WorldWideScience

Sample records for residual three-body forces

  1. Three-body forces and the trinucleons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Three-body forces are discussed in the context of classical, atomic, solid-state and nuclear physics. The basic theoretical ingredients used in the construction of such forces are reviewed. Experimental evidence for three-nucleon forces and an overview of the three-nucleon bound states are presented. 53 refs., 9 figs

  2. Three-body forces: a status report

    International Nuclear Information System (INIS)

    Coon, S.A.

    1976-01-01

    Real three-body forces due to meson exchange are distinguished from effective three-body interactions of a nuclear Hamiltonian. The long-range part of the real three-body force is proportional to the off-mass-shell sup(PI)N scattering amplitude. Its contribution to the binding energy of nuclear matter is quite dependent upon the treatment of correlations (due to the two-body potential) in the three-body wave function. A recent improvemrnt in the amplitude implies a very small contribution. But, a recent improvement in the treatment of correlations implies a large contribution. Work towards including both these improvements in a single calculation is in progress. (author)

  3. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  4. Three-Body Nuclear Forces from a Matrix Model

    CERN Document Server

    Hashimoto, Koji

    2010-01-01

    We compute three-body nuclear forces at short distances by using the nuclear matrix model of holographic QCD proposed in our previous paper with P. Yi. We find that the three-body forces at short distances are repulsive for (a) aligned three neutrons with averaged spins, and (b) aligned proton-proton-neutron / proton-neutron-neutron. These indicate that in dense states of neutrons such as cores of neutron stars, or in Helium-3 / tritium nucleus, the repulsive forces are larger than the ones estimated from two-body forces only.

  5. Three-body force in the three-nucleon system

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1986-01-01

    A brief summary of the symposium is presented. Three-nucleon force models are discussed, including the two-pion exchange potential, NN-ΔN coupled-channels model, and phenomenological parametrization. Relevant experimental data and model calculations are discussed including form factors, binding energies, charge radii, and charge density for 3 H and 3 He. A calculation of the EMC effect for 3 He is also made using Sasakawa's wave function and compared to experimental data obtained at SLAC. The paper ends with discussions of proton-deuteron scattering, investigations at intermediate energies, and QCD efforts to understand the three-body problem

  6. Three-body forces in p-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van; Booten, J.G.L.; Glaudemans, P.W.M.

    1990-01-01

    Within the (0 + 1)ℎω shell-model space for p-shell nuclei we found that a schematic three-body interaction in addition to a translationally invariant two-body interaction leads to a strongly improved description of energy levels. The present three-body interaction is related to the Δ-isobar intermediate-state model of the two-pion exchange three-nucleon interaction. (orig.)

  7. Three-body ΛNN force due to Λ-Σ coupling

    International Nuclear Information System (INIS)

    Myint, Khin Swe; Akaishi, Yoshinori

    2003-01-01

    The ΛNN three - body force due to coherent Λ - Σ Coupling effect was derived from realistic Nijmegen model D potential. Repulsive and attractive three - body ΛNN forces were reconcilably accounted. For 5 He, within one - channel description, ΛNN force is largely repulsive and its origin comes from Pauli forbidden terms. Within two - channel description, attractive Pauli allowed terms exist and resulting three - body force is always attractive. Large attractive ΛNN force effect due to coherent Λ - Σ coupling effect is predicted in neutron - rich nuclei. The attractive coherent Λ - Σ coupling effect is largely enhanced at high density neutron matter. The attractive three - body ΛNN force effect is essential dynamics of Λ - Σ coupling while the repulsive Nogami three - body effect arises from Pauli forbidden diagrams. (Y. Kazumata)

  8. Folding model analysis of Λ binding energies and three-body ΛNN force

    International Nuclear Information System (INIS)

    Mian, M.; Rahman Khan, M.Z.

    1988-02-01

    Working within the framework of the folding model, we analyze the Λ binding energy data of light hypernuclei with effective two-body ΛN plus three-body ΛNN interaction. The two-body density for the core nucleus required for evaluating the three-body force contribution is obtained in terms of the centre of mass pair correlation. It is found that except for Λ 5 He the data are fairly well explained. The three-body force seems to account for the density dependence of the effective two-body ΛN interaction proposed earlier. (author). 13 refs, 2 tabs

  9. Influence of effective three-body force on the spectroscopy of 19O

    International Nuclear Information System (INIS)

    Haung, W.; Song, H.; Wang, Z.; Kuo, T.T.S.

    1983-01-01

    The purpose of the present paper is to investigate the influence of effective three-body force on the spectroscopy of 19 O. The model space was chosen as the configuration space which consists of the j-j coupling states of three valence neutrons in the s-d shell. The effective interaction including two- and three-body forces was then derived in the framework of the folded diagram method (FDM). Besides two traditional three-body terms, there is another kind of three-body force, the folded one constructed with two two-body diagrams, in FDM. The G-matrix elements of soft core Reid force were used in the numerical calculations. In the case of lacking the G-matrix elements, we adopted the matrix elements of M-3Y force as the equivalents. The results show that the influence of the effective three-body forces on the spectrum of 19 O is not of importance, but the part coming from the folded three-body term is worth noting

  10. Effect of three-body forces on the phase behavior of charged colloids

    International Nuclear Information System (INIS)

    Wu, J. Z.; Bratko, D.; Blanch, H. W.; Prausnitz, J. M.

    2000-01-01

    Statistical-thermodynamic theory for predicting the phase behavior of a colloidal solution requires the pair interaction potential between colloidal particles in solution. In practice, it is necessary to assume pairwise additivity for the potential of mean force between colloidal particles, but little is known concerning the validity of this assumption. This paper concerns interaction between small charged colloids, such as surfactant micelles or globular proteins, in electrolyte solutions and the multibody effect on phase behavior. Monte Carlo simulations for isolated colloidal triplets in equilateral configurations show that, while the three-body force is repulsive when the three particles are near contact, it becomes short-ranged attractive at further separations, contrary to a previous study where the triplet force is attractive at all separations. The three-body force arises mainly from hard-sphere collisions between colloids and small ions; it is most significant in solutions of monovalent salt at low concentration where charged colloids experience strong electrostatic interactions. To illustrate the effect of three-body forces on the phase behavior of charged colloids, we calculated the densities of coexisting phases using van der Waals-type theories for colloidal solutions and for crystals. For the conditions investigated in this work, even though the magnitude of the three-body force may be as large as 10% of the total force at small separations, three-body forces do not have a major effect on the densities of binary coexisting phases. However, coexisting densities calculated using Derjaguin-Landau-Verwey-Overbeek theory are much different from those calculated using our simulated potential of mean force. (c) 2000 American Institute of Physics

  11. Study on 16O in the alpha particle model using three-body forces

    International Nuclear Information System (INIS)

    Agrello, D.A.

    1979-01-01

    A study of the ground state of 16 O is made using an alpha particle model, all without internal structure, interacting through two-and three-body forces. Some nuclear properties of 16 O, such as binding energy and gaps, are also studied. (L.C.) [pt

  12. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of ...

  13. Analytical equation of state with three-body forces: Application to noble gases

    International Nuclear Information System (INIS)

    Río, Fernando del; Díaz-Herrera, Enrique; Guzmán, Orlando; Moreno-Razo, José Antonio; Ramos, J. Eloy

    2013-01-01

    We developed an explicit equation of state (EOS) for small non polar molecules by means of an effective two-body potential. The average effect of three-body forces was incorporated as a perturbation, which results in rescaled values for the parameters of the two-body potential. These values replace the original ones in the EOS corresponding to the two-body interaction. We applied this procedure to the heavier noble gases and used a modified Kihara function with an effective Axilrod-Teller-Muto (ATM) term to represent the two- and three-body forces. We also performed molecular dynamics simulations with two- and three-body forces. There was good agreement between predicted, simulated, and experimental thermodynamic properties of neon, argon, krypton, and xenon, up to twice the critical density and up to five times the critical temperature. In order to achieve 1% accuracy of the pressure at liquid densities, the EOS must incorporate the effect of ATM forces. The ATM factor in the rescaled two-body energy is most important at temperatures around and lower than the critical one. Nonetheless, the rescaling of two-body diameter cannot be neglected at liquid-like densities even at high temperature. This methodology can be extended straightforwardly to deal with other two- and three-body potentials. It could also be used for other nonpolar substances where a spherical two-body potential is still a reasonable coarse-grain approximation

  14. The Tucson-Melbourne Three-Body Force in a Translationally-Invariant Harmonic Oscillator Basis

    Science.gov (United States)

    Marsden, David; Navratil, Petr; Barrett, Bruce

    2000-09-01

    A translationally-invariant three-body basis set has been employed in shell model calculations on ^3H and ^3He including the Tucson-Melbourne form of the real nuclear three-body force. The basis consists of harmonic oscillators in Jacobi coordinates, explicitly avoiding the centre of mass drift problem in the calculations. The derivation of the three-body matrix elements and the results of large basis effective interaction shell model calculations will be presented. J. L. Friar, B. F. Gibson, G. L. Payne and S. A. Coon; Few Body Systems 5, 13 (1988) P. Navratil, G.P. Kamuntavicius and B.R. Barrett; Phys. Rev. C. 61, 044001 (2000)

  15. Three-body forces for electrons by the S-matrix method

    International Nuclear Information System (INIS)

    Margaritelli, R.

    1989-01-01

    A electromagnetic three-body potential between eletrons is derived by the S-matrix method. This potential can be compared up to a certain point with other electromagnetic potentials (obtained by other methods) encountered in the literature. However, since the potential derived here is far more complete than others, this turns direct comparison with the potentials found in the literature somewhat difficult. These calculations allow a better understanding of the S-matrix method as applied to problems which involve the calculations of three-body nuclear forces (these calculations are performed in order to understand the 3 He form factor). Furthermore, these results enable us to decide between two discrepant works which derive the two-pion exchange three-body potential, both by the S-matrix method. (author) [pt

  16. The three-body forces with two δ excitation and N+d scattering

    International Nuclear Information System (INIS)

    Uzu, Eizo; Koike, Yasuro; Yamaguchi, Masahiro; Kamada, Hiroyuki

    2005-01-01

    The differential cross section of 250 MeV N+d scattering was different from the results of Faddeev calculation. The possibility of δ excitation of two nucleons of deuteron in the initial state is considered and the degree of freedom of δδ excitation is applied to improve the three-body force effects. The system consisted of two nucleons, nucleon and δ particle, and two δparticles is called by NN, Nδ and δδ system, respectively. The first calculation was carried out by using AV14 potential as ordinary nuclear force and AV28 as interaction with Nδ and δδ as three-body. The results of calculation for 250 and 135 MeV N+d scattering showed no effect on the differential cross section but the large effect on the tensor resolving power. (S.Y.)

  17. The baryonic spectrum in a constituent quark model including a three-body force

    International Nuclear Information System (INIS)

    Desplanques, B.; Gignoux, C.; Silvestre-Brac, B.; Gonzalez, P.; Navarro, J.; Noguera, S.

    1992-01-01

    We analyze, within a non-relativistic quark model, the low energy part of the baryonic spectrum in the octet and decuplet flavour representations. The relevance of a strong Coulomb potential is emphasized in order to explain its general features. The addition of a three-body force allows to solve the 'Roper puzzle', giving a consistent explanation to its relative position in the spectrum. (orig.)

  18. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  19. Three-body correlations and conditional forces in suspensions of active hard disks

    Science.gov (United States)

    Härtel, Andreas; Richard, David; Speck, Thomas

    2018-01-01

    Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.

  20. On contribution of three-body forces to Nd interaction at intermediate energies

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    2001-01-01

    Available data on large-angle nucleon-deuteron elastic scattering Nd → dN below the pion threshold give a signal for three-body forces. There is a problem of separation of possible subtle aspects of these forces from off-shell effects in two-nucleon potentials. By considering the main mechanisms of the process Nd → dN, we show qualitatively that in the quasi-binary reaction N + d → (NN) + N with the final spin singlet NN-pair in the S-state the relative contribution of the 3N forces differs substantially from the elastic channel. It gives a new testing ground for the problem in question

  1. Role of three-body forces in lattice dynamics of neodymium antimonide

    International Nuclear Information System (INIS)

    Gupta, H.N.; Kanti Chandra

    1979-01-01

    Recently the experimental phonon-dispersion curves of neodymium antimonide (NdSb) have been reported by Wakabayashi and Furrer (1976). These results have been analysed using an extended three-body force shell model (ESTM) in its nearest-neighbour version which provides a very good agreement for acoustic- and a reasonably good agreement for optical-branches of dispersion curves. This shows clearly the effect of three-body forces in this solid. The lack in degree of agreement in the optical branches may be ascribed to the presence of (i) zero Lyddane-Sachs-Teller (LST) splitting of zone-centre optical vibration frequencies (ωsub(Lo) and ωsub(To)) (ii) some anomalous wiggles in those branches. While the former is explained by setting Lundquist's effective charge parameter (esub(L)) equal to zero in the theory of ESTM, the later is expected to be explained satisfactorily by including free-electron screening effects in the theoretical framework of ESTM. (auth.)

  2. Derivation of a pion-rho exchange three-body force and application to the trinucleon system

    International Nuclear Information System (INIS)

    Robillota, M.R.; Isidro Filho, M.P.

    1982-12-01

    The pion-rho exchange three-body force is derived by means of Lagrangians which are approximately invariant under chiral and gauge transformations. The leading contribution to the potential arises from a seagull diagram, which corresponds to forces that are dominantly repulsive and comparable to those due to the exchange of two pions. The qualitative features of the results are analysed by means of plots of the energy of the trinucleon system. (Author) [pt

  3. Derivation of a pion-RHO exchange three-body force and application to the trinucleon system

    International Nuclear Information System (INIS)

    Robilotta, M.R.; Isidro Filho, M.P.

    1984-01-01

    The pion-rho exchange three-body force is derived by means of lagrangians which are approximately invariant under chiral and gauge transformations. The leading contribution to the potential arises from a seagull diagram, which corresponds to forces that are dominantly repulsive and comparable to those due to the exchange of two pions. The qualitative features of our results are analysed by means of plots of the energy of the trinucleon system. (orig.)

  4. Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies

    Science.gov (United States)

    Messina, Riccardo; Antezza, Mauro

    2014-05-01

    We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e., for any set of temperatures, dielectric, and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the nonadditivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground-state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

  5. Three-body forces in nuclear matter from intermediate Δ-states in three-nucleon clusters

    International Nuclear Information System (INIS)

    Kouki, T.; Smulter, L.E.W.; Green, A.M.

    1976-10-01

    The three-body force contribution in nuclear matter is treated as a three-nucleon cluster, in which one of the nucleons becomes, in an intermediate state, a Δ(1236). All exchange diagrams are calculated and found to significantly reduce the energy per particle from the direct graph. This is contrary to earlier estimates of the exchanges, using more approximate approaches. The resulting attractive contribution is rather small, -1.1 MeV at ksub(F)=1.4 fm -1 , but the roughly linear density dependence has a crucial effect on the saturation properties. The sensitivity of the results to the correlations used, and to the two-body force spin structure, is displayed. The energy per particle from clusters with three intermediate Δ's is also estimated. (author)

  6. Effects of repulsive three-body force in 12C + 12C scattering at 100A MeV

    Directory of Open Access Journals (Sweden)

    W.W. Qu

    2015-12-01

    Full Text Available The angular distribution of 12C + 12C scattering at an incident energy of 100A MeV has been measured. The elastic and inelastic scatterings in 12C to the excitation energies of up to ∼45 MeV were measured simultaneously for the first time with the high-resolution Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP. The angular distributions of the elastic scattering to the ground state (01+ and inelastic scattering to the 4.44 MeV (21+ excited state were precisely obtained in the angular range of 1.0°–7.5° with a step of 0.1°. Additionally, the angular distribution was obtained for the sum of the cross sections for excitation energies above the 4.44 MeV state up to 11 MeV, which includes the 7.65 MeV (02+, 9.64 MeV (31−, and 10.30 MeV (22+ states, in addition to probably the simultaneous excitation of the 4.44 MeV state in the projectile and the target nuclei. Those combined data provide a means to study the effects of channel coupling on the elastic cross section. The observed angular distributions are compared with theoretical calculations based on three double-folding models with complex G-matrix interactions, the CEG07b, MPa, and ESC models. The importance of three-body repulsive forces included in the CEG07b and MPa models will be discussed.

  7. Effect of Perturbations in Coriolis and Centrifugal Forces on the Nonlinear Stability of Equilibrium Point in Robe's Restricted Circular Three-Body Problem

    Directory of Open Access Journals (Sweden)

    P. P. Hallan

    2008-01-01

    Full Text Available The effect of perturbations in Coriolis and cetrifugal forces on the nonlinear stability of the equilibrium point of the Robe's (1977 restricted circular three-body problem has been studied when the density parameter K is zero. By applying Kolmogorov-Arnold-Moser (KAM theory, it has been found that the equilibrium point is stable for all mass ratios μ in the range of linear stability 8/9+(2/3((43/25ϵ1−(10/3ϵ<μ<1, where ϵ and ϵ1 are, respectively, the perturbations in Coriolis and centrifugal forces, except for five mass ratios μ1=0.93711086−1.12983217ϵ+1.50202694ϵ1, μ2 = 0.9672922−0.5542091ϵ+ 1.2443968ϵ1, μ3=0.9459503−0.70458206ϵ+ 1.28436549ϵ1, μ4=0.9660792−0.30152273ϵ + 1.11684064ϵ1, μ5=0.893981−2.37971679ϵ + 1.22385421ϵ1, where the theory is not applicable.

  8. Topics in three body problems

    International Nuclear Information System (INIS)

    Amado, R.D.

    1975-01-01

    An overview of the formal theory of the three-body problem as it has developed in the past twelve years is given. The formal structure of the theory, some of the techniques that have developed for handling the theory, and some results on how general quantum mechanical principles structure the results, are presented. The discussion is held entirely in the context of non-relativistic quantum mechanics with short-range forces. In this presentation the main outline of the theory is stressed, often at the expense of mathematical rigour [pt

  9. The three-body problem

    International Nuclear Information System (INIS)

    Musielak, Z E; Quarles, B

    2014-01-01

    The three-body problem, which describes three masses interacting through Newtonian gravity without any restrictions imposed on the initial positions and velocities of these masses, has attracted the attention of many scientists for more than 300 years. In this paper, we present a review of the three-body problem in the context of both historical and modern developments. We describe the general and restricted (circular and elliptic) three-body problems, different analytical and numerical methods of finding solutions, methods for performing stability analysis and searching for periodic orbits and resonances. We apply the results to some interesting problems of celestial mechanics. We also provide a brief presentation of the general and restricted relativistic three-body problems, and discuss their astronomical applications. (review article)

  10. The three-body problem

    CERN Document Server

    Marchal, Christian

    1990-01-01

    Recent research on the theory of perturbations, the analytical approach and the quantitative analysis of the three-body problem have reached a high degree of perfection. The use of electronics has aided developments in quantitative analysis and has helped to disclose the extreme complexity of the set of solutions. This accelerated progress has given new orientation and impetus to the qualitative analysis that is so complementary to the quantitative analysis. The book begins with the various formulations of the three-body problem, the main classical results and the important questions and conje

  11. Sn and three-body forces

    Indian Academy of Sciences (India)

    . We have used the CD-Bonn potential-based realistic CWG [10] and the empirical ..... In another experiment, delayed γ-ray cascades, originating from the decay of isomeric .... 7/2 partition contributing ≃79–80% in SMPN/CWG3M calculations.

  12. Report of the Task Force on Sawmill Wood Residue Management

    International Nuclear Information System (INIS)

    1993-11-01

    The Sawmill Wood Residue Task Force was established in 1993 to seek solutions to managing wood residue at sawmills, shingle mills, and log sort yards in British Columbia without burning or landfilling. In particular, the Task Force was formed to address the phaseout of beehive-type wood waste burners by January 1, 1996. The Task Force was formed at the forest product industry's request and included representatives from industry associations and government. It reviewed existing information on the quantities of mill residues and the options available for reducing, reusing, and recycling the residues. Nearly half of all the province's residues of 5 million bone dry tonnes/y is disposed of by burning with no energy recovery, or by landfilling. It was recognized that the total volume of wood residue cannot be handled by any one method suitable for all sources but that in the near term, electricity generation could deal with a significant percentage of wood currently being burned. The most immediate technically viable opportnity by industry in this area may be in cogeneration of electricity for load displacement at pulp mills. Other opportunities exist such as conversion of wood residue to liquid fuels but these require greater commitments to research and development. The need to handle bark and sawdust was identified as a critical requirement for alternate uses. Small niche uses for wood residue must be examined on a case by case basis for each company or group of companies in a region. The provincial government can also promote better use of wood wastes through policies such as social costing of power generation options and sales tax exemption for ethanol fuel. 1 tab

  13. Three-body calculation of Be double-hypernuclei

    Indian Academy of Sciences (India)

    Energy levels and bond energy of the double- hypernucleus are calculated by considering two- and three-cluster interactions. Interactions between constituent particles are contact interactions for reproducing the low binding energy of nuclei. The effective action is constructed to involve three-body forces. In this paper ...

  14. Fokker-type dynamics with three-body correlations

    International Nuclear Information System (INIS)

    Salas, A.; Sanchez-Ron, J.M.

    1981-01-01

    Dynamical systems of N point particles without internal degrees of freedom are studied. Their equations of motion are derived from a Fokker-type variational principle with n-body correlations (n = 2,3,...,N), with special emphasis on the case n = 3. The distinction between n-body correlation and n-body effective force is analyzed in detail, with the help of an example. Maximal sets of independent three-body Poincare-invariant scalars are given. An example of three-body correlation formally similar to the usual two-body long-range scalar correlation is given and discussed. (author)

  15. Three-body unitarity with isobars revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)

    2017-09-15

    The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)

  16. Lavine method applied to three body problems

    International Nuclear Information System (INIS)

    Mourre, Eric.

    1975-09-01

    The methods presently proposed for the three body problem in quantum mechanics, using the Faddeev approach for proving the asymptotic completeness, come up against the presence of new singularities when the potentials considered v(α)(x(α)) for two-particle interactions decay less rapidly than /x(α)/ -2 ; and also when trials are made for solving the problem with a representation space whose dimension for a particle is lower than three. A method is given that allows the mathematical approach to be extended to three body problem, in spite of singularities. Applications are given [fr

  17. Canonical three-body angular basis

    International Nuclear Information System (INIS)

    Matveenko, A.V.

    2001-01-01

    Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)

  18. Measurement of Forces and Moments Transmitted to the Residual Limb

    Science.gov (United States)

    2010-10-01

    Interface Biomechanical Correlate Force X Anterior-Posterior Force Perpendicular to Pylon Anterior-Posterior Force on Limb Braking and Propulsion...to produce noticeable pressure for level walking, going up stairs , up ramps, walking in a circle with the prosthetic foot inside and outside, and...0.3 Up Stairs Notch Throug hout 0.5 Notch Throug hout 0.3 Down Stairs Distal Tibia Popliteal Throughout Throughout 1 1 Distal Tibia Throughout

  19. Cross-bridge mechanism of residual force enhancement after stretching in a skeletal muscle.

    Science.gov (United States)

    Tamura, Youjiro

    2018-01-01

    A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.

  20. Impact of Vial Capping on Residual Seal Force and Container Closure Integrity.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Ovadia, Robert; Lam, Philippe; Stauch, Oliver; Vogt, Martin; Roehl, Holger; Huwyler, Joerg; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and computed tomography-to characterize different container closure system combinations that had been sealed using different capping process parameter settings. Additionally, container closure integrity of these samples was measured using helium leakage (physical container closure integrity) and compared to characterization data. The different capping equipment settings lead to residual seal force values from 7 to 115 N. High residual seal force values were achieved with high capping pre-compression force and a short distance between the capping plate and plunge. The choice of container closure system influenced the obtained residual seal force values. The residual seal force tester and piezoelectric measurements showed similar trends. All vials passed physical container closure integrity testing, and no stopper rupture was seen with any of the settings applied, suggesting that container closure integrity was warranted for the studied container closure system with the chosen capping setting ranges. The vial capping process is a critical unit operation during drug product manufacturing, as it could possibly generate cosmetic defects or even affect container closure integrity. Yet there is significant variability in capping equipment and processes, and their relation to potential defects or container closure integrity has not been thoroughly studied. In this study we applied several methods-residual seal force tester, a self-developed system of a piezo force sensor measurement, and

  1. Three-Body Antikaon-Nucleon Systems

    Czech Academy of Sciences Publication Activity Database

    Shevchenko, Nina V.

    2017-01-01

    Roč. 58, č. 1 (2017), č. článku UNSP 6. ISSN 0177-7963 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : three-body * antikaon-nucleon * K p interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.877, year: 2016

  2. Grounding-Induced Sectional Forces and Residual Strength of Grounded Ship Hulls

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Pedersen, Preben Terndrup

    1996-01-01

    The aim of the present study is to determine the sectional forces induced by ship grounding and also to assess the residual strength of groundedship hulls. An analytical approach is used to estimate the grounding-induced sectional forces of ships. The extent and location of structural damage due...... to grounding is defined based on the ABS Safe Hull guide. The residual strength of damaged hulls is calculated by using a simple analytical formula. The method is applied to residual strength assessment of a damaged double hull tanker of 38,400 dwt due to grounding....

  3. Initial Tensile and Residual Forces of Pigmented Elastomeric Ligatures from Various Brands

    Science.gov (United States)

    Wichai, Wassana; Anuwongnukroh, Niwat; Dechkunakorn, Surachai; Kaypetch, Rattiporn; Tua-ngam, Peerapong

    2017-11-01

    This study aimed to investigate the initial tensile and residual forces of pigmented elastomeric ligatures (clear, pink, and metallic) from three commercial brands - Brand 1 (USA), Brand 2 (USA), and Brand 3(China). Twelve elastomeric ligatures of each brand and color were evaluated for initial tensile and residual forces after stretching for 28 days at 37°C by a Universal Testing Machine. The results showed that the highest initial tensile force was 14.78 N, 20.71 N, and 15.1 N for the metallic color of Brand-1, pink color of Brand -2, and metallic color of Brand -3, respectively. There were significant (ptensile force of each brand, except clear and metallic color of Brand-1 & 3 and pink color of Brand-2 & 3. Similarly, among the pigmented ligatures from each brand, significant (ptensile force, except metallic color of Brand-1 & 3. Brand-3 had the highest residual force after 28 days, whereas the loss of force was 80-90% in Brand-1 & 2 and 20-30% in Brand-3. There were also significant (ptensile and residual forces among the three pigmented elastomeric ligatures of the three commercial brands.

  4. Three-body Supersymmetric Top Decays

    CERN Document Server

    Belyaev, A; Lola, S; Belyaev, Alexander; Ellis, John; Lola, Smaragda

    2000-01-01

    We discuss three-body supersymmetric top decays, in schemes both with andwithout R-parity conservation, assuming that sfermion masses are larger thanm_t. We find that MSSM top decays into chargino/neutralino pairs have a strongkinematic suppression in the region of the supersymmetric parameter spaceconsistent with the LEP limits, with a decay width =< 10^{-5} GeV. MSSM topdecays into neutralino pairs have less kinematical suppression, but require aflavour-changing vertex, and are likely to have a smaller rate. On the otherhand, R-violating decays to single charginos, neutralinos and conventionalfermions can be larger for values of the R-violating couplings still permittedby other upper limits. The cascade decays of the charginos and neutralinos maylead to spectacular signals with explicit lepton-number violation, such aslike-sign lepton events.

  5. Three-body forces mandated by Poincare invariance

    International Nuclear Information System (INIS)

    Coester, F.

    1986-01-01

    Poincare invariant models for the three-nucleon system are examined which have the same heuristic relation to field theories as the nonrelativistic nuclear models. The generators of the infinitesimal dynamical transformations can be obtained as functions of the kinematic generators, the invariant mass operator of the interacting system, and additional operators. These additional operators are the components of the Newton-Wigner position operator in the instant form, and the transverse components of the spin in the front form. The relativistic dynamics of Poincare transformations is examined, and then these concepts are applied to two-nucleon systems. The transition to a fully interacting three-nucleon system is made

  6. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  7. Coherent Destruction of Tunneling of Bosons with Effective Three-Body Interactions

    International Nuclear Information System (INIS)

    Niu Zhen-Xia; Yu Zi-Fa; Xue Ju-Kui

    2015-01-01

    The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerically. In our findings, when the system is with only repulsive two-body interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodically driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system. (paper)

  8. The Pharmaceutical Capping Process-Correlation between Residual Seal Force, Torque Moment, and Flip-off Removal Force.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Vorgrimler, Lothar; Steinberg, Henrik; Dreher, Sascha; Roggo, Yves; Nieto, Alejandra; Brown, Helen; Roehl, Holger; Adler, Michael; Luemkemann, Joerg; Huwyler, Joerg; Lam, Philippe; Stauch, Oliver; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The majority of parenteral drug products are manufactured in glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. Different critical capping process parameters can affect rubber stopper defects, rubber stopper compression, container closure integrity, and also crimp cap quality. A sufficiently high force to remove the flip-off button prior to usage is required to ensure quality of the drug product unit by the flip-off button during storage, transportation, and until opening and use. Therefore, the final product is 100% visually inspected for lose or defective crimp caps, which is subjective as well as time- and labor-intensive. In this study, we sealed several container closure system configurations with different capping equipment settings (with corresponding residual seal force values) to investigate the torque moment required to turn the crimp cap. A correlation between torque moment and residual seal force has been established. The torque moment was found to be influenced by several parameters, including diameter of the vial head, type of rubber stopper (serum or lyophilized) and type of crimp cap (West(®) or Datwyler(®)). In addition, we measured the force required to remove the flip-off button of a sealed container closure system. The capping process had no influence on measured forces; however, it was possible to detect partially crimped vials. In conclusion, a controlled capping process with a defined target residual seal force range leads to a tight crimp cap on a sealed container closure system and can ensure product quality. The majority of parenteral drug products are manufactured in a glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. An adequate force

  9. Molecular interactions and residues involved in force generation in the T4 viral DNA packaging motor.

    Science.gov (United States)

    Migliori, Amy D; Smith, Douglas E; Arya, Gaurav

    2014-12-12

    Many viruses utilize molecular motors to package their genomes into preformed capsids. A striking feature of these motors is their ability to generate large forces to drive DNA translocation against entropic, electrostatic, and bending forces resisting DNA confinement. A model based on recently resolved structures of the bacteriophage T4 motor protein gp17 suggests that this motor generates large forces by undergoing a conformational change from an extended to a compact state. This transition is proposed to be driven by electrostatic interactions between complementarily charged residues across the interface between the N- and C-terminal domains of gp17. Here we use atomistic molecular dynamics simulations to investigate in detail the molecular interactions and residues involved in such a compaction transition of gp17. We find that although electrostatic interactions between charged residues contribute significantly to the overall free energy change of compaction, interactions mediated by the uncharged residues are equally if not more important. We identify five charged residues and six uncharged residues at the interface that play a dominant role in the compaction transition and also reveal salt bridging, van der Waals, and solvent hydrogen-bonding interactions mediated by these residues in stabilizing the compact form of gp17. The formation of a salt bridge between Glu309 and Arg494 is found to be particularly crucial, consistent with experiments showing complete abrogation in packaging upon Glu309Lys mutation. The computed contributions of several other residues are also found to correlate well with single-molecule measurements of impairments in DNA translocation activity caused by site-directed mutations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Studies of the nuclear three-body system with three dimensional Faddeev calculations

    Science.gov (United States)

    Liu, Hang

    A three-body system consists of either a bound state of three particles with definite binding energy or a beam of single particles scattered from a target, where two of the particles are bound. Of the particles are nucleons, the interactions between them are strong and short ranged. A theoretical framework for studying the dynamics of a nuclear three-body system is the Faddeev scheme. In this work the equation for three-body scattering and the bound state are formulated in momentum space, and directly solved in terms of vector variables. For three identical bosons the Faddeev equation for scattering is a three- dimensional inhomogeneous integral equation in five variables, and is solved by Padé summation. The equation for the bound state is a homogeneous one in three variables, and is solved by a Lanczos' type method. The corresponding algorithms are presented, and their numerical feasibility is demonstrated. Elastic as well as inelastic scattering processes in the intermediate energy regime up to 1 GeV incident energy are studied for the first within a Faddeev scheme. The two-body force employed is of Malfliet-Tjon type. Specific emphasis is placed on studying the convergence of the multiple scattering series given by the Faddeev equations. For the bound state, a three-body force of Fujita- Miyazawa type is incorporated in addition to the two-body force. The effects of this three-body force on the bound state properties are investigated.

  11. Algebraic diagrammatic construction formalism with three-body interactions

    Science.gov (United States)

    Raimondi, Francesco; Barbieri, Carlo

    2018-05-01

    Background: Self-consistent Green's function theory has recently been extended to the basic formalism needed to account for three-body interactions [Carbone, Cipollone, Barbieri, Rios, and Polls, Phys. Rev. C 88, 054326 (2013), 10.1103/PhysRevC.88.054326]. The contribution of three-nucleon forces has so far been included in ab initio calculations on nuclear matter and finite nuclei only as averaged two-nucleon forces. Purpose: We derive the working equations for all possible two- and three-nucleon terms that enter the expansion of the self-energy up to the third order, thus including the interaction-irreducible (i.e., not averaged) diagrams with three-nucleon forces that have been previously neglected. Methods: We employ the algebraic diagrammatic construction up to the third order as an organization scheme for generating a nonperturbative self-energy, in which ring (particle-hole) and ladder (particle-particle) diagrams are resummed to all orders. Results: We derive expressions of the static and dynamic self-energy up to the third order, by taking into account the set of diagrams required when either the skeleton or nonskeleton expansions of the single-particle propagator are assumed. A hierarchy of importance among different diagrams is revealed, and a particular emphasis is given to a third-order diagram [see Fig. 2(c)] that is expected to play a significant role among those featuring an interaction-irreducible three-nucleon force. Conclusion: A consistent formalism to resum at infinite order correlations induced by three-nucleon forces in the self-consistent Green's function theory is now available and ready to be implemented in the many-body solvers.

  12. Universality in low energy three-body systems

    International Nuclear Information System (INIS)

    Amorim, A.E.A.; Tomio, L; Frederico, T.

    1997-01-01

    The renormalizability of the quantum theory of non-relativistic three-body system with zero range interaction, warranties that all the low-energy three-body properties are well defined and the low-energy two-body and only one three-body physical information are known. Considering this observation, we have shown that the conditions for the occurrence of Efimov states can be easily reached with any model of short range potential where the three-body ground state and the corresponding binding energy of the subsystems are kept fixed. This approach was applied to the recently discovered halo nuclei. (author)

  13. Detection of metal residues on bone using SEM-EDS. Part I: Blunt force injury.

    Science.gov (United States)

    Pechníková, Markéta; Porta, Davide; Mazzarelli, Debora; Rizzi, Agostino; Drozdová, Eva; Gibelli, Daniele; Cattaneo, Cristina

    2012-11-30

    Previous studies have indicated that metal particles remain on bone after sharp force injury or gunshot and that their detection by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) could greatly help in tool identification. However, the presence of metal particles on bone surfaces in the context of blunt force trauma has never been assessed experimentally. For this reason the present paper represents an experimental study of the behaviour of metal residues on bone following blunt force injury. Ten fresh sub-adult bovine metatarsal bones were manually cleaned of soft tissues. They were then struck by metal bars (copper, iron or aluminium) on the external surface of the mid-diaphysis. All blunt metal instruments used in this study left a sign in the form of single particles, a smear or a powder-like deposit on the bone surface. The residues of all three metal implements were detected on the bone surface, 0.3-10 mm from the fracture border. The presence of metal particles was confirmed in all samples struck with iron and copper and in two of six aluminium samples; no particles were detected on the negative control. Chemical composition of residues highly corresponded with the composition of applied bars. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The three body problem with energy dependent potentials

    International Nuclear Information System (INIS)

    Kim, Y.E.; McKay, C.M.; McKellar, B.H.J.

    1975-10-01

    It is shown how to generalize the three body equations of Faddeev, and of Karlsson and Zeiger, to include the case when the two body potential is energy dependent. Such generalizations will prove useful in the three nucleon problem and in three body models of nuclear reactions. (author)

  15. A simple coordinate space approach to three-body problems ...

    Indian Academy of Sciences (India)

    We show how to treat the dynamics of an asymmetric three-body system consisting of one heavy and two identical light particles in a simple coordinate space variational approach. The method is constructive and gives an efficient way of resolving a three-body system to an effective two-body system. It is illustrated by ...

  16. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    The three-body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi's experimental design scheme and analysis of variance. The results obtained from these ...

  17. Three-body interactions and the Landau levels using Nikiforov ...

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given. Keywords. Nikiforov–Uvarov (NU) method; three-body ...

  18. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  19. Three-body segment musculoskeletal model of the upper limb

    Directory of Open Access Journals (Sweden)

    Valdmanová L.

    2013-06-01

    Full Text Available The main aim is to create a computational three-body segment model of an upper limb of a human body for determination of muscle forces generated to keep a given loaded upper limb position. The model consists of three segments representing arm, forearm, hand and of all major muscles connected to the segments. Muscle origins and insertions determination corresponds to a real anatomy. Muscle behaviour is defined according to the Hill-type muscle model consisting of contractile and viscoelastic element. The upper limb is presented by a system of three rigid bars connected by rotational joints. The whole limb is fixed to the frame in the shoulder joint. A static balance problem is solved by principle of virtual work. The system of equation describing the musculoskeletal system is overdetermined because more muscles than necessary contribute to get the concrete upper limb position. Hence the mathematical problem is solved by an optimization method searching the least energetically-consuming solution. The upper limb computational model is verified by electromyography of the biceps brachii muscle.

  20. Diffusion Monte Carlo calculation of three-body systems

    International Nuclear Information System (INIS)

    Lu Mengjiao; Lin Qihu; Ren Zhongzhou

    2012-01-01

    The application of the diffusion Monte Carlo algorithm in three-body systems is studied. We develop a program and use it to calculate the property of various three-body systems. Regular Coulomb systems such as atoms, molecules, and ions are investigated. The calculation is then extended to exotic systems where electrons are replaced by muons. Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons. Our results agree well with experiments and others' work. (authors)

  1. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  2. Coulomb effects in deuteron stripping reactions as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The Coulomb effects between the proton and the target nucleus are investigated. The mathematical formalism introduces three-body integral equations which can be exactly calculated for such simple models. These coupled integral equations suitably include the Coulomb effects due to replusive or attractive Coulomb potential. Numerical calculations of the differential cross-sections of the reactions 28 Si(d,p) 29 Si and 40 Ca(d,p) 41 Ca are carried out showing the importance of the Coulomb effects. The angular distributions of these reactions are theoretically calculated and fitted to the experimental data. From this fitting, reasonable spectroscopic factors are obtained. Inclusion of Coulomb force in the three-body model are found to improve the results by a percentage of about 6.826%. (author)

  3. Increased residual force enhancement in older adults is associated with a maintenance of eccentric strength.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Power

    Full Text Available Despite an age-related loss of voluntary isometric and concentric strength, muscle strength is well maintained during lengthening muscle actions (i.e., eccentric strength in old age. Additionally, in younger adults during lengthening of an activated skeletal muscle, the force level observed following the stretch is greater than the isometric force at the same muscle length. This feature is termed residual force enhancement (RFE and is believed to be a combination of active and passive components of the contractile apparatus. The purpose of this study was to provide an initial assessment of RFE in older adults and utilize aging as a muscle model to explore RFE in a system in which isometric force production is compromised, but structural mechanisms of eccentric strength are well-maintained. Therefore, we hypothesised that older adults will experience greater RFE compared with young adults. Following a reference maximal voluntary isometric contraction (MVC of the dorsiflexors in 10 young (26.1 ± 2.7 y and 10 old (76.0 ± 6.5 y men, an active stretch was performed at 15°/s over a 30° ankle joint excursion ending at the same muscle length as the reference MVCs (40° of plantar flexion. Any additional torque compared with the reference MVC therefore represented RFE. In older men RFE was ~2.5 times greater compared to young. The passive component of force enhancement contributed ~37% and ~20% to total force enhancement, in old and young respectively. The positive association (R(2 = 0.57 between maintained eccentric strength in old age and RFE indicates age-related mechanisms responsible for the maintenance of eccentric strength likely contributed to the observed elevated RFE. Additionally, as indicated by the greater passive force enhancement, these mechanisms may be related to increased muscle series elastic stiffness in old age.

  4. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    directional fabric reinforcement offers a unique solution for ... showed good performance to the three-body abrasive wear. .... plied by the Pioneer Chemical Company, Delhi, India. ..... Theoretical and measured densities of composites, along.

  5. Three-body molecular description of 9Be

    International Nuclear Information System (INIS)

    Revai, J.; Matveenko, A.V.

    1979-01-01

    The low lying spectrum of the 9 Be nucleus is calculated in the α+α+n three-body model. The molecular approach to this three-body problem based on the exact evalution of the two-center wave functions for separable n-α potentials is considered in detail. The numerical results are obtained in the generalized Born-Oppenheimer approximation which preserves total angular momentum and parity

  6. A pairwise residue contact area-based mean force potential for discrimination of native protein structure

    Directory of Open Access Journals (Sweden)

    Pezeshk Hamid

    2010-01-01

    Full Text Available Abstract Background Considering energy function to detect a correct protein fold from incorrect ones is very important for protein structure prediction and protein folding. Knowledge-based mean force potentials are certainly the most popular type of interaction function for protein threading. They are derived from statistical analyses of interacting groups in experimentally determined protein structures. These potentials are developed at the atom or the amino acid level. Based on orientation dependent contact area, a new type of knowledge-based mean force potential has been developed. Results We developed a new approach to calculate a knowledge-based potential of mean-force, using pairwise residue contact area. To test the performance of our approach, we performed it on several decoy sets to measure its ability to discriminate native structure from decoys. This potential has been able to distinguish native structures from the decoys in the most cases. Further, the calculated Z-scores were quite high for all protein datasets. Conclusions This knowledge-based potential of mean force can be used in protein structure prediction, fold recognition, comparative modelling and molecular recognition. The program is available at http://www.bioinf.cs.ipm.ac.ir/softwares/surfield

  7. Three-body vertices with two-body techniques

    International Nuclear Information System (INIS)

    Mitra, A.N.; Sharma, V.K.

    1976-01-01

    It has long been recognized that vertex functions for few particle systems provide a convenient medium for the analysis of reactions in the language of Feynman diagrams, analogously to elementary particle processes. The development of three-particle theory during the last decade has provided considerably more impetus for the use of the language of three-body vertex functions through the possibility of their 'exact' evaluations with only two-body input. While three-body vertices are probably superfluous for the description of only three-body processes (for which exact amplitudes are already available) their practical usefulness often extends to reactions involving more than three-particle systems (for which 'exact' amplitudes are still a distant goal), as long as such systems can be meaningfully described in terms of not more than three particles playing the active role. This paper investigates a simplified construction of three-body vertices. This must check against their standard definition as overlap integral. Unfortunately this definition involves a non-trivial normalization of three-body wave functions with realistic NN potentials, and has little practical scope for extension beyond A=3. (Auth.)

  8. Spectral sum rules for the three-body problem

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1982-01-01

    This paper derives a number of sum rules for nonrelativistic three-body scattering. These rules are valid for any finite region μ in the six-dimensional coordinate space. They relate energy moments of the trace of the onshell time-delay operator to the energy-weighted probability for finding the three-body bound-state wave functions in the region μ. If μ is all of the six-dimensional space, the global form of the sum rules is obtained. In this form the rules constitute higher-order Levinson's theorems for the three-body problem. Finally, the sum rules are extended to allow the energy momtns have complex powers

  9. Analytical treatment of Coriolis coupling for three-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Bill

    2005-01-31

    In a previous article [J. Chem. Phys. 108 (1998) 5216], an efficient method was presented for performing 'exact' quantum calculations for the three-body rovibrational Hamiltonian, within the helicity-conserving approximation. This approach makes use of a certain three-body ''effective potential,'' enabling the same bend angle basis set to be employed for all values of the rotational quantum numbers, J, K and M. In the present work, the method is extended to incorporate Coriolis coupling, for which the relevant matrix elements are derived exactly. These can be used to solve the full three-body rovibrational problem, in the standard Jacobi coordinate vector embedding. Generalization of the method for coupled kinetic energy operators arising from other coordinate systems, embeddings, and/or system sizes, is also discussed.

  10. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  11. Precise numerical results for limit cycles in the quantum three-body problem

    International Nuclear Information System (INIS)

    Mohr, R.F.; Furnstahl, R.J.; Hammer, H.-W.; Perry, R.J.; Wilson, K.G.

    2006-01-01

    The study of the three-body problem with short-range attractive two-body forces has a rich history going back to the 1930s. Recent applications of effective field theory methods to atomic and nuclear physics have produced a much improved understanding of this problem, and we elucidate some of the issues using renormalization group ideas applied to precise nonperturbative calculations. These calculations provide 11-12 digits of precision for the binding energies in the infinite cutoff limit. The method starts with this limit as an approximation to an effective theory and allows cutoff dependence to be systematically computed as an expansion in powers of inverse cutoffs and logarithms of the cutoff. Renormalization of three-body bound states requires a short range three-body interaction, with a coupling that is governed by a precisely mapped limit cycle of the renormalization group. Additional three-body irrelevant interactions must be determined to control subleading dependence on the cutoff and this control is essential for an effective field theory since the continuum limit is not likely to match physical systems (e.g., few-nucleon bound and scattering states at low energy). Leading order calculations precise to 11-12 digits allow clear identification of subleading corrections, but these corrections have not been computed

  12. Efimov resonances in atomic three-body systems

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Papp, Z.

    2006-01-01

    In a recent work [Phys. Rev. Lett. 94, 143201 (2005)], we reported an accumulation of three-body resonant states attached to n=2 and higher two-body thresholds. A more careful investigation revealed that there are resonances of the same kind above the n=1 threshold as well. This suggests that the resonances attached to the thresholds are Efimov resonances

  13. The three-body problem from Pythagoras to Hawking

    CERN Document Server

    Valtonen, Mauri; Kholshevnikov, Konstantin; Mylläri, Aleksandr; Orlov, Victor; Tanikawa, Kiyotaka

    2016-01-01

    This book, written for a general readership, reviews and explains the three-body problem in historical context reaching to latest developments in computational physics and gravitation theory. The three-body problem is one of the oldest problems in science and it is most relevant even in today’s physics and astronomy. The long history of the problem from Pythagoras to Hawking parallels the evolution of ideas about our physical universe, with a particular emphasis on understanding gravity and how it operates between astronomical bodies. The oldest astronomical three-body problem is the question how and when the moon and the sun line up with the earth to produce eclipses. Once the universal gravitation was discovered by Newton, it became immediately a problem to understand why these three-bodies form a stable system, in spite of the pull exerted from one to the other. In fact, it was a big question whether this system is stable at all in the long run. Leading mathematicians attacked this problem over more than...

  14. The three-body problem and equivariant Riemannian geometry

    Science.gov (United States)

    Alvarez-Ramírez, M.; García, A.; Meléndez, J.; Reyes-Victoria, J. G.

    2017-08-01

    We study the planar three-body problem with 1/r2 potential using the Jacobi-Maupertuis metric, making appropriate reductions by Riemannian submersions. We give a different proof of the Gaussian curvature's sign and the completeness of the space reported by Montgomery [Ergodic Theory Dyn. Syst. 25, 921-947 (2005)]. Moreover, we characterize the geodesics contained in great circles.

  15. Modified Strum functions method in the nuclear three body problem

    International Nuclear Information System (INIS)

    Nasyrov, M.; Abdurakhmanov, A.; Yunusova, M.

    1997-01-01

    Fadeev-Hahn equations in the nuclear three-body problem were solved by modified Sturm functions method. Numerical calculations were carried out the square well potential. It was shown that the convergence of the method is high and the binding energy value is in agreement with experimental one (A.A.D.)

  16. Poincaré and the three body problem

    CERN Document Server

    Barrow-Green, June

    1997-01-01

    The idea of chaos figures prominently in mathematics today. It arose in the work of one of the greatest mathematicians of the late 19th century, Henri Poincaré, on a problem in celestial mechanics: the three body problem. This ancient problem-to describe the paths of three bodies in mutual gravitational interaction-is one of those which is simple to pose but impossible to solve precisely. Poincaré's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincaré discovered mathematical chaos, as is now clear from Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincaré himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincaré and the Three Body Problem opens with a discussion of the development of the th...

  17. Three-body interactions and the Landau levels using Nikiforov

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given.

  18. Optimization of the variational basis in the three body problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Pushkash, O.M.; Bestuzheva, A.B.

    1995-01-01

    The procedure of variational oscillator basis optimization is proposed to the calculation the energy spectra of three body systems. The hierarchy of basis functions is derived and energies of ground and excited states for three gravitating particles is obtained with high accuracy. 12 refs

  19. Determination of Residual Forces in Mechanisms Assembled by Edge-Form Rolling

    Directory of Open Access Journals (Sweden)

    K. Turgut Gürsel

    2011-03-01

    Full Text Available Steering and suspension systems are components that supply driving safety in vehicles. For a correct working the mechanisms of these systems consist of many ball-joints that have different functions. Generally the ball-joints are assembled to systems in press-fit without any gaps, but even with residual forces. On the other hand excessive tightness causes high moments, which requires additional processes of manufacturing. But low tightness also creates gaps in joints. None of these conditions are desired. Manufacturing a ball-race that has long-life, low-friction and provides required working angles in every road condition, can be designed after long test processes and sample productions including lots of improvements. An important element of steering systems in vehicles is suspension ball-race that can be manufactured by assembling with plastic deformation after designing the ball-joint. In this study, during the manufacturing of the suspension ball-race supplying the motion transmission, the edge-form rolling process that is a subsection of rolling process of manufacturing methods based on plastic deformation was examined. Effects of pressure forces occurring after edge-form rolling in bearing systems at different values were studied by changing operation pressure of edge form rolling by means of specific numerical simulations.

  20. Effective theories of scattering with an attractive inverse-square potential and the three-body problem

    International Nuclear Information System (INIS)

    Barford, Thomas; Birse, Michael C

    2005-01-01

    A distorted-wave version of the renormalization group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wavefunction satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalization of the three-body interactions, with the renormalization-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces

  1. Coulomb-Sturmian separable expansion approach: Three-body Faddeev calculations for Coulomb-like interactions

    International Nuclear Information System (INIS)

    Papp, Z.; Plessas, W.

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society

  2. Exact calculation of three-body contact interaction to second order

    International Nuclear Information System (INIS)

    Kaiser, N.

    2012-01-01

    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)

  3. Three-body unitarity in the finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2017-12-15

    The physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativistic 3 → 3 amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. The corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated. (orig.)

  4. The scattering matrix element of the three body reactive collision

    International Nuclear Information System (INIS)

    Morsy, M.W.; Hilal, A.A.; El-Sabagh, M.A.

    1980-08-01

    The optical model approximation has been applied to a previously derived set of coupled equations representing the dynamics of the three-body reactive scattering. The Schroedinger equation obtained describing the scattering problem has then been solved by inserting the effective mass approximation. The asymptotic requirements for both the entrance and exit channels, respectively, have been supplied to give the scattering matrix element of the reactive collision. (author)

  5. Nuclear three-body problem and energy-dependent potentials

    International Nuclear Information System (INIS)

    Abdurakhmanov, A.; Akhmadkhodzhaev, B.; Zubarev, A.L.; Irgaziev, B.F.

    1985-01-01

    Energy-dependent potentials in the three-body problem are being considered. Three-particle equations for the case of pairing energy-dependent potentials are generalized and the problems related to this ambiguous generalization are investigated. In terms of the equations obtained the tritium binding energy and vertex coupling constants (Tdn) and (Tdν) are evaluated. The binding energy and, especially, coupling constants are shown to be sensitive to a shape of the energy-dependent potential

  6. Three-body decays: structure, decay mechanism and fragment properties

    International Nuclear Information System (INIS)

    Alvarez-Rodriguez, R.; Jensen, A.S.; Fedorov, D.V.; Fynbo, H.O.U.; Kirsebom, O.S.; Garrido, E.

    2009-01-01

    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed ?-particle energy distribution after the decay of 12 C(1 + ) resonance at 12.7 MeV. This article is based on the presentation by R. Alvarez-Rodriguez at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)

  7. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  8. Continuum capture in the three-body problem

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum

  9. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  10. Local Momenta and a Three-Body Gauge

    Science.gov (United States)

    Schillaci, Michael Jay

    2000-06-01

    Here I discuss position-dependent, phlocal momentum which depend upon the logarithmic gradient of a continuum Coulomb pair. These momenta have become increasingly important in the modeling of three-body scattering phenomena, while their precise mathematical and physical nature has remained unexplored. These momenta are analytic at all values of the radial separation, except possibly at zero, and can be used to illustrate why the reigning 3C wavefunction works so well in describing many phlight-atom ion processes. I calculate the contributions for several subsystems, and explain the schillaci/threebody/ momentum.html>asymmetric results achieved by Wiese(L.M. Wiese phet al.), PRL 25, 4982 (1997)., on the breakup of the (H_3^+) ion - a massive three-body system. I propose that the local momentum herein formulated become part of a three-body gauge constraint. When applied, a non-vanishing, position-dependent phase will modulate the resulting transition amplitude. The size of this modulation depends critically upon the system.

  11. Photofragment translational spectroscopy of three body dissociations and free radicals

    Energy Technology Data Exchange (ETDEWEB)

    North, Simon William [Univ. of California, Berkeley, CA (United States)

    1995-04-01

    This dissertation describes several three-body dissociations and the photodissociation of methyl radicals studied using photofragment translational spectroscopy. The first chapter provides an introduction to three body dissociation, examines current experimental methodology, and includes a discussion on the treatment of photofragment translational spectroscopy data arising from three-body fragmentation. The ultraviolet photodissociation of azomethane into two methyl radicals and nitrogen is discussed in chapter 2. Chapter 3 describes the photodissociation of acetone at 248 nm and 193 nm. At 248 nm the translational energy release from the initial C-C bond cleavage matches the exit barrier height and a comparison with results at 266 nm suggests that T> is invariant to the available energy. A fraction of the nascent CH3CO radicals spontaneously dissociate following rotational averaging. The T> for the second C-C bond cleavage also matches the exit barrier height. At 193 nm the experimental data can be successfully fit assuming that the dynamics are analogous to those at 248 nm. A simplified model of energy partitioning which adequately describes the experimental results is discussed. Experiments on acetyl halides provide additional evidence to support the proposed acetone dissociation mechanism. A value of 17.0±1.0 kcal/mole for the barrier height, CH3CO decomposition has been determined. The photodissociation of methyl radical at 193 nm and 212.8 nm is discussed in the chapter 5. The formation of CH2(1Al) and H (2S) was the only single photon dissociation pathway observed at both wavelengths.

  12. Scalar three body decays and signals for new physics

    International Nuclear Information System (INIS)

    Adhikari, R.; Mukhopadhyaya, B.

    1994-07-01

    If massive invisible particles are pair-produced in a three-body decay, then the energy distribution of the other (visible) product is sensitive to the mass of the invisible pair. We use this fact in the context of a Higgs boson decaying into (i) a Z-boson and two massive neutrinos of a fourth generation, and (ii) a Z and two lightest supersymmetric particles in the minimal supersymmetric standard model. We discuss how the Z-energy spectrum in each case can reflect the values of the parameters of such models. (author). 18 refs, 3 figs

  13. LHCb: Can LHCb Study Three Body Decays with Neutrals?

    CERN Multimedia

    Fawcett, W

    2013-01-01

    In this poster we present the first attempt to use a new method to measure CP violation in Dalitz plots. This method is unbinned, model independent and has a greater sensitivity than binned methods. Preliminary studies have been made using the three body decays $D^0 \\rightarrow K_\\rm{S}^0 \\pi^+ \\pi^-$ and $D^0 \\rightarrow \\pi^+ \\pi^- \\pi^0$, which is especially challenging since there is one neutral particle in each of the final states. An attempt to visualise where CP violation occurs in Dalitz plots is also presented.

  14. Atomic Color Superfluid via Three-Body Loss

    International Nuclear Information System (INIS)

    Kantian, A.; Diehl, S.; Zoller, P.; Daley, A. J.; Dalmonte, M.; Hofstetter, W.

    2009-01-01

    Large three-body loss rates in a three-component Fermi gas confined in an optical lattice can dynamically prevent atoms from tunneling so as to occupy a lattice site with three atoms. This effective constraint not only suppresses the occurrence of actual loss events, but stabilizes BCS-pairing phases by suppressing the formation of trions. We study the effect of the constraint on the many-body physics using bosonization and density matrix renormalization group techniques, and also investigate the full dissipative dynamics including loss for the example of 6 Li.

  15. Quasi-Three Body Systems: Properties and Scattering

    International Nuclear Information System (INIS)

    Amusia, M. Ya.

    2017-01-01

    We investigate systems of three mutually interacting particles with masses m e , m μ , M that obey the following inequality m e ≪ m μ ≪ M. Then the three-body problem reduces to the two-body scattering or structure of m e in the field of the pseudo-nucleus m μ M. We calculate analytically the properties of considered systems, such as the scattering cross-sections, hyperfine splitting, Auger decay of exited states and Lamb shifts, presenting them as expansions in powers of the parameter β=m e /m μ ≪1. (author)

  16. Three-body cluster state in 11B

    International Nuclear Information System (INIS)

    Kawabata, T.; Akimune, H.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Hara, K.; Hatanaka, K.; Itoh, M.; Kanada-En'yo, Y.; Kishi, S.; Nakanishi, K.; Sakaguchi, H.; Shimbara, Y.; Tamii, A.; Terashima, S.; Uchida, M.; Wakasa, T.; Yasuda, Y.; Yoshida, H.P.; Yosoi, M.

    2007-01-01

    The cluster structures of the excited states in 11 B are studied by analyzing the isoscalar monopole and quadrupole strengths in the 11 B(d,d ' ) reaction at E d =200 MeV. The excitation strengths are compared with the predictions by the shell-model and antisymmetrized molecular-dynamics (AMD) calculations. It is found that the large monopole strength for the 3/2 3 - state at E x =8.56 MeV is well described by the AMD calculation and is an evidence for a developed three-body 2α+t cluster structure

  17. The three-body problem in quantum mechanics

    International Nuclear Information System (INIS)

    Antunes, A.C.B.

    1973-01-01

    Different methods used in the analysis of the scattering of an elementary particle by a system of two bound particles are compared. All particles are considered spinless and distinguishable from each other. Two approaches are used in the treatment of the problem. In the first method we build an effective - potential which accounts for the interaction of the incident particle with the bound system. The second approach consists in treating the target as a system of two particles, whose momentum distribution is given by the bound state wavefunction. The three body system is then treated by the techniques of the multiple scattering series and of Glauber theory. (author)

  18. New results on order and spacing of levels for two- and three-body systems

    International Nuclear Information System (INIS)

    Grosse, H.; Martin, A.; Richard, J.M.; Taxil, P.

    1987-01-01

    The authors propose sufficient conditions on the potential binding a two-body system to compare; the energy of a state with angular momentum iota+1 to the average of the energies of the neighbouring states with angular momentum iota, the spacings of the successive iota = O excitations. Applications to quarkonium physics are given. The authors also find a condition giving the sign of the parameter Δ controlling the pattern of levels obtained by perturbing the lowest positive parity excitation of a three-body system bound by harmonic oscillator two body forces

  19. Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation

    Science.gov (United States)

    Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2018-03-01

    A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

  20. Covariant equations for the three-body bound state

    International Nuclear Information System (INIS)

    Stadler, A.; Gross, F.; Frank, M.

    1997-01-01

    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle

  1. Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anneke

    2011-02-02

    The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to

  2. Three-body continuum states on a Lagrange mesh

    International Nuclear Information System (INIS)

    Descouvemont, P.; Tursunov, E.; Baye, D.

    2006-01-01

    Three-body continuum states are investigated with the hyperspherical method on a Lagrange mesh. The R-matrix theory is used to treat the asymptotic behaviour of scattering wave functions. The formalism is developed for neutral as well as for charged systems. We point out some specificities of continuum states in the hyperspherical method. The collision matrix can be determined with a good accuracy by using propagation techniques. The method is applied to the 6 He (=α+n+n) and 6 Be (=α+p+p) systems, as well as to 14 Be (=Be12+n+n). For 6 He, we essentially recover results of the literature. Application to 14 Be suggests the existence of an excited 2 + state below threshold. The calculated B(E2) value should make this state observable with Coulomb excitation experiments

  3. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  4. Generating families in the restricted three-body problem

    CERN Document Server

    Hénon, Michel

    The classical restricted three-body problem is of fundamental importance because of its applications in astronomy and space navigation, and also as a simple model of a non-integrable Hamiltonian dynamical system. A central role is played by periodic orbits, of which many have been computed numerically. This is the second volume of an attempt to explain and organize the material through a systematic study of generating families, the limits of families of periodic orbits when the mass ratio of the two main bodies becomes vanishingly small. We use quantitative analysis in the vicinity of bifurcations of types 1 and 2. In most cases the junctions between branches can now be determined. A first-order approximation of families of periodic orbits in the vicinity of a bifurcation is also obtained. This book is intended for scientists and students interested in the restricted problem, in its applications to astronomy and space research, and in the theory of dynamical systems.

  5. Three body mechanisms in hadron collisions. The A = 3 system

    International Nuclear Information System (INIS)

    Frascaria, R.

    1988-01-01

    Three-body mechanisms in hadron collisions, and the role of the A = 3 system are reviewed, and the excitation functions of the proton deuteron system in interactions at energies up to 2.9 GeV are discussed. Meson productions at large angles reveal structures due to the mesonic degrees of freedom in the interaction of the proton with the deuteron, exciting n * isobars in intermediate states. Propagation in the nuclei does not seem to change the properties of these isobars. The meson double scattering mechanism provides a way to understand coherent meson production in pd capture. It is difficult to say whether this coherent process corresponds to eigenstates of the A = 3 system. The sharing of the momentum transfer between the three nucleons renders impossible the observation of high momentum components in coherent proton captures. The possible contribution of the electromagnetic probe in hadron physics with a multi GeV electron accelerator is mentioned

  6. Relativistic three-body effects in black hole coalescence

    International Nuclear Information System (INIS)

    Campanelli, Manuela; Dettwyler, Miranda; Lousto, Carlos O.; Hannam, Mark

    2006-01-01

    Three-body interactions are expected to be common in globular clusters and in galactic cores hosting supermassive black holes. We consider an equal-mass binary black hole system in the presence of a third black hole. Using numerically generated binary black hole initial data sets, and first and second-order post-Newtonian (1PN and 2PN) techniques, we find that the presence of the third black hole has non-negligible relativistic effects on the location of the binary's innermost stable circular orbit (ISCO), and that these effects arise at 2PN order. For a stellar-mass black hole binary in orbit about a supermassive black hole, the massive black hole has stabilizing effects on the orbiting binary, leading to an increase in merger time and a decrease of the terminal orbital frequency, and an amplification of the gravitational radiation emitted from the binary system by up to 6%

  7. Three-body problem in the ground-state representation

    International Nuclear Information System (INIS)

    Gonzalez, A.

    1993-01-01

    The ground-state probability density of a three-body system is used to construct a classical potential U whose minimum coincides exactly with the ground-state energy. The spectrum of excited states may approximately be obtained by imposing quasiclassical quantization conditions over the classical motion in U. We show nontrivial one-dimensional models in which either this quantization condition is exact or considerably improves the usual semiclassical quantization. For three-dimensional problems, the small-oscillation frequencies in states with total angular momentum L = 0 are computed. These frequencies could represent an improvement over the frequencies of triatomic molecules computed with the use of ordinary quasiclassics for the motion of the nuclei in the molecular term. By providing a semiclassical description of the first excited quantum states, the sketched approach rises some interesting questions such as, for example, the relevance (once again) of classical chaos to quantum mechanics

  8. Three body dynamics and its applications to exoplanets

    CERN Document Server

    Musielak, Zdzislaw

    2017-01-01

    This brief book provides an overview of the gravitational orbital evolution of few-body systems, in particular those consisting of three bodies. The authors present the historical context that begins with the origin of the problem as defined by Newton, which was followed up by Euler, Lagrange, Laplace, and many others. Additionally, they consider the modern works from the 20th and 21st centuries that describe the development of powerful analytical methods by Poincare and others. The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets. The book includes some of the latest discoveries from the Kepler and now K2 missions, as well as applications to exoplanets discovered via the radial velocity method. Specifically, the authors give a unique perspective in rel...

  9. Unitary three-body calculation of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Tanabe, H.; Ohta, K.

    1986-07-01

    We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)

  10. Three-body model of deuteron breakup and stripping, II

    International Nuclear Information System (INIS)

    Austern, N.; Vincent, C.M.; Farrell, J.P. Jr.

    1978-01-01

    A previously investigated three-body model of the deuteron-nucleus system, limited to relative angular momentum l=0 for the two active nucleons, is reevaluated. Full attention is given to self-consistency between elastic and breakup channels. Introduction of the reaction of breakup on the elastic channel now reduces the elastic reflection coefficients in low partial waves by nearly a factor of 2 and causes substantial shifts in phase. Breakup amplitudes in low partial waves are also greatly reduced. As before, the breakup part of the wavefunction contains a broad specteum of n-p continuum states. The breakup part of the wavefunction at zero n-p separation is localized at small radii, within and just outside the target nucleus, where it is comparable in magnitude with the projected elastic channel wavefunction. As a result, the projected elastic channel wavefuntion is a poor approximation to the full wavefunction at n-p coincidence. Deuteron stripping theories that use the projected elastic wavefunction in a truncated distorted waves Born series must correspondingly be quite misleading. To investigate deuteron stripping further, the exact result of the coupled channels calculation is compared with several standard approximate models. Although there is a close qualitative resemblance among the results of all the approaches, the best single approximation to the coupled channels result is found from the familiar phenomenological approach, in which a local optical potential is fitted to the elastic scattering ''observed'' in the coupled channels calculation. The coupled channels results are also used to analyze the approximations in the Johnson-Soper method. Several formal aspects of the three-body model are discussed

  11. Three-body calculation of Be double- hypernuclei

    Indian Academy of Sciences (India)

    an intermediate sigma; and hyperon–nucleon–nucleon forces that may be relatively more important than three-nucleon forces, depending on whether sigmas are kept explicitly. So far, several cluster models have been proposed to estimate the ground-state bind- ing energies of double- species [1–6]. Recently,.

  12. Free time minimizers for the three-body problem

    Science.gov (United States)

    Moeckel, Richard; Montgomery, Richard; Sánchez Morgado, Héctor

    2018-03-01

    Free time minimizers of the action (called "semi-static" solutions by Mañe in International congress on dynamical systems in Montevideo (a tribute to Ricardo Mañé), vol 362, pp 120-131, 1996) play a central role in the theory of weak KAM solutions to the Hamilton-Jacobi equation (Fathi in Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, 2017). We prove that any solution to Newton's three-body problem which is asymptotic to Lagrange's parabolic homothetic solution is eventually a free time minimizer. Conversely, we prove that every free time minimizer tends to Lagrange's solution, provided the mass ratios lie in a certain large open set of mass ratios. We were inspired by the work of Da Luz and Maderna (Math Proc Camb Philos Soc 156:209-227, 1980) which showed that every free time minimizer for the N-body problem is parabolic and therefore must be asymptotic to the set of central configurations. We exclude being asymptotic to Euler's central configurations by a second variation argument. Central configurations correspond to rest points for the McGehee blown-up dynamics. The large open set of mass ratios are those for which the linearized dynamics at each Euler rest point has a complex eigenvalue.

  13. Global regularization method for planar restricted three-body problem

    Directory of Open Access Journals (Sweden)

    Sharaf M.A.

    2015-01-01

    Full Text Available In this paper, global regularization method for planar restricted three-body problem is purposed by using the transformation z = x+iy = ν cos n(u+iv, where i = √−1, 0 < ν ≤ 1 and n is a positive integer. The method is developed analytically and computationally. For the analytical developments, analytical solutions in power series of the pseudotime τ are obtained for positions and velocities (u, v, u', v' and (x, y, x˙, y˙ in both regularized and physical planes respectively, the physical time t is also obtained as power series in τ. Moreover, relations between the coefficients of the power series are obtained for two consequent values of n. Also, we developed analytical solutions in power series form for the inverse problem of finding τ in terms of t. As typical examples, three symbolic expressions for the coefficients of the power series were developed in terms of initial values. As to the computational developments, the global regularized equations of motion are developed together with their initial values in forms suitable for digital computations using any differential equations solver. On the other hand, for numerical evolutions of power series, an efficient method depending on the continued fraction theory is provided.

  14. Analytic scattering theory of quantum mechanical three-body systems

    International Nuclear Information System (INIS)

    Balslev, Erik

    1980-01-01

    We consider a three-body Schroedinger operator H=H 0 +V in L 2 (Rsup(2n)), where V=Σ Vsub(α) and each Vsub(α) is a dilation-analytic two-body interaction decreasing faster than rsup(-β), where β>1 for negative energies and β>2 for positive energies. Together with H we consider the associated self-adjoint analytic family of operator given in momentum space by H(z)=z 2 H 0 +V(z), /Arg z/ 0 , H). The local inverse wave operators are constructed and asymptotic completeness proved. The full S-matrix S(μ) and for phi not equal to 0 the channel S-matrices are expressed in terms of boundary values of the resolvent. It is proved that the function is an analytic continuation into the lower half-plane of the diagonal element with poles at most at resolvent resonances and, under some reasonable assumptions, precisely at these resonances

  15. EJECTION AND CAPTURE DYNAMICS IN RESTRICTED THREE-BODY ENCOUNTERS

    International Nuclear Information System (INIS)

    Kobayashi, Shiho; Hainick, Yanir; Sari, Re'em; Rossi, Elena M.

    2012-01-01

    We study the tidal disruption of binaries by a massive point mass (e.g., the black hole at the Galactic center), and we discuss how the ejection and capture preference between unequal-mass binary members depends on which orbit they approach the massive object. We show that the restricted three-body approximation provides a simple and clear description of the dynamics. The orbit of a binary with mass m around a massive object M should be almost parabolic with an eccentricity of |1 – e| ∼ 1/3 1/3 times the binary rotation velocity, it would be abruptly disrupted, and the energy change at the encounter can be evaluated in a simple disruption model. We evaluate the probability distributions for the ejection and capture of circular binary members and for the final energies. In principle, for any hyperbolic (elliptic) orbit, the heavier member has more chance to be ejected (captured), because it carries a larger fraction of the orbital energy. However, if the orbital energy is close to zero, the difference between the two members becomes small, and there is practically no ejection and capture preferences. The preference becomes significant when the orbital energy is comparable to the typical energy change at the encounter. We discuss its implications to hypervelocity stars and irregular satellites around giant planets.

  16. Energy Analysis in the Elliptic Restricted Three-body Problem

    Science.gov (United States)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  17. Three-body dynamics in one dimension: a test model for the three-nucleon system with irreducible pionic diagrams

    International Nuclear Information System (INIS)

    Melde, T.; Canton, L.; Svenne, J.P.

    2002-01-01

    We formulate the three-body problem in one dimension in terms of the (Faddeev-type) integral equation approach. As an application, we develop a spinless, one-dimensional (1-D) model that mimics three-nucleon dynamics in one dimension. Using simple two-body potentials that reproduce the deuteron binding, we obtain that the three-body system binds at about 7.5 MeV. We then consider two types of residual pionic corrections in the dynamical equation; one related to the 2π-exchange three-body diagram, the other to the 1π-exchange three-body diagram. We find that the first contribution can produce an additional binding effect of about 0.9 MeV. The second term produces smaller binding effects, which are, however, dependent on the uncertainty in the off-shell extrapolation of the two-body t-matrix. This presents interesting analogies with what occurs in three dimensions. The paper also discusses the general three-particle quantum scattering problem, for motion restricted to the fall line. (author)

  18. Shell structure of the A = 6 ground states from three-body dynamics

    International Nuclear Information System (INIS)

    Lehman, D.R.; Parke, W.C.

    1983-01-01

    Three-body (αNN) models of the 6 He and 6 Li ground states are used to investigate their shell structure. Three models for each nucleus are considered: simple, full (nn), and full (np) for 6 He, and simple, full (0%), and full (4%) for 6 Li. The full models in both cases are obtained by including the S/sub 1/2/, P/sub 1/2/, and P/sub 3/2/ partial waves of the αN interaction, whereas the simple model truncates to only the strongly resonant P/sub 3/2/ wave. The 6 He full models distinguish between use of the nn or np parameters for the 1 S 0 NN interaction, while the 6 Li full models have either a pure 3 S 1 NN interaction (0%) or a 3 S 1 - 3 D 1 interaction that leads to a 4% d-wave component in the deuteron (4%). These models are used to calculate the probabilities of the orbital components of the wave functions, the configuration-space single-particle orbital densities, and the configuration-space two-particle wave function amplitudes in j-j coupling with the nucleon coordinates referred to the alpha particle as the ''core'' or ''center of force.'' The results are then compared with those from phenomenological and realistic-interaction shell models. Major findings of the comparison are the following: None of the shell models considered have a distribution of orbital probabilities across shells like that predicted by three-body models; the orbital rms radii from three-body models indicate an ordering of the orbits within shells, i.e., p/sub 1/2/ outside p/sub 3/2/, unlike oscillator shell models with a single oscillator parameter where the p-shell orbitals have the same shape; and, as expected, three-body orbital densities decay at large radial distances as exponentials rather than the too compact Gaussian falling off of oscillator shell models

  19. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  20. Three Body Decays of D0 and DS Mesons

    International Nuclear Information System (INIS)

    Palano, Antimo

    2001-01-01

    New generation experiments are providing large data sets for charm physics with statistics which supersede most previous measurements. The Dalitz plot analyses of 3-body charm decays have been performed in the past but these new large and clean samples will allow high precision measurements that were never before possible. The Dalitz plot analysis of three-body decays is a relatively new technique in development for charm physics studies. This method of analysis is the most complete way of analyzing the data since it allows measurement of both decay amplitudes and phases. The final state is the result of the interference of all intermediate states. The significant results provided by these studies are: (1) Accurate measurements of branching fractions; (2) A study of Final State Interactions; (3) A study of CP violation in rates and decay amplitudes; and (4) New input to several old unsolved problems in light meson spectroscopy, in particular to the scalar mesons puzzle. Factorization models assume the weak decay amplitudes to be real. The fact that the observed amplitudes have a relative complex phase is a consequence of final state interaction. CP violation is expected to be small in charm decays (∼ 10 -3 ) [1]. Two amplitudes with different phases are needed: Ae iδA + Be iδB . In singly Cabibbo-suppressed decays penguin terms may provide a weak phase, while Final State Interactions provide a strong phase shift. Under CP the weak phases change sign but the strong ones do not. Any difference between D and (bar D) in the Dalitz plot would be evidence for CP violation. Throughout this paper charge conjugate modes, where not explicit, are implied

  1. Three-body halo nuclei in an effective theory framework

    International Nuclear Information System (INIS)

    Canham, David L.

    2009-01-01

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20 C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20 C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D 0 and D *0 mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  2. Universal Three-Body Physics in Ultracold KRb Mixtures

    DEFF Research Database (Denmark)

    Wacker, L. J.; Jørgensen, N. B.; Birkmose, Danny Matthiesen

    2016-01-01

    Ultracold atomic gases have recently become a driving force in few-body physics due to the observation of the Efimov effect. While initially observed in equal mass systems, one expects even richer few-body physics in the mass-imbalanced case. In previous experiments with ultracold mixtures of pot...

  3. Modelling of three-body effects in a double continuum

    International Nuclear Information System (INIS)

    Tweed, R.J.; Tannous, C.; Marchalant, P.

    1993-01-01

    Theoretical calculations of double ionisation by electron or photon impact require a final state wavefunction which takes account both of the Coulomb repulsion between the pair of free electrons and of their interaction with the residual ionic core. It is desirable that this should be separable so as to facilitate the introduction of electron-pair correlations in the initial state wavefunction for the collision system. We propose a method for calculating coupled classical trajectories for the free electrons and deducing from these potentials from which their quantum mechanical wavefunctions may be obtained. Test calculations are reported for electron impact single ionisation of hydrogen. (orig.)

  4. Three-Body Potentials in α-Particle Model of Light Nuclei

    International Nuclear Information System (INIS)

    Ishikawa, Souichi

    2017-01-01

    In three-body model calculations of atomic nuclei, e.g., the "1"2C nucleus as α-α-α system and the "9Be nucleus as α-α-n system, the Hamiltonians of the systems consisting of two- and three-body potentials are important inputs. However, our knowledge of three-body potentials is quite restricted. In this paper, I will examine a relation between α-α-α and α-α-n three-body potentials that is obtained in a simple cluster model picture, which gives a phenomenological constraint condition on the three-body potential models to be used. (author)

  5. Appendix to the report from the low-residue soldering task force: Phase 2 results

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.; Anderson, D.J.; Huffman, D.D. [and others

    1995-12-01

    The LRSTF report for Phase I of its evaluation of low-residue soldering was issued in June 1995. This Appendix summarizes the results of follow-on testing performed in Phase II and compares electrical test results for both phases. Deliberate decisions were made by the LRSTF in Phase I to challenge the design guideline limits in MILSTD-275, Printed Wiring for Electronic Equipment The LRSTF considered this approach to produce a ``worst case`` design and provide useful information about the robustness of LR soldering processes. As such, good design practices were sometimes deliberately violated in designing the LRSTF board. This approach created some anomalies for both LR boards and RMA/cleaned controls. Phase II testing verified that problems that affected both RMA/cleaned and LR boards in Phase I were design related.

  6. Nucleon-nucleon scattering length from three-body reactions

    International Nuclear Information System (INIS)

    Bodek, K.

    1989-01-01

    Experiments aimed at the measurement of the singlet scattering lengths 1 a np and 1 a nn of the NN-interaction in the presence of a heavy spectator are described. The values obtained are compared with the results of measurements of other reactions. The very good agreement of the experimental values of 1 a np from all breakup reactions and elastic scattering as well as agreement of the values of 1 a nn from breakup reactions and disagreement with the value from the π - d → nnγ reaction cast doubts on the hypothesis ascribing this discrepancy to a 3N-force. This result also suggests a stronger effect of a violation of the charge independence principle than previously accepted. 101 refs., 18 figs., 3 tabs. (author)

  7. AN ACCURATE ORBITAL INTEGRATOR FOR THE RESTRICTED THREE-BODY PROBLEM AS A SPECIAL CASE OF THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators

  8. Magnetic force nanotherapy: feasibility and tolerance in a trial with residual tumors

    International Nuclear Information System (INIS)

    Gneveckow, U.; Scholz, R.; Jordan, A.; Cho, C.H.; Feussner, A.; Eckelt, L.; Wust, P.

    2005-01-01

    Full text: In February 2004 a clinical trial on the feasibility and tolerability of the magnetic force nanotherapy was started. Magnetic force nanotherapy is a new treatment concept for local tumors. The energy deposited by a homogeneous AC magnetic field is transformed into heat by a transducer. This transducer, nanosized superparamagnetic particles dispersed in water (magnetic fluid), is infiltrated into a selected target by minimal invasive intervention. Due to their subdomain size, these particles show no hysteresis behavior. Therefore, the behavior is independent on any previous exposures to magnetic fields. In contrast to hysteresis heating with multidomain-particles, the energy of the magnetic field is transformed to heat by both Brownian rotation and Neel relaxation. In addition, a special 'tumorphil' coating of the ironoxide cores increases the cellular uptake of the particles into tumor cells, which binds the particles in the tumor region. Thus a particular high power density can be achieved in the tumor and directly regulated by the magnetic field amplitude, whereas the normal tissue lacking magnetic fluid is only slightly affected. Both, deep seated and superficial tumors are accessible with a minimum of invasion and a selectable target temperature. To heat the magnetic fluid under clinical conditions, an applicator system has been built to generate a magnetic field in any desired body region. The first results of the feasibility of the magnetic force nanotherapy on different tumor entities are shown here. Until now 18 of 25 patients of the trial were recruited. 4 in the group of CT-guided instillation, 8 with intraoperative instillation of the magnetic nanoparticles and 6 patients with prostate carcinoma under TRUS control. Except of two cases the instillation was successful and at least one thermotherapy could be performed. Temperatures between 40 and 46 o C could be measured whereas calculated temperatures ranged between 42 and 52 o C. Field

  9. Three-body scattering problem in the fixed center approximation: The case of attraction

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Alexander E. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Gani, Vakhid A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Romanov, Alexander I. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2016-12-15

    We study the scattering of a light particle on a bound pair of heavy particles (e.g., the deuteron) within the fixed center approximation in the case of light-heavy attraction, solving the integral equation for the three-body Green's function both in the coordinate and in the momentum space. The results for the three-body scattering amplitude appear to be ambiguous -they depend on a single real parameter. This parameter may be fixed by a three-body input, e.g., the three-body scattering length. We also solve the integral equation for the three-body Green function in the momentum space, introducing a finite cut-off. We show that all three approaches are equivalent. We also discuss how our approach to the problem matches with the introduction of three-body contact interaction as done by other authors. (orig.)

  10. Extended random-phase approximation with three-body ground-state correlations

    International Nuclear Information System (INIS)

    Tohyama, M.; Schuck, P.

    2008-01-01

    An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)

  11. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    Science.gov (United States)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  12. FaCE: a tool for Three Body Faddeev calculations with core excitation

    OpenAIRE

    Thompson, I. J.; Nunes, F. M.; Danilin, B. V.

    2004-01-01

    FaCE is a self contained programme, with namelist input, that solves the three body Faddeev equations. It enables the inclusion of excitation of one of the three bodies, whilst the other two remain inert. It is particularly useful for obtaining the binding energies and bound state structure compositions of light exotic nuclei treated as three-body systems, given the three effective two body interactions. A large variety of forms for these interactions may be defined, and supersymmetric transf...

  13. Three-body forces, relativistic effects, isobars, and pions in nuclear systems

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1983-01-01

    Conventional microscopic calculations in nuclear physics start from a nonrelativistic Hamiltonian. The many-body Schroedinger equation is then solved to obtain the ground state energy, wave function, and expectation values of other quantities of interest. Such a procedure gives a qualitative description of nuclear saturation properties, but it is now well established that the simple H is quantitatively inadequate. For example, the light nuclei are underbound with too large a charge radius, while nuclear matter is overbound at far too high a density. This note reviews recent studies that go beyond the simple H. These include 1) the introduction of three-nucleon potentials, 2) estimates of relativistic effects, 3) the introduction of isobar degrees of freedom in the two-body potential, and 4) probing the influence of pion degrees of freedom on nuclear systems

  14. Dominant, Residual, and Emergent: Opposing Forces Hovering over John Dos Passos’ U.S.A

    Directory of Open Access Journals (Sweden)

    Rahmat Ollah Mahtabi

    2015-11-01

    Full Text Available This study is an attempt to investigate John Dos Passos’s U.S.A. Trilogy; The 42nd Parallel (1930; 1919 (1932; and The Big Money (1936 in the light of Raymond Williams. Analyzing the trilogy in terms of Williams’ hegemonic forces between dominant and emergent, it is recognized that the trilogy is full of tragic lives of characters living in the capitalist society of America. According to what Williams says, there are clashes between cultures in a society. He believes that the dominant culture constantly changes and it would not let other cultures to become the controlling power in the society. This tragedy is not an individual experience, but is rather like a collective consciousness. Each and every character is doing their best to change their condition into better but is opposed by the dominant. This is exactly in line with the idea of Williams that the dominant is able to project its own ideology and way of seeing the world so that the subordinated ones accept it as something natural and common. Although there are different types of hegemony including economic and cultural ones, hegemony in this trilogy is mostly the affirmation of the relations between economic and super-structural aspects of it.

  15. Three-body Coulomb systems using generalized angular-momentum S states

    Science.gov (United States)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  16. Evolved chiral Hamiltonians at the three-body level and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Calci, Angelo

    2014-07-14

    Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N), four- (4N), and many-nucleon interactions in a consistent and systematic scheme. Recent developments to construct chiral NN+3N interactions at different chiral orders and regularizations enable exciting nuclear structure investigations as well as a quantification of the fundamental uncertainties resulting from the chiral expansion and regularization. We present the complete toolchain to employ the present and future chiral NN, 3N, and 4N interactions in nuclear structure calculations and emphasize technical developments in the three- and four-body space, such as the similarity renormalization group (SRG), the frequency conversion, and the transformation to the JT-coupled scheme. We study the predictions of the chiral NN+3N interactions in ab initio nuclear structure calculations with the importance-truncated no-core shell model and coupled-cluster approach. We demonstrate that the inclusion of chiral 3N forces improves the overall agreement with experiment for excitation energies of p-shell nuclei and it qualitatively reproduces the systematics of nuclear binding energies throughout the nuclear chart up to heavy tin isotopes. In this context it is necessary to introduce truncations in the three-body model space and we carefully analyze their impact and confirm the reliability of the reported results. The SRG evolution induces many-nucleon forces that generally cannot be included in the calculations and constitute a major limitation for the applicability of SRG-evolved chiral forces. We study the origin and effect of the induced many-nucleon forces and propose a modification of the interaction, which suppresses the induced beyond-3N forces. This enables applications of the chiral interactions far beyond the mid-p shell. Furthermore, we test alternative formulations of SRG generators aiming to prevent the induced many-body forces from the outset. The

  17. Three-body Coulomb breakup of 11Li in the complex scaling method

    International Nuclear Information System (INIS)

    Myo, Takayuki; Aoyama, Shigeyoshi; Kato, Kiyoshi; Ikeda, Kiyomi

    2003-01-01

    Coulomb breakup strengths of 11 Li into a three-body 9 Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body '' 10 Li+n'' and three-body '' 9 Li+n+n'' continuum states. In the calculated results, we cannot find the dipole resonances with a sharp decay width in 11 Li. There is a low energy enhancement in the breakup strength, which is produced by both the two- and three-body continuum states. The enhancement given by the three-body continuum states is found to have a strong connection to the halo structure of 11 Li. The calculated breakup strength distribution is compared with the experimental data from MSU, RIKEN and GSI

  18. Effects of three-body interactions on the dynamics of entanglement in spin chains

    International Nuclear Information System (INIS)

    Shi Cuihua; Wu Yinzhong; Li Zhenya

    2009-01-01

    With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.

  19. CTBC. A program to solve the collinear three-body Coulomb problem. Bound states and scattering below the three-body disintegration threshold

    International Nuclear Information System (INIS)

    Tolstikhin, Oleg I.; Namba, Chusei

    2003-08-01

    A program to solve the quantum-mechanical collinear three-body Coulomb problem is described and illustrated by calculations for a number of representative systems and processes. In the internal region, the Schroedinger equation is solved in hyperspherical coordinates using the slow/smooth variable discretization method. In asymptotic regions, the solution is obtained in Jacobi coordinates using the asymptotic package GAILIT from the CPC library. Only bound states and scattering processes below the three-body disintegration threshold are considered here; resonances and fragmentation processes will be discussed in subsequent parts of this series. (author)

  20. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.

    Science.gov (United States)

    Zhou, Rui; Maisuradze, Gia G; Suñol, David; Todorovski, Toni; Macias, Maria J; Xiao, Yi; Scheraga, Harold A; Czaplewski, Cezary; Liwo, Adam

    2014-12-23

    To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding.

  1. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.; Anderson, D.J. [Sandia National Labs., Albuquerque, NM (United States); Burress, R.V. [SEHO (United States)] [and others

    1995-06-01

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The test data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.

  2. Generalized separable expansion method of the two-body and the three-body scattering amplitudes

    International Nuclear Information System (INIS)

    Oryu, S.; Ishihara, T.

    1976-01-01

    A systematic method is proposed for obtaining new N-rank separable amplitudes of the two-body and the three-body equations. First of all, the authors start from the Amado equation which is modified from the three-body Faddeev equation by using the two-body Yamaguchi potential for the nucleon-nucleon interaction. It is well known that the Amado equation can be integrated on the real axis because the kernel has a logarithmic cut on the real axis. However, a separable three-body form factor which is regular on the real axis except for the cut has been found. (Auth.)

  3. Variation of adhesive force at the interface of Pd and SrTiO3 as a consequence of residual stresses

    International Nuclear Information System (INIS)

    Nazarpour, Soroush; Cirera, Albert

    2011-01-01

    Initially, Pd thin films were deposited over a hard substrate using electron beam physical vapour deposition. The growth and the surface roughness of the films were analysed and their effects upon the conventional indentation test were discussed. Afterwards, an experimental method is described which can measure the critical fracture force in thin films using oscillating indentation. Initially, repetitive contacts at a single point with the purpose of identifying the fracture time provide the fracture force versus fracture time plot. Non-linear curve fitting of the data reveals the theoretical fracture force by a single indentation, which is called the critical fracture force. Arguments are put forward to show the relation between piling up height and applied force. Discrepancies were observed in the plot of the ratio between total indentation depth and piling up height versus applied force when higher loads than a critical fracture force were applied. Discrepancies appear as a result of indenting the substrate. A nanoscratch test facilitated the possibility of measuring adhesion strength and adhesion energy of the films considering the measured critical fracture force as the maximum applied force. The relation between residual compressive stresses, adhesion strength, plastic deformation and piling up area was discussed using dislocation theories. Indentation with high applied loads leaves behind large plastic deformation and reduces the accuracy and reliability of the test results. Hence, lower loads (in the order of nanonewtons) were applied using atomic force microscopy in the friction mode. A pulling off force was mapped in each thickness of Pd films. The results confirm that the area around a hillock exhibits a higher pulling off force due to the local stress relaxation as a consequence of hillock formation. By repeating the mapping process over different areas with various applying forces, the plot of the pulling off force versus applied load was drawn

  4. The d-α elastic scattering and the lithium-6 in a three-body model with separable interactions

    International Nuclear Information System (INIS)

    Charnomordic, Brigitte.

    1976-01-01

    This work consists in a three-body treatment of the six nucleon system. The model is constructed by considering two identical nucleons and a structureless alpha particle. Such a system can be described by the Faddeev-Lovelace equations. A partial antisymetrization is performed taking into account the identity of the nucleons. Pairwise interacting particles with nonlocal separable forces are introduced. Two-body potentials are chosen in each n-n and n-α partial wave. After an analysis of the existing separable interactions, new n-α and 1S0 parametrization are constructed. The sensitivity to the tensor force and the role of the N-α description are especially studied. The case of d-α elastic scattering is also discussed. The observables: differential cross-section, analyzing powers and transfer polarization coefficients are calculated and compared with experiments. The results show the ability of a three-body model with separable interactions in describing the main properties of the d-α elastic scattering and lithium-6 [fr

  5. Efimov Physics and the Three-Body Parameter within a Two-Channel Framework

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2012-01-01

    scaling laws. We recover known results for broad Feshbach resonances with small effective range, whereas in the case of narrow resonances we find a distinct non-monotonic behavior of the threshold at which the lowest Efimov trimer merges with the three-body continuum. To address the issue of the physical...... origin of the three-body parameter we provide a physically clear model for the relation between three-body physics and typical two-body atom-atom interactions. Our results demonstrate that experimental information from narrow Feshbach resonances and/or mixed systems are of vital importance to pin down...... the relation of two- and three-body physics in atomic systems....

  6. QED effects in high-Z atoms; three-body potentials

    International Nuclear Information System (INIS)

    Zygelman, B.

    1983-01-01

    Electromagnetic three-body potentials were first studied by Primakoff and Holstein. Later, Chamugan and Schweber rederived these potentials and pointed out that they might be important in highly relativistic systems, however, their formulation was basically nonrelativistic. Mittleman, in a series of papers, constructed configuration space equations that included three-body potentials. His derivation started from first principles i.e. QED, and the resulting three-body potentials are more general than the Primakoff-Holstein potentials. In this thesis the contribution to the binding energy of a simple high-Z ion from the three-body potentials is calculated. In addition, the nature and structure of these potentials in greater detail are studied. Some ambiguities that arise when the transition from Fock to configuration space is made are studied in detail

  7. Multip: A Multi Purpose simulation Monte Carlo algorithm for two- and three-body reaction kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, O.; Soukeras, V.; Pakou, A. [The University of Ioannina, Department of Physics and HINP, Ioannina (Greece)

    2017-08-15

    An algorithm is proposed for the determination of inclusive or/and exclusive energy spectra for particles emitted either in two- or three-body reactions with emphasis in the dissociation of unstable particles. (orig.)

  8. Three-body interactions in sociophysics and their role in coalition forming

    Science.gov (United States)

    Naumis, Gerardo G.; Samaniego-Steta, F.; del Castillo-Mussot, M.; Vázquez, G. J.

    2007-06-01

    An study of the effects of three-body interactions in the process of coalition formation is presented. In particular, we modify a spin glass model of bimodal propensities and also a Potts model in order to include a particular three-body Hamiltonian that reproduces the main features of the required interactions. The model can be used to study conflicts, political struggles, political parties, social networks, wars and organizational structures. As an application, we analyze a simplified model of the Iraq war.

  9. Three-body approach to the nucleon-nucleus optical potential

    International Nuclear Information System (INIS)

    Tandy, P.C.; Redish, E.F.; Bolle, D.

    1976-01-01

    In the Watson single scattering theory of the optical potential it is customary to approximate the propagation by two-body Green functions in order to simplify calculations. The reaction mechanism being described, however, is decidedly three-body in character. The central difficulty in building three-body models for nucleon-nucleus elastic scattering is to find the proper way of imbedding the superposed three-body reaction mechanism in the many-body problem without introducing serious overcounting effects. One would also like an explicit description of the intermediate state processes responsible for absorption. In this paper a three-body approximation to the optical potential theory is presented which overcomes the overcounting problem and is capable of including the following effects: (1) the proper kinematics of the struck nucleon, (2) its binding potential, (3) the identity of target nucleons, and (4) realistic wave functions and spectroscopic factors. The three-body model for the optical potential can be extended using unitarity methods to yield a unified three-body-like model of elastic scattering, pickup, and single nucleon knockout. (Auth.)

  10. Three-body interactions and the elastic constants of hcp solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-09-01

    The effect of three-body interactions on the elastic properties of hexagonal close packed solid 4He is investigated using variational path integral (VPI) Monte Carlo simulations. The solid's nonzero elastic constants are calculated, at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol, from the bulk modulus and the three pure shear constants C0, C66, and C44. Three-body interactions are accounted for using our recently reported perturbative treatment based on the nonadditive three-body potential of Cencek et al. Previous studies have attempted to account for the effect of three-body interactions on the elastic properties of solid 4He; however, these calculations have treated zero point motions using either the Einstein or Debye approximations, which are insufficient in the molar volume range where solid 4He is characterized as a quantum solid. Our VPI calculations allow for a more accurate treatment of the zero point motions which include atomic correlation. From these calculations, we find that agreement with the experimental bulk modulus is significantly improved when three-body interactions are considered. In addition, three-body interactions result in non-negligible differences in the calculated pure shear constants and nonzero elastic constants, particularly at higher densities, where differences of up to 26.5% are observed when three-body interactions are included. We compare to the available experimental data and find that our results are generally in as good or better agreement with experiment as previous theoretical investigations.

  11. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  12. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12 C nucleus is described as a three-alpha particle bound state. The binding energy of 12 C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  13. A comprehensive treatment of electromagnetic interactions and the three-body spectator equations

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Adam; Jay Van Orden

    2004-10-01

    We present a general derivation the three-body spectator (Gross) equations and the corresponding electromagnetic currents. As in previous paper on two-body systems, the wave equations and currents are derived from those for Bethe-Salpeter equation with the help of algebraic method using a concise matrix notation. The three-body interactions and currents introduced by the transition to the spectator approach are isolated and the matrix elements of the e.m. current are presented in detail for system of three indistinguishable particles, namely for elastic scattering and for two and three body break-up. The general expressions are reduced to the one-boson-exchange approximation to make contact with previous work. The method is general in that it does not rely on introduction of the electromagnetic interaction with the help of the minimal replacement. It would therefore work also for other external fields.

  14. Tests of the discretized-continuum method in three-body dipole strengths

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, E.C., E-mail: epinilla@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Quantique, C.P. 165/82, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Horiuchi, W., E-mail: whoriuchi@riken.jp [RIKEN Nishina Center, Wako 351-0918 (Japan); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0918 (Japan)

    2011-08-15

    We investigate the {sup 6}He dipole distribution in a three-body {alpha}+n+n model. Two approaches are used to describe the three-body 1{sup -} continuum: the discretized-continuum method, where the scattering wave functions are approximated by square-integrable functions, and the R-matrix formalism, where their asymptotic behaviour is taken into account. We show that some ambiguity exists in the pseudostate method, owing to the smoothing technique, necessary to derive continuous distributions. We show evidence for the important role of the halo structure in the E1 dipole strength. We also address the treatment of Pauli forbidden states in the three-body wave functions.

  15. Contact parameters in two dimensions for general three-body systems

    DEFF Research Database (Denmark)

    F. Bellotti, F.; Frederico, T.; T. Yamashita, M.

    2014-01-01

    a subsystem is composed of two identical non-interacting particles. We also show that the three-body contact parameter is negligible in the case of one non-interacting subsystem compared to the situation where all subsystem are bound. As example, we present results for mixtures of Lithium with two Cesium......We study the two dimensional three-body problem in the general case of three distinguishable particles interacting through zero-range potentials. The Faddeev decomposition is used to write the momentum-space wave function. We show that the large-momentum asymptotic spectator function has the same...... to obtain two- and three-body contact parameters. We specialize from the general cases to examples of two identical, interacting or non-interacting, particles. We find that the two-body contact parameter is not a universal constant in the general case and show that the universality is recovered when...

  16. More than six hundred new families of Newtonian periodic planar collisionless three-body orbits

    Science.gov (United States)

    Li, XiaoMing; Liao, ShiJun

    2017-12-01

    The famous three-body problem can be traced back to Isaac Newton in the 1680s. In the 300 years since this "three-body problem" was first recognized, only three families of periodic solutions had been found, until 2013 when Šuvakov and Dmitrašinović [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by Šuvakov and Dmitrašinović in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T/L f, where L f is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T ≈ = T | E|3/2 is the scale-invariant average period and E is its total kinetic and potential energy, respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere" can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.

  17. On the inherent self-excited macroscopic randomness of chaotic three-body system

    OpenAIRE

    Liao, Shijun; Li, Xiaoming

    2014-01-01

    What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human being. In this paper, 10000 samples of reliable (convergent), multiple-scale (from 1.0E-60 to 100) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 1.0E-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopi...

  18. Stability of the three-body Coulomb systems with J=1 in the oscillator representation

    International Nuclear Information System (INIS)

    Dinejkhan, M.D.; Efimov, G.V.

    1995-01-01

    The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A + A - e - ), (pe - C + ), (pB - e - ) and (D + e - e + ), the values for the critical masses of A-, B-, C- and D-particles are obtained: m A =2.22m e , m B =1.49m e , m C =2.11m e and m D =4.15m e . 18 refs., 1 fig., 3 tabs

  19. Using Three-Body Recombination to Extract Electron Temperatures of Ultracold Plasmas

    International Nuclear Information System (INIS)

    Fletcher, R. S.; Zhang, X. L.; Rolston, S. L.

    2007-01-01

    Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T e -9/2 . We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly coupled plasmas) and our measured rates, we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K

  20. Evaluation on driving force of natural circulation in downcomer for passive residual heat removal system in JAERI passive safety reactor JPSR

    International Nuclear Information System (INIS)

    Kunii, Katsuhiko; Iwamura, Takamichi; Murao, Yoshio

    1997-01-01

    The driving-force of the natural circulation in the residual heat removal (RHR) system for the JPSR (JAERI Passive Safety Reactor) is given as a gravity force of the density difference between hotter coolant in core and upper plenum and cooler coolant in downcomer. The amount of density difference and time to achieve the enough density difference for the RHR system change directly dependent on the thermal fluid flow pattern in downcomer of annulus flow pass. The purposes of the present study are to investigate the possibilities of the followings by evaluating the three-dimensional thermal fluid flow in downcomer by numerical analysis using the STREAM code; 1) promotion of making the flow pattern uniform in downcomer by installing a baffle, 2) achievement of an enough driving-force of the natural circulation, 3) validity of one-point assumption, that is, complete mixing down-flow assumption for the three-dimensional thermal fluid flow in downcomer to evaluate the function of the passive RHR system. The following conclusions were obtained: (1) The effect of baffle on the thermal fluid flow and driving-force is little, (2) The driving-force required for natural circulation cooling can be obtained in wide range of inlet velocity even if the flow is multi-dimensional, (3) Both in initial transient stage and in steady-state, the one-point assumption can be applied to evaluate the driving-force of natural circulation in the passive RHR system. (author)

  1. A new method for calculating the hyperspherical functions for the quantum mechanics of three bodies

    International Nuclear Information System (INIS)

    Marsh, S.; Buck, B.

    1982-01-01

    Using the shift operators of Hughes (J. Phys. A.; 6:48 and 281 (1973)) for the group SU(3) in an O(3) basis, a simple method is developed to obtain the three-body hyperspherical functions of a definite symmetry for any angular momentum in a given SU(3) representation. (author)

  2. Effect of three-body transformed Hamiltonian (H3) using full ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 90; Issue 3 ... Research Article Volume 90 Issue 3 March 2018 Article ID 36 ... Valence universal multireference coupled cluster (VUMRCC) method via eigenvalue independent partitioning has been applied to estimate the effect of three-body transformed Hamiltonian ...

  3. Correlation properties of a three-body bosonic mixture in a harmonic trap

    DEFF Research Database (Denmark)

    Barfknecht, R. E.; Salami Dehkharghani, Amin; Foerster, A.

    2016-01-01

    We make use of a simple pair correlated wave function approach to obtain results for the ground-state densities and momentum distribution of a one-dimensional three-body bosonic system with different interactions in a harmonic trap. For equal interactions this approach is able to reproduce the kn...

  4. Stripping reactions in a three-body system. Comparison of DWBA and exact solutions

    International Nuclear Information System (INIS)

    Brinati, J.R.

    1976-01-01

    Stripping reactions 'a estados no continuo' are studied in a three particle system. Since the three-body problem has an exact treatment, comparison will be made between the exact solution and the DWBA model solution. This problem is more complex in the continuous case, as shown in the convergence problem of the standard DWBA amplitude radial integral

  5. Efimov three-body states on top of a Fermi sea

    DEFF Research Database (Denmark)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    The stabilization of Cooper pairs of bound electrons in the background of a Fermi sea is the origin of superconductivity and the paradigmatic example of the striking influence of many-body physics on few-body properties. In the quantum-mechanical three-body problem the famous Efimov effect yields...

  6. Virtual states, halos and resonances in three-body atomic and nuclear systems

    International Nuclear Information System (INIS)

    Frederico, T.; Yamashita, M.T.; Tomio, L.

    2009-01-01

    By considering nuclear and ultracold trapped atomic systems, we review the trajectory of Efimov excited states in the complex plane by changing the two-body scattering lengths and one three-body scale. This article is based on the presentation by T. Frederico at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)

  7. Low-lying spectra in anharmonic three-body oscillators with a strong short-range

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2003-01-01

    Roč. 36, č. 38 (2003), s. 9929-9941 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : three-body Schrodinger equation * limit * large repulsion Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003

  8. Investigation of halo structure of He by hyperspherical three-body ...

    Indian Academy of Sciences (India)

    Abstract. Hyperspherical harmonics expansion method is applied to a three-body model of two neutron halo nuclei. Convergence of the expansion has been ensured. A repulsive part is introduced in the interaction between the core and the extra-core neutron, to simulate Pauli principle. Two neutron separation energy ...

  9. Efimov trimers in a harmonic potential and universality in three-body recombination

    NARCIS (Netherlands)

    Kokkelmans, S.J.J.M.F.; Portegies, J.W.; Gross, N.; Shotan, Z.; Khaykovich, L.

    2009-01-01

    We report on experimental evidence of universality in ultracold 7Li atoms’three-body recombination loss in the vicinity of a Feshbach resonance [1]. We observe a recombination minimum and an Efimov resonance in regions of positive and negative scattering lengths. Both observed features lie deeply

  10. Representation of the three-body Coulomb Green's function in parabolic coordinates: paths of integration

    International Nuclear Information System (INIS)

    Zaytsev, S A

    2010-01-01

    The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.

  11. Three-body interactions in many-body effective field theory

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2004-01-01

    This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful

  12. Illustrating chaos: a schematic discretization of the general three-body problem in Newtonian gravity

    Science.gov (United States)

    Leigh, Nathan W. C.; Wegsman, Shalma

    2018-05-01

    We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction into a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.

  13. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  14. Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis.

    Science.gov (United States)

    Burkhart, Timothy A; Dunning, Cynthia E; Andrews, David M

    2011-10-13

    The fundamental nature of impact testing requires a cautious approach to signal processing, to minimize noise while preserving important signal information. However, few recommendations exist regarding the most suitable filter frequency cut-offs to achieve these goals. Therefore, the purpose of this investigation is twofold: to illustrate how residual analysis can be utilized to quantify optimal system-specific filter cut-off frequencies for force, moment, and acceleration data resulting from in-vitro upper extremity impacts, and to show how optimal cut-off frequencies can vary based on impact condition intensity. Eight human cadaver radii specimens were impacted with a pneumatic impact testing device at impact energies that increased from 20J, in 10J increments, until fracture occurred. The optimal filter cut-off frequency for pre-fracture and fracture trials was determined with a residual analysis performed on all force and acceleration waveforms. Force and acceleration data were filtered with a dual pass, 4th order Butterworth filter at each of 14 different cut-off values ranging from 60Hz to 1500Hz. Mean (SD) pre-fracture and fracture optimal cut-off frequencies for the force variables were 605.8 (82.7)Hz and 513.9 (79.5)Hz, respectively. Differences in the optimal cut-off frequency were also found between signals (e.g. Fx (medial-lateral), Fy (superior-inferior), Fz (anterior-posterior)) within the same test. These optimal cut-off frequencies do not universally agree with the recommendations of filtering all upper extremity impact data using a cut-off frequency of 600Hz. This highlights the importance of quantifying the filter frequency cut-offs specific to the instrumentation and experimental set-up. Improper digital filtering may lead to erroneous results and a lack of standardized approaches makes it difficult to compare findings of in-vitro dynamic testing between laboratories. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Three-body problem in quantum mechanics: Hyperspherical elliptic coordinates and harmonic basis sets

    International Nuclear Information System (INIS)

    Aquilanti, Vincenzo; Tonzani, Stefano

    2004-01-01

    Elliptic coordinates within the hyperspherical formalism for three-body problems were proposed some time ago [V. Aquilanti, S. Cavalli, and G. Grossi, J. Chem. Phys. 85, 1362 (1986)] and recently have also found application, for example, in chemical reaction theory [see O. I. Tolstikhin and H. Nakamura, J. Chem. Phys. 108, 8899 (1998)]. Here we consider their role in providing a smooth transition between the known 'symmetric' and 'asymmetric' parametrizations, and focus on the corresponding hyperspherical harmonics. These harmonics, which will be called hyperspherical elliptic, involve products of two associated Lame polynomials. We will provide an expansion of these new sets in a finite series of standard hyperspherical harmonics, producing a powerful tool for future applications in the field of scattering and bound-state quantum-mechanical three-body problems

  16. Realizing all reduced syzygy sequences in the planar three-body problem

    International Nuclear Information System (INIS)

    Moeckel, Richard; Montgomery, Richard

    2015-01-01

    The configuration space of the planar three-body problem, reduced by rotations and with collisions excluded, has a rich topology which supports a large set of free homotopy classes. These classes have a simple description in terms of syzygy (or eclipse) sequences. Each homotopy class corresponds to a unique ‘reduced’ syzygy sequence. We prove that each reduced syzygy sequence is realized by a periodic solution of the rotation-reduced Newtonian planar three-body problem. The realizing solutions have small, nonzero angular momentum, repeatedly come very close to triple collision, and have lots of ‘stutters’—repeated syzygies of the same type, which cancel out up to homotopy. The heart of the proof stems from the work by one of us on symbolic dynamics arising out of the central configurations after the triple collision is blown up using McGehee's method. We end with a list of open problems. (paper)

  17. Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem

    Science.gov (United States)

    Nomikos, D. G.; Papageorgiou, V. G.

    2009-02-01

    We study the Anisotropic Stormer Problem (ASP) and the Isosceles Three-Body Problem (IP), from the viewpoint of integrability, using Morales-Ramis theory and its generalization. The study of their integrability presents particular interest since they model important physical phenomena. Both problems can be reduced with respect to the S1 symmetry. Almeida and Stuchi [M.A. Almeida, T.J. Stuchi, Non-integrability of the anisotropic Stormer problem with angular momentum, Physica D 189 (2004) 219-233] proved that the reduced ASP is non-integrable for almost all values of the parameters. In this paper we establish the non-integrability (in the extended Liouville sense) of the remaining cases. The IP is a special case of the three-body problem and it can be considered as a generalization of the Sitnikov problem. Here we prove that the complexified reduced IP does not admit an additional independent meromorphic first integral.

  18. Efimov three-body states on top of a Fermi sea

    International Nuclear Information System (INIS)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    The stabilization of Cooper pairs of bound electrons in the background of a Fermi sea is the origin of superconductivity and the paradigmatic example of the striking influence of many-body physics on few-body properties. In the quantum-mechanical three-body problem the famous Efimov effect yields unexpected scaling relations among a tower of universal states. These seemingly unrelated problems can now be studied in the same setup thanks to the success of ultracold atomic gas experiments. In light of the tremendous effect of a background Fermi sea on two-body properties, a natural question is whether a background can modify or even destroy the Efimov effect. Here we demonstrate how the generic problem of three interacting particles changes when one particle is embedded in a background Fermi sea, and show that Efimov scaling persists. It is found in a scaling that relates the three-body physics to the background density of fermionic particles

  19. Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)

    2010-05-14

    In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.

  20. The motion and control of a complex three-body space tethered system

    Science.gov (United States)

    Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei

    2017-11-01

    This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.

  1. Incorporation of threshold phenomena in the three-body Coulomb continuum wavefunctions

    International Nuclear Information System (INIS)

    Berakdar, J.

    1996-01-01

    In this work a three-body Coulomb wavefunction for the description of two continuum electrons moving in the field of a nucleus is constructed such that the Wannier threshold law for double escape is reproduced and the asymptotic Coulomb boundary conditions as well as the Kato cusp conditions are satisfied. It is shown that the absolute value of the total cross section, as well as the spin asymmetry, are well described by the present approach. Further, the excess-energy sharing between the two escaping electrons is calculated and analysed in light of the Wannier theory predictions. This is the first time an analytical three-body wavefunction is presented which is asymptotically exact and capable of describing threshold phenomena. 37 refs., 3 figs

  2. A method for solving a three-body problem with energy-dependent interactions

    International Nuclear Information System (INIS)

    Safronov, A.N.

    1994-01-01

    A method is proposed for solving a three-body problem with energy-dependent interactions. This method is based on introducing the dependence of scattering operators and state vectors on an additional external parameter. Effects caused by the energy dependence of the interaction operator are investigated by using the unitary condition for the amplitude of the 2 → 2 and 2 → 3 transitions. It is shown, in particular, that taking this dependence into account leads to a change in the relation between the asymptotic normalization factor of the wave function of the three-body bound state and the vertex constant of virtual dissociation (synthesis) of the system into two fragments. 15 refs

  3. The annihilation diagram in three-body D-meson decay

    International Nuclear Information System (INIS)

    Donoghue, J.F.; Holstein, B.R.

    1981-01-01

    We discuss some features of three-body decays of the D meson cohich are puzzling from the standpoint of the annihilation diagram. As a result, we (1) provide an upper bound on the lifetime ratio of D's, tau + sub(D)/tau 0 sub(D) smaller than 2.5 +- 3.4 and (2) argue that the puzzles are resolved, even if somewhat inelegantly, if final state interactions generate the annihilation diagram. (orig.)

  4. Relativistic three-body model of pion-deuton elasic scattering

    International Nuclear Information System (INIS)

    Giraud, Noel.

    1978-01-01

    The Aaron-Amado-Young equations for the relativistic three-body problem are derived following the Blauckenbecker - Sugar method. The angular momentum reduction is carried out using suitable relative momenta. The pion-deuteron elastic scattering is calculated using the equations in which relativistic kinematics are retained only for the pion. After a general study of the observables in the energy range 25 to 256 MeV, detailed calculations are performed at 142 MeV [fr

  5. Asymptotic form of three-body (dtμ)+ and (ddμ)+ wave functions

    International Nuclear Information System (INIS)

    Kino, Y.; Shimamura, I.; Armour, E.A.G.; Kamimura, M.

    1996-01-01

    In order to investigate a discrepancy between existing literature values for the normalization constant in the asymptotic form of three-body wave functions for (DTμ) + , we report the results of a new calculation of the normalization constants for this system as well as the related system (DDμ) + . These were obtained by fitting to accurate variational wave functions with special care being taken to describe the long-range behavior. (orig.)

  6. Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    International Nuclear Information System (INIS)

    Wei-Tao, Lu; Hua, Zhang; Shun-Jin, Wang

    2008-01-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge–Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP. (general)

  7. GENERAL: Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem

    Science.gov (United States)

    Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin

    2008-07-01

    Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.

  8. Three-body fragmentation of methane dications produced by slow A r8 + -ion impact

    Science.gov (United States)

    Zhang, Y.; Jiang, T.; Wei, L.; Luo, D.; Wang, X.; Yu, W.; Hutton, R.; Zou, Y.; Wei, B.

    2018-02-01

    The three-body fragmentation dynamics of CH4 2 + dications induced by single-electron capture of slow (3-keV/u) A r8 + ions is investigated. The experiment is performed on a newly built, highly charged ion collision platform which consists of an electron cyclotron resonance ion source and a cold target recoil ion momentum spectroscopy (COLTRIMS) setup. Using the COLTRIMS methodology, the complete kinematical information is determined for two three-body breakup channels, CH4 2 +→H++CH2 ++H and CH4 2 +→H2 ++C H++H . Then analyzing the complete kinematics with the Dalitz plot, very different fragmentation mechanisms (e.g., sequential and/or concerted pathway) are clearly identified for the two channels. To confirm the existence of some possible fragmentation pathways, we also simulate corresponding Dalitz plots employing a simple classical mechanical model. For the H++CH2 ++H channel, the dependence of the fragmentation pathway on its kinetic energy release is studied, which reflects the different nature of the corresponding states of CH4 2 + dications. Furthermore, the kinetic energy ratio of two ionic fragments is analyzed to infer the three-body fragmentation mechanism of CH4 2 + dications.

  9. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yunes, Nicolas, E-mail: snaoz@cfa.harvard.edu [Department of Physics, Montana State University, Bozeman, MT 59718 (United States)

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.

  10. Two-body and three-body correlations in Os-shell nuclei

    International Nuclear Information System (INIS)

    Halderson, D.W.

    1974-01-01

    It is well known that conventional Brueckner calculations with modern nucleon-nucleon potentials have failed to reproduce experimental saturation properties of finite nuclei. The intent was to determine whether the discrepancies are due to the methods of calculation or the nucleon-nucleon potentials. Brueckner procedures which include only two-body correlations were applied to Os-shell nuclei. Calculations were performed with and without the Hartree-Fock condition, with and without partial occupation probabilities, and with various propagators and Pauli correction techniques. Then the entire class of three-body correlations was calculated by matrix solution of the Bethe-Faddeev equations. The convergence necessary to validate this technique was achieved by constructing a set of basic functions which contain no center of mass excitations and yet are still properly antisymmetrized. The two-body calculations yielded typical Brueckner results. The nuclei were underbound or the radii were too small. However, the three-body calculations yielded reasonable radii and moderate overbinding for the Reid soft core and Hamada-Johnston potentials. Therefore, the Bethe-Faddeev formalism has been shown to be a reasonable approach to calculation of the three-body correlations in finite nuclei; and the results of []these calculations demonstrate that the underbinding and collapsed radii of two-body calculations were largely due to the uncalculated correlations. (auth)

  11. Lyapunov vs. geometrical stability analysis of the Kepler and the restricted three body problems

    International Nuclear Information System (INIS)

    Yahalom, A.; Levitan, J.; Lewkowicz, M.; Horwitz, L.

    2011-01-01

    In this Letter we show that although the application of standard Lyapunov analysis predicts that completely integrable Kepler motion is unstable, the geometrical analysis of Horwitz et al. predicts the observed stability. This seems to us to provide evidence for both the incompleteness of the standard Lyapunov analysis and the strength of the geometrical analysis. Moreover, we apply this approach to the three body problem in which the third body is restricted to move on a circle of large radius which induces an adiabatic time dependent potential on the second body. This causes the second body to move in a very interesting and intricate but periodic trajectory; however, the standard Lyapunov analysis, as well as methods based on the parametric variation of curvature associated with the Jacobi metric, incorrectly predict chaotic behavior. The geometric approach predicts the correct stable motion in this case as well. - Highlights: → Lyapunov analysis predicts Kepler motion to be unstable. → Geometrical analysis predicts the observed stability. → Lyapunov analysis predicts chaotic behavior in restricted three body problem. → The geometric approach predicts the correct stable motion in restricted three body problem.

  12. Transverse structure of tidal flow, residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    NARCIS (Netherlands)

    Huijts, K.M.H.|info:eu-repo/dai/nl/304831867; de Swart, H.E.|info:eu-repo/dai/nl/073449725; Schramkowski, G.P.; Schuttelaars, H.M.

    2011-01-01

    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak

  13. Stability and periodicity in the Sitnikov three-body problem when primaries are oblate spheroids

    Science.gov (United States)

    Rahman, M. A.; Garain, D. N.; Hassan, M. R.

    2015-05-01

    This paper deals with the effect of oblateness of the primaries of equal masses on the series solutions of the Sitnikov problem of three bodies. Effects of oblateness have also been shown on the stability of libration points and Poincare surface of section. Here series solutions have been developed with the help of iteration process of Green's function and by the Lindstedt-Poincare method. Following Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) we have checked the stability of the equilibrium points in the Sitnikov problem. Periodicity and quasi-periodicity have been examined by drawing the Poincare surfaces of section using the mathematical software.

  14. On the motion of classical three-body system with consideration of quantum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Gevorkyan, A. S., E-mail: g-ashot@sci.am [NAS of RA, Institute for Informatics and Automation Problems (Armenia)

    2017-03-15

    We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.

  15. Correlation properties of a three-body bosonic mixture in a harmonic trap

    International Nuclear Information System (INIS)

    Barfknecht, R E; Foerster, A; Dehkharghani, A S; Zinner, N T

    2016-01-01

    We make use of a simple pair correlated wave function approach to obtain results for the ground-state densities and momentum distribution of a one-dimensional three-body bosonic system with different interactions in a harmonic trap. For equal interactions this approach is able to reproduce the known analytical cases of zero and infinite repulsion. We show that our results for the correlations agree with the exact diagonalization in all interaction regimes and with analytical results for the strongly repulsive impurity. This method also enables us to access the more complicated cases of mixed interactions, and the probability densities of these systems are analyzed. (paper)

  16. Explicit solution of the quantum three-body Calogero-Sutherland model

    CERN Document Server

    Perelomov, A.M.; Zaugg, P.

    1998-01-01

    Quantum integrable systems generalizing Calogero-Sutherland systems were introduced by Olshanetsky and Perelomov (1977). Recently, it was proved that for systems with trigonometric potential, the series in the product of two wave functions is a deformation of the Clebsch-Gordan series. This yields recursion relations for the wave functions of those systems. In this note, this approach is used to compute the explicit expressions for the three-body Calogero-Sutherland wave functions, which are the Jack polynomials. We conjecture that similar results are also valid for the more general two-parameters deformation introduced by Macdonald.

  17. Continuous atom laser with Bose-Einstein condensates involving three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, A V; Michinel, H; Novoa, D [Area de Optica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain); Olivieri, D N, E-mail: avcarpentier@uvigo.e [Area de Linguaxes e sistemas informaticos, Escola Superior de EnxenerIa Informatica, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain)

    2010-05-28

    We demonstrate, through numerical simulations, the emission of a coherent continuous matter wave of constant amplitude from a Bose-Einstein condensate in a shallow optical dipole trap. The process is achieved by spatial control of the variations of the scattering length along the trapping axis, including elastic three-body interactions due to dipole interactions. In our approach, the outcoupling mechanism is atomic interactions, and thus, the trap remains unaltered. We calculate analytically the parameters for the experimental implementation of this continuous wave atom laser.

  18. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  19. Emerging bosons with three-body interactions from spin-1 atoms in optical lattices

    International Nuclear Information System (INIS)

    Mazza, L.; Rizzi, M.; Cirac, J. I.; Lewenstein, M.

    2010-01-01

    We study two many-body systems of bosons interacting via an infinite three-body contact repulsion in a lattice: a pairs quasicondensate induced by correlated hopping and the discrete version of the Pfaffian wave function. We propose to experimentally realize systems characterized by such interaction by means of a proper spin-1 lattice Hamiltonian: spin degrees of freedom are locally mapped into occupation numbers of emerging bosons, in a fashion similar to spin-1/2 and hardcore bosons. Such a system can be realized with ultracold spin-1 atoms in a Mott insulator with a filling factor of 1. The high versatility of these setups allows us to engineer spin-hopping operators breaking the SU(2) symmetry, as needed to approximate interesting bosonic Hamiltonians with three-body hardcore constraint. For this purpose we combine bichromatic spin-independent superlattices and Raman transitions to induce a different hopping rate for each spin orientation. Finally, we illustrate how our setup could be used to experimentally realize the first setup, that is, the transition to a pairs quasicondensed phase of the emerging bosons. We also report on a route toward the realization of a discrete bosonic Pfaffian wave function and list some open problems for reaching this goal.

  20. 3He(d,p)4He reaction calculation with three-body Faddeev equations

    International Nuclear Information System (INIS)

    Oryu, S.; Uzu, E.; Sunahara, H.; Yamada, T.; Tabaru, G.; Hino, T.

    1998-01-01

    In order to investigate the 3 He-n-p system as a three-body problem, we have formulated 3 He-n and 3 H-p effective potentials using both a microscopic treatment and a phenomenological approach. In the microscopic treatment, potentials are generated by means of the resonating group method (RGM) based on the Minnesota nucleon-nucleon potential. These potentials are converted into separable form by means of the microscopic Pauli correct (MPC) method. The MPC potentials are properly formulated to avoid Pauli forbidden states. The phenomenological potentials are obtained by modifying parameters of the EST approximation to the Paris nucleon-nucleon potential, such that they fit the low-energy 3 He-n, 3 H-p, and 3 He-p phase shifts. Therefore, they describe the 3 He-n differential cross section, the polarization observables, and the energy levels of 4 He. The 3 He-n-p Faddeev equations are solved numerically. We reproduce correctly the ground state and the first excited state of 5 Li. Furthermore, the Paris-type potential is used to investigate the 3 He(d,p) 4 He reaction at a deuteron bombarding energy of 270 MeV, where the system is treated as a three-body problem. Results for the polarized and unpolarized differential cross sections demonstrate convergence of the Born series. (orig.)

  1. Exact Analytical Solutions in Three-Body Problems and Model of Neutrino Generator

    Directory of Open Access Journals (Sweden)

    Takibayev N.Zh.

    2010-04-01

    Full Text Available Exact analytic solutions are obtained in three-body problem for the scattering of light particle on the subsystem of two fixed centers in the case when pair potentials have a separable form. Solutions show an appearance of new resonance states and dependence of resonance energy and width on distance between two fixed centers. The approach of exact analytical solutions is expanded to the cases when two-body scattering amplitudes have the Breit-Wigner’s form and employed for description of neutron resonance scattering on subsystem of two heavy nuclei fixed in nodes of crystalline lattice. It is shown that some resonance states have widths close to zero at the certain values of distance between two heavy scatterer centers, this gives the possibility of transitions between states. One of these transitions between three-body resonance states could be connected with process of electron capture by proton with formation of neutron and emission of neutrino. This exoenergic process leading to the cooling of star without nuclear reactions is discussed.

  2. Coulomb Fourier transformation: A novel approach to three-body scattering with charged particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Levin, S.B.; Yakovlev, S.L.

    2004-01-01

    A unitary transformation of the three-body Hamiltonian which describes a system of two charged and one neutral particles is constructed such that the Coulomb potential which acts between the charged particles is explicitly eliminated. The transformed Hamiltonian and, in particular, the transformed short-range pair interactions are worked out in detail. Thereby it is found that, after transformation, the short-range potentials acting between the neutral and either one of the charged particles become simply Fourier transformed but, in addition, multiplied by a function that represents the Coulombic three-body correlations originating from the action of the other charged particle on the considered pair. This function which is universal as it does not depend on any property of the short-range interaction is evaluated explicitly and its singularity structure is described in detail. In contrast, the short-range potential between the charged particles remains of two-body type but occurs now in the 'Coulomb representation'. Specific applications to Yukawa and Gaussian potentials are given. Since the Coulomb-Fourier-transformed Hamiltonian does no longer contain the Coulomb potential or any other effective interaction of long range, standard methods of short-range few-body scattering theory are applicable

  3. Effect of three-body interactions on the zero-temperature equation of state of HCP solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-03-01

    Previous studies have pointed to the importance of three-body interactions in high density 4He solids. However the computational cost often makes it unfeasible to incorporate these interactions into the simulation of large systems. We report the implementation and evaluation of a computationally efficient perturbative treatment of three-body interactions in hexagonal close packed solid 4He utilizing the recently developed nonadditive three-body potential of Cencek et al. This study represents the first application of the Cencek three-body potential to condensed phase 4He systems. Ground state energies from quantum Monte Carlo simulations, with either fully incorporated or perturbatively treated three-body interactions, are calculated in systems with molar volumes ranging from 21.3 cm3/mol down to 2.5 cm3/mol. These energies are used to derive the zero-temperature equation of state for comparison against existing experimental and theoretical data. The equations of state derived from both perturbative and fully incorporated three-body interactions are found to be in very good agreement with one another, and reproduce the experimental pressure-volume data with significantly better accuracy than is obtained when only two-body interactions are considered. At molar volumes below approximately 4.0 cm3/mol, neither two-body nor three-body equations of state are able to accurately reproduce the experimental pressure-volume data, suggesting that below this molar volume four-body and higher many-body interactions are becoming important.

  4. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    Science.gov (United States)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi

  5. Efimov states and bound state properties in selected nuclear and molecular three-body systems

    International Nuclear Information System (INIS)

    Huber, H.S.

    1978-01-01

    The search is made among selected three-body systems for possible Efimov state behavior. In order to carry out this analysis of phenomenological potentials a new mathematical approach, the FCM (Faddeev-coordinate-momentum) technique, is developed. The analysis then proceeds through the framework of the Faddeev equations by employing the UPE (unitary pole expansion) to reduce these equations to numerically feasible form. The systems chosen for analysis are the 4 He trimer and the three-α model of 12 C. Efimov states are not found in 12 C, thus answering speculation among nuclear theorists. The 4 He trimer, on the other hand, manifests Efimov states for each potential considered and the characteristics of these states are extensively analyzed. Since Efimov states are predicted by all of the phenomenological potentials considered, these states would seem to be a realistically fundamental property of the 4 He trimer system

  6. On the Fokker-Planck theory of electron three-body recombination

    International Nuclear Information System (INIS)

    Sayasov, Yu. S.

    1977-01-01

    The Fokker-Planck theory of electron three-body recombination based on the concept of electron diffusion along the energy scale in the excited hydrogen-like atoms formed in the recombining plasmas, is extended in several respects. 1) An universal formula for population distribution of the excited atoms in strongly ionized plasmas was found under a sole assumption, that the cross-sections for the inelastic atom-electron collisions are governed by the classical impulse approximation. 2) A general Fokker-Planck theory of the recombination in a slightly ionized, two-temperature plasmas was formulated. The recombination coefficients for such plasmas were shown to possess some peculiar properties in case the electronic temperature differs appreciable from the atomic one. A few limitations of the existing schemas for calculation of the recombination kinetics are briefly discussed. (orig.) [de

  7. Shape space figure-8 solution of three body problem with two equal masses

    Science.gov (United States)

    Yu, Guowei

    2017-06-01

    In a preprint by Montgomery (https://people.ucsc.edu/~rmont/Nbdy.html), the author attempted to prove the existence of a shape space figure-8 solution of the Newtonian three body problem with two equal masses (it looks like a figure 8 in the shape space, which is different from the famous figure-8 solution with three equal masses (Chenciner and Montgomery 2000 Ann. Math. 152 881-901)). Unfortunately there is an error in the proof and the problem is still open. Consider the α-homogeneous Newton-type potential, 1/rα, using action minimization method, we prove the existence of this solution, for α \\in (1, 2) ; for α=1 (the Newtonian potential), an extra condition is required, which unfortunately seems hard to verify at this moment.

  8. Three-Body Collision Contributions to Recombination and Collision-Induced Dissociation. II. Kinetics

    International Nuclear Information System (INIS)

    Kendrick, Brian; Pack, Russell T.; Walker, Robert B.

    1998-01-01

    Detailed rate constants for the reaction Ne + Ne + H r e quilibrium Ne 2 + H are generated, and the master equations governing collision-induced dissociation (CID) and recombination are accurately solved numerically. The temperature and pressure dependence are explored. At all pressures, three-body (3B) collisions dominate. The sequential two-body energy-transfer (ET) mechanism gives a rate that is more than a factor of two too small at low pressures and orders of magnitude too small at high pressures. Simpler models are explored; to describe the kinetics they must include direct 3B rates connecting the continuum to the bound states and to the quasibound states. The relevance of the present reaction to more general CID/recombination reactions is discussed. For atomic fragments, the 3B mechanism usually dominates. For diatomic fragments,the 3B and ET mechanism are competitive, and for polyatomic fragments the ET mechanism usually dominates

  9. Asymptotic form of the charge exchange cross section in the three body rearrangement collisions

    Science.gov (United States)

    Omidvar, K.

    1975-01-01

    A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.

  10. Electron capture in proton collisions with alkali atoms as a three-body problem

    International Nuclear Information System (INIS)

    Avakov, G.V.; Blokhintsev, L.D.; Kadyrov, A.S.; Mukhamedzhanov, A.M.

    1992-01-01

    A previous paper proposed an approach to the calculation of electron transfer reactions in ion-atomic collisions based on the Faddeev three-body equations written in the Alt-Grassberger-Sandhas form. In the present work this approach is used to describe the electron capture in proton collisions with alkali atoms. The results of calculation of the total and partial cross sections for charge exchange in proton collisions with Li, Na, K and Rb atoms are presented. The calculated total cross sections are in good agreement with experiment for light target atoms. In going over to heavier targets, the theoretical total cross sections, while agreeing in form, tend to be larger than the experimental ones. The calculated partial cross sections for electron capture into the 2s state of the H atom are also in agreement with experiment. Some other partial cross sections were also calculated. (author)

  11. Three-Body Recombination near a Narrow Feshbach Resonance in Li 6

    Science.gov (United States)

    Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo

    2018-05-01

    We experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s -wave magnetic Feshbach resonance of Li 6 - Li 6 at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μ K to above 200 μ K , we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures.

  12. Time-frequency analysis of the restricted three-body problem: transport and resonance transitions

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V; Marsden, Jerrold E

    2004-01-01

    A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space

  13. Tails and bridges in the parabolic restricted three-body problem

    Science.gov (United States)

    Barrabés, Esther; Cors, Josep M.; Garcia-Taberner, Laura; Ollé, Mercè

    2017-12-01

    After a close encounter of two galaxies, bridges and tails can be seen between or around them. A bridge would be a spiral arm between a galaxy and its companion, whereas a tail would correspond to a long and curving set of debris escaping from the galaxy. The goal of this paper is to present a mechanism, applying techniques of dynamical systems theory, that explains the formation of tails and bridges between galaxies in a simple model, the so-called parabolic restricted three-body problem, i.e. we study the motion of a particle under the gravitational influence of two primaries describing parabolic orbits. The equilibrium points and the final evolutions in this problem are recalled,and we show that the invariant manifolds of the collinear equilibrium points and the ones of the collision manifold explain the formation of bridges and tails. Massive numerical simulations are carried out and their application to recover previous results are also analysed.

  14. Measurements of Charmless Three-Body and Quasi-Two-Body B Decays

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-28

    The authors present preliminary results of a search for several exclusive charmless hadronic B decays from electron-positron annihilation data collected by the BaBar detector near the Upsilon(4S) resonance. These include three-body decay modes with final states h{+-}h{sup minus-plus}h{+-} and h{+-}h{sup minus-plus}pi{sup 0}, and quasi-two-body decay modes with final states X{sup 0}h and X{sup 0}K{sub S}{sup 0}, where h = pi or K and X{sup 0} = eta-prime or omega. They find beta(B{sup 0} --> rho{sup minus-plus}pi{sup {+-}}) = (49{+-}13{sub {minus}5}{sup +6}) x 10{sup {minus}6} and beta(B{sup +} --> eta-prime-K{sup +}) = (62{+-}18{+-}8) x 10{sup {minus}6} and present upper limits for right other decays.

  15. Analysis of the neutralino system in three-body leptonic decays of neutralinos

    International Nuclear Information System (INIS)

    Choi, S.Y.; Chung, B.C.; Kalinowski, J.; Rolbiecki, K.; Kim, Y.G.

    2006-01-01

    Neutralinos χ 0 in supersymmetric theories, the spin-1/2 Majorana-type superpartners of the U(1) and SU(2) neutral electroweak gauge bosons and SU(2) neutral Higgs bosons, are expected to be among light supersymmetric particles so that they can be produced copiously via direct pair production and/or from cascade decays of other sparticles such as sleptons at the planned Large Hadron Collider and the prospective International Linear Collider. Considering the prospects of having both highly polarized neutralinos and possibility of reconstructing their decay rest frames, we provide a systematic investigation of the three-body leptonic decays of the neutralinos in the minimal supersymmetric standard model and demonstrate alternative ways for probing the Majorana nature of the neutralinos and CP violation in the neutralino system. (orig.)

  16. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    International Nuclear Information System (INIS)

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu; Morinaga, Atsuo; Yamashita, Makoto

    2011-01-01

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10 7 atoms starting from 6.6x10 9 thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically a possibility of producing large condensates, more than 10 8 sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.

  17. Three-body coupled-channel theory of scattering and breakup of light and heavy ions

    International Nuclear Information System (INIS)

    Kamimura, M.; Kameyama, H.; Kawai, M.; Sakuragi, Y.; Iseri, Y.; Yahiro, M.; Tanifuji, M.

    1986-09-01

    It is shown that the method of coupled discretized continuum channels (CDCC) based on the three-body model for direct reactions is very successful in explaining the following, recently developed experiments using deuteron, 6 Li and 7 Li projectiles whose breakup threshold energies are very low: (i) Precise measurement of all the possible analyzing powers in elastic scattering of polarized deuteron at 56 MeV, (ii) scattering of polarized deuteron at intermediate energies, (iii) deuteron projectile breakup at 56 MeV, (iv) scattering of polarized 7 Li at 20 and 44 MeV and (v) projectile breakup of 6 Li at 178 MeV and 7 Li at 70 MeV. The CDCC analyses of those data are made transparently with no adjustable parameters. (author)

  18. On an efficient and accurate method to integrate restricted three-body orbits

    Science.gov (United States)

    Murison, Marc A.

    1989-01-01

    This work is a quantitative analysis of the advantages of the Bulirsch-Stoer (1966) method, demonstrating that this method is certainly worth considering when working with small N dynamical systems. The results, qualitatively suspected by many users, are quantitatively confirmed as follows: (1) the Bulirsch-Stoer extrapolation method is very fast and moderately accurate; (2) regularization of the equations of motion stabilizes the error behavior of the method and is, of course, essential during close approaches; and (3) when applicable, a manifold-correction algorithm reduces numerical errors to the limits of machine accuracy. In addition, for the specific case of the restricted three-body problem, even a small eccentricity for the orbit of the primaries drastically affects the accuracy of integrations, whether regularized or not; the circular restricted problem integrates much more accurately.

  19. Muonic molecules as three-body Coulomb problem in adiabatic approximation

    International Nuclear Information System (INIS)

    Decker, M.

    1994-04-01

    The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d 3 Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)

  20. Solving the three-body Coulomb breakup problem using exterior complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  1. Mechanical properties and three-body wear of dental restoratives and their comparative flowable materials.

    Science.gov (United States)

    Schultz, Sabine; Rosentritt, Martin; Behr, Michael; Handel, Gerhard

    2010-01-01

    To compare wear performance and resistance to crack propagation (K1C) of commercial restorative materials and their flowable variations. A potential correlation between three-body wear and fracture toughness, modulus of elasticity, fracture work, Vickers hardness, and filler content was investigated. Seven restoratives (five composites, one ormocer, and one compomer) and their corresponding flowable materials were used to determine and compare the three-body wear with a bolus of millet-seed shells and rice food (Willytec). The wear characteristics were measured by profilometry after 50,000, 100,000, 150,000, and 200,000 loading cycles. The fracture toughness value, K1C (MPam1/2), for each single-edged notched specimen was measured in a three-point bending test (universal testing machine 1446, Zwick). Fracture work and modulus of elasticity were calculated from the load curves. Vickers hardness was measured (HV hardness tester, Zwick) according to DIN 50133. The veneering composite Sinfony (3M ESPE) was used as a reference material. Heavily filled composites experienced less wear than their flowable variations. The nanofiller composites revealed better wear results than hybrid composites, compomers, and ormocers. After 200,000 load cycles, the lowest wear rates were detected for Grandio (14 microm; Voco), and the highest mean values were found for Dyract AP (104 microm; Dentsply DeTrey). The values for fracture toughness (K1C) ranged from 0.82 to 3.64 MPam1/2. Highest K1C data was exhibited by the nanocomposite Nanopaq (Schutz Dental). All tested restorative materials exhibited higher fracture toughness than their low-viscosity variations. The wear resistance of the newer generation composites with incorporated nanofiller or microfiller particles increased to a high extent. Flowables show less resistance against wear and crack propagation because of their lower filler content. The reduced mechanical properties limit their use as a restorative to small noncontact

  2. Properties of three-body decay functions derived with time-like jet calculus beyond leading order

    International Nuclear Information System (INIS)

    Sugiura, Tetsuya

    2002-01-01

    Three-body decay functions in time-like parton branching are calculated using the jet calculus to the next-to-leading logarithmic (NLL) order in perturbative quantum chromodynamics (QCD). The phase space contributions from each of the ladder diagrams and interference diagrams are presented. We correct part of the results for the three-body decay functions calculated previously by two groups. Employing our new results, the properties of the three-body decay functions in the regions of soft partons are examined numerically. Furthermore, we examine the contribution of the three-body decay functions modified by the restriction resulting from the kinematical boundary of the phase space for two-body decay in the parton shower model. This restriction leads to some problems for the parton shower model. For this reason, we propose a new restriction introduced by the kinematical boundary of the phase space for two-body decay. (author)

  3. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions.

    Science.gov (United States)

    Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra

    2018-02-01

    Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.

  4. Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms.

    Science.gov (United States)

    Tretyakov, D B; Beterov, I I; Yakshina, E A; Entin, V M; Ryabtsev, I I; Cheinet, P; Pillet, P

    2017-10-27

    Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.

  5. Three-body charmful baryonic B decays B-bar→D(D*)NN-bar

    International Nuclear Information System (INIS)

    Cheng Haiyang; Yang Kweichou

    2002-01-01

    We study the charmful three-body baryonic B decays B-bar→D ( * ) NN-bar: the color-allowed modes B-bar 0 →D ( * )+ np-bar and the color-suppressed ones B-bar 0 →D ( * )0 pp-bar. While the D* + /D + production ratio is predicted to be of order 3, it is found that D 0 pp-bar has a similar rate as D* 0 pp-bar. It is pointed out that B-bar 0 →D(D*)NN-bar are dominated by the nucleon vector current or by vector meson intermediate states, whereas B-bar 0 →D 0 pp-bar proceeds mainly via the exchange of the axial-vector intermediate state a 1 (1260). The study of the NN-bar invariant mass distribution in general indicates a threshold baryon pair production; that is, a recoil charmed meson accompanied by a low mass baryon pair except that the spectrum of D 0 pp-bar has a hump at large pp-bar invariant mass m pp-bar ∼3.0 GeV

  6. Three-body correlations in the decay of $^{10}$He and $^{13}$Li

    CERN Document Server

    Jonson, B; Cortina-Gil, D; Simon, H; Emling, H; Nyman, G; Nilsson, T; Johansson, H T; Borge, M J G; Paschalis, S; Muenzenberg, G; Zhukov, M V; Weick, H; Pramanik, U Datta; LeBleis, T; Meister, M; Reifarth, R; Chulkov, L V; Lantz, M; Riisager, K; Mahata, K; Suemmerer, K; Langer, C; Chatillon, A; Richter, A; Kulessa, R; Palit, R; Aksyutina, Yu; Geissel, H; Aumann, T; Shulgina, N B; Prokopowicz, W; Forssen, C; Ickert, G; Fynbo, H O U; Tengblad, O; Boretzky, K

    2010-01-01

    The very exotic nuclear resonance systems. He-10 and Li-13, are produced in proton-knockout reactions from relativistic beams of Li-11 and Be-14. The experimentally determined energy and angular correlations between their decay products, He-8 + n + n and Li-11 + n + n, are analyzed using an expansion of decay amplitudes in a restricted set of hyperspherical harmonics. By considering only a small number of terms it is possible to extract the expansion coefficients directly from the experimental three-body correlations. This provides a model-independent way of getting information about the decay process. on the structure of the decaying nucleus and on the quantum characteristics of the binary subsystems The results show that the He-8 + n + n relative-energy spectrum can be interpreted as consisting of two resonances, an I-pi = 0(+) ground state and an excited I-pi = 2(+) state. The Li-11 + n + n relative-energy spectrum is interpreted as an I-pi = 3/2(-) ground state overlapping with excited states having a str...

  7. TMD parton distributions based on three-body decay functions in NLL order of QCD

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu

    2015-01-01

    Three-body decay functions in space-like parton branches are implemented to evaluate transverse-momentum-dependent (TMD) parton distribution functions in the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). Interference contributions due to the next-to-leading-order terms are taken into account for the evaluation of the transverse momenta in initial state parton radiations. Some properties of the decay functions are also examined. As an example, the calculated results are compared with those evaluated by an algorithm proposed in [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000)], [M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 63, 11402 (2001)], [G. Watt, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 31, 73 (2003)], and [A. D. Martin, M. G. Ryskin, and G. Watt, Eur. Phys. J. C 66, 167 (2010)], in which the TMD parton distributions are defined based on the k t -factorization method with angular ordering conditions due to interference effects

  8. Pharmacokinetics of a new subcutaneous diclofenac formulation administered to three body sites: quadriceps, gluteus, and abdomen.

    Science.gov (United States)

    Salomone, Salvatore; Piazza, Cateno; Vitale, Daniela Cristina; Cardì, Francesco; Gugliotta, Barbara; Drago, Filippo

    2014-02-01

    To assess the relative bioavailability of a new subcutaneous (SC) diclofenac hydroxypropyl b-cyclodextrin (HPbCD) formulation administered to three body sites: quadriceps, gluteus, and abdomen. This was a pilot, single-dose, randomized, three-way crossover relative bioavailability study. A total of 12 healthy subjects received a single SC injection of diclofenac HPbCD 50 mg/1 mL in the quadriceps, gluteus, or abdomen. The AUC was comparable after SC diclofenac HPbCD in the quadriceps, gluteus, and abdomen. The Cmax was comparable after SC administration in the quadriceps or abdomen, and ~ 17% higher in the gluteus. The absorption was rapid (30 minutes) after administration of the treatment at any site. The treatment was well tolerated. The relative bioavailability of SC diclofenac HPbCD was comparable when administered to the quadriceps, gluteus, and abdomen. The new diclofenac formulation can therefore be administered subcutaneously to any of these sites without clinically significant differences. A further adequately powered study would be necessary to reveal any differences among injection sites in terms of peak plasma concentration.

  9. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  10. Radiative and three-body recombination in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Lumma, D.; Terry, J.L.; Lipschultz, B.

    1997-01-01

    Significant recombination of the majority ion species has been observed in the divertor region of Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under detached conditions. This determination is made by analysis of the visible spectrum from the divertor, in particular the Balmer series line emission and the observed recombination continuum, including an apparent recombination edge at ∼375 nm. The analysis shows that the electron temperature in the recombining plasma is 0.8 endash 1.5 eV. The measured volume recombination rate is comparable to the rate of ion collection at the divertor plates. The dominant recombination mechanism is three-body recombination into excited states (e+e+D + Right-arrow D 0 +e), although radiative recombination (e+D + Right-arrow D 0 +hν) contributes ∼5% to the total rate. Analysis of the Balmer series line intensities (from n upper =3 through 10) shows that the upper levels of these transitions are populated primarily by recombination. Thus the brightnesses of the Balmer series (and Lyman series) are directly related to the recombination rate. copyright 1997 American Institute of Physics

  11. Studies of $C\\!P$-violation in charmless three-body $b$-hadron decays

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00401396

    Violation of combined charge and parity inversion ($C\\!P$) is a property of the Standard Model that results in a fundamental difference between particles and anti-particles. The single source of $C\\!P$-violation in the Standard Model is insufficient to explain the dominance of matter over anti-matter in the contemporary universe, however, thus far, there has been no clear observation of $C\\!P$-violation beyond the Standard Model. Constraints on various $C\\!P$-violating observables are now precise enough that these represent sensitive tests for physics beyond the Standard Model. This thesis firstly documents the observation of two three-body $b$-baryon decays, and measurements of their phase-space integrated $C\\!P$-asymmetries, which are some of the first to be performed on baryon decays. These measurements provide useful information on hadronisation in $b$-baryon decays, on the intermediate decay dynamics, and give a potential avenue to search for $C\\!P$-violation in baryon decays. An amplitude analysis of th...

  12. Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy

    Science.gov (United States)

    Hinde, Robert

    2008-03-01

    In the cryogenic low-density liquid and solid phases of H2 and D2, the H2 and D2 molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H2 and D2, calculations that employ a high-quality six-dimensional coupled-cluster H2-H2 potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H2 at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H2 droplets. We also present preliminary calculations of the spectra of mixed H2/D2 solids that show how positional disorder affects the spectral line shapes in these systems.

  13. Asymptotic form of the charge-exchange cross section in three-body rearrangement collisions

    Science.gov (United States)

    Omidvar, K.

    1975-01-01

    A three-body general-type rearrangement collision is considered in which the initial and final bound states are described by hydrogen-like wave functions. It is shown that the charge-exchange amplitude in the first Born approximation can be expanded at all incident energies in terms of the inverse powers of the principal quantum number (n). By expanding the exchange amplitude in this way, it is demonstrated conclusively that the cross section for capture into the s, p, and d states as well as for the sum over all the angular-momentum states is proportional to 1/n-cubed plus terms proportional to higher inverse odd powers of n. It is found that the low-lying levels cannot be scaled to the 1/n-cubed law irrespective of the value of the incident energy except in the case of capture into the s states in accordance with the Oppenheimer-Brinkman-Kramers approximation. Zeros and minima in the differential cross sections are given in the limit of high principal quantum number for electron capture by protons from atomic hydrogen and for positronium formation by proton-atomic hydrogen collisions.

  14. Three-body calculation of two-body threshold electrodisintegration of 3He and 3H

    International Nuclear Information System (INIS)

    Heimbach, C.R.; Lehman, D.R.; O'Connell, J.S.

    1977-01-01

    Threshold two-body electrodisintegration of 3 He and 3 H is investigated within the context of exact three-body theory. The calculations performed are based on the formalism of Gibson and Lehman. Careful consideration is given to the singularities of the disintegration Born amplitude for this case, since the momentum transfer is not zero, to assure validity of the numerical methods. Calculated results are compared with all the latest threshold 3 He electrodisintegration data which samples a range of scattered-electron angles, 92.6 0 0 , and incident electron energies, 40 MeV 0 3 H electrodisintegration for some of the same kinematics. The mechanism for the sharp rise as a function of excitation energy in the (e,e') cross section for theta/sub e/ approx. 90 0 due to the 2 S → 2 S monopole transition from Coulomb scattering is singled out by examination of the contributions to the Coulomb doublet amplitude. A similar analysis is carried out for the doublet and quartet transverse amplitudes where the 2 S → 4 P magnetic quadrupole transition dominates for excitation energies less than 20 MeV

  15. Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer

    CERN Document Server

    Sobczak, Krzysztof Grzegorz

    This thesis describes an exploratory work on three-body charmless neutral $B$ mesons decays containing either a $K_S$ or $\\pi^0$. The events are reconstructed with the LHCb spectrometer installed at Cern (Geneva, CH) recording the proton-proton collisions delivered by the Large Hadron Collider (LHC). The phenomenology of such modes is rich and covers the possibility to measure all angles of the unitarity triangle linked to the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The single example of the $\\gamma$ measurement is explored in this document. The LHC accelerator and the most relevant sub-detector elements of the LHCb spectrometer are described in details. In particular, emphasis is given to the calorimetry system for which the calibration and alignment of the PreShower (PRS) of the electromagnetic calorimeter has been performed. We used particles at minimum ionisation deposit for such a task. The calibration results until year 2011 are reported as well as the method of the PS alignment with respect to the tra...

  16. A study on basic theory for CDCC method for three-body model of deuteron scattering

    International Nuclear Information System (INIS)

    Kawai, Mitsuji

    1988-01-01

    Recent studies have revealed that the CDCC method is valid for treating the decomposition process involved in deuteron scattering on the basis of a three-body model. However, theoretical support has not been developed for this method. The present study is aimed at determining whether a solution by the CDCC method can be obtained 'correctly' from a 'realistic' model Hamiltonian for deuteron scattering. Some researchers have recently pointed out that there are some problems with the conventional CDCC calculation procedure in view of the general scattering theory. These problems are associated with asymptotic froms of the wave functions, convergence of calculations, and boundary conditions. Considerations show that the problem with asymptotic forms of the wave function is not a fatal defect, though some compromise is necessary. The problem with the convergence of calculations is not very serious either. Discussions are made of the handling of boundary conditions. Thus, the present study indicates that the CDCC method can be applied satisfactorily to actual deuteron scattering, and that the model wave function for the CDCC method is consistent with the model Hamiltonian. (Nogami, K.)

  17. AMS-02 positron excess and indirect detection of three-body decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Chia [Department of Physics, University of California, Davis, CA 95616 (United States); Huang, Wei-Chih [Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Huang, Xiaoyuan [Physik-Department T30d, Technische Universität München, James-Franck-Straße, D-85748 Garching (Germany); Low, Ian [High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Tsai, Yue-Lin Sming [Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Yuan, Qiang, E-mail: cheng@physics.ucdavis.edu, E-mail: wei-chih.huang@tu-dortmund.de, E-mail: huangxiaoyuan@gmail.com, E-mail: ilow@northwestern.edu, E-mail: smingtsai@gmail.com, E-mail: yuanq@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-03-01

    We consider indirect detection of meta-stable dark matter particles decaying into a stable neutral particle and a pair of standard model fermions. Due to the softer energy spectra from the three-body decay, such models could potentially explain the AMS-02 positron excess without being constrained by the Fermi-LAT gamma-ray data and the cosmic ray anti-proton measurements. We scrutinize over different final state fermions, paying special attention to handling of the cosmic ray background and including various contributions from cosmic ray propagation with the help of the LIKEDM package. It is found that primary decays into an electron-positron pair and a stable neutral particle could give rise to the AMS-02 positron excess and, at the same time, stay unscathed against the gamma-ray and anti-proton constraints. Decays to a muon pair or a mixed flavor electron-muon pair may also be viable depending on the propagation models. Decays to all other standard model fermions are severely disfavored.

  18. Three-body correlations in the decay of {sup 10}He and {sup 13}Li

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, H.T. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Aksyutina, Yu. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); ExtreMe Matter Institute, EMMI, GSI, D-64291 Darmstadt (Germany); Aumann, T.; Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Borge, M.J.G. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Chatillon, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Kurchatov Institute, RU-123182 Moscow (Russian Federation); Cortina-Gil, D. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); University of Santiago de Compostela, 15706 Santiago de Compostela (Spain); Datta Pramanik, U. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Emling, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Forssen, C. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Fynbo, H.O.U. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Geissel, H.; Ickert, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Jonson, B., E-mail: Bjorn.Jonson@chalmers.s [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Physics Department, CERN, CH-1211 Geneve 23 (Switzerland); Kulessa, R. [Instytut Fizyki, Universytet Jagiellonski, PL-30-059 Krakow (Poland); Langer, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lantz, M. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); LeBleis, T.; Mahata, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)

    2010-12-01

    The very exotic nuclear resonance systems, {sup 10}He and {sup 13}Li, are produced in proton-knockout reactions from relativistic beams of {sup 11}Li and {sup 14}Be. The experimentally determined energy and angular correlations between their decay products, {sup 8}He+n+n and {sup 11}Li+n+n, are analyzed using an expansion of decay amplitudes in a restricted set of hyperspherical harmonics. By considering only a small number of terms it is possible to extract the expansion coefficients directly from the experimental three-body correlations. This provides a model-independent way of getting information about the decay process, on the structure of the decaying nucleus and on the quantum characteristics of the binary subsystems. The results show that the {sup 8}He+n+n relative-energy spectrum can be interpreted as consisting of two resonances, an I{sup {pi}=}0{sup +} ground state and an excited I{sup {pi}=}2{sup +} state. The {sup 11}Li+n+n relative-energy spectrum is interpreted as an I{sup {pi}=}3/2{sup -} ground state overlapping with excited states having a structure similar to the 2{sup +} state in {sup 10}He but spread over several states due to the coupling to the I{sup {pi}=}3/2{sup -} core. The {sup 13}Li data also give evidence for a contribution of a configuration where the two neutrons occupy the d-shell.

  19. Evidence of three-body correlation functions in Rb+ and Sr2+ acetonitrile solutions

    Science.gov (United States)

    D'Angelo, P.; Pavel, N. V.

    1999-09-01

    The local structure of Sr2+ and Rb+ ions in acetonitrile has been investigated by x-ray absorption spectroscopy (XAS) and molecular dynamics simulations. The extended x-ray absorption fine structure above the Sr and Rb K edges has been interpreted in the framework of multiple scattering (MS) formalism and, for the first time, clear evidence of MS contributions has been found in noncomplexing ion solutions. Molecular dynamics has been used to generate the partial pair and triangular distribution functions from which model χ(k) signals have been constructed. The Sr2+ and Rb+ acetonitrile pair distribution functions show very sharp and well-defined first peaks indicating the presence of a well organized first solvation shell. Most of the linear acetonitrile molecules have been found to be distributed like hedgehog spines around the Sr2+ and Rb+ ions. The presence of three-body correlations has been singled out by the existence of well-defined peaks in the triangular configurations. Excellent agreement has been found between the theoretical and experimental data enforcing the reliability of the interatomic potentials used in the simulations. These results demonstrate the ability of the XAS technique in probing the higher-order correlation functions in solution.

  20. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, Vasily; Pastukhova, Tatiana; Chabak, Yuliia; Efremenko, Alexey [Pryazovskyi State Technical Univ., Mariupol (Ukraine); Shimizu, Kazumichi; Kusumoto, Kenta [Muroran Institute of Technology, Hokkaido (Japan); Brykov, Michail [Zaporozhye National Technical Univ., Zaporozhye (Ukraine)

    2018-02-15

    The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 C and 920 C improved the alloys' wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 - 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M{sub 7}C{sub 3} carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys' wear behaviour with chromium content increase.

  1. The mechanism of three-body process of energy transfer from excited xenon atoms to molecules

    International Nuclear Information System (INIS)

    Wojciechowski, K.; Forys, M.

    1999-01-01

    The mechanism of energy transfer from Xe(6 s[3/2] 1 ) resonance state (E=8.44 eV) and higher excited Xe(6p, 6p', 6 d) atoms produced in pulse radiolysis to molecules have been discussed. The analysis of the kinetic data for these processes shows that in the sensitized photolysis and radiolysis of Xe-M mixtures the excited atoms decay in 'ordinary' two-body reaction: Xe(6s[3/2] 1 0 )+M→products (r.1) and in fast 'accelerated' third order process: Xe(6s[3/2] 1 0 )+M+Xe→products (r.2) The discussion shows that three-body process occurs via reactions: Xe(6s[3/2] 1 0 )+Xe k w ↔ k d Xe 2 ** (r.2a) Xe 2 **+M k q →[Xe 2 M]*→products (r.2b) It was shown that this mechanism concerns also higher excited Xe atoms and can explain a similar process in He-M mixtures and suggests that it is a general mechanism of energy transfer in all irradiated rare gas-molecule systems

  2. Studies of continuum states in${16}$ Ne using three-body correlation techniques

    CERN Document Server

    Marganiec, J; Aksouh, F; Aksyutina, Yu; Alvarez-Pol, H; Aumann, T; Beceiro-Novo, S; Boretzky, K; Borge, M J G; Chartier, M; Chatillon, A; Chulkov, L V; Cortina-Gil, D; Emling, H; Ershova, O; Fraile, L M; Fynbo, H O U; Galaviz, D; Geissel, H; Heil, M; Hoffmann, D H H; Hoffmann, J; Johansson, H T; Jonson, B; Karagiannis, C; Kiselev, O A; Kratz, J V; Kulessa, R; Kurz, N; Langer, C; Lantz, M; Le Bleis, T; Lemmon, R; Litvinov, Yu A; Mahata, K; Müntz, C; Nilsson, T; Nociforo, C; Nyman, G; Ott, W; Panin, V; Paschalis, S; Perea, A; Plag, R; Reifarth, R; Richter, A; Rodriguez-Tajes, C; Rossi, D; Riisager, K; Savran, D; Schrieder, G; Simon, H; Stroth, J; Sümmerer, K; Tengblad, O; Weick, H; Wiescher, M; Wimmer, C; Zhukov, M V

    2015-01-01

    Two-proton decay of the unbound $ T_{z} =-2$ nucleus$^{16}$Ne , produced in one-neutron knockout from a 500 MeV/u$^{17}$Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, ( $ \\Gamma =0.082(15)$ MeV) above the$^{14}$O +p+p threshold, and two narrow resonances at $ E_{r} =3.220(46)$ MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2$^{+}$ state and the 0$^{+}$ ground state in$^{16}$Ne with its mirror nucleus$^{16}$C reveals a small Thomas-Ehrman shift (TES) of $ +70(46)$ keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for$^{16}$F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the$^{14}$O +p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the i...

  3. A non-orthogonal harmonic-oscillator basis for three-body problems

    International Nuclear Information System (INIS)

    Agrello, D.A.; Aguilera-Navarro, V.C.; Chacon, E.

    1979-01-01

    A set of harmonic-oscillator states suitable for the representation of the wave function of the bound states of a system of three identical particles, is presented. As an illustration of the possibilities of the states defined in this paper, they are applied in a variational determination of the lowest symmetric S state of 12 C, in the model of three structureless α particles interacting through the Coulomb force plus a phenomenological two-body force. (author) [pt

  4. Effects of three-body interactions in the parametric and modulational instabilities of Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Wamba, Etienne; Mohamadou, Alidou; Ekogo, Thierry B.; Atangana, Jacque; Kofane, Timoleon C.

    2011-01-01

    The parametric modulational instability for a discrete nonlinear Schrödinger equation with a cubic–quintic nonlinearity is analyzed. This model describes the dynamics of BECs, with both two- and three-body interatomic interactions trapped in an optical lattice. We identify and discuss the salient features of the three-body interaction in the parametric modulational instability. It is shown that the three-body interaction term can both, shift as well as narrow the window of parametric instability, and also change the behavior of a modulationally stable and parametrically unstable BEC with attractive two-body interaction. We explore this instability through the multiple-scale analysis and identify it numerically. The effect of the three body losses have also been investigated. -- Highlights: ► The parametric MI for the 1D GPE with a cubic–quintic nonlinearity is analyzed. ► The two- and three-body recombination and time-dependent scattering length is considered. ► We generate bright matter waves soliton through MI.

  5. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; North, S.W.; Stranges, D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  6. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  7. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    International Nuclear Information System (INIS)

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-01-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH 3 SOCH 3 ) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH 3 intermediate prior to dissociation to define a stepwise dissociation: (1) CH 3 SOCH 3 → 2CH 3 + SO; (2a) CH 3 SOCH 3 → CH 3 + SOCH 3 ; and (2b) SOCH 3 → SO + CH 3 . Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH 3 and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH 3 intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2

  8. Studies of continuum states in {sup 16}Ne using three-body correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Marganiec, J. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Wamers, F. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main (Germany); Aksouh, F.; Aksyutina, Yu.; Boretzky, K.; Chatillon, A.; Emling, H.; Geissel, H.; Heil, M.; Hoffmann, J.; Karagiannis, C.; Kiselev, O.A.; Kurz, N.; Litvinov, Yu.A.; Muentz, C.; Nociforo, C.; Ott, W.; Rossi, D.; Simon, H.; Suemmerer, K.; Weick, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Alvarez-Pol, H.; Beceiro-Novo, S.; Cortina-Gil, D.; Rodriguez-Tajes, C. [Universidade de Santiago de Compostela, Grupo de Fisica Nuclear, Santiago de Compostela (Spain); Aumann, T.; Panin, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Borge, M.J.G. [CERN, ISOLDE-EP, Geneva (Switzerland); CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Chartier, M. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kurchatov Institute, Moscow (Russian Federation); Ershova, O.; Langer, C.; Plag, R.; Reifarth, R.; Wimmer, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe Universitaet, Institut fuer Angewandte Physik, Frankfurt am Main (Germany); Fraile, L.M. [Universidad Complutense de Madrid, CEI Moncloa, Grupo de Fisica Nuclear, FAMN, Madrid (Spain); Fynbo, H.O.U.; Riisager, K. [University of Aarhus, Department of Physics and Astronomy, Aarhus (Denmark); Galaviz, D.; Perea, A.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Hoffmann, D.H.H.; Richter, A.; Schrieder, G. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Johansson, H.T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.V. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Kratz, J.V. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernchemie, Mainz (Germany); Kulessa, R. [Uniwersytet Jagellonski, Instytut Fizyki, Krakov (Poland); Lantz, M. [Uppsala Universitet, Institutionen foer fysik och astronomi, Uppsala (Sweden); Le Bleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Technische Universitaet Muenchen, Physik-Department E12, Garching (Germany); Lemmon, R. [STFC Daresbury Lab, Warrington, Nuclear Physics Group, Cheshire (United Kingdom); Mahata, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Bhabha Atomic Research Centre, Nuclear Physics Division, Trombay (India); Paschalis, S. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); University of Liverpool, Department of Physics, Liverpool (United Kingdom); Savran, D. [Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main (Germany); Stroth, J. [Goethe Universitaet, Institut fuer Angewandte Physik, Frankfurt am Main (Germany); Wiescher, M. [University of Notre Dame, JINA, Notre Dame, IN (United States)

    2015-01-01

    Two-proton decay of the unbound T{sub z} =-2 nucleus {sup 16}Ne, produced in one-neutron knockout from a 500 MeV/u {sup 17}Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, (Γ = 0.082(15) MeV) above the {sup 14}O+p+p threshold, and two narrow resonances at E{sub r} = 3.220(46) MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2{sup +} state and the 0{sup +} ground state in {sup 16}Ne with its mirror nucleus {sup 16}C reveals a small Thomas-Ehrman shift (TES) of +70(46) keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for {sup 16}F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the {sup 14}O+p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the intermediate nucleus {sup 15}F, the 3.22 MeV state predominantly via the {sup 15}F ground-state resonance, while the 7.57 MeV state decays via the 5/2{sup +} resonance in {sup 15}F at 2.8 MeV above the {sup 14}O+p+p threshold. Further, from an analysis of angular correlations, the spin-parity of the 7.57 MeV state has been determined as I{sup π} = 2{sup +} and assigned as the third 2{sup +} state in {sup 16}Ne based on a comparison with {sup 16}C. (orig.)

  9. Explicit representations for the T-matrix on unphysical energy sheets and resonances in two- and three-body systems

    International Nuclear Information System (INIS)

    Motovilov, A.K.

    2005-01-01

    We describe the basic structure of the two- and three-body T-matrices, scattering matrices, and resolvents continued to the unphysical energy sheets. The description is based on the explicit representations that have been found for analytically continued kernels of the T-operators. (author)

  10. Suitable configurations for triangular formation flying about collinear libration points under the circular and elliptic restricted three-body problems

    Science.gov (United States)

    Ferrari, Fabio; Lavagna, Michèle

    2018-06-01

    The design of formations of spacecraft in a three-body environment represents one of the most promising challenges for future space missions. Two or more cooperating spacecraft can greatly answer some very complex mission goals, not achievable by a single spacecraft. The dynamical properties of a low acceleration environment such as the vicinity of libration points associated to a three-body system, can be effectively exploited to design spacecraft configurations able of satisfying tight relative position and velocity requirements. This work studies the evolution of an uncontrolled formation orbiting in the proximity of periodic orbits about collinear libration points under the Circular and Elliptic Restricted Three-Body Problems. A three spacecraft triangularly-shaped formation is assumed as a representative geometry to be investigated. The study identifies initial configurations that provide good performance in terms of formation keeping, and investigates key parameters that control the relative dynamics between the spacecraft within the three-body system. Formation keeping performance is quantified by monitoring shape and size changes of the triangular formation. The analysis has been performed under five degrees of freedom to define the geometry, the orientation and the location of the triangle in the synodic rotating frame.

  11. Stability at Potential Maxima: The L-4 and L-5 Points of the Restricted Three-Body Problem.

    Science.gov (United States)

    Greenberg, Richard; Davis, Donald R.

    1978-01-01

    Describes a dynamical system which is stable at potential maxima. The maxima, called L-4 and L-5, are stable locations of the restricted three-body problem. Energy loss from the system will tend to drive it away from stability. (GA)

  12. Method of resonating groups in the Faddeev-Hahn equation formalism for three-body nuclear problem

    CERN Document Server

    Nasirov, M Z

    2002-01-01

    The Faddeev-Hahn equation formalism for three-body nuclear problem is considered. For solution of the equations the method of resonant groups have applied. The calculations of tritium binding energy and doublet nd-scattering length have been carried out. The results obtained shows that Faddeev-Hahn equation formalism is very simple and effective. (author)

  13. Quantifying the residual volume transport through a multiple-inlet system in response to wind forcing: The case of the western Dutch Wadden Sea

    NARCIS (Netherlands)

    Duran-Matute, M.; Gerkema, T.; Sassi, M.

    2016-01-01

    In multiple-inlet coastal systems like the western Dutch Wadden Sea, the tides (and their interaction with the bathymetry), the fresh water discharge, and the wind drive a residual flow through the system. In the current paper, we study the effect of the wind on the residual volume transport through

  14. Hyperspherical functions and quantum-mechanical three-body problem with application to carbon 12

    International Nuclear Information System (INIS)

    Letz, H.

    1975-01-01

    In this work a system of three identical particles (bosons) interacting by a particular two-body force is discussed. Using the complete set of the hyperspherical functions (K-harmonics), analytical expressions for eigenvalues and wave functions of the stationary states are found. The numerical evaluation gives a level sequence for a definite pair of potential parameters similar to that of the nucleus carbon 12

  15. Analysis tools for precision studies of hadronic three-body decays and transition form factors

    International Nuclear Information System (INIS)

    Schneider, Sebastian Philipp

    2013-01-01

    Due to the running coupling constant of Quantum Chromodynamics one of the pillars of the Standard Model, the strong interactions, is still insufficiently understood at low energies. In order to describe the interactions of hadrons that form in this physical regime, one has to devise methods that are non-perturbative in the strong coupling constant. In particular hadronic three-body decays and transition form factors present a great challenge due to the complex analytic structure ensued by strong final-state interactions. In this thesis we present two approaches to tackle these processes. In the first part we use a modified version of non-relativistic effective field theory to analyze the decay η→3π. This perturbative low-energy expansion is ideally suited to study the effects of ππ rescattering and contributes greatly to the understanding of the slope parameter of the η→3π 0 Dalitz plot, a quantity that is strongly influenced by final-state interactions and has presented a long-standing puzzle for theoretical approaches. In the second part we present dispersion relations as a non-perturbative means to study three-particle decays. Using the example of η'→ηππ we give a detailed introduction to the framework and its numerical implementation. We confront our findings with recent experimental data from the BES-III and VES collaborations and discuss whether the extraction of πη scattering parameters, one of the prime motives to study this decay channel, is feasible in such an approach. A more clear-cut application is given in our study of the decays ω/φ→3π due to the relative simplicity of this decay channel: our results are solely dependent on the ππ P-wave scattering phase shift. We give predictions for the Dalitz plot distributions and compare our findings to very precise data on φ→3π by the KLOE and CMD-2 collaborations. We also predict Dalitz plot parameters that may be determined in future high-precision measurements of ω→3π and

  16. Analysis tools for precision studies of hadronic three-body decays and transition form factors

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sebastian Philipp

    2013-02-14

    Due to the running coupling constant of Quantum Chromodynamics one of the pillars of the Standard Model, the strong interactions, is still insufficiently understood at low energies. In order to describe the interactions of hadrons that form in this physical regime, one has to devise methods that are non-perturbative in the strong coupling constant. In particular hadronic three-body decays and transition form factors present a great challenge due to the complex analytic structure ensued by strong final-state interactions. In this thesis we present two approaches to tackle these processes. In the first part we use a modified version of non-relativistic effective field theory to analyze the decay {eta}{yields}3{pi}. This perturbative low-energy expansion is ideally suited to study the effects of {pi}{pi} rescattering and contributes greatly to the understanding of the slope parameter of the {eta}{yields}3{pi}{sup 0} Dalitz plot, a quantity that is strongly influenced by final-state interactions and has presented a long-standing puzzle for theoretical approaches. In the second part we present dispersion relations as a non-perturbative means to study three-particle decays. Using the example of {eta}'{yields}{eta}{pi}{pi} we give a detailed introduction to the framework and its numerical implementation. We confront our findings with recent experimental data from the BES-III and VES collaborations and discuss whether the extraction of {pi}{eta} scattering parameters, one of the prime motives to study this decay channel, is feasible in such an approach. A more clear-cut application is given in our study of the decays {omega}/{phi}{yields}3{pi} due to the relative simplicity of this decay channel: our results are solely dependent on the {pi}{pi} P-wave scattering phase shift. We give predictions for the Dalitz plot distributions and compare our findings to very precise data on {phi}{yields}3{pi} by the KLOE and CMD-2 collaborations. We also predict Dalitz plot

  17. New approach to the theory of coupled πNN-NN system. III. A three-body limit

    International Nuclear Information System (INIS)

    Avishai, Y.; Mizutani, T.

    1980-01-01

    In the limit where the pion is restricted to be emitted only by the nucleon that first absorbed it, it is shown that the equations previously developed to describe the couple πNN (πd) - NN system reduce to conventional three-body equations. Specifically, it is found in this limit that the input πN p 11 amplitude which, put on-shell, is directly related to the experimental phase shift, contrary to the original equations where the direct (dressed) nucleon pole term and the non-pole part of this partial wave enter separately. The present study clarifies the limitation of pure three-body approach to the πNN-NN problems as well as suggests a rare opportunity of observing a possible resonance behavior in the non-pole part of the πN P 11 amplitude through πd experiments

  18. Dynamic behaviour of Bose-Einstein condensates in optical lattices with two- and three-body interactions

    International Nuclear Information System (INIS)

    Chen Yan; Chen Yong; Zhang Kezhi

    2009-01-01

    We study the dynamic behaviour of Bose-Einstein condensates with two- and three-atom interactions in optical lattices with analytical and numerical methods. It is found that the steady-state relative population displays tuning-fork bifurcation when the system parameters are changed to certain critical values. In particular, the existence of the three-body interaction not only transforms the bifurcation point of the system but also greatly affects the macroscopic quantum self-trapping behaviours associated with the critically stable steady-state solution. In addition, we investigated the influence of the initial conditions, three-body interaction, and the energy bias on the macroscopic quantum self-trapping. Finally, by applying the periodic modulation on the energy bias, we observed that the relative population oscillation exhibits a process from order to chaos, via a series of period-doubling bifurcations.

  19. What are the advantages of a three body model with core excitation for 21Ne and 21Na?

    International Nuclear Information System (INIS)

    Nunes, F.M.; Thompson, I.J.

    2004-01-01

    21 Ne and 21 Na are well bound nuclei and there is a large amount of data available up to considerable excitation energy, and this imposes a severe test on the structure models. Preliminary results for the structure of these nuclei based on three body models ( 21 Ne= 16 O+α+n and 21 Na= 16 O+α+p) are presented. Three-body calculations without core excitation produce the positive parity states in fair agreement with experiment, while slightly overbinding the systems. As expected, these models fail to reproduce the low lying negative parity states, which are predicted by shell model to have mainly core excited configurations. As a first step we have included the 3 - state of 16 O in our model. Convergence issues will be discussed. Results suggest that more excited states may be required to describe the system

  20. Determination of two- and three-body correlation functions in ionic solutions by means of MD and EXAFS investigations

    International Nuclear Information System (INIS)

    D'Angelo, P.; Pavel, N.V.

    1999-01-01

    The solvation structure of Sr 2+ ions in acetonitrile has been studied by x-ray absorption spectroscopy (XAS) and molecular dynamics (MD) simulations. The extended x-ray absorption fine structure (EXAFS) above the Sr K-edge has been interpreted in the framework of the multiple scattering (MS) formalism and, for the first time, clear evidence of MS contributions has been found for non-complexing ions in solution. Molecular dynamics has been used to generate the partial pair g(r) and the three-body g(r 1 , r 2 , θ) distribution functions from which a model χ(k) has been constructed. An excellent agreement has been found between the theoretical and experimental data. This result demonstrates the ability of the XAS technique in probing three-body correlation functions in solutions. (au)

  1. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    DEFF Research Database (Denmark)

    Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.

    2015-01-01

    to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length......We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the recombination rate...

  2. Pulsating Different Curves of Zero Velocity around Triangular Equilibrium Points in Elliptical Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    A. Narayan

    2013-01-01

    Full Text Available The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.

  3. Applications of the phase function method ideas for the investigation of the two- and three-body system properties

    International Nuclear Information System (INIS)

    Petrov, N.M.; Pushkash, A.M.

    1985-01-01

    In accordance with the main idea of the phase function method the two-body off-shell scattering amplitudes are considered as the limit of the scattering amplitude sequence corresponding to the sequence of the R-radius cut-off potentials. The explicit analytical expression for the scattering amplitudes function is obtained in the case of separable potentials, due to which the three-body problem is investigated

  4. Highly accurate bound state calculations of the two-center molecular ions by using the universal variational expansion for three-body systems

    Science.gov (United States)

    Frolov, Alexei M.

    2018-03-01

    The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.

  5. Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem.

    Science.gov (United States)

    Benson, Christopher R; Maffeo, Christopher; Fatila, Elisabeth M; Liu, Yun; Sheetz, Edward G; Aksimentiev, Aleksei; Singharoy, Abhishek; Flood, Amar H

    2018-05-07

    The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.

  6. The Analysis of Three-Body Contact Temperature under the Different Third Particle Size, Density, and Value of Friction

    Directory of Open Access Journals (Sweden)

    Horng-Wen Wu

    2017-10-01

    Full Text Available Recently, many studies have investigated the friction, wear, and temperature characteristics of the interface between two relative movements. Such analyses often set the coefficient of friction as a fixed value and are analyzed in cases of two-body contact; however, the interface is often a three-body contact and the coefficient of friction varies depending on the operating conditions. This is a significant error in the analysis of contact characteristics, therefore, in this study, the actual interface and the change of the coefficient of friction were analyzed based on three-body micro-contact theory where the contact temperature was also analyzed and the difference between the generally assumed values were compared. The results showed that under three-body contact, the coefficient of total friction increased with an increase in particle size; and at a different particle size and area density of particles, the surface contact temperature increased with the plasticity index and load increases, and the particle contact temperature increased with the increasing particle size. The surface temperature rise was mainly affected by the ratio of the average temperature between surface 1 and surface 2 to the multiplication between the 100th root of the area density of particles and the square root of the equivalent surface roughness (Ts1s2_ave*/ηa0.01σ0.5 and the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001. Particle temperature was mainly affected by the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001 and the area density of particles ηa. Our study indicated that when the contact of surface with surface and the contact of the particles with the surface, the resulting heat balance was assigned to the particles and the surface in a three-body contact situation. Under this contact behavior, it could avoid

  7. Explicit demonstration of the convergence of the close-coupling method for a Coulomb three-body problem

    International Nuclear Information System (INIS)

    Bray, I.; Stelbovics, A.T.

    1992-01-01

    Convergence as a function of the number of states is studied and demonstrated for the Poet-Temkin model of electron-hydrogen scattering. In this Coulomb three-body problem only the l=0 partial waves are treated. By taking as many as thirty target states, obtained by diagonalizing the target Hamiltonian in a Laguerre basis, complete agreement with the smooth results of Poet is obtained at all energies. We show that the often-encountered pseudoresonance features in the cross sections are simply an indication of an inadequate target state representation

  8. One-dimensional reduction of the three-dimenstional Gross-Pitaevskii equation with two- and three-body interactions

    International Nuclear Information System (INIS)

    Cardoso, W. B.; Avelar, A. T.; Bazeia, D.

    2011-01-01

    We deal with the three-dimensional Gross-Pitaevskii equation which is used to describe a cloud of dilute bosonic atoms that interact under competing two- and three-body scattering potentials. We study the case where the cloud of atoms is strongly confined in two spatial dimensions, allowing us to build an unidimensional nonlinear equation,controlled by the nonlinearities and the confining potentials that trap the system along the longitudinal coordinate. We focus attention on specific limits dictated by the cubic and quintic coefficients, and we implement numerical simulations to help us to quantify the validity of the procedure.

  9. Residual Structures in Latent Growth Curve Modeling

    Science.gov (United States)

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  10. Three-body and four-body photodisintegrations of the 4He nuclei in the Δ region

    International Nuclear Information System (INIS)

    Niki, Kazuaki

    1991-01-01

    The differential and total cross sections were measured for the three-body (pnd) and four-body (ppnn) final states in photodisintegration of 4 He in an energy range between 125 and 445 MeV. The kinematic variables were determined in an almost complete way, using a large acceptance spectrometer together with the use of tagged photons of an energy resolution of 10 MeV. We have found that the three-body reaction 4 He(γ, pn)d makes a dominant contribution among various processes which lead to non-mesonic final states. The behavior of the 4 He(γ, pn)d cross section is well described by the quasi-deuteron model (QDM). On the other hand, the four-body breakup cross sections are not consistent with the prediction of the QDM. For these four-body reactions, photon absorption by three-nucleon clusters seems to give a dominant effect. The four-body cross sections also show a broad enhancement around 300 to 400 MeV, indicating a possible participation of the Δ to the reactions. (author)

  11. Density-functional approach to the three-body dispersion interaction based on the exchange dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Proynov, Emil; Wang, Matthew; Kong, Jing, E-mail: jing.kong@mtsu.edu [Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Liu, Fenglai [Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260 (United States); Gan, Zhengting [Q-Chem Inc., 5001 Baum Boulevard, Pittsburgh, Pennsylvania 15213 (United States)

    2015-08-28

    We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C{sub 9} dispersion coefficients is done in a non-empirical fashion. The obtained C{sub 9} values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C{sub 9} values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at short distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He{sub 3} and Ar{sub 3} trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters.

  12. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    International Nuclear Information System (INIS)

    Mikkelsen, M; Jensen, A S; Fedorov, D V; Zinner, N T

    2015-01-01

    We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length is usually related to the non-equal two-body systems. We account for temperature smearing which tends to wipe out the higher-lying Efimov peaks. The range and the strength of the imaginary potential determine positions and shapes of the Efimov peaks as well as the absolute value of the recombination rate. The Efimov scaling between recombination peaks is calculated and shown to depend on both scattering lengths. Recombination is predicted to be largest for heavy–heavy–light systems. Universal properties of the optical parameters are indicated. We compare to available experiments and find in general very satisfactory agreement. (paper)

  13. High-Order Analytic Expansion of Disturbing Function for Doubly Averaged Circular Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2016-01-01

    Full Text Available Terms in the analytic expansion of the doubly averaged disturbing function for the circular restricted three-body problem using the Legendre polynomial are explicitly calculated up to the fourteenth order of semimajor axis ratio (α between perturbed and perturbing bodies in the inner case (α1. The expansion outcome is compared with results from numerical quadrature on an equipotential surface. Comparison with direct numerical integration of equations of motion is also presented. Overall, the high-order analytic expansion of the doubly averaged disturbing function yields a result that agrees well with the numerical quadrature and with the numerical integration. Local extremums of the doubly averaged disturbing function are quantitatively reproduced by the high-order analytic expansion even when α is large. Although the analytic expansion is not applicable in some circumstances such as when orbits of perturbed and perturbing bodies cross or when strong mean motion resonance is at work, our expansion result will be useful for analytically understanding the long-term dynamical behavior of perturbed bodies in circular restricted three-body systems.

  14. On the cosmic-ray spectra of three-body lepton-flavor-violating dark matter decays

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Cukierman, Ari; Primulando, Reinard

    2011-01-01

    We consider possible leptonic three-body decays of spin-1/2, charge-asymmetric dark matter. Assuming a general Dirac structure for the four-fermion contact interactions of interest, we study the cosmic-ray electron and positron spectra and show that good fits to the current data can be obtained for both charged-lepton-flavor-conserving and flavor-violating decay channels. We find that different choices for the Dirac structure of the underlying decay operator can be significantly compensated by different choices for the dark matter mass and lifetime. The decay modes we consider provide differing predictions for the cosmic-ray positron fraction at energies higher than those currently probed at the PAMELA experiment; these predictions might be tested at cosmic-ray detectors like AMS-02.

  15. Experimental Study of Three-body Cabibbo-suppressed D0 Decays and Extraction of Cp Violation Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kalanand; /Nehru U.

    2008-02-22

    The authors present measurements of the relative branching ratios, Dalitz plot structures and CP-asymmetry values in the three-body singly Cabibbo-suppressed decays D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0} {yields} K{sup -}K{sup +}{pi}{sup 0} using data collected by the BABAR detector at the PEP-II asymmetric-energy ring at SLAC. The author applies the results of the D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup 0} analysis to extracting CP-violation parameters related to the CKM angle {gamma} (or {phi}{sub 3}) using the decay B{sup -} {yields} D{sub {pi}{sup +}{pi}{sup -}{pi}{sup 0}} K{sup -}.

  16. Three-body decays of Higgs bosons at LEP2 and application to a hidden fermiophobic Higgs

    International Nuclear Information System (INIS)

    Akeroyd, A.G.

    1999-01-01

    We study the decays of Higgs bosons to a lighter Higgs boson and a virtual gauge boson in the context of the non-supersymmetric two-Higgs doublet model (2HDM). We consider the phenomenological impact at LEP2 and find that such decays, when open, may be dominant in regions of parameter space and thus affect current Higgs boson search techniques. Three-body decays would be a way of producing light neutral Higgs bosons which have so far escaped detection at LEP due to suppressed couplings to the Z, and are of particular importance in the 2HDM (Model I) which allows both a light fermiophobic Higgs and a light charged scalar

  17. Existence and Linear Stability of Equilibrium Points in the Robe’s Restricted Three-Body Problem with Oblateness

    Directory of Open Access Journals (Sweden)

    Jagadish Singh

    2012-01-01

    Full Text Available This paper investigates the positions and linear stability of an infinitesimal body around the equilibrium points in the framework of the Robe’s circular restricted three-body problem, with assumptions that the hydrostatic equilibrium figure of the first primary is an oblate spheroid and the second primary is an oblate body as well. It is found that equilibrium point exists near the centre of the first primary. Further, there can be one more equilibrium point on the line joining the centers of both primaries. Points on the circle within the first primary are also equilibrium points under certain conditions and the existence of two out-of-plane points is also observed. The linear stability of this configuration is examined and it is found that points near the center of the first primary are conditionally stable, while the circular and out of plane equilibrium points are unstable.

  18. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  19. Measurements of $C\\!P$ violation in the three-body phase space of charmless $B^{\\pm}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gavrilov, Gennadii; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    The charmless three-body decay modes $B^{\\pm} \\rightarrow K^{\\pm} \\pi^{+} \\pi^{-}$, $B^{\\pm} \\rightarrow K^{\\pm} K^{+} K^{-}$, $B^{\\pm} \\rightarrow \\pi^{\\pm} K^{+} K^{-}$ and $B^{\\pm} \\rightarrow \\pi^{\\pm} \\pi^{+} \\pi^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb detector. The inclusive $C\\!P$ asymmetries of these modes are measured to be \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow K^{\\pm} \\pi^{+} \\pi^{-})= +0.025 \\pm 0.004 \\pm 0.004 \\pm 0.007, \\end{eqnarray} \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow K^{\\pm} K^{+} K^{-}) = -0.036 \\pm 0.004 \\pm 0.002 \\pm 0.007, \\end{eqnarray} \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow \\pi^{\\pm} \\pi^{+} \\pi^{-})= +0.058 \\pm 0.008 \\pm 0.009 \\pm 0.007, \\end{eqnarray} \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow \\pi^{\\pm} K^{+} K^{-})= -0.123 \\pm 0.017 \\pm 0.012 \\pm 0.007, \

  20. Ionization of atoms or ions by electron or proton impact; calculations with the classical three-body theory. ch. 3

    International Nuclear Information System (INIS)

    Boesten, L.G.J.

    1978-01-01

    Calculations on the threshold ionization of H, He + and Li 2+ by electrons have been performed to study the so-called 'post-collision interaction' (P.C.I.) effects which appear to affect the threshold ionization process significantly. These effects are caused by the long range Coulomb interactions between the two electrons as they move away from the nucleus. The long range interactions are fully taken into account in the classical three-body collision theory. In quantum mechanical theories, however, it is difficult to account for these interactions. This theory has been used to study the ionization of He + -ions by electron impact up to much higher energies (up till ten times the threshold energy). The results are compared with experimental results of Dolder et al. (1961) and with results of quantum mechanical calculations. Results are given for ionization of helium atoms by electron or proton impact. This collision process, in which four particles are involved, can under certain circumstances be treated as a collision process in which only three particles are involved. Calculations are performed concerning: a) cross sections for ionization of metastable helium atoms by electron impact, b) cross sections for ionization of ground-state helium atoms by fast proton impact (energy and angular distributions of ejected electrons), c) generalized oscillator strengths for ionization of helium by fast proton impact

  1. Three-body decays of B{sup 0(+)} → K{sup *0(+)}π{sup +}π{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Behnam; Mehraban, Hossein [Semnan University, Physics Department, Semnan (Iran, Islamic Republic of)

    2014-08-15

    We are interested in the analysis of the three-body decays of B{sup 0} → K{sup *0}π{sup +}π{sup -} and B{sup +} → K{sup *+}π{sup +}π{sup -}. There are tree and penguin diagrams for these decay modes in the naive factorization approach and the transition matrix element of them is factorized into a B → π{sup +}π{sup -} form factor multiplied by 0 → K{sup *} decay constant and B → K{sup *} form factor multiplied into 0 → π{sup +}π{sup -} weak and electromagnetic vertices form factor. We investigate these decays by using the Dalitz plot analysis. We use the general form of this technique for the calculation of the B{sup 0} → K{sup *0}π{sup +}π{sup -} and B{sup +} → K{sup *+}π{sup +}π{sup -} decays and obtain the values (3.74 ± 0.50) x 10{sup -5} and (9.64 ± 1.37) x 10{sup -5} for the branching ratios, while the experimental results are (5.50 ± 0.50) x 10{sup -5} and (7.50 ± 1.00) x 10{sup -5}, respectively. The branching ratios obtained by applying the Dalitz plot analysis are compatible with the experimental results. (orig.)

  2. Geometric chaos indicators and computations of the spherical hypertube manifolds of the spatial circular restricted three-body problem

    Science.gov (United States)

    Guzzo, Massimiliano; Lega, Elena

    2018-06-01

    The circular restricted three-body problem has five relative equilibria L1 ,L2, . . . ,L5. The invariant stable-unstable manifolds of the center manifolds originating at the partially hyperbolic equilibria L1 ,L2 have been identified as the separatrices for the motions which transit between the regions of the phase-space which are internal or external with respect to the two massive bodies. While the stable and unstable manifolds of the planar problem have been extensively studied both theoretically and numerically, the spatial case has not been as deeply investigated. This paper is devoted to the global computation of these manifolds in the spatial case with a suitable finite time chaos indicator. The definition of the chaos indicator is not trivial, since the mandatory use of the regularizing Kustaanheimo-Stiefel variables may introduce discontinuities in the finite time chaos indicators. From the study of such discontinuities, we define geometric chaos indicators which are globally defined and smooth, and whose ridges sharply approximate the stable and unstable manifolds of the center manifolds of L1 ,L2. We illustrate the method for the Sun-Jupiter mass ratio, and represent the topology of the asymptotic manifolds using sections and three-dimensional representations.

  3. Relativistic origin of three-nucleon force

    International Nuclear Information System (INIS)

    Haberzettl, H.; Parke, W.C.

    1995-01-01

    Based on the manifestly covariant cluster-dynamical formalism recently proposed by Haberzettl, the three-body forces entering three-nucleon equations are discussed. It is shown that there exist additional contributions to the (nonrelativistic) three-body force, not taken into account in the usual treatments, arising from the proper nonrelativistic limits of higher-order meson-exchange Feynman diagrams. Using the Paris potential, a five-channel triton bound-state calculation results in additional binding of about 0.6 MeV due to this new mechanism. copyright 1995 American Institute of Physics

  4. Pulsations and period variations of the δ Scuti star AN Lyncis in a possible three-body system

    Science.gov (United States)

    Li, Gang; Fu, Jianning; Su, Jie; Fox-Machado, Lester; Michel, Raul; Guo, Zhen; Liu, Jinzhong; Feng, Guojie

    2018-01-01

    Observations for the δ Scuti star AN Lyn have been made between 2008 and 2016 with the 85-cm telescope at Xinglong station of National Astronomical Observatories of China, the 84-cm telescope at SPM Observatory of Mexico and the Nanshan One metre Wide field Telescope of Xinjiang Observatory of China. Data in V in 50 nights and in R in 34 nights are obtained in total. The bi-site observations from both Xinglong Station and SPM Observatory in 2014 are analysed with Fourier Decomposition to detect pulsation frequencies. Two independent frequencies are resolved, including one non-radial mode. A number of stellar model tracks are constructed with the MESA code and the fit of frequencies leads to the best-fitting model with the stellar mass of M = 1.70 ± 0.05 M⊙, the metallicity abundance of Z = 0.020 ± 0.001, the age of 1.33 ± 0.01 billion years and the period change rate 1/P · dP/dt = 1.06 × 10-9 yr-1, locating the star at the evolutionary stage close to the terminal age main sequence. The O-C diagram provides the period change rate of (1/P)(dP/dt) = 4.5(8) × 10-7 yr-1. However, the period change rate calculated from the models is smaller in two orders than the one derived from the O-C diagram. Together with the sinusoidal function signature, the period variations are regarded to be dominated by the light-travel time effect of the orbital motion of a three-body system with two low-luminosity components, rather than the stellar evolutionary effect.

  5. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  6. Salmon Muscle Adherence to Polymer Coatings and Determination of Antibiotic Residues by Reversed-Phase High-Performance Liquid Chromatography Coupled to Selected Reaction Monitoring Mass Spectrometry, Atomic Force Microscopy, and Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2015-01-01

    Full Text Available The persistent adhesion of salmon muscle to food container walls after treatment with urea solution was observed. This work evaluated the diffusion of antibiotics from the salmon muscle to the polyethylene terephthalate (PET coating protecting the electrolytic chromium coated steel (ECCS plates. New aquaculture production systems employ antibiotics such as florfenicol, florfenicol amine, oxytetracycline, and erythromycin to control diseases. The introduction of antibiotics is a matter of concern regarding the effects on human health and biodiversity. It is important to determine their impact on the adhesion of postmortem salmon muscle to can walls and the surface and structural changes affecting the functionality of multilayers. This work characterized the changes occurring in the multilayer PET polymer and steel of containers by electron microscopy, 3D atomic force microscopy (3D-AFM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectroscopy (FT-IR analyses. A robust mass spectrometry methodology was employed to determine the presence of antibiotic residues. No evidence of antibiotics was observed on the protective coating in the range between 0.001 and 2.0 ng/mL; however, the presence of proteins, cholesterol, and alpha-carotene was detected. This in-depth profiling of the matrix-level elements is relevant for the use of adequate materials in the canning export industry.

  7. Three-body resonance generated by a separable potential which describes a 2s1/2 single-particle state

    International Nuclear Information System (INIS)

    Ueta, K.

    1988-12-01

    It is shown that a separable potential previously used to describe a 2s 1/2 single-particle state gives rise not only to a bound state but also to a resonance of the core-plus-two-nucleons three-body system. (author) [pt

  8. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  9. Three-nucleon forces and the trinucleon bound states

    International Nuclear Information System (INIS)

    Friar, J.L.; Frois, B.

    1986-04-01

    A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed

  10. Three-body models of the 6ΛΛHe and 9ΛBe hypernuclei with non-local interactions

    International Nuclear Information System (INIS)

    Theeten, M.; Baye, D.; Descouvemont, P.

    2005-01-01

    A three-body model involving non-local interactions is developed in configuration space. It is based on a hyperspherical-harmonics expansion and the Lagrange-mesh method. The 6 ΛΛ He and 9 Λ Be hypernuclei are studied as three-body αΛΛ and ααΛ systems. Recently proposed quark-model based ΛN and ΛΛ interactions are used. A non-local Λα interaction is obtained by folding the ΛN interaction with a Gaussian α density. Various phenomenological αα interactions are employed. The results agree within 1 keV with recent Faddeev calculations in momentum space. Energies and radii of 6 ΛΛ He and 9 Λ Be are compared with a purely local model. The B(E2) between the 9 Λ Be bound states is also calculated. The role of non-locality is discussed

  11. The role of three-body coulomb fields versus final state interactions in the decay of 12C-α-12C

    International Nuclear Information System (INIS)

    Quebert, J.L.; Bertault, D.; Scheurer, J.N.; Fouan, J.P.

    1980-01-01

    The alpha emission in 16 O + 12 C→ 12 C + α + 12 C has been thoroughly studied in the region of the rapidity plot: Ysub(α)=Ysub(c.m.). The three-body coulomb fields, as well as configurations close to alignment, account for the alpha yield which is observed. The apparent competition between direct and sequential decays is well explained by the coulomb break-up

  12. Overweight and obesity prevalence among Cree youth of Eeyou Istchee according to three body mass index classification systems.

    Science.gov (United States)

    St-Jean, Audray; Meziou, Salma; Ayotte, Pierre; Lucas, Michel

    2017-11-22

    Little is known about the suitability of three commonly used body mass index (BMI) classification systems for Indigenous youth. We estimated overweight and obesity prevalence among Cree youth of Eeyou Istchee according to three BMI classification systems, assessed the level of agreement between them, and evaluated their accuracy through body fat and cardiometabolic risk factors. Data on 288 youth (aged 8-17 years) were collected. Overweight and obesity prevalence were estimated with Centers for Disease Control and Prevention (CDC), International Obesity Task Force (IOTF) and World Health Organization (WHO) criteria. Agreement was measured with weighted kappa (κw). Associations with body fat and cardiometabolic risk factors were evaluated by analysis of variance. Obesity prevalence was 42.7% with IOTF, 47.2% with CDC, and 49.3% with WHO criteria. Agreement was almost perfect between IOTF and CDC (κw = 0.93), IOTF and WHO (κw = 0.91), and WHO and CDC (κw = 0.94). Means of body fat and cardiometabolic risk factors were significantly higher (P trend  obesity, regardless of the system used. Youth considered overweight by IOTF but obese by CDC or WHO exhibited less severe clinical obesity. IOTF seems to be more accurate in identifying obesity in Cree youth.

  13. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  14. Accurate alpha sticking fractions from improved three-body calculations relevant for muon catalyzed fusion. Progress report, September 1, 1985-August 31, 1986

    International Nuclear Information System (INIS)

    Szalewicz, K.; Monkhorst, H.J.

    1986-04-01

    A solution of the Coulomb three-body problem is the beginning point for calculations of sticking fractions in muon catalyzed fusion. The basis set is constructed from the following functions xi/sup r/n/sup s/e/sup - αxi - β n/R/sup -3 /2//H/sub eta/(x)exp(-x 2 /2), where xi and eta are elliptic coordinates of muon, R is the internuclear distance, H/sub eta/ is the nth Hermite polynomial, and x = γ (R-R/sub e/). The nonlinear parameters α, β, γ, and R/sub e/ are to be optimized. 21 refs., 1 tab

  15. Numerical determination of families of three-dimensional double-symmetric periodic orbits in the restricted three-body problem. Pt. 1

    International Nuclear Information System (INIS)

    Kazantzis, P.G.

    1979-01-01

    New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the 'vertical-critical' orbits (αsub(ν) = -1, csub(ν) = 0) of the 'basic' plane families i. g 1 g 2 h, a, m and I. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections. (orig.)

  16. Spin Modes in Nuclei and Nuclear Forces

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Otsuka, Takaharu

    2011-01-01

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in 12 C and 14 C and an anomalous M1 transition in 17 C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by Δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  17. Neutron matter properties using generalized Skyrme force

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ramadan, Kh.A.

    2002-01-01

    The generalized Skyrme potential is used to calculate the properties of neutron matter in the form of the Thomas–Fermi model. The binding energy per particle, spin symmetry energy, free energy, pressure, entropy, sound velocity and magnetic susceptibility are calculated as a function of density ρ. The results are comparable with those obtained by Friedman and Pandharipande, who used the Urbana v 14 potential plus an effective repulsive three-body force. (author)

  18. The three-body problem and the equations of dynamics Poincaré’s foundational work on dynamical systems theory

    CERN Document Server

    Poincaré, Henri

    2017-01-01

    Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating. .

  19. An explanation of the preferential formation of less stable isomers in three-body reactions - Cl + NO2 + M ClO + NO2 + M

    International Nuclear Information System (INIS)

    Chang, J.S.; Baldwin, A.C.; Golden, D.M.

    1979-01-01

    A realistic assessment of the potential depletion of stratospheric ozone due to manmade emissions requires a knowledge of the sources and sinks of the potential threat. The reactions ClO + NO 2 + M yield products and Cl + NO 2 + M yield products are of interest because they represent possible sink mechanism for both odd chlorine and odd nitrogen species. In this paper, the Troe method (1977) is used to calculate the low-pressure limit rate constants of the above three-body reactions. The result for the Cl + NO 2 + M reaction is found to be in excellent agreement with the experimental finding of Niki et al. (1978), where both nitryl chloride and chlorine nitrate are products of the cited reaction. An explanation is proposed to account for apparent discrepancy between the measured rate constants for ClO + NO 2 + M in the forward and reverse directions. Stratospheric implications are also discussed

  20. Subatomic forces

    International Nuclear Information System (INIS)

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  1. Residual dust charges in discharge afterglow

    International Nuclear Information System (INIS)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A.

    2006-01-01

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar

  2. Dalitz analysis of the three-body charmless decay $B^{0} → K^{0}_{S}\\pi^{+}\\pi^{-}$ with the LHCb spectrometer

    CERN Document Server

    Baalouch, Marouen

    Studies of charmless three-body decays of the neutral B mesons with a K0S in the final state are presented in this thesis. The analyses are performed with the full statistics recorded by the LHCb spectrometer during the Run I of the LHC. The amplitude analysis of the decay B0→K0Sπ+π− represents the main part of this thesis analysis. A time-integrated untagged Dalitz-Plot analysis of the decay is performed. The fit fractions of the quasi-two-body decays are obtained. Likewise, the direct CP asymmetries of the quasi-two-body decays B0→K*+(892)π−, B0→K0*+(1430)π−, B0→K2*+(1430)π− and B0→f0(980)K0S are obtained. The largest sensitivity is obtained for ACP (B0→K*+(892)π−). This measurement is the first observation of the CP asymmetry with a significance larger then five standard deviations. The measurement is in agreement with the world average, with an improved precision.

  3. Calculation of subLAMBDA sup 9 Be in an alpha-alpha-LAMBDA three-body model using the Faddeev equations

    CERN Document Server

    Oryu, S; Yamashita, H; Nakazawa, M; Kamada, H

    2000-01-01

    The hypernucleus subLAMBDA sup 9 Be is investigated in an alpha-alpha-LAMBDA three-body model using the Faddeev formalism. We use an alpha-alpha interaction in which the Pauli-forbidden states are correctly taken into account and we employ some phenomenological potentials between the alpha and LAMBDA particles. We obtained two bound states for J suppi = 1/2 sup + and 3/2 sup + , and three resonance states of (3/2) sub 1 sup - , (3/2) sub 2 sup - , (3/2) sub 3 sup -. We studied the properties of these states by calculating the components and the expectation values of the potential for each partial wave. It is found that a few channels dominate in the 1/2 sup + and 3/2 sup + states, so that the alpha-clusters or the sup 8 Be core are still alive in the nucleus. In a case were the two alpha particles are fixed on an axis the contour plots of the distribution of the LAMBDA particle are shown. With the assistence of these plots one can visually understand that some of them are shell-model-like states while others ...

  4. $CP$ violation studies in three-body charmless $B^\\pm$ decays and contributions to the LHCb SciFi Tracker

    CERN Document Server

    Rodrigues Cavalcante, Ana Barbara; Joram, Christian

    In the first part of the thesis, we present studies on three-body charmless $B^\\pm$ decays. The analysis is performed using LHCb dataset from proton-proton collisions at the centre-of-mass energy of 7 TeV and 8 TeV collected in 2011 and 2012, respectively, corresponding to an integrated luminosity of 3.1 fb$^{-1}$. We measured the inclusive $CP$ asymmetry of the four channels: $B^\\pm\\to K^\\pm\\pi^+\\pi^-$, $B^\\pm \\to K^\\pm K^+ K^-$, $B^\\pm \\to \\pi^\\pm\\pi^+\\pi^-$ and $B^\\pm\\to \\pi^\\pm K^+ K^-$. $CP$ asymmetries were also studied along the phase space. The second part of this thesis is devoted to my contribution to the LHCb SciFi Tracker, a detector made of scintillating fibres. It presents the experimental setups used to characterise the scintillating fibres which need to meet specific requirements to be able to operate under the running conditions foreseen for the LHCb upgrade. In addition, we discuss the results on the development of fibres made of a new class of scintillating material denominated as Nanostruc...

  5. Residual stress analysis in BWR pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Leung, C.P.; Pont, D.

    1992-06-01

    Residual stresses from welding processes can be the primary driving force for stress corrosion cracking (SCC) in BWR components. Thus, a better understanding of the causes and nature of these residual stresses can help assess and remedy SCC. Numerical welding simulation software, such as SYSWELD, and material property data have been used to quantify residual stresses for application to SCC assessments in BWR components. Furthermore, parametric studies using SYSWELD have revealed which variables significantly affect predicted residual stress. Overall, numerical modeling techniques can be used to evaluate residual stress for SCC assessments of BWR components and to identify and plan future SCC research

  6. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension ...

  7. Studies of Three-Body Decay of B to J/ψηK and B(Bs to ηcπK*

    Directory of Open Access Journals (Sweden)

    Behnam Mohammadi

    2014-01-01

    Full Text Available We investigate the B0→J/ψηK0 and B+→J/ψηK+ decay by using the Dalitz plot analysis. As we know there are tree, penguin, emission, and emission-annihilation diagrams for these decay modes in the factorization approach. The transition matrix element is factorized into a B→ηK form factor multiplied by J/ψ decay constant and also a B→K form factor multiplied by J/ψη decay constant. According to QCD factorization approach and using the Dalitz plot analysis, we calculate the branching ratios of the B0→J/ψηK0 and B+→J/ψηK+ three-body decay in view of the η-η' mixing and obtain the value of the (9.22-1.47+2.67×10-5, while the experimental results of them are (8±4×10-5 and (10.8±3.3×10-5, respectively. In this research we also analyze the B(Bs→ηcπK* decay which is similar to the previous decay, but there is no experimental data for the last decay. Since for calculations of the B(Bs→ηcπK* decay we use assumptions of the B→J/ψηK decay, we hope that if this decay will be measured by the LHCb in the future, the experimental results will be in agreement with our calculations.

  8. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  9. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  10. Calculation of the nuclear vertex constant for the virtual decay 6LI→α + d in the three- body model and its astrophysical application

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Igamov, S.B.; Nishonov, MM; Yarmukhamedov, R; Kamimura, M.

    2003-01-01

    The d(α, γ) 6 Li reaction is one of the sources of 6 Li production in the Big-Bang nuclear synthesis. At present extremely large uncertainties exist on this prediction mainly due to the absence of reliable directly measured cross section (or astrophysical S-factor, S(E)) at astrophysical relevant energies E, including E=0. As far theoretical calculation of the S(E) that have rather large spread. On the other hand, the d(α, γ) 6 Li reaction is predominantly of peripheral character at extremely low energies. Therefore the calculated S(E) at extremely low energies is mainly determined by the nuclear vertex constant (NVC) (or respective asymptotic normalization constant (ANC)) for the virtual decay 6 Li→α + d. Taking into account this circumstance we develop a method of calculation of the NVC for the virtual decay 6 Li→α + d for the subsequent application of the calculated one to the direct radiative capture d(α, γ) 6 Li cross - section (or astrophysical S-factor) calculation at extremely low energies E, including E=0. The developed method is based on the three-body Faddeev approach which is applied for the α-d scattering by using different forms of the NN- and αN-potentials. As a result the values of NVC and respective ANC for 6 Li→α + d virtual decay are obtained using two forms both for NN- and for αN-potential. They are the separable potentials with Yamaguchi type form factor and Paris potential with PEST 16 form factor for the NN- potential and Yamaguchi type form factor and Sack-Biedenharn-Breit potential for the αN- potential. A noticeable sensitivity to used forms of the NN- and αN- potential occurs both for the calculated NVC (or ANC) and astrophysical S- factor S(E) of the direct radiative capture d(α, γ) 6 Li reaction at extremely low energies E (≤100 keV), including the value E=0. The calculated S(E) have been obtained using the information about the NVC values. The obtained values of NVC and S(E) are compared with those of obtained

  11. Van der Waals Forces and Photon-Less Effective Field Theory

    International Nuclear Information System (INIS)

    Arriola, E.R.

    2011-01-01

    In the ultra-cold regime Van der Waals forces between neutral atoms can be represented by short range effective interactions. We show that universal low energy scaling features of the underlying vdW long range force stemming from two photon exchange impose restrictions on an Effective Field Theory without explicit photons. The role of naively redundant operators, relevant to the definition of three body forces, is also analyzed. (author)

  12. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  13. Application of the three-body model to the reactions 6Li(3He,t 3He)3He and 6Li(3He,3He3He)3H

    International Nuclear Information System (INIS)

    Haftel, M.I.; Allas, R.G.; Beach, L.A.; Bondelid, R.O.; Petersen, E.L.; Slaus, I.; Lambert, J.M.; Treado, P.A.

    1977-01-01

    Experimental and theoretical cross sections are presented for the 6 Li( 3 He, 3 He 3 He) 3 H and 6 Li( 3 He,t 3 He) 3 He reactions for the symmetric angle pairs 20 0 -20 0 , 28.3 0 -28.3 0 , and 35 0 -35 0 . The theoretical cross sections are calculated in a three-body model where the trions (i.e., mass-3 nuclei) are treated as elementary particles with 6 Li being a 3 He- 3 H bound state. The trion-trion interaction is represented by S wave separable potentials with the breakup cross sections calculated with the tree-body Haftel-Ebenhoeh code. the Coulomb interaction is taken into account by fitting the separable potential parameters to the trion-trion scattering data and is included approximately in the breakup code. The experimental cross sections are compared with both the plane-wave impulse approximation and the three-body model predictions. The plane-wave impulse approximation predicts both the shapes and magnitudes poorly (10 to 20 times experiment). Without Coulomb corrections the three-body model gives good agreement with experiment for the shapes of the spectra with the magnitudes generally being about 40% of experiment for 6 Li( 3 He, 3 He 3 He) 3 H and about 80% for 6 Li( 3 He,t 3 He) 3 He. The Coulomb corrections improve the magnitudes predicted by the three-body model but not the shapes. It is observed that for these reactions S wave separable potentials describe the breakup data much better than they do the two-body trion-trion scattering data. This result should encourage further three-body treatment of these and similar reactions

  14. Nuclear reaction matrix and nuclear forces

    International Nuclear Information System (INIS)

    Nagata, Sinobu; Bando, Hiroharu; Akaishi, Yoshinori.

    1979-01-01

    An essentially exact method of solution is presented for the reaction- matrix (G-matrix) equation defined with the orthogonalized plane-wave intermediate spectrum for high-lying two-particle states. The accuracy is examined for introduced truncations and also in comparison with the Tsai-Kuo and Sauer methods. Properties of the G-matrix are discussed with emphasis on the relation with the saturation mechanism, especially overall saturation from light to heavy nuclei. Density and starting-energy dependences of the G-matrix are separately extracted and discussed. It is demonstrated that the triplet-even tensor component of the nuclear force is principally responsible for these dependences and hence for the saturation mechanism. In this context different nuclear potentials are used in the renormalized Brueckner calculation for energies of closed-shell nuclei in the harmonic oscillator basis. A semi-phenomenological ''two-body potential'' is devised so that it can reproduce the saturation energies and densities of nuclear matter and finite nuclei in the lowest-order Brueckner treatment. It is composed of a realistic N-N potential and two additional parts; one incorporates the three-body force effect and the other is assumed to embody higher-cluster correlations in G. The tensor component in the triplet-even state of this potential is enhanced by the three-body force effect. The G-matrix is represented in the effective local form and decomposed into central, LS and tensor components. (author)

  15. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  16. Different forces

    CERN Multimedia

    1982-01-01

    The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.

  17. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  18. Characterization of Hospital Residuals

    International Nuclear Information System (INIS)

    Blanco Meza, A.; Bonilla Jimenez, S.

    1997-01-01

    The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es

  19. On the generalized potential of inertial forces

    International Nuclear Information System (INIS)

    Siboni, S

    2009-01-01

    The generalized potential of the inertial forces acting on a holonomic system in an accelerated reference frame is derived in a way which admits a simple physical interpretation. It is shown that the generalized potential refers to all the inertial forces and, apart from the very special case of a uniformly rotating frame, it is impossible to distinguish a contribution to only the Coriolis force and a contribution pertaining to the residual, velocity-independent fictitious forces. Such an approach to the determination of the generalized potential of inertial forces may be helpful in introducing the topic of the generalized potential to advanced undergraduate and graduate students

  20. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  1. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A N; Webster, G A [Imperial College, London (United Kingdom); Webster, P J [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  2. Overweight and Obesity Prevalence Among School-Aged Nunavik Inuit Children According to Three Body Mass Index Classification Systems.

    Science.gov (United States)

    Medehouenou, Thierry Comlan Marc; Ayotte, Pierre; St-Jean, Audray; Meziou, Salma; Roy, Cynthia; Muckle, Gina; Lucas, Michel

    2015-07-01

    Little is known about the suitability of three commonly used body mass index (BMI) classification system for Indigenous children. This study aims to estimate overweight and obesity prevalence among school-aged Nunavik Inuit children according to International Obesity Task Force (IOTF), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO) BMI classification systems, to measure agreement between those classification systems, and to investigate whether BMI status as defined by these classification systems is associated with levels of metabolic and inflammatory biomarkers. Data were collected on 290 school-aged children (aged 8-14 years; 50.7% girls) from the Nunavik Child Development Study with data collected in 2005-2010. Anthropometric parameters were measured and blood sampled. Participants were classified as normal weight, overweight, and obese according to BMI classification systems. Weighted kappa (κw) statistics assessed agreement between different BMI classification systems, and multivariate analysis of variance ascertained their relationship with metabolic and inflammatory biomarkers. The combined prevalence rate of overweight/obesity was 26.9% (with 6.6% obesity) with IOTF, 24.1% (11.0%) with CDC, and 40.4% (12.8%) with WHO classification systems. Agreement was the highest between IOTF and CDC (κw = .87) classifications, and substantial for IOTF and WHO (κw = .69) and for CDC and WHO (κw = .73). Insulin and high-sensitivity C-reactive protein plasma levels were significantly higher from normal weight to obesity, regardless of classification system. Among obese subjects, higher insulin level was observed with IOTF. Compared with other systems, IOTF classification appears to be more specific to identify overweight and obesity in Inuit children. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  3. The Ay puzzle and the nuclear force

    International Nuclear Information System (INIS)

    Hueber, D.; Friar, J.L.

    1998-01-01

    The nucleon-deuteron analyzing power A y in elastic nucleon-deuteron scattering poses a longstanding puzzle. At energies E lab below approximately 30 MeV A y cannot be described by any realistic nucleon-nucleon (NN) force. The inclusion of existing three-nucleon forces does not improve the situation. Because of recent questions about the 3 P J NN phases, we examine whether reasonable changes in the NN force can resolve the puzzle. In order to do this we investigate the effect on the 3 P J waves produced by changes in different parts of the potential (viz., the central force, tensor force, etc.), as well as on the two-body observables and on A y . We find that it is not possible with reasonable changes in the NN potential to increase the three-body A y and at the same time to keep the two-body observables unchanged. We therefore conclude that the A y puzzle is likely to be solved by new three-nucleon forces, such as those of the spin-orbit type, which have not yet been taken into account. copyright 1998 The American Physical Society

  4. Measurement of Forces and Moments Transmitted to the Residual Limb

    Science.gov (United States)

    2009-08-01

    alignment of a prosthesis. Walking speed and cadence will be measured during the baseline conditions and a metronome will be used to help subjects...reproduced and you will be allowed to walk with your original alignment briefly to refresh your memory on how it feels. A metronome may be used to...speed and compare the maximum pressures to those in activity A (A metronome will be used to help you establish a cadence that is 10% - 15% faster than

  5. Nuclear forces

    International Nuclear Information System (INIS)

    Holinde, K.

    1990-01-01

    In this paper the present status of the meson theory of nuclear forces is reviewed. After some introductory remarks about the relevance of the meson exchange concept in the era of QCD and the empirical features of the NN interaction, the exciting history of nuclear forces is briefly outlined. In the main part, the author gives the basic physical ideas and sketch the derivation of the one-boson-exchange model of the nuclear force, in the Feynman approach. Secondly we describe, in a qualitative way, various necessary extensions, leading to the Bonn model of the N interaction. Finally, points to some interesting pen questions connected with the extended quark structure of the hadrons, which are topics of current research activity

  6. Tensor force and delta excitation for the structure of light nuclei

    International Nuclear Information System (INIS)

    Horii, K; Myo, T; Toki, H

    2014-01-01

    We treat explicitly Δ(1232) isobar degrees of freedom using a bare nucleon-nucleon interaction for few-body systems, where Δ excitations can be the origin of the three-body force via the pion exchange. We adopt the Argonne two-body potential including Δ, named as AV28 potential, and study the role of Δ explicitly in two-body and three-body systems. It was found that the additional Δ states generate strong tensor correlations caused by the transitions between N and Δ states, and change tensor matrix elements largely from the results with only nucleons. We studied the effects of three-body force in the triton and obtained 0.8 MeV attraction due to the intermediate Δ excitation. Due to the lack of the total binding energy for the triton in the delta model, we further studied carefully the effects of the delta excitation in various two body channels and compared with the nucleon only model in the AV14 potential. We modified slightly the AV28 potential in the singlet S channel so that we could reproduce the triton binding energy due to the appropriate amount of the three-body force effects

  7. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  8. DelPhiForce web server: electrostatic forces and energy calculations and visualization.

    Science.gov (United States)

    Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil

    2017-11-15

    Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan; Fidelis, Krzysztof; Tramontano, Anna; Kryshtafovych, Andriy

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures

  10. Sharing Residual Liability

    DEFF Research Database (Denmark)

    Carbonara, Emanuela; Guerra, Alice; Parisi, Francesco

    2016-01-01

    Economic models of tort law evaluate the efficiency of liability rules in terms of care and activity levels. A liability regime is optimal when it creates incentives to maximize the value of risky activities net of accident and precaution costs. The allocation of primary and residual liability...... for policy makers and courts in awarding damages in a large number of real-world accident cases....

  11. Machine for compacting solid residues

    International Nuclear Information System (INIS)

    Herzog, J.

    1981-11-01

    Machine for compacting solid residues, particularly bulky radioactive residues, constituted of a horizontally actuated punch and a fixed compression anvil, in which the residues are first compacted horizontally and then vertically. Its salient characteristic is that the punch and the compression anvil have embossments on the compression side and interpenetrating plates in the compression position [fr

  12. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  13. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  14. Mapping residual stress by ultrasonic tomography

    International Nuclear Information System (INIS)

    Hildebrand, B.P.; Harrington, T.P.

    1979-01-01

    It is known that internal stress concentrations can give rise to microcracks which then grow when the structure is subjected to external forces. It has also been found that the velocity of sound is altered as it propagates through a region of stress. In this paper a technique called Computer-Assisted Tomography (CAT) is discussed and an application that provides pictures of stress fields is described. The results of both simulated and experimental models used to evaluate the technique are reported. It is concluded that the CAT approach has great potential for locating and mapping residual stress in metals. (author)

  15. Residual magnetic field in rotary machines; Campo magnetico residual en maquinas rotatorias

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez V, Esteban A; Apanco R, Marcelino [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    The residual magnetism is a phenomenon in which the magnetic dipoles of a substance are oriented in a certain degree. On the other hand, when internal forces exist capable of aligning elementary magnetic dipoles of a material, a permanent magnet is obtained. Just as in a conductor or in a material, in the elements of a rotary electrical machine magnetic fields can be induced that produce a residual magnetism or magnetization. In the rotary electrical machines, the magnetization phenomenon causes serious problems, such as the generation of induced currents that propitiate the mechanical wear in bearings, collars, trunnions and inclusive in the shaft, by effects known as pitting, frosting and spark tracks, as well as erroneous readings in vibration and temperature sensors, that in some cases can cause the shut down of the machine. In this article are presented the general concepts on the residual magnetism in rotary electrical machines, the causes that originate it and the problems that arises, as well as the demagnetization of the components that have residual magnetic field. The results obtained by the area of Electrical Equipment of the Instituto de Investigaciones Electricas are revised, during the execution of activities related to the measurement and elimination of the residual magnetic field in rotary electrical machines. [Spanish] El magnetismo residual es un fenomeno en el que los dipolos magneticos de una sustancia se encuentran orientados en un grado determinado. Por otro lado, cuando existen fuerzas internas capaces de alinear los dipolos magneticos elementales de un material, se tiene un iman permanente. Al igual que en un conductor o un material, en los elementos de una maquina electrica rotatoria se pueden inducir campos magneticos que producen un magnetismo residual o magnetizacion. En las maquinas electricas rotatorias, el fenomeno de magnetizacion causa graves problemas, como la generacion de corrientes inducidas que propician el desgaste mecanico

  16. Three-body Coulomb bound states

    Science.gov (United States)

    Bhatia, A. K.; Drachman, Richard J.

    1987-01-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  17. Three-body charmless B decays workshop

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Haim, E.; Chauveau, J.; Hartfiel, B.; Ocariz, J. [Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE), 75 - Paris (France); Charles, J. [LPT, 13 - Marseille (France)

    2006-07-01

    The purpose of this workshop was multifarious: -) to present and discuss the current experimental perspectives based on the full expected statistics from B-factories by 2008, -) to share and further develop analysis methods, -) to present and discuss the theoretical work on the subject, -) to discuss the future of B-factories, and -) to establish a work plan until 2009. The contributions have focused on 3 body charmless B decays and mostly 3 body hadronic charmless B decays, they have also dealt with semileptonic decays, radiative decays, charm and charmonium decays, and scattering processes. This document gathers the slides of the presentations.

  18. Three-body calculations at Los Alamos

    International Nuclear Information System (INIS)

    Friar, J.L.

    1986-01-01

    This work was motivated by four goals: (1) by working in configuration space, where intuition is greatest, investigate graphically those trinucleon properties which are determined by specific features of wave functions; (2) produce benchmark calculations against which new techniques and numerical methods can be measured; (3) investigate the effect of the Coulomb interaction between the two protons in 3 He and in the p-d system; (4) systematically investigate the various trinucleon observables. Configuration space is particularly well-suited for investigating the Coulomb problem. The singularity and discontinuity problems associated with the Coulomb (momentum space) t-matrix are transformed into boundary condition problems in configuration space. One simply adds the Coulomb potential to the strong interaction. In order to produce accurate numerical solutions powerful techniques were adopted which have not frequently been used in nuclear physics. These spline methods together with collocation techniques combine the power of Gaussian quadrature procedures with the flexibility and strength of finite element approaches to solving partial differential equations. The union of these methods allows one to calculate wavefunctions at the same qualitative level of accuracy as the eigenvalues. Observables can therefore be calculated with considerable confidence. 30 refs., 6 figs

  19. Three-body charmless B decays workshop

    International Nuclear Information System (INIS)

    Ben-Haim, E.; Chauveau, J.; Hartfiel, B.; Ocariz, J.; Charles, J.

    2006-01-01

    The purpose of this workshop was multifarious: -) to present and discuss the current experimental perspectives based on the full expected statistics from B-factories by 2008, -) to share and further develop analysis methods, -) to present and discuss the theoretical work on the subject, -) to discuss the future of B-factories, and -) to establish a work plan until 2009. The contributions have focused on 3 body charmless B decays and mostly 3 body hadronic charmless B decays, they have also dealt with semileptonic decays, radiative decays, charm and charmonium decays, and scattering processes. This document gathers the slides of the presentations

  20. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  1. Coriolis Force

    Science.gov (United States)

    Marciuc, Daly; Solschi, Viorel

    2017-04-01

    Understanding the Coriolis effect is essential for explaining the movement of air masses and ocean currents. The lesson we propose aims to familiarize students with the manifestation of the Coriolis effect. Students are guided to build, using the GeoGebra software, a simulation of the motion of a body, related to a rotating reference system. The mathematical expression of the Coriolis force is deduced, for particular cases, and the Foucault's pendulum is presented and explained. Students have the opportunity to deepen the subject, by developing materials related to topics such as: • Global Wind Pattern • Ocean Currents • Coriolis Effect in Long Range Shooting • Finding the latitude with a Foucault Pendulum

  2. Invisible force

    International Nuclear Information System (INIS)

    Panek, Richard

    2010-01-01

    Astronomers have compiled evidence that what we always thought of as the actual universe- all the planets, stars, galaxies and matter in space -represents a mere 4% of what's out there. The rest is dark: 23% is called dark matter, 73% dark energy. Scientists have ideas about what dark matter is, but hardly any understanding about dark energy. This has led to rethinking traditional physics and cosmology. Assuming the existence of dark matter and that the law of gravitation is universal, two teams of astrophysicists, from Lawrence Berkeley National Laboratory and the Australian National University, analysed the universe's growth and to their surprise both concluded that the universe expansion is not slowing but speeding up. If the dominant force of evolution isn't gravity what is it?

  3. Existence of Resonance Stability of Triangular Equilibrium Points in Circular Case of the Planar Elliptical Restricted Three-Body Problem under the Oblate and Radiating Primaries around the Binary System

    Directory of Open Access Journals (Sweden)

    A. Narayan

    2014-01-01

    Full Text Available This paper analyzes the existence of resonance stability of the triangular equilibrium points of the planar elliptical restricted three-body problem when both the primaries are oblate spheroid as well as the source of radiation under the particular case, when e=0. We have derived Hamiltonian function describing the motion of infinitesimal mass in the neighborhood of the triangular equilibrium solutions taken as a convergent series. Hamiltonian function for the system has been derived and also expanded in powers of the generalized components of momenta. We have used canonical transformation to make the Hamiltonian function independent of true anomaly. The most interesting and distinguishable results of this study are establishing the relation for determining the range of stability at and near the resonance ω2=1/2 around the binary system.

  4. Ab initio calculations of scattering cross sections of the three-body system (p ¯,e+,e- ) between the e-+H ¯(n =2 ) and e-+H ¯(n =3 ) thresholds

    Science.gov (United States)

    Valdes, Mateo; Dufour, Marianne; Lazauskas, Rimantas; Hervieux, Paul-Antoine

    2018-01-01

    The ab initio method based on the Faddeev-Merkuriev equations is used to calculate cross sections involving the (p ¯,e+,e-) three-body system, with an emphasis on antihydrogen formation (H ¯) via antiproton (p ¯) scattering on positronium. This system is studied in the energy range between the e-+H ¯(n =2 ) and the e-+H ¯(n =3 ) thresholds, where precisely calculated cross sections can be useful for future experiments (GBAR, AEGIS, etc.) aiming to produce antihydrogen atoms. A special treatment is developed to take into account the long-range charge-dipole interaction effect on the wave function. Emphasis is placed on the impact of Feshbach resonances and Gailitis-Damburg oscillations appearing in the vicinity of the p ¯+Ps (n =2 ) threshold.

  5. T -odd correlations in polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) and in the quasi-three-body decay t (↑)→ Xb+ℓ++νℓ

    Science.gov (United States)

    Fischer, M.; Groote, S.; Körner, J. G.

    2018-05-01

    We identify the T -odd structure functions that appear in the description of polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) (two structure functions) and the quasi-three-body decay t (↑)→X b+ℓ++νℓ (one structure function). A convenient measure of the magnitude of the T -odd structure functions is the contribution of the imaginary part Im gR of the right-chiral tensor coupling gR to the T -odd structure functions which we work out. Contrary to the case of QCD, the NLO electroweak corrections to polarized top quark decays admit absorptive one-loop vertex contributions. We analytically calculate the imaginary parts of the relevant four electroweak one-loop triangle vertex diagrams and determine their contributions to the T -odd helicity structure functions that appear in the description of polarized top quark decays.

  6. Three-Body Protonium Formation in a Collision Between a Slow Antiproton ({barp}) and Muonic Hydrogen: {H_{μ}}—Low Energy {barp + (p μ^-)_{1s} → (barp p)_{1s} + μ^-} Reaction

    Science.gov (United States)

    Sultanov, Renat A.; Guster, D.; Adhikari, S. K.

    2015-12-01

    A bound state of a proton, p, and its counterpart antiproton, {barp}, is a protonium atom {Pn = (barp p)}. The following three-charge-particle reaction: {barp +(p μ^-)_{1s} → (barp {p})_{1s} + μ^-} is considered in this work, where {μ^-} is a muon. At low-energies muonic reaction {Pn} can be formed in the short range state with α = 1 s or in the first excited state: α = 2 s/2 p, where {barp} and p are placed close enough to each other and the effect of the {barp}-p nuclear interaction becomes significantly stronger. The cross sections and rates of the Pn formation reaction are computed in the framework of a few-body approach based on the two-coupled Faddeev-Hahn-type (FH-type) equations. Unlike the original three-body Faddeev method the FH-type equation approach is formulated in terms of only two but relevant components: {{Ψ}_1} and {Ψ_2}, of the system's three-body wave function {Ψ}, where {{Ψ}={Ψ}_1+{Ψ}_2}. In order to solve the FH-type equations {Ψ_1} is expanded in terms of the input channel target eigenfunctions, i.e. in this work in terms of the {({p} μ^-)} eigenfunctions. At the same time {Ψ_2} is expanded in terms of the output channel two-body wave function, that is in terms of the protonium {(bar{{p}} {p})} eigenfunctions. A total angular momentum projection procedure is performed, which leads to an infinite set of one-dimensional coupled integral-differential equations for unknown expansion coefficients.

  7. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues.

    Directory of Open Access Journals (Sweden)

    Chaya Rapp

    Full Text Available Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer, we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr and sulfotyrosine (sTyr residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.

  8. Immobilization of acid digestion residue

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Allen, C.R.

    1983-01-01

    Acid digestion treatment of nuclear waste is similar to incineration processes and results in the bulk of the waste being reduced in volume and weight to some residual solids termed residue. The residue is composed of various dispersible solid materials and typically contains the resultant radioactivity from the waste. This report describes the immobilization of the residue in portland cement, borosilicate glass, and some other waste forms. Diagrams showing the cement and glass virtification parameters are included in the report as well as process steps and candidate waste product forms. Cement immobilization is simplest and probably least expensive; glass vitrification exhibits the best overall volume reduction ratio

  9. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  10. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  11. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  12. Statistical inference on residual life

    CERN Document Server

    Jeong, Jong-Hyeon

    2014-01-01

    This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.

  13. 12th Air Force > Home

    Science.gov (United States)

    Force AOR Travel Info News prevnext Slide show 76,410 pounds of food delivered to Haiti 12th Air Force the French Air Force, Colombian Air Force, Pakistan Air Force, Belgian Air Force, Brazilian Air Force

  14. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  15. An analytical method on the surface residual stress for the cutting tool orientation

    Science.gov (United States)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  16. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  17. Cross section measurement for the 10B(n ,t 2 α ) three-body reaction at 4.0, 4.5, and 5.0 MeV. II. Experimental setup and results

    Science.gov (United States)

    Wang, Zhimin; Bai, Huaiyong; Zhang, Luyu; Jiang, Haoyu; Lu, Yi; Chen, Jinxiang; Zhang, Guohui; Gledenov, Yu. M.; Sedysheva, M. V.; Khuukhenkhuu, G.

    2017-10-01

    Cross sections of the 10B(n ,t 2 α ) three-body reaction were measured at En=4.0 , 4.5, and 5.0 MeV using a twin gridded ionization chamber and a thin-film 10B sample. The present paper is the second part of the work. A digital data-acquisition system was developed for the gridded ionization chamber based on the waveform digitizer. A thin-film 10B sample was designed and prepared. The number of 10B atoms in the sample was determined by the relative method using the thermal neutron induced 10B(nt h,α )7Li and 6Li(nt h,t )4He reactions with a 6LiF sample as the reference. The measurement of the 10B(n ,t 2 α ) reaction was performed at the 4.5 MV Van de Graaff accelerator of Peking University. In the measurement, the double-coincidence technique was used, which involves the forward-backward and the grid-anode coincidence. In the data processing, the effective event area in the forward two-dimensional spectrum and the time window in the drift-time spectrum were employed to reject the background events. Cross sections of the 10B(n ,t 2 α ) and 10B(n ,α )7Li reactions were obtained. The present results are compared with the data of existing measurements and evaluations.

  18. Search for aligned structure of /sup 12/C-. cap alpha. -/sup 12/C type at high excitation energy in /sup 28/Si. [46 MeV, J,. pi. , resonance, three-body problem

    Energy Technology Data Exchange (ETDEWEB)

    Burnereau, N

    1975-01-01

    The /sup 16/O+/sup 12/C..-->../sup 12/C+..cap alpha..+/sup 12/C reaction is studied mainly at 46MeV (at this energy a state of /sup 28/Si is presumably formed with a spin value of 14/sup +/; resonance of 19.7MeV c.m.). The motivation is to detect an ..cap alpha.. particle with a negligible energy in the c.m. system. This is the signature of the preformation of three aligned clusters in which the average location of the ..cap alpha.. particle is in between the two /sup 12/C's at the center of symmetry of the system. Such a detection is performed by detecting two /sup 12/C's in coincidence at specific angles. The data are understood by three-body calculations with a coupling of relative angular momenta governed by an unique J value. Experimentally, an ..cap alpha.. energy of 200keV is measured with good statistics, supporting the idea of aligned clusters as /sup 28/Si intrinsic shape, related to some highly excited states.

  19. Many-body forces and stability of the alkaline-earth tetramers

    International Nuclear Information System (INIS)

    Diaz-Torrejon, C.C.; Kaplan, Ilya G.

    2011-01-01

    Graphical abstract: Many-body forces effect. In a three-particle system, the two-body interaction energies depend upon coordinates of all three particles. The comparative study of the interaction energy and its many-body decomposition for alkaline-earths tetramers Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In comparison with weakly bound dimers, the binding energy in trimers and, especially, in tetramers drastically increases; e.g., E b /N in Be 3 is 7 times larger and in Be 4 is 18.4 times larger than in Be 2 . This sharp increase is explained as a manifestation of many-body forces. The trimers and tetramers are stabilized by the three-body forces, whereas the two- and four-body forces are repulsive. The attractive contribution to the three-body forces has a three-atom electron exchange origin. The natural bond orbital (NBO) population analysis reveals a relatively large np-population in trimers and tetramers. The population of the valence np-orbitals leads to the sp-hybridization providing the covalent bonding. Research highlights: → The alkaline-earths trimers and tetramers are stabilized by the three-body forces. → Two- and four-body forces are repulsive for trimers and tetramers. → The attractive contribution to the three-body forces has a three-atom electron exchange origin. → The population of the np-orbitals leads to the sp-hybridization providing the covalent bonding. - Abstract: The comparative study of the interaction energy and its many-body decomposition for Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In

  20. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    Science.gov (United States)

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  1. Nitrogen availability of biogas residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Fouda, Sara

    2011-09-07

    The objectives of this study were to characterize biogas residues either unseparated or separated into a liquid and a solid phase from the fermentation of different substrates with respect to their N and C content. In addition, short and long term effects of the application of these biogas residues on the N availability and N utilization by ryegrass was investigated. It is concluded that unseparated or liquid separated biogas residues provide N at least corresponding to their ammonium content and that after the first fertilizer application the C{sub org}:N{sub org} ratio of the biogas residues was a crucial factor for the N availability. After long term application, the organic N accumulated in the soil leads to an increased release of N.

  2. Vesícula residual

    Directory of Open Access Journals (Sweden)

    Júlio C. U. Coelho

    Full Text Available Our objective is to report three patients with recurrent severe upper abdominal pain secondary to residual gallbladder. All patients had been subjected to cholecystectomy from 1 to 20 years before. The diagnosis was established after several episodes of severe upper abdominal pain by imaging exams: ultrasonography, tomography, or endoscopic retrograde cholangiography. Removal of the residual gallbladder led to complete resolution of symptoms. Partial removal of the gallbladder is a very rare cause of postcholecystectomy symptoms.

  3. Residual number processing in dyscalculia ?

    OpenAIRE

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and ca...

  4. Americium recovery from reduction residues

    Science.gov (United States)

    Conner, W.V.; Proctor, S.G.

    1973-12-25

    A process for separation and recovery of americium values from container or bomb'' reduction residues comprising dissolving the residues in a suitable acid, adjusting the hydrogen ion concentration to a desired level by adding a base, precipitating the americium as americium oxalate by adding oxalic acid, digesting the solution, separating the precipitate, and thereafter calcining the americium oxalate precipitate to form americium oxide. (Official Gazette)

  5. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco

    Directory of Open Access Journals (Sweden)

    Kapralov Maxim V

    2011-09-01

    Full Text Available Abstract Background One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. Results We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. Conclusion Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.

  6. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  7. Calculations of long-range three-body interactions for He(n0λS )-He(n0λS )-He(n0'λL )

    Science.gov (United States)

    Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.

    2018-04-01

    We theoretically investigate long-range interactions between an excited L -state He atom and two identical S -state He atoms for the cases of the three atoms all in spin-singlet states or all in spin-triplet states, denoted by He(n0λS )-He(n0λS )-He(n0'λL ), with n0 and n0' principal quantum numbers, λ =1 or 3 the spin multiplicity, and L the orbital angular momentum of a He atom. Using degenerate perturbation theory for the energies up to second-order, we evaluate the coefficients C3 of the first-order dipolar interactions and the coefficients C6 and C8 of the second-order additive and nonadditive interactions. Both the dipolar and dispersion interaction coefficients, for these three-body degenerate systems, show dependences on the geometrical configurations of the three atoms. The nonadditive interactions start to appear in second-order. To demonstrate the results and for applications, the obtained coefficients Cn are evaluated with highly accurate variationally generated nonrelativistic wave functions in Hylleraas coordinates for He(1 1S ) -He(1 1S ) -He(2 1S ) , He(1 1S ) -He(1 1S ) -He(2 1P ) , He(2 1S ) -He(2 1S ) -He(2 1P ) , and He(2 3S ) -He(2 3S ) -He(2 3P ) . The calculations are given for three like nuclei for the cases of hypothetical infinite mass He nuclei, and of real finite mass 4He or 3He nuclei. The special cases of the three atoms in equilateral triangle configurations are explored in detail, and for the cases in which one of the atoms is in a P state, we also present results for the atoms in an isosceles right triangle configuration or in an equally spaced collinear configuration. The results can be applied to construct potential energy surfaces for three helium atom systems.

  8. Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Lee, Seong Ho; Park, Chi Yong; Yang, Jun Seok; Lee, Jeong Geun; Park, Jai Hak

    2011-01-01

    Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method

  9. Evaluation of residue-residue contact prediction in CASP10

    KAUST Repository

    Monastyrskyy, Bohdan

    2013-08-31

    We present the results of the assessment of the intramolecular residue-residue contact predictions from 26 prediction groups participating in the 10th round of the CASP experiment. The most recently developed direct coupling analysis methods did not take part in the experiment likely because they require a very deep sequence alignment not available for any of the 114 CASP10 targets. The performance of contact prediction methods was evaluated with the measures used in previous CASPs (i.e., prediction accuracy and the difference between the distribution of the predicted contacts and that of all pairs of residues in the target protein), as well as new measures, such as the Matthews correlation coefficient, the area under the precision-recall curve and the ranks of the first correctly and incorrectly predicted contact. We also evaluated the ability to detect interdomain contacts and tested whether the difficulty of predicting contacts depends upon the protein length and the depth of the family sequence alignment. The analyses were carried out on the target domains for which structural homologs did not exist or were difficult to identify. The evaluation was performed for all types of contacts (short, medium, and long-range), with emphasis placed on long-range contacts, i.e. those involving residues separated by at least 24 residues along the sequence. The assessment suggests that the best CASP10 contact prediction methods perform at approximately the same level, and comparably to those participating in CASP9.

  10. Universal relationship connecting various two-body effective residual interactions

    International Nuclear Information System (INIS)

    Knuepfer, W.; Huber, M.G.

    1976-01-01

    Starting from a momentum space analysis of the two-body matrix elements, a relation has been established between the size of the model space actually used in a specific calculation and the relevant properties of the effective residual interaction. It turns out that the two-body transition density acts like a filter function on the Fourier transform of the force; it exhibits a distinct structure which clearly reflects the size and the detailed properties of the configuration space actually used. From an investigation of this filter function an equivalence criterion for different effective residual two-body interactions has been established both for closed and open shell nuclei. This result can be used to construct simple although realistic effective forces. As an example, a model for a separable residual interaction is proposed in which the corresponding parameters are being clearly related to the nuclear radius (i.e., the mass number), to the quantum numbers (i.e., the angular momentum) of the state under consideration and to the size of the configuration space used. For a number of examples this force has been applied successfully for the description of low energy properties of both closed and open shell nuclei

  11. A microscopic approach to Casimir and Casimir–Polder forces between metallic bodies

    International Nuclear Information System (INIS)

    Barcellona, Pablo; Passante, Roberto

    2015-01-01

    We consider the Casimir–Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate the overall two- and three-body contributions to the macroscopic Casimir–Polder and Casimir force, and to compare them with each other, for the two following geometries: metal nanoparticle/half-space and half-space/half-space, where all the materials are assumed perfect conductors. The above evaluation is obtained by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticles). In the case of nanoparticle/half-space, our results fully agree with those that can be extracted from the corresponding macroscopic results, and explicitly show the non-applicability of the pairwise approximation for the geometry considered. In both cases, we find that, while the overall two-body contribution yields an attractive force, the overall three-body contribution is repulsive. Also, they turn out to be of the same order, consistently with the known non applicability of the pairwise approximation. The issue of the rapidity of convergence of the many-body expansion is also briefly discussed

  12. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  13. Minimization of zirconium chlorinator residues

    International Nuclear Information System (INIS)

    Green, G.K.; Harbuck, D.D.

    1995-01-01

    Zirconium chlorinator residues contain an array of rare earths, scandium, unreacted coke, and radioactive thorium and radium. Because of the radioactivity, the residues must be disposed in special waste containment facilities. As these sites become more congested, and with stricter environmental regulations, disposal of large volumes of wastes may become more difficult. To reduce the mass of disposed material, the US Bureau of Mines (USBM) developed technology to recover rare earths, thorium and radium, and unreacted coke from these residues. This technology employs an HCl leach to solubilize over 99% of the scandium and thorium, and over 90% of the rare earths. The leach liquor is processed through several solvent extraction stages to selectively recover scandium, thorium, and rare earths. The leach residue is further leached with an organic acid to solubilize radium, thus allowing unreacted coke to be recycled to the chlorinator. The thorium and radium waste products, which comprise only 2.1% of the original residue mass, can then be sent to the radioactive waste facility

  14. Statistically generated weighted curve fit of residual functions for modal analysis of structures

    Science.gov (United States)

    Bookout, P. S.

    1995-01-01

    A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.

  15. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1984-01-01

    A new process for recovery of plutonium and americium from pyrochemical waste has been demonstrated. It is based on chloride solution anion exchange at low acidity, which eliminates corrosive HCl fumes. Developmental experiments of the process flowsheet concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 = from high chloride-low acid solution. Americium and other metals are washed from the ion exchange column with 1N HNO 3 -4.8M NaCl. The plutonium is recovered, after elution, via hydroxide precipitation, while the americium is recovered via NaHCO 3 precipitation. All filtrates from the process are discardable as low-level contaminated waste. Production-scale experiments are now in progress for MSE residues. Flow sheets for actinide recovery from electrorefining and direct oxide reduction residues are presented and discussed

  16. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1985-05-01

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 2- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO 3 -4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO 3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  17. Coking of residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  18. Residual mosquito barrier treatments on U.S. military camouflage netting in a southern California desert environment

    Science.gov (United States)

    Treating perimeters of vegetation with residual insecticides for protection from mosquito vectors has potential for U.S. military force health protection. However, for current U.S. military operations in hot-arid environments with little or no vegetation, residual applications on portable artificial...

  19. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  20. Carbaryl residues in maize products

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Mansour, S.A.; Mostafa, I.Y.; Hassan, A.

    1976-01-01

    The 14 C-labelled insecticide carbaryl was synthesized from [1- 14 C]-1-naphthol at a specific activity of 3.18mCig -1 . Maize plants were treated with the labelled insecticide under simulated conditions of agricultural practice. Mature plants were harvested and studied for distribution of total residues in untreated grains as popularly roasted and consumed, and in the corn oil and corn germ products. Total residues found under these conditions in the respective products were 0.2, 0.1, 0.45 and 0.16ppm. (author)

  1. Combinatorial construction of toric residues

    OpenAIRE

    Khetan, Amit; Soprounov, Ivan

    2004-01-01

    The toric residue is a map depending on n+1 semi-ample divisors on a complete toric variety of dimension n. It appears in a variety of contexts such as sparse polynomial systems, mirror symmetry, and GKZ hypergeometric functions. In this paper we investigate the problem of finding an explicit element whose toric residue is equal to one. Such an element is shown to exist if and only if the associated polytopes are essential. We reduce the problem to finding a collection of partitions of the la...

  2. Alternatives to crop residues for soil amendment

    OpenAIRE

    Powell, J.M.; Unger, P.W.

    1997-01-01

    Metadata only record In semiarid agroecosystems, crop residues can provide important benefits of soil and water conservation, nutrient cycling, and improved subsequent crop yields. However, there are frequently multiple competing uses for residues, including animal forage, fuel, and construction material. This chapter discusses the various uses of crop residues and examines alternative soil amendments when crop residues cannot be left on the soil.

  3. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  4. Interfacial force measurements using atomic force microscopy

    NARCIS (Netherlands)

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  5. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Science.gov (United States)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  6. Sparse regularization for force identification using dictionaries

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  7. A simulation methodology of spacer grid residual spring deflection for predictive and interpretative purposes

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, H. K.; Yoon, K. H.

    1994-01-01

    The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by spacer grid residual spring deflection. In order to predict the spacer grid residual spring deflection as a function of burnup for various spring designs, a simulation methodology of spacer grid residual spring deflection has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key parameters affecting the residual spring deflection. The simulation methodology developed in this study can be utilized as an effective tool in evaluating the capability of a newly designed spacer grid spring to prevent the fretting wear-induced damage

  8. Managing woodwaste: Yield from residue

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, E. [LNS Services, Inc., North Vancouver, British Columbia (Canada); Rayner, S. [Pacific Waste Energy Inc., Burnaby, British Columbia (Canada)

    1993-12-31

    Historically, the majority of sawmill waste has been burned or buried for the sole purpose of disposal. In most jurisdictions, environmental legislation will prohibit, or render uneconomic, these practices. Many reports have been prepared to describe the forest industry`s residue and its environmental effect; although these help those looking for industry-wide or regional solutions, such as electricity generation, they have limited value for the mill manager, who has the on-hands responsibility for generation and disposal of the waste. If the mill manager can evaluate waste streams and break them down into their usable components, he can find niche market solutions for portions of the plant residue and redirect waste to poor/no-return, rather than disposal-cost, end uses. In the modern mill, residue is collected at the individual machine centre by waste conveyors that combine and mix sawdust, shavings, bark, etc. and send the result to the hog-fuel pile. The mill waste system should be analyzed to determine the measures that can improve the quality of residues and determine the volumes of any particular category before the mixing, mentioned above, occurs. After this analysis, the mill may find a niche market for a portion of its woodwaste.

  9. Residual stress in polyethylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Hutař, Pavel; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, Luboš

    2016-01-01

    Roč. 54, SEP (2016), s. 288-295 ISSN 0142-9418 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : polyethylene pipe * residual stress * ring slitting method * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.464, year: 2016

  10. Solow Residuals Without Capital Stocks

    DEFF Research Database (Denmark)

    Burda, Michael C.; Severgnini, Battista

    2014-01-01

    We use synthetic data generated by a prototypical stochastic growth model to assess the accuracy of the Solow residual (Solow, 1957) as a measure of total factor productivity (TFP) growth when the capital stock in use is measured with error. We propose two alternative measurements based on curren...

  11. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  12. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  13. LHCb: Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

    CERN Multimedia

    Lopes, J H

    2013-01-01

    Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

  14. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  15. Forces in general relativity

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced by an observer in general coordinates. The general force is then applied to the local co-moving coordinate system of a uniformly accelerating observer, leading to an expression of the inertial force experienced by the observer. Next, applying the general force in Schwarzschild coordinates is shown to lead to familiar expressions of the gravitational force. As a more complex demonstration, the general force is applied to an observer in Boyer-Lindquist coordinates near a rotating, Kerr black hole. It is then shown that when the angular momentum of the black hole goes to zero, the force on the observer reduces to the force on an observer held stationary in Schwarzschild coordinates. As a final consideration, the force on an observer moving in rotating coordinates is derived. Expressing the force in terms of Christoffel symbols in rotating coordinates leads to familiar expressions of the centrifugal and Coriolis forces on the observer. It is envisioned that the techniques presented herein will be most useful to graduate level students, as well as those undergraduate students having experience with general relativity and tensor analysis.

  16. Radioactive material in residues of health services residues

    International Nuclear Information System (INIS)

    Costa R, A. Jr.; Recio, J.C.

    2006-01-01

    The work presents the operational actions developed by the one organ responsible regulator for the control of the material use radioactive in Brazil. Starting from the appearance of coming radioactive material of hospitals and clinical with services of nuclear medicine, material that that is picked up and transported in specific trucks for the gathering of residuals of hospital origin, and guided one it manufactures of treatment of residuals of services of health, where they suffer radiological monitoring before to guide them for final deposition in sanitary embankment, in the city of Sao Paulo, Brazil. The appearance of this radioactive material exposes a possible one violation of the norms that govern the procedures and practices in that sector in the country. (Author)

  17. Visualization of residual organic liquid trapped in aquifers

    International Nuclear Information System (INIS)

    Conrad, S.H.; Wilson, J.L.; Mason, W.R.; Peplinski, W.J.

    1992-01-01

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons and solvents. The flow visualization experiments described in this study examined the migration of organic liquids through the saturated zone of aquifers, with a primary focus on the behavior of the residual organic liquid saturation, referring to that portion of the organic liquid that is trapped by capillary forces. Etched glass micromodels were used to visually observe dynamic multiphase displacement processes in pore networks. The resulting fluid distributions were photographed. Pore and blob casts were produced by a technique in which an organic liquid was solidified in place within a sand column at the conclusion of a displacement. The columns were sectioned and examined under optical and scanning electron microscopes. Photomicrographs of these sections show the morphology of the organic phase and its location within the sand matrix. The photographs from both experimental techniques reveal that in the saturated zone large amounts of residual organic liquid are trapped as isolated blobs of microscopic size. The size, shape, and spatial distribution of these blobs of residual organic liquid affect the dissolution of organic liquid into the water phase and the biotransformation of organic components. These processes are of concern for the prediction of pollution migration and the design of aquifer remediation schemes

  18. Malaysia and forced migration

    Directory of Open Access Journals (Sweden)

    Arzura Idris

    2012-06-01

    Full Text Available This paper analyzes the phenomenon of “forced migration” in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants. It considers forced migration as an event hosting multifaceted issues related and relevant to forced migrants and suggests that Malaysia has been preoccupied with the issue of forced migration movements. This is largely seen in various responses invoked from Malaysia due to “south-south forced migration movements.” These responses are, however, inadequate in terms of commitment to the international refugee regime. While Malaysia did respond to economic and migration challenges, the paper asserts that such efforts are futile if she ignores issues critical to forced migrants.

  19. Labor Force Participation Rate

    Data.gov (United States)

    City and County of Durham, North Carolina — This thematic map presents the labor force participation rate of working-age people in the United States in 2010. The 2010 Labor Force Participation Rate shows the...

  20. Three-nucleon forces

    International Nuclear Information System (INIS)

    Sauer, P.U.

    2014-01-01

    In this paper, the role of three-nucleon forces in ab initio calculations of nuclear systems is investigated. The difference between genuine and induced many-nucleon forces is emphasized. Induced forces arise in the process of solving the nuclear many-body problem as technical intermediaries toward calculationally converged results. Genuine forces make up the Hamiltonian. They represent the chosen underlying dynamics. The hierarchy of contributions arising from genuine two-, three- and many-nucleon forces is discussed. Signals for the need of the inclusion of genuine three-nucleon forces are studied in nuclear systems, technically best under control, especially in three-nucleon and four-nucleon systems. Genuine three-nucleon forces are important for details in the description of some observables. Their contributions to observables are small on the scale set by two-nucleon forces. (author)

  1. RSOI: Force Deployment Bottleneck

    National Research Council Canada - National Science Library

    D'Amato, Mark

    1998-01-01

    .... This runs counter to the popular belief that strategic lift is the limiting constraint. The study begins by highlighting the genesis of the military's current force projection strategy and the resulting importance of rapid force deployments...

  2. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  3. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  4. Crossflow force transducer

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related

  5. Forces in General Relativity

    Science.gov (United States)

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  6. Air Force Senior Leaders

    Science.gov (United States)

    Force TV Radio Week in Photos About Us Air Force Senior Leaders SECAF CSAF CMSAF Biographies Adjunct Professors Senior Mentor Biographies Fact Sheets Commander's Call Topics CCT Archive CSAF Reading List 2017 Media Sites Site Registration Contact Us Search AF.mil: Home > About Us > Air Force Senior Leaders

  7. Role of symmetry-breaking induced by Er × B shear flows on developing residual stresses and intrinsic rotation in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Xu, Y.; Shesterikov, I.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Hidalgo, C.; Krämer-Flecken, A.; Koslowski, R.

    2013-01-01

    Direct measurements of residual stress (force) have been executed at the edge of the TEXTOR tokamak using multitip Langmuir and Mach probes, together with counter-current NBI torque to balance the existing toroidal rotation. Substantial residual stress and force have been observed at the plasma boundary, confirming the existence of a finite residual stress as possible mechanisms to drive the intrinsic toroidal rotation. In low-density discharges, the residual stress displays a quasi-linear dependence on the local pressure gradient, consistent with theoretical predictions. At high-density shots the residual stress and torque are strongly suppressed. The results show close correlation between the residual stress and the E r × B flow shear rate, suggesting a minimum threshold of the E × B flow shear required for the k ∥ symmetry breaking. These findings provide the first experimental evidence of the role of E r × B sheared flows in the development of residual stresses and intrinsic rotation. (letter)

  8. The Cauchy method of residues

    CERN Document Server

    Mitrinović, Dragoslav S

    1993-01-01

    Volume 1, i. e. the monograph The Cauchy Method of Residues - Theory and Applications published by D. Reidel Publishing Company in 1984 is the only book that covers all known applications of the calculus of residues. They range from the theory of equations, theory of numbers, matrix analysis, evaluation of real definite integrals, summation of finite and infinite series, expansions of functions into infinite series and products, ordinary and partial differential equations, mathematical and theoretical physics, to the calculus of finite differences and difference equations. The appearance of Volume 1 was acknowledged by the mathematical community. Favourable reviews and many private communications encouraged the authors to continue their work, the result being the present book, Volume 2, a sequel to Volume 1. We mention that Volume 1 is a revised, extended and updated translation of the book Cauchyjev raeun ostataka sa primenama published in Serbian by Nau~na knjiga, Belgrade in 1978, whereas the greater part ...

  9. Residual stress effects in LMFBR fracture assessment procedures

    International Nuclear Information System (INIS)

    Hooton, D.G.

    1984-01-01

    Two post-yield fracture mechanics methods, which have been developed into fully detailed failure assessment procedures for ferritic structures, have been reviewed from the point of view of the manner in which as-welded residual stress effects are incorporated, and comparisons then made with finite element and theoretical models of centre-cracked plates containing residual/thermal stresses in the form of crack-driving force curves. Applying the procedures to austenitic structures, comparisons are made in terms of failure assessment curves and it is recommended that the preferred method for the prediction of critical crack sizes in LMFBR austenitic structures containing as-welded residual stresses is the CEGB-R6 procedure based on a flow stress defined at 3% strain in the parent plate. When the prediction of failure loads in such structures is required, it is suggested that the CEGB-R6 procedure be used with residual/thermal stresses factored to give a maximum total stress of flow stress magnitude

  10. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  11. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  12. Residue management at Rocky Flats

    International Nuclear Information System (INIS)

    Olencz, J.

    1995-01-01

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as open-quotes materials in-processclose quotes to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes

  13. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene

    Science.gov (United States)

    Sun, Jianbo; Finklea, Harry O.; Liu, Yuxin

    2017-03-01

    Poly(methyl methacrylate) (PMMA) residue has long been a critical challenge for practical applications of the transferred chemical vapor deposited (CVD) graphene. Thermal annealing is empirically used for the removal of the PMMA residue; however experiments imply that there are still small amounts of residues left after thermal annealing which are hard to remove with conventional methods. In this paper, the thermal degradation of the PMMA residue upon annealing was studied by Raman spectroscopy. The study reveals that post-annealing residues are generated by the elimination of methoxycarbonyl side chains in PMMA and are believed to be absorbed on graphene via the π-π interaction between the conjugated unsaturated carbon segments and graphene. The post-annealing residues are difficult to remove by further annealing in a non-oxidative atmosphere due to their thermal and chemical stability. An electrolytic cleaning method was shown to be effective in removing these post-annealing residues while preserving the underlying graphene lattice based on Raman spectroscopy and atomic force microscopy studies. Additionally, a solution-gated field effect transistor was used to study the transport properties of the transferred CVD graphene before thermal annealing, after thermal annealing, and after electrolytic cleaning, respectively. The results show that the carrier mobility was significantly improved, and that the p-doping was reduced by removing PMMA residues and post-annealing residues. These studies provide a more in-depth understanding on the thermal annealing process for the removal of the PMMA residues from transferred CVD graphene and a new approach to remove the post-annealing residues, resulting in a residue-free graphene.

  14. Residual life management. Maintenance improvement

    International Nuclear Information System (INIS)

    Sainero Garcia, J.; Hevia Ruperez, F.

    1995-01-01

    The terms Residual Life Management, Life Cycle Management and Long-Term Management are synonymous with a concept which aims to establish efficient maintenance for the profitable and safe operation of a power plant for as long as possible. A Residual Life Management programme comprises a number of stages, of which Maintenance Evaluation focuses on how power plant maintenance practices allow the mitigation and control of component ageing. with this objective in mind, a methodology has been developed for the analysis of potential degradative phenomena acting on critical components in terms of normal power plant maintenance practices. This methodology applied to maintenance evaluation enables the setting out of a maintenance programme based on the Life Management concept, and the programme's subsequent up-dating to allow for new techniques and methods. Initial applications have shown that although, in general terms, power plant maintenance is efficient, the way in which Residual Life Management is approached requires changes in maintenance practices. These changes range from modifications to existing inspection and surveillance methods or the establishment of new ones, to the monitoring of trends or the performance of additional studies, the purpose of which is to provide an accurate evaluation of the condition of the installations and the possibility of life extension. (Author)

  15. Efficient nonparametric n -body force fields from machine learning

    Science.gov (United States)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  16. Quantum fictitious forces

    DEFF Research Database (Denmark)

    Bialynicki-Birula, I; Cirone, M.A.; Dahl, Jens Peder

    2002-01-01

    We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii......) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number...... of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: "Force without force"....

  17. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  18. FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...

    African Journals Online (AJOL)

    FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.

  19. Polychlorinated Biphenyls (PCB) Residue Effects Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The PCB Residue Effects (PCBRes) Database was developed to assist scientists and risk assessors in correlating PCB and dioxin-like compound residues with toxic...

  20. Levitation force of melt-textured YBCO superconductors under non-quasi-static situation

    Science.gov (United States)

    Zhao, Z. M.; Xu, J. M.; Yuan, X. Y.; Zhang, C. P.

    2018-06-01

    The superconducting levitation force of a simple superconductor-magnet system under non-quasi-static situation is investigated experimentally. Two yttrium barium copper oxide (YBCO) samples with different performances are chosen from two small batches of samples prepared by the top-seeded melt-textured growth process. The residual carbon content of the precursor powders of the two batches is different due to different heat treatment processes. During the experimental process for measuring the levitation force, the value of the relative speed between the YBCO sample and the permanent magnet is higher than that in conventional studies. The variation characteristics of the superconducting levitation force are analyzed and a crossing phenomenon in the force-displacement hysteresis curves is observed. The results indicate that the superconducting levitation force is different due to the different residual carbon contents. As residual carbon contents reduce, the crossing phenomenon is more obvious accordingly.

  1. 9 CFR 311.39 - Biological residues.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Biological residues. 311.39 Section... Biological residues. Carcasses, organs, or other parts of carcasses of livestock shall be condemned if it is determined that they are adulterated because of the presence of any biological residues. ...

  2. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  3. Neutron residual stress measurements in linepipe

    International Nuclear Information System (INIS)

    Law, Michael; Gnaepel-Herold, Thomas; Luzin, Vladimir; Bowie, Graham

    2006-01-01

    Residual stresses in gas pipelines are generated by manufacturing and construction processes and may affect the subsequent pipe integrity. In the present work, the residual stresses in eight samples of linepipe were measured by neutron diffraction. Residual stresses changed with some coating processes. This has special implications in understanding and mitigating stress corrosion cracking, a major safety and economic problem in some gas pipelines

  4. Natural radioactivity in petroleum residues

    International Nuclear Information System (INIS)

    Gazineu, M.H.P.; Gazineu, M.H.P.; Hazin, C.A.; Hazin, C.A.

    2006-01-01

    The oil extraction and production industry generates several types of solid and liquid wastes. Scales, sludge and water are typical residues that can be found in such facilities and that can be contaminated with Naturally Occurring Radioactive Material (N.O.R.M.). As a result of oil processing, the natural radionuclides can be concentrated in such residues, forming the so called Technologically Enhanced Naturally Occurring Radioactive Material, or T.E.N.O.R.M.. Most of the radionuclides that appear in oil and gas streams belong to the 238 U and 232 Th natural series, besides 40 K. The present work was developed to determine the radionuclide content of scales and sludge generated during oil extraction and production operations. Emphasis was given to the quantification of 226 Ra, 228 Ra and 40 K since these radionuclides,are responsible for most of the external exposure in such facilities. Samples were taken from the P.E.T.R.O.B.R.A.S. unity in the State of Sergipe, in Northeastern Brazil. They were collected directly from the inner surface of water pipes and storage tanks, or from barrels stored in the waste storage area of the E and P unit. The activity concentrations for 226 Ra, 228 Ra and 40 K were determined by using an HP Ge gamma spectrometric system. The results showed concentrations ranging from 42.7 to 2,110.0 kBq/kg for 226 Ra, 40.5 to 1,550.0 kBq/kg for 228 Ra, and 20.6 to 186.6 kBq/kg for 40 K. The results highlight the importance of determining the activity concentration of those radionuclides in oil residues before deciding whether they should be stored or discarded to the environment. (authors)

  5. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...

  6. Process to recycle shredder residue

    Science.gov (United States)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  7. StringForce

    DEFF Research Database (Denmark)

    Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva

    2017-01-01

    In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....

  8. Quantum anticentrifugal force

    International Nuclear Information System (INIS)

    Cirone, M.A.; Schleich, W.P.; Straub, F.; Rzazewski, K.; Wheeler, J.A.

    2002-01-01

    In a two-dimensional world, a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anticentrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional δ-function potential. In a counterintuitive way, the attractive force pushes the particle away from the location of the δ-function potential. As a consequence, the particle is localized in a band-shaped domain around the origin

  9. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  10. Hydrostatic force sensor

    International Nuclear Information System (INIS)

    Evans, M.S.; Stoughton, R.S.; Kazerooni, H.

    1994-08-01

    This paper presents a theoretical and experimental investigation of a new kind of force sensor which detects forces by measuring an induced pressure change in a material of large Poisson's ratio. In this investigation we develop mathematical expressions for the sensor's sensitivity and bandwidth, and show that its sensitivity can be much larger and its bandwidth is usually smaller than those of existing strain-gage-type sensors. This force sensor is well-suited for measuring large but slowly varying forces. It can be installed in a space smaller than that required by existing sensors

  11. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  12. Intermolecular and surface forces

    CERN Document Server

    Israelachvili, Jacob N

    2011-01-01

    This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition.· starts fr

  13. RSOI: Force Deployment Bottleneck

    National Research Council Canada - National Science Library

    D'Amato, Mark

    1998-01-01

    This study uses The Theory Of Constraints (TOC) management methodology and recent military missions to show that RSOI operations are generally the limiting constraint to force deployment operations...

  14. Air Force Academy Homepage

    Science.gov (United States)

    Communications Focal Point Contracting Squadron Force Support Squadron Mortuary Affairs Logistics Readiness Squadron Cadet Logistics Deployment and Distribution Material Management Operations PM Equipment Lab

  15. Simulation of a force on force exercise

    International Nuclear Information System (INIS)

    Terhune, R.; Van Slyke, D.; Sheppard, T.; Brandrup, M.

    1988-01-01

    The Security Exercise Evaluation System (SEES) is under development for use in planning Force on Force exercises and as an aid in post-exercise evaluation. This study is part of the development cycle where the simulation results are compared to field data to provide guidance for further development of the model. SEES is an event-driven stochastic computer program simulating individual movement and combat within an urban terrain environment. The simulator models the physics of movement, line of sight, and weapon effects. It relies on the controllers to provide all knowledge of security tactics, which are entered by the controllers during the simulation using interactive color graphic workstations. They are able to develop, modify and implement plans promptly as the simulator maintains real time. This paper reports on how SEES will be used to develop an intrusion plan, test the security response tactics and develop observer logistics. A Force on Force field exercise will then be executed to follow the plan with observations recorded. An analysis is made by first comparing the plan and events of the simulation with the field exercise, modifying the simulation plan to match the actual field exercise, and then running the simulation to develop a distribution of possible outcomes

  16. Equilibrium capillary forces with atomic force microscopy

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin

  17. Residual Stresses In 3013 Containers

    International Nuclear Information System (INIS)

    Mickalonis, J.; Dunn, K.

    2009-01-01

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  18. Residual Fragments after Percutaneous Nephrolithotomy

    Directory of Open Access Journals (Sweden)

    Kaan Özdedeli

    2012-09-01

    Full Text Available Clinically insignificant residual fragments (CIRFs are described as asymptomatic, noninfectious and nonobstructive stone fragments (≤4 mm remaining in the urinary system after the last session of any intervention (ESWL, URS or PCNL for urinary stones. Their insignificance is questionable since CIRFs could eventually become significant, as their presence may result in recurrent stone growth and they may cause pain and infection due to urinary obstruction. They may become the source of persistent infections and a significant portion of the patients will have a stone-related event, requiring auxilliary interventions. CT seems to be the ultimate choice of assessment. Although there is no concensus about the timing, recent data suggests that it may be performed one month after the procedure. However, imaging can be done in the immediate postoperative period, if there are no tubes blurring the assessment. There is some evidence indicating that selective medical therapy may have an impact on decreasing stone formation rates. Retrograde intrarenal surgery, with its minimally invasive nature, seems to be the best way to deal with residual fragments.

  19. Residual number processing in dyscalculia.

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J

    2014-01-01

    Developmental dyscalculia - a congenital learning disability in understanding numerical concepts - is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  20. Residual number processing in dyscalculia

    Directory of Open Access Journals (Sweden)

    Marinella Cappelletti

    2014-01-01

    Full Text Available Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  1. Residual number processing in dyscalculia☆

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia. PMID:24266008

  2. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  3. Rate of force development

    DEFF Research Database (Denmark)

    Maffiuletti, Nicola A; Aagaard, Per; Blazevich, Anthony J

    2016-01-01

    The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force devel...

  4. The forces in Nature

    CERN Multimedia

    CERN AC

    1998-01-01

    The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies of phenomena in which they have a dominant role.

  5. New force in nature?

    International Nuclear Information System (INIS)

    Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, S.H.

    1986-01-01

    We review recent experimental and theoretical work dealing with the proposed fifth force. Further analysis of the original Eoetvoes experiments has uncovered no challenges to our original assertion that these data evidence a correlation characteristic of the presence of a new coupling to baryon number or hypercharge. Various models suggest that the proposed fifth force could be accomodated naturally into the existing theoretical framework

  6. New force replica exchange method and protein folding pathways probed by force-clamp technique.

    Science.gov (United States)

    Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan

    2008-01-28

    We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes

  7. Ponderomotive Forces in Cosmos

    Science.gov (United States)

    Lundin, R.; Guglielmi, A.

    2006-12-01

    This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various

  8. Fate of vinclozolin, thiabendazole and dimethomorph during storage, handling and forcing of chicory.

    Science.gov (United States)

    Spanoghe, Pieter; Ryckaert, Bert; Van Gheluwe, Cindy; Van Labeke, Marie-Christine

    2010-02-01

    As part of ongoing research for a sustainable production of Belgian endives, the fate of three fungicides during storage, handling and forcing of witloof chicory roots was investigated. Storage roots are protected against Sclerotinia sp. Fuckel and Phoma exigua var. exigua Desm. by means of vinclozolin and thiabendazole respectively. During hydroponic forcing, the most imminent pathogen is Phytophthora cryptogea Pethybr. & Laff., which is controlled by the use of dimethomorph. Vinclozolin and thiabendazole concentrations on roots remained constant during storage at -1 degrees C. Dermal exposure of the workers in hydroponics was exceeded. Vinclozolin and thiabendazole residues were not detected 2 weeks after hydroponic forcing; dimethomorph was still detected at harvest. At harvest, the vinclozolin concentration in the chicory heads was below the maximum residue limit, but the chicory roots contained residues much above the thiabendazole and dimethomorph maximum residue level. Vinclozolin and thiabendazole residues applied before storage are still present on the roots at the start of the forcing cycle. During the set-up of chicory roots, preventive measures are recommended, as effects of repeated human exposure to low doses of applied fungicides cannot be excluded. Dimethomorph applied at the start of the hydroponic forcing is the only pesticide detected in the drainage water at harvest. The chicory heads were safe for human consumption. However, more attention should be paid to the residues of fungicides in the roots used for cattle feeding.

  9. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    Science.gov (United States)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  10. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    J. A. Canova

    2009-01-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  11. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2009-12-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  12. Upgraded wood residue fuels 1995

    International Nuclear Information System (INIS)

    Vinterbaeck, J.

    1995-01-01

    The Swedish market for upgraded residue fuels, i.e. briquettes, pellets and wood powder, has developed considerably during the nineties. The additional costs for the upgrading processes are regained and create a surplus in other parts of the system, e.g. in the form of higher combustion efficiencies, lower investment costs for burning equipment, lower operation costs and a diminished environmental impact. All these factors put together have resulted in a rapid growth of this part of the energy sector. In 1994 the production was 1.9 TWh, an increase of 37 % compared to the previous year. In the forthcoming heating season 1995/96 the production may reach 4 TWh. 57 refs, 11 figs, 6 tabs

  13. Forest residues in cattle feed

    Directory of Open Access Journals (Sweden)

    João Elzeário Castelo Branco Iapichini

    2012-12-01

    Full Text Available The ruminants are capable of converting low-quality food, when they are complementes with high-energy source. Through the use of regional agricultural residues is possible to conduct more economical production systems, since energetic foods have high cost in animal production. There is very abundant availability of residues in agroforestry activities worldwide, so that if a small fraction of them were used with appropriate technical criteria they could largely meet the needs of existing herds in the world and thus meet the demands of consumption of protein of animal origin. The Southwest Region of São Paulo State has large area occupied by reforestation and wide availability of non-timber forest residues, which may represent more concentrated energetic food for ruminant production. This experiment aimed to evaluate the acceptability of ground pine (20, 30 and 40%, replacing part of the energetic food (corn, present in the composition of the concentrate and was performed at the Experimental Station of Itapetininga - Forest Institute / SMA, in the dry season of 2011. It were used four crossbred steers, mean 18 months old, average body weight of 250 kg, housed in a paddock provided with water ad libitum and covered troughs for supplementation with the experimental diet. The adjustment period of the animals was of 07 days and the measurement of the levels of consumption, physiological changes, acceptability and physiological parameters were observed during the following 25 days. The concentrate supplement was formulated based on corn (76.2%, Soybean Meal (20%, urea (2%, Ammonium sulfate (0.4%, calcite (1.4%, Mineral Core (1% and finely ground Pine Cone, replacing corn. In preparing food, the formulas were prepared to make them isoproteic/energetic, containing the following nutrient levels: 22% Crude Protein (CP and 79% of Total Nutrients (TDN. The animals received the supplement in three steps for each level of cone replaced, being offered in the

  14. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavated...... from the landfills and size fractionated in order to recover potential resources such as metal and energy and to reduce the amounts of SR left for re-landfilling. Based on the results it is estimated that 60-70% of the SR excavated could be recovered in terms of materials or energy. Only a fraction...... with particle size less than 5 mm needs to be re-landfilled at least until suitable techniques are available for recovery of materials with small particle sizes....

  15. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening

    Science.gov (United States)

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2008-09-01

    We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.

  16. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  17. Firework displays as sources of particles similar to gunshot residue.

    Science.gov (United States)

    Grima, Matthew; Butler, Mark; Hanson, Robert; Mohameden, Ahmed

    2012-03-01

    In light of past research being targeted to find specific particles which may be similar to gunshot residue (GSR), this project was formulated to detect any possible particulate by random particle fallout onto substrates at firework displays and to assess the impact this may have on GSR evidence. Firework residue was collected at a display site, from amongst spectators as well as from the author's hair 90min after the display. SEM-EDX analysis has detected such particulate in all three scenarios, with the firework particle population at large providing a solid ground for discrimination from GSR. Wind dispersal was found to decrease the particle population and subsequently, the latter's discriminatory power. Some particles, if treated individually were found to be indistinguishable from GSR. Findings also include residues which may mimic strontium based GSR as well as GSR which may be mixed with that from previous firings. The continuous changes made to primer and propellant compositions by manufacturers also call for greater consideration when classifying particles as originating from pyrotechnic devices. Furthermore, authorities such as police forces should be made more aware about the incidence of such particle transfer in firework related periods. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Residues and duality for projective algebraic varieties

    CERN Document Server

    Kunz, Ernst; Dickenstein, Alicia

    2008-01-01

    This book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of K�hler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations. The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership. D. A. Cox explains toric residues and relates them to the earlier text. The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given.

  19. Using cotton plant residue to produce briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [University of Arizona, Tucson, AZ (United States). Bioresources Research Facility

    2000-07-01

    In Arizona, cotton (Gossypium) plant residue left in the field following harvest must be buried to prevent it from serving as an overwintering site for insects such as the pink bollworm. Most tillage operations employed to incorporate the residue into the soil are energy intensive and often degrade soil structure. Trials showed that cotton plant residue could be incorporated with pecan shells to produce commercially acceptable briquettes. Pecan shell briquettes containing cotton residue rather than waste paper were slightly less durable, when made using equivalent weight mixtures and moisture contents. Proximate and ultimate analyses showed the only difference among briquette samples to be a higher ash content in those made using cotton plant residue. Briquettes made with paper demonstrated longer flame out time, and lower ash percentage, compared to those made with cotton plant residue. (author)

  20. Effect of residual stress on the nanoindentation response of (100) copper single crystal

    International Nuclear Information System (INIS)

    Zhu, Li-na; Xu, Bin-shi; Wang, Hai-dou; Wang, Cheng-biao

    2012-01-01

    Experimental measurements were used to investigate the effect of residual stress on the nanoindentation of (100) copper single crystal. Equi-biaxial tensile and compressive stresses were applied to the copper single crystal using a special designed apparatus. It was found that residual stresses greatly affected peak load, curvature of the loading curve, elastically recovered depth, residual depth, indentation work, pile-up amount and contact area. The Suresh and Giannakopoulos and Lee and Kwon methods were used to calculate the residual stresses from load-depth data and morphology observation of nanoindents using atomic force microscopy. Comparison of the obtained results with stress values from strain gage showed that the residual stresses analyzed from the Suresh and Giannakopoulos model agreed well with the applied stresses. -- Highlights: ► Residual stresses greatly affected various nanoindentation parameters. ► The contact area can be accurately measured from AFM observation. ► The residual stresses analyzed from the S and G model agreed well with applied stresses.

  1. OOTW Force Design Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  2. Distribution of residues and primitive roots

    Indian Academy of Sciences (India)

    Replacing the function f by g, we get the required estimate for N(p, N). D. Proof of Theorem 1.1. When p = 7, we clearly see that (1, 2) is a consecutive pair of quadratic residue modulo 7. Assume that p ≥ 11. If 10 is a quadratic residue modulo p, then we have (9, 10) as a consecutive pair of quadratic residues modulo p, ...

  3. Residual analysis for spatial point processes

    DEFF Research Database (Denmark)

    Baddeley, A.; Turner, R.; Møller, Jesper

    We define residuals for point process models fitted to spatial point pattern data, and propose diagnostic plots based on these residuals. The techniques apply to any Gibbs point process model, which may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Ou...... or covariate effects. Q-Q plots of the residuals are effective in diagnosing interpoint interaction. Some existing ad hoc statistics of point patterns (quadrat counts, scan statistic, kernel smoothed intensity, Berman's diagnostic) are recovered as special cases....

  4. Forced magnetic reconnection

    Science.gov (United States)

    Vekstein, G.

    2017-10-01

    This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.

  5. Bi-Force

    DEFF Research Database (Denmark)

    Sun, Peng; Speicher, Nora K; Röttger, Richard

    2014-01-01

    of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A...... comparative analysis of biclustering algorithms for gene expressiondata. Brief. Bioinform., 14:279-292.) and compared Bi-Force against eight existing tools: FABIA, QUBIC, Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs and ISA. To this end, a suite of synthetic datasets as well as nine large gene expression...

  6. Carbaryl residues in maize and processed products

    International Nuclear Information System (INIS)

    Qureshi, M.J.; Sattar, A. Jr.; Naqvi, M.H.

    1981-01-01

    Carbaryl residues in two local maize varieties were determined using a colorimetric method. No significant differences were observed for residues of the two varieties which ranged between 12.0 to 13.75 mg/kg in the crude oil, and averaged 1.04 and 0.67 mg/kg in the flour and cake respectively. In whole maize plants, carbaryl residues declined to approximately 2 mg/kg 35 days after treatment. Cooking in aqueous, oil or aqueous-oil media led to 63-83% loss of carbaryl residues, after 30 minutes. (author)

  7. Institutionalizing Security Force Assistance

    National Research Council Canada - National Science Library

    Binetti, Michael R

    2008-01-01

    .... It looks at the manner in which security assistance guidance is developed and executed. An examination of national level policy and the guidance from senior military and civilian leaders highlights the important role of Security Force Assistance...

  8. Hanscom Air Force Base

    Data.gov (United States)

    Federal Laboratory Consortium — MIT Lincoln Laboratory occupies 75 acres (20 acres of which are MIT property) on the eastern perimeter of Hanscom Air Force Base, which is at the nexus of Lexington,...

  9. Packing force data correlations

    International Nuclear Information System (INIS)

    Heiman, S.M.

    1994-01-01

    One of the issues facing valve maintenance personnel today deals with an appropriate methodology for installing and setting valve packing that will minimize leak rates, yet ensure functionality of the the valve under all anticipated operating conditions. Several variables can affect a valve packing's ability to seal, such as packing bolt torque, stem finish, and lubrication. Stem frictional force can be an excellent overall indicator of some of the underlying conditions that affect the sealing characteristics of the packing and the best parameter to use when adjusting the packing. This paper addresses stem friction forces, analytically derives the equations related to these forces, presents a methodology for measuring these forces on valve stems, and attempts to correlate the data directly to the underlying variables

  10. Expeditionary Warfare- Force Protection

    National Research Council Canada - National Science Library

    Higgins, Eric

    2004-01-01

    In 2003, the Systems Engineering and Analysis students were tasked to develop a system of systems conceptual solution to provide force protection for the Sea Base conceptualized in the 2002 Expeditionary Warfare study...

  11. Process for measuring residual stresses

    International Nuclear Information System (INIS)

    Elfinger, F.X.; Peiter, A.; Theiner, W.A.; Stuecker, E.

    1982-01-01

    No single process can at present solve all problems. The complete destructive processes only have a limited field of application, as the component cannot be reused. However, they are essential for the basic determination of stress distributions in the field of research and development. Destructive and non-destructive processes are mainly used if investigations have to be carried out on original components. With increasing component size, the part of destructive tests becomes smaller. The main applications are: quality assurance, testing of manufactured parts and characteristics of components. Among the non-destructive test procedures, X-raying has been developed most. It gives residual stresses on the surface and on surface layers near the edges. Further development is desirable - in assessment - in measuring techniques. Ultrasonic and magnetic crack detection processes are at present mainly used in research and development, and also in quality assurance. Because of the variable depth of penetration and the possibility of automation they are gaining in importance. (orig./RW) [de

  12. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    International Nuclear Information System (INIS)

    Murray, A.M.

    1999-01-01

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS)

  13. The influence of residual stresses on small through-clad cracks in pressure vessels

    International Nuclear Information System (INIS)

    deLorenzi, H.G.; Schumacher, B.I.

    1984-01-01

    The influence of cladding residual stresses on the crack driving force for shallow cracks in the wall of a nuclear pressure vessel is investigated. Thermo-elastic-plastic analyses were carried out on long axial through-clad and sub-clad flaws on the inside of the vessel. The depth of the flaws were one and three times the cladding thickness, respectively. An analysis of a semielliptical axial through-clad flaw was also performed. It was assumed that the residual stresses arise due to the difference in the thermal expansion between the cladding and the base material during the cool down from stress relieving temperature to room temperature and due to the subsequent proof test before the vessel is put into service. The variation of the crack tip opening displacement during these loadings and during a subsequent thermal shock on the inside wall is described. The analyses for the long axial flaws suggest that the crack driving force is smaller for this type of flaw if the residual stresses in the cladding are taken into account than if one assumes that the cladding has no residual stresses. However, the analysis of the semielliptical flaw shows significantly different results. Here the crack driving force is higher than when the residual stresses are not taken into account and is maximum in the cladding at or near the clad/base material interface. This suggests that the crack would propagate along the clad/base material interface before it would penetrate deeper into the wall. The elastic-plastic behavior found in the analyses show that the cladding and the residual stresses in the cladding should be taken into acocunt when evaluating the severity of shallow surface cracks on the inside of a nuclear pressure vessel

  14. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  15. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  16. Tank 12H residuals sample analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shine, E. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Diprete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  17. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  18. Densification of FL Chains via Residuated Frames

    Czech Academy of Sciences Publication Activity Database

    Baldi, Paolo; Terui, K.

    2016-01-01

    Roč. 75, č. 2 (2016), s. 169-195 ISSN 0002-5240 R&D Projects: GA ČR GAP202/10/1826 Keywords : densifiability * standard completeness * residuated lattices * residuated frames * fuzzy logic Subject RIV: BA - General Mathematics Impact factor: 0.625, year: 2016

  19. Does Bt Corn Really Produce Tougher Residues

    Science.gov (United States)

    Bt corn hybrids produce insecticidal proteins that are derived from a bacterium, Bacillus thuringiensis. There have been concerns that Bt corn hybrids produce residues that are relatively resistant to decomposition. We conducted four experiments that examined the decomposition of corn residues und...

  20. Semantic Tagging with Deep Residual Networks

    NARCIS (Netherlands)

    Bjerva, Johannes; Plank, Barbara; Bos, Johan

    2016-01-01

    We propose a novel semantic tagging task, semtagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate

  1. Cement production from coal conversion residues

    International Nuclear Information System (INIS)

    Brown, L.D.; Clavenna, L.R.; Eakman, J.M.; Nahas, N.C.

    1981-01-01

    Cement is produced by feeding residue solids containing carbonaceous material and ash constituents obtained from converting a carbonaceous feed material into liquids and/or gases into a cement-making zone and burning the carbon in the residue solids to supply at least a portion of the energy required to convert the solids into cement

  2. Residual stress concerns in containment analysis

    International Nuclear Information System (INIS)

    Costantini, F.; Kulak, R. F.; Pfeiffer, P. A.

    1997-01-01

    The manufacturing of steel containment vessels starts with the forming of flat plates into curved plates. A steel containment structure is made by welding individual plates together to form the sections that make up the complex shaped vessels. The metal forming and welding process leaves residual stresses in the vessel walls. Generally, the effect of metal forming residual stresses can be reduced or virtually eliminated by thermally stress relieving the vesseL In large containment vessels this may not be practical and thus the residual stresses due to manufacturing may become important. The residual stresses could possibly tiect the response of the vessel to internal pressurization. When the level of residual stresses is significant it will affect the vessel's response, for instance the yielding pressure and possibly the failure pressure. The paper will address the effect of metal forming residual stresses on the response of a generic pressure vessel to internal pressurization. A scoping analysis investigated the effect of residual forming stresses on the response of an internally pressurized vessel. A simple model was developed to gain understanding of the mechanics of the problem. Residual stresses due to the welding process were not considered in this investigation

  3. Electrodialytic remediation of air pollution control residues

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) consists of the fly ash, and, in dry and semi-dry systems, also the reaction products from the flue gas cleaning process. APC residue is considered a hazardous waste due to its high alkalinity, high content of salt...

  4. Robust approach to maximize the range and accuracy of force application in atomic force microscopes with nonlinear position-sensitive detectors

    International Nuclear Information System (INIS)

    Silva, E C C M; Vliet, K J van

    2006-01-01

    The atomic force microscope is used increasingly to investigate the mechanical properties of materials via sample displacement under an applied force. However, both the extent of forces attainable and the accuracy of those forces measurements are significantly limited by the optical lever configuration that is commonly used to infer nanoscale deflection of the cantilever. We present a robust and general approach to characterize and compensate for the nonlinearity of the position-sensitive optical device via data processing, requiring no modification of existing instrumentation. We demonstrate that application of this approach reduced the maximum systematic error on the gradient of a force-displacement response from 50% to 5%, and doubled the calibrated force application range. Finally, we outline an experimental protocol that optimizes the use of the quasi-linear range of the most commonly available optical feedback configurations and also accounts for the residual systematic error, allowing the user to benefit from the full detection range of these indirect force sensors

  5. Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models

    Science.gov (United States)

    Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning

    2012-01-01

    The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…

  6. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  7. Harvesting and handling agricultural residues for energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, B.M.; Summer, H.R.

    1986-05-01

    Significant progress in understanding the needs for design of agricultural residue collection and handling systems has been made but additional research is required. Recommendations are made for research to (a) integrate residue collection and handling systems into general agricultural practices through the development of multi-use equipment and total harvest systems; (b) improve methods for routine evaluation of agricultural residue resources, possibly through remote sensing and image processing; (c) analyze biomass properties to obtain detailed data relevant to engineering design and analysis; (d) evaluate long-term environmental, social, and agronomic impacts of residue collection; (e) develop improved equipment with higher capacities to reduce residue collection and handling costs, with emphasis on optimal design of complete systems including collection, transportation, processing, storage, and utilization; and (f) produce standard forms of biomass fuels or products to enhance material handling and expand biomass markets through improved reliability and automatic control of biomass conversion and other utilization systems. 118 references.

  8. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  9. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  10. Conceptual design of a calorimeter and residual ion dump for the ITER negative ion injectors

    International Nuclear Information System (INIS)

    Watson, M.

    1998-01-01

    A conceptual design for the ITER Negative Ion Injectors' Calorimeter and Residual Ion Dump systems has been carried out. The work was undertaken in support of detailed studies performed by the Russian Federation. Concepts for both systems incorporate actively water cooled hypervapotrons as the primary beam stopping elements. The Calorimeter drive has been based on the utilisation of a novel force translation system via magnetic coupling. The Residual Ion Dump necessitates the use of double sided hypervapotron elements in order to cater for the restricted space envelope defined by the Accelerator Grid hole pattern. (author)

  11. Impact damage and residual strength analysis of composite panels with bonded stiffeners. [for primary aircraft structures

    Science.gov (United States)

    Madan, Ram C.; Shuart, Mark J.

    1990-01-01

    Blade-stiffened, compression-loaded cover panels were designed, manufactured, analyzed, and tested. All panels were fabricated from IM6/1808I interleafed graphite-epoxy. An orthotropic blade stiffener and an orthotropic skin were selected to satisfy the design requirements for an advanced aircraft configuration. All specimens were impact damaged prior to testing. Experimental results were obtained for three- and five-stiffener panels. Analytical results described interlaminar forces caused by impact and predicted specimen residual strength. The analytical results compared reasonably with the experimental results for residual strength of the specimens.

  12. Residual stresses in zircaloy welds

    International Nuclear Information System (INIS)

    Santisteban, J. R.; Fernandez, L; Vizcaino, P.; Banchik, A.D.; Samper, R; Martinez, R. L; Almer, J; Motta, A.T.; Colas, K.B; Kerr, M.; Daymond, M.R

    2009-01-01

    Welds in Zirconium-based alloys are susceptible to hydrogen embrittlement, as H enters the material due to dissociation of water. The yield strain for hydride cracking has a complex dependence on H concentration, stress state and texture. The large thermal gradients produced by the applied heat; drastically changes the texture of the material in the heat affected zone, enhancing the susceptibility to delayed hydride cracking. Normally hydrides tend to form as platelets that are parallel to the normal direction, but when welding plates, hydride platelets may form on cooling with their planes parallel to the weld and through the thickness of the plates. If, in addition to this there are significant tensile stresses, the susceptibility of the heat affected zone to delayed hydride cracking will be increased. Here we have measured the macroscopic and microscopic residual stressed that appear after PLASMA welding of two 6mm thick Zircaloy-4 plates. The measurements were based on neutron and synchrotron diffraction experiments performed at the Isis Facility, UK, and at Advanced Photon Source, USA, respectively. The experiments allowed assessing the effect of a post-weld heat treatment consisting of a steady increase in temperature from room temperature to 450oC over a period of 4.5 hours; followed by cooling with an equivalent cooling rate. Peak tensile stresses of (175± 10) MPa along the longitudinal direction were found in the as-welded specimen, which were moderately reduced to (150±10) MPa after the heat-treatment. The parent material showed intergranular stresses of (56±4) MPa, which disappeared on entering the heat-affected zone. In-situ experiments during themal cyclong of the material showed that these intergranular stresses result from the anisotropy of the thermal expansion coefficient of the hexagonal crystal lattice. [es

  13. 4He binding energy calculation including full tensor-force effects

    Science.gov (United States)

    Fonseca, A. C.

    1989-09-01

    The four-body equations of Alt, Grassberger, and Sandhas are solved in the version where the (2)+(2) subamplitudes are treated exactly by convolution, using one-term separable Yamaguchy nucleon-nucleon potentials in the 1S0 and 3S1-3D1 channels. The resulting jp=1/2+ and (3/2+ three-body subamplitudes are represented in a separable form using the energy-dependent pole expansion. Converged bound-state results are calculated for the first time using the full interaction, and are compared with those obtained from a simplified treatment of the tensor force. The Tjon line that correlates three-nucleon and four-nucleon binding energies is shown using different nucleon-nucleon potentials. In all calculations the Coulomb force has been neglected.

  14. Ceramic laminates with tailored residual stresses

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-12-01

    Full Text Available Severe environments imposed by new technologies demand new materials with better properties and ensured reliability. The intrinsic brittleness of ceramics has forced scientists to look for new materials and processing routes to improve the mechanical behaviour of ceramics in order to allow their use under severe thermomechanical conditions. The laminate approach has allowed the fabrication of a new family of composite materials with strength and reliability superior to those of monolithic ceramics with microstructures similar to those of the constituent layers. The different ceramic laminates developed since the middle 1970´s can be divided in two large groups depending on whether the development of residual stresses between layers is the main design tool. This paper reviews the developments in the control and tailoring of residual stresses in ceramic laminates. The tailoring of the thickness and location of layers in compression can lead to extremely performing structures in terms of strength values and reliability. External layers in compression lead to the strengthening of the structure. When relatively thin and highly compressed layers are located inside the material, threshold strength, crack bifurcation and crack arrest during fracture occur.

    Las severas condiciones de trabajo de las nuevas aplicaciones tecnológicas exigen el uso de materiales con mejores propiedades y alta fiabilidad. La potencialidad de uso de materiales frágiles, como los cerámicos, en estas aplicaciones exige el desarrollo de nuevos materiales y métodos de procesamiento que mejoren su comportamiento mecánico. El concepto de material laminado ha permitido la fabricación de una nueva familia de materiales con tensiones de fractura y fiabilidad superiores a las de materiales monolíticos con microestructuras similares a las de las láminas que conforman el laminado. Los distintos materiales laminados desarrollados desde mediados de los años 70 se pueden

  15. Forces in strategy formation

    DEFF Research Database (Denmark)

    Steensen, Elmer Fly; Sanchez, Ron

    2008-01-01

    This chapter proposes that organizational strategy formation should be characterized theoretically as a process that is subject to several interacting forces, rather than represented by separate discrete decisionmodels or theoretic perspectives, as is commonly done in the strategic management...... literature. Based on an extensive review of relevant theory and empirical work in strategic decision-making, organizational change theory, cognitive and social psychology, and strategy processes, seven kinds of ''forces'' - rational, imposed, teleological, learning, political, heuristic, and social...... - are identified as interacting in and having significant influence on the strategy formation process. It is further argued that by applying a holistic ''forces-view'' of the significant and interacting influences on strategy formation, we can better understand the dynamics and challenges in managing the process...

  16. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  17. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  18. Particles and forces

    International Nuclear Information System (INIS)

    Peierls, R.

    1981-01-01

    The particles and forces of matter, found in the Universe, are discussed with especial reference to some of the laws which govern behaviour in the sub-atomic world and which determine the way forces work to give matter its various characteristics. The recent history of the search for elementary constituents of matter in this century is outlined and the replacement of the simplicity anticipated in the 1930s by the proliferation of particle states uncovered in the 1950s and 1960s which led to the quark model is examined. (U.K.)

  19. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    Science.gov (United States)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  20. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)