melt conduits, the Tafraoute suite records heterogeneous infiltration of smaller melt fractions that migrated diffusively, by intergranular porous flow. As a consequence the lithospheric mantle beneath Bou Ibalghaten was strongly modified by melt-rock interactions in the Cenozoic whereas the Tafraoute mantle preserves the record of extensional lithospheric thinning, most likely related to Mesozoic rifting. The two xenolith suites illustrate distinct mechanisms of lithospheric thinning: extensional thinning in Tafraoute, where hydrous incongruent melting triggered by decompression probably played a key role in favouring strain localisation, vs. thermal erosion in Bou Ibalghatene, favoured and guided by a dense network of melt conduits. Our results lend support to the suggestion that lithospheric thinning beneath the Atlas

  4. Learning topography with Tangible Landscape games

    Science.gov (United States)

    Petrasova, A.; Tabrizian, P.; Harmon, B. A.; Petras, V.; Millar, G.; Mitasova, H.; Meentemeyer, R. K.

    2017-12-01

    Understanding topography and its representations is crucial for correct interpretation and modeling of surface processes. However, novice earth science and landscape architecture students often find reading topographic maps challenging. As a result, many students struggle to comprehend more complex spatial concepts and processes such as flow accumulation or sediment transport.We developed and tested a new method for teaching hydrology, geomorphology, and grading using Tangible Landscape—a tangible interface for geospatial modeling. Tangible Landscape couples a physical and digital model of a landscape through a real-time cycle of hands-on modeling, 3D scanning, geospatial computation, and projection. With Tangible Landscape students can sculpt a projection-augmented topographic model of a landscape with their hands and use a variety of tangible objects to immediately see how they are changing geospatial analytics such as contours, profiles, water flow, or landform types. By feeling and manipulating the shape of the topography, while seeing projected geospatial analytics, students can intuitively learn about 3D topographic form, its representations, and how topography controls physical processes. Tangible Landscape is powered by GRASS GIS, an open source geospatial platform with extensive libraries for geospatial modeling and analysis. As such, Tangible Landscape can be used to design a wide range of learning experiences across a large number of geoscience disciplines.As part of a graduate level course that teaches grading, 16 students participated in a series of workshops, which were developed as serious games to encourage learning through structured play. These serious games included 1) diverting rain water to a specified location with minimal changes to landscape, 2) building different combinations of landforms, and 3) reconstructing landscapes based on projected contour information with feedback.In this poster, we will introduce Tangible Landscape, and

  5. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  6. The upper mantle beneath the Philippine Sea from waveform inversions

    NARCIS (Netherlands)

    Lebedev, Sergei; Nolet, Guust; Hilst, R.D. van der

    1997-01-01

    We present a three‐dimensional S‐velocity model for the upper mantle beneath the Philippine Sea region. It was derived from inversions of 281 broad band vertical‐component seismograms recorded in the area at the Global Seismological Network (GSN) and SKIPPY portable array stations. We have been able

  7. Project Skippy explores the lithosphere and mantle beneath Australia

    NARCIS (Netherlands)

    Hilst, R.D. van der; Kennett, Brian; Christie, Doug; Grant, John

    1994-01-01

    A new project is probing the seismic structure of the lithosphere and mantle beneath Australia. The Skippy Project, named after the bush kangaroo, exploits Australia's regional seismicity and makes use of recent advances in digital recording technology to collect three-component broadband

  8. Living and Working Beneath the Sea – Next Approach

    Directory of Open Access Journals (Sweden)

    Rowiński Lech

    2017-04-01

    Full Text Available The idea of living beneath the sea is very new if compared with millennia of shipping activity. In fact, ocean surface was considered mainly as medium suitable for transport of persons and goods as well as aggression and robbery. More practical attempts to live “on” the water surface are limited to well protected internal waters.

  9. Slab detachment of subducted Indo-Australian plate beneath Sunda ...

    Indian Academy of Sciences (India)

    ... complicate the subduction zone processes and slab architecture. Based on evidences which include patterns of seismicity, seismic tomography and geochemistry of arc volcanoes, we have identified a horizontal slab tear in the subducted Indo-Australian slab beneath the Sunda arc. It strongly reflects on trench migration, ...

  10. Anomalous electric field changes and high flash rate beneath a ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5. Anomalous electric field changes and high flash rate beneath a thunderstorm in northeast India ... Further,all electric field changes after a lightning discharge indicates the presence of strong Lower Positive Charge Centers (LPCC)in the active and ...

  11. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  12. Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya

    Science.gov (United States)

    Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.

    2015-12-01

    We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.

  13. Three-dimensional shallow velocity structure beneath Taal Volcano, Philippines

    Science.gov (United States)

    You, Shuei-Huei; Konstantinou, Konstantinos I.; Gung, Yuancheng; Lin, Cheng-Horng

    2017-11-01

    Based on its numerous historical explosive eruptions and high potential hazards to nearby population of millions, Taal Volcano is one of the most dangerous "Decade Volcanoes" in the world. To provide better investigation on local seismicity and seismic structure beneath Taal Volcano, we deployed a temporary seismic network consisting of eight stations from March 2008 to March 2010. In the preliminary data processing stage, three periods showing linear time-drifting of internal clock were clearly identified from noise-derived empirical Green's functions. The time-drifting errors were corrected prior to further data analyses. By using VELEST, 2274 local earthquakes were manually picked and located. Two major earthquake groups are noticed, with one lying beneath the western shore of Taal Lake showing a linear feature, and the other spreading around the eastern flank of Taal Volcano Island at shallower depths. We performed seismic tomography to image the 3D structure beneath Taal Volcano using the LOTOS algorithm. Some interesting features are revealed from the tomographic results, including a solidified magma conduit below the northwestern corner of Taal Volcano Island, indicated by high Vp, Vs, and low Vp/Vs ratio, and a large potential hydrothermal reservoir beneath the center of Taal Volcano Island, suggested by low Vs and high Vp/Vs ratio. Furthermore, combining earthquake distributions and tomographic images, we suggest potential existence of a hydrothermal reservoir beneath the southwestern corner of Taal Lake, and a fluid conduit extending to the northwest. These seismic features have never been proposed in previous studies, implying that new hydrothermal activity might be formed in places away from the historical craters on Taal Volcano Island.

  14. Getting Beneath the Surface with the OpenEarth Framework (OEF) Virtual Globe

    Science.gov (United States)

    Nadeau, D. R.; Moreland, J. L.; Baru, C.; Crosby, C. J.

    2009-12-01

    correspond to the same or alternative data. Cutting planes can be positioned to slice through the data in different directions and display internal structure. Virtual sun-based shading of the terrain and isosurfaces gives a better sense of depth. By extending the WorldWind engine, we also take advantage of virtual globe interactivity and access to multiple WorldWind layers such as topography, satellite imagery, street maps, fault lines, and other geologic data. Beyond the visual support provided by WorldWind, OEF adds multiple software libraries for 2D and 3D data management and processing. Those libraries provide access to common Earth science file formats, including ESRI Shapefiles, ESRI Arc/Info Grids, GeoSoft GXF files, and UCAR NetCDF files. Several standard projection file formats are also supported along with reprojection into common coordinate spaces. The OEF architecture assembles these pieces into a cohesive package with 3D visualizations showing data above, atop, and beneath the terrain of a virtual globe.

  15. Brain function measurement using optical topography

    International Nuclear Information System (INIS)

    Koizumi, Hideaki; Maki, Atsushi; Yamamoto, Tsuyoshi; Kawaguchi, Hideo

    2003-01-01

    Optical topography is a completely non-invasive method to image the high brain function with the near infrared spectroscopy, does not need the restriction of human behavior for imaging and thereby is applicable even for infants. The principle is based on irradiation of the near infrared laser beam with the optical-fiber onto the head surface and detection with the fiber of the reflection, of which spectroscopy for blood-borne hemoglobin gives the local cerebral homodynamics related with the nerve activity. The infrared laser beam of 1-10 mW is found safe on direct irradiation to the human body. The topography is applicable in the fields of clinical medicine like internal neurology (an actual image of the activated Broca's and Welnicke's areas at writing is presented), neurosurgery, psychiatry and pedriatric neurology, of developmental cognitive neuroscience, of educational science and of communication. ''MIT Technology Reviews'' mentions that this technique is one of 4 recent promising innovative techniques in the world. (N.I.)

  16. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  17. Imaging pockets and conduits of low velocity material beneath the lithosphere of the Atlas Mountains of Morocco: links to volcanism and orogenesis

    Science.gov (United States)

    Miller, M. S.; Sun, D.; O'Driscoll, L.; Holt, A.; Butcher, A.; Becker, T. W.; Diaz Cusi, J.; Thomas, C.

    2014-12-01

    The Atlas Mountains of Morocco have unusually high topography, with no apparent deep crustal root, and regions of localized Cenozoic alkaline volcanism. Previous seismic imaging and geophysical studies have implied a hot mantle upwelling as the source of the volcanism and high elevation, but the existence and physical properties of such an upwelling are debated. Recent temporary deployments of over 100 broadband seismometers that extended across Morocco as part of the PICASSO, Morocco-Münster, and IberArray experiments along with select permanent stations have provided a dataset to image the detailed mantle and lithospheric structure beneath the Atlas. We present results from S receiver functions (SRF), shear wave splitting, waveform modeling, and geodynamic models that help constrain the tectonic evolution of the Atlas and the localized alkaline volcanism. The receiver functions show that the lithosphere is thin (~65 km) beneath the Atlas, but thickens (~105 km) over a very short length scale at the flanks of the mountains and near the Quaternary volcanoes. These changes in lithospheric thickness also correspond to dramatic decreases in delay times inferred from S and SKS splitting observations. SRFs also indicate a broad, low seismic velocity anomaly (~150 km) below the shallow lithosphere that extends along much of the Atlas and beneath the Anti-Atlas and correlates with the location of Pliocene-Quaternary magmatism. Waveform analysis from the linear array across the Middle and High Atlas constrains the position, shape, and physical characteristics of a localized, low velocity conduit that extends up from the uppermost mantle (~200 km). The shape, position and temperature of the imaged low velocity anomaly, offsets in the lithosphere-asthenosphere boundary, and correlation with mantle flow inferred from shear wave splitting suggest that the unusually high topography of the Atlas Mountains is due to active mantle support.

  18. Elucidating Dynamical Processes Relevant to Flow Encountering Abrupt Topography (FLEAT)

    Science.gov (United States)

    2015-09-30

    Encountering Abrupt Topography (FLEAT) Bo Qiu Dept of Oceanography, University of Hawaii at Manoa 1000 Pope Rd. Honolulu, HI 96822 phone: (808) 956...c) to explore relevant dynamics by using both simplified models and OGCM output with realistic topography and surface boundary conditions...scale abyssal circulation, we propose to use the Hallberg Isopycnal Model (HIM). The HIM allows sloping isopycnals to interact with bottom topography

  19. Origin of bending in uncoated microcantilever - Surface topography?

    International Nuclear Information System (INIS)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S.; Jayapandian, J.; Tyagi, A. K.; Sundar, C. S.

    2014-01-01

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography

  20. Lateral Variations of the Mantle Transition Zone Structure beneath the Southeastern Tibetan Plateau Revealed by P-wave Receiver Functions

    Science.gov (United States)

    Bai, Y.; Ai, Y.; Jiang, M.; He, Y.; Chen, Q.

    2017-12-01

    The deep structure of the southeastern Tibetan plateau is of great scientific importance to a better understanding of the India-Eurasia collision as well as the evolution of the magnificent Tibetan plateau. In this study, we collected 566 permanent and temporary seismic stations deployed in SE Tibet, with a total of 77853 high quality P-wave receiver functions been extracted by maximum entropy deconvolution method. On the basis of the Common Conversion Point (CCP) stacking technique, we mapped the topography of the 410km and 660km discontinuities (hereinafter called the `410' and the `660'), and further investigated the lateral variation of the mantle transition zone (MTZ) thickness beneath this region. The background velocity model deduced from H-κ stacking results and a previous body-wave tomographic research was applied for the correction of the crustal and upper mantle heterogeneities beneath SE Tibet for CCP stacking. Our results reveal two significantly thickened MTZ anomalies aligned nearly in the south-north direction. The magnitude of both anomalies are 30km above the global average of 250km. The southern anomaly located beneath the Dianzhong sub-block and the Indo-China block is characterized by a slightly deeper `410' and a greater-than-normal `660', while the northern anomaly beneath western Sichuan has an uplifted `410' and a depressed `660'. Combining with previous studies in the adjacent region, we suggest that slab break-off may occurred during the eastward subduction of the Burma plate, with the lower part of the cold slab penetrated into the MTZ and stagnated at the bottom of the `660' which may cause the southern anomaly in our receiver function images. The origin of the Tengchong volcano is probably connected to the upwelling of the asthenospheric material caused by the slab break-off or to the ascending of the hot and wet material triggered by the dehydration of stagnant slab in the MTZ. The anomaly in the north, on the other hand, might be

  1. Outcomes of topography-guided versus wavefront-optimized laser in situ keratomileusis for myopia in virgin eyes.

    Science.gov (United States)

    Jain, Arun Kumar; Malhotra, Chintan; Pasari, Anand; Kumar, Pawan; Moshirfar, Majid

    2016-09-01

    To compare the outcomes of topography-guided and wavefront-optimized treatment in patients having laser in situ keratomileusis (LASIK) for myopia. Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India. Prospective contralateral-eye case study. Patients had topography-guided LASIK in 1 eye and wavefront-optimized LASIK in the contralateral eye using the Customized Refractive Surgery Master software and Mel 80 excimer laser. Refractive (residual manifest refraction spherical equivalent [MRSE], higher-order aberrations [HOAs]), and visual (uncorrected distance visual acuity [UDVA] and photopic and mesopic contrast sensitivity) outcomes were prospectively analyzed 6 months postoperatively. The study comprised 35 patients. The UDVA was 0.0 logMAR or better and the postoperative residual MRSE was ±0.50 diopter in 94.29% of eyes in the topography-guided group and 85.71% of eyes in the wavefront-optimized group (P = .09). More eyes in the topography-guided group than in the wavefront-optimized group had a UDVA of -0.1 logMAR or better (P = .04). Topography-guided LASIK was associated with less deterioration of mesopic contrast sensitivity at higher spatial frequencies (12 cycles per degree [cpd] and 18 cpd) and lower amounts of induced coma (P = .04) and spherical aberration (P = .04). Less stromal tissue was ablated in the topography-guided group (mean 61.57 μm ± 16.23 [SD]) than in the wavefront-optimized group (mean 79.71 ± 14.81 μm) (P topography-guided LASIK and wavefront-optimized LASIK gave excellent results, topography-guided LASIK was associated with better contrast sensitivity, lower induction of HOAs, and a smaller amount of tissue ablation. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Individual IOL Surface Topography Analysis by the WaveMaster Reflex UV

    Directory of Open Access Journals (Sweden)

    Marc Kannengießer

    2013-01-01

    Full Text Available Purpose. In order to establish inspection routines for individual intraocular lenses (IOLs, their surfaces have to be measured separately. Currently available measurement devices lack this functionality. The purpose of this study is to evaluate a new topography measurement device based on wavefront analysis for measuring individual regular and freeform IOL surfaces, the “WaveMaster Reflex UV” (Trioptics, Wedel, Germany. Methods. Measurements were performed on IOLs with increasingly complex surface geometries: spherical surfaces, surfaces modelled by higher-order Zernike terms, and freeform surfaces from biometrical patient data. Two independent parameters were measured: the sample’s radius of curvature (ROC and its residual (difference of sample topography and its best-fit sphere. We used a quantitative analysis method by calculating the residuals’ root-mean-square (RMS and peak-to-Valley (P2V values. Results. The sample’s best-fit ROC differences increased with the sample’s complexity. The sample’s differences of RMS values were 80 nm for spherical surfaces, 97 nm for higher-order samples, and 21 nm for freeform surfaces. Graphical representations of both measurement and design topographies were recorded and compared. Conclusion. The measurements of spherical surfaces expectedly resulted in better values than those of freeform surfaces. Overall, the wavefront analysing method proves to be an effective method for evaluating individual IOL surfaces.

  3. Multiple mantle upwellings through the transition zone beneath the Afar Depression?

    Science.gov (United States)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.

    2012-12-01

    Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that

  4. Mean Dynamic Topography of the Arctic Ocean

    Science.gov (United States)

    Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine

    2012-01-01

    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.

  5. Nanoscale surface topographies for structural colors

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik

    The thesis describes and demonstrates the possibilities for utilization of structural colors in mass fabricated plastic products as replacement for or in combination with pigments and inks. The motivation is the possible advantages related to re-cycling and re-use of plastic by limiting the number......-polymer interface is suppressed. This improves the ability to see through a clear plastic in the presence of specular reflection. The tapered nanostructures are also utilized to enhance the chroma of pigmented polymers. Larger tapered structures fabricated in a similar manor are shown to work as color filters....... Through an experimental study is the color of the transmitted light linked directly to the random topography of the surface by use of diffraction theory. The color effects from periodic structures and how these might be employed to create bright colors are investigated. This is done both for opaque...

  6. Topography-modified refraction: adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK

    Directory of Open Access Journals (Sweden)

    Alpins N

    2017-06-01

    Full Text Available Noel Alpins1,2 1NewVision Clinics, Melbourne, VIC, Australia; 2Department Ophthalmology, Melbourne University, Melbourne, VIC, Australia It is encouraging to see the results in the article by Kanellopoulos “Topography-modified refraction (TMR: adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK”,1 where the combination of refractive and corneal data in the treatment parameters provide better outcomes than treatment by optimal subjective refraction. View the original paper by Kanellopoulos AJ.

  7. Electroencephalographic topography measures of experienced utility.

    Science.gov (United States)

    Pedroni, Andreas; Langer, Nicolas; Koenig, Thomas; Allemand, Michael; Jäncke, Lutz

    2011-07-20

    Economic theory distinguishes two concepts of utility: decision utility, objectively quantifiable by choices, and experienced utility, referring to the satisfaction by an obtainment. To date, experienced utility is typically measured with subjective ratings. This study intended to quantify experienced utility by global levels of neuronal activity. Neuronal activity was measured by means of electroencephalographic (EEG) responses to gain and omission of graded monetary rewards at the level of the EEG topography in human subjects. A novel analysis approach allowed approximating psychophysiological value functions for the experienced utility of monetary rewards. In addition, we identified the time windows of the event-related potentials (ERP) and the respective intracortical sources, in which variations in neuronal activity were significantly related to the value or valence of outcomes. Results indicate that value functions of experienced utility and regret disproportionally increase with monetary value, and thus contradict the compressing value functions of decision utility. The temporal pattern of outcome evaluation suggests an initial (∼250 ms) coarse evaluation regarding the valence, concurrent with a finer-grained evaluation of the value of gained rewards, whereas the evaluation of the value of omitted rewards emerges later. We hypothesize that this temporal double dissociation is explained by reward prediction errors. Finally, a late, yet unreported, reward-sensitive ERP topography (∼500 ms) was identified. The sources of these topographical covariations are estimated in the ventromedial prefrontal cortex, the medial frontal gyrus, the anterior and posterior cingulate cortex and the hippocampus/amygdala. The results provide important new evidence regarding "how," "when," and "where" the brain evaluates outcomes with different hedonic impact.

  8. Kelvin-Helmholtz wave generation beneath hovercraft skirts

    Science.gov (United States)

    Sullivan, P. A.; Walsh, C.; Hinchey, M. J.

    1993-05-01

    When a hovercraft is hovering over water, the air flow beneath its skirts can interact with the water surface and generate waves. These, in turn, can cause the hovercraft to undergo violent self-excited heave motions. This note shows that the wave generation is due to the classical Kelvin-Helmholtz mechanism where, beyond a certain air flow rate, small waves at the air water interface extract energy from the air stream and grow.

  9. Crawling beneath the free surface: Water snail locomotion

    OpenAIRE

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being g...

  10. The extent of continental crust beneath the Seychelles

    Science.gov (United States)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.

    2013-11-01

    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  11. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    Science.gov (United States)

    Quirchmayr, Ronald

    2017-06-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  12. Tomographic Inversion for Shear Velocity Beneath the North American Plate

    Science.gov (United States)

    Grand, Stephen P.

    1987-12-01

    A tomographic back projection scheme has been applied to S and SS travel times to invert for shear velocity below the North American plate. The data range in distance from 8° to 80°, and a total of 3923 arrival times were used. First arrivals were measured directly off the seismograms, while the arrival times of later arrivals were found by a waveform correlation technique using synthetic seismograms. The starting model was laterally heterogeneous in the upper 400 km to account for the first-order differences in ray paths already known. The model was divided into blocks with horizontal dimensions of 500 km by 500 km and varying vertical thicknesses. Good resolution was obtained for structure from just below the crust to about 1700 km depth in the mantle. In the upper mantle a high-velocity root was found directly beneath the Canadian shield to about 400 km depth with the Superior province having the highest velocity and deepest root. The east coast of the United States was found to have intermediate velocities from 100 to 350 km depth and the western United States the slowest velocities at these depths. Below 400 km depth the most significant structure found is a slab-shaped high-velocity anomaly from the eastern Carribean to the northern United States. Beneath the Carribean this anomaly is almost vertical and extends from about 700 km to 1700 km depth. Further to the north, the anomaly dips to the east with high velocities at 700 km depth in the central United States and high velocities below 1100 km depth beneath the east coast. The anomaly is about 1% in magnitude. This lower-mantle anomaly may be associated with past subduction of the Farallon plate beneath North America.

  13. Crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon

    2017-05-01

    The 3-D subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a 3-D velocity model of the upper crust beneath the southern Korean Peninsula using 19 935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  14. Morphological indicators of a mascon beneath Ceres' largest crater, Kerwan

    Science.gov (United States)

    Bland, Michael T.; Ermakov, Anton; Raymond, Carol A.; Williams, David A.; Bowling, Tim J.; Preusker, F.; Park, Ryan S.; Marchi, Simone; Castillo-Rogez, Julie C.; Fu, R.R.; Russell, Christopher T.

    2018-01-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long‐term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact‐induced uplift of the high‐density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest‐degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin‐associated gravity anomalies, although their origin may differ substantially.

  15. Convective upwelling in the mantle beneath the Gulf of California.

    Science.gov (United States)

    Wang, Yun; Forsyth, Donald W; Savage, Brian

    2009-11-26

    In the past six million years, Baja California has rifted obliquely apart from North America, opening up the Gulf of California. Between transform faults, seafloor spreading and rifting is well established in several basins. Other than hotspot-dominated Iceland, the Gulf of California is the only part of the world's seafloor-spreading system that has been surrounded by enough seismometers to provide horizontal resolution of upper-mantle structure at a scale of 100 kilometres over a distance great enough to include several spreading segments. Such resolution is needed to address the long-standing debate about the relative importance of dynamic and passive upwelling in the shallow mantle beneath spreading centres. Here we use Rayleigh-wave tomography to image the shear velocity in the upper 200 kilometres or so of the mantle. Low shear velocities similar to those beneath the East Pacific Rise oceanic spreading centre underlie the entire length of the Gulf, but there are three concentrated locations of anomalously low velocities spaced about 250 kilometres apart. These anomalies are 40 to 90 kilometres beneath the surface, at which depths petrological studies indicate that extensive melting of passively upwelling mantle should begin. We interpret these seismic velocity anomalies as indicating that partial melting triggers dynamic upwelling driven by either the buoyancy of retained melt or by the reduced density of depleted mantle.

  16. Why are there few seedlings beneath the myrmecophyte Triplaris americana?

    Science.gov (United States)

    Larrea-Alcázar, Daniel M.; Simonetti, Javier A.

    2007-07-01

    We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.

  17. Modelling tide-driven currents and residual eddies in the Gulf of Kachchh and their seasonal variability: A marine environmental planning perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Vethamony, P.; Desa, E.

    -monsoon transition. Irregular topography of the western gulf slows down the tidal wave propagation and induces a phase shift. Tidal residual currents computed from the model results exhibit the presence of three eddies in the western gulf. The tide...

  18. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake

    Science.gov (United States)

    Ryder, I.; Burgmann, R.; Pollitz, F.

    2011-01-01

    In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 ?? 1017 Pa s, steady-state viscosity 1 ?? 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 ?? 1017 Pa s. The viscosities estimated for the

  19. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  20. Investigating Flow Features Near Abrupt Topography in the Mariana Basin

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigating Flow Features Near Abrupt Topography in...waves generated by flow over topography and mesoscale eddies generated by flow past islands. Having identified the prime locations in the region for such

  1. La topographie au dahomey a la veille des independances ...

    African Journals Online (AJOL)

    La topographie au dahomey a la veille des independances : Organisation et attributions du service de la topographie. ... Exclusively livened up at first by French executives, the topographic Department and the land registry knew in time, the intervention of land surveyors and draftsmen of Dahomey. The proof is that this ...

  2. Cokriging surface elevation and seismic refraction data for bedrock topography

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Doll, W.E.; Davis, R.K.; Hopkins, R.A.

    1992-01-01

    Analysis of seismic refraction data collected at a proposed site of the Advanced Neutron Source (ANS) Facility showed a strong correlation between surface and bedrock topography. By combining seismically determined bedrock elevation data with surface elevation data using cokriging, we were able to significantly improve our map of bedrock topography without collecting additional seismic data

  3. Coupled influences of topography and wind on wildland fire behaviour

    Science.gov (United States)

    Rodman Linn; Judith Winterkamp; Carleton Edminster; Jonah J. Colman; William S. Smith

    2007-01-01

    Ten simulations were performed with the HIGRAD/FIRETEC wildfire behaviour model in order to explore its utility in studying wildfire behaviour in inhomogeneous topography. The goal of these simulations is to explore the potential extent of the coupling between the fire, atmosphere, and topography. The ten simulations described in this paper include five different...

  4. Seismic Imaging of the Middle America Subduction Zone Beneath Mexico

    Science.gov (United States)

    Miller, M. S.; Kim, Y.; Pearce, F. D.; Clayton, R. W.

    2011-12-01

    P-wave coda from teleseismic events were used to compute receiver functions followed by formal inversions for discontinuous variations in elastic properties beneath a dense seismic array that crosses Mexico from Acapulco on the Pacific coast, through Mexico City, almost to Tempico on the Gulf of Mexico. Broadband data from the Meso-America Subduction Experiment (MASE) line were used to image the subducted Cocos plate and the overriding continental lithosphere beneath central Mexico using a generalized radon transform based migration. Our images provide insight into the process of subducting relatively young oceanic lithosphere. We observe nearly horizontal tectonic underplating of the Cocos oceanic lithosphere beneath the North American continent for a distance of approximately 300 km from the Middle America Trench, with a clear image of a very thin low-velocity oceanic crust (7-8 km) which dips at 15-20 degrees then flattens and slightly thickens (~10 km). At approximately 250 km inland the inferred subducting crust undergoes a change in seismic character, specifically a disruption in the crustal velocity signature, which may reflect the initiation of partial eclogitization of the subducting crust or release of fluids via dehydration that would result in a reduced velocity contrast at the Moho. Farther inland the slab then appears to abruptly change from nearly horizontal to a steeply dipping geometry of approximately 75 degrees underneath the Trans-Mexican Volcanic Belt (TMVB). The image of the steeply subducted Cocos slab underneath the TMVB is enhanced by using the P-to-S converted phases, following the method used in southern Central America to image a steeply dipping subducted slab (> 60 degrees) for the TUCAN experiment (MacKenzie et al, 2010), however is complicated by the wide active volcanic arc and deep sedimentary basins in the middle of the array. The continental Moho is clearly imaged at ~40 km deep beneath the TMVB and shallows (~25 km) towards the

  5. Understanding the nature of mantle upwelling beneath East-Africa

    Science.gov (United States)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2014-05-01

    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow

  6. Mapping the Topography of a Protein Energy Landscape.

    Science.gov (United States)

    Hutton, Richard D; Wilkinson, James; Faccin, Mauro; Sivertsson, Elin M; Pelizzola, Alessandro; Lowe, Alan R; Bruscolini, Pierpaolo; Itzhaki, Laura S

    2015-11-25

    Protein energy landscapes are highly complex, yet the vast majority of states within them tend to be invisible to experimentalists. Here, using site-directed mutagenesis and exploiting the simplicity of tandem-repeat protein structures, we delineate a network of these states and the routes between them. We show that our target, gankyrin, a 226-residue 7-ankyrin-repeat protein, can access two alternative (un)folding pathways. We resolve intermediates as well as transition states, constituting a comprehensive series of snapshots that map early and late stages of the two pathways and show both to be polarized such that the repeat array progressively unravels from one end of the molecule or the other. Strikingly, we find that the protein folds via one pathway but unfolds via a different one. The origins of this behavior can be rationalized using the numerical results of a simple statistical mechanics model that allows us to visualize the equilibrium behavior as well as single-molecule folding/unfolding trajectories, thereby filling in the gaps that are not accessible to direct experimental observation. Our study highlights the complexity of repeat-protein folding arising from their symmetrical structures; at the same time, however, this structural simplicity enables us to dissect the complexity and thereby map the precise topography of the energy landscape in full breadth and remarkable detail. That we can recapitulate the key features of the folding mechanism by computational analysis of the native structure alone will help toward the ultimate goal of designed amino-acid sequences with made-to-measure folding mechanisms-the Holy Grail of protein folding.

  7. Seismic Discontinuities within the Crust and Mantle Beneath Indonesia as Inferred from P Receiver Functions

    Science.gov (United States)

    Woelbern, I.; Rumpker, G.

    2015-12-01

    Indonesia is situated at the southern margin of SE Asia, which comprises an assemblage of Gondwana-derived continental terranes, suture zones and volcanic arcs. The formation of SE Asia is believed to have started in Early Devonian. Its complex history involves the opening and closure of three distinct Tethys oceans, each accompanied by the rifting of continental fragments. We apply the receiver function technique to data of the temporary MERAMEX network operated in Central Java from May to October 2004 by the GeoForschungsZentrum Potsdam. The network consisted of 112 mobile stations with a spacing of about 10 km covering the full width of the island between the southern and northern coast lines. The tectonic history is reflected in a complex crustal structure of Central Java exhibiting strong topography of the Moho discontinuity related to different tectonic units. A discontinuity of negative impedance contrast is observed throughout the mid-crust interpreted as the top of a low-velocity layer which shows no depth correlation with the Moho interface. Converted phases generated at greater depth beneath Indonesia indicate the existence of multiple seismic discontinuities within the upper mantle and even below. The strongest signal originates from the base of the mantle transition zone, i.e. the 660 km discontinuity. The phase related to the 410 km discontinuity is less pronounced, but clearly identifiable as well. The derived thickness of the mantle-transition zone is in good agreement with the IASP91 velocity model. Additional phases are observed at roughly 33 s and 90 s relative to the P onset, corresponding to about 300 km and 920 km, respectively. A signal of reversed polarity indicates the top of a low velocity layer at about 370 km depth overlying the mantle transition zone.

  8. Interface topography and residual stress distributions in W coatings for fusion armour applications

    International Nuclear Information System (INIS)

    Thomas, G.; Vincent, R.; Matthews, G.; Dance, B.; Grant, P.S.

    2008-01-01

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates

  9. Continental collision slowing due to viscous mantle lithosphere rather than topography.

    Science.gov (United States)

    Clark, Marin Kristen

    2012-02-29

    Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.

  10. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening

    Science.gov (United States)

    Agius, Matthew R.; Lebedev, Sergei

    2017-09-01

    Of the two debated, end-member models for the late-Cenozoic thickening of Tibetan crust, one invokes 'channel flow' (rapid viscous flow of the mid-lower crust, driven by topography-induced pressure gradients and transporting crustal rocks eastward) and the other 'pure shear' (faulting and folding in the upper crust, with viscous shortening in the mid-lower crust). Deep-crustal deformation implied by each model is different and would produce different anisotropic rock fabric. Observations of seismic anisotropy can thus offer a discriminant. We use broad-band phase-velocity curves-each a robust average of tens to hundreds of measurements-to determine azimuthal anisotropy in the entire lithosphere-asthenosphere depth range and constrain its amplitude. Inversions of the differential dispersion from path pairs, region-average inversions and phase-velocity tomography yield mutually consistent results, defining two highly anisotropic layers with different fast-propagation directions within each: the middle crust and the asthenosphere. In the asthenosphere beneath central and eastern Tibet, anisotropy is 2-4 per cent and has an NNE-SSW fast-propagation azimuth, indicating flow probably driven by the NNE-ward, shallow-angle subduction of India. The distribution and complexity of published shear wave splitting measurements can be accounted for by the different anisotropy in the mid-lower crust and asthenosphere. The estimated splitting times that would be accumulated in the crust alone are 0.25-0.8 s; in the upper mantle-0.5-1.2 s, depending on location. In the middle crust (20-45 km depth) beneath southern and central Tibet, azimuthal anisotropy is 3-5 and 4-6 per cent, respectively, and its E-W fast-propagation directions are parallel to the current extension at the surface. The rate of the extension is relatively low, however, whereas the large radial anisotropy observed in the middle crust requires strong alignment of mica crystals, implying large finite strain and

  11. Scleral topography analysed by optical coherence tomography.

    Science.gov (United States)

    Bandlitz, Stefan; Bäumer, Joachim; Conrad, Uwe; Wolffsohn, James

    2017-08-01

    A detailed evaluation of the corneo-scleral-profile (CSP) is of particular relevance in soft and scleral lenses fitting. The aim of this study was to use optical coherence tomography (OCT) to analyse the profile of the limbal sclera and to evaluate the relationship between central corneal radii, corneal eccentricity and scleral radii. Using OCT (Optos OCT/SLO; Dunfermline, Scotland, UK) the limbal scleral radii (SR) of 30 subjects (11M, 19F; mean age 23.8±2.0SD years) were measured in eight meridians 45° apart. Central corneal radii (CR) and corneal eccentricity (CE) were evaluated using the Oculus Keratograph 4 (Oculus, Wetzlar, Germany). Differences between SR in the meridians and the associations between SR and corneal topography were assessed. Median SR measured along 45° (58.0; interquartile range, 46.8-84.8mm) was significantly (ptopography and may provide additional data useful in fitting soft and scleral contact lenses. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  12. Mercury's Global Topography from Radar Ranging Data

    Science.gov (United States)

    Anderson, J. D.; Schubert, G.; Asmar, S. W.; Jurgens, R. F.; Lau, E. L.; Moore, W. B.; Slade, M. A., III; Standish, E. M., Jr.

    2001-01-01

    When Mercury's radius is expanded in Legendre functions to the second degree and order, the systematic error in radar ranging data is reduced substantially. Previously, data spanning an observing interval from 1966 to 1990 were used to infer an equatorial ellipticity (a - b)/a = (540 +/- 54) X 10(exp -6) and a center-of-figure minus center-of-mass offset of (640 +/- 78) m. The magnitude of this equatorial center of figure offset implies an excess crustal thickness of 12 km or less, comparable to the Moon's excess. By comparing the equatorial ellipticity with the Mariner 10 gravity field, and assuming Airy isostatic compensation, bounds on crustal thickness can be derived. Mercury's crustal thickness is in the range from 100 to 300 km. The Mercury radar ranging observing interval has been extended from 1966 to the present. In addition, improvements in data reduction techniques have resulted in a set of Mercury ranging data less affected by systematic error, in particular the biases introduced by local topographic variations. We use this new set of reduced ranging data to improve Mercury's global topography and center-of-figure minus center-of-mass offset. New results on crustal thickness are derived, and prospects for further improvement with Mercury Orbiter data are discussed.

  13. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  14. Wettability control by DLC coated nanowire topography

    Science.gov (United States)

    Li, Zihui; Meng, Fanhao; Liu, Xuanyong

    2011-04-01

    Here we have developed a convenient method to fabricate wettability controllable surfaces that can be applied to various nanostructured surfaces with complex shapes for different industrial needs. Diamond-like carbon (DLC) films were synthesized on titanium substrate with a nanowire structured surface using plasma immersion ion implantation and deposition (PIII&D). The nanostructure of the DLC films was characterized by field emission scanning electron microscopy and found to grow in a rippling layer-by-layer manner. Raman spectroscopy was used to investigate the different bonding presented in the DLC films. To determine the wettability of the samples, water contact angles were measured and found to vary in the range of 50°-141°. The results indicated that it was critical to construct a proper surface topography for high hydrophobicity, while suitable ID/IG and sp2/sp3 ratios of the DLC films had a minor contribution. Superhydrophobicity could be achieved by further CF4 implantation on suitably structured DLC films and was attributed to the existence of fluorine. In order to maintain the nanostructure during CF4 implantation, it was favorable to pre-deposit an appropriate carbon content on the nanostructure, as a nanostructure with low carbon content would be deformed during CF4 implantation due to local accumulation of surface charge and the following discharge resulting from the low conductivity.

  15. Wettability control by DLC coated nanowire topography.

    Science.gov (United States)

    Li, Zihui; Meng, Fanhao; Liu, Xuanyong

    2011-04-01

    Here we have developed a convenient method to fabricate wettability controllable surfaces that can be applied to various nanostructured surfaces with complex shapes for different industrial needs. Diamond-like carbon (DLC) films were synthesized on titanium substrate with a nanowire structured surface using plasma immersion ion implantation and deposition (PIII&D). The nanostructure of the DLC films was characterized by field emission scanning electron microscopy and found to grow in a rippling layer-by-layer manner. Raman spectroscopy was used to investigate the different bonding presented in the DLC films. To determine the wettability of the samples, water contact angles were measured and found to vary in the range of 50°-141°. The results indicated that it was critical to construct a proper surface topography for high hydrophobicity, while suitable I(D)/I(G) and sp²/sp³ ratios of the DLC films had a minor contribution. Superhydrophobicity could be achieved by further CF₄ implantation on suitably structured DLC films and was attributed to the existence of fluorine. In order to maintain the nanostructure during CF₄ implantation, it was favorable to pre-deposit an appropriate carbon content on the nanostructure, as a nanostructure with low carbon content would be deformed during CF₄ implantation due to local accumulation of surface charge and the following discharge resulting from the low conductivity.

  16. Quantum Loop Topography for Machine Learning

    Science.gov (United States)

    Zhang, Yi; Kim, Eun-Ah

    2017-05-01

    Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a multidimensional image from the "sample" Hamiltonian or wave function by evaluating two-point operators that form loops at independent Monte Carlo steps. The loop configuration is guided by the characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a topological quantum phase transition with machine learning, the perspective of bridging traditional condensed matter theory with machine learning will be broadly valuable.

  17. Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution

    Science.gov (United States)

    Patton, H.; Swift, D. A.; Clark, C. D.; Livingstone, S. J.; Cook, S. J.

    2016-09-01

    Glacier bed overdeepenings are ubiquitous in glacier systems and likely exert significant influence on ice dynamics, subglacial hydrology, and ice stability. Understanding of overdeepening formation and evolution has been hampered by an absence of quantitative empirical studies of their distribution and morphology, with process insights having been drawn largely from theoretical or numerical studies. To address this shortcoming, we first map the distribution of potential overdeepenings beneath the Antarctic and Greenland ice sheets using a GIS-based algorithm that identifies closed-contours in the bed topography and then describe and analyse the characteristics and metrics of a subset of overdeepenings that pass further quality control criteria. Overdeepenings are found to be widespread, but are particularly associated with areas of topographically laterally constrained ice flow, notably near the ice sheet margins where outlet systems follow deeply incised troughs. Overdeepenings also occur in regions of topographically unconstrained ice flow (for example, beneath the Siple Coast ice streams and on the Greenland continental shelf). Metrics indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow in general enhances overdeepening depth. However, overdeepening depth is skewed towards shallow values - typically 200-300 m - indicating that the rate of deepening slows with overdeepening age. This is reflected in a decline in adverse slope steepness with increasing overdeepening planform size. Finally, overdeepening long-profiles are found to support headward quarrying as the primary factor in overdeepening development. These observations support proposed negative feedbacks related to hydrology and sediment transport that stabilise overdeepening growth through sedimentation on the adverse slope but permit continued overdeepening planform enlargement by processes of headward erosion.

  18. Seismic Velocity Anomalies beneath Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Lin, Tzu-yu; Lin, Cheng-Horng; Yang, Tsanyao Frank; Chang, Li-Chin

    2015-04-01

    Volcanic eruption has been a natural disaster for human society. Taiwan is located in the Pacific Ring of Fire. Although there is no obvious phenomenon of volcanic activity in Taiwan, some volcanoes need to be monitored, especially the Tatun Volcano Group (TVG), which exhibits very active hydrothermal activity, is located on the tip of southwestern Ryukyu arc. TVG is about 15 km north to Taipei, capital of Taiwan, and is nearby two nuclear power plants along the northern coast of Taiwan. If TVG erupts, there must be a serious impact and damage to Taiwan. Since TVG is located within the Yangmingshan National Park, any artificial seismic source is not allowed to estimate possible eruption site and the degree of volcanic disaster. Instead, we use natural seismic waves generated by earthquakes to image the possible velocity anomaly of magma chamber and/or hydrothermal system beneath TVG. We systematically compare the differences of arrival times generated by some local earthquakes and recorded at 42 seismic stations in 2014 for finding any low-velocity zone within the crust. The results show that the arrival times always appeared significant delay at some particular seismic stations, such as Chi-Hsin-Shan (CHS), Siao-You-Keng (SYK) and some other stations at TVG, no matter where the earthquakes occurred. It implies that possible low-velocity zones, which could be the location of magma chamber and/or active hydrothermal system, exist beneath the CHS and SYK areas. This feature is generally consistent with the clustered micro-earthquakes in the shallow crust beneath the CHS area in the last decade.

  19. Evidence for dike emplacement beneath Iliamna Volcano, Alaska in 1996

    Science.gov (United States)

    Roman, D.C.; Power, J.A.; Moran, S.C.; Cashman, K.V.; Doukas, M.P.; Neal, C.A.; Gerlach, T.M.

    2004-01-01

    Two earthquake swarms, comprising 88 and 2833 locatable events, occurred beneath Iliamna Volcano, Alaska, in May and August of 1996. Swarm earthquakes ranged in magnitude from -0.9 to 3.3. Increases in SO2 and CO2 emissions detected during the fall of 1996 were coincident with the second swarm. No other physical changes were observed in or around the volcano during this time period. No eruption occurred, and seismicity and measured gas emissions have remained at background levels since mid-1997. Earthquake hypocenters recorded during the swarms form a cluster in a previously aseismic volume of crust located to the south of Iliamna's summit at a depth of -1 to 4 km below sea level. This cluster is elongated to the NNW-SSE, parallel to the trend of the summit and southern vents at Iliamna and to the regional axis of maximum compressive stress determined through inversion of fault-plane solutions for regional earthquakes. Fault-plane solutions calculated for 24 swarm earthquakes located at the top of the new cluster suggest a heterogeneous stress field acting during the second swarm, characterized by normal faulting and strike-slip faulting with p-axes parallel to the axis of regional maximum compressive stress. The increase in earthquake rates, the appearance of a new seismic volume, and the elevated gas emissions at Iliamna Volcano indicate that new magma intruded beneath the volcano in 1996. The elongation of the 1996-1997 earthquake cluster parallel to the direction of regional maximum compressive stress and the accelerated occurrence of both normal and strike-slip faulting in a small volume of crust at the top of the new seismic volume may be explained by the emplacement and inflation of a subvertical planar dike beneath the summit of Iliamna and its southern satellite vents. ?? 2003 Elsevier B.V. All rights reserved.

  20. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  1. Characterizing smoking topography of cannabis in heavy users.

    Science.gov (United States)

    McClure, Erin A; Stitzer, Maxine L; Vandrey, Ryan

    2012-03-01

    Little is known about the smoking topography characteristics of heavy cannabis users. Such measures may be able to predict cannabis use-related outcomes and could be used to validate self-reported measures of cannabis use. The current study was conducted to measure cannabis smoking topography characteristics during periods of ad libitum use and to correlate topography assessments with measures of self-reported cannabis use, withdrawal and craving during abstinence, and cognitive task performance. Participants (N = 20) completed an inpatient study in which they alternated between periods of ad libitum cannabis use and abstinence. Measures of self-reported cannabis use, smoking topography, craving, withdrawal, and sleep measures were collected. Participants smoked with greater intensity (e.g., greater volume, longer duration) on initial cigarette puffs with a steady decline on subsequent puffs. Smoking characteristics were significantly correlated with severity of withdrawal, notably sleep quality and architecture, and craving during abstinence, suggesting dose-related effects of cannabis use on these outcomes. Smoking characteristics generally were not significantly associated with cognitive performance. Smoking topography measures were significantly correlated with self-reported measures of cannabis use, indicating validity of these assessments, but topography measures were more sensitive than self-report in predicting cannabis-related outcomes. A dose-effect relationship between cannabis consumption and outcomes believed to be clinically important was observed. With additional research, smoking topography assessments may become a useful clinical tool.

  2. Dynamic and reversible surface topography influences cell morphology.

    Science.gov (United States)

    Kiang, Jennifer D; Wen, Jessica H; del Álamo, Juan C; Engler, Adam J

    2013-08-01

    Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ΔRRMS , ranged from 0.05 to 0.70 μm and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 μm, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness. Copyright © 2013 Wiley Periodicals, Inc.

  3. Characterizing smoking topography of cannabis in heavy users

    Science.gov (United States)

    Stitzer, Maxine L.; Vandrey, Ryan

    2013-01-01

    Rationale Little is known about the smoking topography characteristics of heavy cannabis users. Such measures may be able to predict cannabis use-related outcomes and could be used to validate self-reported measures of cannabis use. Objectives The current study was conducted to measure cannabis smoking topography characteristics during periods of ad libitum use and to correlate topography assessments with measures of self-reported cannabis use, withdrawal and craving during abstinence, and cognitive task performance. Methods Participants (N=20) completed an inpatient study in which they alternated between periods of ad libitum cannabis use and abstinence. Measures of self-reported cannabis use, smoking topography, craving, withdrawal, and sleep measures were collected. Results Participants smoked with greater intensity (e.g., greater volume, longer duration) on initial cigarette puffs with a steady decline on subsequent puffs. Smoking characteristics were significantly correlated with severity of withdrawal, notably sleep quality and architecture, and craving during abstinence, suggesting dose-related effects of cannabis use on these outcomes. Smoking characteristics generally were not significantly associated with cognitive performance. Smoking topography measures were significantly correlated with self-reported measures of cannabis use, indicating validity of these assessments, but topography measures were more sensitive than self-report in predicting cannabis-related outcomes. Conclusions A dose–effect relationship between cannabis consumption and outcomes believed to be clinically important was observed. With additional research, smoking topography assessments may become a useful clinical tool. PMID:21922170

  4. The structure of the crust and uppermost mantle beneath Madagascar

    Science.gov (United States)

    Andriampenomanana, Fenitra; Nyblade, Andrew A.; Wysession, Michael E.; Durrheim, Raymond J.; Tilmann, Frederik; Julià, Jordi; Pratt, Martin J.; Rambolamanana, Gérard; Aleqabi, Ghassan; Shore, Patrick J.; Rakotondraibe, Tsiriandrimanana

    2017-09-01

    The lithosphere of Madagascar was initially amalgamated during the Pan-African events in the Neoproterozoic. It has subsequently been reshaped by extensional processes associated with the separation from Africa and India in the Jurassic and Cretaceous, respectively, and been subjected to several magmatic events in the late Cretaceous and the Cenozoic. In this study, the crust and uppermost mantle have been investigated to gain insights into the present-day structure and tectonic evolution of Madagascar. We analysed receiver functions, computed from data recorded on 37 broad-band seismic stations, using the H-κ stacking method and a joint inversion with Rayleigh-wave phase-velocity measurements. The thickness of the Malagasy crust ranges between 18 and 46 km. It is generally thick beneath the spine of mountains in the centre part (up to 46 km thick) and decreases in thickness towards the edges of the island. The shallowest Moho is found beneath the western sedimentary basins (18 km thick), which formed during both the Permo-Triassic Karro rifting in Gondwana and the Jurassic rifting of Madagascar from eastern Africa. The crust below the sedimentary basin thickens towards the north and east, reflecting the progressive development of the basins. In contrast, in the east there was no major rifting episode. Instead, the slight thinning of the crust along the east coast (31-36 km thick) may have been caused by crustal uplift and erosion when Madagascar moved over the Marion hotspot and India broke away from it. The parameters describing the crustal structure of Archean and Proterozoic terranes, including average thickness (40 km versus 35 km), Poisson's ratio (0.25 versus 0.26), average shear-wave velocity (both 3.7 km s-1), and thickness of mafic lower crust (7 km versus 4 km), show weak evidence of secular variation. The uppermost mantle beneath Madagascar is generally characterized by shear-wave velocities typical of stable lithosphere (∼4.5 km s-1). However

  5. Disposal beneath a thick sedimentary sequence in crystalline rock

    International Nuclear Information System (INIS)

    Heystee, R.J.; Freire-Canosa, J.

    1988-01-01

    The placement of a fuel waste disposal vault in Precambrian crystalline rock beneath a thick sedimentary sequence is being studied. It is a complementary alternative to the Canadian reference concept of disposal in plutonic rock. This alternative concept would take advantage of the superior strength characteristics of crystalline rocks, and the unique hydrogeologic and geomechanical properties of a sedimentary sequence. Preliminary and generic investigations have been conducted in the Great Lakes and Hudson Bay Lowlands of Ontario, and the concept appears to be viable. However, further work is proposed in these regions to obtain the necessary geological, hydrogeological and geomechanical data to fully assess this concept

  6. The Importance of Topography in Modeling the Climates of Potentially Habitable Worlds

    Science.gov (United States)

    Sohl, L. E.; Chandler, M. A.; Way, M.; Jonas, J.

    2017-12-01

    (same solar/GHG forcings). Synchronously rotating exoplanets modeled with modern Earth topography show how land barriers to zonal water/heat transports result in a global MAT considerably colder than the equivalent aquaplanet scenario, and ice and snow cover can increase by roughly a factor of two when land is beneath the substellar point.

  7. Application of high resolution aeromagnetic data for basement topography mapping of Siluko and environs, southwestern Nigeria

    Science.gov (United States)

    Osinowo, Olawale O.; Akanji, Adesoji O.; Olayinka, Abel I.

    2014-11-01

    The discovery of hydrocarbon in commercial quantity in the Niger Delta, southern Nigeria, has since the early fifties shifted the attention of exploration/active geological studies from the Dahomey basin and the adjacent basement terrain in south-western Nigeria towards the south and this has left some gaps in information required for the discovery and exploitation of the economic potential of the region. This study mapped the Siluko transition zone in south-western Nigeria in terms of structures, geometry and basement topography with the object of providing requisite geological information that will engender interest in the exploration and exploitation of the numerous economic potentials of south-western part of Nigeria. Acquired high resolution aeromagnetic data were filtered, processed and enhanced, the resultant data were subjected to qualitative and quantitative magnetic interpretation, depth weighting analyses and modelling to generate the subsurface basement topography across the study area. The obtained results indicate regions of high and low magnetic anomalies with residual magnetic intensity values ranging from -100.8 nT to 100.9 nT. Euler Deconvolution indicates generally undulating basement topography with depth range of 125-1812 m. The basement relief is generally gentle and flat lying within the basement terrain with depth ranging from 125 to 500 m. However the sedimentary terrain is undulating and generally steeps south, down the basin with depth range of 300-1812 m. A basement topography model of the magnetic data constrained by Euler solutions correlate positively with the geology of the study area and indicates a generally increasing sedimentary deposits' thickness southward toward the western part of Dahomey basin. The revealed basement topography and structures as well as the delineated direction of continuous increase in thickness of sedimentary deposit provide insight to the controlling factor responsible for tar sand deposit and bitumen

  8. Panic Attack History and Smoking Topography

    Science.gov (United States)

    Farris, Samantha G.; Brown, Lily A.; Goodwin, Renee D.; Zvolensky, Michael J.

    2016-01-01

    Background Little is known about panic attacks and puffing topography, a behavioral index of the value of smoking reinforcement. This study examined smoking style during the course of smoking of a single cigarette among adult daily smokers with and without a history of panic attacks. Method Participants (n = 124, Mage = 43.9, SD = 9.7; 44.4% female) were non-treatment seeking daily smokers. Lifetime panic attack history was assessed via diagnostic assessment; 28.2% (n = 35) of the sample had a panic attack history. Participants smoked one cigarette during an ad libitum smoking trial. Puff volume, duration, and inter-puff interval were measured using the Clinical Research Support System (CReSS) pocket device. Results Regression analyses revealed that panic attack status was not associated with significant differences in average puff volume, duration, or inter-puff interval. Multi-level modeling was used to examine puffing trajectories. Puff-level data revealed that there was a significant quadratic time x panic effect for puff volume and duration. Those with a panic attack history demonstrated relatively sustained levels of both puff volume and duration over time, whereas those without a history of panic attacks demonstrated an increase followed by a decrease in volume and duration over time. These effects were not accounted for by the presence of general psychopathology. Discussion Smokers with a panic attack history demonstrate more persistent efforts to self-regulate the delivery of nicotine, and thus may be at risk for continued smoking and dependence. Tailored treatment may be needed to address unique vulnerabilities among this group. PMID:28033542

  9. Epithelial topography for repetitive tooth formation

    Directory of Open Access Journals (Sweden)

    Marcia Gaete

    2015-12-01

    Full Text Available During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells.

  10. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean.

    Science.gov (United States)

    Liu, Chuan-Zhou; Snow, Jonathan E; Hellebrand, Eric; Brügmann, Gerhard; von der Handt, Anette; Büchl, Anette; Hofmann, Albrecht W

    2008-03-20

    The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.

  11. Azimuthal anisotropy in the D″ layer beneath the Caribbean

    Science.gov (United States)

    Maupin, ValéRie; Garnero, Edward J.; Lay, Thorne; Fouch, Matthew J.

    2005-08-01

    The lowermost mantle beneath Central America has anisotropic seismic velocity structure manifested in shear wave splitting of signals from South American earthquakes recorded at North American broadband recording stations. Prior studies of deep mantle anisotropy in this region have characterized the structure as having vertical transverse isotropy (VTI), which is sufficient to explain a general trend of early tangential (SH) component arrivals. However, VTI models cannot quantitatively match systematic waveform complexities in the onset of many of the shear waves that graze this region. After accounting for splitting effects of upper mantle anisotropy beneath the recording stations, we model the corrected waveform data using full wave theory for mantle velocity models with an anisotropic D″ layer. This is the first attempt to quantitatively model a large data set including azimuthal anisotropy in D″. The models include transverse isotropy with either a vertical or tilted symmetry axis, the latter resulting in azimuthal anisotropy. For some initial shear wave polarizations, tilted transverse isotropy (TTI) produces small, reversed polarity arrivals on the SV components at the arrival time of SH, consistent with the data. Geographical variations in the azimuth of the TTI symmetry axis are indicated by the data. The lack of azimuthal coverage prevents unique resolution of the TTI orientation and also precludes distinguishing between TTI and other azimuthal anisotropy structures such as that predicted for lattice preferred orientation of minerals. Nonetheless, our modeling demonstrates the need for laterally varying anisotropic structure of more complex form than VTI for this region.

  12. Complex seismic anisotropy and mantle dynamics beneath Turkey

    Science.gov (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Karaoğlu, Özgür; Salah, Mohamed K.; Aouad, Nassib; Reed, Cory A.; Yu, Youqiang

    2017-12-01

    Seismic anisotropy is an unambiguous property of the deep Earth that is often detected through shear wave splitting (SWS) and anisotropic receiver function (RF) techniques, which are then used to infer the lithospheric and asthenospheric deformational structure. The Anatolian plate and its associated Mediterranean, Eurasian, and Arabian plate boundaries represent the consequences of a variety of convergent and transform tectonic regimes; these boundaries are thus well-suited for studying seismic anisotropy related to subduction, orogenic, and strike-slip processes. We apply a joint SWS and RF analysis to identify the magnitude and orientation of deformation associated with lithosphere-asthenosphere coupling beneath the Anatolian plate system as well as intra-plate fossil fabrics resulting from ancient and ongoing collision. SWS analysis reveals the existence of complex anisotropic fabrics beneath the Anatolian region, where the upper-layer fast orientations are either parallel to strike-slip faults or orthogonal to reverse faults. Strongly oriented NE-SW lower-layer fast orientations suggest that they originate from slab-modulated flow in the mantle wedge overlying the northward-subducting African plate. The results of the RF analysis show that the fast orientations are spatially variable but are generally consistent with crustal fabrics developed mostly through intensive faulting and are possibly associated with sub-vertical lower crustal shear zones.

  13. Analysis of pumping-induced unsaturated regions beneath aperennial river

    Energy Technology Data Exchange (ETDEWEB)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  14. Bioremediation of RDX in the vadose zone beneath the Pantex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shull, T.L.; Speitel, G.E. Jr.; McKinney, D.C. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-01-01

    The presence of dissolved high explosives (HE), in particular RDX and HMX, is well documented in the perched aquifer beneath the Pantex Plant, but the distribution of HE in the vadose zone has not yet been well defined. Although current remediation activities focus on the contamination in the perched aquifer, eventually regulatory concern is likely to turn to the residual contamination in the vadose zone. Sources of HE include the infiltration of past wastewater discharges from several HE-processing facilities through the ditch drainage system and leachate from former Landfill 3. With limited existing data on the HE distribution in the vadose zone and without preventive action, it must be assumed that residual HE could be leached into infiltrating water, providing a continuing supply of contamination to the perched aquifer. The purpose of this project was to more closely examine the fate and transport of HE in the vadose zone through mathematical modeling and laboratory experimentation. In particular, this report focuses on biodegradation as one possible fate of HE. Biodegradation of RDX in the vadose zone was studied because it is both present in highest concentration and is likely to be of the greatest regulatory concern. This study had several objectives: determine if indigenous soil organisms are capable of RDX biodegradation; determine the impact of electron acceptor availability and nutrient addition on RDX biodegradation; determine the extent of RDX mineralization (i.e., conversion to inorganic carbon) during biodegradation; and estimate the kinetics of RDX biodegradation to provide information for mathematical modeling of fate and transport.

  15. Analysis of the accuracy of Shuttle Radar Topography Mission ...

    Indian Academy of Sciences (India)

    DTM; SRTM. Abstract. The Shuttle Radar Topography Mission (SRTM) carried out in February 2000 has provided near global topographic data that has been widely used in many fields of earth sciences. The mission goal of an absolute vertical ...

  16. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  17. Influence of surface topography on the sputtering yields of silver

    International Nuclear Information System (INIS)

    Pan Jisheng; Wang Zhenxia; Tao Zhenlan; Zhang Jiping

    1992-01-01

    The sputtering yields of silver have been measured as a function of the fluence of incident Ar + ions (27 keV) using the collector technique and RBS analysis. The irradiated surface was examined by scanning electron microscopy (SEM). It is shown that the sputtering yields of surfaces with topography are enhanced relative to smooth surfaces of silver, but the extent of the enhancement depends on the irradiation dose. The experimental results can be explained assuming that the surface topography and sputtering yield are a function of incident angle. It is obvious that the surface topography is an important factor to influence the sputtering yield. The term ''apparent sputtering yield'' has specifically been used when referring to the experimental sputtering yield of a surface with topography, to emphasize the difference with a smooth surface. (orig.)

  18. Topography measurements for determining the decay factors in surface replication

    International Nuclear Information System (INIS)

    Song, J; Zheng, A; Vorburger, T V; Rubert, P

    2008-01-01

    The electro-forming technique is used at National Institute of Standards and Technology (NIST) for the production of standard reference material (SRM) 2461 standard casings to support nationwide ballistics measurement traceability and measurement quality control in the US. In order to ensure that the SRM casings are produced with virtually the same surface topography, it is necessary to test the decay factors of the replication process. Twenty-six replica casings are replicated from the same master casing for the decay factor tests. The NIST topography measurement system is used for measurements and correlations of surface topography. The topography decays are quantified by the cross-correlation function maximum CCF max . Based on the test, it is expected that 256 SRM casings can be replicated from the same master with CCF max values higher than 95%

  19. Silk Film Topography Directs Collective Epithelial Cell Migration

    Science.gov (United States)

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  20. Influence of local topography on precision irrigation management

    Science.gov (United States)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  1. EEG topographies provide subject-specific correlates of motor control

    OpenAIRE

    Pirondini, Elvira; Coscia, Martina; Minguillon, Jesus; Millán, José del R.; Van De Ville, Dimitri; Micera, Silvestro

    2017-01-01

    Electroencephalography (EEG) of brain activity can be represented in terms of dynamically changing topographies (microstates). Notably, spontaneous brain activity recorded at rest can be characterized by four distinctive topographies. Despite their well-established role during resting state, their implication in the generation of motor behavior is debated. Evidence of such a functional role of spontaneous brain activity would provide support for the design of novel and sensitive biomarkers in...

  2. Reformation and utilization of complicated topography for a uranium mill

    International Nuclear Information System (INIS)

    Liu Taoan; Zhou Xinghuo; Lv Junwen

    2004-01-01

    It is successful for how to reform and utilized complicated topography in the design of general plan and transport for technological reformation of a uranium mill. The unfavorable factors of complicated topography are turned into favorable ones. The general plan is designed compactly and the land is economized. The transport is designed simply and directly. the leaching liquid flows by gravity so that the power is economical

  3. Influence of surface topography on elastically backscattered electrons

    International Nuclear Information System (INIS)

    Ding, X; Da, B; Gong, J B; Ding, Z J; Mao, S F

    2014-01-01

    A Monte Carlo simulation, taking into account of the detailed surface roughness of a realistic solid sample, has been performed to study the surface topography influence on elastic peak intensity. To describe quantitatively the surface topography effect, here we introduce surface roughness parameter (SRP) according to the ratio of elastic peak intensities between a rough surface and an ideal planar surface. Simulation results for Al sample have shown that SRP varies with surface roughness particularly at large incidence/emission angles

  4. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  5. Retinal ganglion cell topography in elasmobranchs.

    Science.gov (United States)

    Bozzano, A; Collin, S P

    2000-04-01

    Retinal wholemounts are used to examine the topographic distribution of retinal cells within the ganglion cell layer in a range of elasmobranchs from different depths. The retina is examined for regional specializations for acute vision in six species of selachians, Galeocerdo cuvieri, Hemiscyllium ocellatum, Scyliorhinus canicula, Galeus melastomus, Etmopterus spinax, Isistius brasiliensis, one species of batoid, Raja bigelowi and one species of chimaera, Hydrolagus mirabilis. These species represent a range of lifestyles including pelagic, mesopelagic and benthic habitats, living from shallow water to the sea bottom at a depth of more than 3000 m. The topography of cells within the ganglion cell layer is non-uniform and changes markedly across the retina. Most species possess an increased density of cells across the horizontal (dorsal) meridian or visual streak, with a density range of 500 to 2,500 cells per mm(2) with one or more regional increases in density lying within this specialized horizontal area. It is proposed that the higher spatial resolving power provided by the horizontal streak in these species mediates panoramic vision in the lower frontal visual field. Only I. brasiliensis possesses a concentric arrangement of retinal iso-density contours in temporal retina or an area centralis, thereby increasing spatial resolving power in a more specialized part of the visual field, an adaptation for its unusual feeding behavior. In Nissl-stained material, amacrine and ganglion cell populations could be distinguished on the criteria of soma size, soma shape and nuclear staining. Quantitative analyses show that the proportion of amacrine cells lying within the ganglion cell layer is non-uniform and ranges between 0.4 and 12.3% in specialized retinal areas and between 8.2 and 48.1% in the peripheral non-specialized regions. Analyses of soma area of the total population of cells in the ganglion cell layer also show that the pelagic species possess significantly

  6. Shuttle Topography Data Inform Solar Power Analysis

    Science.gov (United States)

    2013-01-01

    The next time you flip on a light switch, there s a chance that you could be benefitting from data originally acquired during the Space Shuttle Program. An effort spearheaded by Jet Propulsion Laboratory (JPL) and the National Geospatial-Intelligence Agency (NGA) in 2000 put together the first near-global elevation map of the Earth ever assembled, which has found use in everything from 3D terrain maps to models that inform solar power production. For the project, called the Shuttle Radar Topography Mission (SRTM), engineers at JPL designed a 60-meter mast that was fitted onto Shuttle Endeavour. Once deployed in space, an antenna attached to the end of the mast worked in combination with another antenna on the shuttle to simultaneously collect data from two perspectives. Just as having two eyes makes depth perception possible, the SRTM data sets could be combined to form an accurate picture of the Earth s surface elevations, the first hight-detail, near-global elevation map ever assembled. What made SRTM unique was not just its surface mapping capabilities but the completeness of the data it acquired. Over the course of 11 days, the shuttle orbited the Earth nearly 180 times, covering everything between the 60deg north and 54deg south latitudes, or roughly 80 percent of the world s total landmass. Of that targeted land area, 95 percent was mapped at least twice, and 24 percent was mapped at least four times. Following several years of processing, NASA released the data to the public in partnership with NGA. Robert Crippen, a member of the SRTM science team, says that the data have proven useful in a variety of fields. "Satellites have produced vast amounts of remote sensing data, which over the years have been mostly two-dimensional. But the Earth s surface is three-dimensional. Detailed topographic data give us the means to visualize and analyze remote sensing data in their natural three-dimensional structure, facilitating a greater understanding of the features

  7. Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Yuan, Xiaohui; Tilmann, Frederik

    2015-01-01

    are related to the impact of asthenosphere-lithosphere interaction, (plume-related features), on the continental areas and the evolution of the continent-ocean transition that followed the break-up of Gondwana. This process is supposed to leave its imprint as distinct seismic signature in the upper mantle....... Utilizing 3D sensitivity kernels, we invert traveltime residuals to image velocity perturbations in the upper mantle down to 1000 km depth. To test the robustness of our tomographic image we employed various resolution tests which allow us to evaluate the extent of smearing effects and help defining...... structures. We present detailed tomographic images of the oceanic and continental lithosphere beneath the study area. The fast lithospheric keel of the Congo Craton reaches a depth of ∼250 km. Relatively low velocity perturbations have been imaged within the orogenic Damara Belt down to a depth of ∼150 km...

  8. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  9. Anisotropic structure beneath central Java from local earthquake tomography

    Science.gov (United States)

    Koulakov, Ivan; Jakovlev, Andrey; Luehr, Birger G.

    2009-02-01

    In this study we present the new tomographic code ANITA which provides 3-D anisotropic P and isotropic S velocity distribution based on P and S traveltimes from local seismicity. For the P anisotropic model, we determine four parameters for each parameterization cell. This represents an orthorhombic anisotropy with one predefined direction oriented vertically. Three of the parameters describe slowness variations along three horizontal orientations with azimuths of 0°, 60°, and 120°, and one is a perturbation along the vertical axis. The nonlinear iterative inversion procedure is similar to that used in the LOTOS code. We have implemented this algorithm for the updated data set of central Java, part of which was previously used for the isotropic inversion. It was obtained that the crustal and uppermost mantle velocity structure beneath central Java is strongly anisotropic with 7-10% of maximal difference between slow and fast velocity in different directions. In the forearc (area between southern coast and volcanoes), the structure of both isotropic and anisotropic structure is strongly heterogeneous. Variety of anisotropy orientations and highly contrasted velocity patterns can be explained by a complex block structure of the crust. Beneath volcanoes we observe faster velocities in vertical direction, which is probably an indicator for vertically oriented structures (channels, dykes). In the crust beneath the middle part of central Java, north to Merapi and Lawu volcanoes, we observe a large and very intense anomaly with a velocity decrease of up to 30% and 35% for P and S models, respectively. Inside this anomaly E-W orientation of fast velocity takes place, probably caused by regional extension stress regime. In a vertical section we observe faster horizontal velocities inside this anomaly that might be explained by layering of sediments and/or penetration of quasi-horizontal lenses with molten magma. In the mantle, trench parallel anisotropy is observed

  10. Complex seismic anisotropy beneath the IPOC stations of northern Chile

    Science.gov (United States)

    Reiss, Miriam Christina; Wölbern, Ingo; Rümpker, Georg

    2017-04-01

    The subduction of the Nazca plate beneath Central South America has been subject to numerous seismological studies. Here, we focus on seismic anisotropy which provides a direct link to the dynamic processes acting within the upper mantle and crust. The main mechanisms responsible for the development of large scale anisotropy are: i) crystallographic preferred orientation of upper mantle minerals and ii) shape-preferred orientation caused by cracks, melt-filled lenses or alternating layers within the crust. In this context, subduction zones represent a complex anisotropic puzzle as seismic anisotropy can be located in regions beneath, within, and above the subducting slab. We use the analysis of teleseismic shear-wave splitting to measure seismic anisotropy in response to subduction-related deformation processes. Previous studies on shear-wave splitting from South America have reported partly contradicting results and interpretations in terms of mantle flow and crustal deformation. Russo and Silver (1994) mostly found trench-parallel fast polarizations which they attributed to trench-parallel mantle flow beneath the slab and confined zones of oblique polarization directions. Wölbern et al. (2014) reported significant short-scale variations of fast polarization directions. They proposed that anisotropy results from fossil anisotropy in the subducting slab, whereas deviating fast polarizations in trench-parallel orientation were attributed to crustal anisotropy related to deep-reaching local shear zones. Long et al. (2016) found complex splitting measurements which they interpreted as the result of different anisotropic source regions. Overall, the complexity of splitting measurements yield a departure from a conventional 2D corner flow model. To investigate the upper mantle and crust in this subduction setting further, we use data from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, which consists of 21 stations with up to ten years

  11. Thermo-Compositional Evolution of a Brine Reservoir Beneath Ceres' Occator Crater and Implications for Cryovolcanism at the Surface

    Science.gov (United States)

    Quick, L. C.

    2017-12-01

    The Dawn spacecraft has imaged several putative cryovolcanic features on Ceres (Buczkowski et al., 2016; Ruesch et al., 2016), and several lines of evidence point to past cryovolcanic activity at Occator crater (De Sanctis et al., 2016; Krohn et al., 2016; Buczkowski et al., 2017; Nathues et al., 2017; Ruesch et al., 2017; Zolotov, 2017). Hence it is possible that cryovolcanism played a key role in delivering carbonate and/or chloride brines to Ceres' surface in the past. As any cryolavas delivered to the surface would have issued from a briny subsurface reservoir, or, cryomagma chamber, it is necessary to consider the thermal and compositional evolution of such a reservoir. The detection of a 200 km x 200 km negative Bouguer anomaly beneath Occator suggests the presence of a low-density region beneath the crater (Ermakov et al., 2017). If this region is a residual cryomagma chamber, excess pressures caused by its gradual freezing, or stresses produced by the Occator-forming impact, could have once facilitated the delivery of cryolavas to the Cerean surface. I have investigated the progressive solidification of a cryomagma chamber beneath Occator and implications for the changing compositions of cryolavas on Ceres. I will present the results of this study as well as discuss the dynamics and heat transfer associated with cryomagmatic ascent to the surface. Preliminary results suggest that a 200 km wide cryomagma chamber situated beneath Ceres' crust would take approximately 1 Gyr to completely crystallize. However, such a reservoir would be depleted in chloride and carbonate salts after only 54 Myr of cooling. If the reservoir contained NH3-bearing fluids, eruptions could proceed for another 100 Myr before increased reservoir crystallization rendered cryomagmatic fluids completely immobile. In addition, it is likely that cryomagmas delivered to Ceres' surface had viscosities < 108 Pa s, and were delivered in fractures with propagation speeds ≥ 10-5 m/s. I will

  12. Ocean mixing beneath Pine Island Glacier Ice Shelf

    Science.gov (United States)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne

    2016-04-01

    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  13. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its...... centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities...... velocities around the rift structure, except for beneath the rift axis where a distinct 50-80-km wide high-velocity anomaly (7.4-7.6 ± 0.2 km/s) is observed. Reverberant or "ringing" reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non...

  14. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    Science.gov (United States)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    majority of the seismic anisotropy are due to sub-lithospheric asthenospheric flow beneath Madagascar. Our results suggest the dislocation creep regime extends beneath the lithosphere, which implies the rheology of the upper asthenosphere deforms by dislocation creep rather than diffusion creep.

  15. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    Science.gov (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  16. The Pressure Sources Beneath Unzen Volcano Inferred From Geodesic Survey

    Science.gov (United States)

    Kohno, Y.; Matsushima, T.; Shimizu, H.

    2004-12-01

    Unzen Volcano, which is located on Shimabara Peninsula, west Kyushu Island, Japan, erupted from 1990 to 1995. The ground deformations caused by volcanic activity were observed by several methods, such as Leveling survey, GPS and Tilt meters. In particular, it turned out from leveling data that the west coast area of Shimabara Peninsula sank about 8 cm since eruption had started. Joint Research Team of the national Universities suggested in 1992 that the model which has three pressure sources, could explain the ground deformation data in those days. But this model couldn_ft explain the leveling data which was observed after the eruption had stopped. In order to explain this latest leveling data, we had to add the fourth deeper pressure source beneath the Chidiwa Bay, confronted in the west seashore of the Shimabara peninsula (Matsushima et al., 2003; Kohno et al., 2003). In this study, we re-consider the source model beneath Unzen Volcano, using 1991-2001 and 2004 Leveling data along the northern flank of Unzen Volcano and the western coast of Shimabara peninsula. Also we use GPS data monitored by Kyushu University and Geographical Survey Institute. In calculation, both vertical and horizontal displacement was calculated applying the point source model (e.g. Mogi, 1958), and we get the best-fit source parameters. Parameters of the pressure sources are the location and the volume changes of pressure sources. Through the model calculation, the half-infinite surface was made for every height of each observation point, and geographical feature was reproduced in approximation. Analysis showed that after 1995 shallower source had started to deflate, on the other hand, two deeper sources still had kept expanding caused by intrusion of magma. After 1999, three shallower sources had begun to contract, and the only deepest (a depth of 15 km) source had expanded. But it is inferred from the 2004 Leveling that the deepest source turned to contract since 2001, and the all

  17. Crust and Mantle Structure Beneath the Samoan Islands

    Science.gov (United States)

    Browning, J. M.; Courtier, A. M.; Jackson, M. G.; Lekic, V.; Hart, S. R.; Collins, J. A.

    2013-12-01

    We used teleseismic receiver functions to map the seismic structure under the Samoan Islands in the southern Pacific Ocean. We acquired seismograms for the permanent seismic station, AFI, and for five temporary stations located across the island chain from the Samoan Lithospheric Integrated Seismic Experiment (SLISE). We used multiple-taper correlation and Markov chain Monte Carlo algorithms to calculate receiver functions for events with epicentral distance of 30° to 95° and examined the results in a frequency range of 1.0 - 5.0 Hz for crustal structure and 0.1 - 2.0 Hz for mantle structure. We identify complex crustal layering, including the interface between volcanic rocks and the ocean crust and a substantial underplated layer beneath the normal ocean crust. We find that the crust thins with decreasing age across the Samoan Islands and correlates with previous observations from gravity data (Workman, 2005). We additionally identify a velocity increase in the range of 50-100 km depth, potentially the Hales discontinuity. Deeper in the mantle, we observe transition zone thickness of 245-250 km across the island chain, which is within the margin of error for globally observed transition zone thickness. When migrated with IASP, transition zone discontinuity depths do appear deeper beneath the youngest island, indicating slower velocities and/or deeper discontinuity depths relative to the older islands in the system. We will provide improved constraints on transition zone discontinuity depths from ScS reverberations for all stations, and will place the crust and mantle results into a multi-disciplinary context, with comparisons to geochemical and surface observations. Workman, R., 2005. Geochemical characterization of endmember mantle components, Doctoral dissertation, Massachusetts Institute of Technology, http://dspace.mit/edu/handle/1721.1/33721.

  18. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  19. A Step in the D'' Shear Velocity Discontinuity Beneath the Cocos Plate Imaged by Kirchhoff Migration

    Science.gov (United States)

    Hutko, A.; Lay, T.; Garnero, E.; Revenaugh, J.

    2005-12-01

    We use 270 horizontally-polarized S waves from 15 deep earthquakes under South America recorded at broadband stations in western North America to image shear-velocity structure in the deep mantle beneath the Cocos Plate. We use a Kirchhoff migration approach, assuming isotropic scattering from a three-dimensional grid of possible scattering nodes in the lowermost mantle. Several 3D mantle tomography models are used to correct for first-order travel-time perturbations due to volumetric heterogeneity, and waveforms are migrated with respect to either S or ScS arrivals. We observe an East-West striking abrupt 50-150 km change in the depth of the D'' shear velocity discontinuity near 6°N. This feature is apparent in migrations for a 1D reference model and in migrations that use different 3D aspherical models to account for volumetric velocity effects. Our results do not contain significant topography elsewhere on the boundary, and are compatible with a relatively flat D'' discontinuity on either side of the step. The vertical step is constrained to occur over less than 100 km laterally. The step may be due to strong temperature and or chemical gradients, both of which require an active dynamical process to sustain such a steep feature. One dynamical process that can account for the step is folding and piling of a cold slab that has reached the core-mantle boundary, as observed in numerical and experimental models, resulting in a 100 km elevation of the post-perovskite phase boundary due to a 700K lateral temperature reduction in the folded slab. We also detect localized low velocities along the boundary of the imaged D'' discontinuity, which may involve upwellings caused by the slab laterally displacing a thin hot thermal boundary layer. Preliminary efforts to migrate broadband and short period P wave data also reveal complicated D'' structure in this region, however these results are much lower resolution and will be explored in greater detail.

  20. Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji

    Science.gov (United States)

    Kaneshima, Satoshi

    2018-01-01

    We analyze deep and intermediate-depth earthquakes at the Tonga-Fiji region in order to reveal the distribution of scattering objects in the mid-lower mantle. By array processing waveform data recorded at regional seismograph stations in the US, Alaska, and Japan, we investigate S-to-P scattering waves in the P coda, which arise from kilometer-scale chemically distinct objects in the mid-lower mantle beneath Tonga-Fiji. With ten scatterers previously reported by the author included, twenty-three mid-lower mantle scatterers have been detected below 900 km depth, while scatterers deeper than 1900 km have not been identified. Strong mid-lower mantle S-to-P scattering most frequently occurs at the scatterers located within a depth range between 1400 km and 1600 km. The number of scatterers decreases below 1600 km depth, and the deeper objects tend to be weaker. The scatterer distribution may reflect diminishing elastic anomalies of basaltic rocks with depth relative to the surrounding mantle rocks, which mineral physics has predicted to occur. The predominant occurrence of strong S-to-P scattering waves within a narrow depth range may reflect significant reduction of rigidity due to the ferro-elastic transformation of stishovite in basaltic rocks. Very large signals associated with mid-mantle scatterers are observed only for a small portion of the entire earthquake-array pairs. Such infrequent observations of large scattering signals, combined with quite large event-to-event differences in the scattering intensity for each scatterer, suggest both that the strong arrivals approximately represent ray theoretical S-to-P converted waves at objects with a plane geometry. The plane portions of the strong scatterers may often dip steeply, with the size exceeding 100 km. For a few strong scatterers, the range of receivers showing clear scattered waves varies substantially from earthquake-array pair to pair. Some of the scatterers are also observed at different arrays that have

  1. Hydrologic assessment of the shallow groundwater flow system beneath the Shinnecock Nation tribal lands, Suffolk County, New York

    Science.gov (United States)

    Noll, Michael L.; Rivera, Simonette L.; Busciolano, Ronald J.

    2016-12-02

    hours at a well located north of Old Fort Pond, near the northwestern part of the tribal lands.Estimated hydraulic-conductivity values derived from the results of specific-capacity tests that were completed at nine observation wells during March 2015 were used to calculate average linear velocity. Average linear velocity along conceptualized flow-path segments of the upper glacial aquifer located beneath the tribal lands was estimated using an assumed effective porosity value, and hydraulic-conductivity and hydraulic-head values that were interpolated from measured values. Groundwater travel times were estimated by dividing the length of the flow-path segment by the average linear velocity along the flow-path segment. Total estimated groundwater travel time along a conceptualized flow path, beginning near Sunrise Highway and terminating at Shinnecock Bay, is approximately 45 years using a porosity value of 30 percent.A surficial-silty unit was identified from approximately 0 to 10 ft below land surface at multiple locations beneath the tribal lands. The lithology of the surficial unit was verified by interpreted gamma log results obtained from select wells, and auger-rig drill cuttings from an observation well located near the geographic center of the tribal lands. The altitude of the unit varies with topography and was delineated along a cross section line that trends north-south along the approximate centerline (spine) of the tribal lands. The altitude of the hydrogeologic contact between the upper glacial and the Magothy aquifers generally decreases from northwest to southeast, occurs at a depth ranging from about 150 to 200 ft beneath the tribal lands, and was identified at two locations north of the tribal lands, near Sunrise Highway and Sebonac Road. Results of electrical geophysical surveys indicate that the depth to the freshwater/saltwater interface decreases from north to south with decreasing water level altitude, and the Magothy and upper glacial aquifers

  2. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  3. Smoking topography and abstinence in adult female smokers.

    Science.gov (United States)

    McClure, Erin A; Saladin, Michael E; Baker, Nathaniel L; Carpenter, Matthew J; Gray, Kevin M

    2013-12-01

    Preliminary evidence, within both adults and adolescents, suggests that the intensity with which cigarettes are smoked (i.e., smoking topography) is predictive of success during a cessation attempt. These reports have also shown topography to be superior compared to other variables, such as cigarettes per day, in the prediction of abstinence. The possibility that gender may influence this predictive relationship has not been evaluated but may be clinically useful in tailoring gender-specific interventions. Within the context of a clinical trial for smoking cessation among women, adult daily smokers completed a laboratory session that included a 1-hour ad libitum smoking period in which measures of topography were collected (N=135). Participants were then randomized to active medication (nicotine patch vs. varenicline) and abstinence was monitored for 4weeks. Among all smoking topography measures and all abstinence outcomes, a moderate association was found between longer puff duration and greater puff volume and continued smoking during the active 4-week treatment phase, but only within the nicotine patch group. Based on the weak topography-abstinence relationship among female smokers found in the current study, future studies should focus on explicit gender comparisons to examine if these associations are specific to or more robust in male smokers. © 2013 Elsevier Ltd. All rights reserved.

  4. Toroidal vortices over isolated topography in geophysical flows

    International Nuclear Information System (INIS)

    Koshel, Konstantin V; Ryzhov, Evgeny A; Zyryanov, Valery N

    2014-01-01

    This work deals with a model of a topographically trapped vortex appearing over isolated topography in a geophysical flow. The main feature of the study is that we pay special attention to the vertical structure of a topographically trapped vortex. The model considered allows one to study the vertical motion which is known not to be negligible in many cases. Given topography in the form of an isolated cylinder, and radial symmetry and stationarity of a uniform flow, in the linear approximation, we formulate a boundary value problem that determines all the components of the velocity field through a six-order differential operator, and nonincreasing boundary conditions at the center of the topography, and at infinity. The eigenvalues of the boundary value problem correspond to bifurcation points, in which the flow becomes unstable, hence non-negligible vertical velocities occur. We formulate a condition for the boundary value problem to have a discrete spectrum of these bifurcation points, and hence to be solvable. Conducting a series of test calculations, we show that the resulting vortex lies in the vicinity of topography, and can attain the distance up to half of the topography characteristic radius. (papers)

  5. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    Science.gov (United States)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent

  6. Variable crustal thickness beneath Thwaites Glacier revealed from airborne gravimetry, possible implications for geothermal heat flux in West Antarctica

    Science.gov (United States)

    Damiani, Theresa M.; Jordan, Tom A.; Ferraccioli, Fausto; Young, Duncan A.; Blankenship, Donald D.

    2014-12-01

    and subaerial volcanoes indicate the absence of supporting crustal roots, suggesting either (1) thermal support from a warm lithosphere or alternatively, and arguably less likely; (2) flexural support of the topography by a cool and rigid lithosphere, or (3) Pratt-like compensation. Although forward modeling of gravity data is non-unique in respect to these alternative possibilities, we prefer the hypothesis that Marie Byrd Land volcanoes are thermally-supported by warmer upper mantle. The presence of such inferred warm upper mantle also suggests regionally elevated geothermal heat flux in this sector of the West Antarctic Rift System and consequently the potential for enhanced meltwater production beneath parts of Thwaites Glacier itself. Our new crustal thickness estimates and geothermal heat flux inferences in the Thwaites Glacier region are significant both for studies of the structure of the broader West Antarctic Rift System and for assessments of geological influences on West Antarctic Ice Sheet dynamics and glacial isostatic adjustment models.

  7. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  8. The Effects of Micro- and Nano-Topography on Cells

    DEFF Research Database (Denmark)

    Kolind, Kristian

    2013-01-01

    molecules and insoluble protein structures that act in a finely coordinated manner to direct cell fate. The insoluble protein structures possess physical and chemical characteristics that guide cells, an important one being topography at the micro- and nano-length scale. Research performed regarding......Cells continuously make decisions on what proteins to express, and when to divide, differentiate and commit suicide, through a complex network of intracellular processes. The signals that determine the cellular processes reside within the extracellular matrix. They involve soluble signaling...... the effect of topography on cells has received much attention understanding how important this is for the rational design of bio-interfaces. Nevertheless, there is still a limited understanding of the effect of topography on cells making it impossible to tailor a biomaterial with specific cellular activity...

  9. Single implant restorations: prosthetically induced soft tissue topography.

    Science.gov (United States)

    Bichacho, N; Landsberg, C J

    1997-09-01

    An aesthetic transition from the smaller diameter of the implant to the prosthetic restoration that resembles the size of the natural tooth has presented an ongoing challenge to the implant restorative dentists. The appearance of the surrounding soft tissue is of major importance, and various techniques have been developed to guide and optimize its topography. The learning objective of this article is to present a cervical contouring concept, whereby the soft tissue topography is optimally determined already in the laboratory phase. Using a custom abutment and provisional crown as components of the transmucosal prosthetic unit (TPU), the topography is transferred to the vital intraoral tissues, which predictably adapt to the enhanced aesthetic configuration. Clinical cases are presented to demonstrate the sequence of the technique in treating the anterior region of the maxilla.

  10. Effects of Topography-driven Micro-climatology on Evaporation

    Science.gov (United States)

    Adams, D. D.; Boll, J.; Wagenbrenner, N. S.

    2017-12-01

    The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.

  11. Ulva linza zoospore sensitivity to systematic variation of surface topography

    Science.gov (United States)

    Sheats, Julian Taylor

    The use of surface topographical microstructure is abundant in nature. The lotus plant uses a fractal-like topography to create a highly non-wetting surface that self-cleans as water drops take dirt particles with them as they roll off. Analysis of how topography affects surface interactions offers a unique opportunity to attack a problem that affects our economy and societal health significantly. The attachment of biological material to manmade surfaces can be looked at as fouling or directed adhesion. Marine fouling on ship hulls costs the United States $600 million each year due to increased fuel usage caused by drag. Hospital-acquired methicillin-resistant Staphylococcus aureus infections cause thousands of deaths annually as a result of colonization of hospital surfaces. The lack of biocompatible synthetic surfaces for implants such as vascular grafts lead to restenosis as cells are unable to develop a natural interaction with the graft surface. In each circumstance there is much to learn about the complicated attachment process. This work expands the investigation of the role of topography in the attachment of the green fouling algae Ulva linza to poly(dimethylsiloxane) surfaces. Spore attachment density was correlated to the Wenzel roughness ratio on low surface energy, high-modulus poly(dimethylsiloxane)-grafted-silicon topographies. The role of topography on a scale less than the size of a spore was investigated on nano-roughened poly(dimethylsiloxane) elastomer surfaces. For a specific group of patterns, the spatial distribution of spores attached to topographies was quantitatively analyzed and shown to correlate with feature dimensions.

  12. Temperature increase beneath etched dentin discs during composite polymerization.

    Science.gov (United States)

    Karaarslan, Emine Sirin; Secilmis, Asli; Bulbul, Mehmet; Yildirim, Cihan; Usumez, Aslihan

    2011-01-01

    The purpose of this in vitro study was to measure the temperature increase during the polymerization of a composite resin beneath acid-etched or laser-etched dentin discs. The irradiation of dentin with an Er:YAG laser may have a positive effect on the thermal conductivity of dentin. This technique has not been studied extensively. Forty dentin discs (5 mm in diameter and 0.5 or 1 mm in height) were prepared from extracted permanent third molars. These dentin discs were etched with 20% orthophosphoric acid or an Er:YAG laser, and were then placed on an apparatus developed to measure temperature increases. The composite resin was polymerized with a high-intensity quartz tungsten halogen (HQTH) or light-emitting diode unit (LED). The temperature increase was measured under the dentin disc with a J-type thermocouple wire that was connected to a data logger. Five measurements were made for each dentin disc, curing unit, and etching system combination. Differences between the initial and the highest temperature readings were taken, and the five calculated temperature changes were averaged to determine the value of the temperature increase. Statistical analysis was performed with a three-way ANOVA and Tukey HSD tests at a 0.05 level of significance. Further SEM examinations were performed. The temperature increase values varied significantly, depending on etching systems (p < 0.05), dentin thicknesses (p < 0.05), and curing units (p < 0.05). Temperature increases measured beneath laser-etched discs were significantly higher than those for acid-etched dentin discs (p < 0.05). The HQTH unit induced significantly higher temperature increases than the LED unit (p < 0.05). The LED unit induced the lowest temperature change (5.2°C) in the 1-mm, acid-etched dentin group. The HQTH unit induced the highest temperature change (10.4°C) for the 0.5-mm, laser-etched dentin group. The risk of heat-induced pulpal damage should be taken into consideration

  13. Magmas and reservoirs beneath the Rabaul caldera (Papua New Guinea)

    Science.gov (United States)

    Bouvet de Maisonneuve, C.; Costa Rodriguez, F.; Huber, C.

    2013-12-01

    The area of Rabaul (Papua New Guinea) consists of at least seven - possibly nine - nested-calderas that have formed over the past 200 ky. The last caldera-forming eruption occurred 1400 y BP, and produced about 10 km3 of crystal-poor, two-pyroxene dacite. Since then, five effusive and explosive eruptive episodes have occurred from volcanic centres along the caldera rim. The most recent of these was preceded by decade-long unrest (starting in 1971) until the simultaneous eruption of Vulcan and Tavurvur, two vents on opposite sides of the caldera in 1994. Most eruptive products are andesitic in composition and show clear signs of mixing/mingling between a basalt and a high-K2O dacite. The hybridization is in the form of banded pumices, quenched mafic enclaves, and hybrid bulk rock compositions. In addition, the 1400 y BP caldera-related products show the presence of a third mixing component; a low-K2O rhyodacitic melt or magma. Geochemical modeling considering major and trace elements and volatile contents shows that the high-K2O dacitic magma can be generated by fractional crystallization of the basaltic magma at shallow depths (~7 km, 200 MPa) and under relatively dry conditions (≤3 wt% H2O). The low-K2O rhyodacitic melt can either be explained by extended crystallization at low temperatures (e.g. in the presence of Sanidine) or the presence of an additional, unrelated magma. Our working model is therefore that basalts ascend to shallow crustal levels before intruding a main silicic reservoir beneath the Rabaul caldera. Storage depths and temperatures estimated from volatile contents, mineral-melt equilibria and rock densities suggest that basalts ascend from ~20 km (~600 MPa) to ~7 km (200 MPa) and cool from ~1150-1100°C before intruding a dacitic magma reservoir at ~950°C. Depending on the state of the reservoir and the volumes of basalt injected, the replenishing magma may either trigger an eruption or cool and crystallize. We use evidence from major and

  14. Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography.

    Science.gov (United States)

    Santhiago, Marcony R; Smadja, David; Gomes, Beatriz F; Mello, Glauco R; Monteiro, Mario L R; Wilson, Steven E; Randleman, J Bradley

    2014-07-01

    To investigate the association of a novel metric, percent tissue altered, with the occurrence of ectasia after laser in situ keratomileusis (LASIK) in eyes with normal corneal topography and to compare this metric with other recognized risk factors. Retrospective case-control study. The study included 30 eyes from 16 patients with bilateral normal preoperative Placido-based corneal topography that developed ectasia after LASIK (ectasia group) and 174 eyes from 88 consecutive patients with uncomplicated LASIK and at least 3 years of postoperative follow-up. The following metrics were evaluated: age, preoperative central corneal thickness, residual stromal bed, Ectasia Risk Score System scores, and percent tissue altered, derived from [PTA = (FT + AD)/CCT], where FT = flap thickness, AD = ablation depth, and CCT = preoperative central corneal thickness. In the ectasia group, percent tissue altered ≥40 was the most prevalent factor (97%), followed by age ectasia risk score ≥ 3 (43%) (P ectasia risk score ≥ 4 (8). Stepwise logistic regression revealed percent tissue altered ≥ 40 as the single most significant independent variable (P ectasia in eyes with normal preoperative topography and was a more robust indicator of risk than all other variables in this patient population. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mulitple Origins of Sand Dune-Topography Interactions on Titan

    Science.gov (United States)

    Goggin, H.; Ewing, R. C.; Hayes, A.; Cisneros, J.; Epps, J. C.

    2015-12-01

    The interaction between sand dune patterns and topographic obstacles is a primary signal of sand transport direction in the equatorial region of Saturn's moon, Titan. The streamlined, tear drop appearance of the sand-dune patterns as they wrap around obstacles and a dune-free zone on the east side of many obstacles gives the impression that sand transport is from the west to east at equatorial latitudes. However, the physical mechanism behind the dune-obstacle interaction is not well explained, leaving a gap in our understanding of the equatorial sand transport and implied wind directions and magnitudes on Titan. In order to better understand this interaction and evaluate wind and sand transport direction, we use morphometric analysis of optical images on Earth and Cassini SAR images on Titan combined with analog wind tunnel experiments to study dune-topography interactions. Image analysis is performed in a GIS environment to map spatial variations in dune crestline orientations proximal to obstacles. We also use digital elevation models to and analyze the three-dimensional geometry - height, length, width and slope of the dune-topography relationships on Earth. Preliminary results show that dune patterns are deflected similarly around positive, neutral, or negative topography, where positive topography is greater than the surrounding dune height, neutral topography is at dune height and negative topography is lower than dune heights. In the latter case these are typically intra-dune field playas. The obstacle height, width, slope and wind variability appear to play a primary role in determining if a lee-dune, rather than a dune-free lee-zone, develops. In many cases a dune-free playa with evaporite and mud desiccation polygons forms lee-ward of the obstacle. To support and elaborate on the mapping and spatial characterization of dune-topography interactions, a series of experiments using a wind tunnel were conducted. Wind tunnel experiments examine the formation

  16. The cortical topography of tonal structures underlying Western music.

    Science.gov (United States)

    Janata, Petr; Birk, Jeffrey L; Van Horn, John D; Leman, Marc; Tillmann, Barbara; Bharucha, Jamshed J

    2002-12-13

    Western tonal music relies on a formal geometric structure that determines distance relationships within a harmonic or tonal space. In functional magnetic resonance imaging experiments, we identified an area in the rostromedial prefrontal cortex that tracks activation in tonal space. Different voxels in this area exhibited selectivity for different keys. Within the same set of consistently activated voxels, the topography of tonality selectivity rearranged itself across scanning sessions. The tonality structure was thus maintained as a dynamic topography in cortical areas known to be at a nexus of cognitive, affective, and mnemonic processing.

  17. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  18. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  19. Topography measurements and applications in ballistics and tool mark identifications*

    Science.gov (United States)

    Vorburger, T V; Song, J; Petraco, N

    2016-01-01

    The application of surface topography measurement methods to the field of firearm and toolmark analysis is fairly new. The field has been boosted by the development of a number of competing optical methods, which has improved the speed and accuracy of surface topography acquisitions. We describe here some of these measurement methods as well as several analytical methods for assessing similarities and differences among pairs of surfaces. We also provide a few examples of research results to identify cartridge cases originating from the same firearm or tool marks produced by the same tool. Physical standards and issues of traceability are also discussed. PMID:27182440

  20. Agricultural pesticide residues

    International Nuclear Information System (INIS)

    Fuehr, F.

    1984-01-01

    The utilization of tracer techniques in the study of agricultural pesticide residues is reviewed under the following headings: lysimeter experiments, micro-ecosystems, translocation in soil, degradation of pesticides in soil, biological availability of soil-applied substances, bound residues in the soil, use of macro- and microautography, double and triple labelling, use of tracer labelling in animal experiments. (U.K.)

  1. Reconstructing mantle flow and long-wavelength dynamic topography since the Jurassic Period (GD Division Outstanding ECS Award Lecture)

    Science.gov (United States)

    Flament, Nicolas

    2017-04-01

    Global tectonic reconstructions can be used as boundary conditions of forward mantle convection models to simulate past mantle flow and long-wavelength dynamic topography. The predictions of such models can be compared to seismic tomography, to estimates of residual topography and to geological indicators of past vertical motions. Here we present models that reproduce the present-day structure of the lower mantle, including two large structures that resemble the Pacific and African Large Low Shear Velocity Provinces (LLSVPs, ˜15,000 km in diameter) and a smaller structure that resembles the recently discovered Perm Anomaly (˜1,000 km in diameter). The match between predicted and seismically inferred lower mantle structure is quantified across a series of mantle flow and tomography models. In the models, the Perm-like anomaly forms in isolation within a closed and long-lived subduction network (East Asia, Northern Tethys and Mongol-Okhotsk) ˜22,000 km in circumference before migrating ˜1,500 km westward at an average rate of 1 cm yr-1 since 150 million years ago. These results indicate a greater mobility of deep mantle structures than previously recognized, and illustrate that the predictive power of mantle flow models has significantly increased over the last thirty years. We suggest that the mobile Perm Anomaly could be linked to the ˜258 Ma Emeishan volcanics, in contrast to the previously proposed ˜251 Ma Siberian Traps. We also compare the present-day dynamic topography predicted by forward mantle flow models to residual topography models, and show that radial and lateral viscosity variations significantly influence the distribution of power of predicted dynamic topography as a function of spherical harmonic degree. We finally show how past vertical motions preserved in the geological record and the present-day position of slabs in the mantle inferred from seismic tomography may be used to constrain tectonic reconstructions and mantle rheology, including

  2. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    Science.gov (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  3. Rivers under ice: fluvial erosion beneath decaying ice sheets

    Science.gov (United States)

    Jansen, John D.; Codilean, Alexandru T.; Stroeven, Arjen P.; Fabel, Derek; Hättestrand, Clas; Kleman, Johan; Harbor, Jon M.; Heyman, Jakob; Kubik, Peter W.; Xu, Sheng

    2014-05-01

    The century-long debate over the origins of inner gorges cut within larger valleys that were repeatedly covered by Quaternary glaciers hinges upon whether the gorges are fluvial forms eroded by subaerial rivers, or subglacial forms cut beneath ice. We apply cosmogenic nuclide exposure dating to seven inner gorges along ~500 km of the former Fennoscandia ice sheet margin in combination with a new deglaciation isochron map. We show that the timing of bedrock exposure matches the advent of ice-free conditions, strongly suggesting that inner gorges were cut by channelised subglacial meltwater while simultaneously being shielded from cosmic rays by overlying ice. Given the exceptional hydraulic efficiency required for subglacial meltwater channels to erode bedrock and evacuate debris, we deduce that inner gorges are the product of ice sheets undergoing intense surface melting akin to that currently occurring on the Greenland ice sheet. The lack of postglacial river erosion in our seven inner gorges leads us to propose that channelised subglacial meltwater-boosted possibly by abrupt supraglacial lake drainage-may be a key driver of valley deepening on the Baltic Shield over multiple glacial cycles.

  4. Nontarget effects of ivermectin residues on earthworms and springtails dwelling beneath dung of treated cattle in four countries

    NARCIS (Netherlands)

    Scheffczyk, Adam; Floate, Kevin D.; Blanckenhorn, Wolf U.; Düring, Rolf Alexander; Klockner, Andrea; Lahr, Joost; Lumaret, Jean Pierre; Salamon, Jörg Alfred; Tixier, Thomas; Wohde, Manuel; Römbke, Jörg

    2016-01-01

    The authorization of veterinary medicinal products requires that they be assessed for nontarget effects in the environment. Numerous field studies have assessed these effects on dung organisms. However, few studies have examined effects on soil-dwelling organisms, which might be exposed to

  5. Future Antarctic bed topography and its implications for ice sheet dynamics

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  6. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    Science.gov (United States)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  7. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  8. Engineered Surfaces for Mitigation of Insect Residue Adhesion

    Science.gov (United States)

    Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.

    2013-01-01

    Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.

  9. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  10. Ice thickness, volume and subglacial topography of Urumqi Glacier ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 3. Ice thickness, volume and subglacial topography of Urumqi Glacier No. 1, Tianshan mountains, central Asia, by ground penetrating radar survey. Puyu Wang Zhongqin Li Shuang Jin Ping Zhou Hongbing Yao Wenbin Wang. Volume 123 Issue 3 April ...

  11. Mandibular molar crown-topography, a biological predisposing ...

    African Journals Online (AJOL)

    Mandibular molar crown-topography, a biological predisposing factor to development of caries – a post-mortem analysis of 2500 extracted lower permanent molars at ... (12.57%), distol surface attack 1,528 (12.22%) buccal surface attack 926 (7.40%), lingual surface attack 59 (0.47%) occlusal surface attack 6540 (52.32%).

  12. Influence of nanophase titania topography on bacterial attachment and metabolism

    Directory of Open Access Journals (Sweden)

    Margaret R Park

    2008-12-01

    Full Text Available Margaret R Park1, Michelle K Banks1, Bruce Applegate2, Thomas J Webster31School of Civil Engineering; 2Department of Food Science; 3School of Biomedical Engineering, Purdue University, West Lafayette, IN, USAAbstract: Surfaces with nanophase compared to conventional (or nanometer smooth topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection.Keywords: bacteria, attachment, nanophase, topography, metabolism

  13. Topography and distribution of ostia venae hepatica in the ...

    African Journals Online (AJOL)

    Background : Openings of hepatic veins into the retrohepatic surface of the inferior vena cava (ostia venae hepatica) play a part in controlling hepatic circulation by acting as collateral channels in obstruction. Their topography and distribution must be taken into account during catheterization and liver transplantation.

  14. Ice thickness, volume and subglacial topography of Urumqi Glacier ...

    Indian Academy of Sciences (India)

    on four alpine glaciers located in Switzerland, for which the bedrock topography is partially known from radio-echo soundings. Although the scaling approach is an easy ..... industry, and agriculture in Xinjiang Uygur. Autonomous Region. 5. Conclusion and outlook. Ice thickness of Urumqi Glacier No. 1 was sys- tematically ...

  15. Percolation, statistical topography, and transport in random media

    International Nuclear Information System (INIS)

    Isichenko, M.B.

    1992-01-01

    A review of classical percolation theory is presented, with an emphasis on novel applications to statistical topography, turbulent diffusion, and heterogeneous media. Statistical topography involves the geometrical properties of the isosets (contour lines or surfaces) of a random potential ψ(x). For rapidly decaying correlations of ψ, the isopotentials fall into the same universality class as the perimeters of percolation clusters. The topography of long-range correlated potentials involves many length scales and is associated either with the correlated percolation problem or with Mandelbrot's fractional Brownian reliefs. In all cases, the concept of fractal dimension is particularly fruitful in characterizing the geometry of random fields. The physical applications of statistical topography include diffusion in random velocity fields, heat and particle transport in turbulent plasmas, quantum Hall effect, magnetoresistance in inhomogeneous conductors with the classical Hall effect, and many others where random isopotentials are relevant. A geometrical approach to studying transport in random media, which captures essential qualitative features of the described phenomena, is advocated

  16. The Space-Time Topography of English Speakers

    Science.gov (United States)

    Duman, Steve

    2016-01-01

    English speakers talk and think about Time in terms of physical space. The past is behind us, and the future is in front of us. In this way, we "map" space onto Time. This dissertation addresses the specificity of this physical space, or its topography. Inspired by languages like Yupno (Nunez, et al., 2012) and Bamileke-Dschang (Hyman,…

  17. Embankment and Changing Micro-Topography of Lower Ajoy Basin ...

    African Journals Online (AJOL)

    Morphology of the river as well as the micro-topography of the floodplain undergoes great changes as a result of confinement of river flow due to construction of embankment. With this concept in background a geomorphological study has done in the Lower Ajoy Basin of Eastern India. The chronological study about ...

  18. Water balance and topography predict fire and forest structure patterns

    Science.gov (United States)

    Van R. Kane; James A. Lutz; C. Alina Cansler; Nicholas A. Povak; Derek J. Churchill; Douglas F. Smith; Jonathan T. Kane; Malcolm P. North

    2015-01-01

    Mountainous topography creates fine-scale environmental mosaics that vary in precipitation, temperature, insolation, and slope position. This mosaic in turn influences fuel accumulation and moisture and forest structure. We studied these the effects of varying environmental conditions across a 27,104 ha landscape within Yosemite National Park, California, USA, on the...

  19. Role of Cigarette Sensory Cues in Modifying Puffing Topography

    Science.gov (United States)

    Rees, Vaughan W.; Kreslake, Jennifer M.; Wayne, Geoffrey Ferris; O Connor, Richard J.; Cummings, K. Michael; Connolly, Gregory N.

    2012-01-01

    Background Human puffing topography promotes tobacco dependence by ensuring nicotine delivery, but the factors that determine puffing behavior are not well explained by existing models. Chemosensory cues generated by variations in cigarette product design features may serve as conditioned cues to allow the smoker to optimize nicotine delivery by adjusting puffing topography. Internal tobacco industry research documents were reviewed to understand the influence of sensory cues on puffing topography, and to examine how the tobacco industry has designed cigarettes, including modified risk tobacco products (MRTPs), to enhance puffing behavior to optimize nicotine delivery and product acceptability. Methods Relevant internal tobacco industry documents were identified using systematic searching with key search terms and phrases, and then snowball sampling method was applied to establish further search terms. Results Modern cigarettes are designed by cigarette manufacturers to provide sensory characteristics that not only maintain appeal, but provide cues which inform puffing intensity. Alterations in the chemosensory cues provided in tobacco smoke play an important role in modifying smoking behavior independently of the central effects of nicotine. Conclusions An associative learning model is proposed to explain the influence of chemosensory cues on variation in puffing topography. These cues are delivered via tobacco smoke and are moderated by design features and additives used in cigarettes. The implications for regulation of design features of modified risk tobacco products, which may act to promote intensive puffing while lowering risk perceptions, are discussed. PMID:22365895

  20. Nanotubular topography enhances the bioactivity of titanium implants.

    Science.gov (United States)

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. 175 Years of Linear Programming-Minimax and Cake Topography

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. 175 Years of Linear Programming - Minimax and Cake Topography. Vijay Chandru M R Rao. Series Article Volume 4 Issue 7 July 1999 pp 4-13. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Underwater topography acquired by remote sensing based on SOFM

    Science.gov (United States)

    Zhao, Jianhu; Zhou, Fengnian; Zhang, Hongmei; Li, Juanjuan

    2008-12-01

    In large-scope marine investigation, the traditional bathymetric measurement can not meet the requirement of rapid data acquisition with lower cost of financial and material resources, while remote sensing (RS) technology provides a perfect way in the work. RS can not only provide quickly and efficiently the information of underwater topography with respect to the traditional method, but also present corresponding underwater topography with different-period RS images. In this paper, we depict in detail the procedures and some key techniques in acquiring underwater topography by remote sensing inversion technology based on self-organization feature mapping (SOFM). Firstly, we introduce some basic theories about the acquisition of underwater topography by the RS inversion technology. Besides, we discuss the data acquisition and preparation in the work. Moreover, we implement correlation analysis and find out the sensitive bands used for building RS inversion model. In virtue of SOFM, we construct the mapping relation between water depth and the reflectivity of sensitive band in the studied area, and test the it in two experimental water areas. The model achieves satisfying accuracy and can meet the requirement of given bathymetric scale. Finally the mapping relation is used for the water depth inversion in the studied water area. We also use the water depth from the model to draw the underwater topographic map in the water area.

  3. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  4. Analysis of Multiple Manding Topographies during Functional Communication Training

    Science.gov (United States)

    Harding, Jay W.; Wacker, David P.; Berg, Wendy K.; Winborn-Kemmerer, Lisa; Lee, John F.; Ibrahimovic, Muska

    2009-01-01

    We evaluated the effects of reinforcing multiple manding topographies during functional communication training (FCT) to decrease problem behavior for three preschool-age children. During Phase 1, a functional analysis identified conditions that maintained problem behavior for each child. During Phase 2, the children's parents taught them to…

  5. Recent advances in engineering topography mediated antibacterial surfaces

    Science.gov (United States)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  6. Topography and distribution of ostia venae hepatica in the ...

    African Journals Online (AJOL)

    BACKGROUND: Openings of hepatic veins into the retrohepatic surface of the inferior vena cava. (ostia venae hepatica) play a part in controlling hepatic circulation by acting as collateral channels in obstruction. Their topography and distribution must be taken into account during catheterization and liver transplantation.

  7. Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM)

    Indian Academy of Sciences (India)

    Analysis of the accuracy of Shuttle Radar Topography. Mission (SRTM) height models using International Global. Navigation Satellite System Service (IGS) Network. Manas Mukul, Vinee Srivastava and Malay Mukul. J. Earth Syst. Sci. 124(6) cO Indian Academy of Sciences. Supplementary data ...

  8. Topography of The Posterior Communicating Artery in a Kenyan ...

    African Journals Online (AJOL)

    *Note: B= Basillar artery ICA= Internal Carotid Artery. PCA= Posterior Cerebral artery. CN III= 3rd cranial nerve. A - Hypoplastic configuration. C- Transitional configuration. B- Co-existence of Adult [(PComA (A)] and fetal [PComA (F)] configuration. Topography of The Posterior Communicating Artery in a Kenyan Population.

  9. Payload topography camera of Chang'e-3

    International Nuclear Information System (INIS)

    Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie

    2015-01-01

    Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application. (paper)

  10. Ice thickness, volume and subglacial topography of Urumqi Glacier ...

    Indian Academy of Sciences (India)

    The results of radar survey for three times are presented, aiming to determine ice thickness, volume and subglacial topography of Urumqi Glacier No. 1, Tianshan Mountains, central Asia. Results show that the distribution of ice is more in the center and lesser at both ends of the glacier. The bedrock is quite regular with ...

  11. Transepithelial, Topography-guided Ablation in the Treatment of Visual Disturbances in LASIK Flap or Interface Complications.

    Science.gov (United States)

    Chen, Xiangjun; Stojanovic, Aleksandar; Zhou, Wen; Utheim, Tor Paaske; Stojanovic, Filip; Wang, Qinmei

    2012-02-01

    To evaluate the efficacy and safety of a single-step, transepithelial, topography-guided surface ablation in the treatment of visual disturbances including irregular astigmatism and light scattering caused by LASIK flap or interface complications. Seventeen eyes of 16 patients with LASIK flap or interface complications and central residual stromal thickness ≥300 μm were treated with a topography-guided custom transepithelial "no touch" (cTEN) technique using the iVIS Suite 1-kHz excimer laser (iVIS Technology). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refraction, corneal irregularity, ocular higher order aberrations (HOAs), and visual symptoms were analyzed. Mean 15.9±11.0 months after surgery, mean UDVA improved from 20/87 to 20/25. Mean CDVA improved from 20/28 to 20/19 (PLASIK flap or interface complications associated with visually disturbing irregular astigmatism and light scattering in cases with sufficient residual stromal thickness. Copyright 2012, SLACK Incorporated.

  12. Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis: a review

    Directory of Open Access Journals (Sweden)

    Miguel Hage Amaro

    2015-02-01

    Full Text Available The aim of this paper is to do a review of Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis. Drusenlike beneath retinal deposits in type II mesangiocapillary glomerulonephritis appear to develop at an early age, often second decade of life different of drusen from age-related macular degeneration (AMD.Long term follow-up of the cases in this disease shows in the most of them, no progression of the of drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonefritis, the most of subjects retain good visual acuity and no specific treatment is indicated.

  13. Multi-scale Modelling of the Ocean Beneath Ice Shelves

    Science.gov (United States)

    Candy, A. S.; Kimura, S.; Holland, P.; Kramer, S. C.; Piggott, M. D.; Jenkins, A.; Pain, C. C.

    2011-12-01

    Quantitative prediction of future sea-level is currently limited because we lack an understanding of how the mass balance of the Earth's great ice sheets respond to and influence the climate. Understanding the behaviour of the ocean beneath an ice shelf and its interaction with the sheet above presents a great scientific challenge. A solid ice cover, in many places kilometres thick, bars access to the water column, so that observational data can only be obtained by drilling holes through, or launching autonomous vehicles beneath, the ice. In the absence of a comprehensive observational database, numerical modelling can be a key tool to advancing our understanding of the sub-ice-shelf regime. While we have a reasonable understanding of the overall ocean circulation and basic sensitivities, there remain critical processes that are difficult or impossible to represent in current operational models. Resolving these features adequately within a domain that includes the entire ice shelf and continental shelf to the north can be difficult with a structured horizontal resolution. It is currently impossible to adequately represent the key grounding line region, where the water column thickness reduces to zero, with a structured vertical grid. In addition, fronts and pycnoclines, the ice front geometry, shelf basal irregularities and modelling surface pressure all prove difficult in current approaches. The Fluidity-ICOM model (Piggott et al. 2008, doi:10.1002/fld.1663) simulates non-hydrostatic dynamics on meshes that can be unstructured in all three dimensions and uses anisotropic adaptive resolution which optimises the mesh and calculation in response to evolving solution dynamics. These features give it the flexibility required to tackle the challenges outlined above and the opportunity to develop a model that can improve understanding of the physical processes occurring under ice shelves. The approaches taken to develop a multi-scale model of ice shelf ocean cavity

  14. Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge

    Science.gov (United States)

    D'Errico, Megan E.; Warren, Jessica M.; Godard, Marguerite

    2016-02-01

    Ultraslow spreading at mid-ocean ridges limits melting due to on-axis conductive cooling, leading to the prediction that peridotites from these ridges are relatively fertile. To test this, we examined abyssal peridotites from the Gakkel Ridge, the slowest spreading ridge in the global ocean ridge system. Major and trace element concentrations in pyroxene and olivine minerals are reported for 14 dredged abyssal peridotite samples from the Sparsely Magmatic (SMZ) and Eastern Volcanic (EVZ) Zones. We observe large compositional variations among peridotites from the same dredge and among dredges in close proximity to each other. Modeling of lherzolite trace element compositions indicates varying degrees of non-modal fractional mantle melting, whereas most harzburgite samples require open-system melting involving interaction with a percolating melt. All peridotite chemistry suggests significant melting that would generate a thick crust, which is inconsistent with geophysical observations at Gakkel Ridge. The refractory harzburgites and thin overlying oceanic crust are best explained by low present-day melting of a previously melted heterogeneous mantle. Observed peridotite compositional variations and evidence for melt infiltration demonstrates that fertile mantle components are present and co-existing with infertile mantle components. Melt generated in the Gakkel mantle becomes trapped on short length-scales, which produces selective enrichments in very incompatible rare earth elements. Melt migration and extraction may be significantly controlled by the thick lithosphere induced by cooling at such slow spreading rates. We propose the heterogeneous mantle that exists beneath Gakkel Ridge is the consequence of ancient melting, combined with subsequent melt percolation and entrapment.

  15. Crustal structure beneath Portugal from teleseismic Rayleigh Wave Ellipticity

    Science.gov (United States)

    Attanayake, Januka; Ferreira, Ana M. G.; Berbellini, Andrea; Morelli, Andrea

    2017-08-01

    Up until now, Portugal lacked a countrywide shear velocity model sampling short length-scale crustal structure, which limits interpretations of seismicity and tectonics, and predictions of strong ground motion. In turn, such interpretations and predictions are important to help mitigate risk of destruction from future large on- and offshore earthquakes similar to those that Portugal has experienced in the past (e.g. the Mw 8.5-8.7 tsunamigenic event in 1755). In this study, we measured teleseismic Rayleigh Wave Ellipticity (RWE) from 33 permanent and temporary seismic stations in Portugal with wave periods between 15 s and 60 s, and inverted it for 1-D models of shear wave velocity (Vs) structure beneath each station using a fully non-linear Monte Carlo method. Because RWE is strongly sensitive to the uppermost few kilometres of the crust, both RWE measurements and Vs models are spatially correlated with surface geology in Portugal. For instance, we find that sedimentary basins produced by rifting that had begun in the Mesozoic such as the Lusitanian Basin (LB) and the Lower Tagus-Sado Basin (LTSB) are characterised by higher RWE (lower Vs). Interestingly, we observe similar RWE (and Vs) values in the interior of the Central Iberian Zone (CIZ), which is a metamorphic belt of Paleozoic age. Together with reduced crustal thickness previously estimated for the same parts of the CIZ, this suggests that the CIZ might have experienced an episode of extension possibly simultaneous to Mesozoic rifting. The Galicia-Tras-os-Montes-Zone (GTMZ) that has undergone polyphased deformation since the Paleozoic is characterised by the lowest RWE (highest Vs) in Portugal. Ossa Morena Zone and the South Portuguese Zone exhibit intermediate Vs values when compared to that of basins and the GTMZ. Our crustal Vs model can be used to provide new insights into the tectonics, seismicity and strong ground motion in Portugal.

  16. Oxygen Tension Beneath Scleral Lenses of Different Clearances.

    Science.gov (United States)

    Giasson, Claude J; Morency, Jeanne; Melillo, Marc; Michaud, Langis

    2017-04-01

    To evaluate the relative partial pressure in oxygen (pO2) at the corneal surface under Boston XO2 scleral lenses (SL) fitted with targeted clearances of 200 and 400 μm (SL200 and SL400). During this prospective study, the right eyes of eight normal subjects were fitted with SL200 and SL400. Clearance, validated after 5 minutes of wear with an optical coherence tomograph, was used with lens thicknesses to calculate transmissibility and estimate pO2. Corneal pO2s were measured with an oxygen electrode after 5 minutes of (1) corneal exposure to calibrating gases with various pO2 or of (2) SL wear. Decays in pO2 were modeled to an exponential. Linear regression between exponent k of these decays and calibrating gas pO2s allowed for the calculation of corneal pO2 under SL. Differences between pO2s beneath SL200 and SL400 were tested with a mixed ANOVA. The estimated transmissibility based on thicknesses and clearances (239.7 ± 34.7; 434.5 ± 33.2 μm) predicted a corneal pO2 of 8.52 ± 0.51 and 6.37 ± 0.28% for SL200 and SL400. These values were close to measured pO2: 9.07 ± 0.86 and 6.19 ± 0.87% (mean ± SEM) (P time, an 18-mm scleral lens fitted with a 400-μm clearance reduces the oxygen tension available to the cornea by 30% compared to a similar lens fitted with a 200-μm clearance after 5 minutes of wear.

  17. Three-Dimensional Seismic Tomography Beneath Tangshan, China

    Science.gov (United States)

    Chang, J. C.; Keranen, K. M.; Keller, G.; Qu, G.; Harder, S. H.

    2010-12-01

    The 1976 earthquake in Tangshan, China ranks as the deadliest earthquake in modern times. Though the exact number of casualties remains disputed, it is widely accepted that at least a quarter of a million people died. The high casualty level is surprising since the earthquake was not unusually large (Mw 7.5). Amplification of ground motion by thick sediment fill in the basin underlying the city is a likely cause for the extensive destruction. However, the extent of the unconsolidated material and the broader subsurface geology beneath Tangshan and surrounding areas needs to be better-constrained to properly model predicted ground motion and mitigate the hazards of future earthquakes. From a broader perspective, the Tangshan area is at the northern edge of the Bohai Bay basin province that has experienced both Cenozoic extension and related strike-slip tectonism. In January 2010, our group conducted a three-dimensional seismic investigation centered on the city of Tangshan. In an area of approximately 40 km x 60 km, we deployed 500 REFTEK 125A (“Texan”) recorders at 500 m spacing. A number of different sources, 20 altogether, were recorded during the two-day listening window, which include our large shots, smaller explosive shots from a co-spatial reflection survey, blasts from nearby quarries, and a small (Mearthquake. Our preliminary analyses suggest that the sediment fill is, on average, less than 1 km thick. Sediment fill is thinner to the north, as evidenced by outcropping bedrock, and thickens to the south. Sediment seismic velocity is about 1.8 km/s. Upper crustal velocities are 5.2 to 6.6 km/s, and increase to 7.0 km/s at mid-crustal depths.

  18. Seismic Attenuation of Sn phase beneath the Ordos Plateau

    Science.gov (United States)

    Pan, J.; Chen, Y.; Chen, Y. J.; Sandvol, E. A.

    2015-12-01

    We have used attenuation tomography of the regional seismic phase Sn to characterize the uppermost mantle shear wave Q (Qs) over a large part of northern China. The Sn phase is often a difficult phase to identify for continental paths since it usually has a relatively small amplitude compared to the regional phase Lg. Also Sn is often a high frequency phase and thus it is often blocked for paths that cross tectonically active regions. We have used the unprecedented amount of national network and temporary stations that were deployed across China over the last five years to be able to successfully identify Sn phases and use them to measure Sn Q using a reverse two station method. The initial waveforms was filtered with the frequency band of 0.5-3 Hz, and Sn time window was computed using velocities range of 4.3-4.7 km/s. Sn waveforms from 43 earthquakes recorded by 63 stations were manually picked out in order to obtain the ratio of Sn amplitude from each two-station pair. Those ratios describe Sn attenuation along each inter-station path. We have used to approaches: the two-station method was used to isolate factors, such as source, and earth response, and calculate inter-station Q value. And LSQR algorithm was used to obtain tomographically map lateral variations in Sn Q. We find relatively low uppermost mantle Q anomaly is consistent with the Weihe graben, a young active rifting system with hot uppermantle. Low Q value also appears in the southern part of the Ordos plateau, which shows the opposite result to the characteristics of lithospheric mantle in a craton. This may be a result of scattering attenuation of Sn or possible thermal erosion of the lithospheric root beneath the southern Ordos.

  19. [Residual neuromuscular blockade].

    Science.gov (United States)

    Fuchs-Buder, T; Schmartz, D

    2017-06-01

    Even small degrees of residual neuromuscular blockade, i. e. a train-of-four (TOF) ratio >0.6, may lead to clinically relevant consequences for the patient. Especially upper airway integrity and the ability to swallow may still be markedly impaired. Moreover, increasing evidence suggests that residual neuromuscular blockade may affect postoperative outcome of patients. The incidence of these small degrees of residual blockade is relatively high and may persist for more than 90 min after a single intubating dose of an intermediately acting neuromuscular blocking agent, such as rocuronium and atracurium. Both neuromuscular monitoring and pharmacological reversal are key elements for the prevention of postoperative residual blockade.

  20. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  1. Residuation in orthomodular lattices

    Directory of Open Access Journals (Sweden)

    Chajda Ivan

    2017-04-01

    Full Text Available We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.

  2. Characterization of Hospital Residuals

    International Nuclear Information System (INIS)

    Blanco Meza, A.; Bonilla Jimenez, S.

    1997-01-01

    The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es

  3. Experimental and Numerical Study of Wave-Induced Backfilling Beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Bayraktar, Deniz; Ahmad, Joseph; Eltard-Larsen, Bjarke

    Through complementary experimental and numerical efforts, the present paper aims to make a significant contribution to the overall understanding of backfilling processes beneath submarine pipelines. For this purpose, we aim to simplify the experimental backfilling process to an elementary two...

  4. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    Science.gov (United States)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  5. Multi-source least-squares reverse time migration with topography

    KAUST Repository

    Zhang, Dongliang

    2013-09-22

    We demonstrate an accurate method for calculating LSM images from data recorded on irregular topography. Our results with both the Marmousi and Foothill models with steep topography suggest the effectiveness of this method.

  6. The shallow water equation and the vorticity equation for a change in height of the topography.

    Science.gov (United States)

    Da, ChaoJiu; Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian

    2017-01-01

    We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography.

  7. Basalt Petrogenesis Beneath Slow - and Ultraslow-Spreading Arctic Mid-Ocean Ridges

    Science.gov (United States)

    2009-02-01

    global mantle temperature control on mean (230Th/238U). Thesis Supervisor: Dr. Kenneth W. W. Sims Title: Associate Scientist with Tenure 5...34 3 Melt generation and magma transport rates beneath the slow spreading Kolbeinsey Ridge determined from 238U, 230Th, and 231Pa...generation and magma transport processes occurring beneath volcanic centers. In the three studies presented here, I attempt to better constrain how mantle

  8. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    Science.gov (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  9. Effect Of Partially Demineralized Dentin Beneath The Hybrid Layer On Dentin-adhesive Interface Micromechanics

    OpenAIRE

    Anchieta; Rodolfo Bruniera; Machado; Lucas Silveira; Sundfeld; Renato Herman; Reis; Andre Figueiredo; Giannini; Marcelo; Luersen; Marco Antonio; Janal; Malvin; Rocha; Eduardo Passos; Coelho; Paulo G.

    2016-01-01

    Objective: To investigate the presence of non-infiltrated, partially demineralized dentin (PDD) beneath the hybrid layer for self-etch adhesive systems, and its effect on micromechanical behavior of dentin-adhesive interfaces (DAIs). This in-vitro laboratory and computer simulation study hypothesized that the presence of non-infiltrated PDD beneath the hybrid layer does not influence the mechanical behavior of the DAI of self-etch adhesive systems. Methods: Fifteen sound third molars were res...

  10. Depth variations of P-wave azimuthal anisotropy beneath East Asia

    Science.gov (United States)

    Wei, W.; Zhao, D.; Xu, J.

    2017-12-01

    We present a new P-wave anisotropic tomographic model beneath East Asia by inverting a total of 1,488,531 P wave arrival-time data recorded by the regional seismic networks in East Asia and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducting Indian, Pacific and Philippine Sea plates and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. The FVD in the subducting Philippine Sea plate beneath the Ryukyu arc is NE-SW(trench parallel), which is consistent with the spreading direction of the West Philippine Basin during its initial opening stage, suggesting that it may reflect the fossil anisotropy. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China. We suggest that it reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. We find a striking variation of the FVD with depth in the subducting Pacific slab beneath the Northeast Japan arc. It may be caused by slab dehydration that changed elastic properties of the slab with depth. The FVD in the mantle wedge beneath the Northeast Japan and Ryukyu arcs is trench normal, which reflects subduction-induced convection. Beneath the Kuril and Izu-Bonin arcs where oblique subduction occurs, the FVD in the mantle wedge is nearly normal to the moving direction of the downgoing Pacific plate, suggesting that the oblique subduction together with the complex slab morphology have disturbed the mantle flow.

  11. Large teleseismic P-wave residuals observed at the Alban Hills volcano, Central Italy

    Directory of Open Access Journals (Sweden)

    H. Mahadeva Iyer

    1994-06-01

    Full Text Available We collected teleseismic waveforms from a digital microseismic network deployed by the Istituto Nazionale di Geofisica (ING in collaboration with the U.S. Geological Survey (USGS, on the Alban Hills Quaternary volcano during the 1989-1990 seismic swann. About 50 events were recorded by the network, 30 of them by at least 4 stations. We analysed the data in order to image crustal heterogeneities beneath the volcano. The results show large delay time residuals up to - 1 second for stations located on the volcano with respect to station CP9 of the National Seismic Network located about 20 km to the east, on the Apennines. This suggests that the whole area overlies a broad low-velocity region. Although the ray coverage is not very dense, we model the gross seismic structure beneath the volcano by inverting the teleseismic relative residuals with the ACH technique. The main features detected by tbc inversion are a low-velocity zone beneath the southwestern fiank of tbc volcano, and a high-velocity region beneath the center. The depth extension of these anomalous zones ranges between 5 and 16 km. The correspondence between the low-velocity region and the most recent activity of the volcano (- 0.027 Ma leads us to infer the presence of a still hot magmatic body in the crust beneath the southwestern side of the volcano, whereas the central part overlies the older and colder high-velocity volcanic roots related to the previous central activity (0.7 to 0.3 Ma.

  12. Topography changes monitoring of small islands using camera drone

    Science.gov (United States)

    Bang, E.

    2017-12-01

    Drone aerial photogrammetry was conducted for monitoring topography changes of small islands in the east sea of Korea. Severe weather and sea wave is eroding the islands and sometimes cause landslide and falling rock. Due to rugged cliffs in all direction and bad accessibility, ground based survey methods are less efficient in monitoring topography changes of the whole area. Camera drones can provide digital images and movie in every corner of the islands, and drone aerial photogrammetry is powerful to get precise digital surface model (DSM) for a limited area. We have got a set of digital images to construct a textured 3D model of the project area every year since 2014. Flight height is in less than 100m from the top of those islands to get enough ground sampling distance (GSD). Most images were vertically captured with automatic flights, but we also flied drones around the islands with about 30°-45° camera angle for constructing 3D model better. Every digital image has geo-reference, but we set several ground control points (GCPs) on the islands and their coordinates were measured with RTK surveying methods to increase the absolute accuracy of the project. We constructed 3D textured model using photogrammetry tool, which generates 3D spatial information from digital images. From the polygonal model, we could get DSM with contour lines. Thematic maps such as hill shade relief map, aspect map and slope map were also processed. Those maps make us understand topography condition of the project area better. The purpose of this project is monitoring topography change of these small islands. Elevation difference map between DSMs of each year is constructed. There are two regions showing big negative difference value. By comparing constructed textured models and captured digital images around these regions, it is checked that a region have experienced real topography change. It is due to huge rock fall near the center of the east island. The size of fallen rock can be

  13. A highly attennuative zone beneath the Tokyo Metropolitan area.

    Science.gov (United States)

    Panayotopoulos, Y.; Hirata, N.; Sakai, S.; Nakagawa, S.; Kasahara, K.

    2014-12-01

    The intensities of seismic waves observed at the dense seismic array of the Tokyo Metropolitan Seismic Observation network (MeSO-net) inside the Kanto basin, display unusual distribution patterns. In several occasions, the highest intensities are not observed in the area above an earthquakes hypocenter but appear sifted more than 20 km away. In order to understand the source of this unusual intensity distribution pattern, it is crucial to understand how the waves attenuate before they reach the surface. The attenuation of seismic waves along their path is represented by the t∗ attenuation operator that can be obtained by fitting the observed seismic wave spectrum to a theoretical spectrum using an ω2 model. In order to create a high quality dataset, only 1449 earthquakes that are recorded with intensity greater than 0 in the Japan Meteorological Agency (JMA) intensity scale are selected from the JMA unified earthquake list from April 1st 2008 to October 2nd 2013. A grid search method is applied to determine the t∗ values by matching the observed and theoretical spectra. The t∗ data where then inverted to estimate a 3D Q structure with grid points set at a 10 km spacing. We implemented the 3D velocity model estimated by Nakagawa et al., 2012 and in addition we set the initial Q values at 100 for the 0 km grids and to 400 for the grids below them. The obtained model suggests average Q values of 50˜100 inside the Kanto basin. Furthermore, a low Q zone is observed in the area where the Philippine Sea plate meets the upper part of the Pacific sea plate. This area is located at approximately 40 km depth, beneath the north-east Tokyo and west Chiba prefectures and is represented by Q values Earthquakes occurring on the Pacific plate pass through this low Q area inside the Philippine sea plate and are attenuated significantly. The estimated attenuation distribution at the MeSO-net station for these earthquakes implementing our 3D Q model greatly coincides with the

  14. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  15. Cathodic protection beneath thick external coating on flexible pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Festy, Dominique; Choqueuse, Dominique; Leflour, Denise; Lepage, Vincent [Ifremer - Centre de Brest, BP 70 29280 Plouzane (France); Condat, Carol Taravel; Desamais, Nicolas [Technip- FLEXIFRANCE - PED/PEC - Rue Jean Hure, 76580 Le Trait (France); Tribollet, Bernard [UPR 15 du CNRS, Laboratoire LISE, 4 Place Jussieu, 75252 Paris Cedex (France)

    2004-07-01

    Flexible offshore pipelines possess an external polymer sheath to protect the structure against seawater. In case of an accidental damage of the outer sheath, the annulus of the flexible pipe is flooded with seawater. Far from the damage, corrosion and/or corrosion fatigue of armour steel wires in the annulus occur in a strictly deaerated environment; this has been studied for a few years. At the damage location, the steel wires are in direct contact with renewed seawater. In order to protect them against corrosion, a cathodic protection is applied using sacrificial anodes located at the end fittings. The goal of this work is to evaluate the extent of the cathodic protection as well as the electrolyte oxygen concentration beneath the coating around the damage, to know whether or not there is a non protected area with enough oxygen where corrosion and corrosion fatigue can occur. The experimental work was performed with a model cell (2000 x 200 mm{sup 2}), composed of a mild steel plate and a PMMA coat (transparent poly-methyl-methacrylate). The thickness of the gap between the steel plate and the PMMA coat was 0.5 mm. The potential and current density were monitored all along the cell (70 sensors). The oxygen concentration was also recorded. The experiments were performed with natural sea water, and cathodic protection was applied in a reservoir at one extremity of the cell. Another reservoir at the other cell extremity enabled carbon dioxide bubbling to simulate pipeline annular conditions. PROCOR software was used to simulate potential and current density within the gap and a mathematical model was developed to model oxygen concentration evolution. Both model and experimental results show that the extent of the cathodic protection is much greater than that of oxygen. Oxygen depletion is very quick within the gap when seawater fills it and the oxygen concentration is close to zero a few milli-metres from the gap opening. On the other hand, the cathodic protection

  16. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  17. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  18. Method and Apparatus for Creating a Topography at a Surface

    Science.gov (United States)

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  19. Topography and refractometry of nanostructures using spatial light interference microscopy.

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  20. The long wavelength topography of Beethoven and Tolstoj basins, Mercury

    Science.gov (United States)

    André, Sarah L.; Watters, Thomas R.; Robinson, Mark S.

    2005-11-01

    Topography derived from Mariner 10 stereo images is used to characterize the interior structure of two mercurian basins, Beethoven and Tolstoj. Beethoven and Tolstoj basins are shallow (~2.5 km and ~2 km deep, respectively) and relatively flat-floored. Beethoven basin has an interior topographic rise near the northwest margin. The topography of Beethoven and Tolstoj basins is similar to that of lunar mare-filled basins. Well-developed basin-concentric wrinkle ridges and arcuate graben associated with lunar mascons are absent in both Beethoven and Tolstoj basins. The lack of mascon tectonic features suggests that either 1) the mercurian basins have a relatively thin veneer of fill material, 2) Mercury's elastic lithosphere was too strong for significant lithospheric flexure and subsidence to occur, or 3) the basin fill material has little or no density contrast with the surrounding crust and thus exerts little net load on the mercurian lithosphere.

  1. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-01-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  2. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  3. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  4. High resolution, monochromatic x-ray topography capability at CHESS

    International Nuclear Information System (INIS)

    Finkelstein, K. D.; Pauling, A.; Brown, Z.; Jones, R.; Tarun, A.; Misra, D. S.; Jupitz, S.; Sagan, D. C.

    2016-01-01

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  5. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  6. Elastic Reverse Time Migration (RTM) From Surface Topography

    Science.gov (United States)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  7. Outcomes of photorefractive keratectomy in patients with atypical topography.

    Science.gov (United States)

    Movahedan, Hossein; Namvar, Ehsan; Farvardin, Mohsen

    2017-11-01

    Photorefractive keratectomy (PRK) is at risk of serious complications such as corneal ectasia, which can reduce corrected distance visual acuity. The rate of complications of PRK is higher in patients with atypical topography. To determine the outcomes of photorefractive keratectomy in patients with atypical topography. This cross-sectional study was done in 2015 in Shiraz in Iran. We included 85 eyes in this study. The samples were selected using a simple random sampling method. All patients were under evaluation for uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction, corneal topography, central corneal thickness using pentacam, slit-lamp microscopy, and detailed fondus evaluation. The postoperative examination was done 1-7 years after surgery. Data were analyzed using IBM SPSS 21.0 version. To analyze the data, descriptive statistics (frequency, percentage, mean, and standard deviation), chi-square, and independent samples t-test were used. We studied 85 eyes. Among the patients, 23 (27.1%) were male and 62 (72.9%) were female. Mean age of the participants was 28.25±5.55 years. Mean postoperative refraction was - 0.37±0.55 diopters. Keratoconus or corneal ectasia was not reported in any patient in this study. There was no statistically significant difference between SI index before and after operation (p=0.736). Mean preoperative refraction was -3.84 ± 1.46 diopters in males and -4.20±1.96 diopters in females; thus there was not statistically significant difference (p = 0.435). PRK is a safe and efficient photorefractive surgery and is associated with low complication rate in patients with atypical topography.

  8. Topography of the sex chromatin in vaginal histiocytes.

    Science.gov (United States)

    Cano, S; Urbiola, G; Dorantes, S; Márquez-Monter, H

    1975-01-01

    Routine vaginal smears with good numbers of histiocytes with kidney shaped morphology of their nuclei were selected for the study of sex chromatin topography. A variable distribution of the sex chromatin was found in 125 nuclei studied: polar in 57.4 percent, ventral in 21.9 percent and dorsal in 20.7 percent of the nuclei. No relationship was found between sex chromatin and cytoplasmic morphology and phagocytic activity.

  9. Brain Connectivity Variation Topography Associated with Working Memory.

    Directory of Open Access Journals (Sweden)

    Xiaofei Ma

    Full Text Available Brain connectivity analysis plays an essential role in the research of working memory that involves complex coordination of various brain regions. In this research, we present a comprehensive view of trans-states brain connectivity variation based on continuous scalp EEG, extending beyond traditional stimuli-lock averaging or restriction to short time scales of hundreds of milliseconds after stimulus onset. The scalp EEG was collected under three conditions: quiet, memory, and control. The only difference between the memory and control conditions was that in the memory condition, subjects made an effort to retain information. We started our investigation with calibrations of Pearson correlation in EEG analysis and then derived two indices, link strength and node connectivity, to make comparisons between different states. Finally, we constructed and studied trans-state brain connectivity variation topography. Comparing memory and control states with quiet state, we found that the beta topography highlights links between T5/T6 and O1/O2, which represents the visual ventral stream, and the gamma topography conveys strengthening of inter-hemisphere links and weakening of intra-hemisphere frontal-posterior links, implying parallel inter-hemisphere coordination combined with sequential intra-hemisphere coordination when subjects are confronted with visual stimuli and a motor task. For comparison between memory and control states, we also found that the node connectivity of T6 stands out in gamma topography, which provides strong proof from scalp EEG for the information binding or relational processing function of the temporal lobe in memory formation. To our knowledge, this is the first time for any method to effectively capture brain connectivity variation associated with working memory from a relatively large scale both in time (from a second to a minute and in space (from the scalp. The method can track brain activity continuously with minimal

  10. Brain Connectivity Variation Topography Associated with Working Memory.

    Science.gov (United States)

    Ma, Xiaofei; Huang, Xiaolin; Ge, Yun; Hu, Yueming; Chen, Wei; Liu, Aili; Liu, Hongxing; Chen, Ying; Li, Bin; Ning, Xinbao

    2016-01-01

    Brain connectivity analysis plays an essential role in the research of working memory that involves complex coordination of various brain regions. In this research, we present a comprehensive view of trans-states brain connectivity variation based on continuous scalp EEG, extending beyond traditional stimuli-lock averaging or restriction to short time scales of hundreds of milliseconds after stimulus onset. The scalp EEG was collected under three conditions: quiet, memory, and control. The only difference between the memory and control conditions was that in the memory condition, subjects made an effort to retain information. We started our investigation with calibrations of Pearson correlation in EEG analysis and then derived two indices, link strength and node connectivity, to make comparisons between different states. Finally, we constructed and studied trans-state brain connectivity variation topography. Comparing memory and control states with quiet state, we found that the beta topography highlights links between T5/T6 and O1/O2, which represents the visual ventral stream, and the gamma topography conveys strengthening of inter-hemisphere links and weakening of intra-hemisphere frontal-posterior links, implying parallel inter-hemisphere coordination combined with sequential intra-hemisphere coordination when subjects are confronted with visual stimuli and a motor task. For comparison between memory and control states, we also found that the node connectivity of T6 stands out in gamma topography, which provides strong proof from scalp EEG for the information binding or relational processing function of the temporal lobe in memory formation. To our knowledge, this is the first time for any method to effectively capture brain connectivity variation associated with working memory from a relatively large scale both in time (from a second to a minute) and in space (from the scalp). The method can track brain activity continuously with minimal manual interruptions

  11. Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique

    Science.gov (United States)

    Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei

    2017-12-01

    The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.

  12. Roles of Fog and Topography in Redwood Forest Hydrology

    Science.gov (United States)

    Francis, E. J.; Asner, G. P.

    2017-12-01

    Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.

  13. Topography and instability of monolayers near domain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.

    2001-06-01

    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of {open_quotes}mesas,{close_quotes} where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K({delta}c{sub 0}){sup 2} ({delta}c{sub 0} being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about K{delta}c{sub 0}. The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films.

  14. EEG topographies provide subject-specific correlates of motor control.

    Science.gov (United States)

    Pirondini, Elvira; Coscia, Martina; Minguillon, Jesus; Millán, José Del R; Van De Ville, Dimitri; Micera, Silvestro

    2017-10-16

    Electroencephalography (EEG) of brain activity can be represented in terms of dynamically changing topographies (microstates). Notably, spontaneous brain activity recorded at rest can be characterized by four distinctive topographies. Despite their well-established role during resting state, their implication in the generation of motor behavior is debated. Evidence of such a functional role of spontaneous brain activity would provide support for the design of novel and sensitive biomarkers in neurological disorders. Here we examined whether and to what extent intrinsic brain activity contributes and plays a functional role during natural motor behaviors. For this we first extracted subject-specific EEG microstates and muscle synergies during reaching-and-grasping movements in healthy volunteers. We show that, in every subject, well-known resting-state microstates persist during movement execution with similar topographies and temporal characteristics, but are supplemented by novel task-related microstates. We then show that the subject-specific microstates' dynamical organization correlates with the activation of muscle synergies and can be used to decode individual grasping movements with high accuracy. These findings provide first evidence that spontaneous brain activity encodes detailed information about motor control, offering as such the prospect of a novel tool for the definition of subject-specific biomarkers of brain plasticity and recovery in neuro-motor disorders.

  15. Topography significantly influencing low flows in snow-dominated watersheds

    Science.gov (United States)

    Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei

    2018-03-01

    Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.

  16. Age and Prematurity of the Alps Derived from Topography

    Science.gov (United States)

    Hergarten, S.; Wagner, T.; Stüwe, K.

    2010-09-01

    The European Alps are one of the best studied mountain ranges on Earth, but yet the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or already decaying, and is there a significant difference between Western and Eastern Alps? Using a new geomorphic parameter we analyze the topography of the Alps and provide one of the first quantitative constraints demonstrating that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment budget data from the surrounding basins we infer that the formation of the present topography began only 5-6 million years ago. Our results question the apparent consensus that the topographic evolution is distributed over much of the Miocene and might give new impulses to the reconstruction of paleoclimate in Central Europe.

  17. Applications of corneal topography and tomography: a review.

    Science.gov (United States)

    Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal

    2018-03-01

    Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  18. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    Science.gov (United States)

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  19. Nano-topography Enhances Communication in Neural Cells Networks.

    Science.gov (United States)

    Onesto, V; Cancedda, L; Coluccio, M L; Nanni, M; Pesce, M; Malara, N; Cesarelli, M; Di Fabrizio, E; Amato, F; Gentile, F

    2017-08-29

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness S a affects networks topology. In the low nano-meter range, S a  = 0-30 nm, information increases with S a . Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  20. Smoking topography in Korean American and white men: preliminary findings.

    Science.gov (United States)

    Chung, Sangkeun; Kim, Sun S; Kini, Nisha; Fang, Hua J; Kalman, David; Ziedonis, Douglas M

    2015-06-01

    This is the first study of Korean Americans' smoking behavior using a topography device. Korean American men smoke at higher rates than the general U.S. Korean American and White men were compared based on standard tobacco assessment and smoking topography measures. They smoked their preferred brand of cigarettes ad libitum with a portable smoking topography device for 24 h. Compared to White men (N = 26), Korean American men (N = 27) were more likely to smoke low nicotine-yield cigarettes (p Whites. Controlling for the number of cigarettes smoked, Koreans smoked with higher average puff flows (p = 0.05), greater peak puff flows (p = 0.02), and shorter interpuff intervals (p Whites. Puff counts, puff volumes, and puff durations did not differ between the two groups. This study offers preliminary insight into unique smoking patterns among Korean American men who are likely to smoke low nicotine-yield cigarettes. We found that Korean American men compensated their lower number and low nicotine-yield cigarettes by smoking with greater puff flows and shorter interpuff intervals than White men, which may suggest exposures to similar amounts of nicotine and harmful tobacco toxins by both groups. Clinicians will need to consider in identifying and treating smokers in a mutually aggressive manner, irrespective of cigarette type and number of cigarette smoked per day.

  1. Fractal and Lacunarity Analyses: Quantitative Characterization of Hierarchical Surface Topographies.

    Science.gov (United States)

    Ling, Edwin J Y; Servio, Phillip; Kietzig, Anne-Marie

    2016-02-01

    Biomimetic hierarchical surface structures that exhibit features having multiple length scales have been used in many technological and engineering applications. Their surface topographies are most commonly analyzed using scanning electron microscopy (SEM), which only allows for qualitative visual assessments. Here we introduce fractal and lacunarity analyses as a method of characterizing the SEM images of hierarchical surface structures in a quantitative manner. Taking femtosecond laser-irradiated metals as an example, our results illustrate that, while the fractal dimension is a poor descriptor of surface complexity, lacunarity analysis can successfully quantify the spatial texture of an SEM image; this, in turn, provides a convenient means of reporting changes in surface topography with respect to changes in processing parameters. Furthermore, lacunarity plots are shown to be sensitive to the different length scales present within a hierarchical structure due to the reversal of lacunarity trends at specific magnifications where new features become resolvable. Finally, we have established a consistent method of detecting pattern sizes in an image from the oscillation of lacunarity plots. Therefore, we promote the adoption of lacunarity analysis as a powerful tool for quantitative characterization of, but not limited to, multi-scale hierarchical surface topographies.

  2. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  3. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  4. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  5. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A.N.; Webster, G.A. [Imperial College, London (United Kingdom); Webster, P.J. [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  6. Puffing Topography and Nicotine Intake of Electronic Cigarette Users

    Science.gov (United States)

    Behar, Rachel Z.; Hua, My; Talbot, Prue

    2015-01-01

    Background Prior electronic cigarette (EC) topography data are based on two video analyses with limited parameters. Alternate methods for measuring topography are needed to understand EC use and nicotine intake. Objectives This study evaluated EC topography with a CReSS Pocket device and quantified nicotine intake. Methods Validation tests on pressure drop, flow rate, and volume confirmed reliable performance of the CReSS Pocket device. Twenty participants used Blu Cigs and V2 Cigs for 10 minute intervals with a 10–15 minute break between brands. Brand order was reversed and repeated within 7 days Data were analyzed to determine puff duration, puff count, volume, flow rate, peak flow, and inter-puff interval. Nicotine intake was estimated from cartomizer fluid consumption and topography data. Results Nine patterns of EC use were identified. The average puff count and inter-puff interval were 32 puffs and 17.9 seconds. All participants, except one, took more than 20 puffs/10 minutes. The averages for puff duration (2.65 seconds/puff), volume/puff (51ml/puff), total puff volume (1,579 ml), EC fluid consumption (79.6 mg), flow rate (20 ml/s), and peak flow rate (27 ml/s) were determined for 10-minute sessions. All parameters except total puff count were significantly different for Blu versus V2 EC. Total volume for Blu versus V2 was four-times higher than for conventional cigarettes. Average nicotine intake for Blu and V2 across both sessions was 1.2 ± 0.5 mg and 1.4 ± 0.7 mg, respectively, which is similar to conventional smokers. Conclusions EC puffing topography was variable among participants in the study, but often similar within an individual between brands or days. Puff duration, inter-puff interval, and puff volume varied from conventional cigarette standards. Data on total puff volume and nicotine intake are consistent with compensatory usage of EC. These data can contribute to the development of a standard protocol for laboratory testing of EC products

  7. The Relationship between Dynamic Topography and Sequence Stratigraphy

    Science.gov (United States)

    White, N. J.

    2014-12-01

    An evolving pattern of convective circulation within the mantle generates and maintains dynamic topography which is some fraction of observed topography. Spatial variations of dynamic topography are easy to measure within the oceanic realm and it is possible to exploit inventories of seismic reflection and wide-angle data to determine the dynamic topography of the oldest oceanic lithosphere that abuts passive continental margins. Results show that oceanic lithosphere has dynamic topographic anomalies of +/- 1 km with wavelengths of 500-1000 km. These substantial anomalies intersect coastal shelves and so it is expected that the development of these anomalies has affected sequence stratigraphic architecture in important ways. A series of examples will be used to illustrate how sequence stratigraphy can be profoundly influenced by changing patterns of dynamic topography. First, along the West African margin a set of dynamic topographic domes intersect the shelf edge. Onshore, the Neogene growth of these domes is recorded by emergent terraces and by drainage patterns. Offshore, an Oligo-Miocene switch from aggradation to progradation together with a series of younger disconformities have modified stratigraphic architecture along the shelf. Secondly, along the Northwest Shelf of Australia there is evidence for 700 m of dynamic drawdown of the oldest oceanic floor. Regional mapping and backstripping of clinoformal geometries within a Miocene carbonate reef complex shows that there is a dramatic switch from progradation to aggradation which cannot be attributed to glacio-eustatic variations. Instead, this switch appears to reflect growth of dynamic drawdown within the mantle. Finally, the Icelandic plume has controlled vertical motions along fringing North Atlantic margins over the last 60 Ma. Thanks to the intersecting mid-oceanic ridge, there is independent evidence that the temperature structure of this plume has fluctuated through time. These fluctuations are

  8. Expressions for tidal conversion at seafloor topography using physical space integrals

    International Nuclear Information System (INIS)

    Schorghofer, Norbert

    2010-01-01

    The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.

  9. Open questions in surface topography measurement: a roadmap

    International Nuclear Information System (INIS)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W; O’Connor, Daniel

    2015-01-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first

  10. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-27

    This report compared the composition of samples from Wesseling and Leuna. In each case the sample was a residue from carbonization of the residues from hydrogenation of the brown coal processed at the plant. The composition was given in terms of volatile components, fixed carbon, ash, water, carbon, hydrogen, oxygen, nitrogen, volatile sulfur, and total sulfur. The result of carbonization was given in terms of (ash and) coke, tar, water, gas and losses, and bitumen. The composition of the ash was given in terms of silicon dioxide, ferric oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium and sodium oxides, sulfur trioxide, phosphorus pentoxide, chlorine, and titanium oxide. The most important difference between the properties of the two samples was that the residue from Wesseling only contained 4% oil, whereas that from Leuna had about 26% oil. Taking into account the total amount of residue processed yearly, the report noted that better carbonization at Leuna could save 20,000 metric tons/year of oil. Some other comparisons of data included about 33% volatiles at Leuna vs. about 22% at Wesseling, about 5 1/2% sulfur at Leuna vs. about 6 1/2% at Leuna, but about 57% ash for both. Composition of the ash differed quite a bit between the two. 1 table.

  11. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  12. The application of confocal technology based on polycapillary X-ray optics in surface topography

    International Nuclear Information System (INIS)

    Zhao, Guangcui; Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song

    2013-01-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences

  13. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru

    Science.gov (United States)

    Jang, H.; Kim, Y.; Clayton, R. W.

    2017-12-01

    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  14. Constraints on the crustal structure beneath the Sinai subplate, SE Mediterranean, from analysis of local and regional travel times

    Directory of Open Access Journals (Sweden)

    Mohamed K. Salah

    2013-03-01

    Full Text Available The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift, the Dead Sea Transform fault, and the Red Sea rift. The upper and lower crustal structures of this tectonically active, rapidly developing region are yet poorly understood because of many limitations. For this reason, a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network (ENSN from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai. Because the velocity model used for routine earthquake location by ENSN is one-dimensional, the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures. Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west. The crustal Vp/Vs ratio is 1.74 from shallow (depth ≤ 10 km earthquakes and 1.76 from deeper (depth > 10 km crustal events. The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model (PREM, implying that the seismic stations are located above widely distributed, tectonically-induced low-velocity zones. These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures. The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities, which should be excluded from major future development projects and large constructions in central and southern Sinai.

  15. Fungal communities in soil beneath Scots pine and their stumps. Effect of fungi on Heterobasidion annosum and Armillaria ostoyae growth

    Directory of Open Access Journals (Sweden)

    Hanna Kwaśna

    2014-08-01

    Full Text Available The soil beneath 30-year-old Scots pines, was inhabited by fungi communities which were at least iwicc as big as communities from ihe 49-year-old stand. The fungi communities in soil beneath the stumps were much smaller compared to those beneath the live trees and more abundant in the 30- than in the 49--year-old stand. The fungal communities in soil beneath the 30-year-old pines have bigger antagonistic effect on Heterobasidion annosum and Armillaria ostoyae than those beneath the 49-year-old stand. The decrease in density of fungi and in the frequency of species antagonistic to H. annosum and A. ostoyae resulted in the decrease of the antagonistic effect on both pathogens in soil beneath pine stumps.

  16. Smoking Topography in Korean American and White Men: Preliminary Findings

    Science.gov (United States)

    Chung, Sangkeun; Kim, Sun S; Kini, Nisha; Fang, Hua J; Kalman, David; Ziedonis, Douglas M.

    2013-01-01

    Introduction This is the first study of Korean Americans’ smoking behavior using a topography device. Korean American men smoke at higher rates than the general U.S. population. Methods Korean American and White men were compared based on standard tobacco assessment and smoking topography measures. They smoked their preferred brand of cigarettes ad libitum with a portable smoking topography device for 24 hours. Results Compared to White men (N = 26), Korean American men (N = 27) were more likely to smoke low nicotine-yield cigarettes (p < 0.001) and have lower Fagerstrom nicotine dependence scores (p = 0.04). Koreans smoked fewer cigarettes with the device (p = 0.01) than Whites. Controlling for the number of cigarettes smoked, Koreans smoked with higher average puff flows (p = 0.05), greater peak puff flows (p = 0.02), and shorter interpuff intervals (p < 0.001) than Whites. Puff counts, puff volumes, and puff durations did not differ between the two groups. Conclusions This study offers preliminary insight into unique smoking patterns among Korean American men who are likely to smoke low nicotine-yield cigarettes. We found that Korean American men compensated their lower number and low nicotine-yield cigarettes by smoking more frequently with greater puff flows than White men, which may suggest exposures to similar amounts of nicotine and harmful tobacco toxins by both groups. Clinicians will need to consider in identifying and treating smokers in a mutually aggressive manner, irrespective of cigarette type and number of cigarette smoked per day. PMID:24068611

  17. Dynamic topography and the Cenozoic carbonate compensation depth

    Science.gov (United States)

    Campbell, S. M.; Moucha, R.; Raymo, M. E.; Derry, L. A.

    2015-12-01

    The carbonate compensation depth (CCD), the ocean depth at which the calcium carbonate accumulation rate goes to zero, can provide valuable insight into climatic and weathering conditions over the Cenozoic. The paleoposition of the CCD can be inferred from sediment core data. As the carbonate accumulation rate decreases linearly with depth between the lysocline and CCD, the CCD can be calculated using a linear regression on multiple sediment cores with known carbonate accumulation rates and paleodepths. It is therefore vital to have well-constrained estimates of paleodepths. Paleodepths are typically calculated using models of thermal subsidence and sediment loading and compaction. However, viscous convection-related stresses in the mantle can warp the ocean floor by hundreds of meters over broad regions and can also vary significantly over millions of years. This contribution to paleobathymetry, termed dynamic topography, can be calculated by modeling mantle flow backwards in time. Herein, we demonstrate the effect dynamic topography has on the inference of the late Cenozoic CCD with an example from the equatorial Pacific, considering sites from IODP Expeditions 320/321. The equatorial Pacific, given its large size and high productivity, is closely tied to the global carbon cycle. Accordingly, long-term changes in the equatorial Pacific CCD can be considered to reflect global changes in weathering fluxes and the carbon cycle, in addition to more regional changes in productivity and thermohaline circulation. We find that, when the dynamic topography contribution to bathymetry is accounted for, the equatorial Pacific CCD is calculated to be appreciably shallower at 30 Ma than previous estimates would suggest, implying a greater deepening of the Pacific CCD over the late Cenozoic.

  18. Topography and biological noise determine acoustic detectability on coral reefs

    KAUST Repository

    Cagua, Edgar F.

    2013-08-19

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs. © 2013 Springer-Verlag Berlin Heidelberg.

  19. Residual stresses in material processing

    Science.gov (United States)

    Kozaczek, K. J.; Watkins, T. R.; Hubbard, C. R.; Wang, Xun-Li; Spooner, S.

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then addresses the direct, nondestructive methods of residual stress measurement by X ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  20. The effect of Gonioscopy on keratometry and corneal surface topography

    Directory of Open Access Journals (Sweden)

    DeBroff Brian M

    2006-06-01

    Full Text Available Abstract Background Biometric procedures such as keratometry performed shortly after contact procedures like gonioscopy and applanation tonometry could affect the validity of the measurement. This study was conducted to understand the short-term effect of gonioscopy on corneal curvature measurements and surface topography based Simulated Keratometry and whether this would alter the power of an intraocular lens implant calculated using post-gonioscopy measurements. We further compared the effect of the 2-mirror (Goldmann and the 4-mirror (Sussman Gonioscopes. Methods A prospective clinic-based self-controlled comparative study. 198 eyes of 99 patients, above 50 years of age, were studied. Exclusion criteria included documented dry eye, history of ocular surgery or trauma, diabetes mellitus and connective tissue disorders. Auto-Keratometry and corneal topography measurements were obtained at baseline and at three follow-up times – within the first 5 minutes, between the 10th-15th minute and between the 20th-25th minute after intervention. One eye was randomized for intervention with the 2-mirror gonioscope and the other underwent the 4-mirror after baseline measurements. t-tests were used to examine differences between interventions and between the measurement methods. The sample size was calculated using an estimate of clinically significant lens implant power changes based on the SRK-II formula. Results Clinically and statistically significant steepening was observed in the first 5 minutes and in the 10–15 minute interval using topography-based Sim K. These changes were not present with the Auto-Keratometer measurements. Although changes from baseline were noted between 20 and 25 minutes topographically, these were not clinically or statistically significant. There was no significant difference between the two types of gonioscopes. There was greater variability in the changes from baseline using the topography-based Sim K readings

  1. Relating Cenozoic North Sea sediments to topography in southern Norway:

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Stratford, Wanda Rose

    2010-01-01

    sources for progradational influx of clastic sediments from Scotland, the Shetland platform and, to a lesser degree, southwestern Norway. The Eocene sedimentation pattern was similar to the Palaeocene, with lower rates of accumulation associated with flooding and tectonic quiescence. Sediment influx from...... the Shetland platform continued throughout the Cenozoic while supply from southern Norway increased markedly around the Eocene–Oligocene, coeval with the greenhouse–icehouse transition. Mass balance calculations of sediment and eroded rock volumes suggest that while some topography along the western margin...

  2. Ocean Dynamic Topography from GPS - Galathea-3 First results

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Olesen, Arne Vestergaard; Forsberg, René

    2010-01-01

    From August 14, 2006–April 24, 2007 the Danish expedition called Galathea-3 circumnavigated the globe. The Danish Technical University, DTU space, participated in the expedition with two experiments on-board. From Perth in Australia to Copenhagen Denmark measurements of the exact position and mov...... to permanent currents in the ocean. Comparison with the DNSC08 mean dynamic topography derived from satellite altimetry across the Gulf Stream yields agreement on the 20 cm level, which is a very satisfactory preliminary result calling for further refinement of the technique....

  3. EAARL Topography-Vicksburg National Military Park 2007: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  4. Propagation of bottom-trapped waves over variable topography

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    on a topographic slope, as they propagate towards a deeper region of constant depth, is examined using a quasi-geostrophic model. It is seen that there can be no free transmitted wave to the region of constant depth. The bottom-trapped energy is thus... currents farther away. 1. INTRODUCTION Rhines (1970) showed that a stratified rotating fluid over sloping bottom topography can support free waves that are bottom-intensified. The in- crease in the kinetic energy of the currents with depth...

  5. EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a

  6. EAARL Coastal Topography-Chandeleur Islands, Louisiana, 2010: Bare Earth

    Science.gov (United States)

    Nayegandhi, Amar; Bonisteel-Cormier, Jamie M.; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Nagle, David B.; Vivekanandan, Saisudha; Yates, Xan; Klipp, Emily S.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and submerged topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Chandeleur Islands, acquired March 3, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom

  7. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The purpose of this project is to provide highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired on June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using

  8. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  9. EAARL Topography - George Washington Birthplace National Monument 2008

    Science.gov (United States)

    Brock, John C.; Nayegandhi, Amar; Wright, C. Wayne; Stevens, Sara; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) and first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the George Washington Birthplace National Monument in Virginia, acquired on March 26, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL

  10. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  11. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed

  12. Determining Coastal Mean Dynamic Topography by Geodetic Methods

    Science.gov (United States)

    Huang, Jianliang

    2017-11-01

    In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.

  13. Applications of laser ranging to ocean, ice, and land topography

    Science.gov (United States)

    Degnan, John J.

    1991-01-01

    The current status and some future applications of satellite laser ranging (SLR) are briefly reviewed. The demonstrated subcentimeter precision of ground-based SLR systems is attracting new users, particularly, in the area of high-resolution ocean, ice, and land topography. Future airborne or spaceborne SLR system will not only provide topographic data with a horizontal and vertical resolution never achieved previously, but, in addition, ground-based SLR systems, via precise tracking of spaceborne microwave and laser altimeters, will permit the expression of the topographic surface in a common geocentric reference frame.

  14. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...... by aligning ultra-dense receptive field maps from the auditory cortex and thalamus of the mouse in vivo with the neural circuitry contained in the auditory thalamocortical slice in vitro. We observed precisely organized tonotopic maps of best frequency (BF) in the middle layers of AI and the anterior auditory...... of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model....

  15. Simulation of Wave-Plus-Current Induced Scour Beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    Scour beneath submarine pipelines has been the subject of much past research see eg. Sumer and Fredsøe (2002).To date most research, both numerical and experimental, has focused on scour induced by either pure waves or currents, while comparatively few studies have involved combined wave-plus-cur......Scour beneath submarine pipelines has been the subject of much past research see eg. Sumer and Fredsøe (2002).To date most research, both numerical and experimental, has focused on scour induced by either pure waves or currents, while comparatively few studies have involved combined wave......-plus-current environments. The present study, which is published in Larsen et al. (2016) focuses on the numerical simulation of wave-plus-current induced scour beneath submarine pipelines, based on a model solving Reynolds-averaged Navier-Stokes (RANS) equations, fully coupled with turbulence closure, bed and suspended...

  16. Microfungi in the soil beneath common oak and their effect on Armillaria occurrence

    Directory of Open Access Journals (Sweden)

    Hanna Kwaśna

    2014-08-01

    Full Text Available Microfungal assemblages in a soil beneath 30- and 50·year-old oaks and their 2-year-old stumps were studied using the soil dilution plate method. A total of 98 culturable microfungi were isolated. Compared to the living oaks before felling and the control living oaks, the density of Mortierella macrocystis, Penicillium jonczewskii, Pseudogymnoascus roseus Sporothrix schenckii, Tolypoccladiumum inflatum and Umbelopsis vinacea sigificantly inacased in the soil beneath slumps in the 32- and 52-year-old stands. Density of Aspergillus kanagawaensis, Monodictys lepraria, P. daleae and sterile dematiaceous hyphomycetes increased significantly in the 32-year-old stand and Chrysosporium merdarium in the 52·year-old stand. These fungi are known 'stimulants' of Armillaria rhizomorph formation. It is suggested that the increase in density of Armillaria rhizomorph 'stimulants' in a soil beneath oak stumps may increase the possibility of colonization of stumps by Armillaria.

  17. SRC Residual fuel oils

    Science.gov (United States)

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  18. Mantle structure beneath the western United States and its implications for convection processes

    Science.gov (United States)

    Xue, Mei; Allen, Richard M.

    2010-07-01

    We present tomographic images of the mantle structure beneath the western United States. Our Dynamic North America Models of P and S velocity structure (DNA07-P and DNA07-S) use teleseismic body waves recorded at ˜600 seismic stations provided by the Earthscope Transportable Array and regional networks. DNA07-P and -S benefit from the unprecedented aperture of the network while maintaining a dense station distribution providing high-resolution body wave imaging of features through the transition zone and into the lower mantle. The main features imaged include (1) the Juan de Fuca subduction system that bottoms at ˜400 km beneath Oregon, implying interaction with the Yellowstone anomaly; (2) a low-velocity conduit beneath Yellowstone National Park that bottoms at 500 km and dips toward the northwest; (3) shallow low-velocity anomalies (upper 200 km) beneath the eastern Snake River Plain (ESRP) and the High Lava Plains, and a deep low-velocity anomaly (>600 km) beneath the ESRP but not Newberry; (4) a low-velocity "slab gap" to ˜400 km depth immediately south of the Mendocino Triple Junction and south of the Gorda slab; and (5) high-velocity "drips" beneath the Transverse Ranges, the southern Central Valley/Sierra Nevada, and central Nevada. These observations reveal extremely heterogeneous mantle structure for the western United States and suggest that we are only just beginning to image the complex interactions between geologic objects. The transportable array allows for analysis of the relationships between these anomalies in an internally consistent single tomographic model. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu.

  19. Estimating 3D Variation in Active-Layer Thickness Beneath Arctic Streams Using Ground- Penetrating Radar

    Science.gov (United States)

    Brosten, T. R.; Bradford, J. H.; McNamara, J. P.; Zarnetske, J. P.; Gooseff, M. N.; Bowden, W. B.; Johnston, M. J.

    2007-12-01

    Our earlier ground-penetrating radar (GPR) investigations beneath arctic streams revealed greater active layer thicknesses beneath stream channels than beneath the adjacent terrestrial tundra. Presented here are results from 3D GPR data sets which were gathered over three sites to measure the active layer thickness variation within local streambed morphology. Three sites were selected based on their geomorphic differences. The first site is a high-energy water flow reach with a cobble to gravel streambed lining and riffle-pool morphology (alluvial stream). The second site is a deeply incised low-energy water flow reach with a beaded morphology and organic streambed lining (peat stream). The last site features a beaded morphology but with alluvial material lining the pool areas. GPR data were acquired using a pulsed radar system with a high-powered 1000V transmitter. The transmitting and receiving 200 MHz antennas were placed at the bottom of a small rubber boat for data acquisition. Profiles were gathered by pulling the boat across the stream from bank-to-bank while triggering at a constant time interval. Lines were collected at ~30cm intervals and continued upstream until a riffle-pool sequence was covered. Precise spatial data were collected using DGPS in conjunction with the GPR data. In addition, temperature data were recorded using thermocouples placed at varying substream depths located within or near the study sites to aid and verify GPR interpretations and numerical heat flow models. Results from the alluvial stream site illustrates greater thaw depths beneath riffle and gravel bar features compared to the neighboring pool areas while the beaded stream sites indicate the opposite, greater thaw depths beneath pools and thinner thaws beneath the connecting runs.

  20. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  1. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-30

    This report gave a record of the composition of several samples of residues from carbonization of various hydrogenation residue from processing some type of coal or tar in the Bergius process. These included Silesian bituminous coal processed at 600 atm. with iron catalyst, in one case to produce gasoline and middle oil and in another case to produce heavy oil excess, Scholven coal processed at 250 atm. with tin oxalate and chlorine catalyst, Bruex tar processed in a 10-liter oven using iron catalyst, and a pitch mixture from Welheim processed in a 10-liter over using iron catalyst. The values gathered were compared with a few corresponding values estimated for Boehlen tar and Gelsenberg coal based on several assumptions outlined in the report. The data recorded included percentage of ash in the dry residue and percentage of carbon, hydrogen, oxygen, nitrogen, chlorine, total sulfur, and volatile sulfur. The percentage of ash varied from 21.43% in the case of Bruex tar to 53.15% in the case of one of the Silesian coals. Percentage of carbon varied from 44.0% in the case of Scholven coal to 78.03% in the case of Bruex tar. Percentage of total sulfur varied from 2.28% for Bruex tar to a recorded 5.65% for one of the Silesian coals and an estimated 6% for Boehlen tar. 1 table.

  2. Anisotropy tomography beneath east-central China and its geodynamic implications

    Science.gov (United States)

    Jiang, G.; Zhang, G.

    2017-12-01

    The east-central China primary consists of the southeastern part of the North China Block (NCB), the Middle-Lower Yangtze Block (MLYB), the northern part of Cathaysia Block (CB) and the Qinling-Dabie-Sulu Orogen (QDSO) (Fig. 1). Previous studies have suggested that both the rich mineralization in MLYB and the ultra-high pressure metamorphic belts in QDSO are closely to the Cretaceous magmatism in the east-central China. For discussing the geodynamic process, we have used the teleseismic tomography to study the 3D P-wave velocity structure down to 800 km deep and proposed a double-slab subduction model. In the present study, we introduce another two parameters representing the azimuthal anisotropy based on the isotropy tomography. Compared with the SKS method, the anisotropy tomography can provide the velocity anisotropy structure in different depths. The new anisotropy results show that (1) high-velocity (high-V) anomalies exist beneath the Middle Yangtze Block (MYB) from 200 km to 700 km depths and beneath the Lower Yangtze Block from 500 km to 700 km depths, and (2) low-velocity (low-V) anomalies exist beneath the Lower Yangtze Block from 50 km to 200 km depths and beneath the CB from 300 km to 700 km depths, respectively, and (3) the fast directions of P-wave velocity at 50-100 km depths are chaotic, however they show some regular changes from 200 km to 600 km depths. At 200-km deep, the fast direction of the low-V beneath the LYB is nearly E-W-trending. With the depth increasing, the fast directions of the low-V beneath the CB from 300 km to 600 km depths change to NEE-trending. In other side, the fast directions of eastern part of the high-V beneath the MYB, close to the low-V beneath the CB, denote NW-trending from 300 km to 600 depths. Combing with previous studies, we explain the high-V and the low-V, mentioned above, as the ancient Yangtze Craton and the upwelling asthenospheric materials, respectively. In addition, the NE-trending fast directions in the

  3. Post-Mazama (7 KA) Faulting Beneath Upper Klamath Lake, Oregon

    Science.gov (United States)

    Colman, John A.; Rosenbaum, Joseph G.; Reynolds, Richard L.; Sarna-Wojicki, A. M.

    2000-01-01

    High-resolution seismic-reflection profiles (3.5 kHz) show that a distinctive, widespread reflection occurs in the sediments beneath Upper Klamath Lake, Oregon. Coring reveals that this reflection is formed by Mazama tephra (MT), about 7 ka in age. The MT horizon is faulted in many places and locally displaced by as much as 3.1 m. Differential displacement of multiple horizons indicates recurrent fault movement, perhaps three episodes since deposition of the Mazama. The pattern of faulting indicates northeast–southwest extension beneath the lake basin.

  4. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea

    Science.gov (United States)

    Zhao, Dapeng

    2017-09-01

    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related

  5. P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone

    Science.gov (United States)

    Li, Juan; Wang, Xin; Wang, Xiujiao; Yuen, David A.

    2013-04-01

    Using high-dense regional body waves for three deep earthquakes that occurred around Russia-China border, we investigate both S and P wave velocity structures in the mantle transition zone beneath Northeast China and northern part of North China Craton, where the northwestern Pacific plate is imaged to subhorizontally lie above the 660-km discontinuity. We observe an increasing trend of S-P travel time residuals along the epicentral distance within a distance range of 11-16.5°, indicating a velocity anomaly in MTZ. We seek the simplest model that explains the observed broadband waveforms and relative travel times of triplication for a confined azimuth sector. Both SH and P data suggest a ˜140±20 km high velocity layer lying above a slightly depressed and broad 660-km discontinuity. Shear velocity reduction of ˜2.5% in the deeper part of the transition zone is required to compensate for the significantly large relative time between AB and CD triplicate branches and the increased trending of S-P travel time residuals as well. The MTZ, as a whole, is featured by low shear velocity and high Vp/Vs ratio. A water-rich mantle transition zone with 0.2-0.4 wt% of H2O may account for the discrepancy between the observed Vp and Vs velocity structures. Our result supports the scenario of a viscosity-dominated stagnant slab with an increased thickness of ˜140 km, which was caused by the large viscosity contrast between the lower and upper mantles. The addition of water and eastward trench retreat might facilitate stagnation of the subducting Pacific slab beneath Northeast China.

  6. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    Science.gov (United States)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  7. Perceptual learning: psychophysical thresholds and electrical brain topography.

    Science.gov (United States)

    Skrandies, W; Jedynak, A; Fahle, M

    2001-06-01

    We studied perceptual learning by determining psychophysical discrimination thresholds for visual hyper acuity targets (vernier stimuli) as a function of stimulus orientation. One aim was to relate perceptual improvements to changes of electrophysiological activity of the human brain. A group of 43 healthy adults participated in a psychophysical experiment where vernier thresholds for vertical and horizontal vernier targets were compared. In 16 subjects thresholds were measured for each orientation twice at an interval of 25 min. Between threshold estimations, evoked brain activity was recorded from 30 electrodes over the occipital brain areas while the subjects observed appearance and disappearance of supra-threshold vernier offsets. Mean evoked potentials were computed for the first and second 600 stimulus presentations, and the scalp topography of electrical brain activity was analyzed. Vertically oriented stimuli yielded significantly better performance than horizontal targets, and thresholds were significantly lower in the second half of the experiment, i.e. after prolonged viewing of stimuli. The improvements in discrimination performance were specific for stimulus orientation and did not generalize. Learning effects were also observed with electrical brain activity, and field strength of the potentials increased significantly as a function of time. Scalp topography of the evoked components was significantly affected indicating a shift of activation between different neuronal elements induced by perceptual learning.

  8. Modulation of energetic coherent motions by large-scale topography

    Science.gov (United States)

    Lai, Wing; Hamed, Ali M.; Troolin, Dan; Chamorro, Leonardo P.

    2016-11-01

    The distinctive characteristics and dynamics of the large-scale coherent motions induced over 2D and 3D large-scale wavy walls were explored experimentally with time-resolved volumetric PIV, and selected wall-normal high-resolution stereo PIV in a refractive-index-matching channel. The 2D wall consists of a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/ λx = 0.05, while the 3D wall has an additional wave in the spanwise direction with a/ λy = 0.1. The ?ow was characterized at Re 8000, based on the bulk velocity and the channel half height. The walls are such that the amplitude to boundary layer thickness ratio is a/ δ99 0.1, which resemble geophysical-like topography. Insight on the dynamics of the coherent motions, Reynolds stress and spatial interaction of sweep and ejection events will be discussed in terms of the wall topography modulation.

  9. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  10. The interior structure of Ceres as revealed by surface topography

    Science.gov (United States)

    Fu, Roger R.; Ermakov, Anton; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford; Zuber, Maria; King, Scott D.; Bland, Michael T.; De Sanctis, Maria Cristina; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-01-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  11. Phase-space topography characterization of nonlinear ultrasound waveforms.

    Science.gov (United States)

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multiview hyperspectral topography of tissue structural and functional characteristics

    Science.gov (United States)

    Liu, Peng; Huang, Jiwei; Zhang, Shiwu; Xu, Ronald X.

    2016-01-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. We introduced and tested a multiview hyperspectral imaging technique for noninvasive topographic imaging of cutaneous wound oxygenation. The technique integrated a multiview module and a hyperspectral module in a single portable unit. Four plane mirrors were cohered to form a multiview reflective mirror set with a rectangular cross section. The mirror set was placed between a hyperspectral camera and the target biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional (3-D) topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. 3-D mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique was validated in a wound model, a tissue-simulating blood phantom, and in vivo biological tissue. The experimental results demonstrated the technical feasibility of using multiview hyperspectral imaging for 3-D topography of tissue functional properties.

  13. Mantle Water Contents Beneath the Rio Grande Rift (NM, USA): FTIR Analysis of Rio Puerco and Kilbourne Hole Peridotite Xenoliths

    Science.gov (United States)

    Schaffer, L. A.; Peslier, A. H.; Brandon, A.; Selverstone, J.

    2015-01-01

    Peridotite xenoliths from the Rio Grande Rift (RGR) are being analyzed for H (sub 2) O contents by FTIR (Fourier Transform Infrared) as well as for major and trace element compositions. Nine samples are from the Rio Puerco Volcanic Field (RP) which overlaps the central RGR and southeastern Colorado Plateau; seventeen samples are from Kilbourne Hole (KH) in the southern RGR. Spinel Cr# (Cr/(Cr+Al)) (0.08-0.46) and olivine Mg# (Mg/(Mg plus Fe)) (0.883-0.911) of all RGR samples fall within the olivine-spinel mantle array from [1], an indicator that peridotites are residues of partial melting. Pyroxene H (sub 2) O in KH correlate with bulk rock and pyroxene Al (sub 2) O (sub 3).The KH clinopyroxene rare earth element (REE) variations fit models of 0-13 percent fractional melting of a primitive upper mantle. Most KH peridotites have bulk-rock light REE depleted patterns, but five are enriched in light REEs consistent with metasomatism. Variation in H (sub 2) O content is unrelated to REE enrichment. Metasomatism is seen in RP pyroxenite xenoliths [2] and will be examined in the peridotites studied here. Olivine H (sub 2) O contents are low (less than or equal to 15 parts per million), and decrease from core to rim within grains. This is likely due to H loss during xenolith transport by the host magma [3]. Diffusion models of H suggest that mantle H (sub 2) O contents are still preserved in cores of KH olivine, but not RP olivine. The average H (sub 2) O content of Colorado Plateau clinopyroxene (670 parts per million) [4] is approximately 300 parts per million higher than RGR clinopyroxene (350 parts per million). This upholds the hypothesis that hydration-induced lithospheric melting occurred during flat-slab subduction of the Farallon plate [5]. Numerical models indicate hydration via slab fluids is possible beneath the plateau, approximately 600 kilometers from the paleo-trench, but less likely approximately 850 kilometers away beneath the rift [6].

  14. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  15. Feature-based characterisation of signature topography in laser powder bed fusion of metals

    Science.gov (United States)

    Senin, Nicola; Thompson, Adam; Leach, Richard

    2018-04-01

    The use of state-of-the-art areal topography measurement instrumentation allows for a high level of detail in the acquisition of topographic information at micrometric scales. The 3D geometric models of surface topography obtained from measured data create new opportunities for the investigation of manufacturing processes through characterisation of the surfaces of manufactured parts. Conventional methods for quantitative assessment of topography usually only involve the computation of texture parameters, summary indicators of topography-related characteristics that are computed over the investigated area. However, further useful information may be obtained through characterisation of signature topographic formations, as more direct indicators of manufacturing process behaviour and performance. In this work, laser powder bed fusion of metals is considered. An original algorithmic method is proposed to isolate relevant topographic formations and to quantify their dimensional and geometric properties, using areal topography data acquired by state-of-the-art areal topography measurement instrumentation.

  16. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  17. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    Science.gov (United States)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  18. Flow- topography Interactions in the Vicinity of a Deep Ocean Island and a Ridge

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Flow- topography Interactions in the Vicinity of a Deep...flow around abrupt topography in operational Navy models. RELATED PROJECTS NRL FY17 6.2 New Start proposal (pending proposal), titled...Predictability of Flow Interacting with Abrupt Topography (FIAT)”; lead PI: Ana Rice, NRL-SSC. The objective of FIAT is to use observations to develop Navy

  19. Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI

    Science.gov (United States)

    2015-09-30

    Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI T. M. Shaun Johnston Scripps Institution of Oceanography...westward flow in the North Equatorial Current (NEC) encounters tall, steep, submarine topography and islands. During the Flow Encountering Abrupt... Topography (FLEAT) DRI, investigators will determine: • Whether appreciable energy/momentum is lost from the large-scale NEC flow to smaller scales and

  20. Direct and Remote Effects of Topography and Orientation, and the Dynamics of Mesoscale Eddies

    Science.gov (United States)

    2017-09-01

    TOPOGRAPHY AND ORIENTATION, AND THE DYNAMICS OF MESOSCALE EDDIES by Larry T. Gulliver September 2017 Thesis Advisor: Timour Radko Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DIRECT AND REMOTE EFFECTS OF TOPOGRAPHY AND ORIENTATION, AND THE DYNAMICS OF...upper half of the basin and the bottom topography , ii) Analysis of the system response to changes in the zonal and meridional seafloor slope and iii

  1. Sharing Residual Liability

    DEFF Research Database (Denmark)

    Carbonara, Emanuela; Guerra, Alice; Parisi, Francesco

    2016-01-01

    Economic models of tort law evaluate the efficiency of liability rules in terms of care and activity levels. A liability regime is optimal when it creates incentives to maximize the value of risky activities net of accident and precaution costs. The allocation of primary and residual liability...... the virtues and limits of loss-sharing rules in generating optimal (second-best) incentives and allocations of risk. We find that loss sharing may be optimal in the presence of countervailing policy objectives, homogeneous risk avoiders, and subadditive risk, which potentially offers a valuable tool...

  2. Pitting Corrosion Topography Characteristics and Evolution Laws of LC4 Aluminum Alloy in Service Environment

    Directory of Open Access Journals (Sweden)

    LIU Zhiguo

    2017-08-01

    Full Text Available Aircraft aluminum alloy is easy to initiate pitting corrosion in the service environment, the pitting corrosion topography characteristics could directly affect the fatigue mechanical property of structure material. In order to obtain the pitting corrosion topography characteristics of LC4 aluminum alloy in the service environment, the accelerated corrosion test was carried out along the accelerated corrosion test environment spectrum which imitated the service environment spectrum, and the corrosion topography characteristic parameters of corrosion pit depth H,corrosion pit surface length L and corrosion pit surface width W were defined respectively. During the corrosion test process,the three parameters of typical corrosion pit were successively measured in different equivalent corrosion years for obtaining the corrosion pit damage size data, then the data were analysed through the statistics method and fractal theory. Further more in order to gain the pit topography characteristics in the same equivalent corrosion year and the topography evolution laws during different equivalent corrosion years were gained. The analysis results indicate that LC4 aluminum alloy corrosion pit topography characteristics in the service environment include the following:firstly, the pit topography characteristic parameters conform to the lognormal distributions in the same equivalent corrosion years; secondly,the pit topography characteristic parameters gradually reflect the fractal feature in accordance with the equivalent corrosion year increment, and the pits tend to be shallow, long and moderate wide topography character.

  3. Measurement of through-thickness residual stress in T-butt weldments of offshore steel by high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Allen, A.J.; Hutchings, M.T.; Rainey, V.S.

    1988-01-01

    The use of high resolution neutron diffraction to measure, nondestructively, the residual strain and hence the residual stress variation through the heat affected zone and into the plate beneath the toe of a T-butt is described. The effects on the strain variation of post weld heat treatment, and of fatigue loading until a crack is formed in the plate, have been investigated. The results indicate the power of the neutron diffraction technique to obtain unique information on the strain distribution with a weldment. (author)

  4. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America

    NARCIS (Netherlands)

    Hilst, R.D. van der; Mann, P.

    1994-01-01

    We used seismic tomography to investigate the complex structure of the upper mantle below northwestern South America. Images of slab structure not delineated by previous seismicity studies help us to refine existing tectonic models of subducted Caribbean-Pacific lithosphere beneath the study area.

  5. Structure and evolution of subducted lithosphere beneath the Sunda arc, Indonesia

    NARCIS (Netherlands)

    Widiyantoro, Sri; Hilst, R.D. van der

    1996-01-01

    Tomographic imaging reveals seismic anomalies beneath the Sunda island arc, Indonesia, that suggest that the lithospheric slab penetrates to a depth of at least 1500 kilometers. The Sunda slab forms the eastern end of a deep anomaly associated with the past subduction of the plate underlying the

  6. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    Science.gov (United States)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  7. Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Baykal, Cüneyt; Sumer, B. Mutlu

    2014-01-01

    A fully-coupled hydrodynamic/morphodynamic numerical model is presented and utilized for the simulation of wave-induced scour and backfilling processes beneath submarine pipelines. The model is based on solutions to Reynolds-averaged Navier–Stokes equations, coupled with k−ω turbulence closure...

  8. Experimental and numerical study of wave-induced backfilling beneath submarine pipelines

    DEFF Research Database (Denmark)

    Bayraktar, Deniz; Ahmad, Joseph; Eltard-Larsen, Bjarke

    2016-01-01

    This paper presents results of complementary experimental and numerical studies involving wave-induced backfilling of current-generated scour holes beneath submarine pipelines. The laboratory experiments are conducted in a wave-plus-current flume, utilizing Laser Doppler Anemometry to measure...

  9. Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    DEFF Research Database (Denmark)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny

    2016-01-01

    to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating...

  10. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  11. Improved quality of beneath-canopy grass in South African savannas: Local and seasonal variation

    NARCIS (Netherlands)

    Treydte, A.C.; Looringh van Beeck, F.A.; Ludwig, F.; Heitkonig, I.M.A.

    2008-01-01

    Questions: Do large trees improve the nutrient content and the structure of the grass layer in savannas? Does the magnitude of this improvement differ with locality ( soil nutrients) and season ( water availability)? Are grass structure and species composition beneath tree canopies influenced by

  12. Slab remnants beneath the Baja California peninsula : Seismic constraints and tectonic implications

    NARCIS (Netherlands)

    Paulssen, Hanneke; de Vos, Denise

    2017-01-01

    The formation of the Gulf of California has been related to the cessation of subduction of the Guadalupe and Magdalena microplates. Various studies have identified features that point to the presence of a slab remnant beneath the Baja California peninsula, but its depth range and lateral extent

  13. The crustal structure beneath The Netherlands derived from ambient seismic noise

    NARCIS (Netherlands)

    Yudistira, Tedi; Paulssen, Hanneke; Trampert, Jeannot

    2017-01-01

    This work presents the first comprehensive 3-D model of the crust beneath The Netherlands. To obtain this model, we designed the NARS-Netherlands project, a dense deployment of broadband stations in the area. Rayleigh and Love wave group velocity dispersion was measured from ambient noise

  14. The upper mantle beneath the Gulf of California from surface wave dispersion. Geologica Ultraiectina (299)

    NARCIS (Netherlands)

    Zhang, X.

    2009-01-01

    This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for

  15. The crustal structure beneath the Netherlands inferred from ambient seismic noise

    NARCIS (Netherlands)

    Yudistira, T.

    2015-01-01

    A 3-D shear velocity model of the crust beneath the Netherlands is determined from fundamental mode Rayleigh and Love wave group measurements derived from ambient seismic noise recordings. The data are obtained from a temporary array of broad-band seismometers in and around the Netherlands (the

  16. Managing the explosion of high resolution topography in the geosciences

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Phan, Minh; Gross, Benjamin

    2017-04-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds that come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM and UAS-based laser scanning, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The U.S. National Science Foundation funded OpenTopography (OT) Facility employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 225 datasets and 15,000 registered users, OT is well positioned to provide curation for community collected high-resolution topographic data. OT has developed a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community

  17. EAARL coastal topography--Alligator Point, Louisiana, 2010

    Science.gov (United States)

    Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan; Barras, J.A.

    2012-01-01

    This project provides highly detailed and accurate datasets of a portion of Alligator Point, Louisiana, acquired on March 5 and 6, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have

  18. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First Surface

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) elevation data were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The project provides highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system

  19. Insights into Vesta and Ceres internal structures from their topography

    Science.gov (United States)

    Ermakov, A.; Park, R. S.; Raymond, C. A.; Zuber, M. T.; Russell, C. T.; Fu, R. R.

    2017-12-01

    The Dawn spacecraft observed Vesta in 2011-2012 and Ceres in 2015-2017. We have investigated Vesta and Ceres using gravity and shape models derived from the Dawn measurements. Vesta and Ceres are located in the main asteroid belt and are subject to similar impactor populations (O'Brien and Sykes, 2011; Marchi et al., 2016). The topographic power spectra of Vesta and Ceres have very similar slopes but the spectrum of Ceres is approximately one order of magnitude lower than that of Vesta. Surface gravity is almost identical and, therefore, Vesta and Ceres are expected to have similar topographic powers. We argue that the difference in the topography spectra can be explained by different target properties, indicating that Ceres' near-surface material appears to be weaker than that of Vesta. Vesta's shape is about one order of magnitude more non-hydrostatic than that of Ceres. Two basins in the southern hemisphere represent the largest deviation of Vesta from a hydrostatic equilibrium shape. On the other hand, the northern hemisphere of Vesta is well approximated by an ellipsoid and likely represents the fossil shape of Vesta prior to the giant impacts. Fu et al. (2014) found that Vesta was once hot and hydrostatic and it was likely despun by two giant collisions. It is also possible that Ceres was rotating faster in the past, which can explain the hydrostaticity in its shape (Mao and McKinnon, 2016). The divergent geodynamic evolutions of Vesta and Ceres manifested in their shapes may be attributed to several factors. The main differences between Vesta and Ceres are their size and location of their accretion. Being smaller, Vesta cooled more quickly than Ceres and developed an elastic lithosphere before acquiring its topography. Ceres, on the other hand, had a longer cooling time and has not developed an appreciable lithosphere at a 4.5 Gy timescale. Consequently, Ceres is closer to hydrostatic equilibrium and its topography, unlike that of Vesta, is isostatically

  20. River bathymetry estimation based on the floodplains topography.

    Science.gov (United States)

    Bureš, Luděk; Máca, Petr; Roub, Radek; Pech, Pavel; Hejduk, Tomáš; Novák, Pavel

    2017-04-01

    Topographic model including River bathymetry (bed topography) is required for hydrodynamic simulation, water quality modelling, flood inundation mapping, sediment transport, ecological and geomorphologic assessments. The most common way to create the river bathymetry is to use of the spatial interpolation of discrete points or cross sections data. The quality of the generated bathymetry is dependent on the quality of the measurements, on the used technology and on the size of input dataset. Extensive measurements are often time consuming and expensive. Other option for creating of the river bathymetry is to use the methods of mathematical modelling. In the presented contribution we created the river bathymetry model. Model is based on the analytical curves. The curves are bent into shape of the cross sections. For the best description of the river bathymetry we need to know the values of the model parameters. For finding these parameters we use of the global optimization methods. The global optimization schemes is based on heuristics inspired by the natural processes. We use new type of DE (differential evolution) for finding the solutions of inverse problems, related to the parameters of mathematical model of river bed surfaces. The presented analysis discuss the dependence of model parameters on the selected characteristics. Selected characteristics are: (1) Topographic characteristics (slope and curvature in the left and right floodplains) determined on the base of DTM 5G (digital terrain model). (2) Optimization scheme. (3) Type of used analytical curves. The novel approach is applied on the three parts of Vltava river in Czech Republic. Each part of the river is described on the base of the point field. The point fields was measured with ADCP probe River surveyor M9. This work was supported by the Technology Agency of the Czech Republic, programme Alpha (project TA04020042 - New technologies bathymetry of rivers and reservoirs to determine their storage

  1. Seismic scatterer distribution beneath the Wellington region, southernmost part of New Zealand's North Island

    Science.gov (United States)

    Kurashimo, E.; Sato, H.; Iidaka, T.; Ishiyama, T.; Iwasaki, T.; Henrys, S. A.; Sutherland, R.; Stern, T. A.; Savage, M. K.; Okaya, D. A.

    2012-12-01

    A detailed crustal and upper mantle structure of the subducting oceanic lithosphere and the overlying continental crust is inevitably important to constrain the physical process of earthquake occurrence. Structural images of many subduction zones have been obtained: for example, the Kanto region, central Japan (e.g., Sato et al., 2005). In the Kanto region, the Philippine Sea Plate subducts beneath the Tokyo Metropolitan area. Similar tectonic situation is found in the southernmost North Island, New Zealand, where the Pacific plate subducts beneath the Australian plate. It is also noted that capital cities are situated in both the regions. In May of 2011, the second phase of the Seismic Array Hikurangi Experiment (SAHKE) was conducted to obtain the detailed subduction structure beneath the southern North Island. The transect line ran from the Wairarapa coast to Kapiti coast over an 80 km profile. Twelve explosives were fired as controlled seismic source on the survey line between 6-10 km apart. The energy was recorded on 878 seismic stations (294 three-component and 584 vertical sensors) deployed at 100 m spacing and 50 m between Kaitoke and Featherston. Data collected on the survey line have high signal-to-noise ratio, from which we can easily recognize, not only the first arrival phases, but also latter phases. The seismic coda waves are generally interpreted as scattered waves from inhomogeneities in the Earth [e.g., Aki, 1969]. Array recordings of seismic events are useful to locate scatterers. In this study, semblance analysis [Neidell and Tarner, 1971] is applied to our waveform data for imaging seismic scatterer distribution, assuming an isotropic scattering model. To locate scatterers, we established 3-D imaginary grid points beneath the survey area. The velocity structure beneath the survey area was derived by refraction tomography method [Zelt and Barton, 1998], which was used to calculate travel times between a source/receiver to a grid point. If a

  2. Imaging Lithospheric-scale Structure Beneath Northern Altiplano in Southern Peru and Northern Bolivia

    Science.gov (United States)

    Kumar, A.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2014-12-01

    The northern Altiplano plateau of southern Peru and northern Bolivia is one of the highest topographic features on the Earth, flanked by Western and Eastern Cordillera along its margin. It has strongly influenced the local and far field lithospheric deformation since the early Miocene (Masek et al., 1994). Previous studies have emphasized the importance of both the crust and upper mantle in the evolution of Altiplano plateau (McQuarrie et al., 2005). Early tomographic and receiver function studies, south of 16° S, show significant variations in the crust and upper mantle properties in both perpendicular and along strike direction of the Altiplano plateau (Dorbath et. al., 1993; Myers et al., 1998; Beck and Zandt, 2002). In order to investigate the nature of subsurface lithospheric structure below the northern Altiplano, between 15-18° S, we have determined three-dimensional seismic tomography models for Vp and Vs using P and S-wave travel time data from two recently deployed local seismic networks of CAUGHT and PULSE. We also used data from 8 stations from the PERUSE network (PERU Subduction Experiment). Our preliminary tomographic models show a complex variation in the upper mantle velocity structure with depth, northwest and southeast of lake Titicaca. We see the following trend, at ~85 km depth, northwest of lake Titicaca: low Vp and Vs beneath the Western Cordillera, high Vs beneath the Altiplano and low Vp and Vs beneath the Eastern Cordillera. This low velocity anomaly, beneath Eastern Cordillera, seems to coincide with Kimsachata, a Holocene volcano in southern Peru. At depth greater than ~85 km: we find high velocity anomaly beneath the Western Cordillera and low Vs beneath the Altiplano. This high velocity anomaly, beneath Western Cordillera, coincides with the well-located Wadati-Benioff zone seismicity and perhaps represents the subducting Nazca slab. On the southeast of lake Titicaca, in northern Bolivia, we see a consistently high velocity anomaly

  3. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  4. Mantle Flow Beneath Slow-Spreading Ridges Constrained by Seismic Anisotropy in Atlantic Lithosphere

    Science.gov (United States)

    Gaherty, J.; Dunn, R.

    2003-12-01

    Seismic anisotropy within the oceanic lithosphere provides one of the most direct means to study deformation associated with convection in the mantle. Advection beneath a mid-ocean ridge spreading center deforms the mantle rocks, and as the rocks cool to produce the oceanic lithosphere, they retain a record of this deformation in the form of lattice-preferred orientation (LPO) of olivine grains. LPO direction and strength can be estimated from directional and/or polarization dependence (anisotropy) of seismic wave speeds, and mid-ocean ridge mantle flow properties can be inferred. Mantle flow beneath the slow-spreading Mid-Atlantic Ridge (MAR) is suspected to be strongly three-dimensional due to the influence of hotspots and other thermal variations, and this thermal heterogeneity may be related to buoyancy-driven flow beneath the ridge. This notion is supported by two analyses of lithospheric anisotropy in the Atlantic, which until recently had not been well characterized. Radial anisotropy imaged near the hotspot-influenced Reykjanes Ridge implies a quasi-vertical (rather than horizontal) orientation of the lithospheric fabric. Azimuthal anisotropy within a narrow swatch of western Atlantic lithosphere that was formed via ultra-slow spreading is weaker than that found in the Pacific by a factor of two. Both can be interpreted in terms of buoyancy-driven flow beneath the MAR. Here we extend these results using regional surface-wave analyses of the Atlantic basin. Earthquakes from Atlantic source regions recorded at broad-band seismic instruments located on Atlantic islands and the surrounding margins provide excellent sensitivity to oceanic lithosphere structure, without contamination by continental heterogeneity. By characterizing such structure in both hotspot-influenced (e.g. Azores) and normal slow-spreading lithosphere, and comparing these structures to the Pacific, we evaluate the degree to which spreading rate and/or mantle source temperature control fabric

  5. Diffusing passive tracers in random incompressible flows: Statistical topography aspects

    International Nuclear Information System (INIS)

    Klyatskin, V.I.; Woyczynski, W.A.; Gurarie, D.

    1996-01-01

    The paper studies statistical characteristics of the passive tracer concentrations and of its spatial gradient, in random incompressible velocity fields from the viewpoint of statistical topography. The statistics of interest include mean values, probability distributions, as well as various functionals characterizing topographic features of tracers. The functional approach is used. We consider the influence of the mean flow (the linear shear flow) and the molecular diffusion coefficient on the statistics of the tracer. Most of our analysis is carried out in the framework of the delta-correlated (in time) approximation and conditions for its applicability are established. But we also consider the diffusion approximation scheme for finite correlation radius. The latter is applied to a diffusing passive tracer that undergoes sedimentation in a random velocity field

  6. Topography of inland deltas: Observations, modeling, and experiments

    Science.gov (United States)

    Seybold, H. J.; Molnar, P.; Akca, D.; Doumi, M.; Cavalcanti Tavares, M.; Shinbrot, T.; Andrade, J. S.; Kinzelbach, W.; Herrmann, H. J.

    2010-04-01

    The topography of inland deltas is influenced by the water-sediment balance in distributary channels and local evaporation and seepage rates. In this letter a reduced complexity model is applied to simulate inland delta formation, and results are compared with the Okavango Delta, Botswana and with a laboratory experiment. We show that water loss in inland deltas produces fundamentally different dynamics of water and sediment transport than coastal deltas, especially deposition associated with expansion-contraction dynamics at the channel head. These dynamics lead to a systematic decrease in the mean topographic slope of the inland delta with distance from the apex following a power law with exponent α = -0.69 ± 0.02 where the data for both simulation and experiment can be collapsed onto a single curve. In coastal deltas, on the contrary, the slope increases toward the end of the deposition zone.

  7. Topography-guided custom ablation treatment for treatment of keratoconus

    Directory of Open Access Journals (Sweden)

    Rohit Shetty

    2013-01-01

    Full Text Available Keratoconus is a progressive ectatic disorder of the cornea which often presents with fluctuating refraction and high irregular astigmatism. Correcting the vision of these patients is often a challenge because glasses are unable to correct the irregular astigmatism and regular contact lenses may not fit them very well. Topography-guided custom ablation treatment (T-CAT is a procedure of limited ablation of the cornea using excimer laser with the aim of regularizing the cornea, improving the quality of vision and possibly contact lens fit. The aim of the procedure is not to give a complete refractive correction. It has been tried with a lot of success by various groups of refractive surgeons around the world but a meticulous and methodical planning of the procedure is essential to ensure optimum results. In this paper, we attempt to elucidate the planning for a T-CAT procedure for various types of cones and asphericities.

  8. Topography description of thin films by optical Fourier Transform

    International Nuclear Information System (INIS)

    Jaglarz, Janusz

    2008-01-01

    In this work, the main problems concerning the scattering of light by real surfaces and films are presented in view of results obtained with the bidirectional reflection distribution function (BRDF) method and optical profilometry (OP). The BRDF and OP studies, being complementary to the atomic force microscopy (AFM), allow one to get information about surface topography. From the optical data, the surface power spectral density (PSD) functions for absorbing and transparent rough films have been found. Both functions have been evaluated from the Fourier transform (FT) of the surface profiles. The usefulness of BRDF-and OP methods in characterization of real surfaces is demonstrated when analyzing the optical data obtained for metallic TiN-and organic PVK thin films deposited on various substrates

  9. Topography-Dependent Motion Compensation: Application to UAVSAR Data

    Science.gov (United States)

    Jones, Cathleen E.; Hensley, Scott; Michel, Thierry

    2009-01-01

    The UAVSAR L-band synthetic aperture radar system has been designed for repeat track interferometry in support of Earth science applications that require high-precision measurements of small surface deformations over timescales from hours to years. Conventional motion compensation algorithms, which are based upon assumptions of a narrow beam and flat terrain, yield unacceptably large errors in areas with even moderate topographic relief, i.e., in most areas of interest. This often limits the ability to achieve sub-centimeter surface change detection over significant portions of an acquired scene. To reduce this source of error in the interferometric phase, we have implemented an advanced motion compensation algorithm that corrects for the scene topography and radar beam width. Here we discuss the algorithm used, its implementation in the UAVSAR data processor, and the improvement in interferometric phase and correlation achieved in areas with significant topographic relief.

  10. Dynamic wetting and spreading and the role of topography

    International Nuclear Information System (INIS)

    McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J

    2009-01-01

    The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v e , to the dynamic and equilibrium contact angles θ and θ e through v e ∝θ(θ 2 -θ e 2 ). When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is

  11. Effect of surface topography upon micro-impact dynamics

    International Nuclear Information System (INIS)

    Mohammadpour, M; Morris, N J; Leighton, M; Rahnejat, H

    2016-01-01

    Often the effect of interactions at nano-scale determines the tribological performance of load bearing contacts. This is particularly the case for lightly loaded conjunctions where a plethora of short range kinetic interactions occur. It is also true of larger load bearing conjunctions where boundary interactions become dominant. At the diminutive scale of fairly smooth surface topography the cumulative discrete interactions give rise to the dominance of boundary effects rather than the bulk micro-scale phenomena, based on continuum mechanics. The integration of the manifold localized discrete interactions into a continuum is the pre-requisite to the understanding of characteristic boundary effects, which transcend the physical length scales and affect the key observed system attributes. These are energy efficiency and vibration refinement. This paper strives to present such an approach. It is shown that boundary and near boundary interactions can be adequately described by surface topographical measures, as well the thermodynamic conditions. (paper)

  12. Geologic structure of shallow maria. [topography of lunar maria

    Science.gov (United States)

    Dehon, R. A.; Waskom, J. A.

    1975-01-01

    Isopach maps and structural contour maps of the eastern mare basins (30 deg N to 30 deg S; 0 deg to 100 deg E), constructed from measurements of partially buried craters, are presented and discussed. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of basalt in the irregular maria is between 200 and 400 m. Correlations between surface topography, basalt thickness, and basin floor structure are apparent in most of the basins that were studied. The mare surface is commonly depressed in regions of thick mare basalts; mare ridges are typically located in regions of pronounced thickness changes; and arcuate mare rilles are confined to thin mare basalts. Most surface structures are attributed to shallow stresses developed within the mare basalts during consolidation and volume reduction.

  13. Fractal structure of lunar topography: An interpretation of topographic characteristics

    Science.gov (United States)

    Cao, Wei; Cai, Zhanchuan; Tang, Zesheng

    2015-06-01

    Over the years, fractal geometry has been applied extensively in many fields of geoscience. Based on the global gridded data generated from the Lunar Reconnaissance Orbiter, we carry out our fractal measure to interpret lunar fractures by using qualitative (similar ratio) and quantitative (fractal dimension) approaches of fractal geometry. We find that most of the lunar surface exhibits fractal behavior over the given scales ranging from 1 to 256 m. Lunar maria have higher fractal dimensions than other geological units, while those of volcanic areas and highlands are lower than their surroundings. Simple and flat surfaces have low values of similar ratios and these areas indicate low surface roughness and young ages. Older-aged areas, such as the Hertzsprung basin, have low fractal dimensions and high similar ratios by their complicated topography.

  14. DNSC08 mean sea surface and mean dynamic topography models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2009-01-01

    -2004. It is the first global MSS without a polar gap including all of the Arctic Ocean by including laser altimetry from the ICESat mission. The mean dynamic topography (MDT) is the quantity that bridges the geoid and the mean sea surface constraining large-scale ocean circulation. Here we present a new high...... models. This way a consistent modeling of the interannual sea level variability is carried out before different MSS and MDT models are compared. Altimetric derived physical MSS can be converted into an "inverse barometer corrected MSS'' by correcting the altimeter range for the inverse barometer effect......The Danish National Space Center data set DNSC08 mean sea surface (MSS) is a new enhanced mapping of the mean sea surface height of the worlds oceans, derived from a combination of 12 years of satellite altimetry from a total of eight different satellites covering the period 1993...

  15. Characterization of Mo/Si multilayer growth on stepped topographies

    Energy Technology Data Exchange (ETDEWEB)

    Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.; Goldberg, K. A.; Bijkerk, F.

    2011-08-31

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.

  16. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography

    Science.gov (United States)

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-01

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  17. Discriminant analysis of functional optical topography for schizophrenia diagnosis

    Science.gov (United States)

    Chuang, Ching-Cheng; Nakagome, Kazuyuki; Pu, Shenghong; Lan, Tsuo-Hung; Lee, Chia-Yen; Sun, Chia-Wei

    2014-01-01

    Abnormal prefrontal function plays a central role in the cognition deficits of schizophrenic patients; however, the character of the relationship between discriminant analysis and prefrontal activation remains undetermined. Recently, evidence of low prefrontal cortex (PFC) activation in individuals with schizophrenia has also been found during verbal fluency tests (VFT) and other cognitive tests with several neuroimaging methods. The purpose of this study is to assess the hemodynamic changes of the PFC and discriminant analysis between schizophrenia patients and healthy controls during VFT task by utilizing functional optical topography. A total of 99 subjects including 53 schizophrenic patients and 46 age- and gender-matched healthy controls were studied. The results showed that the healthy group had larger activation in the right and left PFC than in the middle PFC. Besides, the schizophrenic group showed weaker task performance and lower activation in the whole PFC than the healthy group. The result of the discriminant analysis showed a significant difference with P value diagnosis.

  18. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  19. Using corneal topography design personalized cataract surgery programs

    Directory of Open Access Journals (Sweden)

    Jin-Ou Huang

    2014-08-01

    Full Text Available AIM:To investigate how to design personalized cataract surgery programs to achieve surgical correction of preoperative corneal astigmatism with surgical astigmatism under the guidance of corneal topography, improve postoperative visual quality and reduce the cost of treatment. METHODS: Totally 202 cases(226 eyescataract patients were divided into randomized treatment group and individualized treatment group. According to the method and location of the incision, randomized treatment group were divided into 8 groups. Surgical astigmatism after different incision were calculated with the use of preoperative and postoperative corneal astigmatism through vector analysis method. Individualized treatment groups were designed personably for surgical method with reference of every surgically induced astigmatism, the surgical method chooses the type of surgical incision based on close link between preoperative corneal astigmatism and surgically induced astigmatism, and the incision was located in the steep meridian. The postoperative corneal astigmatism of individualized treatment group was observed. RESULTS: Postoperative corneal astigmatism of individualized treatment group were lower than that of 3.0mm clear corneal tunnel incision in the randomized treatment group, there were statistically significance difference, while with 3.0mm sclera tunnel incision group there were no statistically significance difference. After 55.8% of patients with the use of individualized surgical plan could undergo the operation of extracapsular cataract extraction with relatively low cost and rigid intraocular lens implantation, the per capita cost of treatment could be reduced. CONCLUSION: Personalized cataract surgery programs are designed to achieve surgical correction of preoperative corneal astigmatism under the use of corneal topography, improve postoperative visual quality and reduce the cost of treatment.

  20. Topography and geomorphology of the Huygens landing site on Titan

    Science.gov (United States)

    Soderblom, L.A.; Tomasko, M.G.; Archinal, B.A.; Becker, T.L.; Bushroe, M.W.; Cook, D.A.; Doose, L.R.; Galuszka, D.M.; Hare, T.M.; Howington-Kraus, E.; Karkoschka, E.; Kirk, R.L.; Lunine, J.I.; McFarlane, E.A.; Redding, B.L.; Rizk, B.; Rosiek, M.R.; See, C.; Smith, P.H.

    2007-01-01

    The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30?? appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ???100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the "coastline" at the highland-lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland-lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland-lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Pre-LGM Northern Hemisphere ice sheet topography

    Directory of Open Access Journals (Sweden)

    J. Kleman

    2013-10-01

    Full Text Available We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok–GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS 5b (86.2 kyr model age and 4 (64 kyr model age. From the interglacial state of two north–south obstacles to atmospheric circulation (Rocky Mountains and Greenland, by MIS 5b the emergence of combined Quebec–central Arctic and Scandinavian–Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.

  2. [Cadaveric topography and morphometry of the vermiform appendix].

    Science.gov (United States)

    Ndoye, J M N; Ndiaye, As; Ndiaye, Ab; Dia, A; Fall, B; Diop, M; Sow, M L

    2005-06-01

    Our study justified by the frequency of acute appendicitis and the possibility of anatomic variations of the caecoappendicular area attempt to index the topographic variations of the vermiform appendix (v.a.). On 80 fresh native cadavers (62 men and 18 women) without surgical antecedent whose mean age was 36 years (range between 16 and 78 years) we note the morphotype and the height. More over we study the intraperitoneal projection of the Mac Burney point, topography and shape of the cecum and the situation, shape and dimensions of the v.a. We note also the level of implantation of this latter on the cecum, appearance of the mesoappendix and the distance separating the base of the appendix to the ileo-caecal junction. Mac Burney's point permitted to localize appendix in 66%; the cecum has more often than not the form of a bulb (98.7%) and sited in right fossa iliaca. We noted 7 types of topographic disposition; front varieties were more frequent (68.7%) notably the pelvic direction (51.2%) with a medial (72.5%) or a posteromedial (27.5%) establishment on the cecum. The v.a. was more often in the form of worm with a long mesoappendix; his mean length was 106.4 mm (between 65 and 160 mm) and the mean diameter 6.77 mm (range between 4 and 10 mm). The distance which separated the base of the appendix to the ileo-cecal junction varied between 15 to 40 mm with a mean distance of 24.2 mm. Thus in this study, dimensions of the v.a. were very variables. Located in right fossa iliaca he adopted a front topography with pelvic direction and medial establishment on bulbar cecum. In spite of scarcity of ectopic situation of the appendix for which laparoscopic approach is salutary, a similar topographic study during surgical treatment of acute appendicitis will be interesting.

  3. Residual flow patterns and morphological changes along a macro- and meso-tidal coastline

    Science.gov (United States)

    Leonardi, Nicoletta; Plater, Andrew James

    2017-11-01

    The hydrodynamic and residual transport patterns arising from oscillating tidal motion have important consequences for the transport of sediments, and for the evolution of the shoreline, especially under macro- and meso-tidal conditions. For many locations there are significant uncertainties about residual currents and sediment transport characteristics, and their possible influence on the morphological evolution of the coastline and on the character of the bed. Herein we use the coastline of SE England as a test case to investigate possible changes in residual currents, and residual transport patterns from neap to spring tide, the reciprocal interaction between residuals and the character of the bed, and the morphological evolution of the coastline at a century timescale. We found that in the long term the morphology of the system evolves toward a dynamic equilibrium configuration characterized by smaller, and spatially constant residual transport patterns. While the spatial distribution of residual currents maintains a similar trend during both neap and spring tide, during spring tide and for large areas residual currents switch between northerly and southerly directions, and their magnitude is doubled. Residual eddies develop in regions characterized by the presence of sand bars due to the interaction of the tide with the varying topography. Residual transport patterns are also computed for various sediment fractions, and based on the hydrodynamics and sediment availability at the bottom. We found that the distribution of sediments on the bed is significantly correlated with the intensity of residuals. Finally, the majority of long-term morphological changes tend to develop or augment sand banks features, with an increase in elevation and steepening of the bank contours.

  4. Preliminary results of an examination of electronic cigarette user puff topography: the effect of a mouthpiece-based topography measurement device on plasma nicotine and subjective effects.

    Science.gov (United States)

    Spindle, Tory R; Breland, Alison B; Karaoghlanian, Nareg V; Shihadeh, Alan L; Eissenberg, Thomas

    2015-02-01

    Electronic cigarettes (ECIGs) heat a nicotine-containing solution; the resulting aerosol is inhaled by the user. Nicotine delivery may be affected by users' puffing behavior (puff topography), and little is known about the puff topography of ECIG users. Puff topography can be measured using mouthpiece-based computerized systems. However, the extent to which a mouthpiece influences nicotine delivery and subjective effects in ECIG users is unknown. Plasma nicotine concentration, heart rate, and subjective effects were measured in 13 experienced ECIG users who used their preferred ECIG and liquid (≥ 12 mg/ml nicotine) during 2 sessions (with or without a mouthpiece). In both sessions, participants completed an ECIG use session in which they were instructed to take 10 puffs with 30-second inter-puff intervals. Puff topography was recorded in the mouthpiece condition. Almost all measures of the effects of ECIG use were independent of topography measurement. Collapsed across session, mean plasma nicotine concentration increased by 16.8 ng/ml, and mean heart rate increased by 8.5 bpm (ps topography measurement equipment, ECIG-using participants took larger and longer puffs with lower flow rates. In experienced ECIG users, measuring ECIG topography did not influence ECIG-associated nicotine delivery or most measures of withdrawal suppression. Topography measurement systems will need to account for the low flow rates observed for ECIG users. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Validity of active fault identification through magnetic anomalous using earthquake mechanism, microgravity and topography structure analysis in Cisolok area

    Science.gov (United States)

    Setyonegoro, Wiko; Kurniawan, Telly; Ahadi, Suaidi; Rohadi, Supriyanto; Hardy, Thomas; Prayogo, Angga S.

    2017-07-01

    Research was conducted to determine the value of the magnetic anomalies to identify anomalous value standard fault, down or up with the type of Meratus trending northeast-southwest Cisolok, Sukabumi. Data collection was performed by setting the measurement grid at intervals of 5 meters distance measurement using a Precision Proton Magnetometer (PPM) -GSM-19T. To identification the active fault using magnetic is needed another parameter. The purpose of this study is to identification active fault using magnetic Anomaly in related with subsurface structure through the validation analysis of earthquake mechanism, microgravity and with Topography Structure in Java Island. Qualitative interpretation is done by analyzing the residual anomaly that has been reduced to the pole while the quantitative interpretation is done by analyzing the pattern of residual anomalies through computation. The results of quantitative interpretation, an anomalous value reduction to the pole magnetic field is at -700 nT to 700 nT while the results of the qualitative interpretation of the modeling of the path AA', BB' and CC' shows the magnetic anomaly at coordinates liquefaction resources with a value of 1028.04, 1416.21, - 1565, -1686.91. The measurement results obtained in Cisolok magnetic anomalies that indicate a high content of alumina (Al) and iron (Fe) which be identified appears through the fault gap towards the northeast through Rajamandala Lembang Fault related to the mechanism in the form of a normal fault with slip rate of 2 mm / year.

  6. Techniques for the recovery of residues from uranium ore processing plants

    International Nuclear Information System (INIS)

    Croizat, G.; Lauret, G.

    1996-01-01

    The techniques for recovering residues used at Crouzille (Haute-Vienne, France) by Cogema have now been perfected. Feedback from experience results in a reliable methodology, providing that there is prior size grading of the products to recover, and regular removal of surface waters. About 23500 tons of uranium have been extracted in about 40 years from surface or underground sites in a granitic environment. The treatment of uranium ores has generated about 13.7 millions of tons of residues distributed in four disposal sites. This paper gives an inventory of the chemical and radiological characteristics of the residues and a description of the disposal sites geometry. The recovering methodology involves specific preparation depending on the lithology and the mechanical properties of the residues. Zones characterized by weak lift muddy residues require a geo-textile and a welded wire netting protection beneath the dead cover to avoid mud raising. This precaution implies additional costs but allows to start the recovering a few month after residues drying which is an important economical advantage. (J.S.). 3 figs., 4 photos

  7. A Combinatorial Library of Micro-Topographies and Chemical Compositions for Tailored Surface Wettability

    DEFF Research Database (Denmark)

    Kolind, Kristian; Bennetsen, Dines Tilsted; Arpanaei, Ayyoob

    2011-01-01

    Surface modification of topography and chemistry in order to achieve a specific water contact angle (CA) has been explored by using a novel combinatorial screening platform. The screening arrays consisted of 507 distinct combinations of micro-topographies and chemical compositions. By performing ...

  8. Bed topography and sand transport responses to a step change in discharge and water depth

    Science.gov (United States)

    Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...

  9. Topography may mitigate drought effects on vegetation along a hillslope gradient

    Science.gov (United States)

    Sandra Hawthorne; Chelcy Ford Miniat

    2017-01-01

    Topography may mitigate drought effects on vegetation along a hillslope gradient through redistribution of soil moisture. We examined the interaction of topography, climate, soil moisture, and transpiration in a low‐elevation, mixed‐hardwood forest in the southern Appalachian Mountains. The effects of meteorological variation (wet and dry years) and topographic...

  10. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  11. The updated geodetic mean dynamic topography model – DTU15MDT

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Maximenko, Nikolai

    An update to the global mean dynamic topography model DTU13MDT is presented. For DTU15MDT the newer gravity model EIGEN-6C4 has been combined with the DTU15MSS mean sea surface model to construct this global mean dynamic topography model. The EIGEN-6C4 is derived using the full series of GOCE data...

  12. Reforestation and topography affect montane soil properties, nitrogen pools, and nitrogen transformations in Hawaii

    Science.gov (United States)

    Paul G. Scowcroft; Janis E. Haraguchi; Nguyen V. Hue

    2004-01-01

    Land use changes, such as deforestation and reforestation, modify not only the organisms inhabiting affected areas, but also above-and belowground environments. Topography further influences local vegetation and environment. Effects of topography and re-establishment of N-fixing koa (Acacia koa A. Gray) trees in +100-yr-old montane grassland on...

  13. Topographies of Power: A Critical Historical Geography of Schooling in Tanzania

    Science.gov (United States)

    Vavrus, Frances

    2016-01-01

    This article builds a case for critical historical geography in comparative education to examine how, over time, the social production of space contributes to educational disparity. It draws on Gupta and Ferguson's contrasting concepts of the "power of topography" and the "topography of power" and Lefebvre's tripartite theory…

  14. Effect of lamellar flap location on corneal topography after laser in situ keratomileusis.

    Science.gov (United States)

    Ginsberg, N E; Hersh, P S

    2000-07-01

    To investigate the effect of hinge position on corneal topography after laser in situ keratomileusis (LASIK) for myopia. Academic center and refractive surgery practice. Topography data obtained from 89 eyes of 46 patients after LASIK were analyzed. Using a system of Cartesian coordinates, data along the horizontal and vertical axes were analyzed, measuring sagittal height and power change at 1 mm intervals from the ablation zone center. Data points that were equidistant and on opposite sides of the ablation center were compared to find asymmetry along either axis relative to nasally hinged flaps. Along the horizontal axis, areas of the cornea closer to the hinge had a higher topography than areas farther from the hinge. Specifically, the points nearest and farthest from the hinge were significantly different in sagittal height (P topography). When results were stratified into low- and high-diopter corrections, this difference was significant in only the high-diopter group (P LASIK may influence postoperative corneal topography. Hypothetically, the corneal flap may retract toward the hinge, producing axial asymmetry in the postoperative topography relative to the hinge. Understanding the influence of corneal flap characteristics on post-LASIK topography may improve optical results and may be particularly important in the development and effectiveness of topography-guided ablation techniques.

  15. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy

    NARCIS (Netherlands)

    Polak, L.; Wijngaarden, Rinke J.

    2016-01-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a

  16. Topochip: technology for instructing cell fate and morphology via designed surface topography

    NARCIS (Netherlands)

    Hulshof, G.F.B.

    2016-01-01

    The control of biomaterial surface topography is emerging as a tool to influence cells and tissues. Due to a lack a theoretical framework of the underlying molecular mechanisms, high-throughput screening (HTS) technology is valuable to identify and study bioactive surface topographies. To identify

  17. Marine Tar Residues: a Review

    OpenAIRE

    Warnock, April M.; Hagen, Scott C.; Passeri, Davina L.

    2015-01-01

    Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean environment indefinitely, decomposing or becoming buried in ...

  18. Ultrasound imaging measurement of submerged topography in the muddy water physical model

    International Nuclear Information System (INIS)

    Xiao, Xiongwu; Guo, Bingxuan; Li, Deren; Zhang, Peng; Zang, Yu-fu; Zou, Xianjian; Liu, Jian-chen

    2015-01-01

    The real-time, accurate measurement of submerged topography is vital for the analysis of riverbed erosion and deposition. This paper describes a novel method of measuring submerged topography in the B-scan image obtained using an ultrasound imaging device. Results show the distribution of gray values in the image has a process of mutation. This mutation process can be used to adaptively track the topographic lines between riverbed and water, based on the continuity of topography in the horizontal direction. The extracted topographic lines, of one pixel width, are processed by a wavelet filtering method. Compared with the actual topography, the measurement accuracy is within 1 mm. It is suitable for the real-time measurement and analysis of all current model topographies with the advantage of good self-adaptation. In particular, it is visible and intuitive for muddy water in the movable-bed model experiment. (paper)

  19. Hydraulic experiment on flow and topography change in harbor due to tsunami and its numerical simulation

    International Nuclear Information System (INIS)

    Fujii, Naoki; Ikeno, Masaaki; Sakakiyama, Tsutomu; Matsuyama, Masafumi; Takao, Makoto; Mukohara, Takeshi

    2009-01-01

    Numerical model of topography change is important to examine collapse of the harbor facilities by sand transport due to tsunami. Problems for evaluation of sand transport due to tsunami with topography change model are in precision of the numerical model and topography change data. Therefore, we installed the harbor in large-scaled wave tank and carried out experiment about tsunami flow and topography change to get those detailed data. For results provided by experimental test, we applied the topography change model of Ikeno et al. (2009a) and evaluated it about the reproduction characteristics. As a result, it was confirmed that reproduction of an experiment improved by using new pickup rate formula proposed by Ikeno et al. (2009a). (author)

  20. Assessing Mand Topography Preference When Developing a Functional Communication Training Intervention.

    Science.gov (United States)

    Kunnavatana, S Shanun; Wolfe, Katie; Aguilar, Alexandra N

    2018-05-01

    Functional communication training (FCT) is a common function-based behavioral intervention used to decrease problem behavior by teaching an alternative communication response. Therapists often arbitrarily select the topography of the alternative response, which may influence long-term effectiveness of the intervention. Assessing individual mand topography preference may increase treatment effectiveness and promote self-determination in the development of interventions. This study sought to reduce arbitrary selection of FCT mand topography by determining preference during response training and acquisition for two adults with autism who had no functional communication skills. Both participants demonstrated a clear preference for one mand topography during choice probes, and the preferred topography was then reinforced during FCT to reduce problem behavior and increase independent communication. The implications of the results for future research on mand selection during FCT are discussed.

  1. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    International Nuclear Information System (INIS)

    Michalski, J; Pawlus, P; Zelasko, W

    2011-01-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  2. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  3. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  4. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    NARCIS (Netherlands)

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath

  5. Constraints on dynamic topography from asymmetric subsidence of the mid-ocean ridges

    Science.gov (United States)

    Watkins, C. Evan; Conrad, Clinton P.

    2018-02-01

    Stresses from mantle convection deflect Earth's surface vertically, producing dynamic topography that is important for continental dynamics and sea-level change but difficult to observe due to overprinting by isostatic topography. For long wavelengths (∼104 km), the amplitude of dynamic topography is particularly uncertain, with mantle flow models typically suggesting larger amplitudes (>1000 m) than direct observations. Here we develop a new constraint on the amplitude of long-wavelength dynamic topography by examining asymmetries in seafloor bathymetry across mid-ocean ridges. We compare bathymetric profiles across the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) and we find that the South American flank of both ridges subsides faster than its opposing flank. This pattern is consistent with dynamic subsidence across South America, supported by downwelling in the lower mantle. To constrain the amplitude of dynamic topography, we compare bathymetric profiles across both ridges after correcting bathymetry for several different models of dynamic topography with varying amplitudes and spatial patterns. We find that long-wavelength dynamic topography with an amplitude of only ∼500 m explains the observed asymmetry of the MAR. A similar model can explain EPR asymmetry but is complicated by additional asymmetrical topography associated with tectonic, crustal thickness, and/or asthenospheric temperature asymmetries across the EPR. After removing 500 m of dynamic topography, both the MAR and EPR exhibit a slower seafloor subsidence rate (∼280-290 m/Myr1/2) than previously reported. Our finding of only ∼500 m of long-wavelength dynamic topography may indicate the importance of thermochemical convection and/or large viscosity variations for lower mantle dynamics.

  6. Observation and analysis of tidal and residual current in the North Yellow Sea in the spring

    Science.gov (United States)

    Miao, Qingsheng; Yang, Jinkun; Yang, Yang; Wan, Fangfang; Yu, Jia

    2018-02-01

    In order to study the current characteristics of the North Yellow Sea (NYS), 4 moored ADCPs (Acoustic Doppler Current Profilers) were deployed and Current characteristics were analyzed based on the observations. Results show that tidal current is the dominant and M2 is the main constituent. Shallow water constituents are obvious in the near-shore area, and tidal current ellipses directions have relations with topography. Residual currents in the Bohai Strait point to the Bohai Sea interior and the magnitude have a connection with terrain. Residual current in south NYS can be divided into two layers, and energy of residual current only accounts for about 13% of the total energy. Barotropic eddy kinetic energy plays a major role and the average in NYS accounts for 87%, baroclinic mean kinetic energy is larger in north NYS, in other regions barotropic mean kinetic energy take the leading position.

  7. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  8. Some Bristol-Prague explorations in x-ray topography

    International Nuclear Information System (INIS)

    Lang, A R

    2005-01-01

    This paper briefly chronicles a long-standing and productive collaboration between the Institute of Physics, Czech Academy of Science and the H H Wills Physics Laboratory. It began in early 1962 with a brief visit to Bristol by Milena Polcarova. The initial aim, successfully achieved, was the mapping by transmission topography of dislocations in melt-grown single crystals of a Fe-Si alloy. A novel by-product was the x-ray topographic observation of internal magnetic domain structures in specimen plates prepared in both (110) and (112) orientations. In the alloy studied, which contained about 3 wt% Si, the directions of easy magnetization are (100), and domain boundaries are either 180 deg. or 90 deg. Bloch walls. The latter walls can generate strong x-ray diffraction contrast, but no contrast from 180 deg. walls is expected. In the (110) plates x-ray topography revealed complex internal domain structures containing 90 deg. walls, some previously unsuspected on evidence of optical micrography of colloid patterns (Bitter patterns). Certain details of these structures remain a puzzle to this day! In (112) specimens, in which no direction of easy magnetization lies in the plate surface, the specimen is filled with a hierarchy of domains, diminishing in scale towards the surfaces in order to minimize magnetostatic energy due to free poles. However, in (112) plate thicknesses less than ∼20 μm, x-ray topographs recorded internal domain structures sufficiently uncomplicated for their main features to be interpreted. This was achieved by F C Frank in the early 1960s, but not published till 1993! During a 1968 visit to Bristol by Polcarova it was discovered that under appropriate diffraction conditions x-ray topographic contrast from 180 deg. Bloch walls was just detectable. This finding was not published till 1991. More recent work with Prague specimens has applied synchrotron x-ray reticulography at Daresbury, showing that this technique can be informatively used with

  9. Augmented Lagrangian for shallow viscoplastic flow with topography

    Science.gov (United States)

    Ionescu, Ioan R.

    2013-06-01

    In this paper we have developed a robust numerical algorithm for the visco-plastic Saint-Venant model with topography. For the time discretization an implicit (backward) Euler scheme was used. To solve the resulting nonlinear equations, a four steps iterative algorithm was proposed. To handle the non-differentiability of the plastic terms an iterative decomposition-coordination formulation coupled with the augmented Lagrangian method was adopted. The proposed algorithm is consistent, i.e. if the convergence is achieved then the iterative solution satisfies the nonlinear system at each time iteration. The equations for the velocity field are discretized using the finite element method, while a discontinuous Galerkin method, with an upwind choice of the flux, is adopted for solving the hyperbolic equations that describe the evolution of the thickness. The algorithm permits to solve alternatively, at each iteration, the equations for the velocity field and for the thickness. The iterative decomposition coordination formulation coupled with the augmented Lagrangian method works very well and no instabilities are present. The proposed algorithm has a very good convergence rate, with the exception of large Reynolds numbers (Re≫1000), not involved in the applications concerned by the shallow viscoplastic model. The discontinuous Galerkin technique assure the mass conservation of the shallow system. The model has the exact C-property for a plane bottom and an asymptotic C-property for a general topography. Some boundary value problems were selected to analyze the robustness of the numerical algorithm and the predictive capabilities of the mechanical model. The comparison with an exact rigid flow solution illustrates the accuracy of the numerical scheme in handling the non-differentiability of the plastic terms. The influence of the mesh and of the time step are investigated for the flow of a Bingham fluid in a talweg. The role of the material cohesion in stopping a

  10. Topography on Titan : New Results on Large and Small Scales

    Science.gov (United States)

    Lorenz, R. D.; Cassini Radar Team

    2011-12-01

    Although topographic coverage of Titan is and will remain sparse, some significant results have been obtained from global, regional and local measurements, via stereo, radarclinometry (shape-from-shading), autostereo (deviation from an assumed symmetric shape due to the inclined incidence), altimetry and SARtopo (monopulse) techniques. The global ellipsoidal shape (Zebker et al., 2009) provides important geophysical constraints on the interior. Hypsometry (Lorenz et al., 2011) provides insight into the balance of constructional and erosive processes and the strength of the lithosphere. Some local observations to be summarized in the talk include the measurement of mountains, the quantification of slopes that divert dunes and that drive fluid flow in river networks, as well as depth measurement of several impact craters and the assessment of candidate cryovolcanic structures. A recent new observation is a long altimetry pass T77 along the equator at the western edge of Xanadu, acquired both to constrain Titan's global shape and to understand the surface slopes and properties that may maintain the striking contrast between the dune fields of Shangri-La and the rugged and radiometrically anomalous Xanadu region. T77 also featured a SAR observation of the Ksa impact structure (discovered in SAR on T17), allowing a stereo DEM to be constructed. A feature shared by Earth and Titan is the ephemeral topography of liquids on the surface. Titan's lakes and seas likely vary in depth on geological (Myr-Gyr) and astronomical (~10 kyr) timescales : the depth of Ontario Lacus has been observed to vary on a seasonal timescale (~1 m/yr). Periodic changes of the order of 0.2-5m may occur diurnally, forced by Saturn gravitational tides. Finally, waves may be generated, at least during the windy season (which for Titan's north may be just about to begin) which can be constrained by radar and optical scattering measurements. Looking to the future, a Phase A study of the Titan Mare

  11. Joint interpretation of seismic tomography and new magnetotelluric results provide evidence for support of high topography in the Southern Rocky Mountains and High Plains of eastern Colorado, USA

    Science.gov (United States)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P.

    2015-12-01

    A recent magnetotelluric (MT) survey in central Colorado, USA, when interpreted alongside existing seismic tomography, reveals potential mechanisms of support for high topography both regionally and locally. Broadband and long period magnetotelluric data were collected at twenty-three sites along a 330 km E-W profile across the Southern Rocky Mountains and High Plains of central North America as part of the Deep RIFT Electrical Resistivity (DRIFTER) experiment. Remote-reference data processing yielded high quality MT data over a period range of 100 Hz to 10,000 seconds. A prominent feature of the regional geo-electric structure is the Denver Basin, which contains a thick package of highly conductive shales and porous sandstone aquifers. One-dimensional forward modeling was performed on stations within the Denver Basin to estimate depth to the base of this shallow conductor. Those estimates were then used to place a horizontal penalty cut in the model mesh of a regularized two-dimensional inversion. Two-dimensional modeling of the resistivity structure reveals two major anomalous regions in the lithosphere: 1) a high conductivity region in the crust under the tallest peaks of the Rocky Mountains and 2) a lateral step increase in lithospheric resistivity beneath the plains. The Rocky Mountain crustal anomaly coincides with low seismic wave speeds and enhanced heat flow and is thus interpreted as evidence of partial melt and/or high temperature fluids emplaced in the crust by tectonic activity along the Rio Grande Rift. The lateral variation in the mantle lithosphere, while co-located with a pronounced step increase in seismic velocity, appears to be a gradational boundary in resistivity across eastern Colorado and could indicate a small degree of compositional modification at the edge of the North American craton. These inferred conductivity mechanisms, namely crustal melt and modification of mantle lithosphere, likely contribute to high topography locally in the

  12. Breathing of magma reservoir beneath Nevado del Ruiz Volcano in Colombia inferred from repeated seismic tomography

    Science.gov (United States)

    Koulakov, Ivan; Vargas, Carlos A.; Gladkov, Valery; Lopez, Cristian M.; Gomez, Eliana; El Khrepy, Sami; Al-Arifi, Nassir

    2017-04-01

    The Nevado del Ruiz volcano in Colombia is one of the most hazardous volcanoes in the world, causing the death of 25,000 people in 1985. Using a new algorithm for repeated tomography, we detected a clear seismic anomaly beneath the volcano that changes amplitude and shape during the present unrest period, which started in 2010. We propose that this anomaly of high Vp/Vs ratio is associated with a significant amount of liquid fluid that was accumulated beneath the volcano prior to the eruption. In 2010, degassing of these fluids triggered the beginning of the volcanic unrest that continues until now. In 2011-2014, most of the fluids escaped through the crater that led to the emptying of the reservoir. In 2015-2016, a new inflation of the reservoir was accompanied by increase of volcanic activity. It is possible that recurrent "breathing" of the volcano reservoir is the main cause of the NRV eruptions.

  13. Disruption of the PV-PPV Phase Transition by a Dome-like Upwelling Beneath Alaska

    Science.gov (United States)

    Sun, D.; Helmberger, D. V.; Miller, M. S.

    2014-12-01

    The lowermost mantle region, D", represents one of the most dramatic thermal andcompositional layers within our planet. Global tomographic models display relatively fast patchsalong the circum-Pacific which is generally attributed to slab-debris. Such cold patches interactwith the PV-PPV phase boundary to generate particularly strong heterogeneity at their edges.Most seismic observations for the D" come from the lower mantle S wave triplication (Scd).However, the sampling regions concentrated beneath Central America, where intensive studies,including migration methods and array analysis, have been accomplished. Beneath the centralAmerica, the D" can have a step variation of ~ 100 km, which argues strong lateral temperaturevariations or possible chemical variations. However, the common used ray paths between SouthAmerican events and seismic stations in US sample such sharp boundary azimuthally, whichmake the modeling difficult. Here, we exploit the USArray waveform data to examine one ofthese sharp transitions beneath Alaska. From west to east beneath Alaska, we observed threedifferent type of D": West region with strong Scd requiring sharp δVS = 2% increase;Middle region with no clear Scd indicating lack of D"; East region with strong Scd requiring gradientδVS increase. To explain such strong lateral variation, chemical variations must be involved. Wesuggested that West region represents a normal mantle. In contrast, the east region is dominated bysubducted slab. At the Middle region, we discovered a strong upwelling structure that disrupts the phaseboundary. A distinct pattern of travel time delays, waveform distortions, and amplitude patternsreveal a circular anomaly about 5° across which can be modeled synthetically as a dome about400 km high with a shear velocity reduction of ~5%. Geodynamic modeling indicates thatthis structure could be the base of an upwelling and/or a hot Fe-rich oxide hill.

  14. Multiple-frequency tomography of the upper mantle beneath the African/Iberian collision zone

    Science.gov (United States)

    Bonnin, Mickaël; Nolet, Guust; Villaseñor, Antonio; Gallart, Josep; Thomas, Christine

    2014-09-01

    During the Cenozoic, the geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study, we take advantage of the dense broad-band station networks now available in the Alborán Sea region, to develop a high-resolution 3-D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will better constraint the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centred between 0.03 and 1.0 Hz, and for the first time interpreted using multiple frequency tomography. Our model shows, beneath the Alborán Sea, a strong (4 per cent) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly, and its extent at depth, are coherent with a lithospheric slab, thus favouring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper mantle, high intensity slow anomalies are widespread in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at the surface with the position of the Rif and Atlas orogens and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot?) upper mantle, but without clear indication for a lateral spreading of the Canary plume to the east.

  15. Tomography of the upper mantle beneath the African/Iberian collision zone

    Science.gov (United States)

    Mickael, B.; Nolet, G.; Villasenor, A.; Josep, G.; Thomas, C.

    2013-12-01

    During Cenozoic, geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study we take advantage of the dense broadband-station networks now available in Alborán Sea region, to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will bring new constraints on the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Our model shows, beneath Alborán Sea, a strong (~ 4%) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly and its extent at depth are coherent with a lithospheric slab, thus favoring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper-mantle, several high intensity slow anomalies are widely observed in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at surface with the position of the orogens (Rif and Atlas) and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot) upper mantle, with piece of evidence for a lateral connection with the Canary volcanic islands, likely indicating a lateral spreading of the Canary plume to the east.

  16. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  17. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  18. Soil microbial respiration beneath Stipa tenacissima L. and in surrounding bare soil

    Directory of Open Access Journals (Sweden)

    Irena Novosádová

    2011-01-01

    Full Text Available Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa. Ecosystem functioning of these steppes is strongly related to the spatial pattern of grass tussocks. Soils beneath Stipa tenacissima L. grass show different fertility and different microclimatic conditions than in surrounding bare soil. The objective of this study was to assess the effect of Stipa tenacissima L. on the key soil microbial activities under controlled incubation conditions (basal and potential respiration. Basal and potential microbial respirations in the soils beneath Stipa tenacissima L. were, in general, not significantly different from the bare soils. The differences were less than 10%. Significantly less ethylene produced by microbial activity in soils beneath Stipa tenacissima L. after the addition of glucose could indicate the dependence of rhizospheric microbial communities on available carbon compounds. It can be concluded, that the soil respiration in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.

  19. Upper mantle seismic velocity anomaly beneath southern Taiwan as revealed by teleseismic relative arrival times

    Science.gov (United States)

    Chen, Po-Fei; Huang, Bor-Shouh; Chiao, Ling-Yun

    2011-01-01

    Probing the lateral heterogeneity of the upper mantle seismic velocity structure beneath southern and central Taiwan is critical to understanding the local tectonics and orogeny. A linear broadband array that transects southern Taiwan, together with carefully selected teleseismic sources with the right azimuth provides useful constraints. They are capable of differentiating the lateral heterogeneity along the profile with systematic coverage of ray paths. We implement a scheme based on the genetic algorithm to simultaneously determine the relative delayed times of the teleseismic first arrivals of array data. The resulting patterns of the delayed times systematically vary as a function of the incident angle. Ray tracing attributes the observed variations to a high velocity anomaly dipping east in the mantle beneath the southeast of Taiwan. Combining the ray tracing analysis and a pseudo-spectral method to solve the 2-D wave propagations, we determine the extent of the anomaly that best fits the observations via the forward grid search. The east-dipping fast anomaly in the upper mantle beneath the southeast of Taiwan agrees with the results from several previous studies and indicates that the nature of the local ongoing arc-continent collision is likely characterized by the thin-skinned style.

  20. Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic regionn, California ( USA).

    Science.gov (United States)

    Sanders, C.; Ho-Liu, P.; Rinn, D.; Hiroo, Kanamori

    1988-01-01

    We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of E California. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. 3-D images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley, 30 km S of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalously slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the E Sierra front.-from Authors

  1. Effects of acid conditions on element distribution beneath a sulphur basepad

    International Nuclear Information System (INIS)

    Sevigny, J.H.; Fennell, J.W.; Sharma, A.

    1997-04-01

    A reconnaissance-scale study was conducted to determine the extent of acid conditions beneath a sulphur basepad at Canadian Occidental's Balzac sour gas plant and to examine the effects of acid conditions on element distribution in the subsurface. Sulphur which is extracted from sour natural gas is stored in large blocks directly on the ground. The elemental sulphur will oxidize to H 2 SO 4 under aerobic conditions and with the proper microorganisms can result in possible removal of metals from the soil and transportation in the groundwater. The basepad at the sour gas plant is 36 years old and is covered by about 1 metre of elemental sulphur. EM31 terrain conductivity and electrical resistivity tomography geophysical surveys were conducted to determine aerial and subsurface bulk electrical conductivity. The objective was to locate the indurated layer using the geophysical techniques and soil boring. The extent of acid conditions beneath the sulphur block was determined. Migration rates for the site were also estimated. Results suggested that minimal soil and groundwater impact can be expected from sulphur blocks overlying properly buffered soils, and that synthetic liners beneath sulphur blocks may not be a necessary measure at sour gas plants in Alberta. 19 refs., 6 tabs., 6 figs., 5 appendices

  2. Preliminary result of P-wave speed tomography beneath North Sumatera region

    Energy Technology Data Exchange (ETDEWEB)

    Jatnika, Jajat [Earth Science Study Program, Institute of Technology Bandung (Indonesia); Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Insitute of Technology Bandung (Indonesia); Wandono [Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia)

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  3. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  4. Using Measurements of Topography to Infer Rates of Crater Degradation and Surface Evolution on the Moon and Mercury

    Science.gov (United States)

    Fassett, Caleb; Crowley, Lindy; Leight, Clarissa; Dyar, Darby; Minton, David; Hirabayashi, Toshi; Thomson, Brad; Watters, Wesley

    2017-01-01

    Motivating questions: 1. How does the topography of airless bodies evolve? 2. What is the relative rate on the Moon and Mercury? 3. Can we constrain the age of features and units from their topography?

  5. Incorpararion of Topography Effect Into Two-Dimensional DC Resistivity Modelling by Using Finite-Element Method

    International Nuclear Information System (INIS)

    Erdogan, E.

    2007-01-01

    In earth investigation done by using the direct current resistivity technique, impact of the change in the examined surface topography on determining the resistivity distrubition in the earth has been a frequently faced question. In order to get more fruitful results and make more correct interpretetions in earth surveying carried on the areas where topographical changes occur, modelling should be done by taking the change in surface topography into account and topography effect should be included into inversion. In this study impact of topography to the direct current resistivity method has been analysed. For this purpose, 2-D forward modeling algorithm has been developed by using finite element method. In this algorithm impact of topography can be incorporate into the model. Also the pseudo sections which is produced from the program can be imaged with topography. By using this algorithm response of models under different surface topography has been analysed and compared with the straight topography of same models

  6. A performance comparison of atmospheric dispersion models over complex topography

    International Nuclear Information System (INIS)

    Kido, Hiroko; Oishi, Ryoko; Hayashi, Keisuke; Kanno, Mitsuhiro; Kurosawa, Naohiro

    2007-01-01

    A code system using mass-consistent and Gaussian puff model was improved for a new option of atmospheric dispersion research. There are several atmospheric dispersion models for radionuclides. Because different models have both merits and disadvantages, it is necessary to choose the model that is most suitable for the surface conditions of the estimated region while regarding the calculation time, accuracy, and purpose of the calculations being performed. Some models are less accurate when the topography is complex. It is important to understand the differences between the models for smooth and complex surfaces. In this study, the performances of the following four models were compared: (1) Gaussian plume model (2) Gaussian puff model (3) Mass-consistent wind fields and Gaussian puff model that was improved in this study from one presented in Aomori Energy Society of Japan, 2005 Fall Meeting, D21. (4) Meso-scale meteorological model (RAMS: The Regional Atmospheric Modeling System) and particle-type model (HYPACT: The RAMS Hybrid Particle and Concentration Transport Model) (Reference: ATMET). (author)

  7. Nematic director fields and topographies of solid shells of revolution

    Science.gov (United States)

    Warner, Mark; Mostajeran, Cyrus

    2018-02-01

    We solve the forward and inverse problems associated with the transformation of flat sheets with circularly symmetric director fields to surfaces of revolution with non-trivial topography, including Gaussian curvature, without a stretch elastic cost. We deal with systems slender enough to have a small bend energy cost. Shape change is induced by light or heat causing contraction along a non-uniform director field in the plane of an initially flat nematic sheet. The forward problem is, given a director distribution, what shape is induced? Along the way, we determine the Gaussian curvature and the evolution with induced mechanical deformation of the director field and of material curves in the surface (proto-radii) that will become radii in the final surface. The inverse problem is, given a target shape, what director field does one need to specify? Analytic examples of director fields are fully calculated that will, for specific deformations, yield catenoids and paraboloids of revolution. The general prescription is given in terms of an integral equation and yields a method that is generally applicable to surfaces of revolution.

  8. Topography and Volcanology of the Huangtsuishan Volcano Subgroup, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai

    2010-01-01

    Full Text Available Combining the shaded relief topography model and the slope map from the Digital Terrain Model (DTM images, toporaphical map, field occurrences and petrography, the volcanic sequences of the Huangtsuishan Volcano Subgroup (HVS can be constructed. Two types of volcanic centers can be identified in this area. One is the Tachienhou volcanic dome, which may be located in the center of an older caldera. The other is the Huangtsui composite volcano, which is composed of interbedding lava flows and pyroclastic deposits with a volcanic crater named the Huangtsui pond at the summit. Eight lava plateaus radiated from Mts. Huangtsui and Tachienhou to the north and the east can be distinguished based on the DTM images. The volcanic deposits are comprised of four lithofacies, the lava flows, pyroclastic breccias, tuffs and lahars on the base of field occurrences. At least thirteen layers of lava flow, named the H1 to H13 can be recognized in the HVS and can be reconstructed and categorized into four stages. An old and large volcano erupted lava flows to form the products of stages one and two, then collapsed to form a caldera with a dome for the third stage. The latest stage of lava flow was poured out from the Huangtsui volcano, which formed a crater at the summit.

  9. Directional droplet transport at high temperature mediated by structural topography

    Science.gov (United States)

    Li, Jing; Hou, Youmin; Chaudhury, Manoj; Yao, Shuhuai; Wang, Zuankai

    2015-11-01

    Controlling droplet dynamics on textured surfaces is of significant importance for a broad range of applications. Despite extensive advances, our ability to control droplet dynamics at high temperature remains limited, in part due to the emergence of complex wetting states complicated by the phase change process at the triple-phase interfaces. When the temperature of the surface is above a critical temperature, a continuous vapor layer separates the droplet from the hot surface, greatly reducing the heat transfer between the droplet and hot surface. In this work, we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet by simply manipulating the structural topography. As a result, droplet vectors automatically towards the boiling region that is associated with a large heat transfer efficiency between the liquid and solid. Coupled with a dynamic Leidenfrost model, we show experimentally and analytically that the droplet directional motion depends on the interplay between surface structure and its imposed thermal state. Our basic understanding and ability to control the droplet dynamics at high temperature would find many potential applications in high temperature systems such as spray cooling and fuel injection.

  10. Cell response to hydroxyapatite surface topography modulated by sintering temperature.

    Science.gov (United States)

    Mealy, Jacob; O'Kelly, Kevin

    2015-11-01

    Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2)  = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response. © 2015 Wiley Periodicals, Inc.

  11. A Revolution in Mars Topography and Gravity and Magnetic Fields

    Science.gov (United States)

    Smith, David E.

    2002-01-01

    Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.

  12. ACCURACY ASSESSMENT OF COASTAL TOPOGRAPHY DERIVED FROM UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. Long

    2016-06-01

    Full Text Available To monitor coastal environments, Unmanned Aerial Vehicle (UAV is a low-cost and easy to use solution to enable data acquisition with high temporal frequency and spatial resolution. Compared to Light Detection And Ranging (LiDAR or Terrestrial Laser Scanning (TLS, this solution produces Digital Surface Model (DSM with a similar accuracy. To evaluate the DSM accuracy on a coastal environment, a campaign was carried out with a flying wing (eBee combined with a digital camera. Using the Photoscan software and the photogrammetry process (Structure From Motion algorithm, a DSM and an orthomosaic were produced. Compared to GNSS surveys, the DSM accuracy is estimated. Two parameters are tested: the influence of the methodology (number and distribution of Ground Control Points, GCPs and the influence of spatial image resolution (4.6 cm vs 2 cm. The results show that this solution is able to reproduce the topography of a coastal area with a high vertical accuracy (< 10 cm. The georeferencing of the DSM require a homogeneous distribution and a large number of GCPs. The accuracy is correlated with the number of GCPs (use 19 GCPs instead of 10 allows to reduce the difference of 4 cm; the required accuracy should be dependant of the research problematic. Last, in this particular environment, the presence of very small water surfaces on the sand bank does not allow to improve the accuracy when the spatial resolution of images is decreased.

  13. Crater Topography on Titan: Implications for Landscape Evolution

    Science.gov (United States)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  14. Crater topography on Titan: implications for landscape evolution

    Science.gov (United States)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R.D.; Bray, V.J.; Schenk, P.; Stiles, B.W.; Turtle, E.; Mitchell, Ken; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn’s moon Titan. In general, the depths of Titan’s craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede’s average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 ± 0.0003 (for the largest crater studied, Menrva, D ~ 425 km) and 0.017 ± 0.004 (for the smallest crater studied, Ksa, D ~ 39 km). When we evaluate the Anderson–Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan’s craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close ‘airless’ analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan’s surface, the only body in the outer Solar System with extensive surface–atmosphere exchange.

  15. Adaptive Topographies and Equilibrium Selection in an Evolutionary Game

    Science.gov (United States)

    Osinga, Hinke M.; Marshall, James A. R.

    2015-01-01

    It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762

  16. Accuracy Assessment of Coastal Topography Derived from Uav Images

    Science.gov (United States)

    Long, N.; Millescamps, B.; Pouget, F.; Dumon, A.; Lachaussée, N.; Bertin, X.

    2016-06-01

    To monitor coastal environments, Unmanned Aerial Vehicle (UAV) is a low-cost and easy to use solution to enable data acquisition with high temporal frequency and spatial resolution. Compared to Light Detection And Ranging (LiDAR) or Terrestrial Laser Scanning (TLS), this solution produces Digital Surface Model (DSM) with a similar accuracy. To evaluate the DSM accuracy on a coastal environment, a campaign was carried out with a flying wing (eBee) combined with a digital camera. Using the Photoscan software and the photogrammetry process (Structure From Motion algorithm), a DSM and an orthomosaic were produced. Compared to GNSS surveys, the DSM accuracy is estimated. Two parameters are tested: the influence of the methodology (number and distribution of Ground Control Points, GCPs) and the influence of spatial image resolution (4.6 cm vs 2 cm). The results show that this solution is able to reproduce the topography of a coastal area with a high vertical accuracy (bank does not allow to improve the accuracy when the spatial resolution of images is decreased.

  17. Statistical inference on residual life

    CERN Document Server

    Jeong, Jong-Hyeon

    2014-01-01

    This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.

  18. Automatic prediction of catalytic residues by modeling residue structural neighborhood

    Directory of Open Access Journals (Sweden)

    Passerini Andrea

    2010-03-01

    Full Text Available Abstract Background Prediction of catalytic residues is a major step in characterizing the function of enzymes. In its simpler formulation, the problem can be cast into a binary classification task at the residue level, by predicting whether the residue is directly involved in the catalytic process. The task is quite hard also when structural information is available, due to the rather wide range of roles a functional residue can play and to the large imbalance between the number of catalytic and non-catalytic residues. Results We developed an effective representation of structural information by modeling spherical regions around candidate residues, and extracting statistics on the properties of their content such as physico-chemical properties, atomic density, flexibility, presence of water molecules. We trained an SVM classifier combining our features with sequence-based information and previously developed 3D features, and compared its performance with the most recent state-of-the-art approaches on different benchmark datasets. We further analyzed the discriminant power of the information provided by the presence of heterogens in the residue neighborhood. Conclusions Our structure-based method achieves consistent improvements on all tested datasets over both sequence-based and structure-based state-of-the-art approaches. Structural neighborhood information is shown to be responsible for such results, and predicting the presence of nearby heterogens seems to be a promising direction for further improvements.

  19. Effect of attachment type on load distribution to implant abutments and the residual ridge in mandibular implant-supported overdentures.

    Science.gov (United States)

    Yoda, Nobuhiro; Matsudate, Yoshiki; Abue, Masaru; Hong, Guang; Sasaki, Keiichi

    2015-01-01

    This study aimed to investigate the effect of attachment type on the load transmitted to implants and the residual ridge in a mandibular two-implant-supported overdenture in a model study. Ball attachments, locator attachments, and round-bar attachments were selected and examined. Static and dynamic vertical loads of 100 N were applied in the right first molar region. The load on the implants was measured by piezoelectric three-dimensional force transducers, and the load on the residual ridge beneath the denture base was measured using a tactile sheet sensor. The load on the implants with ball attachments was significantly higher than that with the other two attachments. The load on the residual ridge with round-bar attachments was significantly higher than that with the other two attachments. Our findings indicate that the three-dimensional load on implants and the residual ridge beneath the denture base is significantly associated with the type of attachment used in implant-supported overdentures.

  20. Assessing Bioinspired Topographies for their Antifouling Potential Control Using Computational Fluid Dynamics (CFD

    Directory of Open Access Journals (Sweden)

    Ling Jacky

    2018-01-01

    Full Text Available Biofouling is the accumulation of unwanted material on surfaces submerged or semi submerged over an extended period. This study investigates the antifouling performance of a new bioinspired topography design. A shark riblets inspired topography was designed with Solidworks and CFD simulations were antifouling performance. The study focuses on the fluid flow velocity, the wall shear stress and the appearance of vortices are to be noted to determine the possible locations biofouling would most probably occur. The inlet mass flow rate is 0.01 kgs-1 and a no-slip boundary condition was applied to the walls of the fluid domain. Simulations indicate that Velocity around the topography averaged at 7.213 x 10-3 ms-1. However, vortices were observed between the gaps. High wall shear stress is observed at the peak of each topography. In contrast, wall shear stress is significantly low at the bed of the topography. This suggests the potential location for the accumulation of biofouling. Results show that bioinspired antifouling topography can be improved by reducing the frequency of gaps between features. Linear surfaces on the topography should also be minimized. This increases the avenues of flow for the fluid, thus potentially increasing shear stresses with surrounding fluid leading to better antifouling performance.

  1. Lithospheric drips beneath the SE edge of the Tibetan Plateau Imaged by finite frequency tomography

    Science.gov (United States)

    Sun, Y.; Niu, F.; Liu, J.; Tang, Y.

    2012-12-01

    Using traveltimes of teleseismic S waves, we investigated the upper mantle structure beneath the SE Tibetan Plateau and its surrounding areas to understand lithosphere deformation process associated with the uplift of the plateau. We applied the finite frequency tomography method to the S waves data recorded by 390 broadband stations in the area, from earthquakes occurring between July of 2007 and July of 2010. We used differential travel times between pairs of stations in the inversion to eliminate traveltime anomalies resulting from heterogeneities outside the study area. To ensure the above assumption to be valid for a large-scale study area, we have paid special attention in selecting proper station pairs. We also honored proper weight of each station when we selected station pairs. Our results are consistent with previous tomography in terms large-scale seismic anomalies, such as a high velocity anomaly beneath the Sichuan basin in the uppermost mantle and a high velocity anomaly in the transition zone that may be associated with the subducted Paleo-Pacific plate beneath the Yangtze craton. In addition to these known structures, we found relatively small-scale high velocity bodies inside the upper mantle beneath the SE margin of the Tibetan Plateau, along with the longitude 102o from the south to north. In particular, our images show two high velocity anomalies at ~94 km deep at latitude 26oN and ~300 km at latitude 28oN, respectively. Further to the north, at around 31.5oN, we can see another high velocity body at ~350 km, right below a large low velocity anomaly. Although other seismic observations are required to better constrain the nature of these high velocity structure, one possible scenario is that they may be drips or delaminated pieces of the continental lithosphere, as the consequence of the progressive uplift of the plateau. Such an interpretation is consistent with our previous observations of a thin lithosphere (Niu, 2011) and a vertical mantle

  2. 3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific

    Science.gov (United States)

    Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.

    2017-12-01

    We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic

  3. True subduction vs. underthrusting of the Caribbean plate beneath Hispaniola, northern Caribbean

    Science.gov (United States)

    Llanes Estrada, P.; Ten Brink, U. S.; Granja Bruna, J.; Carbó-Gorosabel, A.; Flores, C. H.; Villasenor, A.; Pazos, A.; Martin Davila, J. M.

    2012-12-01

    The Eastern Greater Antilles arc (Hispaniola and Puerto Rico) is bounded by a north-verging accretionary prism on its north side and a south-verging thrust belt (Muertos thrust belt) on its south side. This bivergent geometry has been attributed for the last 30 years to opposing subduction of the North American plate and the Caribbean oceanic interior beneath the island arc at the Muertos margin. Recent observations of seafloor and shallow sub-seafloor deformational features at the Muertos compressive margin together with sandbox kinematic and gravity modeling question the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc. To further test the subduction hypothesis, we carried out in 2009 a wide-angle seismic transect across the widest part of the Muertos compressive margin at longitude 69°W. A 2-D forward ray-tracing model of the wide-angle transect outlines the broad-scale crustal structure across the Muertos margin. The Caribbean oceanic slab is imaged beneath the Muertos margin to about 50 km north of the deformation front and down to 19 km depth. A change in crustal p-wave velocity at ~60 km from the deformation front is interpreted as the boundary between the compressive deformed belt and the arc crust. The Caribbean oceanic crust is not seen extending farther north or penetrating the upper mantle. Modeling of ship's gravity data, acquired along the seismic profile, corroborates the seismic results. Any subduction model imply the existence of a regional mass deficit generated by the subducted Caribbean slab beneath the island arc and that variations in the geometry of the subduction angle and the depth are not able to compensate it. Earthquake hypocenter distribution in the Muertos Margin shows diffuse seismicity beneath the island arc, being very hard to identify different clusters and to assign them to different subducted slabs. The diffuse seismicity may be related to the transition between subduction

  4. Seismic images reveal plume-lithosphere interaction beneath the British Isles

    Science.gov (United States)

    Arrowsmith, S.; Kendall, M.; Vandecar, J.; White, N.; Booth, D.

    2003-04-01

    Teleseismic P-wave delay times have been inverted to obtain images of Upper Mantle structure beneath the British Isles. Seismic data come from the British Geological Survey (BGS) seismic network, from stations in eastern Ireland run by the Dublin Institute for Advanced Studies (DIAS) and from stations in northern France run by the Laboratoire de Detection et de Geophysique (LDG). Around 10,000 relative arrival times have been picked, for events occuring between 1994-2001 using a multi-channel cross-correlation technique. The model is parameterised by splines under tension constrained at a dense grid of knots. The technique used to invert the relative arrival times was developed by Vandecar (1991). We solve for velocity peturbations, station time corrections to account for instrument statics and near-receiver structure, and event corrections to account for event mislocations and structure far from the network. A non-linear inversion was performed via a conjugate gradients procedure that minimized structure beneath the network. Tests have shown that the resolution is good across the British Isles and Ireland to a depth of around 400 km. Fast anomalies occur beneath the Grampians of Scotland and in southern England in a NE-SW trend from The Wash towards the Bristol Channel. The anomalies may be the result of thickened regions of the lithosphere, or of lithosphere subducted during the Caledonian Orogeny. Of more interest in the model are the slow anomalies, imaged to depths of around 250 km. They occur in a NW-SE trend from NW Scotland towards North East England, in Northern Ireland, and In the Irish Sea and West Midlands. These anomalies show a striking similarity with the locations of Paleogene igneous activity at the surface. The anomaly beneath the Irish Sea and West Midlands correlates with the inferred location of magmatic underplating, (Al-Kindi et. Al, Geology 2003). The Eurasian plate has moved little since the Paleogene so it would be expected that the source

  5. Seismological Imaging of Melt Production Regions Beneath the Backarc Spreading Center and Volcanic Arc, Mariana Islands

    Science.gov (United States)

    Wiens, Douglas; Pozgay, Sara; Barklage, Mitchell; Pyle, Moira; Shiobara, Hajime; Sugioka, Hiroko

    2010-05-01

    We image the seismic velocity and attenuation structure of the mantle melt production regions associated with the Mariana Backarc Spreading Center and Mariana Volcanic Arc using data from the Mariana Subduction Factory Imaging Experiment. The passive component of this experiment consisted of 20 broadband seismographs deployed on the island chain and 58 ocean-bottom seismographs from June, 2003 until April, 2004. We obtained the 3D P and S wave velocity structure of the Mariana mantle wedge from a tomographic inversion of body wave arrivals from local earthquakes as well as P and S arrival times from large teleseismic earthquakes determined by multi-channel cross correlation. We also determine the 2-D attenuation structure of the mantle wedge using attenuation tomography based on local and regional earthquake spectra, and a broader-scale, lower resolution 3-D shear velocity structure from inversion of Rayleigh wave phase velocities using a two plane wave array analysis approach. We observe low velocity, high attenuation anomalies in the upper mantle beneath both the arc and backarc spreading center. These anomalies are separated by a higher velocity, lower attenuation region at shallow depths (< 80 km), implying distinct magma production regions for the arc and backarc in the uppermost mantle. The largest magnitude anomaly beneath the backarc spreading center is found at shallower depth (25-50 km) compared to the arc (50-100 km), consistent with melting depths estimated from the geochemistry of arc and backarc basalts (K. Kelley, pers. communication). The velocity and attenuation signature of the backarc spreading center is narrower than the corresponding anomaly found beneath the East Pacific Rise by the MELT experiment, perhaps implying a component of focused upwelling beneath the spreading center. The strong velocity and attenuation anomaly beneath the spreading center contrasts strongly with preliminary MT inversion results showing no conductivity anomaly in the

  6. Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China.

    Science.gov (United States)

    Hong, Hualong; Dai, Minyue; Lu, Haoliang; Liu, Jingchun; Zhang, Jie; Yan, Chongling

    2018-02-01

    The rapid expansion of construction related to coastal development evokes great concern about environmental risks. Recent attention has been focused mainly on factors related to the effects of waterlogging, but there is urgent need to address the potential hazard caused by artificial topography: derived changes in the elemental composition of the sediments. To reveal possible mechanisms and to assess the environmental risks of artificial topography on transition of elemental composition in the sediment at adjoining zones, a nest-random effects-combined investigation was carried out around a semi-open seawall. The results implied great changes induced by artificial topography. Not only did artificial topography alter the sediment elemental composition at sites under the effect of artificial topography, but also caused a coupling pattern transition of elements S and Cd. The biogeochemical processes associated with S were also important, as suggested by cluster analysis. The geo-accumulation index shows that artificial topography triggered the accumulation of C, N, S, Cu, Fe, Mn, Zn, Ni, Cr, Pb, As and Cd, and increased the pollution risk of C, N, S, Cu, As and Cd. Enrichment factors reveal that artificial topography is a new type of human-activity-derived Cu contamination. The heavy metal Cu was notably promoted on both the geo-accumulation index and the enrichment factor under the influence of artificial topography. Further analysis showed that the Cu content in the sediment could be fitted using equations for Al and organic carbon, which represented clay mineral sedimentation and organic matter accumulation, respectively. Copper could be a reliable indicator of environmental degradation caused by artificial topography. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparative Study on the Electrical Properties of the Oceanic Mantle Beneath the Northwest Pacific Ocean

    Science.gov (United States)

    Toh, H.

    2013-12-01

    We have been conducting long-term seafloor electromagnetic (EM) observations at two sites in the northwest Pacific since 2001. The older site was established at the deep seafloor (~5600m) on the northwest Pacific basin (Site NWP), while the new one was installed on the west Philippine basin (Site WPB) in 2006 at the slightly deeper (~5700m) seafloor. The ages of the oceanic basins at those sites are approximately 129 Ma for Site NWP (Shipboard Scientific Party of ODP Leg 191, 2000) and 49 Ma for Site WPB (Salisbury et al., 2006), respectively. The EM instruments deployed at those sites are seafloor EM stations (SFEMS; Toh et al., 2004 and 2006) and capable of measuring vector EM fields at the seafloor for as long as one year or more with other physical quantities such as the instruments' attitude, orientation and temperature. One of the objectives of the seafloor long-term EM observations by SFEMSs is to make a comparative study of the oceanic mantle with and without influence of the so-called 'stagnant slabs' in terms of their electrical conductivity. It is anticipated that the mantle transition zone under the influence of the stagnant slab has a higher electrical conductivity because the transition zone there could be wetter than that in the absence of the stagnant slab. In this context, the mantle transition zone beneath Site WPB can be said to have influence by the stagnant slab, while that beneath Site NWP does not. It, therefore, is basically possible to estimate how much water is present in each transition zone by comparison of the electrical conductivity profiles of the two. The one-dimensional electrical profile beneath Site NWP has been derived so far using the magnetotelluric (MT) and geomagnetic depth sounding (GDS) methods with significant jumps in the electrical property at 410 and 660km discontinuities. The jumps are approximately factors of 10 and 2, respectively (Ichiki et al., 2009). Here we show a profile beneath Site WPB using both MT and GDS

  8. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units.

    Science.gov (United States)

    Smith, Gordon Wg; Goldie, Frank; Long, Steven; Lappin, David F; Ramage, Gordon; Smith, Andrew J

    2011-01-10

    The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Residual protein was detected on 72% (n = 136) of instruments reprocessed centrally and 90% (n = 170) of instruments reprocessed locally. Significantly less protein (p podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency.

  9. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units

    Directory of Open Access Journals (Sweden)

    Ramage Gordon

    2011-01-01

    Full Text Available Abstract Background The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. Methods The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Results Residual protein was detected on 72% (n = 136 of instruments reprocessed centrally and 90% (n = 170 of instruments reprocessed locally. Significantly less protein (p Conclusions Overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency.

  10. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  11. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  12. High-Accuracy Near-Surface Large-Eddy Simulation with Planar Topography

    Science.gov (United States)

    2015-08-03

    Planar Topography ” The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...Simulation with Planar Topography ” Report Title Large-eddy simulation (LES) has been plagued by an inability to predict the law-of-the-wall (LOTW) in mean...Report July 2015 HIGH-ACCURACY NEAR-SURFACE LARGE-EDDY SIMULATION WITH PLANAR TOPOGRAPHY ARO Grant W911NF-04-1-0205 PI: James G. Brasseur

  13. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.

    Science.gov (United States)

    Li, Guangwen; Song, Yanyan; Shi, Mengqi; Du, Yuanhong; Wang, Wei; Zhang, Yumei

    2017-02-01

    Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro

  14. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    Science.gov (United States)

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic

  15. Topography-guided LASIK with the wavelight laser after penetrating keratoplasty.

    Science.gov (United States)

    Cosar, C Banu; Acar, Suphi

    2006-09-01

    To report a case of topography-guided LASIK in a patient after previous penetrating keratoplasty. A 20-year-old man who had previous penetrating keratoplasty in his right eye for keratoconus and was intolerant to spectacles and contact lenses underwent topography-guided LASIK. Three months postoperatively, the patient's uncorrected visual acuity in the right eye was 20/25(+2). Best spectacle-corrected visual acuity was 20/20, with a manifest refraction of +0.25 -0.75 x 40 degree. Topography-guided LASIK is a useful therapeutic modality to address corneal irregularity after penetrating keratoplasty.

  16. USING A MOBILE RADIO ECHO SOUNDER TO MEASURE BEDROCK TOPOGRAPHY IN EAST QUEEN MAUD LAND, ANTARCTICA

    OpenAIRE

    マエノ, ヒデオ; カミヤマ, コウキチ; フルカワ, テルオ; ワタナベ, オキツグ; ナルセ, レンジ; オカモト, ケンイチ; スイツ, タケシ; ウラツカ, セイホ; Hideo, MAENO; Kokichi, KAMIYAMA; Teruo, FURUKAWA; Okitsugu, WATANABE; Renji, NARUSE; Kenichi, OKAMOTO; Takeshi, SUITZ

    1994-01-01

    As part of the Dome-Fuji Project, the topography of the bedrock over a wide area around Dome-F and along routes from Dome-F to S16 (about 1000 km distance) was surveyed by radio echo sounder with a continuous recording system. The bedrock topography was successfully measured under ice sheets thicker than 3500m, and the performance of the radio echo sounder was confirmed. The highest point of Dome-F was located in the basin like topography of the bedrock, surrounded by more elevated areas. The...

  17. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    Science.gov (United States)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  18. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  19. Percutaneous removal of residual intrahepatic stones through transjejunal T-tube tract

    International Nuclear Information System (INIS)

    Lee, Byung Hee; Do, Young Soo; Byum, Hong Sik; Kim, Kie Hwan; Chin, Soo Yil; Lee, Yong

    1992-01-01

    Interventional procedures for residual biliary stones are well established. In case of biliary-jejunal anastomoses, the route of interventional access is usually T-tube choledochostomy tract. But in case of recurrent pyogenic cholangiohepatitis, the extraction of residual intrahepatic stones through conventional T-tube choledochostomy tract is troublesome due to multifocal intrahepatic biliary stricture, multiplicity of stones, impacted stones, and the large size of stones. Thus, replaced interventional procedures with complex techniques such as dilatation of stricture and crushing of stones are mandatory. We required the surgeon to place a T-tube at jejunal site for removal of residual biliary stones in ten patients with choledochojejunostomy. In all cases, T-tube was inserted into jejunum, and its upper limb was place within the CBD through the anastomotic site. Interventional instruments, then, were introduced into the jejunum and manipulated in the biliary tree through the anastomotic site. With this approach, we could successful retrieve residual biliary stones in bulk through the anastomotic site and release the stones in the jejunal lumen. Large stones also could be retrieve easily into the jejunal lumen without crushing. Our experience suggest that this approach can provide simpler and time saving access for removal of residual biliary stones in cases of choledochojejunostomy, and can avoid additional operations such as attaching jejunal segment extraperitoneally beneath the abdominal wall

  20. South Polar Region of Mars: Topography and Geology

    Science.gov (United States)

    Schenk, P. M.; Moore, J. M.

    1999-01-01

    The polar layered deposits of Mars represent potentially important volatile reservoirs and tracers for the planet's geologically recent climate history. Unlike the north polar cap, the uppermost surface of the bright residual south polar deposit is probably composed of carbon dioxide ice. It is unknown whether this ice extends through the entire thickness of the deposit. The Mars Polar Lander (MPL), launched in January 1999, is due to arrive in December 1999 to search for water and carbon dioxide on layered deposits near the south pole (SP) of Mars. Additional information is contained in the original extended abstract.