WorldWideScience

Sample records for residual stress effect

  1. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  2. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  3. Effect of residual stresses on hydrogen permeation in iron

    International Nuclear Information System (INIS)

    Mouanga, M.; Bercot, P.; Takadoum, J.

    2010-01-01

    The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses. Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Mueller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained. Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 deg. C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.

  4. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  5. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  6. Residual stress effects in LMFBR fracture assessment procedures

    International Nuclear Information System (INIS)

    Hooton, D.G.

    1984-01-01

    Two post-yield fracture mechanics methods, which have been developed into fully detailed failure assessment procedures for ferritic structures, have been reviewed from the point of view of the manner in which as-welded residual stress effects are incorporated, and comparisons then made with finite element and theoretical models of centre-cracked plates containing residual/thermal stresses in the form of crack-driving force curves. Applying the procedures to austenitic structures, comparisons are made in terms of failure assessment curves and it is recommended that the preferred method for the prediction of critical crack sizes in LMFBR austenitic structures containing as-welded residual stresses is the CEGB-R6 procedure based on a flow stress defined at 3% strain in the parent plate. When the prediction of failure loads in such structures is required, it is suggested that the CEGB-R6 procedure be used with residual/thermal stresses factored to give a maximum total stress of flow stress magnitude

  7. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  8. Stress-Softening and Residual Strain Effects in Suture Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone, nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data.

  9. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  10. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  11. Effect of residual stress induced by cold expansion on fatigue crack ...

    African Journals Online (AJOL)

    Fatigue life and fatigue crack growth rate are controlled by stress ratio, stress level, orientation of crack, temper-ature, residual stress, corrosion, etc. The effects of residual stress on fatigue crack growth in aluminium (Al) alloy 2024-T351 by Mode I crack were investigated by applying constant amplitude cycles based on ...

  12. Effects of location, thermal stress and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    McLean, J.L.; Cohen, L.M.; Besuner, P.M.

    1979-01-01

    The stress intensity factors (K 1 ) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure and a fluid quench in the nozzle. Conditions both with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute K 1 values from the uncracked stress distribution. For each type of loading K 1 values are given for cracks at 15 nozzle locations and for 6 crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced K 1 values. Comparisons are made to determine the effect on K 1 of crack location, thermal stress and residual stress, as compared with pressure stress. For the thermal transient it is shown that K 1 for small crack depths is maximised early in the transient, while K 1 for large cracks is maximised later under steady state conditions. Computation should, therefore, be made for several transient time points and the maximum K 1 for a given crack depth should be used for design analysis. It is concluded that the effects on K 1 of location, thermal stresses and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The utilised combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (author)

  13. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute Ksub(I) values from the uncracked structure's stress distribution. For each type of loading Ksub(I) values are given for cracks at 15 nozzle locations and for six crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced Ksub(I) values. Comparisons are made to determine the effect on Ksub(I) of crack location, thermal stress, and residual stress as compared to pressure stress. For the thermal transient it is shown that Ksub(I) for small crack depths is maximized early in the transient while Ksub(I) for large cracks is maximized later, under steady state conditions. Ksub(I) computations should, therefore, be made for several transient time points and the maximum Ksub(I) for a given crack depth should be used for design analysis. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evalute without advanced numerical procedures. The utilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated

  14. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis is employed to compute Ksub(I) values from the uncracked structure's stress distribution. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The ulilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (Auth.)

  15. The role and effect of residual stress on pore generation during anodization of aluminium thin films

    International Nuclear Information System (INIS)

    Liao, M.W.; Chung, C.K.

    2013-01-01

    Highlights: •Al films of varying residual stress were prepared by sputtering. •Variation of the residual stress in the Al films influences pore growth during anodization. •The change in average pore size with residual stress is fairly small. •Interaction of residual stress with oxide growth stress leads to change in structure. •Residual tensile stress increases the pore density of porous alumina. -- Abstract: The role and effect of residual stress on pore generation of anodized aluminium oxide (AAO) have been investigated into anodizing the various-residual-stresses aluminium films. The plane stresses were characterised by X-ray diffraction with sin 2 ψ method. The pore density roughly linearly increased with residual stress from 64.6 (−132.5 MPa) to 90.5 pores/μm 2 (135.9 MPa). However, the average pore size around 40 nm was not changed significantly except for the rougher film. The tensile residual stress lessened the compressive oxide growth stress to reduce AAO plastic deformation for higher pore density. The findings provide new foundations for realizing AAO films on silicon

  16. Residual stresses due to weld repairs, cladding and electron beam welds and effect of residual stresses on fracture behavior. Annual report, September 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Rybicki, E.F.

    1978-11-01

    The study is divided into three tasks. Task I is concerned with predicting and understanding the effects of residual stresses due to weld repairs of pressure vessels. Task II examines residual stresses due to an electron beam weld. Task III addresses the problem of residual stresses produced by weld cladding at a nozzle vessel intersection. The objective of Task I is to develop a computational model for predicting residual stress states due to a weld repair of pressure vessel and thereby gain an understanding of the mechanisms involved in the creation of the residual stresses. Experimental data from the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratories (ORNL) is used to validate the computational model. In Task II, the residual stress model is applied to the case of an electron beam weld of a compact tension freacture specimen. The results in the form of residual stresses near the weld are then used to explain unexpected fracture behavior which is observed in the testing of the specimen. For Task III, the residual stress model is applied to the cladding process used in nozzle regions of nuclear pressure vessels. The residual stresses obtained from this analysis are evaluated to determine their effect on the phenomena of under-clad cracking

  17. Residual stress effects on the impact resistance and strength of fiber composites

    Science.gov (United States)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  18. Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, H. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Hattingh, D.G. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); Steuwer, A. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); FaME38 at the ILL-ESRF, 6 rue J Horowitz, 38042 Grenoble (France); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: steuwer@ill.fr; James, M.N. [NMMU, Gardham Avenue, PO Box 77000, 6031 Port Elizabeth (South Africa); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-02-15

    This paper investigates the effect of varying welding parameters on the residual stress profiles in friction stir welds of aluminium alloy AA5083-H321, which were created on a fully instrumented friction welding machine. The residual stresses were determined non-destructively using synchrotron X-ray diffraction. The width and maximum of the residual stress profile show clear correlation with the heat input, and in particular feed rate, which was found to be the dominant parameter.

  19. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  20. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  1. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    Science.gov (United States)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  2. The effect of residual stress on polymer pipe lifetime

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Ševčík, Martin; Frank, A.; Náhlík, Luboš; Kučera, J.; Pinter, G.

    2013-01-01

    Roč. 108, SI (2013), s. 98-108 ISSN 0013-7944. [Crack paths 2012. Gaeta, 19.09.2012-21.09.2012] R&D Projects: GA ČR(CZ) GAP108/12/1560; GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Residual stress * Linear elastic fracture mechanics * Lifetime estimation * Polyethylene pipes * Slow crack growth Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.662, year: 2013

  3. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  4. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    International Nuclear Information System (INIS)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-01-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses

  5. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  6. Effect of the weld joint configuration on stressed components, residual stresses and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Bekir; Oezer, Alpay; Oezcatalbas, Yusuf [Gazi Univ., Ankara (Turkey)

    2014-03-01

    The effect of the weld joint configuration on components has been studied, which are under service loads, under repair or construction and the residual stresses as well as the mechanical properties of the joint have been determined. For this purpose, a horizontal positioned tensile testing device and a semi-automatic MIG welding machine have been used and then the weld joints of the plates were subjected to different elastic stresses. When the temperature of the joined elements decreased to room temperature, applied elastic stresses were released. By this means, the effects of the existing tensile stresses in the joined parts and the tensile stresses created by the welding processes were investigated. The tensile stresses occurring in the joined elements were determined by using the photo-elasticity analysis method and the hole-drilling method. Also, tensile-shear tests were applied in order to determine the effect of permanent tensile loads on the mechanical properties of the joint. Experimental results showed that the application of corner welded lap joints for components under tensile loading significantly decrease the shear strength and yielding capacities of the joint. (orig.)

  7. The effect of tensioning and sectioning on residual stresses in aluminium AA7749 friction stir welds

    International Nuclear Information System (INIS)

    Altenkirch, J.; Steuwer, A.; Peel, M.; Richards, D.G.; Withers, P.J.

    2008-01-01

    Using synchrotron X-ray diffraction the residual stress distribution has been measured in a series of AA7449-W51 aluminium friction stir welds that had been tensioned to different loads during welding. By modifying the stress accumulation path, the application of a tensioning stress has reduced the tensile magnitude of the final residual weld stresses. In the present case the residual stresses were minimised when the applied load is ∼35% of the room temperature yield stress of the parent material. Subsequent sectioning of the weld into shorter test lengths, as might be necessary for weld testing, resulted in a progressive and significant relaxation of the residual stress field. The effect of tensioning on the weld component distortion also has been investigated

  8. Effect of residual stress on the nanoindentation response of (100) copper single crystal

    International Nuclear Information System (INIS)

    Zhu, Li-na; Xu, Bin-shi; Wang, Hai-dou; Wang, Cheng-biao

    2012-01-01

    Experimental measurements were used to investigate the effect of residual stress on the nanoindentation of (100) copper single crystal. Equi-biaxial tensile and compressive stresses were applied to the copper single crystal using a special designed apparatus. It was found that residual stresses greatly affected peak load, curvature of the loading curve, elastically recovered depth, residual depth, indentation work, pile-up amount and contact area. The Suresh and Giannakopoulos and Lee and Kwon methods were used to calculate the residual stresses from load-depth data and morphology observation of nanoindents using atomic force microscopy. Comparison of the obtained results with stress values from strain gage showed that the residual stresses analyzed from the Suresh and Giannakopoulos model agreed well with the applied stresses. -- Highlights: ► Residual stresses greatly affected various nanoindentation parameters. ► The contact area can be accurately measured from AFM observation. ► The residual stresses analyzed from the S and G model agreed well with applied stresses.

  9. Effect of residual stresses on fatigue strength of plasma nitrided 4140 steel

    International Nuclear Information System (INIS)

    Aghazadeh, J.; Amidi, M.R.

    2004-01-01

    Almost every method that has been presented to determine residual stress has some limitation and complexities. The aim of this work is to present a new, yet simple method so called strain indentation for measuring the residual stresses particularly in thin layers. In this method in addition to the precision measurements, components of residual stress at different directions may be determined. AISI 4140 steel specimens nitrided at 350 d ig C , 450 d ig C and 550 d ig C for 5 hours in the mixture of 75% nitrogen- 25% hydrogen gas. The, components of residual stress in the radials axial and hoop directions in the nitrided layer were determined considering the elastic strain recovery after removal of residual stress inducer(i.e. the nitrided layer). Fatigue strength of the nitrided specimens was obtained by plotting the S-N curves and fractographic studies carried out on the fracture surface of the specimens. The effect of residual stress on the stress pattern was simulated. The calculated residual stress components were in the range of 40-210 Mpa and the radial components of residual stress were more than the other two directions. Maximum fatigue strength improvement of up to 110% was observed in the plasma nitrided specimens at 550 d ig C and also 40% improvement in fatigue strength was detected by increasing the nitriding temperature from 350 d ig C to 550 d ig C . This was due to 100% increase in residual stress. Fatigue crack growth velocity in the hoop direction was more than that of radial direction. This seems to be due to higher radial residual stress component compared with the hoop stress component in the sub layer

  10. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress

    International Nuclear Information System (INIS)

    Amirat, A.; Mohamed-Chateauneuf, A.; Chaoui, K.

    2006-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. Reliability analysis is recognized as a powerful decision-making tool for risk-based design and maintenance. Both the residual stresses generated during the manufacturing process and in-service corrosion reduce the ability to resist internal and external loading. In this study, the residual stress distribution in large diameter pipes has been characterized experimentally in order to be coupled with the corrosion model. During the pipe lifetime, residual stress relaxation occurs due to the loss of pipe thickness as material layers are consumed by corrosion. The reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. It has been found that the residual stress greatly increases the failure probability, especially in the early stage of the pipe lifetime

  11. Evaluation of machining effect for the residual stress of SA508 by hole drilling method

    International Nuclear Information System (INIS)

    Lee, Jeong Kun; Lee, Kyoung Soo; Song, Ki O; Kim, Young Shin

    2009-01-01

    Residual stresses on a surface of the material are welcome or undesirable since it's direction, compression or tensile. But especially for the fatigue, it is not negligible effect on the material strength. These residual stresses developed during the manufacturing processes involving material deformation, heat treatment, machining. The object of this paper is verifying the effect of machining what is mostly used for SA508. For verifying the effect of machining, three different kind of machining have been achieved, milling, grinding, wire cutting. Also to measure the residual stress, hole drill method and indentation method are used.

  12. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  13. Effect of constraint condition and internal medium on residual stress under overlay welding for dissimilar metal welding

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong; Kim, Jong Sung; Kim, Jin Weon

    2007-01-01

    In nuclear power plants, residual stress of dissimilar metal weld propagates cracks in the weld metal which is susceptible to stress corrosion cracking. Overlay welding is a process widely used to mitigate residual stress replacing inside tensile stress by compression stress. However, according to the result of this study the effect of overlay welding on residual stress depends on both internal medium and constraint condition. The purpose of this study is to maximize the positive effect of overlay welding by finite element analyses

  14. Effects of advanced laser processing on the microstructure and residual stresses of H13 tool steel

    OpenAIRE

    Trojan, Karel; Ocelík, Václav; Ganev, Nikolaj; Němeček, Stanislav; Čapek, Jiří

    2017-01-01

    The aim of this paper is to describe the effects of laser processing on the microstructure and residual stresses of laser cladded H13 tool steel on the classical construct steel S355 substrate. This research paper concludes that in this case of laser cladding, phase transformation and not shrinkage is likely to be a dominant effect on the formation of compressive residual stresses along the clad. Furthermore, martensitic structure and unequal concentration of alloying elements was observed on...

  15. Effect of preemptive weld overlay on residual stress of repaired weldment in surge nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang Young; Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    In the welding process, weldments usually include repair weld during the manufacturing process. Repair welds is supposed to cause strong tensile residual stress. Moreover weldments, usually made by Alloy 82/182, is susceptible to PWSCC. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

  16. The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding

    Directory of Open Access Journals (Sweden)

    Jeong-ung Park

    2018-03-01

    Full Text Available A residual stress generated in the steel structure is broadly categorized into initial residual stress during manufacturing steel material, welding residual stress caused by welding, and heat treatment residual stress by heat treatment. Initial residual stresses induced during the manufacturing process is combined with welding residual stress or heat treatment residual stress, and remained as a final residual stress. Because such final residual stress affects the safety and strength of the structure, it is of utmost importance to measure or predict the magnitude of residual stress, and to apply this point on the design of the structure. In this study, the initial residual stress of steel structures having thicknesses of 25 mm and 70 mm during manufacturing was measured in order to investigate initial residual stress (hereinafter, referred to as initial stress. In addition, thermal elastic plastic FEM analysis was performed with this initial condition, and the effect of initial stress on the welding residual stress was investigated. Further, the reliability of the FE analysis result, considering the initial stress and welding residual stress for the steel structures having two thicknesses, was validated by comparing it with the measured results. In the vicinity of the weld joint, the initial stress is released and finally controlled by the weld residual stress. On the other hand, the farther away from the weld joint, the greater the influence of the initial stress. The range in which the initial stress affects the weld residual stress was not changed by the initial stress. However, in the region where the initial stress occurs in the compressive stress, the magnitude of the weld residual compressive stress varies with the compression or tension of the initial stress. The effect of initial stress on the maximum compression residual stress was far larger when initial stress was considered in case of a thickness of 25 mm with a value of 180

  17. The effect of Residual Stress on the Stress Intensity Factor of Nuclear Material

    International Nuclear Information System (INIS)

    Song, Taek Ho

    2008-01-01

    As NPP (Nuclear Power Plant) gets aged, the importance of the pressure boundary integrity increases very much to those who are trying to operate their plant beyond its design life. Not long ago, Boric acid crystal was found at the RPV outlet nozzle of V.C. Summer plant during the visual examination in 2000. After this finding, non-destructive examination was taken to find out what's taken place. As a result of this examination, circumferential and axial cracks were found. With Metallurgical structure examination, it was shown that crack had been developed at the mid-point between Inco-alloy buttering and weld metal. It was turned out that high welding residual stress was the main cause of the cracking. Because of the through wall crack, nozzle and welding parts were replaced. Many other nuclear power plants experienced similar pressure boundary stress corrosion cracks (SCCs). KEPRI (Korea Electric Power Research Institute) has carried out research projects for managing and preventing these kinds of cracks in nuclear power plants (NPPs). The titles of these research projects are 'Development of Stress Corrosion Cracking Management Technology and Aging Monitor for NPP Main Components' and 'Development of Analysis Technology for Crack Management of Dissimilar Metal Weld'. Through these projects, residual stress measurement techniques have been exercised at various points in mock-up test specimens to simulate nuclear power plant dissimilar base metal and weldment residual stress. X-ray test and hole drilling method have been reviewed to measure residual stresses of the dissimilar metal welds. This paper shows some point of view in residual stress measurement. Fracture mechanics analysis has been performed to explain the importance of residual stress measurement in association with nuclear power plant safety

  18. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  19. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Science.gov (United States)

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  20. Effects of material non-linearity on the residual stresses in a dendritic silicon crystal ribbon

    Science.gov (United States)

    Ray, Sujit K.; Utku, Senol

    1990-01-01

    Thermal stresses developed in a dendritic silicon crystal ribbon have been shown to cause plastic deformation and residual stresses in the ribbon. This paper presents an implementation of a numerical model proposed for thermoelastoplastic behavior of a material. The model has been used to study the effects of plasticity of silicon on the residual stresses. The material properties required to implement this model are all assumed, and the response of the material to the variations in these assumed parameters of the constitutive law and in the finite element mesh is investigated. The steady state growth process is observed to be periodic with nonzero residual stresses. Numerical difficulties are also encountered in the computer solution process, resulting in sharp jumps and large oscillations in the stress responses.

  1. Interactive effects of rice residue and water stress on growth and metabolism of wheat seedlings

    Directory of Open Access Journals (Sweden)

    Nimisha Amist

    2014-08-01

    Full Text Available In the present study effects of rice residue with and without water stress were studied on Triticum aestivum L. cv. Shatabadi. The mixture of residue and garden soil in 1:1 ratio was considered as 50% (R1 and only decomposed residue as 100% (R2. Garden soil was taken as control. Twenty five seeds were sown in each experimental trays filled with soil mixture according to the treatments. Trays were arranged in two groups. After 15 days one set was subjected to water stress (WS by withholding water supply for 3 days. Morphological and biochemical parameters of 18 days old seedlings were recorded. Seedling height decreased in all treatments. A gradual decrease in relative water content, pigment and protein contents of wheat seedlings were observed. Sugar and proline contents increased in treatments. An increase in malondialdehyde (MDA content and antioxidative enzyme activities was recorded. Elevation in catalase activity was observed in all treatments except in plants with water deficit. Ascorbate peroxidase (APX and guaiacol peroxidase (GPX activities increased when residue mixed with soil but decreased in seedlings under the combined influence of the residue and water stress. Higher amount of MDA and lower activities of APX and GPX reflected the oxidative damage in seedlings under combined treatments. Rice residue inhibited growth of wheat seedlings. Water stress intensified the effects of residue.

  2. Accounting for the residual stress effects on the creep deformation of channel tubes

    International Nuclear Information System (INIS)

    Knizhnikov, Yu.N.; Platonov, P.A.; Ul'yanov, A.I.

    1985-01-01

    The effect of the first kind residual stresses arising in the walls of the zirconium base alloy fules in the process of fabrication on the RBMK type reactor channel tube creep is investigated. Models for calculation of the reactor component creep with account for the relaxation of residual stresses distributed by the wall thickness as well as the radiation and temperature fields are developed. On the basis of the analysis of the data obtained it is concluded that the effect of the residual stresses on the RBMK channel tube deformation for a long-term operation is negligible. But for the short-term fests the results can be noticeably distorted by this factor. The role of internal stresses can also manifest when determining the deformation of radiation elongation of the zirconium base alloy samples

  3. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    Science.gov (United States)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  4. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A N; Webster, G A [Imperial College, London (United Kingdom); Webster, P J [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  5. A Thermodamage Strength Theoretical Model of Ceramic Materials Taking into Account the Effect of Residual Stress

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2012-01-01

    Full Text Available A thermodamage strength theoretical model taking into account the effect of residual stress was established and applied to each temperature phase based on the study of effects of various physical mechanisms on the fracture strength of ultrahigh-temperature ceramics. The effects of SiC particle size, crack size, and SiC particle volume fraction on strength corresponding to different temperatures were studied in detail. This study showed that when flaw size is not large, the bigger SiC particle size results in the greater effect of tensile residual stress in the matrix grains on strength reduction, and this prediction coincides with experimental results; and the residual stress and the combined effort of particle size and crack size play important roles in controlling material strength.

  6. Effects of the magnesium oxide thin films' microstructures on the residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    He, Li-jun, E-mail: helijun4@126.com [The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); The State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wang, Li-yan [Electronic Information and Networking Research Institute, Collaborative Innovation Center for Information Communication Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Chen, Wei-Zhong [The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Liu, Xing-zhao [The State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-09-15

    The MgO thin films are deposited at various inclined angles. The morphology investigated by scanning electron microscope (SEM) shows the MgO thin films deposited at high inclined angles have columnar grain. The relationships between full width high maximum (FWHM) of ω-scan, residual stresses and the inclined angles are studied. The results show the smallest FWHM of MgO (002) is 4.968°, the residual stress of MgO thin films is compressive stress, and the residual stress of MgO thin films deposited at the inclined angle of 55° is the smallest. So the microstructures of MgO thin films fabricated by the oblique angle deposition (OAD) technique effectively control the residual stresses. - Highlights: • MgO thin films are deposited by oblique angle deposition technique. • The FWHMs of MgO is the smallest at the inclined angle of 55°. • Residual stress of MgO is the smallest at the inclined angle of 55°.

  7. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel

    International Nuclear Information System (INIS)

    Bensely, A.; Venkatesh, S.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.; Junik, Krzysztof

    2008-01-01

    The effect of cryogenic treatment on the distribution of residual stress in the case carburized steel (En 353) was studied using X-ray diffraction technique. Two types of cryogenic treatment: shallow cryogenic treatment (193 K) and deep cryogenic treatment (77 K) were adopted, as a supplement to conventional heat treatment. The amount of retained austenite in conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples was found to be 28%, 22% and 14%, respectively. The conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples in untempered condition had a surface residual stress of -125 MPa, -115 MPa and -235 MPa, respectively. After tempering the conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples had a surface residual stress of -150 MPa, -80 MPa and -80 MPa, respectively. A comparative study of the three treatments revealed that there was an increase in the compressive residual stress in steel that was subjected to cryogenic treatment prior to tempering. The experimental investigation revealed that deep cryogenically treated steel when subjected to tempering has undergone a reduction in compressive residual stress. Such stress relieving behaviour was mainly due to the increased precipitation of fine carbides in specimens subjected to DCT with tempering

  8. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  9. Effects of residual stress on fatigue strength of small diameter welded pipe joint

    International Nuclear Information System (INIS)

    Yamashita, Tetsuo; Hattori, Takahiro; Nomoto, Toshiharu; Iida, Kunihiro; Sato, Masanobu

    1996-01-01

    A power plant consists of many welded components, therefore, it is essential in establishing the reliability of the power plant to maintain the reliability of all welded components. The fatigue failure caused by mechanical vibrations of small diameter welded joints, which is represented by socket welded joints, is one of the major causes of trouble for the welded parts of the power plant. Here, bending fatigue tests were conducted to investigate the fatigue strength of small diameter socket welded pipe joints. In the most cases of large diameter socket joints, a fatigue crack started from the root of the fillet weld though the stress amplitude at the root was smaller than that at the toe of fillet weld. Additionally, the fatigue strength was affected by the weld bead sequence. The residual stress was considered to be one of the important parameters governing fatigue strength, therefore, its effects were investigated. In several types of pipe joints, the local stress and residual stress distributions were calculated by finite element analysis. The residual stresses were compressive at the toe and tensile at the root of the socket welded joints. Based on these results, the effects of residual stresses on the fatigue strength are discussed for small diameter welded pipe joints in the present work

  10. Effects of organic additives on preferred plane and residual stress of copper electroplated on polyimide

    International Nuclear Information System (INIS)

    Kim, Jongsoo; Kim, Heesan

    2010-01-01

    Effects of the preferred plane and the residual stress of an electroplated copper on polyethylene glycol (PEG) and 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonic acid (DPS) were studied. Polyimide film coated with sputtered copper was used as a substrate. Preferred plane, residual stress, and impurity level in the electroplated copper were measured by an X-ray diffractometry (XRD), calculated by Stoney's equation, and analyzed with secondary ion mass spectroscopy (SMS), respectively. With increasing the concentration of PEG, the preferred plane changed in the order (1 0 0) and (1 1 0) while with increasing the concentration of DPS, the preferred plane changed in the order (1 1 0), (1 0 0), and (1 1 1). Based on the modified preferred growth model, where the amount of additive adsorbed on a plane is newly assumed to be proportional to its surface energy in vacuum, the predicted preferred planes correspond to the experimental results. The residual stress of the electroplated copper depended on the type of additive as well as its concentration but was independent of the preferred plane. For example, PEG and DPS induced tensile and compressive residual stresses in the electroplated copper, respectively, and their magnitudes increased with their concentrations. The dependency of residual stress on the additives was explained by the incorporated additives into the electroplated copper.

  11. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    International Nuclear Information System (INIS)

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  12. Stress and Fatigue Life Modeling of Cannon Breech Closures Including Effects of Material Strength and Residual Stress

    National Research Council Canada - National Science Library

    Underwood, John

    2000-01-01

    ...; overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid...

  13. Effects of distance from center of a weld to fixed end on residual stress and stress intensity factor of a piping weld. Evaluation of SCC growth under residual stress field. Report 1

    International Nuclear Information System (INIS)

    Miyazaki, Katsumasa; Numata, Masanori; Saito, Koichi; Mochizuki, Masahito

    2006-01-01

    The fixed conditions of butt welds between straight pipe and valve or pump in the actual piping system are different from those of straight pipes. However, the effect of fixed condition on the residual stress and the stress intensity factor for evaluation of structural integrity of cracked piping was not clear. In this study, the finite element analyses were conducted by considering the differences in the distance from the center of weld to the fixed end L to clarify the effect of fixed condition on the residual stress and the stress intensity factor. For the 600 A piping, the axial residual stress distribution was not affected by the distance L. Furthermore, the stress intensity factor of circumferential crack under the residual stress field with fixed condition could be estimated by using the existing simplified solution for piping. (author)

  14. Residual stresses and stress corrosion effects in cast steel nuclear waste overpacks

    International Nuclear Information System (INIS)

    Attinger, R.O.; Mercier, O.; Knecht, B.; Rosselet, A.; Simpson, J.P.

    1991-01-01

    In the concepts for final disposal of high-level radioactive waste in Switzerland, one engineered barrier consists of an overpack made out of cast steel GS-40. Whenever tensile stresses are expected in the overpack, the issue of stress corrosion cracking must be expected. A low-strength steel was chosen to minimize potential problems associated with stress corrosion cracking. A series of measurements on stress corrosion cracking under the conditions as expected in the repository confirmed that the corrosion allowance of 50 mm used for the design of the reference overpack is sufficient over the 1000 years design lifetime. Tensile stresses are introduced by the welding process when the overpack is closed. For a multipass welding, the evolution of deformations, strains and stresses were determined in a finite-element calculation. Assuming an elastic-plastic material behavior without creep, the residual stresses are high; considering creep would reduce them. A series of creep tests revealed that the initial creep rate is important for cast steel already at 400deg C. (orig.)

  15. The Effect of Residual Stress on the Electromechanical Behavior of Electrostatic Microactuators

    Directory of Open Access Journals (Sweden)

    Ming-Hung Hsu

    2008-01-01

    Full Text Available This work simulates the nonlinear electromechanical behavior of different electrostatic microactuators. It applies the differential quadrature method, Hamilton's principle, and Wilson-θ integration method to derive the equations of motion of electrostatic microactuators and find a solution to these equations. Nonlinear equation difficulties are overcome by using the differential quadrature method. The stresses of electrostatic actuators are determined, and the residual stress effects of electrostatic microactuators are simulated.

  16. Effect of residual stress on fatigue crack propagation at 200 C in a welded joint austenitic stainless steel - ferritic steel

    International Nuclear Information System (INIS)

    Zahouane, A.I.; Gauthier, J.P.; Petrequin, P.

    1988-01-01

    Fatigue resistance of heterogeneous welded joints between austenitic stainless steels and ferritic steels is evaluated for reactor components and more particularly effect of residual stress on fatigue crack propagation in a heterogeneous welded joint. Residual stress is measured by the hole method in which a hole is drilled through the center of a strain gage glued the surface of the materials. In the non uniform stress field a transmissibility function is used for residual stress calculation. High compression residual stress in the ferritic metal near the interface ferritic steel/weld slow down fatigue crack propagation. 5 tabs., 15 figs., 19 refs [fr

  17. Effects of advanced laser processing on the microstructure and residual stresses of H13 tool steel

    NARCIS (Netherlands)

    Trojan, Karel; Ocelík, Václav; Ganev, Nikolaj; Němeček, Stanislav; Čapek, Jiří

    2017-01-01

    The aim of this paper is to describe the effects of laser processing on the microstructure and residual stresses of laser cladded H13 tool steel on the classical construct steel S355 substrate. This research paper concludes that in this case of laser cladding, phase transformation and not shrinkage

  18. Effects of shot peening on the residual stress of welded SS400 steel

    International Nuclear Information System (INIS)

    Lee, Jong Man; Kim, Tae Hyung; Cheong, Seong Kyun; Lee, Seung Ho

    2002-01-01

    The fatigue life of structures is usually determined by welding zone. The tensile residual stress, which is induced by welding, reduces the fatigue life and fatigue strength of welded structures. If we remove the tensile residual stress or induce the compressive residual stress, the fatigue life of welded structures will be improved. The change of hardness and compressive residual stress of welded zone after shot peening was investigated in this paper. The results show that the hardness was increased by shot peening. The residual stress was reduced by shot peening

  19. Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Lee, Kyoung Soo; Lee, Seong Ho; Park, Chi Yong; Yang, Jun Seok; Lee, Jeong Geun; Park, Jai Hak

    2011-01-01

    Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method

  20. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  1. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks

    International Nuclear Information System (INIS)

    Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.

    1985-01-01

    A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)

  2. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  3. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  4. Effect of residual stress on the integrity of a branch connection

    International Nuclear Information System (INIS)

    Law, M.; Kirstein, O.; Luzin, V.

    2012-01-01

    A new connection to an existing gas pipeline was made by hot-tapping, welding directly onto a pressurised pipeline. The welds were not post-weld heat treated, causing significant residual stresses. The critical weld had residual stresses determined by neutron diffraction using ANSTO's residual stress diffractometer, Kowari. The maximum measured residual stress (290 MPa) was 60% of the yield strength. The magnitudes of errors from a number of sources were estimated. An integrity assessment of the welded branch connection was performed with the measured residual stress values and with residual stress distributions from the BS 7910 and API 579 analysis codes. Analysis using estimates of residual stress from API 579 overestimated the critical crack size. Highlights: ► Residual stresses were measured by neutron diffraction in a thick section, non post-weld heat treated ferritic weld. ► There is little published data on these welds. ► The work compares the measured residual stresses with code-based residual stress distributions.

  5. Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers

    Science.gov (United States)

    Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.

    2018-04-01

    In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.

  6. The Effect of Stochastically Varying Creep Parameters on Residual Stresses in Ceramic Matrix Composites

    Science.gov (United States)

    Pineda, Evan J.; Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.

    2015-01-01

    Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted.

  7. Effect of processing conditions and methods on residual stress in CeO2 buffer layers and YBCO superconducting films

    International Nuclear Information System (INIS)

    Xiong Jie; Qin Wenfeng; Cui Xumei; Tao Bowan; Tang Jinlong; Li Yanrong

    2006-01-01

    CeO 2 layers have been fabricated by pulsed laser deposition (PLD) technique on (1 1 0 2) sapphire substrate. Microstructure of CeO 2 layers is characterized by X-ray diffraction as functions of substrate temperature. The effects of the substrate temperature on the residual stress have been studied. The results show that residual stress in CeO 2 film decreased with increasing substrate temperature, not the same development tendency as that of thermal stress. This means that the thermal stress is only a fraction of the residual stress. Moreover, YBCO superconducting films were prepared by direct current (DC) sputtering and pulsed laser deposition (PLD) technique. The residual stress and thermal stress of both YBCO films were measured. PLD processing apparently generated higher intrinsic compressive stresses in comparison to DC sputtering

  8. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Tang, Dapei

    2015-01-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained. (paper)

  9. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  10. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  11. Effect of the weld groove shape and pass number on residual stresses in butt-welded pipes

    International Nuclear Information System (INIS)

    Sattari-Far, I.; Farahani, M.R.

    2009-01-01

    This study used finite element techniques to analyze the thermo-mechanical behaviour and residual stresses in butt-welded pipes. The residual stresses were also measured in some welds by using the Hole-Drilling method. The results of the finite element analysis were compared with experimentally measured data to evaluate the accuracy of the finite element modelling. Based on this study, a finite element modelling procedure with reasonable accuracy was developed. The developed FE modelling was used to study the effects of weld groove shape and weld pass number on welding residual stresses in butt-welded pipes. The hoop and axial residual stresses in pipe joints of 6 and 10 mm thickness of different groove shapes and pass number were studied. It is shown that these two parameters may have significant effects on magnitude and distribution of residual stresses in welded pipes.

  12. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    Science.gov (United States)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  13. Effects on residual stresses of aluminum alloy LC4 by laser shock processing

    Science.gov (United States)

    Zhang, Yong-kang; Lu, Jin-zhong; Kong, De-jun; Yao, Hui-xue; Yang, Chao-jun

    2007-12-01

    The influences of processing parameters on laser-induced shock waves in metal components are discussed and analyzed. The effects of different parameters of laser shock processing (LSP) on residual stress of aerospace aluminum alloy LC4 were investigated. LSP was performed by using an Nd: glass phosphate laser with 23 ns pulse width and up to ~45 J pulse energy at power densities above GW/mm -2. Special attention is paid to the residual stresses from laser shock processing. Modification of microstructure, surface morphology by laser shock processing is also discussed. Results to date indicate that laser shock processing has great potential as a means of improving the mechanical performance of components.

  14. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    Science.gov (United States)

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  15. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  16. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  17. Residual stress concerns in containment analysis

    International Nuclear Information System (INIS)

    Costantini, F.; Kulak, R. F.; Pfeiffer, P. A.

    1997-01-01

    The manufacturing of steel containment vessels starts with the forming of flat plates into curved plates. A steel containment structure is made by welding individual plates together to form the sections that make up the complex shaped vessels. The metal forming and welding process leaves residual stresses in the vessel walls. Generally, the effect of metal forming residual stresses can be reduced or virtually eliminated by thermally stress relieving the vesseL In large containment vessels this may not be practical and thus the residual stresses due to manufacturing may become important. The residual stresses could possibly tiect the response of the vessel to internal pressurization. When the level of residual stresses is significant it will affect the vessel's response, for instance the yielding pressure and possibly the failure pressure. The paper will address the effect of metal forming residual stresses on the response of a generic pressure vessel to internal pressurization. A scoping analysis investigated the effect of residual forming stresses on the response of an internally pressurized vessel. A simple model was developed to gain understanding of the mechanics of the problem. Residual stresses due to the welding process were not considered in this investigation

  18. Effect of geometric construction on residual stress distribution in designing a nuclear rotor joined by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Linjie; Zhang, Jianxun; Zhuang, Dong

    2014-01-01

    Highlights: • The internal stress of the pipe is measured using local material removal method. • Bottom protrusion at weld seam can release the stress and mitigate stress evolution. The through-wall axial stress is bending type under the effect of the rotor discs. • The impact of geometric construction on the stress evolution begins after pass 15. - Abstract: The purpose of this study is to investigate the effect of geometric construction on the distribution of residual stresses before and after heat treatment in designing a nuclear welded rotor. The local material removal method was used to measure internal residual stress of the experimental pipe after post weld heat treatment. Three finite element models were employed as follows: a model of experimental pipe, a model with a bottom protrusion existed at the weld region, and a model of two rotor discs butt-welded with a bottom protrusion at the weld region. Investigated results showed that the bottom protrusion existed at the weld region can decrease the residual stress and mitigate the stress evolution significantly on the inner surface. Under the binding effect of the rotor discs, the axial stress of inner surface region is compressive stress; the through-wall axial stress at the weld center line can be deemed to a bending type; both the hoop stress and axial stress at the weld center line on the inner surface are compressive. The impact of geometric construction on the stress evolution at the root bead begins after pass 15 deposited

  19. Residual stress effects on the K parameter of the fracture mechanics

    International Nuclear Information System (INIS)

    Soares, Maria da Conceiccao B. Vieira; Andrade, Arnaldo H. Paes de

    1996-01-01

    Compressive residual stresses are beneficial and improve resistance to fracture and crack growth. Residual stresses can be introduced in fabricated components by a variety of means and a number of methods such as laser surface treatment, cold expanded hole, and shot peening. Neutrons diffraction measurements of residual stress were performed at a pulsed neutron source (ISIS, Didcot, UK), on shot peened plates of nickel base superalloy Udimet 720 and titanium alloy IMI 834. The stress intensity factor (K) of residual stress was evaluated by finite element modeling and weight function method. Finite element modeling of a 2D plate with a single edge-notch was applied and, due to symmetry only half of the plate was actually modeled. The stress intensity factor (K) was evaluated for both case of remote tension stress and residual stress. Crack surface overlapping, which is physically unacceptable, was noted for small cracks under residual and boundary lading. Overlap correction was proposed and applied in order to obtain reliable values for (K). (author)

  20. Effect of residual stresses on the reliability of components under fatigue

    International Nuclear Information System (INIS)

    Ruestenberg, I.

    1995-01-01

    The assurance of the reliability of mechanical components relative to a variety of failure mechanisms is of decisive technical, industrial, and economic importance. In this dissertation, the reliability, i.e. the probability that the lifetime does not fall below a given value, is examined with respect to the particularly important failure mechanisms of fracture and fatigue. The general problem of uniaxial fatigue is studied on the basis of both continuum damage mechanics and crack mechanics. In particular, the mechanisms of crack initiation, as characterized by the Coffin-Manson-Neuber local strain-life equations for notched components as well as the mechanism of crack growth, as governed by the Paris-Erdogang relation, are taken into account. The nonlinear fatigue damage accumulation process for components subjected to general, cyclic loading histories is modeled by a multilinear damage law which allows, in principle, to characterize the subsequent activation of different fatigue mechanisms. Explicit equations are developed for quintuple-, quadruple-, and triple-linear damage accumulation. Particularly promising appears the triple-linear damage approach which allows, in principle, the identification of a nucleation, an initiation, and a final growth stage up to rupture of fatigue cracks. The beneficial effect of intentionally induced compressive residual stresses on the lifetime of the component is investigated. To this end, an elasto-plastic contact problem, based on Prandtl-Reuss' constitutive equations, is numerically solved, and the residual stress field, as it is typically produced by the mechanical process of cold rolling, is established. Assessments of the effect of adaptation, i.e. the subsequent reduction of the residual stresses due to cyclic in-service loading as well as of the effect of unavoidable surface roughness, introduced by manufacturing processes like forging, are carried out. (author) figs., tabs., refs

  1. Effect of residual stress in layered ceramic microcomposites on crack propagation during fracture

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Strzeszewski, J.; Gebicki, W.

    1998-01-01

    Laminar composites, containing layers of Y-ZrO 2 and either Al 2 O 3 or a mixture of Al 2 O 3 and ZrO 2 have been fabricated using a sequential centrifuging technique of water solutions containing of suspended particles. Controlled crack growth experiments with notched beams of composites were done and showed the significant effect of barrier layer thickness and composition of the crack propagation path during fracture. Distinct crack deflection in alumina layers was observed. The increase of crack deflection angle with the alumina layer thickness was also found. In the case of the barrier layer made of mixture, crack deflection did not occur independently on layer thickness. The observed changes have been correlated with the radial distribution of residual stresses in barrier layers created during cooling of sintered composites from fabrication temperature. The stress found were the result of the differences in the thermal expansion and sintering shrinkage of alumina and zirconia and the crystallographically anisotropic thermal expansion of the alumina. The residual stress distribution has been measured by piezo-spectroscopy based on the optical fluorescence of Cr + dopants in alumina. (author)

  2. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  3. Modelling the Effects of Surface Residual Stresses on Fatigue Behavior of PM Disk Alloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A finite element based model will be developed and validated to capture the evolution of residual stresses and cold work at machined features of compressor and...

  4. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects

    International Nuclear Information System (INIS)

    Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E.

    2012-01-01

    Highlights: ► Effect of laser peen intensity on local residual stress fields in 2024 aluminium. ► Peening induces significant changes in surface topography and local hardness. ► Residual stress at peen spot centre in tension, spot overlap in compression. ► Notched fatigue lives increased; crack morphology correlated to residual stress field. ► Large peening power densities can cause fatigue life reduction in notched samples. - Abstract: Laser peening at a range of power densities has been applied to 2 mm-thick sheets of 2024 T351 aluminium. The induced residual stress field was measured using incremental hole drilling and synchrotron X-ray diffraction techniques. Fatigue samples were subjected to identical laser peening treatments followed by scribing at the peen location to introduce stress concentrations, after which they were fatigue tested. The residual stresses were found to be non-biaxial: orthogonal to the peen line they were tensile at the surface, moving into the desired compression with increased depth. Regions of peen spot overlap were associated with large compression strains; the centre of the peen spot remaining tensile. Fatigue lives showed moderate improvement over the life of unpeened samples for 50 μm deep scribes, and slight improvement for samples with 150 μm scribes. Use of the residual stress intensity K resid approach to calculate fatigue life improvement arising from peening was unsuccessful at predicting the relative effects of the different peening treatments. Possible reasons for this are explored.

  5. Dissimilar friction stir welds in AA5083-AA6082: The effect of process parameters on residual stress

    International Nuclear Information System (INIS)

    Steuwer, A.; Peel, M.J.; Withers, P.J.

    2006-01-01

    The effect of tool traverse and rotation speeds on the residual stresses are quantified for welds between non-age-hardening AA5083 and age-hardening AA6082 and compared to single alloy joints made from each of the two constituents. The residual stresses have been characterised non-destructively by neutron diffraction and synchrotron X-ray diffraction. The region around the weld line was characterised by significant tensile residual stress fields which are balanced by compressive stresses in the parent material. The rotation speed of the tool has been found to have a substantially greater influence than the transverse speed on the properties and residual stresses in the welds, particularly on the AA5083 side where the location of the peak stress moves from the stir zone to beyond the edge of the tool shoulder. The changes in residual stress are related to microstructural and hardness changes as determined in a previous study . In particular the larger stresses under the weld tool on the AA5083 side compared to the AA6082 side are related to a transient reduction in yield stress due to dissolution of the hardening precipitates during welding prior to natural aging after welding

  6. Effects of stop–start features on residual stresses in a multipass austenitic stainless steel weld

    International Nuclear Information System (INIS)

    Turski, M.; Francis, J.A.; Hurrell, P.R.; Bate, S.K.; Hiller, S.; Withers, P.J.

    2012-01-01

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop–start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop–start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: ► In this study the residual stress-field surrounding weld interruptions was measured. ► Localised stresses were found to increase at weld interruptions. ► Both ramped and abrupt weld interruptions were investigated. ► After subsequent weld passes, localised stresses persisted for abrupt interruptions. ► After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  7. Effects of interface edge configuration on residual stress in the bonded structures for a divertor application

    International Nuclear Information System (INIS)

    Kitamura, K.; Nagata, K.; Shibui, M.; Tachikawa, N.; Araki, M.

    1998-01-01

    Residual stresses in the interface region, that developed at the cool down during the brazing, were evaluated for several bonded structures to assess the mechanical strength of the bonded interface, using thermoelasto-plastic stress analysis. Normal stress components of the residual stresses around the interface edge of graphite-copper (C-Cu) bonded structures were compared for three types of bonded features such as flat-type, monoblock-type and saddle-type. The saddle-type structure was found to be favorable for its relatively low residual stress, easy fabrication accuracy on bonded interface and armor replacement. Residual stresses around the interface edge in three armor materials/copper bonded structures for a divertor plate were also examined for the C-Cu, tungsten-copper (W-Cu) and molybdenum alloy-copper (TZM-Cu), varying the interface wedge angle from 45 to 135 . An optimal bonded configuration for the least value of residual stress was found to have a wedge angle of 45 for the C-Cu, and 135 for both the W-Cu and TZM-Cu bonded ones. (orig.)

  8. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  9. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  10. Standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a procedure for experimentally determining the effective elastic parameter, Eeff, for the evaluation of residual and applied stresses by X-ray diffraction techniques. The effective elastic parameter relates macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. Eeff should not be confused with E, the modulus of elasticity. Rather, it is nominally equivalent to E/(1 + ν) for the particular crystallographic direction, where ν is Poisson's ratio. The effective elastic parameter is influenced by elastic anisotropy and preferred orientation of the sample material. 1.2 This test method is applicable to all X-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing. 1.3 This test method is applicable to all X-ray diffraction techniques for residual stress measurem...

  11. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  12. Effects of induction heating parameters on controlling residual stress in intermediate size pipes

    International Nuclear Information System (INIS)

    Rybicki, E.F.; McGuire, P.A.

    1981-01-01

    Induction heating for stress improvement (IHSI) is a method for reducing the tensile weld induced stresses on the inner surfaces of the girth welded pipes. The process entails inductively heating the outside of a welded pipe while cooling the inner surface with flowing water. A 10-inch schedule 80 Type 304 stainless steel pipe was selected for this study. Residual stresses due to welding were first determined using a finite element computational model. 26 refs

  13. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment

  14. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  15. Effects of LSP on micro-structures and residual stresses in a 4 mm CLAM steel weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xizhang, E-mail: chenxizhang@wzu.edu.cn [School of Mechanical and Electrical Engineering, Wenzhou University., Wenzhou 325035 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China); Fang, Yuanyuan [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China); Zhang, Shuyan; Kelleher, Joe F. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Zhou, Jianzhong [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu (China)

    2015-05-15

    The effects of laser shock processing (LSP) on the distribution of residual stress and micro-structure of China Low Activation Martensitic (CLAM) steel weldment were investigated via neutron diffraction and optical microscope (OM). A pair of 4 mm CLAM steel plates joined by GTA welding. Special attention is paid to the generation of high level compressive residual stresses introduced by LSP. Residual stress in longitudinal, normal and transversal direction at weldment surface and longitudinal stress through thickness are evaluated via neutron diffraction. Compressive residual stress after LSP occurred at more than 90% areas within the weld joint, it is almost double the areas of compressive stress compare to weldment surface before LSP. The maximum compressive normal residual stress becomes to −183 MPa after LSP from −63 MPa before LSP. The Modification of surface micro-structures including weld zone (WZ), heat affected zone (HAZ) and base metal (BM) are also discussed. Results to date demonstrate that laser shock processing has been a great potential method for the improvement of mechanical performance of components.

  16. Investigation of effect of post weld heat treatment conditions on residual stress for ITER blanket shield blocks

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun-Chea, E-mail: hcjung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Sa-Woong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Yun-Hee [Division of Convergence Technology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Baek, Seung-Wook [Division of Industrial Metrology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Ha, Min-Su; Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • PWHT for ITER blanket shield block should be performed for dimensional stability. • Investigation of the effect of PWHT conditions on properties was performed. • Instrumented indentation method for evaluation of properties was used. • Residual stress and hardness decreased with increasing PWHT temperature. • Optimization of PWHT conditions would be needed for satisfaction of requirement. - Abstract: The blanket shield block (SB) shall be required the tight tolerance because SB interfaces with many components, such as flexible support keypads, First Wall (FW) support contact surfaces, FW central bolt, electrical strap contact surfaces and attachment inserts for both FW and Vacuum Vessel (VV). In order to fulfil the tight tolerance requirement, stress relieving shall be performed for dimensional stability after cover welding operation. In this paper, effect of Post Weld Heat Treatment (PWHT) conditions, temperature and holding time, was investigated on the residual stress and hardness. The 316L Stainless Steel (SS) was prepared and welded by manual TIG welding by using filler material with 2.4 mm of diameter. Welded 316L SS plate was machined to prepare the specimen for PWHT. PWHT was implemented at 250, 300, 400 °C for 2 and 3 h (400 °C only) and residual stress after relaxation were determined. The evaluation of residual stress and hardness for each specimen was carried out by instrumented indentation technique. The residual stress and hardness were decreased with increasing the heat treatment temperature and holding time.

  17. Effects of ion irradiation on the residual stresses in Cr thin films

    International Nuclear Information System (INIS)

    Misra, A.; Fayeulle, S.; Kung, H.; Mitchell, T.E.; Nastasi, M.

    1998-01-01

    Cr films sputtered onto {100}thinspSi substrates at room temperature were found to be under residual tension, as revealed by wafer curvature measurements. A 150 nm thick Cr film was bombarded with 300 keV Ar ions after deposition. The intrinsic residual tensile stress increased slightly and then decreased with further increase in the ion dose. For ion doses >1x10 15 thinspions/cm 2 , the stress in the film became compressive and increased with increasing dose. Transmission electron microscopy revealed that the grain boundaries in as-deposited Cr have columnar porosity. A Cr film, ion irradiated to a dose of 5x10 15 thinspions/cm 2 , showed no grain boundary porosity. The changes in the residual stress during ion irradiation are explained by considering Ar incorporation in the film and the manner in which irradiation may change the interatomic distances and forces. copyright 1998 American Institute of Physics

  18. Analyses of edge effects on residual stresses in film strip/substrate systems

    International Nuclear Information System (INIS)

    Hsueh, Chun-Hway

    2000-01-01

    The residual stress distribution in a thin-film strip overlaid on a substrate is influenced by the edges of the strip. An analytical model is developed to derive a closed-form solution for the stress distribution along the film width. Because the film is much thinner than the substrate, the stress variation through the film thickness is ignored; however, the stress variation through the substrate thickness is considered in the analysis. Compared to the existing analytical models, the present model is more rigorous and the analytical results agree better with both finite element results and experimental measurements. (c) 2000 American Institute of Physics

  19. Residual stresses in zircaloy welds

    International Nuclear Information System (INIS)

    Santisteban, J. R.; Fernandez, L; Vizcaino, P.; Banchik, A.D.; Samper, R; Martinez, R. L; Almer, J; Motta, A.T.; Colas, K.B; Kerr, M.; Daymond, M.R

    2009-01-01

    Welds in Zirconium-based alloys are susceptible to hydrogen embrittlement, as H enters the material due to dissociation of water. The yield strain for hydride cracking has a complex dependence on H concentration, stress state and texture. The large thermal gradients produced by the applied heat; drastically changes the texture of the material in the heat affected zone, enhancing the susceptibility to delayed hydride cracking. Normally hydrides tend to form as platelets that are parallel to the normal direction, but when welding plates, hydride platelets may form on cooling with their planes parallel to the weld and through the thickness of the plates. If, in addition to this there are significant tensile stresses, the susceptibility of the heat affected zone to delayed hydride cracking will be increased. Here we have measured the macroscopic and microscopic residual stressed that appear after PLASMA welding of two 6mm thick Zircaloy-4 plates. The measurements were based on neutron and synchrotron diffraction experiments performed at the Isis Facility, UK, and at Advanced Photon Source, USA, respectively. The experiments allowed assessing the effect of a post-weld heat treatment consisting of a steady increase in temperature from room temperature to 450oC over a period of 4.5 hours; followed by cooling with an equivalent cooling rate. Peak tensile stresses of (175± 10) MPa along the longitudinal direction were found in the as-welded specimen, which were moderately reduced to (150±10) MPa after the heat-treatment. The parent material showed intergranular stresses of (56±4) MPa, which disappeared on entering the heat-affected zone. In-situ experiments during themal cyclong of the material showed that these intergranular stresses result from the anisotropy of the thermal expansion coefficient of the hexagonal crystal lattice. [es

  20. Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films

    Science.gov (United States)

    Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A.

    2018-02-01

    The control of residual stresses has been seldom investigated in multilayer coatings dedicated to improvement of wear behavior. Here, we report the preparation and characterization of superposed structures composed of Cr, CrN and CrAlN layers. Nano-multilayers CrN/CrAlN and Cr/CrN/CrAlN were deposited by Physical Vapor Deposition (PVD) onto Si (100) and AISI4140 steel substrates. The Cr, CrN and CrAlN monolayers were developed with an innovative approach in PVD coatings technologies corresponding to deposition with different residual stresses levels. Composition and wear tracks morphologies of the coatings were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and 3D-surface analyzer. The mechanical properties (hardness, residual stresses and wear) were investigated by nanoindentation, interferometry and micro-tribometry (fretting-wear tests). Observations suggest that multilayer coatings are composed mostly of nanocrystalline. The residual stresses level in the films has practically affected all the physicochemical and mechanical properties as well as the wear behavior. Consequently, it is demonstrated that the coating containing moderate stresses has a better wear behavior compared to the coating developed with higher residual stresses. The friction contact between coated samples and alumina balls shows also a large variety of wear mechanisms. In particular, the abrasive wear of the coatings was a combination of plastic deformation, fine microcracking and microspallation. The application of these multilayers will be wood machining of green wood.

  1. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  2. Investigation on the effects of geometric variables on the residual stresses and PWSCC growth in the RPV BMI penetration nozzles

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Ra, Myoung Soo; Lee, Kyoung Soo

    2015-01-01

    This study investigated the effects of various geometric variables on the residual stresses and PWSCC growth of RPV BMI penetration nozzles. An FE residual stress analysis procedure was developed and validated from the viewpoint of FFS assessment. The validated FE residual stress analysis procedure and the PWSCC growth assessment procedure in the ASME B and PV Code, Sec.XI were applied to the BMI penetration nozzles with specified ranges of the geometric variables. The total stresses at steady state during normal operation including welding residual stresses increase with increasing inclination angle of the BMI nozzles, and with tilt angle, depth, and root width of the J-groove weld. The lifetime from the assumed initial crack to the acceptance criteria according to the ASME B and PV Code, Sec.XI also decreases under these conditions. The total stresses decrease and the lifetime increases with increasing nozzle thickness, but outer radius of the BMI nozzles has an insignificant effect on both of these factors.

  3. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress

    DEFF Research Database (Denmark)

    Akhtar, Saqib Saleem; Andersen, Mathias Neumann; Liu, Fulai

    2015-01-01

    Salinity is one of the major threats to global food security. Biochar amendment could alleviate the negative impacts of salt stress in crop in the season. However, its long-term residual effect on reducing Na+ uptake in latter crops remains unknown. A pot experiment with wheat was conducted...... in a greenhouse. The soil used was from an earlier experiment on potato where the plants were irrigated with tap water (S0), 25 mM (S1) and 50 mM (S2) NaCl solutions and with 0 and 5% (w/w) biochar amendment. At onset of the experiment, three different EC levels at S0, S1 and S2 were established in the non...... by transient Na+ binding due to its high adsorption capacity, decreasing osmotic stress by enhancing soil moisture content, and by releasing mineral nutrients (particularly K+, Ca++, Mg++) into the soil solution. Growth, physiology and yield of wheat were affected positively with biochar amendment...

  4. Neutron diffraction measurements for the determination of heat treatment effectiveness in generating compressive residual stress in an automotive crown gear

    International Nuclear Information System (INIS)

    Albertini, G.; Fiori, F.; Girardin, E.; Giuliani, A.; Pyzalla, A.; Quadrini, E.

    1999-01-01

    Complete text of publication follows. Thermal austenitizing and tempering treatments are being developed in automotive industry to prevent crack initiation and avoid crack propagation, especially in components where stress intensity factors influence the stress field and then the fatigue life of the component itself. This is the case of crown gears, where the teeth root undergoes frequently to cracking when tensile residual stresses are present at the surface, as typical loads are impulsive and very high. The sign reversal of these stresses is the aim of austenitizing and tempering treatments. In this work residual stress measurements carried out at HMI-BENSC are presented, in a UNI55Cr3 steel crown gear submitted to such kind of treatments, performed with a new multi-frequency induction technique whose effectiveness is checked. (author)

  5. SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-02-23

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  6. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2017-02-01

    Full Text Available The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  7. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-01-01

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582

  8. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  9. Residual stress in polyethylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Hutař, Pavel; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, Luboš

    2016-01-01

    Roč. 54, SEP (2016), s. 288-295 ISSN 0142-9418 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : polyethylene pipe * residual stress * ring slitting method * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.464, year: 2016

  10. Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Gomez-Rosas, G.; Ocana, J.L.; Molpeceres, C.; Banderas, A.; Porro, J.; Morales, M.

    2006-01-01

    Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field, which increases fatigue crack initiation life and reduces fatigue crack growth rate. Specimens of 6061-T6 aluminum alloy are used in this investigation. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switch Nd:YAG laser, operating at 10 Hz. The pulses are focused to a diameter of 1.5 mm onto aluminum samples. Density of 2500 pulses/cm 2 with infrared (1064 nm) radiation was used. The effect of an absorbent overlay on the residual stress field using this LSP setup and this energy level is evaluated. Residual stress distribution as a function of depth is assessed by the hole drilling method. It is observed that the overlay makes the compressive residual stress profile move to the surface. This effect is explained on the basis of the vaporization of the coat layer suppressing thermal effects on the metallic substrate. The effect of coating the specimen surface before LSP treatment may have advantages on improving wear and contact fatigue properties of this aluminum alloy

  11. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  12. Effect of residual stresses induced by prestressing on rolling element fatigue life

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  13. Residual Stresses In 3013 Containers

    International Nuclear Information System (INIS)

    Mickalonis, J.; Dunn, K.

    2009-01-01

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  14. Neutron residual stress measurements in linepipe

    International Nuclear Information System (INIS)

    Law, Michael; Gnaepel-Herold, Thomas; Luzin, Vladimir; Bowie, Graham

    2006-01-01

    Residual stresses in gas pipelines are generated by manufacturing and construction processes and may affect the subsequent pipe integrity. In the present work, the residual stresses in eight samples of linepipe were measured by neutron diffraction. Residual stresses changed with some coating processes. This has special implications in understanding and mitigating stress corrosion cracking, a major safety and economic problem in some gas pipelines

  15. Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples

    International Nuclear Information System (INIS)

    Martinez, S.A.; Sathish, S.; Blodgett, M.P.; Mall, S.; Namjoshi, S.

    2005-01-01

    X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti-6Al-4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample and independent of the measurement direction. After fretting fatigue, inside and in the vicinity of the fretting damage zone large relaxation of compressive residual stress was observed. An anisotropic residual stress distribution has been observed in the fretting fatigue damaged region. Residual stress measurements in interrupted fretting fatigue experiments showed that the relaxation of residual stress increases as the number of fretting fatigue cycles increase. The results are discussed in the light of their importance in establishing X-ray diffraction residual stress measurement technique as a nondestructive tool to characterize fretting fatigue damage

  16. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde 1, Univ. Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and very small carbides. It will be shown that by well directed annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effects of static strain aging, without causing extended thermal residual stress relaxation. The amount of yield stress increases caused by static strain aging is quantified using tensile tests. Static strain aging is also found to be responsible for an increase of the quasi static and cyclic surface yield strength present after shot peening. (orig.)

  17. Effect of rolling on the residual stresses and magnetic properties of a 0.5% Si electrical steel

    International Nuclear Information System (INIS)

    Campos, M.F. de; Sablik, M.J.; Landgraf, F.J.G.; Hirsch, T.K.; Machado, R.; Magnabosco, R.; Gutierrez, C.J.; Bandyopadhyay, A.

    2008-01-01

    Cold-rolled (0-19% of reduction) 0.5% Si electrical steel sheets were studied in detail, including macro and micro residual stress measurements, crystallographic texture, dc-hysteresis curves and iron losses. Even for the smallest deformation, losses increase significantly, with large increase of the hysteresis losses, whereas the anomalous losses reduce slightly. The residual microstresses are ∼150-350 MPa, whereas residual macrostresses are compressive, ∼50 MPa. The large increase of the hysteresis losses is attributed to the residual microstresses. The dislocation density estimated by X-ray diffraction is in reasonable agreement with that predicted from the Sablik et al. model for effect of plastic deformation on hysteresis. The intensity of the texture fibers {1 1 1} and //RD (RD=rolling direction) increases with the reduction

  18. Methods of measuring residual stresses in components

    International Nuclear Information System (INIS)

    Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G.

    2012-01-01

    Highlights: ► Defining the different methods of measuring residual stresses in manufactured components. ► Comprehensive study on the hole drilling, neutron diffraction and other techniques. ► Evaluating advantage and disadvantage of each method. ► Advising the reader with the appropriate method to use. -- Abstract: Residual stresses occur in many manufactured structures and components. Large number of investigations have been carried out to study this phenomenon and its effect on the mechanical characteristics of these components. Over the years, different methods have been developed to measure residual stress for different types of components in order to obtain reliable assessment. The various specific methods have evolved over several decades and their practical applications have greatly benefited from the development of complementary technologies, notably in material cutting, full-field deformation measurement techniques, numerical methods and computing power. These complementary technologies have stimulated advances not only in measurement accuracy and reliability, but also in range of application; much greater detail in residual stresses measurement is now available. This paper aims to classify the different residual stresses measurement methods and to provide an overview of some of the recent advances in this area to help researchers on selecting their techniques among destructive, semi destructive and non-destructive techniques depends on their application and the availabilities of those techniques. For each method scope, physical limitation, advantages and disadvantages are summarized. In the end this paper indicates some promising directions for future developments.

  19. Residual stress measurement in 304 stainless steel weld overlay pipes

    International Nuclear Information System (INIS)

    Yen, H.J.; Lin, M.C.C.; Chen, L.J.

    1996-01-01

    Welding overlay repair (WOR) is commonly employed to rebuild piping systems suffering from intergranular stress corrosion cracking (IGSCC). To understand the effects of this repair, it is necessary to investigate the distribution of residual stresses in the welding pipe. The overlay welding technique must induce compressive residual stress at the inner surface of the welded pipe to prevent IGSCC. To understand the bulk residual stress distribution, the stress profile as a function of location within wall is examined. In this study the full destructive residual stress measurement technique -- a cutting and sectioning method -- is used to determine the residual stress distribution. The sample is type 304 stainless steel weld overlay pipe with an outside diameter of 267 mm. A pipe segment is cut from the circular pipe; then a thin layer is removed axially from the inner to the outer surfaces until further sectioning is impractical. The total residual stress is calculated by adding the stress relieved by cutting the section away to the stress relieved by axially sectioning. The axial and hoop residual stresses are compressive at the inner surface of the weld overlay pipe. Compressive stress exists not only at the surface but is also distributed over most of the pipe's cross section. On the one hand, the maximum compressive hoop residual stress appears at the pipe's inner surface. The thermal-mechanical induced crack closure from significant compressive residual stress is discussed. This crack closure can thus prevent IGSCC very effectively

  20. Effect of Thermal cycles and Dimensions of the Geometry on Residual stress of the Alumina-Kovar Joint

    Science.gov (United States)

    Mishra, Srishti; Pal, Snehanshu; Karak, Swapan Kumar; Shah, Sejal; Venakata Nagaraju, M.; Chakraborty, Arun Kumar

    2018-03-01

    Finite element method is employed to determine the effect of variation of residual stress with dimension and the stress generated under its working condition along the Kovar. 3 different dimensions of Alumina-Kovar joint with height to diameter ratio of 3/10, using TiCuSil as a filler material. Transient Structural Analysis is carried out for three different dimensions (diameter × height) (i) 60mm × 20mm (Geometry 1) (ii) 90mm × 20mm (Geometry 2) (iii) 120mm × 20mm (Geometry 3). A comparative study has been carried out between the residual stresses developed in the brazed joint that have undergone 5 thermal cycles subsequent to brazing and that between the brazed joint. The heating and cooling rates from the brazed temperature is 10°C/up to room temperature. The brazing temperature and holding time considered for the analysis are 900°C and 10 minutes. Representative Volume Element (RVE) model is used for simulation. Sparse Matrix Direct Solver method is used to evaluate the results, using Augmented Lagrange method formulation in the contact region. All the simulations are performed in ANSYS Workbench 15.0, using solver target Mechanical APDL. From, the above simulations it is observed high concentration of residual stress is observed along the filler region i.e. in between Alumina and Kovar, as a result of difference in coefficient of thermal expansion between Alumina and Kovar. The residual stress decreases with increasing dimensions of the geometry and upon application of thermal cycles, subsequent to brazing.

  1. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  2. Recent advances in residual stress measurement

    International Nuclear Information System (INIS)

    Withers, P.J.; Turski, M.; Edwards, L.; Bouchard, P.J.; Buttle, D.J.

    2008-01-01

    Until recently residual stresses have been included in structural integrity assessments of nuclear pressure vessels and piping in a very primitive manner due to the lack of reliable residual stress measurement or prediction tools. This situation is changing the capabilities of newly emerging destructive (i.e. the contour method) and non-destructive (i.e. magnetic and high-energy synchrotron X-ray strain mapping) residual stress measurement techniques for evaluating ferritic and austenitic pressure vessel components are contrasted against more well-established methods. These new approaches offer the potential for obtaining area maps of residual stress or strain in welded plants, mock-up components or generic test-pieces. The mapped field may be used directly in structural integrity calculations, or indirectly to validate finite element process/structural models on which safety cases for pressurised nuclear systems are founded. These measurement methods are complementary in terms of application to actual plant, cost effectiveness and measurements in thick sections. In each case an exemplar case study is used to illustrate the method and to highlight its particular capabilities

  3. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite, E-mail: wwu@dragon.nchu.edu.tw

    2014-05-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes.

  4. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy

    International Nuclear Information System (INIS)

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lin, Chi-Ming; Chen, Erh-Chiang; Kuo, Che-Wei; Wu, Weite

    2014-01-01

    The textures and crystallographic orientations beneath the treatment area in AA 6061 aluminum alloy after vibratory stress relief (VSR) process were investigated by combining the electron backscatter diffraction analysis of the misoriented low- or high-angle boundaries, the (inverse) pole figures, the line scans and the various grain orientations. The relaxation effect caused by compressive residual stress in the intermediate region is superior to that of tensile residual stress on both sides of the cantilever by means of X-ray diffraction techniques. The residual stress relaxation that occurs due to vibrational stress excitation accompanies the “orientation of banding” disintegration, the decreases in the dislocation density, the strain energy, and the fraction of low-angle boundaries within each type of grain orientation, such as Copper {112} 〈111〉, S {123} 〈634〉, Goss {110} 〈001〉, and Brass {110} 〈112〉, excepting the Cube (or near-Cube) {100} 〈001〉 grain orientation. The maintained invariance in the Cube texture can be attributed to the maximum number of active primary slip systems, resulting in an interaction that results from hindered slip on intersecting families of the planes

  5. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism.

    Science.gov (United States)

    Cowley, F C; Barber, D G; Houlihan, A V; Poppi, D P

    2015-04-01

    The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress [HS; temperature-humidity index (THI) ~78] or kept in a THIheat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THIheat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THIHeat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2008-08-15

    Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.

  7. Effect of shot peening treatment in the behavior of residual stress in duplex stainless steel during medium cycle fatigue

    International Nuclear Information System (INIS)

    Pedrosa, Peter D.S.; Rebello, Joao Marcos A.; Fonseca, Maria P. Cindra

    2010-01-01

    The lifetime of duplex stainless steel parts experiencing cyclic fatigue is directly influenced by the residual stresses present in the ferrite and austenite phases. The motivation for this work was to analyze the behaviour of the residual stresses fields introduced by shot peening treatment in both phases, in the sample surface as in the subsurface layers, in low fatigue cycles, using the X-rays diffraction technique. The results shows that the compressive residual stresses introduced by the shot peening treatment in both phases improved fatigue life of the material. However, the cyclical loads produce partial or total relief in these residual stresses fields. It was verified that the shot peening process induced the formation of microcracks only in the ferrite phase. The largest variations in the total compressive residual stresses fields also occurred in this phase. The samples surfaces were analyzed by scanning electron microscopy. (author)

  8. Residual stress analysis in thick uranium films

    International Nuclear Information System (INIS)

    Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.

    2005-01-01

    Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses

  9. Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al-Si-Mn-Mg Casting Alloy

    Science.gov (United States)

    Lee, Eunkyung; Walde, Caitlin; Mishra, Brajendra

    2018-03-01

    The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of - 12.8 and - 10.3 MPa, respectively. The formation β', β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.

  10. Process for measuring residual stresses

    International Nuclear Information System (INIS)

    Elfinger, F.X.; Peiter, A.; Theiner, W.A.; Stuecker, E.

    1982-01-01

    No single process can at present solve all problems. The complete destructive processes only have a limited field of application, as the component cannot be reused. However, they are essential for the basic determination of stress distributions in the field of research and development. Destructive and non-destructive processes are mainly used if investigations have to be carried out on original components. With increasing component size, the part of destructive tests becomes smaller. The main applications are: quality assurance, testing of manufactured parts and characteristics of components. Among the non-destructive test procedures, X-raying has been developed most. It gives residual stresses on the surface and on surface layers near the edges. Further development is desirable - in assessment - in measuring techniques. Ultrasonic and magnetic crack detection processes are at present mainly used in research and development, and also in quality assurance. Because of the variable depth of penetration and the possibility of automation they are gaining in importance. (orig./RW) [de

  11. A review of residual stress analysis using thermoelastic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A F; Dulieu-Barton, J M; Quinn, S [University of Southampton, School of Engineering Sciences, Highfield, Southampton, SO17 1BJ (United Kingdom); Burguete, R L [Airbus UK Ltd., New Filton House, Filton, Bristol, BS99 7AR (United Kingdom)

    2009-08-01

    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained.

  12. A review of residual stress analysis using thermoelastic techniques

    International Nuclear Information System (INIS)

    Robinson, A F; Dulieu-Barton, J M; Quinn, S; Burguete, R L

    2009-01-01

    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained.

  13. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2007-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding accelerated by residual stress of multi pass welding and surface hardening. (author)

  14. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  15. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  16. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Science.gov (United States)

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-01

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466

  17. Probabilistic fracture mechanics analysis of reactor vessel for pressurized thermal shock: the effect of residual stress and fracture toughness

    International Nuclear Information System (INIS)

    Jung, Sung Gyu; Jin, Tae Eun; Jhung, Myung Jo; Choi, Young Hwan

    2003-01-01

    The structural integrity of the reactor vessel with the approaching end of life must be assured for pressurized thermal shock. The regulation specifies the screening criteria for this and requires that specific analysis be performed for the reactor vessel which is anticipated to exceed the screening criteria at the end of plant life. In case the screening criteria is exceeded by the deterministic analysis, probabilistic analysis must be performed to show that failure probability is within the limit. In this study, probabilistic fracture mechanics analysis of the reactor vessel for pressurized thermal shock is performed and the effects of residual stress and master curve on the failure probability are investigated

  18. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  19. Effects of ion implantation on the microstructure and residual stress of filter arc CrN films

    International Nuclear Information System (INIS)

    Weng, K.-W.; Chen, Y.-C.; Han Sheng; Hsu, C.-S.; Chen, Y.-L.; Wang, D.-Y.

    2008-01-01

    Chromium nitride coatings were deposited using a hybrid physical vapor deposition (PVD) system containing a filter arc deposition (FAD) and a metal plasma ion implantation source (MPII). Exactly how surface residual stress affects film characteristics is investigated using glancing incident X-ray diffraction (GIXRD) and pole figure analyses. Compared with unimplanted CrN, implanted carbon typically increases compressive residual stress and hardness. Wear resistance was also improved by implanted carbon

  20. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Idury, K.S.N. Satish, E-mail: satishidury@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Ismail, T.P., E-mail: tpisma@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Bhadauria, Alok, E-mail: alokbhadauria1@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, S.K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2014-07-01

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual

  1. The measurement of residual stresses in claddings

    International Nuclear Information System (INIS)

    Hofer, G.; Bender, N.

    1978-01-01

    The ring core method, a variation of the hole drilling method for the measurement of biaxial residual stresses, has been extended to measure stresses from depths of about 5 to 25mm. It is now possible to measure the stress profiles of clad material. Examples of measured stress profiles are shown and compared with those obtained with a sectioning technique. (author)

  2. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry

    International Nuclear Information System (INIS)

    Hua Jiang; Shivpuri, Rajiv; Cheng Xiaomin; Bedekar, Vikram; Matsumoto, Yoichi; Hashimoto, Fukuo; Watkins, Thomas R.

    2005-01-01

    Residual stress on the machined surface and the subsurface is known to influence the service quality of a component, such as fatigue life, tribological properties, and distortion. Therefore, it is essential to predict and control it for enhanced performance. In this paper, a newly proposed hardness based flow stress model is incorporated into an elastic-viscoplastic finite element model of hard turning to analyze process variables that affect the residual stress profile of the machined surface. The effects of cutting edge geometry and workpiece hardness as well as cutting conditions, such as feed rate and cutting speed, are investigated. Numerical analysis shows that hone edge plus chamfer cutting edge and aggressive feed rate help to increase both compressive residual stress and penetration depth. These predictions are validated by face turning experiments which were conducted using a chamfer with hone cutting edge for different material hardness and cutting parameters. The residual stresses under the machined surface are measured by X-ray diffraction/electropolishing method. A maximum circumferential residual stress of about 1700 MPa at a depth of 40 μm is reached for hardness of 62 HRc and feed rate of 0.56 mm/rev. This represents a significant increase from previously reported results in literatures. It is found from this analysis that using medium hone radius (0.02-0.05 mm) plus chamfer is good for keeping tool temperature and cutting force low, while obtaining desired residual stress profile

  3. Effect of Tip Shape of Frictional Stir Burnishing Tool on Processed Layer’s Hardness, Residual Stress and Surface Roughness

    Directory of Open Access Journals (Sweden)

    Yoshimasa Takada

    2018-01-01

    Full Text Available Friction stir burnishing (FSB is a surface-enhancement method used after machining, without the need for an additional device. The FSB process is applied on a machine that uses rotation tools (e.g., machining center or multi-tasking machine. Therefore, the FSB process can be applied immediately after the cutting process using the same machine tool. Here, we apply the FSB to the shaft materials of 0.45% C steel using a multi-tasking machine. In the FSB process, the burnishing tool rotates at a high-revolution speed. The thin surface layer is rubbed and stirred as the temperature is increased and decreased. With the FSB process, high hardness or compressive residual stress can be obtained on the surface layer. However, when we applied the FSB process using a 3 mm diameter sphere tip shape tool, the surface roughness increased substantially (Ra = 20 µm. We therefore used four types of tip shape tools to examine the effect of burnishing tool tip radius on surface roughness, hardness, residual stress in the FSB process. Results indicated that the surface roughness was lowest (Ra = 10 µm when the tip radius tool diameter was large (30 mm.

  4. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Bottoli, Federico; Christiansen, Thomas Lundin; Winther, Grethe

    2016-01-01

    The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed (εeq=0.5) samples of stable stainless steel EN 1.4369 were nitrided...... or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa’s in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic...... deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone....

  5. Residual stress in spin-cast polyurethane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Zhang, Li, E-mail: lizhang@mae.cuhk.edu.hk [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China); Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China)

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  6. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  7. Residual stresses in plastic random systems

    NARCIS (Netherlands)

    Alava, M.J.; Karttunen, M.E.J.; Niskanen, K.J.

    1995-01-01

    We show that yielding in elastic plastic materials creates residual stresses when local disorder is present. The intensity of these stresses grows with the external stress and degree of initial disorder. The one-dimensional model we employ also yields a discontinuous transition to perfect plasticity

  8. Evaluation of residual stress in sputtered tantalum thin-film

    Energy Technology Data Exchange (ETDEWEB)

    Al-masha’al, Asa’ad, E-mail: asaad.al@ed.ac.uk; Bunting, Andrew; Cheung, Rebecca

    2016-05-15

    Highlights: • Tantalum thin-films have been deposited by DC magnetron sputtering system. • Thin-film stress is observed to be strongly influenced by sputtering pressure. • Transition towards the compressive stress is ascribed to the annealing at 300 °C. • Expose thin-film to air ambient or ion bombardment lead to a noticeable change in the residual stress. - Abstract: The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90–300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  9. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF).

    Science.gov (United States)

    Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu

    2014-08-01

    The residual stress distributions in hydroxyapatite (HAp) coating with and without mixed hydroxyapatite/titanium (HAp/Ti) bond coating on commercially pure Titanium substrate (cp-Ti) were evaluated by Raman piezo-spectroscopy analysis. The Raman shifted position 962cm(-1), which is the symmetrical stretching of surrounded oxygen atoms with phosphorous atom ( [Formula: see text] ), was referred to analyses of stress dependency. The piezo-spectroscopic coefficient, which is a Raman shift value per stress (cm(-1)/GPa), was fitted from the result of four-points bending test of rectangular HAp bar and as-sprayed HAp on Zn plate. The calculated values were 3.89cm(-1)/GPa for the former and 7.11cm(-1)/GPa for the latter. By using these calibrations, the compressive residual stress in HAp coating with HAp/Ti bond coating (HA-B) has been found to be distributed in the range of -137MPa to -75MPa. For the heat-treated HAp coating (HA-B-HT) specimen, the compressive residual stresses placed in the range of -40--22MPa. The changes in the values of residual stress of the HAp coating after immersion in SBF were also evaluated. The residual stress in HA-WB specimens tend to change from compressive to tensile after 30 days immersion. The HA-B-HT specimens exhibited similar behavior and reached to zero stress after the immersion. The mechanism of the changes in residual stress would be the effect of stress redistribution around melted calcium phosphate particles to remained HAp splats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  11. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    International Nuclear Information System (INIS)

    Hou, X D; Jennett, N M

    2017-01-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed. (paper)

  12. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    Science.gov (United States)

    Hou, X. D.; Jennett, N. M.

    2017-11-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.

  13. Residual stresses in Inconel 718 engine disks

    Directory of Open Access Journals (Sweden)

    Dahan Yoann

    2014-01-01

    Full Text Available Aubert&Duval has developed a methodology to establish a residual stress model for Inconel 718 engine discs. To validate the thermal, mechanical and metallurgical parts of the model, trials on lab specimens with specific geometry were carried out. These trials allow a better understanding of the residual stress distribution and evolution during different processes (quenching, ageing, machining. A comparison between experimental and numerical results reveals the residual stresses model accuracy. Aubert&Duval has also developed a mechanical properties prediction model. Coupled with the residual stress prediction model, Aubert&Duval can now propose improvements to the process of manufacturing in Inconel 718 engine disks. This model enables Aubert&Duval customers and subcontractors to anticipate distortions issues during machining. It could also be usedt to optimise the engine disk life.

  14. Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel

    International Nuclear Information System (INIS)

    Dakhlaoui, R.; Baczmanski, A.; Braham, C.; Wronski, S.; Wierzbanowski, K.; Oliver, E.C.

    2006-01-01

    The mechanical properties of both phases in duplex stainless steel have been studied in situ using neutron diffraction during mechanical loading. Important differences in the evolution of lattice strains are observed between tests carried out in tension and compression. An elastoplastic self-consistent model is used to predict the evolution of internal stresses during loading and to identify critical resolved shear stresses and strain hardening parameters of the material. The differences between tensile and compressive behaviours of the phases are explained when the initial stresses are taken into account in model calculations. The yield stresses in each phase of the studied steel have been experimentally determined and successfully compared with the results of the elastoplastic self-consistent model

  15. Residual stress in Ni-W electrodeposits

    DEFF Research Database (Denmark)

    Mizushima, Io; Tang, Peter Torben; Hansen, Hans Nørgaard

    2006-01-01

    In the present work, the residual stress in Ni–W layers electrodeposited from electrolytes based on NiSO4 and Na2WO4, is investigated. Citrate, glycine and triethanolamine were used as complexing agents, enabling complex formation between the nickel ion and tungstate. The results show that the type...... of complexing agent and the current efficiency have an influence on the residual stress. In all cases, an increase in tensile stress in the deposit with time after deposition was observed. Pulse plating could improve the stress level for the electrolyte containing equal amounts of citrate...

  16. A proposed residual stress model for oblique turning

    International Nuclear Information System (INIS)

    Elkhabeery, M. M.

    2001-01-01

    A proposed mathematical model is presented for predicting the residual stresses caused by turning. Effects of change in tool free length, cutting speed, feed rate, and the tensile strength of work piece material on the maximum residual stress are investigated. The residual stress distribution in the surface region due to turning under unlubricated condition is determined using a deflection etching technique. To reduce the number of experiments required and build the mathematical model for these variables, Response Surface Methodology (RSM) is used. In addition, variance analysis and an experimental check are conducted to determine the prominent parameters and the adequacy of the model. The results show that the tensile stress of the work piece material, cutting speed, and feed rate have significant effects on the maximum residual stresses. The proposed model, that offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for the machining of different materials. (author)

  17. Residual stress analysis in reactor pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Pont, D.

    1991-08-01

    Residual stresses in cladding and welded attachments could contribute to the problem of stress-corrosion cracking in boiling-water reactors (BWR). As part of a larger program aimed at quantifying residual stress in BWR components, models that would be applicable for predicting residual stress in BWR components are reviewed and documented. The review includes simple methods of estimating residual stresses as well as advanced finite-element software. In general, simple methods are capable of predicting peak magnitudes of residual stresses but are incapable of adequately characterizing the distribution of residual stresses. Ten groups of researchers using finite-element software are reviewed in detail. For each group, the assumptions of the model, possible simplifications, material property data, and specific applications are discussed. The most accurate results are obtained when a metallurgical simulation is performed, transformation plasticity effects are included, and the heating and cooling parts of the welding thermal cycle are simulated. Two models are identified which can provide these features. The present state of these models and the material property data available in the literature are adequate to quantify residual stress in BWR components

  18. Effect of residual stresses on interface crack growth by void expansion mechanism

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2006-01-01

    Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids to c....... The results show that the value of the T-stress component in the softer material adjacent to the interface crack plays the dominant role, such that a negative value of this stress component gives a significant increase of the interface fracture toughness.......Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids...... to coalescence. In these elements the stress components normal to the interface and the shear stresses are given by equilibrium with the surrounding material, and the stress component tangential to the interface is determined by the requirement of compatibility with the surrounding material in the tangential...

  19. The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    or kinematic hardening together with the metallurgical softening model were applied in order to give a first impression of the tendencies in residual stresses in friction stir welds when choosing different hardening and softening behaviors. Secondly, real friction stir butt welding of aluminum alloy 2024-T3...

  20. Residual Stress Testing of Outer 3013 Containers

    International Nuclear Information System (INIS)

    Dunn, K.

    2004-01-01

    A Gas Tungsten Arc Welded (GTAW) outer 3013 container and a laser welded outer 3013 container have been tested for residual stresses according to the American Society for Testing Materials (ASTM) Standard G-36-94 [1]. This ASTM standard describes a procedure for conducting stress-corrosion cracking tests in boiling magnesium chloride (MgCl2) solution. Container sections in both the as-fabricated condition as well as the closure welded condition were evaluated. Significantly large residual stresses were observed in the bottom half of the as-fabricated container, a result of the base to can fabrication weld because through wall cracks were observed perpendicular to the weld. This observation indicates that regardless of the closure weld technique, sufficient residual stresses exist in the as-fabricated container to provide the stress necessary for stress corrosion cracking of the container, at the base fabrication weld. Additionally, sufficiently high residual stresses were observed in both the lid and the body of the GTAW as well as the laser closure welded containers. The stresses are oriented perpendicular to the closure weld in both the container lid and the container body. Although the boiling MgCl2 test is not a quantitative test, a comparison of the test results from the closure welds shows that there are noticeably more through wall cracks in the laser closure welded container than in the GTAW closure welded container

  1. Effect of process variables on the Drucker-Prager cap model and residual stress distribution of tablets estimated by the finite element method.

    Science.gov (United States)

    Hayashi, Yoshihiro; Otoguro, Saori; Miura, Takahiro; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2014-01-01

    A multivariate statistical technique was applied to clarify the causal correlation between variables in the manufacturing process and the residual stress distribution of tablets. Theophylline tablets were prepared according to a Box-Behnken design using the wet granulation method. Water amounts (X1), kneading time (X2), lubricant-mixing time (X3), and compression force (X4) were selected as design variables. The Drucker-Prager cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders. Simulation parameters, such as Young's modulus, Poisson rate, internal friction angle, plastic deformation parameters, and initial density of the powder, were measured. Multiple regression analysis demonstrated that the simulation parameters were significantly affected by process variables. The constructed DPC models were fed into the analysis using the finite element method (FEM), and the mechanical behavior of pharmaceutical powders during the tableting process was analyzed using the FEM. The results of this analysis revealed that the residual stress distribution of tablets increased with increasing X4. Moreover, an interaction between X2 and X3 also had an effect on shear and the x-axial residual stress of tablets. Bayesian network analysis revealed causal relationships between the process variables, simulation parameters, residual stress distribution, and pharmaceutical responses of tablets. These results demonstrated the potential of the FEM as a tool to help improve our understanding of the residual stress of tablets and to optimize process variables, which not only affect tablet characteristics, but also are risks of causing tableting problems.

  2. Residual stresses in laser direct metal deposited Waspaloy

    International Nuclear Information System (INIS)

    Moat, R.J.; Pinkerton, A.J.; Li, L.; Withers, P.J.; Preuss, M.

    2011-01-01

    Research highlights: → Neutron diffraction and the contour method show good agreement. → Tensile stresses found parallel to the surfaces. → Compressive stresses within the bulk of the structures. → Residual stress weakly dependent on the laser pulse parameters. → Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  3. Residual stresses in laser direct metal deposited Waspaloy

    Energy Technology Data Exchange (ETDEWEB)

    Moat, R.J., E-mail: richard.moat@manchester.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Pinkerton, A.J.; Li, L. [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M60 1QD (United Kingdom); Withers, P.J.; Preuss, M. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2011-03-15

    Research highlights: {yields} Neutron diffraction and the contour method show good agreement. {yields} Tensile stresses found parallel to the surfaces. {yields} Compressive stresses within the bulk of the structures. {yields} Residual stress weakly dependent on the laser pulse parameters. {yields} Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  4. A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves

    International Nuclear Information System (INIS)

    Yuan, Mao Dan; Kang, To; Kim, Hak Joon; Song, Sung Jin

    2011-01-01

    In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress

  5. Effect of using the double layer technique on the microstructure, microhardness and residual stress of welded ASTM A516 GR70 structural steel

    International Nuclear Information System (INIS)

    Oliveira, George Luiz Gomes de; Miranda, Helio Cordeiro de

    2010-01-01

    The aim of this work is to evaluate the effect of using the double layer technique on the microstructure, microhardness and residual stresses of welded ASTM A516 Gr70 structural steel. Samples were welded with the same welding parameters and two types of chamfers, while the samples welded using the double layer technique underwent a buttering process on their chamfer face. Residual stress measurement was accomplished through x-ray diffraction, using a mini diffractometer for measurement in field. Metallographic analysis was accomplished in the transverse section of the welded joint, using optic microscopy and scanning electron microscopy. The double layer technique showed that can be used in the welding of ASTM A516 Gr70 steel, because, besides promote a refinement and a drawing back of the CG-HAZ, it increased compressive residual stress in the whole surface of the analyzed samples.(author)

  6. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  7. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  8. Sustainability of compressive residual stress by stress improvement processes

    International Nuclear Information System (INIS)

    Nishikawa, Satoru; Okita, Shigeru; Yamaguchi, Atsunori

    2013-01-01

    Stress improvement processes are countermeasures against stress corrosion cracking in nuclear power plant components. It is necessary to confirm whether compressive residual stress induced by stress improvement processes can be sustained under operation environment. In order to evaluate stability of the compressive residual stress in 60-year operating conditions, the 0.07% cyclic strains of 200 times at 593 K were applied to the welded specimens, then a thermal aging treatment for 1.66x10 6 s at 673 K was carried out. As the result, it was confirmed that the compressive residual stresses were sustained on both surfaces of the dissimilar welds of austenitic stainless steel (SUS316L) and nickel base alloy (NCF600 and alloy 182) processed by laser peening (LP), water jet peening (WJP), ultrasonic shot peening (USP), shot peening (SP) and polishing under 60-year operating conditions. (author)

  9. Significance of residual stress on fatigue properties of welded pipes

    International Nuclear Information System (INIS)

    Ohta, A.; Maeda, Y.; Kanao, M.

    1984-01-01

    The mean stress effect on the fatigue properties of two kinds of welded pipes was investigated in cantilever bending. The fatigue strength changed with the mean stress on fillet welded pipes, but did not change on butt welded pipes. The fatigue crack initiated from the toe of weld on the outer surface of fillet welded pipes and from the undercut on the inner surface of butt welded pipes. The measurement of the fatigue crack propagation rate and the residual stress distribution through the thickness of pipe revealed that the difference in the fatigue properties between fillet and butt welded pipes arose from the weld-induced residual stress, tension on the inner surface and compression on the outer surface. It is suggested that the production of compressive residual stress along the inner surface would be an effective means for improving the fatigue strength of butt welded pipes. (author)

  10. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  11. Variability of residual stresses and superposition effect in multipass grinding of high-carbon high-chromium steel

    Science.gov (United States)

    Karabelchtchikova, Olga; Rivero, Iris V.

    2005-02-01

    The distribution of residual stresses (RS) and surface integrity generated in heat treatment and subsequent multipass grinding was investigated in this experimental study to examine the source of variability and the nature of the interactions of the experimental factors. A nested experimental design was implemented to (a) compare the sources of the RS variability, (b) to examine RS distribution and tensile peak location due to experimental factors, and (c) to analyze the superposition relationship in the RS distribution due to multipass grinding technique. To characterize the material responses, several techniques were used, including microstructural analysis, hardness-toughness and roughness examinations, and retained austenite and RS measurements using x-ray diffraction. The causality of the RS was explained through the strong correlation of the surface integrity characteristics and RS patterns. The main sources of variation were the depth of the RS distribution and the multipass grinding technique. The grinding effect on the RS was statistically significant; however, it was mostly predetermined by the preexisting RS induced in heat treatment. Regardless of the preceding treatments, the effect of the multipass grinding technique exhibited similar RS patterns, which suggests the existence of the superposition relationship and orthogonal memory between the passes of the grinding operation.

  12. Effect of Trailing Intensive Cooling on Residual Stress and Welding Distortion of Friction Stir Welded 2060 Al-Li Alloy

    Science.gov (United States)

    Ji, Shude; Yang, Zhanpeng; Wen, Quan; Yue, Yumei; Zhang, Liguo

    2018-04-01

    Trailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.

  13. Mapping residual stress by ultrasonic tomography

    International Nuclear Information System (INIS)

    Hildebrand, B.P.; Harrington, T.P.

    1979-01-01

    It is known that internal stress concentrations can give rise to microcracks which then grow when the structure is subjected to external forces. It has also been found that the velocity of sound is altered as it propagates through a region of stress. In this paper a technique called Computer-Assisted Tomography (CAT) is discussed and an application that provides pictures of stress fields is described. The results of both simulated and experimental models used to evaluate the technique are reported. It is concluded that the CAT approach has great potential for locating and mapping residual stress in metals. (author)

  14. Residual stress relief in MAG welded joints of dissimilar steels

    International Nuclear Information System (INIS)

    Seodek, P.; Brozda, J.; Wang, L.; Withers, P.J.

    2003-01-01

    This paper addresses the relief of residual stress in welded joints between austenitic and non-alloyed ferritic-pearlitic steels. A series of similar and dissimilar steel joints based on the 18G2A (ferritic-pearlitic) and 1H18N10T (austenitic) steels were produced, some of which were stress relieved by annealing and some by mechanical prestressing. For the as-welded and stress relieved test joints the residual stresses were measured by trepanning. To aid the interpretation of these results, 2D plane stress finite element analysis has been performed to simulate the residual stress relieving methods. Analysis of the results has shown that thermal stress relieving of welded joints between dissimilar steels is not effective and may even increase residual stresses, due to the considerable difference in thermal expansion of the joined steels. It was found that, for the loads imposed, the effectiveness of the mechanical stress relieving of dissimilar steel welded joints was much lower than that of similar steel joints

  15. Residual stresses in a cast iron automotive brake disc rotor

    International Nuclear Information System (INIS)

    Ripley, Maurice I.; Kirstein, Oliver

    2006-01-01

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed

  16. Effects of neutron radiation and residual stresses on the corrosion of welds in light water reactor internals

    International Nuclear Information System (INIS)

    Schaaf, Bob van der; Gavillet, Didier; Lapena, Jesus; Ohms, Carsten; Roth, Armin; Dyck, Steven van

    2006-01-01

    After many years of operation in Light Water Reactors (LWR) Irradiation Assisted Stress Corrosion Cracking (IASCC) of internals has been observed. In particular the heat-affected zone (HAZ) has been associated with IASCC attack. The welding process induces residual stresses and micro-structural modifications. Neutron irradiation affects the materials response to mechanical loading. IASCC susceptibility of base materials is widely studied, but the specific conditions of irradiated welds are rarely assessed. Core component relevant welds of Type 304 and 347 steels have been fabricated and were irradiated in the High Flux Reactor (HFR) in Petten to 0.3 and 1 dpa (displacement per atom). In-service welds were cut from the thermal shield of the decommissioned BR-3 reactor. Residual stresses, measured using neutron diffraction, ring core tests and X-ray showed residual stress levels up to 400 MPa. Micro-structural characterization showed higher dislocation densities in the weld and HAZ. Neutron radiation increased the dislocation density, resulting in hardening and reduced fracture toughness. The sensitization degree of the welds, measured with the electrochemical potentio-dynamic reactivation method, was negligible. The Slow Strain Rate Tensile (SSRT) tests, performed at 290 deg. C in water with 200 ppb dissolved oxygen, (DO), did not reveal inter-granular cracking. Inter-granular attack of in-service steel is observed in water with 8 ppm (DO), attributed not only to IASCC, but also to IGSCC from thermal sensitization during fabrication. Stress-relieve annealing has caused Cr-grain boundary precipitation, indicating the sensitization. The simulated internal welds, irradiated up to 1.0 dpa, did not show inter-granular cracking with 8 ppm DO. (authors)

  17. Residual stress in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Oden, M.

    1992-01-01

    Residual stresses in Si 3 N 4 and SiC have been measured with X-ray diffraction after grinding and thermal shock. The produced surface stresses are compressive after both treatments. The stresses show a strong dependence on the quenching temperature up to a certain temperature when cracks relax the stresses. The influence of the amount of reinforcing phase on the residual stress state in a Al 2 O 3 /SiC whisker composite was investigated and correlated to a modified Eshelby model. The agreement is excellent. The composite was quenched in liquid He (4K) and the stress state measured after show no relaxation of stresses, indicating elastic behaviour. An in situ strain measurement as a function of temperature conducted on a Al 2 O 3 /SiC whisker composite and a SiC/TiB 2 particle composite show very good agreement with the Eshelby model for the Al 2 O 3 /SiC system but not agreement for the SiC/TiB 2 system. The reason is believed to be stress relaxation during sample preparation. (au) (53 refs., 24 figs., 14 tabs.)

  18. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2016-01-01

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y_2O_3. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability

  19. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Gaboriaud, R.J.; Paumier, F. [Institut Pprime, Department of Material Sciences, CNRS-University of Poitiers SP2MI-BP 30179, 86962 Futuroscope-Chasseneuil cedex (France); Lacroix, B. [CSIC, Institut de Ciencia de Materiales, University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2016-02-29

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y{sub 2}O{sub 3}. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability.

  20. Residual stress analysis of drive shafts after induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Guilherme Vieira Braga; Rocha, Alexandre da Silva; Nunes, Rafael Menezes, E-mail: lemos_gl@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Algre, RS (Brazil); Hirsch, Thomas Karl [Stiftung Institut für Werkstofftechnik (IWT), Bremen (Germany)

    2014-08-15

    Typically, for automotive shafts, shape distortion manifests itself in most cases after the induction hardening by an effect known as bending. The distortion results in a boost of costs, especially due to machining parts in the hardened state to fabricate its final tolerances. In the present study, residual stress measurements were carried out on automotive drive shafts made of DIN 38B3 steel. The samples were selected in consequence of their different distortion properties by an industrial manufacturing line. One tested shaft was straightened, because of the considerable dimensional variation and the other one not. Firstly, the residual stress measurements were carried out by using a portable diffractometer, in order to avoid cutting the shafts and evaluate the original state of the stresses, and afterwards a more detailed analysis was realized by a conventional stationary diffractometer. The obtained results presented an overview of the surface residual stress profiles after induction hardening and displayed the influence of the straightening process on the redistribution of residual stresses. They also indicated that the effects of the straightening in the residual stresses cannot be neglected. (author)

  1. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  2. Residual Stresses and Other Properties of Teardrops

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rios, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duque, Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-26

    The Department of Energy’s 3013 Standard for packaging plutonium-bearing materials for storage up to fifty years specifies a minimum of two individually welded, nested containers herein referred to as the 3013 outer and the 3013 inner.1 Stress corrosion cracking (SCC) is a potential failure mechanism for 3013 inner containers.2,3 The bagless transfer container (BTC), a 3013 inner container used by Hanford and Savanna River Site (SRS) made from 304L stainless steel (SS), poses the greatest concern for SCC.4,5 The Surveillance and Monitoring Program (SMP) use stressed metal samples known as teardrops as screening tools in SCC studies to evaluate factors that could result in cracks in the 3013 containers.6,7 This report provides background information on the teardrops used in the Los Alamos National Laboratory (LANL) SMP studies including method of construction, composition and variability. In addition, the report discusses measurements of residual stresses in teardrops and compares the results with residual stresses in BTCs reported previously.4 Factors affecting residual stresses, including teardrop dimensions and surface finish, are also discussed.

  3. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  4. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  5. Residual Stresses and Sliding Wear.

    Science.gov (United States)

    1982-05-25

    case of rolling contact, taking into account strain hardening during plastic deformation. ..-s calculations (forSAE 52100 at a hardness level of 58.5 R...can reach -800- 1000 MPa. If 033 was comparable to these values, it would indeed effect the wear rate. It is evident that an experimental deter...cc o 40 1 °2 00 I I +A ) S l~lll0 44MUK I CQ E3 e0 El 0 Uc 00 E3 (3 80 j40 c (vclq) SSHHI +ce ce mCQ ce (2E e0 4El EJ) E - 0 El 0 E0 .. t El 0 (vdNp

  6. Residual stresses determination in an 8 mm Incoloy 800H weld via neutron diffraction

    International Nuclear Information System (INIS)

    Chen, Xizhang; Zhang, Shu Yan; Wang, Jingjun; Kelleher, Joe F.

    2015-01-01

    Highlights: • Stress through thickness at 5 mm from weld centerline indicates a “U” distribution. • Declining of tensile stress through thickness occurred at weld centerline. • Residual stress between layers is the lowest. - Abstract: To investigate the distribution of residual stresses, the 8 mm 800H alloy was joined by multi-layer butt TIG process. Residual stresses in the longitudinal, transverse and normal directions were measured via neutron diffraction. These residual stress measurements were taken at a series of points 2 mm below the top surface, covering the fusion zone, heat affected zone (HAZ) and base metal. In addition, two lines of longitudinal residual stress values at the weld centerline and 5 mm from weld centerline through thickness were measured. Results show that both the longitudinal and transverse stresses from the weld centerline to base metal are mainly tensile stresses. The longitudinal residual stress is the largest, with a maximum value of 330 MPa. As for the normal residual stress, the weld zone shows tensile stress, while the HAZ shows compressive stress. The middle of the thickness shows compressive residual stress along the thickness direction. The longitudinal stress at weld centerline through thickness reveals the interlayer heat treat effects leads to a declining of tensile stress. While the stress at 5 mm from weld centerline indicates a “U” distribution due to the mixed microstructure close to fusion line. With the increasing distance from weld seam, the residual stress decreases gradually

  7. Effects of Rayleigh damping, friction and rate-dependency on 3D residual stress simulation of angled shot peening

    International Nuclear Information System (INIS)

    Kim, Taehyung; Lee, Hyungyil; Hyun, Hong Chul; Jung, Sunghwan

    2013-01-01

    Highlights: ► We propose a 3D FE model to study peening residual stress involving angled shots. ► The FE model set with plastic shot are found to best match the X-ray diffraction data. ► The model provides 3D multi-shot impact FE solution with various incidence angles. - Abstract: In this study, we propose a 3D finite element (FE) model to study shot peening involving angled shots. Using the FE model for angled shot peening, we examine relationships with the residual stress introduced by shot peening of the factors such as the Rayleigh damping in the material, dynamic friction, and the rate dependency of the material and systematically integrate them with the FE model. The FE model is set with rigid shot, elastic shot, and plastic shot respectively. Plastic deformation of the shot is also explored with the FE model. The FE model is applied to study angled multi-shots. The FE results are verified with experimental data using X-ray diffraction (XRD). The FE model set with plastic shot are found to best match the XRD results validating accuracy of the 3D FE model properly integrated with the factors and plastically deformable shot ball. The proposed model will serve to simulate actual shot peening cases, which generally involve multi-shots with various incidence angles

  8. The effect of a self-balancing through wall residual stress distribution on the extension of a through-wall crack in a pressure vessel

    International Nuclear Information System (INIS)

    Smith, E.

    1993-01-01

    Leak-before-break arguments for pressurized components involve a comparison of the critical size of crack that will grow unstably under accident loadings and the critical leakage crack size for normal operation loadings. The paper is concerned with the former crack size and particularly with regard to the effect of residual stresses on the critical unstable crack size. Results from an analysis of a simple simulation model are used to provide underpinning for the view, expressed by Green and Knowles at the 1992 American Society of Mechanical Engineers Pressure Vessel and Piping Conference, that self-balancing through-wall residual stresses have little overall effect on the extension of a through-wall crack in a pressure vessel

  9. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  10. Residual stresses and mechanical properties of metal matrix composites

    International Nuclear Information System (INIS)

    Persson, Christer.

    1993-01-01

    The large difference in coefficient of thermal expansion of the matrix and particles in a metal matrix composite will introduce residual stresses during cooling from process temperature. These stresses are locally very high, and are known to influence the mechanical behaviour of the material. Changes in the stress state will occur during heat treatments and when the material is loaded due to different elastic, plastic, and creep properties of the constituents. The change of residual stresses in an Al-SiC particulate composite after different degree of plastic straining has been studied. The effect of plastic straining was modelled by an Eshelby model. The model and the measurements both show that the stress in the loading direction decreases for a tensile plastic strain and increases for a compressive plastic strain. By x-ray diffraction the stress response in the matrix and particles can be measured independently. This has been used to determine the stress state under and after heat treatments and under mechanical loading in two Al 15% SiC metal matrix composites. By analysing the line width from x-ray experiment the changes in the microstrains in the material were studied. A finite element model was used to model the generation of thermal residual stresses, stress relaxation during heat treatments, and load sharing during the first load cycle. Calculated stresses and microstrains were found to be in good agreement with the measured values. The elastic behaviour of the composite can be understood largely in terms of elastic load transfer between matrix and particles. However, at higher loads when the matrix becomes plastic residual stresses also become important. 21 refs

  11. The method for measuring residual stress in stainless steel pipes

    International Nuclear Information System (INIS)

    Shimov, Georgy; Rozenbaum, Mikhail; Serebryakov, Alexandr; Serebryakov, Andrey

    2016-01-01

    The main reason of appearance and growth of corrosion damages of the nuclear steam generator heat exchanger tubes is the process of stress-corrosion cracking of metal under the influence of residual tensile stress. Methods used in the production for estimating residual stresses (such as a method of ring samples) allow measuring only the average tangential stress of the pipe wall. The method of ring samples does not allow to assess the level of residual stress in the surface layer of the pipe. This paper describes an experimental method for measuring the residual stresses on the pipe surface by etching a thin surface layer of the metal. The construction and working principle of a trial installation are described. The residual stresses in the wall of the tubes 16 × 1.5 mm (steel AISI 321) for nuclear steam generators is calculated. Keywords: heat exchange pipes, stress corrosion cracking, residual stresses, stress distribution, stress measurement.

  12. Effect of thickness on structure, microstructure, residual stress and soft magnetic properties of DC sputtered Fe65Co35 soft magnetic thin films

    International Nuclear Information System (INIS)

    Prasanna Kumari, T.; Manivel Raja, M.; Kumar, Atul; Srinath, S.; Kamat, S.V.

    2014-01-01

    The effect of film thickness on structure, microstructure, residual stress and soft magnetic properties of Fe 65 Co 35 thin films deposited on Si(001) and MgO(001) substrates was investigated by varying film thickness from 30 to 600 nm. X-ray diffraction studies showed that the FeCo films are polycrystalline in the as-deposited condition irrespective of deposition on Si or MgO substrate. The microstructure of films consisted of spherical grains for 30 nm film thickness and columnar grains for all other film thicknesses. The grain size for the films was found to increase from 15 to 50 nm with increasing film thickness. The sputtered films also exhibited tensile residual stresses with the magnitude of stress decreasing with increasing film thickness. The Fe 65 Co 35 films deposited on both substrates also exhibited very good in-plane soft magnetic properties with a saturation magnetization 4πM s of ∼23.6–23.8 kG and coercivity of ∼27–30 Oe without any under-layer only for films with thickness of 30 nm. For all other thicknesses, these films exhibited a significantly higher coercivity. The observed variations in soft magnetic properties with film thickness were explained in terms of residual stress and microstructure of the films. - Highlights: • Spherical grain morphology transformed to columnar above 30 nm film thickness. • Sputtered films exhibited tensile residual stresses decreasing with film thickness. • An in-plane coercivity of ∼27–30 Oe was achieved without any under-layer

  13. Neutron measurement of residual stresses in a used railway rail

    International Nuclear Information System (INIS)

    Webster, P.J.; Low, K.S.; Mills, G.; Webster, G.A.

    1990-01-01

    The high resolution neutron diffraction technique has been applied to determine, non-destructively, the residual stress distribution developed in the head of a railway rail after normal service. Measurements were made, using the neutron strain scanner at the Institute Laue Langevin, Grenoble, on a transverse slice of rail 12mm thick taken from a section of straight track. The rail head was scanned in the three principal orientations in a series of parallel traverses sufficiently close to enable a two-dimensional matrix of data to be accumulated and vertical, transverse and longitudinal residual stress contours to be drawn. The results demonstrate the effectiveness and unique characteristics of the neutron technique to determine nondestructively and continuously the residual stresses inside engineering components

  14. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2000-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed

  15. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2001-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  16. Residual stresses associated with welds in austenitic steel

    International Nuclear Information System (INIS)

    Fidler, R.

    1978-01-01

    Two exploratory welds have been made with AISI 316 austenitic steel and Armex GT electrodes by the manual metal-arc process, and residual stress measurements made in the as-welded condition and after various periods of stress relief. The results show that substantial stress relief occurs at temperatures of 850 0 and 750 0 C after 1 hr, but is not complete. The stress distributions are compared with those obtained from ferritic welds and the effect of differences in thermal expansion coefficients is examined using finite element analysis. (author)

  17. Residual stress analysis in BWR pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Leung, C.P.; Pont, D.

    1992-06-01

    Residual stresses from welding processes can be the primary driving force for stress corrosion cracking (SCC) in BWR components. Thus, a better understanding of the causes and nature of these residual stresses can help assess and remedy SCC. Numerical welding simulation software, such as SYSWELD, and material property data have been used to quantify residual stresses for application to SCC assessments in BWR components. Furthermore, parametric studies using SYSWELD have revealed which variables significantly affect predicted residual stress. Overall, numerical modeling techniques can be used to evaluate residual stress for SCC assessments of BWR components and to identify and plan future SCC research

  18. Effect of process temperature on structure, microstructure, residual stresses and soft magnetic properties of sputtered Fe{sub 70}Co{sub 30} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, Swaleha; Ramudu, M.; Raja, M. Manivel, E-mail: mraja@dmrl.drdo.in; Kamat, S.V.

    2016-11-15

    The effect of substrate and post-annealing temperatures on the structure, microstructure, residual stresses and soft magnetic properties of Fe{sub 70}Co{sub 30} thin films was systematically investigated. Microstructural studies reveal that the films are continuous and undergo changes in shape of grain from plate like to spherical resulting in an increase in grain size with the increase in substrate temperature, whereas the post-annealed films show small pores and no significant grain growth till 500 °C. Coercivity (H{sub c}) was found decreasing with both the substrate and post-annealing temperatures; however, the best H{sub c} value of 26 Oe was obtained for the films deposited at substrate temperature of 500 °C. The post-annealed films exhibited relatively higher H{sub c} values. A good combination of high saturation magnetization 4πM{sub s} of ~23.2 kG and low coercivity H{sub c} of 26–65 Oe was obtained for the films deposited at substrate temperature of 450–500 °C. Residual stress analysis on films with different substrate temperatures shows the presence of tensile stress. The decrease in tensile stress is attributed to the relaxation of thermal stresses in the films. - Highlights: • The properties of Fe{sub 70}Co{sub 30} thin films with substrate and post-annealing temperatures are studied. • Good combination of M{sub s} and H{sub c} were observed in the films with different substrate temperatures. • Coercivity decrease is attributed to the increased grain size and smaller residual stresses.

  19. The effect of ammonium partial pressure on residual stresses in surface layer of SW7M HSS steel after vacuum nitriding 'NITROVAC'79'

    International Nuclear Information System (INIS)

    Gawronski, Z.

    1997-01-01

    The effect of the nitriding atmosphere on the residual stresses in the surface layer of the SW7M HSS steel has been investigated in the work. It has been proved that the pressure influences the distribution of those stresses to a great extent. At lower pressures (20 hPa and 40 hPa) at which only one zone is being created - the one of internal nitriding, without that of ε type nitrides on the surface - the highest residual stresses are operating on the HSS steel surface itself or eventually in the subsurface region very close to the surface. In the difference, in case of higher pressure (120 hPa and 240 hPa), the highest stresses are operating at great depth 8-12 μm from the steel surface - depending on the thickness of the ε type nitride layer created on the steel surface at those pressure. All the relevant stresses are compressive one. (author). 6 refs, 4 figs, 1 tab

  20. Measurement of residual stresses in welded sample of dissimilar materials

    International Nuclear Information System (INIS)

    Mansur, Tanius Rodrigues; Gomes, Paulo de Tarso Vida; Scaldaferri, Denis Henrique Bianchi; Martins, Geraldo Antonio Scoralick; Atanazio Filho, Nelson do Nascimento

    2008-01-01

    The welding of dissimilar metals has several applications in the industry. Especially in the nuclear industry, this joint type, common between carbon steel and stainless steel, it is always reason of analysis and special cares tends in view the need to maintain the integrity of the equipment. Residual stresses are introduced in the material as a result of processes as welding, machining, sanding and polishing that can to produce deformation in the proximities of the surface of the material. Residual compressive stresses can be introduced in the material through the jetting process (bombardment of the surface for small glass spheres, dry sand or steel). That procedure allows a fine subsurface layer to suffer yielding, compressing the superficial layer and reducing the formation of areas of concentration of traction stresses, increasing the resistance of the material to the fatigue. The welding process introduces residual stresses due to the geometry resulting from the fusion of the material welded and of the heterogeneous cooling. Besides the microstructural alteration and chemical composition of the material in the affected area for the heat, introduced by the welding, it is also had the effect of the discontinuity of the passes and the formation of bubbles and emptiness that can contribute to the cracks nucleation, reducing the resistance to the fatigue. In the great majority of the times residual stresses are harmful and there are many documented cases which US these stresses went predominant factors for the failure for fatigue. A particularly dangerous aspect of the residual stresses is that their presence is not usually observed, what usually happens with an applied load to the structure. The knowledge of the surface residual stresses is important to predict the emergence of failure when the component or structure is requested. In nuclear power plants it is common to welding of piping of stainless steels with mouthpieces of carbon steel of pressure vases of

  1. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  2. Influence of repair length on residual stress in the repair weld of a clad plate

    International Nuclear Information System (INIS)

    Jiang Wenchun; Xu, X.P.; Gong, J.M.; Tu, S.T.

    2012-01-01

    Highlights: ► Residual stress in the repair weld of a stainless steel clad plate is investigated. ► The effect of repair length on residual stress has been studied. ► Large tensile residual stress is generated in the repair weld and heat affected zone. ► With the increase of repair length, transverse stress is decreased. ► Repair length has little effect on longitudinal stress. - Abstract: A 3-D sequential coupling finite element simulation is performed to investigate the temperature field and residual stress in the repair weld of a stainless steel clad plate. The effect of repair length on residual stress has been studied, aiming to provide a reference for repairing the cracked clad plate. The results show that large tensile residual stresses are generated in the repair weld and heat affected zone (HAZ), and then decrease gradually away from the weld and HAZ. The residual stresses through thickness in the clad layer are relative uniform, while they are non-uniform in the base metal. A discontinuous stress distribution is generated across the interface between weld metal and base metal. The repair length has a great effect on transverse stress. With the increase of repair length, the transverse stress is decreased. When the repair length is increased to 14 cm, the peak of transverse stress has been decreased below yield strength, and the transverse stress in the weld and HAZ has also been greatly decreased. But the repair length has little effect on longitudinal stress.

  3. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  4. Residual stresses evaluation in a gas-pipeline crossing

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Maria Cindra [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Almeida, Manoel Messias [COMPAGAS, Curitiba, PR (Brazil); Rebello, Joao Marcos Alcoforado [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Souza Filho, Byron Goncalves de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The X-rays diffraction technique is a well established and effectiveness method in the determination of the residual and applied stresses in fine grained crystalline materials. It allows to characterize and to quantify the magnitude and direction of the existing surface stresses in the studied point of the material. The objective of this work is the evaluation of the surface stresses in a 10 in diameter Natural Gas Distribution Pipeline manufactured from API 5 L Gr B steel of COMPAGAS company, in a crossing with a Natural Gas Transportation Pipeline, in Araucaria-PR. This kind of evaluation is important to establish weather you have to perform a repositioning of one of the pipeline or not. The measurements had been made in two transversal sections of the pipe, the one upstream (170 mm of the external wall of the pipeline) and another one downstream (840 mm of the external wall of the pipeline). Each transversal section measurements where carried out in 3 points: 9 hours, 12 hours and 3 hours. In each measured point of the pipe surface, the longitudinal and transversal stresses had been measured. The magnitude of the surface residual stresses in the pipe varied of +180 MPa at the -210 MPa. The residual stress state on the surface of the points 12 hours region is characterized by tensile stresses and by compressive stresses in the points of 3 and 9 hours region. The surface residual stresses in gas-pipeline have been measured using X-ray diffraction method, by double exposure technique, using a portable apparatus, with Cr-K-alpha radiation. (author)

  5. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved.......The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...

  6. Residual stresses in weld-clad reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Bertram, W.

    1975-01-01

    Cladding of low alloy nuclear reactor pressure vessel steel with austenitic stainless steel introduces in heavy section components high residual stresses which may cause microcrack formation in stress relief heat treatment. In this investigation an attempt is made to contribute to the solution of the stress relief cracking problem by determining quantitatively the magnitude and distribution of the residual stresses after cladding and after subsequent stress relief heat treatment. The distribution of residual stresses was determined on the basis of a combined experimental-mathematical procedure. Heavy section plate specimens of low alloy steel as base material were given an austenitic monolayer-cladding using the techniques of strip electrode and plasma hot wire cladding, respectively. A number of plates was stress relief heat treated. Starting from the cladded surface the thickness of the plates was reduced by subsequent removal of layers of material. The elastic strain reaction to the removal of each layer was measured by strain gauges. From the data obtained the biaxial residual stress distribution was computed as a function of thickness using relations which are derived for this particular case. In summary, lower residual stresses are caused by reduced thickness of the components. As the heat input, is decreased at identical base material thickness, the residual stresses are lowered also. The height of the tensile residual stress peak, however, remains approximataly constant. In stress relief annealed condition the residual stresses in the cladding are in tension; in the base material the residual stresses are negligibly small

  7. Residual stress in deuterium implanted nominal copper coatings

    International Nuclear Information System (INIS)

    Inal, M. Y.; Alam, M.; Peascoe, R. A.; Watkins, T. R.

    2000-01-01

    The effects of deuterium (D) implantation on the residual stresses in Cu and CuAl 2 phases present in nominal Cu coatings (containing Al) deposited on Al-alloy (Al-6061) substrates were measured using an x-ray diffraction technique. The coatings were deposited by radio frequency magnetron sputtering of a pure Cu target under identical conditions and Al was incorporated in the coatings during growth by diffusion from the substrate. Deuterium was implanted in the coatings at energies of 40 or 40+120 keV with fluences of 1x10 21 , 2x10 21 , or 3x10 21 D + /m 2 . Pole figures of the Cu phase in the coatings prior to and after implantation indicated no effect of implantation on the fibrous texture. Triaxial stress analysis indicated the surface normal stress component to be negligible in Cu and slightly tensile in CuAl 2 under all conditions. Furthermore, under all conditions, the in-plane residual stresses in both phases were found to be compressive and nearly isotropic. The magnitude of the isotropic compressive stress was always higher in CuAl 2 as compared to Cu. The compressive residual stresses in the Cu phase changed only mildly with increasing coating weight, ion energy, and fluence. However, in the CuAl 2 phase the compressive residual stresses changed markedly with increasing ion energy (initial decrease followed by leveling off) and increasing ion fluence (initial decrease followed by an increase), but remained unaffected by increasing coating weight. (c) 2000 American Institute of Physics

  8. Thermal residual stresses in amorphous thermoplastic polymers

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    An attempt to calculate the internal stresses in a cylindrically shaped polycarbonate (LEXAN-GE) component, subjected to an arbitrary cooling rate, will be described. The differential volume relaxation arising as a result of the different thermal history suffered by each body point was considered as the primary source of stresses build up [1-3]. A numerical routine was developed accounting for the simultaneous stress and structural relaxation processes and implemented within an Ansys® environment. The volume relaxation kinetics was modeled by coupling the KAHR (Kovacs, Aklonis, Hutchinson, Ramos) phenomenological theory [4] with the linear viscoelastic theory [5-7]. The numerical algorithm translates the specific volume theoretical predictions at each body point as applied non-mechanical loads acting on the component. The viscoelastic functions were obtained from two simple experimental data, namely the linear viscoelastic response in shear and the PVT (pressure volume temperature) behavior. The dimensionless bulk compliance was extracted from PVT data since it coincides with the memory function appearing in the KAHR phenomenological theory [7]. It is showed that the residual stress scales linearly with the logarithm of the Biot's number.

  9. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    Science.gov (United States)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  10. Evaluation of the effectiveness of the three-dimensional residual stresses method based on the eigenstrain methodology via x-ray measurements

    International Nuclear Information System (INIS)

    Ogawa, Masaru; Ishii, Takehiro; Furusako, Seiji

    2015-01-01

    In order to prevent fractures caused by fatigue or stress corrosion cracking in welded structures, it is important to predict crack propagation for cracks observed during in-service inspections. However, it is difficult to evaluate three-dimensional welding residual stresses non-destructively. Today, it is possible to measure residual stresses just on surface by X-ray diffraction. Neutron diffraction makes it possible to measure welding residual stresses non-destructively even in the thickness direction but it is only available in special irradiation facilities. Therefore, it is impossible to use neutron diffraction as an on-site measurement technique. As non-destructive method of three-dimensional welding residual stresses based on the eigenstrain methodology, the bead flush method has been proposed. In this method, three-dimensional welding residual stresses are calculated by an elastic FEM (Finite Element Method) analysis from eigenstrain distributions which are estimated by an inverse analysis from released strains by strain gauges in the removal of the weld reinforcement. Here, the removal of the excess metal contributes inhibition of crack initiation. Therefore, the bead flush method is a non-destructive technique essentially. However, estimation accuracy of this method becomes relatively poor when processing strains are added on the machined surface. The first author has been developed the bead flush method to be free from the influence of the processing strains. In this method, eigenstrains are estimated not from released strains but from residual strains on surface by X-ray diffraction. In this study, welding residual stresses on the bottom surface in an actual welded plate are estimated from elastic strains measured on the top surface using this method. To evaluate estimation accuracy, estimated residual stresses on the bottom surface are compared with residual stresses measured by X-ray diffraction. Here, eigenstrain distributions not only in the welding

  11. Study of the effect of residual stress on the microstrain of the crystalline lattice and on the crystallite size of steel Cr-Si-V by shot peening

    International Nuclear Information System (INIS)

    Oliveira, Rene Ramos de

    2016-01-01

    In the present work, some effects caused by shot peening on Cr-Si-V steel have been studied, a process that aims to increase fatigue resistance. For this study the variation of parameters in the process are tools to better understand the mechanisms that influence this property. The parameters used in this work were the variation of the grit and the pre-tensioning of the samples applied in leafs used in automotive springs of chrome silicon vanadium alloy steel (SAE 9254 + V). Initially the evaluation of the residual stress profile was performed by X-ray diffraction using the sen 2 Ψ method along the thickness in the region where the stress is compressive. The results show an anomalous effect in relation to the characteristic profile of the residual stress distribution with the decrease of compression in the initial layers in relation to the blasted surface. With the use of scanning electron microscopy, the region affected by grit blasting was observed, noting that the plastically deformed regions are located in the same regions where the compressive residual stress decrease. The profile obtained by X-ray diffraction provides necessary information with the aim of combining the effects of microstress (microstrain) on macrostress (residual stress). This relationship was confirmed by the overlap of the results found in the distribution of the microstrain of the crystalline lattice with the residual stress along the thickness in the plastically deformed region. The results of the X-ray diffraction tests show an existence of tensile anisotropy between the planes generated by stacking faults and the dislocations density. Therefore, to obtain the values of the microstress must be considered the factors of the elastic constants and the crystallographic planes. The method applied was the modified Williamson-Hall. Beyound this method, others were also used, such as: Warren-Averbach method and the Single Line method, this applying the Fourier series, however, when observing

  12. Evaluation of Residual Stresses using Ring Core Method

    Directory of Open Access Journals (Sweden)

    Holý S.

    2010-06-01

    Full Text Available The method for measuring residual stresses using ring-core method is described. Basic relations are given for residual stress measurement along the specimen depth and simplified method is described for average residual stress estimation in the drilled layer for known principal stress directions. The estimation of calculated coefficients using FEM is described. Comparison of method sensitivity is made with hole-drilling method. The device for method application is described and an example of experiment is introduced. The accuracy of method is discussed. The influence of strain gauge rosette misalignment to the evaluated residual stresses is performed using FEM.

  13. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    Science.gov (United States)

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  14. Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel

    International Nuclear Information System (INIS)

    Frutos, E.; Multigner, M.; Gonzalez-Carrasco, J.L.

    2010-01-01

    This research addresses the determination of residual stresses in sandblasted austenitic steel by ultramicroindentation techniques using a sharp indenter, of which the sensitivity to residual stress effects is said to be inferior to that of spherical ones. The introduction of an angular correction in the model of Wang et al. which relates variations in the maximum load to the presence of residual stresses is proposed. Similarly, the contribution to the hardness of grain size refinement and work hardening, developed as a consequence of the severe plastic deformation during blasting, is determined in order to avoid overestimation of the residual stresses. Measurements were performed on polished cross sections along a length of several microns, thus obtaining a profile of the residual stresses. Results show good agreement with those obtained by synchrotron radiation on the same specimens, which validates the method and demonstrates that microindentation using sharp indenters may be sensitive to the residual stress effect.

  15. Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Frutos, E. [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)] [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain); Multigner, M. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain); Gonzalez-Carrasco, J.L., E-mail: jlg@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)

    2010-07-15

    This research addresses the determination of residual stresses in sandblasted austenitic steel by ultramicroindentation techniques using a sharp indenter, of which the sensitivity to residual stress effects is said to be inferior to that of spherical ones. The introduction of an angular correction in the model of Wang et al. which relates variations in the maximum load to the presence of residual stresses is proposed. Similarly, the contribution to the hardness of grain size refinement and work hardening, developed as a consequence of the severe plastic deformation during blasting, is determined in order to avoid overestimation of the residual stresses. Measurements were performed on polished cross sections along a length of several microns, thus obtaining a profile of the residual stresses. Results show good agreement with those obtained by synchrotron radiation on the same specimens, which validates the method and demonstrates that microindentation using sharp indenters may be sensitive to the residual stress effect.

  16. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    Science.gov (United States)

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    Science.gov (United States)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  18. Analytical description of fatigue crack propagation regularities taking into account residual welding stresses

    International Nuclear Information System (INIS)

    Trufyakov, V.I.; Knysh, V.V.; Mikheev, P.P.; Kuz'menko, A.Z.

    1983-01-01

    The procedure, accounting the effect of residual stresses on crack resistance of welded constructions under cyclic loads, is described. The procedure is based on the Paris equation modified by the introduction of the coefficient of residual stress intensity through the functional dependence. The dependence is determined for cases of residual stresses of tension and compression. The experimental data for the 15KhSND steel are presented

  19. Welding residual stress improvement in internal components by water jet peening

    International Nuclear Information System (INIS)

    Enomoto, K.; Hirano, K.; Hayashi, M.; Hayashi, E.

    1996-01-01

    Cavitations are generated when highly pressurized water is jetted in water. Surface residual stress is improved remarkably due to the peening effect of extremely high pressure caused by the collapse of cavitation bubbles. This technique is called water jet peening (WJP). WJP is expected to be an effective maintenance technique for the prevention of stress corrosion cracking caused by residual stress in various components of power generating plants. Various kinds of specimens were water jet peened to evaluate the fundamental characteristics of WJP and to select the most appropriate conditions for the residual stress improvement. Test results showed that WJP markedly improved the tensile residual stress caused by welding and grinding to the high compressive residual stress and seems to prevent the stress corrosion cracking

  20. Effect of controlling recrystallization from the melt on the residual stress and structural properties of the Silica-clad Ge core fiber

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun

    2017-09-01

    Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.

  1. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  2. Variation behavior of residual stress distribution by manufacturing processes in welded pipes of austenitic stainless steel

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Hashimoto, Tadafumi; Mochizuki, Masahito

    2012-01-01

    Stress corrosion cracking (SCC) has been observed near heat affected zone (HAZ) of primary loop recirculation pipes made of low-carbon austenitic stainless steel type 316L in the nuclear power plants. For the non-sensitization material, residual stress is the important factor of SCC, and it is generated by machining and welding. In the actual plants, welding is conducted after machining as manufacturing processes of welded pipes. It could be considered that residual stress generated by machining is varied by welding as a posterior process. This paper presents residual stress variation due to manufacturing processes of pipes using X-ray diffraction method. Residual stress distribution due to welding after machining had a local maximum stress in HAZ. Moreover, this value was higher than residual stress generated by welding or machining. Vickers hardness also had a local maximum hardness in HAZ. In order to clarify hardness variation, crystal orientation analysis with EBSD method was performed. Recovery and recrystallization were occurred by welding heat near the weld metal. These lead hardness decrease. The local maximum region showed no microstructure evolution. In this region, machined layer was remained. Therefore, the local maximum hardness was generated at machined layer. The local maximum stress was caused by the superposition effect of residual stress distributions due to machining and welding. Moreover, these local maximum residual stress and hardness are exceeded critical value of SCC initiation. In order to clarify the effect of residual stress on SCC initiation, evaluation including manufacturing processes is important. (author)

  3. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    International Nuclear Information System (INIS)

    Hempel, Nico; Nitschke-Pagel, Thomas; Dilger, Klaus

    2017-01-01

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that not only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.

  4. Analytical and Experimental Study of Residual Stresses in CFRP

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available Fiber Bragg Grating sensors (FBGs have been utilized in various engineering and photoelectric fields because of their good environment tolerance. In this research, residual stresses of carbon fiber reinforced polymer composites (CFRP were studied using both experimental and analytical approach. The FBGs were embedded inside middle layers of CFRP to study the formation of residual stress during curing process. Finite element analysis was performed using ABAQUS software to simulate the CFRP curing process. Both experimental and simulation results showed that the residual stress appeared during cooling process and the residual stresses could be released when the CFRP was machined to a different shape.

  5. Measurement of edge residual stresses in glass by the phase-shifting method

    Science.gov (United States)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  6. Effect of heat treatment on residual stress and wear behaviors of the TiNi/Ti2Ni based laser cladding composite coatings

    Science.gov (United States)

    Tao, Yang-Feng; Li, Jun; Lv, Ying-Hao; Hu, Lie-Feng

    2017-12-01

    The TiNi/Ti2Ni based composite coatings reinforced by TiC and TiB2 were prepared on Ti6Al4V at different circumstance temperatures (25 °C, 400 °C, 600 °C, and 800 °C) by laser cladding, then were preserved for 3 h. Macromorphologies and microstructures of the coatings were examined through an optical microscope (OM), an X-ray diffractometer (XRD), a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). Residual stresses along the depth direction of the coatings were measured by the nanoindentation method, and wear behaviors of the coatings were also investigated using an ultra-functional wear testing machine. Results showed that the coatings were mainly composed of TiNi/Ti2Ni as the matrix and TiC/TiB2 as the reinforcement. A small amount of Cr2Ti was formed in the coatings prepared at 400 °C and 600 °C. Besides that, Ti3Al was also observed in the coating prepared at 800 °C. The tensile stress existed in the coatings prepared at 25 °C, 400 °C and 600 °C when the coating prepared at 800 °C was regarded as the stress-free reference. The average residual stress in the surface of coating prepared at 25 °C reached the largest value of about 2.79 GPa and presented a decreasing tendency with increasing the circumstance temperature (1.03 GPa at 400 °C, 0.52 GPa at 600 °C, and 0 GPa at 800 °C). It revealed that the rise in circumstance temperature contributed to the reduction in cracking susceptibility in the laser cladding coating. However, the wear volumes of the coatings were increased with increasing the circumstance temperature (0.1912 mm3 at 25 °C, 0.2828 mm3 at 400 °C, 0.3732 mm3 at 600 °C, and 0.6073 mm3 at 800 °C) due to the weakening in strain-hardening effect and the reduction in reinforcement density. The wear mechanism of the coatings was transformed from the single brittle-debonding into the combination of micro-cutting and brittle-debonding when the circumstance temperature was changed from room temperature to

  7. Residual Stress Analysis Based on Acoustic and Optical Methods

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-02-01

    Full Text Available Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  8. X-ray measurement of residual stress on bolt threads

    International Nuclear Information System (INIS)

    Hagiwara, Masaya; Nakahara, Kanefumi; Yoshimoto, Isamu.

    1989-01-01

    This study deals with X-ray measurement of residual stress at the local area around the thread root of a bolt. Residual stress in the 0.5 mm x 5 mm area was measured using a method of stepped scanning and parabolic approximation. The conditions of measurement had been determined and evaluated through the preliminary measurement of compressive stress acting on the cylindrical surface. Furthermore, the fatigue strength estimated by applying the residual stress data to the previously presented hypothesis was compared with the experimental results. The main conclusions obtained were as follows: (1) The residual stress in a relatively small area on the cylindrical surface with large curvature can be measured by X-ray using a method of stepped scanning and parabolic approximation; (2) The compressive residual stress measured at the thread root was larger for the bolt manufactured by thread rolling after heat treatment than for one manufactured by thread rolling before heat treatment; (3) The distribution of residual stress along the axial direction from the thread root to the portion under crest did not represent remarkable change in its value; (4) The residual stress of a bolt was somewhat decreased by fatigue loading on the condition of low mean stress; (5) The fatigue strength estimated using residual stress data showed the tendency of experimental results well. (author)

  9. Design of specimen for weld residual stress simulation

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Jong Sun; Lee, Kyung Soo

    2008-01-01

    The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe

  10. Evaluation of mechanical vibration effect on the residual stresses levels in steel welded joints using an Interface Matlab based on Norm API 579

    Directory of Open Access Journals (Sweden)

    R Rodrigues

    2016-10-01

    Full Text Available Nowadays with the high growth of petrochemical welding technology a great development due to high manufacturing offshore structures, storage tanks of petroleum, boilers and pressure vessels for refining plants have been done. Due to various metallurgical changes and restrictions to contraction and expansion undergone by materials when subjected to welding thermal cycle, internal stresses are generated in welded joint which are nominated residual stresses. It is generally undesirable because it can lead to several problems, such as cracks, cold stress fracture, stress corrosion, among others. Although several studies involving residual stresses have been developed in recent years, few information about the variation of the residual stresses level in welded joints when subjected to stress relief treatment by mechanical vibration have been done. Likewise, there are few information related to the comparison between the degree of efficiency by using the post-weld heat treatment and those treatment. Therefore, the goal of this work was to apply the relieve residual stresses treatment by mechanical vibration in steel welded joints used in oil industry, and compare the results with those obtained by post heat treatment and evaluate the efficiency level of this technique In addition, this works also hope to contribute for a better understanding of this technique and to find which parameters have a greater influence on the results.

  11. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    Science.gov (United States)

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  12. A primary simulation for residual stress neutron diffractometer

    International Nuclear Information System (INIS)

    Wang Shuying; Liu Lijuan; Sun Liangwei

    2012-01-01

    At present, neutron diffraction method is the unique and nondestructive method that can directly measure the residual stress distribution in deep materials and engineering components. It has an important application in engineering. A simulation of the flux at the position of the sample table was reported, and the resolution of the residual stress instrument was computed at the same time. The effect of the parameters of the second collimator on the flux at the sample position and the resolution of the instrument have been analyzed. The result indicated that the second collimator empress much on the neutron flux and the instrument resolution is well when the sample's diffraction angle is less than 120°. (authors)

  13. Effects of Loading Frequency on Fatigue Behavior, Residual Stress, and Microstructure of Deep-Rolled Stainless Steel AISI 304 at Elevated Temperatures

    Science.gov (United States)

    Nikitin, I.; Juijerm, P.

    2018-02-01

    The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.

  14. Controlling BWR pipe cracking by residual stress modification

    International Nuclear Information System (INIS)

    Gilman, J.D.; Giannuzzi, A.J.; Childs, W.J.

    1983-01-01

    Intergranular stress corrosion cracking may occur in the weld heat-affected zone of susceptible stainless steel materials which have been used in some boiling water reactor piping systems. One of the prerequisite conditions for stress corrosion attack is a high tensile stress in the exposed, locally sensitized material near the weld root. Several processes have been developed which can deter stress corrosion attack by altering the residual stress distributions near the welds to ensure that low stresses prevail in critical locations. These residual stress modification remedies and their qualification testing are described in this paper. (author)

  15. Residual stress improving method for reactor structural component and residual stress improving device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato

    1996-09-03

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  16. Residual stress improving method for reactor structural component and residual stress improving device therefor

    International Nuclear Information System (INIS)

    Enomoto, Kunio; Otaka, Masahiro; Kurosawa, Koichi; Saito, Hideyo; Tsujimura, Hiroshi; Tamai, Yasukata; Urashiro, Keiichi; Mochizuki, Masato.

    1996-01-01

    The present invention is applied to a BWR type reactor, in which a high speed jetting flow incorporating cavities is collided against the surface of reactor structural components to form residual compression stresses on the surface layer of the reactor structural components thereby improving the stresses on the surface. Namely, a water jetting means is inserted into the reactor container filled with reactor water. Purified water is pressurized by a pump and introduced to the water jetting means. The purified water jetted from the water jetting means and entraining cavities is abutted against the surface of the reactor structural components. With such procedures, since the purified water is introduced to the water jetting means by the pump, the pump is free from contamination of radioactive materials. As a result, maintenance and inspection for the pump can be facilitated. Further, since the purified water injection flow entraining cavities is abutted against the surface of the reactor structural components being in contact with reactor water, residual compression stresses are exerted on the surface of the reactor structural components. As a result, occurrence of stress corrosion crackings of reactor structural components is suppressed. (I.S.)

  17. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  18. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  19. On the role of the residual stress state in product manufacturing

    NARCIS (Netherlands)

    Zijlstra, G.; Groen, M.; Post, J.; Ocelik, V.; de Hosson, J.Th.M.

    2016-01-01

    This paper concentrates on the effect of the residual stress state during product manufacturing of AISI 420 steel on the final shape of the product. The work includes Finite Element (FE) calculations of the distribution of the residual stresses after metal forming and a heat treatment. The evolution

  20. Relaxation of residual stress in MMC after combined plastic deformation and heat treatment

    International Nuclear Information System (INIS)

    Bruno, G.; Ceretti, M.; Girardin, E.; Giuliani, A.; Manescu, A.

    2004-01-01

    Neutron Diffraction shows that plastic pre-deformation and heat treatments have opposite effects on the residual stress in Al-SiC p composites. The thermal micro residual stress is relaxed or even reversed by pre-strains above 0.2%, but restored by heat treatments. The sense of relaxation changes above 400 deg. C (the mixing temperature)

  1. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  2. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.

  3. Simulation of Residual Stresses at Holes in Tempered Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Poulsen, Peter Noe

    2010-01-01

    This work presents a full 3D numerical study of the residual stresses in tempered (toughened) glass near holes using Narayanaswamy’s model for the tempering process. It is the objective of the paper to elucidate the influence on the minimal residual compressive stresses at holes from variations in...

  4. Determination of residual stresses in roll compacted titanium strips

    CSIR Research Space (South Africa)

    Mothosi, KL

    2017-01-01

    Full Text Available residual stresses using x-ray diffraction (XRD) surface probing technique. Preliminary results were obtained for the surface residual stress at the center of the titanium strips for the 100 and 325 mesh strips rolled at 0.1 roll gap for 20 and 50 mm set...

  5. A study on residual stress mitigation of the HDPE pipe for various annealing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung [Sunchon National University, Sunchon (Korea, Republic of); Yoo, Jeong Ho [Korea Laboratory Engineering System, Daejeon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Sungnam (Korea, Republic of)

    2015-03-15

    This paper presents effects of the annealing condition variables such as temperature and time on the residual stress mitigation. The effects were investigated by using the various measurement methods such as hole-drilling method and slitting method. As a result of the investigation, the residual stress mitigation magnitude increases with increasing the annealing time and temperature. Based on the investigation results, the quantitative correlations between the annealing variables and the residual stress mitigation were derived. Finally, the effect of long-term operation under the normal operating temperature conditions on the residual stress mitigation was investigated by referring to the derived equations and performing some additional tests, and it is identified that the residual stresses are not significantly relaxed over the design lifetime of the safety class III buried HDPE pipes.

  6. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  7. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    International Nuclear Information System (INIS)

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-01-01

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: ► Through thickness residual stress measurements made on large Al alloy forgings. ► Residual stress characterised using neutron diffraction and deep hole drilling. ► Biaxial compressive surface and triaxial subsurface residual stresses. ► Quench sensitivity of 7075 promotes significant microstructural differences to 7010. ► When precipitation is

  8. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  9. Residual stress evaluation by Barkhausen signals with a magnetic field sensor for high efficiency electrical motors

    Science.gov (United States)

    Tsuchida, Yuji; Enokizono, Masato

    2018-04-01

    The iron loss of industrial motors increases by residual stress during manufacturing processes. It is very important to make clear the distribution of the residual stress in the motor cores to reduce the iron loss in the motors. Barkhausen signals which occur on electrical steel sheets can be used for the evaluation of the residual stress because they are very sensitive to the material properties. Generally, a B-sensor is used to measure Barkhausen signals, however, we developed a new H-sensor to measure them and applied it into the stress evaluation. It is supposed that the Barkhausen signals by using a H-sensor can be much effective to the residual stress on the electrical steel sheets by referring our results regarding to the stress evaluations. We evaluated the tensile stress of the electrical steel sheets by measuring Barkhausen signals by using our developed H-sensor for high efficiency electrical motors.

  10. Ceramic laminates with tailored residual stresses

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-12-01

    Full Text Available Severe environments imposed by new technologies demand new materials with better properties and ensured reliability. The intrinsic brittleness of ceramics has forced scientists to look for new materials and processing routes to improve the mechanical behaviour of ceramics in order to allow their use under severe thermomechanical conditions. The laminate approach has allowed the fabrication of a new family of composite materials with strength and reliability superior to those of monolithic ceramics with microstructures similar to those of the constituent layers. The different ceramic laminates developed since the middle 1970´s can be divided in two large groups depending on whether the development of residual stresses between layers is the main design tool. This paper reviews the developments in the control and tailoring of residual stresses in ceramic laminates. The tailoring of the thickness and location of layers in compression can lead to extremely performing structures in terms of strength values and reliability. External layers in compression lead to the strengthening of the structure. When relatively thin and highly compressed layers are located inside the material, threshold strength, crack bifurcation and crack arrest during fracture occur.

    Las severas condiciones de trabajo de las nuevas aplicaciones tecnológicas exigen el uso de materiales con mejores propiedades y alta fiabilidad. La potencialidad de uso de materiales frágiles, como los cerámicos, en estas aplicaciones exige el desarrollo de nuevos materiales y métodos de procesamiento que mejoren su comportamiento mecánico. El concepto de material laminado ha permitido la fabricación de una nueva familia de materiales con tensiones de fractura y fiabilidad superiores a las de materiales monolíticos con microestructuras similares a las de las láminas que conforman el laminado. Los distintos materiales laminados desarrollados desde mediados de los años 70 se pueden

  11. Principles of the measurement of residual stress by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Webster, G A; Ezeilo, A N [Imperial Coll. of Science and Technology, London (United Kingdom). Dept. of Mechanical Engineering

    1996-11-01

    The presence of residual stresses in engineering components can significantly affect their load carrying capacity and resistance to fracture. In order to quantify their effect it is necessary to know their magnitude and distribution. Neutron diffraction is the most suitable method of obtaining these stresses non-destructively in the interior of components. In this paper the principles of the technique are described. A monochromatic beam of neutrons, or time of flight measurements, can be employed. In each case, components of strain are determined directly from changes in the lattice spacings between crystals. Residual stresses can then be calculated from these strains. The experimental procedures for making the measurements are described and precautions for achieving reliable results discussed. These include choice of crystal planes on which to make measurements, extent of masking needed to identify a suitable sampling volume, type of detector and alignment procedure. Methods of achieving a stress free reference are also considered. A selection of practical examples is included to demonstrate the success of the technique. (author) 14 figs., 1 tab., 18 refs.

  12. Principles of the measurement of residual stress by neutron diffraction

    International Nuclear Information System (INIS)

    Webster, G.A.; Ezeilo, A.N.

    1996-01-01

    The presence of residual stresses in engineering components can significantly affect their load carrying capacity and resistance to fracture. In order to quantify their effect it is necessary to know their magnitude and distribution. Neutron diffraction is the most suitable method of obtaining these stresses non-destructively in the interior of components. In this paper the principles of the technique are described. A monochromatic beam of neutrons, or time of flight measurements, can be employed. In each case, components of strain are determined directly from changes in the lattice spacings between crystals. Residual stresses can then be calculated from these strains. The experimental procedures for making the measurements are described and precautions for achieving reliable results discussed. These include choice of crystal planes on which to make measurements, extent of masking needed to identify a suitable sampling volume, type of detector and alignment procedure. Methods of achieving a stress free reference are also considered. A selection of practical examples is included to demonstrate the success of the technique. (author) 14 figs., 1 tab., 18 refs

  13. Improvement and Validation of Weld Residual Stress Modelling Procedure

    International Nuclear Information System (INIS)

    Zang, Weilin; Gunnars, Jens; Dong, Pingsha; Hong, Jeong K.

    2009-06-01

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  14. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  15. Finite element analysis of metallurgical phase transformations in AA 6056-T4 and their effects upon the residual stress and distortion states of a laser welded T-joint

    International Nuclear Information System (INIS)

    Zain-ul-abdein, Muhammad; Nelias, Daniel; Jullien, Jean-Francois; Boitout, Frederic; Dischert, Luc; Noe, Xavier

    2011-01-01

    Aircraft industry makes extensive use of aluminium alloy AA 6056-T4 in the fabrication of fuselage panels using laser beam welding technique. Since high temperatures are involved in the manufacturing process, the precipitation/dissolution occurrences are expected as solid state phase transformations. These transformations are likely to affect the residual distortion and stress states of the component. The present work investigates the effect of metallurgical phase transformations upon the residual stresses and distortions induced by laser beam welding in a T-joint configuration using the finite element method. Two separate models were studied using different finite element codes, where the first one describes a thermo-mechanical analysis using Abaqus; while the second one discusses a thermo-metallo-mechanical analysis using Sysweld. A comparative analysis of experimentally validated finite element models has been performed and the residual stress states with and without the metallurgical phase transformations are predicted. The results show that the inclusion of phase transformations has a negligible effect on predicted distortions, which are in agreement with the experimental data, but an effect on predicted residual stresses, although the experimentally measured residual stresses are not available to support the analyses.

  16. Effect of welding processes and joint configuration on the residual stresses and distortion in type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.; Palanichamy, P.

    2012-01-01

    Fabrication by welding introduces significant residual stresses in the welded structure/component due to non-uniform heat distribution during heating and cooling cycle. To control, reduce, or beneficially redistribute the residual stresses in weld joints, the stress distribution needs to be known. In the present study, weld joints of 16 mm thick 316LN stainless steel were made by multi-pass TIG, A-TIG welding and combination of TIG and A-TIG welding processes with various joint configurations. While V-groove edge preparation was required for making multi-pass TIG weld joint, square-edge preparation was sufficient for making A-TIG weld joint. Ultrasonic nondestructive technique based on the critically refracted longitudinal waves (LCR waves) has been used for the quantitative surface/sub-surface residual stress measurements in the weld joints. Distortion measurements were carried out before and after welding using height gauge. A-TIG weld joint was found to exhibit significant reduction in tensile residual stresses and distortion in comparison to that of other joints. (author)

  17. A comparison of residual stresses in built-up steel beams using hole-drilling method

    International Nuclear Information System (INIS)

    Nawafleh, M. A.; Hunaiti, Y. M.; Younes, R. M.

    2009-01-01

    Residual stresses have a significant effect on the stability resistance of metal building systems. An experimental program was conducted to measure these stresses in built-up steel beams using incremental hole-drilling method. The experimental results reveal that the predicted residual stress type of pattern for built-up I-sections with fillet welds on one side of the web is not the same as the pattern of residual stresses in built-up I-sections with fillet welds on both sides of the web

  18. Parametric study for welding residual stresses in nozzle of nuclear power plants using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Jae; Lee, Kyoung Soo; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Univ., Seoul (Korea, Republic of)

    2008-07-01

    Distribution of welding residual stresses are mainly characterized by degrees and frequencies of thermal loads applied to materials. However, other effects as component size and clamping condition can also affect stress distributions to a certain extent thus careful manipulation of these parameters based on clear understanding of how they affect residual stresses distributions and why can be additional measure to mitigate residual stresses. This paper discusses aforementioned issues for the case of safety and relief nozzle in nuclear power plant through finite element analysis.

  19. Residual stress measurement in socket welded joints by neutron diffraction

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Ishiwata, Masayuki; Minakawa, Noriaki; Funahashi, Satoru.

    1995-01-01

    Neutron diffraction measurements of lattice spacings provide the spatial map of residual stress near welds in ferritic steel socket joints. The high tensile stress greater than 200 MPa was found in the fusion and heat-affected zones in the hoop direction. However, the highest tensile stress in the axial direction at the weld root was about 110 MPa relatively lower than the expected value from the fatigue test results. The balancing compressive stress was found near the surface of the socket weld fusion zone. Heat treatment at 625degC for 2 hours was sufficient for the relief of residual stress in socket welds. (author)

  20. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  1. Relationship between ultrasonic Rayleigh waves and surface residual stress

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.

    1977-01-01

    Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments

  2. Investigating Resulting Residual Stresses during Mechanical Forming Process

    Science.gov (United States)

    Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.

    2018-03-01

    Most manufacturing processes such as machining, welding, heat treatment, laser forming, laser cladding and, laser metal deposition, etc. are subjected to a form of heat or energy to change the geometrical shape thus changing the inherent engineering and structural properties of the material. These changes often cause the development of locked up stresses referred to as residual stresses as a result of these activities. This study reports on the residual stresses developed due to the mechanical forming process to maintain a suitable structural integrity for the formed components. The result of the analysis through the X-ray diffraction confirmed that residual stresses were induced in the manufactured parts and further revealed that residual stresses were compressive in nature as found in the parent material but with values less than the parent material.

  3. Features of residual stresses in duplex stainless steel butt welds

    Science.gov (United States)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  4. Dependence of magnetic permeability on residual stresses in alloyed steels

    Directory of Open Access Journals (Sweden)

    E. Hristoforou

    2018-04-01

    Full Text Available A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels’ grade (AISI 4140, TRIP and Duplex were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  5. Dependence of magnetic permeability on residual stresses in alloyed steels

    Science.gov (United States)

    Hristoforou, E.; Ktena, A.; Vourna, P.; Argiris, K.

    2018-04-01

    A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels' grade (AISI 4140, TRIP and Duplex) were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  6. The treatment of residual stress in fracture assessment of pressure vessels

    International Nuclear Information System (INIS)

    Green, D.; Knowles, J.

    1992-01-01

    The treatment of weld residual stress in the fracture assessment of cylindrical pressure vessels is considered through partitioning the stress into membrane, bending and self-balancing through wall components. The influence of each on fracture behavior is discussed. Stress intensity factor solutions appropriate to each type of stress are presented. Short range, medium range and long range stress categories are identified according to simple rules relating the effect of increasing crack length to stress intensity factor and ligament net stress. Proposals are made on how the stress intensity factor from these stress types may be incorporated into a Kr, Lr based fracture assessment

  7. Numerical modeling of AA2024-T3 friction stir welding process for residual stress evaluation, including softening effects

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Carlone, Pierpaolo; Palazzo, Gaetano S.

    2014-01-01

    In the present paper, a numerical finite element model of the precipitation hardenable AA2024-T3 aluminum alloy, consisting of a heat transfer analysis based on the Thermal Pseudo Mechanical model for heat generation, and a sequentially coupled quasi-static stress analysis is proposed. Metallurgi...

  8. Residual Stress Studies Using the Cairo Fourier Diffractometer Facility

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; El-Shaer, Y.H.

    2002-01-01

    The present paper deals with residual stress studies using the Cairo Fourier diffractometer facility CFDF. The CFDF is a reverse - time of -flight (RTOF) diffractometer; applies a Fourier chopper. The measurements were performed for copper samples in order to study the residual stress after welding. The maximum modulation of the Fourier chopper during the measurements was 136 khz; leading to a time resolution half-width of about 7 μ s. It has been found from the present measurements that, the resulting diffraction spectra could be successfully used for studying the residual stress; in the wavelength range between 0.7-2.9 A degree at ∼ 0.45 % relative resolution

  9. Nonlinear morphoelastic plates I: Genesis of residual stress

    KAUST Repository

    McMahon, J.

    2011-04-28

    Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous analysis is given of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate. Balance equations are derived via the Global Constraint Principle, growth is incorporated via a multiplicative decomposition of the deformation gradient, and the system is closed by a response function. The particular case of a compressible neo-Hookean material is analyzed, and the existence of residually stressed states is established. © SAGE Publications 2011.

  10. Measured residual stresses in overlay pipe weldments removed from service

    International Nuclear Information System (INIS)

    Shack, W.J.

    1985-02-01

    Surface and throughwall residual stresses were measured on an elbow-to-pipe weldment that had been removed from the Hatch-2 reactor about a year after the application of a weld overlay. The results were compared with experimental measurements on three mock-up weldments and with finite-element calculations. The comparison shows that there are significant differences in the form and magnitude of the residual stress distributions. However, even after more than a year of service, the residual stresses over most of the inner surface of the actual plant weldment with an overlay were strongly compressive. 3 refs., 7 figs

  11. Measurement of residual stresses by the moire method

    Science.gov (United States)

    Sciammarella, C. A.; Albertazzi, A., Jr.

    Three different applications of the moire method to the determination of residual stresses and strains are presented. The three applications take advantage of the property of ratings to record the changes of the surface they are printed on. One of the applications deals with thermal residual stresses, another with contact residual stress and the third one is a generalization of the blind hole technique. This last application is based on a computer assisted moire technique and on the generalization of the quasi-heterodyne techniques of fringe pattern analysis.

  12. Nonlinear morphoelastic plates I: Genesis of residual stress

    KAUST Repository

    McMahon, J.; Goriely, A.; Tabor, M.

    2011-01-01

    Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous analysis is given of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate. Balance equations are derived via the Global Constraint Principle, growth is incorporated via a multiplicative decomposition of the deformation gradient, and the system is closed by a response function. The particular case of a compressible neo-Hookean material is analyzed, and the existence of residually stressed states is established. © SAGE Publications 2011.

  13. Residual stress distribution in carbon steel pipe welded joint measured by neutron diffraction

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Ishiwata, Masayuki; Morii, Yukio; Minakawa, Nobuaki

    2000-01-01

    In order to estimate crack growth behavior of fatigue and stress corrosion cracking in pipes, the residual stress distribution near the pipe weld region has to be measured through the wall thickness. Since the penetration depth of neutron is deep enough to pass through the thick pipe wall, the neutron diffraction technique for the residual stress measurement is effective for this purpose. At the first step the residual stress distribution near the weld region in a butt-welded carbon steel pipe was measured by the neutron diffraction. Significant stresses extended only to a distance of 30 mm from the center of the weld. The major tensile stresses occurred in the hoop direction in the fusion and heat affected zones of the weldment, and they attained a level greater than 200 MPa through the thickness. While the axial residual stress at the inside surface was 50 MPa, the stress at the outside surface was -100 MPa. The comparison of residual stress distributions measured by the neutron diffraction, the X-ray diffraction and the strain gauge method reveals that the neutron diffraction is the most effective for measuring the residual stress inside the structural components. (author)

  14. Residual stress and Young's modulus of pulsed laser deposited PZT thin films: Effect of thin film composition and crystal direction of Si cantilevers

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Abelmann, Leon; Sardan Sukas, Ö.

    2016-01-01

    We investigated the residual stress and Young's modulus of Pb(ZrxTi1 - x)O3 (PZT) thin films with a (110) preferred orientation and a composition x ranging from 0.2 to 0.8. The films are grown by pulsed laser deposition on silicon cantilevers aligned along the <110> and <100> silicon crystal

  15. Account of residual stress effect in estimation of the period of fatigue crack initiation and propagation in joints with poor penetration

    International Nuclear Information System (INIS)

    Babaev, A.V.; Knysh, V.V.; Labunskaya, N.F.

    1985-01-01

    Dependences permitting to determine by calculation method the duration of the stage of fatigue crack propagation in joints with poor penetration and residual stresses are obtained on the basis of criteria of fracture mechanics. It gives a possibility to estimate the resource of these joints using the calculation-experimental method

  16. Investigation of residual stress in laser welding dissimilar materials

    International Nuclear Information System (INIS)

    Mirim, Denilson de Camargo; Oliveira, Rene Ramos de; Berretta, Jose Roberto; Rossi, Wagner de; Lima, Nelson Batista de; Delijaicov, Sergio; Gomes, Diego Oliva

    2010-01-01

    One of the most critical problems found in the different materials welding is the residual stress formation, that happens mainly for the fact of those materials they possess coefficients of thermal expansion and different thermal conductivities. Like this in this work the residual tension was evaluated in the technique of welding laser among the steel low carbon, AISI 1010 and AISI 304. The materials were united for it welds autogenous of top with a laser of continuous Nd:YAG in that they were varied the potency, speed and the focus of the laser stayed constant in relation to surface of the sample. The main objective of the study went identification and to analysis of the residual stress in HAZ on both sides of seem. Um planning factorial of two factors at two levels each it was executed for optimization the combination of the factors potency and speed. The obtained answers were the residual stress in different depths in HAZ. In the surface of the sample measures of residual stress were accomplished by the technique of X-ray diffraction. The hole drilling strain gage method it was applied to measure the residual stress on both sides of the union. The results were analyzed using the variance analysis and the statistical regression based on the different influences of the entrance and combination of the factors in the residual stress generated in that union. The results indicate that the development of models can foresee the answers satisfactorily. (author)

  17. Distortion and residual stresses in structures reinforced with titanium straps for improved damage tolerance

    International Nuclear Information System (INIS)

    Liljedahl, C.D.M.; Fitzpatrick, M.E.; Edwards, L.

    2008-01-01

    Distortion and residual stresses induced during the manufacturing process of bonded crack retarders have been investigated. Titanium alloy straps were adhesively bonded to an aluminium alloy SENT specimen to promote fatigue crack growth retardation. The effect of three different strap dimensions was investigated. The spring-back of a component when released from the autoclave and the residual stresses are important factors to take into account when designing a selective reinforcement, as this may alter the local aerodynamic characteristics and reduce the crack bridging effect of the strap. The principal problem with residual stresses is that the tensile nature of the residual stresses in the primary aluminium structure has a negative impact on the crack initiation and crack propagation behaviour in the aluminium. The residual stresses were measured with neutron diffraction and the distortion of the specimens was measured with a contour measurement machine. The bonding process was simulated with a three-dimensional FE model. The residual stresses were found to be tensile close to the strap and slightly compressive on the un-bonded side. Both the distortion and the residual stresses increased with the thickness and the width of the strap. Very good agreement between the measured stresses and the measured distortion and the FE simulation was found

  18. Residual stress measurement using the pulsed neutron source at LANSCE

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Goldstone, J.A.; Holden, T.M.

    1991-01-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction is the only measuring technique which can make spatially resolved non-destructive strain measurements in the interior of components. By recording the change in the crystalline interplanar spacing, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all the lattice reflections are recorded in each measurement which allows anisotropic effects to be studied. Measurements made at the Manuel Lujan Jr Neutron Scattering Centre (LANSCE) demonstrate the potential for stress measurements on a pulsed source and indicate the advantages and disadvantages over measurements made on a reactor. 15 refs., 7 figs

  19. Evaluation of stress intensity factors due to welding residual stresses for circumferential cracked pipes

    International Nuclear Information System (INIS)

    Oh, Chang-Young; Kim, Yun-Jae; Oh, Young-Jin; Kim, Jong-Sung; Song, Tae-Kwang; Kim, Yong-Beum

    2013-01-01

    To investigate the applicability of existing methods to estimate stress intensity factors due to welding residual stresses, comparisons with finite element (FE) solutions are made for two types of generic welding residual stress profiles, generated by simulating repair welds. It is found that fitting residual stresses over the crack depth using third-order polynomials gives good estimates of stress intensity factors but fitting over the entire thickness can result in inaccurate estimates even with fourth-order polynomials. Noting that welding residual stresses are often determined from FE analyses, linearization of residual stresses to estimate stress intensity factors is proposed. Comparison with FE solutions shows good agreements. -- Highlights: ► Applicability of K estimation methods is investigated for welding residual stresses. ► Two types of generic residual stress profiles with repair welds are considered. ► Fitting residual stresses over the crack depth gives good estimates of K. ► A method to estimate K by linearising residual stress profiles is proposed

  20. Measuring depth profiles of residual stress with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  1. Residual-stress distributions near stainless steel butt weldments

    International Nuclear Information System (INIS)

    Elligson, W.A.; Shack, W.J.

    1978-01-01

    Concern for the integrity of stainless steel butt-weldments in boiling-water-reactor (BWR) piping systems has stimulated study of the conditions that cause stress corrosion cracking (SCC) in the heat-affected zones (HAZ) of the weldments. It is generally agreed that a high stress exceeding the initial yield strength is one of the essential elements for crack initiation. Since design procedures usually ensure that load stresses are below initial yield, the source of the high stresses necessary to produce SCC is thought to be the residual stresses due to welding. To examine the level of residual stresses in the weldments of interest, bulk residual stresses were measured on 100 mm (4-in.) and 254 mm (10-in.) diameter Schedule 80 piping weldments using strain relief techniques. Both laboratory welded specimens and field welded specimens from reactors in service were studied. Axial bulk residual stress distributions were obtained at 45 0 intervals around the circumference. At each azimuthal position, the residual stresses were measured at seven axial positions: on the weld centerline and 13, 20, and 25 mm on either side of the weld centerline on both the inside and outside surfaces

  2. Residual stress of particulate polymer composites with reduced thermal expansion

    International Nuclear Information System (INIS)

    Nishino, T; Kotera, M; Sugiura, Y

    2009-01-01

    Thermal expansion behavior was investigated for tangusten zirconium phosphate (Zr 2 (WO 4 )(PO 4 ) 2 (ZWP)) particulate filled poly(ether ether ketone) (PEEK) composite. ZWP is known as ceramic filler with a negative thermal expansion. By incorporating ZWP with 40 volume %, the linear thermal expansion coefficient of the PEEK composite was reduced to almost same value (2.53 X 10 -5 K -1 ) with that of aluminum. This decrease was found to be quite effective for the decrease of the residual stress at the interface between aluminum plate and the composite.

  3. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  4. Residual stress determination of rail tread using a laser ultrasonic technique

    International Nuclear Information System (INIS)

    Wang, Jing; Feng, Qibo

    2015-01-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields. (paper)

  5. Application of x-ray residual stress measurement to products

    International Nuclear Information System (INIS)

    Goto, T.; Iwamura, T.

    1975-01-01

    The X-ray residual stress measuring method is the only nondestructive method for measuring residual stress in polycrystalline materials. It is capable of obtaining information not only on macroscopic stress but also microscopic stress. The authors are employing this method for the development of pre-service and in-service inspection methods and for the improvement of various manufacturing techniques. In this paper, the results of measurement of some products as examples of its application are described. The examples introduced concern the following: (1) Selection of optimum conditions in heat treatment and stress-relief treatment. (2) Residual stress produced by mechanical processes such as autofrettage and flow form. (3) Check of manufacturing processes of rotary shaft and welded parts. (4) Estimation of fatigue strength of shot-peened part. (5) Detection of fatigue damage of shot-peened part. (auth.)

  6. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  7. Local approach to brittle fracture under residual stress field. Assessment of pre-loading effect; Local approach no tekiyo ni yoru zanryu oryoku wo motsu buzai no zeisei hakai kyodo hyoka. Yokaju no eikyo no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y.; Sakano, K.; Onozuka, M. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Minami, F. [Osaka University, Osaka (Japan)

    2000-01-01

    The effect of residual stresses on brittle fracture was investigated on the basis of the Local Approach. Compressive residual stress was introduced by pre-loading and the subsequent fracture test conducted with a 780 MPa class steel. Preloading apparently increased the critical load and critical CTOD at the onset of brittle fracture initiation. The Weibull stress criterion was used to evaluate the brittle fracture resistance of the pre-loaded specimen. The critical Weibull stress is a material property independent of test conditions with and without pre-loading. Using the Weibull stress criterion, the critical CTOD of the pre-loaded specimen can be predicted from test results of the specimen without pre-loading. (author)

  8. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  9. Simplified method of calculating residual stress in circumferential welding of piping

    International Nuclear Information System (INIS)

    Umemoto, Tadahiro

    1984-01-01

    Many circumferential joints of piping are used in as-welded state, but in these welded joints, the residual stress as high as the yield stress of materials arises, and causes to accelerate stress corrosion cracking and corrosion fatigue. The experiment or the finite element method to clarify welding residual stress requires much time and labor, and is expensive, therefore, the author proposed the simplified method of calculation. The heating and cooling process of welding is very complex, and cannot be modeled as it is, therefore, it was assumed that in multiple layer welding, the welding condition of the last layer determines the residual stress, that material constants are invariable regardless of temperature, that the temperature distribution and residual stress are axisymmetric, and that there is repeated stress-strain relation in the vicinity of welded parts. The temperature distribution at the time of welding, thermal stress and welding residual stress are analyzed, and the material constants used for the calculation of residual stress are given. As the example of calculation, the effect of welding heat input and materials is shown. The extension of the method to a thick-walled pipe is discussed. (Kako, I.)

  10. Residual stresses associated with the hydraulic expansion of steam generator tubing into tubesheets

    International Nuclear Information System (INIS)

    Middlebrooks, W.B.; Harrod, D.L.; Gold, R.E.

    1993-01-01

    Various methods are being used to expand heat transfer tubes into the thick tubesheets of nuclear steam generators. The residual stresses in the as-expanded tubes and methods for reducing these stresses are important because of the role which residual stresses play in stress corrosion cracking and stress assisted corrosion of the tubing. Of the various expansion processes, the hydraulic expansion process is most amenable to analytical study. This paper presents results on the residual stresses and strains in hydraulically expanded tubes and the tubesheet as computed by two different finite element codes with three different finite element models and by a theoretical incremental analysis method. The calculations include a sensitivity analysis to assess the effects of the expansion variables and the effect of stress relief heat treatments. (orig.)

  11. The nev diffractometer ARES for the analysis of residual stresses

    Czech Academy of Sciences Publication Activity Database

    Staron, P.; Ruhnau, H. U.; Marmotti, M.; Mikula, Pavol; Kampmann, R.

    276/278, - (2000), s. 158-159 ISSN 0921-4526 Institutional research plan: CEZ:AV0Z1048901 Keywords : neutron instruments * residual stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.893, year: 2000

  12. Neutron diffraction measurement of residual stress in NPP construction materials

    International Nuclear Information System (INIS)

    Hinca, R.; Bokuchava, G.

    2000-01-01

    The aim of the investigation is to study the level of residual stresses induced by the surfacing in the weld deposit zone and in the base metal, where considerable thermal gradients are present. Surfacing high-nickel filler on an austenitic base metal is one of techniques in repair of primary collector the primary circuit of nuclear power plant type VVER. The repair technology was developed at Welding Research Institute Bratislava. Measurements of residual stresses in the weld overlay and the base metal are necessary for approving the mechanical analysis and verifying of residual stresses determination on welded material by numerical weld g computer simulation. Investigations of residual stresses are important for developing optimal welding techniques. (authors)

  13. Analysis of residual stresses in a long hollow cylinder

    International Nuclear Information System (INIS)

    Tokovyy, Yuriy V.; Ma, Chien-Ching

    2011-01-01

    This paper presents an analytical method for solving the axisymmetric stress problem for a long hollow cylinder subjected to locally-distributed residual (incompatible) strains. This method is based on direct integration of the equilibrium and compatibility equations, which thereby have been reduced to the set of two governing equations for two key functions with corresponding boundary and integral conditions. The governing equations were solved by making use of the Fourier integral transformation. Application of the method is illustrated with an analysis of the welding residual stresses in a butt-welded thick-walled pipe. - Highlights: → A solution to the axisymmetric stress problem for a hollow cylinder is constructed. → The cylinder is subjected to a field of locally-distributed residual strains. → The method is based on direct integration of the equilibrium equations. → An application of our solution to analysis of welding residual stresses is considered.

  14. Development of residual stress prediction model in pipe weldment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Yun Yong; Lim, Se Young; Choi, Kang Hyeuk; Cho, Young Sam; Lim, Jae Hyuk [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    When Leak Before Break(LBB) concepts is applied to high energy piping of nuclear power plants, residual weld stresses is a important variable. The main purpose of his research is to develop the numerical model which can predict residual weld stresses. Firstly, basic theories were described which need to numerical analysis of welding parts. Before the analysis of pipe, welding of a flat plate was analyzed and compared. Appling the data of used pipes, thermal/mechanical analysis were accomplished and computed temperature gradient and residual stress distribution. For thermal analysis, proper heat flux was regarded as the heat source and convection/radiation heat transfer were considered at surfaces. The residual stresses were counted from the computed temperature gradient and they were compared and verified with a result of another research.

  15. Residual stress measurement method in MEMS microbeams using frequency shift data

    International Nuclear Information System (INIS)

    Somà, Aurelio; Ballestra, Alberto

    2009-01-01

    The dynamical behaviour of a set of gold microbeams affected by residual stress has been studied. Experimental frequency shift curves were obtained by increasing the dc voltage applied to the specimens. Comparison with different analytical and numerical models has been carried out in order to identify both analytical and finite element models in the presence of residual stress. Residual strain and stress, due to the fabrication process, have been widely reported in the literature in both out-of-plane microcantilevers and clamped–clamped microbeams by using mainly the value of pull-in voltage and static deflection data. In the case of a microcantilever, an accurate modelling includes the effect of the initial curvature due to microfabrication. In double-clamped microbeams, a pre-load applied by tensile stress is considered. A good correspondence is pointed out between measurements and numerical models so that the residual stress effect can be evaluated for different geometrical configurations

  16. Prediction of three-dimensional residual stresses at localised indentations in pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2012-01-01

    Residual stresses are investigated using Finite Element (FE) analyses at localised indentations in pipes with and without internal pressures due to reverse plasticity caused by springback of the surrounding material after removal of the indenter. The indentation loading is applied via rigid 3D short indenters. The effects of the residual indentation depth, internal pressure, indenter size and different material properties on the residual stresses for different pipes have been investigated by carrying out parametric sensitivity studies. In order to predict the residual stresses, empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72. - Highlights: ► A comprehensive elastic–plastic FE analysis of residual stresses caused by localised pipe indentations is presented. ► The effects of residual indentation depth, internal pressure, indenter size and material properties have been studied. ► Empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72.

  17. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    Science.gov (United States)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  18. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    Science.gov (United States)

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  19. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    Directory of Open Access Journals (Sweden)

    Raymond Tojo Radimy

    2013-01-01

    Full Text Available The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  20. Residual and operating stresses in welded Alloy 600 penetrations

    International Nuclear Information System (INIS)

    Hunt, E.S.; Gross, D.J.; Pathania, R.

    1995-01-01

    An elastic-plastic finite element model has been developed for calculating residual and operating stresses in Alloy 600 penetrations which are installed in pressure vessel shells by J-groove welds. The welding process is simulated by multiple passes of heat input with heat transfer into the adjacent parts during welding and cooling. Analysis results are presented for CRDM nozzles, pressurizer instrument nozzles and pressurizer heater sleeves. The effect of several key variables such as nozzle material yield strength, angle of the nozzle relative to the vessel shell, weld size, presence of counterbores, etc. are explored. Results of the modelling are correlated with field and laboratory data. Application of the stress analysis results to PWSCC predictive modeling is discussed. (author). 6 refs, 12 figs, 2 tabs

  1. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  2. The significance of residual stresses in relation to the integrity of LWR pressure vessels

    International Nuclear Information System (INIS)

    Lidbury, D.P.G.

    1984-01-01

    The level and distribution of residual stresses in heavy section weldments and the factors affecting their relaxation with post-weld heat treatment (PWHT) are discussed; residual stresses are also considered in relation to the deposition of austenitic strip cladding and repair welding. A brief survey is made of currently available methods of measuring surface and sub-surface residual stresses in heavy section weldments; the effects of compressive residual stresses on the detection and sizing of planar defects are similarly considered. Available fracture mechanics methodologies with the capability of evaluation defect significance in the presence of residual and other secondary stresses are reviewed in some detail. On-going experimental investigations of the effects of residual stresses on structural integrity are also described. Following a general discussion, the desirability of internationally agreed Codes and Methods for assessing defects in the presence of residual and other self-limiting stresses is pointed out. It is argued that before such agreement could be achieved, however, further work is necessary, and a number of recommendations are given. (author)

  3. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  4. Analysis of residual stress relief mechanisms in post-weld heat treatment

    International Nuclear Information System (INIS)

    Dong, Pingsha; Song, Shaopin; Zhang, Jinmiao

    2014-01-01

    This paper presents a recent study on weld residual stress relief mechanisms associated with furnace-based uniform post-weld heat treatment (PWHT). Both finite element and analytical methods are used to quantitatively examine how plastic deformation and creep relaxation contribute to residual stress relief process at different stages of PWHT process. The key contribution of this work to an improved understanding of furnace based uniform PWHT can be summarized as follows: (1)Plastic deformation induced stress relief during PWHT can be analytically expressed by the change in material elastic deformation capacity (or elastic deformation limit) measured in terms of material yield strength to Young's modulus ratio, which has a rather limited role in overall residual stress relief during furnace based uniform PWHT. (2)The most dominant stress relief mechanism is creep strain induced stress relaxation, as expected. However, a rapid creep strain development accompanied by a rapid residual stress reduction during heating stage before reaching PWHT temperature is shown to contribute to most of the stress relief seen in overall PWHT process, suggesting PWHT hold time can be significantly reduced as far as residual stress relief is concerned. (3)A simple engineering scheme for estimating residual stress reduction is proposed based on this study by relating material type, PWHT temperature, and component wall thickness. - Highlights: • The paper clarified effects of plastic deformation and creep relaxation on weld residual stress relief during uniform PWHT. • Creep strain development is far more important than plastic strain, mostly completed even before hold time starts. • Plastic strain development is insignificant and be analytically described by a material elastic deformation capacity parameter. • An engineering estimation scheme is proposed for determining residual stress reduction resulted from furnace based PWHT

  5. Relation between psi-splitting and microscopic residual shear stresses in x-ray stress measurement on uni-directionally deformed layers

    International Nuclear Information System (INIS)

    Hanabusa, Takao; Fujiwara, Haruo

    1982-01-01

    The psi-splitting behaviors were investigated for the ground and the milled surface layers of both iron and high speed steel in order to find out the relation among microscopic residual shear stresses. For the high speed steel, the X-ray elastic constants and the residual strains were measured on the carbide phase as well as on the matrix phase. It was clarified that the psi-splitting was caused by a combination of the selective nature of X-ray diffractions and the microscopic residual shear stresses within the interior of cells and the carbide particles. The volume fraction occupied by the cell walls and the residual shear stresses sustained by them were estimated from the equilibrium condition of the microscopic residual shear stresses. The distributions of residual stresses over the deformed layers indicate that the thermal effect is dominant in grinding and the mechanical effect is dominant in milling for forming residual stresses. (author)

  6. Measurement of residual stress in plasma-sprayed composite coatings with graded and uniform compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S.

    1999-10-01

    Residual stresses in plasma sprayed composite coatings were studied experimentally by both curvature and neutron diffraction measurements. Graded and uniform composite coatings, consisting of nickel + alumina and NiCrAlY + yttria-stabilized zirconia, were investigated. This paper briefly summarizes our recent work dealing with the effects of coating thickness, composition, and material properties on the evolution of residual stresses in coatings. Analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the thermal mismatch stress plays a dominant role in the ceramic phase, whereas the stress in the metallic phase is mostly dominated by quenching stress. The residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. Through-thickness stress profiles in graded coatings were determined with high spatial resolution by the curvature method, and determination of the stress in each separate phase of a composite was made by neutron diffraction. (orig.) 14 refs.

  7. Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Inst. for Mathematical Sciences; Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1998-12-15

    Residual stresses in plasma-sprayed coatings were studied by three experimental techniques: curvature measurements, neutron diffraction and X-ray diffraction. Two distinct material classes were investigated: (1) single-material coatings (molybdenum) and (2) bi-material composites (nickel+alumina and NiCrAlY+yttria-stabilized zirconia), with and without graded layers. This paper deals with the effects of coating thickness and material properties on the evolution of residual stresses as a function of composition and thickness in both homogeneous and graded coatings. Mathematical analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the quenching stress plays a dominant role in the metallic phase, whereas the stress in the ceramic phase is mostly dominated by thermal mismatch. The respective thermal expansion coefficients and mechanical properties are the most important factors determining the stress sign and magnitude. The three residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. The most noteworthy outcomes are the determination of the through-thickness stress profile in graded coatings with high spatial resolution (curvature method) and determination of stress in each phase of a composite separately (neutron diffraction). (orig.) 25 refs.

  8. Residual stress in ion implanted titanium nitride studied by parallel beam glancing incidence x-ray diffraction

    International Nuclear Information System (INIS)

    Geist, D.E.; Perry, A.J.; Treglio, J.R.; Valvoda, V.; Rafaja, D.

    1995-01-01

    Ion implantation is known to increase the lifetime of cutting tools. Current theories are the increase in lifetime is caused by an increase in the residual stress, or by work hardening of the surface associated with the implantation. In this work the effect of ion implantation on the residual stress in titanium nitride coatings made by the standard industrial methods of chemical and physical vapor deposition (CVD and PVD) is studied. It is found in the as-received condition (unimplanted), the residual stress levels are near zero for CVD materials and highly compressive, of the order of 6 GPa, for PVD materials. Ion implantation has no effect on the residual stress in the coatings made by CVD. Nitrogen does increase the compressive residual stress by some 10% in the near surface regions of PVD coatings, while nickel-titanium dual metal ion implantation does not have any effect. It appears that the lifetime increase is not associated with residual stress effects

  9. Type I and type II residual stress in iron meteorites determined by neutron diffraction measurements

    Science.gov (United States)

    Caporali, Stefano; Pratesi, Giovanni; Kabra, Saurabh; Grazzi, Francesco

    2018-04-01

    In this work we present a preliminary investigation by means of neutron diffraction experiment to determine the residual stress state in three different iron meteorites (Chinga, Sikhote Alin and Nantan). Because of the very peculiar microstructural characteristic of this class of samples, all the systematic effects related to the measuring procedure - such as crystallite size and composition - were taken into account and a clear differentiation in the statistical distribution of residual stress in coarse and fine grained meteorites were highlighted. Moreover, the residual stress state was statistically analysed in three orthogonal directions finding evidence of the existence of both type I and type II residual stress components. Finally, the application of von Mises approach allowed to determine the distribution of type II stress.

  10. Development of residual stress analysis procedure for fitness-for-service assessment of welded structure

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Jin, Tae Eun; Dong, P.; Prager, M.

    2003-01-01

    In this study, a state of art review of existing residual stress analysis techniques and representative solutions is presented in order to develop the residual stress analysis procedure for Fitness-For-Service(FFS) assessment of welded structure. Critical issues associated with existing residual stress solutions and their treatments in performing FFS are discussed. It should be recognized that detailed residual stress evolution is an extremely complicated phenomenon that typically involves material-specific thermomechanical/metallurgical response, welding process physics, and structural interactions within a component being welded. As a result, computational procedures can vary significantly from highly complicated numerical techniques intended only to elucidate a small part of the process physics to cost-effective procedures that are deemed adequate for capturing some of the important features in a final residual stress distribution. Residual stress analysis procedure for FFS purposes belongs to the latter category. With this in mind, both residual stress analysis techniques and their adequacy for FFS are assessed based on both literature data and analyses performed in this investigation

  11. Residual stress improved by water jet peening using cavitation for small-diameter pipe inner surfaces

    International Nuclear Information System (INIS)

    Yasuo, Nakamura; Toshizo, Ohya; Koji, Okimura

    2001-01-01

    As one of degradation conditions on components used in water, the overlapping effect of environment, material and stress might cause stress corrosion cracking (SCC). Especially, for the tensile residual stress produced by welding, it is particularly effective to reduce the tensile residual stress on the material surface to prevent SCC. In this paper, the residual stress improvement method using cavitation impact generated by a water jet, called Water Jet Peening (WJP), has been developed as the maintenance technology for the inner surfaces of small-diameter Ni-Cr-Fe alloy (Alloy 600) pipes. As the results, by WJP for the inner surface of Alloy 600 pipe (inner diameter; approximately 10-15 mm), we confirmed that the compressive stress generated within the range from the surface to the inner part about 0.5 mm deep and took a maximum value about 350 MPa on the surface. (author)

  12. Proposed residual stress model for roller bent wide flange sections

    NARCIS (Netherlands)

    Spoorenberg, R.C.; Snijder, H.H.; Hoenderkamp, J.C.D.

    2011-01-01

    The manufacturing process of structural wide flange steel sections introduces residual stresses in the material. These stresses due to hot-rolling or welding influence the inelastic buckling response of structural steel members and need to be taken into account in the design. Based on experimental

  13. Residual stresses in non-symmetrical carbon-epoxy laminates

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Akkerman, Remko; Lamers, E.A.D.; Martin, M.J.; Hahn, H.T.

    2003-01-01

    The curvature of unsymmetrical [0/90] laminates moulded from AS4/8552 uni-directional tape has been measured. A linear thermoelastic approach has been applied to predict the related residual stress state before demoulding, giving an estimate of the stress induced by polymerisation strain. The

  14. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking

    Science.gov (United States)

    2014-03-01

    University Press, 2009, pp. 820–824. [30] S. Kou, Welding Metallurgy , 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc., 2003. [31] M. N.James et al...around welds in aluminum ship structures both in the laboratory and in the field. Tensile residual stresses are often generated during welding and, in...mitigate and even reverse these tensile residual stresses. This research uses x-ray diffraction to measure residual stresses around welds in AA5456 before

  15. On machine surface to the unit event causing residual stress

    International Nuclear Information System (INIS)

    Arunachalama, R.M.; Mannanb, M.A.; Spowageca, A.

    2005-01-01

    Integrity and reduce overall costs. Within the framework of surface integrity investigations, special emphasis is given to the measurement of residual stresses because they contribute directly to premature failure of components. Since the highest residual stresses are to be found in surface layers, these deserve special attention when dealing with dynamically, heavily loaded machine parts such as gas turbine components used in aero engines. Of the many techniques available for the measurement of residual stresses, the most highly developed and widely used non-destructive method is based on X-ray diffraction (XRD). However, it is not possible to use this technique for inspection of all the components, since it is time consuming, complicated as well as expensive. In this paper, a method is being proposed that augments the XRD method but at the same time capable of inspecting all the components. A non-destructive, visual inspection technique has been developed that can correlate the characteristic features on the surface to the unit event causing the residual stress and the type of residual stress generated on the machined surface. Pictures of the machined surfaces have been taken using a digital video microscope at a magnification of 500 and the surface feature correlated to the unit event causing the residual stress. Sharp and well defined long grooves indicate that the plastic deformation is dominated by a mechanical unit event while appearance of streaks and small areas of smeared material indicate that the plastic deformation is dominated by a thermal unit event. These trends have been confirmed by measuring the residual stresses using XRD. The proposed technique is an attempt at establishing a simple methodology that would be useful to industries manufacturing aerospace and other components that require good surface integrity. (Author)

  16. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Jong [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Kim, Daeyong, E-mail: daeyong@kims.re.kr [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam [Department of Materials Science and Engineering and RIAM, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.

  17. Residual stress and its effect on the mechanical properties of Y-doped Mg alloy fabricated via back-pressure assisted equal channel angular pressing (ECAP-BP)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jianghua, E-mail: j_shen@live.cn [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Gärtnerová, Viera [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the ASCR, Na Slovance 2, CZ – 182 21, Prague 8 (Czech Republic); Kecskes, Laszlo J. [US Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069 (United States); Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Jäger, Aleš, E-mail: jager@fzu.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the ASCR, Na Slovance 2, CZ – 182 21, Prague 8 (Czech Republic); Wei, Qiuming [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2016-07-04

    In this study, pure magnesium (Mg) and Mg-0.6 wt% yttrium (Y) binary alloy were fabricated via casting followed by room temperature equal channel angular pressing (ECAP) using an applied back pressure (BP). Microstructural examination after ECAP-BP revealed a fine-grained Mg-Y alloy with a high residual stress level, whereas, the pure Mg exhibited a well-recrystallized microstructure with uniform and equiaxed grains, but retaining very little residual stress. The Y atoms were present in the Mg matrix as solid solutes and acted as dislocation and grain boundary blockers, thus suppressing dynamic recovery and/or recrystallization during the ECAP process. The Mg-Y alloy had an average grain size of ~400 nm, approximately one order smaller than that of pure Mg. The combination of high residual stress and ultrafine grains of the Mg-Y alloy gave rise to a significant difference in its mechanical behavior from that of the pure Mg, under both quasi-static and dynamic compressive loading.

  18. Diffraction measurements of residual stress in titanium matrix composites

    International Nuclear Information System (INIS)

    James, M.R.; Bourke, M.A.; Goldstone, J.A.; Lawson, A.C.

    1993-01-01

    Metal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of four titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for the behavior in the thin sheet has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state

  19. Residual Stress Evaluation of Weld Inlay Process on Reactor Vessel Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Cho, Hong Seok [KEPCO KPS, Naju (Korea, Republic of)

    2015-10-15

    Weld overlay, weld inlay and stress improvement are mitigation technologies for butt joints. Weld overlay is done on pressurizer nozzles which are the highest potential locations occurring PWSCC due to high temperature in Korea. Reactor vessel nozzles are other big safety concerns for butt joints. Weld overlay and stress improvement should be so difficult to apply to those locations because space is too limited. Weld inlay should be one of the solutions. KEPCO KPS has developed laser welding system and process for reactor nozzles. Welding residual stress analysis is necessary for flaw evaluation. United States nuclear regulatory commission has calculated GTAW(Gas Tungsten Arc Welding) residual stress using ABAQUS. To confirm effectiveness of weld inlay process, welding residual stress analysis was performed. and difference between GTAW and LASER welding process was compared. Evaluation of weld inlay process using ANSYS and ABAQUS is performed. All of the both results are similar. The residual stress generated after weld inlay was on range of 450-500 MPa. Welding residual stresses are differently generated by GTAW and LASER welding. But regardless of welding process type, residual tensile stress is generated on inside surface.

  20. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    Science.gov (United States)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  1. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  2. Prediction of residual stress using explicit finite element method

    Directory of Open Access Journals (Sweden)

    W.A. Siswanto

    2015-12-01

    Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.

  3. FIB-based measurement of local residual stresses on microsystems

    Science.gov (United States)

    Vogel, Dietmar; Sabate, Neus; Gollhardt, Astrid; Keller, Juergen; Auersperg, Juergen; Michel, Bernd

    2006-03-01

    The paper comprises research results obtained for stress determination on micro and nanotechnology components. It meets the concern of controlling stresses introduced to sensors, MEMS and electronics devices during different micromachining processes. The method bases on deformation measurement options made available inside focused ion beam equipment. Removing locally material by ion beam milling existing stresses / residual stresses lead to deformation fields around the milled feature. Digital image correlation techniques are used to extract deformation values from micrographs captured before and after milling. In the paper, two main milling features have been analyzed - through hole and through slit milling. Analytical solutions for stress release fields of in-plane stresses have been derived and compared to respective experimental findings. Their good agreement allows to settle a method for determination of residual stress values, which is demonstrated for thin membranes manufactured by silicon micro technology. Some emphasis is made on the elimination of main error sources for stress determination, like rigid body object displacements and rotations due to drifts of experimental conditions under FIB imaging. In order to illustrate potential application areas of the method residual stress suppression by ion implantation is evaluated by the method and reported here.

  4. Residual Stress Analysis of Aircraft Part using Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun Joo; Seong, Baek Seok; Sim, Cheul Muu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A precise measurement of the residual stress magnitude and distribution is an important factor to evaluate the lifetime or safety of the materials, because the residual stress affects the material properties, such as the strength, fatigue, etc. In the case of a fighter jet, the lifetime and safety of the parts of the landing gear are more important than that of a passenger airplane because of its frequent take offs and landings. In particular in the case of training a fighter jet, a precise evaluation of life time for the parts of the landing gear is strongly required for economic reason. In this study, the residual stress of a part of the landing gear of the training fighter jet which is used to fix the landing gear to the aircraft body was investigated. The part was used for 2000 hours of flight, which corresponds to 10 years. During this period, the fighter jet normally takes off and lands more than 2000 times. These frequent take off and landing can generate residual stress and cause a crack in the part. By measuring the neutron diffraction peaks, we evaluated the residual stress of the landing gear part

  5. Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests

    International Nuclear Information System (INIS)

    Nishikawa, Masaaki; Soyama, Hitoshi

    2011-01-01

    Highlights: → The sensitivity to residual stress was improved by selecting the depth parameter. → Residual stress could be obtained while determining the effect of unknown parameters. → The estimated residual stress agreed well with those of X-ray diffraction. -- Abstract: The present study proposed a method to evaluate the equibiaxial compressive residual stress of a metal surface by means of a depth-sensing indentation method using a spherical indenter. Inverse analysis using the elastic-plastic finite-element model for an indentation test was established to evaluate residual stress from the indentation load-depth curve. The proposed inverse analysis utilizes two indentation test results for a reference specimen whose residual stress is already known and for a target specimen whose residual stress is unknown, in order to exclude the effect of other unknown mechanical properties, such as Young's modulus and yield stress. Residual stress estimated by using the indentation method is almost identical to that measured by X-ray diffraction for indentation loads of 0.49-0.98 N. Therefore, it can be concluded that the proposed method can effectively evaluate residual stress on metal surface.

  6. Analysis of residual stresses in welded joints

    International Nuclear Information System (INIS)

    Lemos, F.L. de.

    1984-01-01

    The study of two stress measurements techniques is presented showing experimental results that allows to evaluate its reliability. These two methods are 'The Center Hole Drilling Method' and 'The Overcoring' and they are considered semi-destructive methods. (E.G.) [pt

  7. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  8. Residual stress measurements by means of neutron diffraction

    International Nuclear Information System (INIS)

    Pintschovius, L.; Jung, V.; Macherauch, E.; Voehringer, O.

    1983-01-01

    A new method for the analysis of multiaxial residual stress states is presented, which is based on high resolution neutron diffraction. It is analogous to X-ray stress analysis, but the use of neutrons instead of X-rays allows the analysis of the stress distributions also in the interior of technical components in a non-destructive way. To prove the feasibility of the method, investigations of the loading stress distributions of an aluminium bar subjected to purely elastic bending were performed. Limiting factors due to the volume of the internal probe region and the sample thickness are discussed. Complete neutron residual stress analyses were carried out for a plastically deformed bending bar and a transformation-free water-quenched steel cylinder. The results are in fairly good agreement with theoretical expectations and with X-ray control measurements at the surface of the objects. (Auth.)

  9. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  10. Comparison of welding induced residual stresses austenitic and ferritic steel weld joints

    International Nuclear Information System (INIS)

    Rajkumar, K.V.; Arun Kumar, S.; Mahadevan, S.; Manojkumar, R.; Rao, B. Purna Chandra; Albert, Shaju K.; Murugan, S.

    2015-01-01

    X-ray diffraction (XRD) is a well established technique for measurement of residual stresses in components and is being widely used. In XRD technique, the distance between the crystallographic planes (d spacing) is measured from peak position (2è) at various ø angles, where ø is the angle between the normal to the sample and the bisector of the incident and diffracted beam. From the slope of sin2ø vs. d spacing plot, the residual stresses are arrived by assuming a plane stress model. Welding induced residual stresses is of high importance as it is a major cause of failure in components. Surface compressive stresses improve the fatigue strength, whereas tensile residual stresses tend to decrease the fatigue strength. The present study compares the residual stresses that develop in 3 mm thick SS 316 and P91 TIG weld joints using the XRD technique. This study is aimed at understanding the influence of shrinkage during cooling and the effect of phase transformation induced volume changes on residual stress development in these two steels. While the first effect is predominant in the SS 316 weld, both the effects are present in the P91 welds. Stress measurements on SS 316 and P91 were carried out using Cr Kâ (λ-2.0840 Å) and Cr Ká (λ-2.2896 Å) radiations respectively. Typical 'M' type stress profile was observed across the weld centre line in both the welds. The variation and similarities between the longitudinal stress profiles observed in these two weld joints would be discussed. (author)

  11. Characterization of residual stresses generated during inhomogeneous plastic deformation

    DEFF Research Database (Denmark)

    Lorentzen, T.; Faurholdt, T.; Clausen, B.

    1998-01-01

    Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes...

  12. Residual stresses in 2 1/4Cr1Mo welds

    International Nuclear Information System (INIS)

    Fidler, R.; Jerram, K.

    1978-01-01

    Two separate investigations, initiated in an attempt to explain the large amount of residual stress scatter previously observed in the weld metal of eighteen nominally identical thick-section 2 1/4Cr1Mo butt welds, are described in this paper. The first examined the detailed surface residual stress distributions in 2 1/4Cr1Mo manual arc circumferential butt welds in 80mm and 100mm thick 1/2Cr1/2Mo1/4V steam pipe. High residual stresses were found in the regions of overlap between adjacent weld beads, with low values in virgin weld metal. The second utilised single pass manual metal arc bead-in-groove welds to investigate the effects of preheat and weld metal composition on weld metal residual stresses. In four weld metals, mild steel, 1/2Cr1/2Mo1/4V, 1Cr1/2Mo, and 2 1/4Cr1Mo, the residual stresses were very similar, becoming less tensile (or more compressive) with increase of preheat, while the residual stresses in the fifth weld metal (12Cr) were significantly different, being compressive and less affected by preheat. In both investigations the effects have been described in terms of the basic metallurgical phenomena occurring in the weld metal. (author)

  13. Residual stress evaluation by neutron and synchrotron radiation

    International Nuclear Information System (INIS)

    Lodini, A.

    2000-01-01

    This lecture is dedicated to the residual stress evaluation using neutron and X ray synchrotron radiation. Residual stress evaluation is an important step for the improvement or the performance of materials, the control of the deformation of the components and the understanding of industrial process. In general, residual stress has various origins: mechanical, thermal, thermomechanical or thermochemical. In general, these residual stresses are caused by plastic deformation, or some source of local incompatibilities and are generated by three fundamental physical origins: plastic flow, volume change and thermal dilatation. These incompatibilities are compensated for partly by the elastic deformation that generates some internal stresses. In the solid, these local incompatibilities are caused by crystal defects. The exact origin of a stress is going to depend on the scale of observation. A classification of the residual stresses in three orders, related to the scale on which one considers materials, is proposed. The diffraction method for determination of macrostresses is based on the measurement of interplanar spacing for various direction in a diffraction experiment. Different examples are proposed. Polycrystalline grains or composite have different physical and elastic properties hence the stress for a particular grains or phase differs from the average value (value of macrostress). This difference is defined as the second order stress. The second order stresses occur because of small scale anisotropy or inhomogeneity in the material : for example, due to mismatch in coefficient of thermal expansion, elastic constants or plastic flow. However, the second order stress averaged over all grains or phase is not equal to zero and this average is called the mismatch stress. Using the experimental macro stress it is possible to calculate the mismatch stresses. More recently, this technique of diffraction has also been applied for the determination of microstrain (third

  14. Benchmark on residual stress modeling in fracture mechanics assessment

    International Nuclear Information System (INIS)

    Marie, S.; Deschanels, H.; Chapuliot, S.; Le Delliou, P.

    2014-01-01

    In the frame of development in analytical defect assessment methods for the RSE-M and RCC-MRx codes, new work on the consideration of residual stresses is initiated by AREVA, CEA and EDF. The first step of this work is the realization of a database of F.E. reference cases. To validate assumptions and develop a good practice guideline for the consideration of residual stresses in finite element calculations, a benchmark between AREVA, CEA and EDF is going-on. A first application presented in this paper focuses on the analysis of the crack initiation of aged duplex stainless steel pipes submitted to an increasing pressure loading. Residual stresses are related to pipe fabrication process and act as shell bending condition. Two tests were performed: the first with an internal longitudinal semi-elliptical crack and the second with an external crack. The analysis first focuses on the ability to accurately estimate the measured pressure at the crack initiation of the two tests. For that purpose, the comparison of results obtained with different methods of taking into account the residual stresses (i.e. thermal fields or initial strain field). It then validates post-treatment procedures for J or G determination, and finally compares of the results obtained by the different partners. It is then shown that the numerical models can integrate properly the impact of residual stresses on the crack initiation pressure. Then, an excellent agreement is obtained between the different numerical evaluations of G provided by the participants to the benchmark so that best practice and reference F.E. solutions for residual stresses consideration can be provided based on that work. (authors)

  15. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Silva, Luiz L.; Mansur, Tanius R., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: silvall@cdtn.br, E-mail: tanius@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil). Servico de Integridade Estrutural; Martins, Ketsia S., E-mail: ketshinoda@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Nelo Horizonte (Brazil). Departamento de Engenharia Metalurgica

    2015-07-01

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  16. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Rabello, Emerson G.; Silva, Luiz L.; Mansur, Tanius R.; Martins, Ketsia S.

    2015-01-01

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  17. Residual stresses and critical diameter in vitreous matrix materials

    International Nuclear Information System (INIS)

    Mastelaro, Valmor R.; Zanotto, Edgar D.

    1995-01-01

    The present study was undertaken to test the validity of existing models for: i) the residual internal stresses which arise due to thermal and elastic mismatch in duplex systems, and ii) the critical particle diameter for spontaneous cracking. Partially crystallized 1,07 Na 2 O-2 Ca O-3 Si O 2 - 6% P 2 O 5 glasses were studied. The experimental residual stress was in excellent agreement with the calculated value, however, the critical particle diameter, estimated by an energy balance approach, was more than ten times smaller than the experimental value. This discrepancy indicates that the energy model is not applicable in this case. (author)

  18. On Taylor-Series Approximations of Residual Stress

    Science.gov (United States)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  19. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  20. The maximum possible stress intensity factor for a crack in an unknown residual stress field

    International Nuclear Information System (INIS)

    Coules, H.E.; Smith, D.J.

    2015-01-01

    Residual and thermal stress fields in engineering components can act on cracks and structural flaws, promoting or inhibiting fracture. However, these stresses are limited in magnitude by the ability of materials to sustain them elastically. As a consequence, the stress intensity factor which can be applied to a given defect by a self-equilibrating stress field is also limited. We propose a simple weight function method for determining the maximum stress intensity factor which can occur for a given crack or defect in a one-dimensional self-equilibrating stress field, i.e. an upper bound for the residual stress contribution to K I . This can be used for analysing structures containing defects and subject to residual stress without any information about the actual stress field which exists in the structure being analysed. A number of examples are given, including long radial cracks and fully-circumferential cracks in thick-walled hollow cylinders containing self-equilibrating stresses. - Highlights: • An upper limit to the contribution of residual stress to stress intensity factor. • The maximum K I for self-equilibrating stresses in several geometries is calculated. • A weight function method can determine this maximum for 1-dimensional stress fields. • Simple MATLAB scripts for calculating maximum K I provided as supplementary material.

  1. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Science.gov (United States)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  2. Process induced residual stresses and distortions in pultrusion

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Nielsen, Michael Wenani

    2013-01-01

    In the present study, a coupled 3D transient Eulerian thermo-chemical analysis together with a 2D plane strain Lagrangian mechanical analysis of the pultrusion process, which has not been considered until now, is carried out. The development of the process induced residual stresses and strains...... together with the distortions are predicted during the pultrusion in which the cure hardening instantaneous linear elastic (CHILE) approach is implemented. At the end of the process, tension stresses prevail for the inner region of the composite since the curing rate is higher here as compared to the outer...... regions where compression stresses are obtained. The separation between the heating die and the part due to shrinkage is also investigated using a mechanical contact formulation at the die-part interface. The proposed approach is found to be efficient and fast for the calculation of the residual stresses...

  3. Residual stresses in a weldment of pressure vessel steel

    International Nuclear Information System (INIS)

    Gott, K.E.

    1978-01-01

    A study was made of the distribution of residual stresses around a typical weld from a light water reactor pressure vessel by an X-ray double-exposure camera technique. So that the magnitude, sign, and distribution of the residual stresses were as similar as possible to those found in practice, a wide, full-thickness specimen of A533B Cl 1 steel containing a submerged-arc weld was stress-relief annealed. To obtain a three-dimensional distribution of the stresses the specimen was examined at different levels through the thickness. Following the removal of material by milling, the specimen surface was electropolished to free it from cold work. Corrections have been made to take into account specimen relaxation. To completely define the original stress system it is desirable also to measure the change in curvature on removing a layer of material. Unless this is done assumptions must be made which complicate the calculations unnecessarily. This became apparent after the experimental work was completed. In the centre of the plate the methods of correction which can be used are sensitive to errors in the measurements. The corrected results show that the dominant residual stress is perpendicular to the weld. It is positive at the surfaces and negative in the centre of the plate. The maximum value can reach the yield stress. The residual stresses in the weld metal can locally vary considerably: from 100 to 350N/mm 2 over a distance of 5mm. Such large variations have been found to coincide with the heat-affected zones of the individual weld runs. (author)

  4. X-ray diffraction and measurement of residual stresses

    International Nuclear Information System (INIS)

    Maeder, G.; Lebrun, J.L.; Corcaud, L.

    1977-01-01

    X-ray diffraction technique is a non destructive method for measuring the residual stresses in mechanical parts. This method, called sin 2 PSI method is investigated. It is applied to the measurement of elastic constants in different directions of crystals of Zr alloy (Zircaloy 4) and Ti alloy (TA6V). Stresses in TA6V sheets welded by TIG and electron beam processes are also studied [fr

  5. A Study on the Residual Stress Improvement of PWSCC(Primary Water Stress Corrosion Cracking) in DMW(Dissimilar Metal Weld)

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Kim, Seok Hun; Lee, Seung Gun; Park, Heung Bae

    2010-01-01

    Since 2000s, most of the cracks are found in welds, especially in (DMW) dissimilar metal welds such as pressurizer safety relief nozzle, reactor head penetration, reactor bottom mounted instrumentation (BMI), and reactor nozzles. Even the cracks are revealed as a primary water stress corrosion cracking (PWSCC), it is difficult to find the cracks by current non destructive examination. The PWSCC is occurred by three incident factors, such as susceptible material, environmental corrosive condition, and welding residual stress. If one of the three factors can be erased or decreased, the PWSCC could be prevented. In this study, we performed residual stress analysis for DMW and several residual stress improvement methods. As the preventive methods of PWSCC, we used laser peening(IP) method, inlay weld(IW) method, and induction heating stress improvement(IHSI) method. The effect of residual stress improvement for preventive methods was compared and discussed by finite element modeling and residual stress of repaired DMW

  6. Residual stress in a thick section high strength T-butt weld

    International Nuclear Information System (INIS)

    Pearce, S.V.; Linton, V.M.; Oliver, E.C.

    2008-01-01

    Residual stresses in a structure are generated as a result of the various fabrication and welding processes used to make the component. Being able to quantify these residual stresses is a key step in determining the continuing integrity of a structure in service. In this work, the residual stresses around a high strength, quenched and tempered steel T-butt web to curved plate weld have been measured using neutron strain scanning. The results show that the residual stresses near the weld were dominated by the welding residual stresses, while the stresses further from the weld were dominated by the bending residual stresses. The results suggest that the combination of welding-induced residual stress and significant pre-welding residual stress, as in the case of a thick bent section of plate can significantly alter the residual stress profile from that in a flat plate

  7. Influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2010-01-01

    The influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors has been analyzed under the framework of thermodynamic theory and Fick's second law. A self-consistent diffusion equation involving the coupling effects of residual stress and diffusion-induced stress is developed. Effects of thickness ratio, modulus ratio, diffusivity ratio and residual stress gradient of film and substrate on the curvature of bilayered cantilever are then discussed with the help of finite difference method. Results reveal that the curvature of bilayered cantilever increases with decreasing the diffusivity ratio and modulus ratio of substrate to film at a given time. Case study of the polysilicon/palladium hydrogen sensor has been finally carried out using the above developed bending theory.

  8. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  9. Feasibility of ultrasonic and eddy current methods for measurement of residual stress in shot peened metals

    International Nuclear Information System (INIS)

    Lavrentyev, Anton I.; Stucky, Paul A.; Veronesi, William A.

    2000-01-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to nondestructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper presents preliminary results from a feasibility study examining the use of ultrasonic and eddy current NDE methods for residual stress measurement in components where the stress has been introduced by shot peening. With an ultrasonic method, a variation of ultrasonic surface wave speed with shot peening intensity was measured. Near surface conductivity was measured by eddy current methods. Since the effective penetration depth of both methods employed is inversely related to the excitation frequency, by making measurements at different frequencies, each method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity range of 4C to 16C. The experimental results obtained demonstrate a correlation between peening intensity and Rayleigh wave velocity and between peening intensity and conductivity. The data suggests either of the methods may be suitable, with limitations, for detecting unsatisfactory levels of shot peening. Several factors were found to contribute to the measured responses: surface roughness, near surface plastic deformation (cold work) and residual stress. The contribution of each factor was studied experimentally. The feasibility of residual stress determination from the measured data is discussed

  10. Strength and residual stress of Mg-PSZ after grinding

    NARCIS (Netherlands)

    van den Berg, P.H.J.; With, de G.

    1993-01-01

    The influence of grinding with two grinding wheels, differing mainly in diamond-grain size, on the properties of MgO-partially stabilized ZrO2 ceramics (Mg-PSZ) was examd. The residual stress, the amt. of monoclinic zirconia, and the strength of the material were detd. From these measurements, depth

  11. Residual stresses in multilayer ceramic capacitors: measurement and computation

    NARCIS (Netherlands)

    Toonder, den J.M.J.; Rademaker, C.W.; Hu, C.L.

    2003-01-01

    In this paper, we present a combined experimental and computational study of the thermomechanical reliability of multilayer ceramic capacitors (MLCC's). We focus on residual stresses introduced into the components during the cooling down step of the sintering process. The technique of

  12. Residual stress stability and alternating bending strength of AISI 4140 after shot peening and successive annealing

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde I, Univ. of Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and finest carbides. It will be shown that by short-time annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effect of static strain aging, while minimizing the detrimental effect of thermal residual stress relaxation, which was measured by X-ray diffraction method. Static strain aging effects were also found to be responsible for an increase of the quasi static and cyclic surface yield strengths. (orig.)

  13. X-ray fractography by using synchrotron radiation source. Residual stress distribution just beneath fatigue fracture surface

    International Nuclear Information System (INIS)

    Akita, Koichi; Yoshioka, Yasuo; Suzuki, Hiroshi; Sasaki, Toshihiko

    2000-01-01

    The residual stress distributions just beneath the fatigue fracture surface were measured using synchrotron radiation with three different wavelengths, i.e., three different penetration depths. The residual stress distributions were estimated from three kinds of diffraction data by the following process. First, a temporary residual stress distribution in the depth direction is assumed. Theoretical 2θ-sin 2 ψ diagrams for each wavelength, where each has a different penetration depth, are calculated by the cosψ method developed by one of the authors. The sum total of the differences between the theoretical and experimental values of the diffraction angle in 2θ-sin 2 ψ diagrams is calculated. This total value is minimized by changing the assumed stress distribution by the quasi-Newton optimization method. Finally, optimized 2θ-sin 2 ψ diagrams for each penetration depth and detailed stress distribution are determined. The true surface residual stress is obtained from this stress distribution. No effect of load ratio R (= P min /P max ) on the residual stresses of the fatigue fracture surfaces in low-carbon steels was observed when the sin 2 ψ method was used for stress measurement. However, the residual stresses became higher with increasing R when these were measured by the proposed method. On the basis of this, the stress intensity factor range, ΔK, can be estimated from the residual stress on the fatigue fracture surface. (author)

  14. Residual stress behaviors induced by laser peening along the edge of curved models

    International Nuclear Information System (INIS)

    Im, Jong Bin; Grandhi, Ramana V.; Ro, Young Hee

    2012-01-01

    Laser peening (LP) induces high magnitude compressive residual stresses in a small region of a component. The compressive residual stresses cause plastic deformation that is resistant to fatigue fracture. Fatigue cracks are generally nucleated at critical areas, and LP is applied for those regions so as to delay the crack initiation. Many critical regions are located on the edge of the curved portion of structures because of stress concentration effects. Several investigations that are available for straight components may not give meaningful guidelines for peening curved components. Therefore, in this paper, we investigate residual stress behaviors induced by LP along the edge of curved models. Three curved models that have different curvatures are investigated for peening performance. Two types of peening configurations, which are simultaneous corner shot and sequential corner shots, are considered in order to obtain compressive residual stresses along an edge. LP simulations of multiple shots are performed to identify overlapping effects on the edge portion of a curved model. In addition, the uncertainty calculation of residual stress induced by LP considering laser pulse duration is performed

  15. Optical residual stress measurement in TFT-LCD panels

    Science.gov (United States)

    Wang, Wei-Chung; Sung, Po-Chi

    2017-06-01

    The residual stress of the glass substrate might be one of causes to produce the non-uniform light distribution defect, i.e. Mura, in thin film transistor-liquid crystal display (TFT-LCD) panels. Glass is a birefringent material with very low birefringence. Furthermore, the thinner and thinner thickness request from the market makes the traditional photoelasticity almost impossible to measure the residual stresses produced in thin glass plates. Recently, a low-level stress measurement method called transmissivity extremities theory of photoelasticity (TEToP) was successfully developed to measure the residual stress in glass plate. Besides, to measure the stress of the glass plate in the TFT-LCD panel whose rear surface may has different kinds of coatings, an advanced reflection photoelasticity was also developed. In this paper, three commercially available glass plates with 0.33mm nominal thickness and three glass circular disks with different coatings were inspected to verify the feasibility of the TEToP and the advanced reflection photoelasticity, respectively.

  16. Residual Stress Analysis of Severe Plastic Deformed Materials using the Finite Element Method and the Neutron Diffraction Method

    International Nuclear Information System (INIS)

    Kang, Mi Hyun; Seong, Back Suck; Kim, Hyoung Seop

    2009-01-01

    Severe plastic deformation (SPD) is one of the most promising top-down techniques, moving towards industrialization to fabricate bulk ultrafine grain materials. The strain distribution and deformation behavior during the ECAP (equal channel angular pressing), influenced by tool angles, friction and material behavior, was studied through experimental and numerical analyses. The residual stress of work piece which was straight before ECAP produces many serious problems in the next processing e.g. input of the work piece for the next ECAP. The bent work piece needs additional straightening or surface polishing even if the amount of bending is small, and residual stress need to be released before service applications. Residual stress, particularly tensile residual stress can be a very important factor in affecting the reliability and integrity of working parts. The formation of tensile residual stress may result in initiation of fatigue cracks, stress corrosion cracking, or other types of fracture. Hence, residual stress and resulting bending need to be controlled during ECAP. Thus, in current study the bending behavior and the residual stress of the work piece in ECAP are analyzed through experimental and finite element analyses by considering the effects of material, geometric, and processing parameters individually. The stress states in the ECAP processed work piece were measured by the non-destructive way using neutron diffraction. Efforts were made to suggest the alternate routes to reduce the residual stress and bending of work piece in ECAP

  17. Polychlorinated Biphenyls (PCB) Residue Effects Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The PCB Residue Effects (PCBRes) Database was developed to assist scientists and risk assessors in correlating PCB and dioxin-like compound residues with toxic...

  18. Residual Stresses in SAVY 4000 and Hagan Container Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tokash, Justin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Forsyth, Robert Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyer, Holden Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    Chloride-induced stress corrosion cracking (SCC) has been investigated as a potential failure mechanism for the SAVY 4000 and the Hagan containers used to store plutonium-bearing materials at Los Alamos National Laboratory. This report discusses the regions of the container bodies most susceptible to SCC and the magnitude of the residual stresses in those regions. Boiling MgCl2 testing indicated that for both containers the region near the top weld was most susceptible to SCC. The Hagan showed through wall cracking after 22-24 hours of exposure both parallel (axial stresses) and perpendicular (hoop stresses) to the weld. The SAVY 4000 container showed significant cracking above and below the weld after 47 hours of exposure but there was no visual evidence of a through wall crack and the cracks did not leak water. Two through wall holes formed in the bottom of the SAVY 4000 container after 44-46 hours of exposure. For both containers, average “through wall” residual stresses were determined from hole drilling data 4 mm below the weld. In the Hagan body, average tensile hoop stresses were 194 MPa and average compressive axial stresses were -120 MPa. In the SAVY 4000 body, average compressive hoop stresses were 11 MPa and average tensile axial stresses were 25 MPa. Results suggest that because the Hagan container exhibited through wall cracking in a shorter time in boiling MgCl2 and had the higher average tensile stress, 194 MPa hoop stress, it is more susceptible to SCC than the SAVY 4000 container.

  19. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Estimation of stress intensity factors for circumferential cracked pipes under welding residual stress filed

    International Nuclear Information System (INIS)

    Oh, Chang Young; Kim, Yun Jae; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum

    2012-01-01

    Recently, stress corrosion cracking(SCC) have been found in dissimilar metal welds of nozzles in some pressurized water reactors and on low carbon stainless steel piping systems of boiling water reactors. The important factor of SCC is the residual stress field caused by weld. For the evaluation of crack growth analysis due to SCC, stress intensity factor under a residual stress field should be estimated. Several solutions for stress intensity factor under residual stress field were recommended in flaw assessment codes such as the American Society of Mechanical Engineers (ASME) Section XI, R6, American Petroleum Institute (API579). Some relevant works have been studied. Dong et al. evaluated stress intensity factors in welded structures. Miyazaki et al. estimated stress intensity factors of surface crack in simple stress fields. This paper presents a simple method to estimate stress intensity factors in welding residual stress field. For general application, results of structure integrity assessment codes KI solutions were compared Finite element analyses of welding simulation and cracked pipes are described. Comparison results of KI solutions and proposed simplified solution are presented in the works

  1. Coping with residual stresses in the integrity assessment of an as-welded repair

    International Nuclear Information System (INIS)

    Knee, N.

    1989-11-01

    One of a series of large scale tests on pressure vessels is described, in which a defect was deliberately introduced into an as-welded (i.e. not stress relieved) repair weld. The behaviour of the vessel during pressurization to failure was carefully monitored and the actual performance compared with theoretical predictions. The influence of residual welding stresses on ductile crack growth from pre-existing defects is discussed in the light of the results of this test and of previous tests in the series. The tests have confirmed that residual stresses can exert a significant effect on the growth of fatigue cracks. However, in tests for which the failure mechanism is predominantly controlled by collapse of the remaining ligament, the development of plasticity during pressurization to failure will tend to remove any local residual stresses. (author)

  2. Reduction of tensile residual stresses during the drawing process of tungsten wires

    International Nuclear Information System (INIS)

    Rodriguez Ripoll, Manel; Weygand, Sabine M.; Riedel, Hermann

    2010-01-01

    Tungsten wires are commonly used in the lighting industry as filaments for lamps. During the drawing process, the inhomogeneous deformation imparted by the drawing die causes tensile residual stresses at the wire surface in circumferential direction. These stresses have a detrimental effect for the wire because they are responsible for driving longitudinal cracks, known as splits. This work proposes two methods for reducing the residual stresses during wire drawing, namely applying an advanced die geometry and performing an inexpensive post-drawing treatment based on targeted bending operations. These two methods are analyzed with finite element simulations using material parameters obtained by mechanical tests on tungsten wires at different temperatures as input data. The computed results predict a substantial reduction of the circumferential residual stresses, thus reducing the risk of splitting.

  3. Application of laser interferometry for assessment of surface residual stress by determination of stress-free state

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il; Lee, Nak Kyu; Choi, Tae Hoon; Na, Kyoung Hoan

    2003-01-01

    The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using Electronic Speckle Pattern Interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 μm Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the X-Ray Diffractometer (XRD) for the verification of above residual stress results by ESPI

  4. Sensitivity Analysis for Residual Stress on DVI (Direct Vessel Injection) Nozzle Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byeong Wook; Chung, Sung Ho; Lee, Jung Hun; Kim, Oak Sug [DOOSAN Heavy Industries and Construction Co. LTD, Reactor Design Team, 555 Guygok-dong Changwon (Korea, Republic of)

    2008-07-01

    Generally, any welding process produces high compressive or tensile residual stresses in the heat affected zone depending on the method, shape and procedures of the weldment. In particular, the tensile residual stresses have a considerable effect on the material strength, fatigue strength and corrosion cracking. For this reason, it is important that some knowledge of the internal stress state be deduced either from measurements or from modeling predictions. In this study, the residual stresses after a multi-pass welding process for DVI nozzle welding joint were evaluated by a numerical simulation method. The welding joint considered three weld joint angles of 40 deg., 6 deg. and 2 deg. Computations were made using a 2-D finite element model based on the simulation of cooling from the heat treatment temperature to room temperature with two cooling conditions at the inside surface. In these results, it is shown that the residual stress increased at the inner surface, when water cooling was applied to the inner surface, and axial compressive residual stress increased at the inner surface when the joint angle was decreased. (authors)

  5. Sensitivity Analysis for Residual Stress on DVI (Direct Vessel Injection) Nozzle Welded Joint

    International Nuclear Information System (INIS)

    Noh, Byeong Wook; Chung, Sung Ho; Lee, Jung Hun; Kim, Oak Sug

    2008-01-01

    Generally, any welding process produces high compressive or tensile residual stresses in the heat affected zone depending on the method, shape and procedures of the weldment. In particular, the tensile residual stresses have a considerable effect on the material strength, fatigue strength and corrosion cracking. For this reason, it is important that some knowledge of the internal stress state be deduced either from measurements or from modeling predictions. In this study, the residual stresses after a multi-pass welding process for DVI nozzle welding joint were evaluated by a numerical simulation method. The welding joint considered three weld joint angles of 40 deg., 6 deg. and 2 deg. Computations were made using a 2-D finite element model based on the simulation of cooling from the heat treatment temperature to room temperature with two cooling conditions at the inside surface. In these results, it is shown that the residual stress increased at the inner surface, when water cooling was applied to the inner surface, and axial compressive residual stress increased at the inner surface when the joint angle was decreased. (authors)

  6. Residual stresses analysis in ball end milling of nickel-based superalloy Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junteng; Zhang, Dinghua; Wu, Baohai; Luo, Ming [Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University (China)

    2017-11-15

    Inconel 718 is widely used in the aviation, space, automotive and biomedical industries because of its outstanding properties. Near-surface residual stresses that are induced by ball end milling in Inconel 718 can be crucial for the performance and service time of the machined parts. In this paper, the influences of cutting conditions, including the use of cutting parameters, cutting fluid and spindle angles, on the residual stresses in the ball end milling process of Inconel 718 alloy were investigated experimentally. X-ray diffraction measurements reveal that residual stress distributions are highly influenced by cutting parameters, especially the depth of cut and cutting speed. The milling operation with cooling induces more compressive stresses trend and the magnitude of the residual stresses increases in the tensile direction with the increase of spindle angles. These cutting induced effects were further discussed with respect to thermal- mechanical coupling theory and some observations made by optical microscopy. From this investigation, it is suggested that the machining process parameters are not the smaller the better for the control of residual stresses in the ball end milling process of Inconel 718. (author)

  7. Residual stress measurement of PMMA by combining drilling-hole with digital speckle correlation method

    Science.gov (United States)

    Yao, X. F.; Xiong, T. C.; Xu, H. M.; Wan, J. P.; Long, G. R.

    2008-11-01

    The residual stresses of the PMMA (polymethyl methacrylate) specimens after being drilled, reamed and polished respectively are investigated using the digital speckle correlation experimental method,. According to the displacement fields around the correlated calculated region, the polynomial curve fitting method is used to obtain the continuous displacement fields, and the strain fields can be obtained from the derivative of the displacement fields. Considering the constitutive equation of the material, the expression of the residual stress can be presented. During the data processing, according to the fitting effect of the data, the calculation region of the correlated speckles and the degree of the polynomial fitting curve is decided. These results show that the maximum stress is at the hole-wall of the drilling hole specimen and with the increasing of the diameter of the drilled hole, the residual stress resulting from the hole drilling increases, whereas the process of reaming and polishing hole can reduce the residual stress. The relative large discrete degree of the residual stress is due to the chip removal ability of the drill bit, the cutting feed of the drill and other various reasons.

  8. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction

    Directory of Open Access Journals (Sweden)

    I.I. Ahmed

    2018-04-01

    Full Text Available The development of residual stresses during fabrication is inevitable and often neglected with dire consequences during the service life of the fabricated components. In this work, the surface residual stress profile following the martensitic stainless steel (MSS pipe welding was investigated with X-ray diffraction technique. The results revealed the presence of residual stresses equilibrated across the weldment zones. Tensile residual stress observed in weld metal was balanced by compressive residual stresses in the parent material on the opposing sides of weld metal. Keywords: Residual stress, Weld, Stainless steel, X-ray, HAZ

  9. A countermeasure for external stress corrosion cracking in piping components by means of residual stress improvement on the outer surface

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Umemoto, Tadahiro

    1988-01-01

    Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)

  10. The influence of texture on residual stress measurements

    International Nuclear Information System (INIS)

    Lima, N.B. de.

    1991-01-01

    A computer program to calculate the orientation distribution function (ODF) from incomplete pole figures has been developed for rolled materials with a cubic structure. This program is based on Bunge's series expansion. The use of incomplete pole figures results in the loss of orthogonality among symmetric spherical harmonic functions and makes it necessary to explicitly evaluate the integrals. The ODF has been used to quantitatively evaluate the influence of texture in determining residual stresses. This has been done by calculating theoretically the strain undergone by each cell as a function of its orientation to residual stress relationship. To test the ODF program, cold rolled Cu and Al specimens were used and to evaluate residual stresses as a function of texture, cold rolled AISI 430 and 324 specimens were used. Simulations have also be presented based on the texture for each of the materials, to verify the nature of the curve d x sin 2 ψ as a function of each stress tensor components. (author)

  11. Residual stresses and fatigue in a duplex stainless steel

    International Nuclear Information System (INIS)

    Johansson, Johan

    1999-01-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  12. Residual stresses and fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  13. Fatique crack propagation in bimetallic welds influence of residual stresses and metallurgical look

    International Nuclear Information System (INIS)

    Zahouane, A.I.

    1988-06-01

    Generally, in nuclear power plants, many components made of austenitic stainless steels are very often replaced by low alloyed steels cladded with stainless steels, mainly for economical reasons. Due to cracks existing at the limit of the two kinds of steel, it is interesting to try to understand how they appear. Residual stresses are generally identified as one of the factors which act to produce these cracks. Measurements of such residual stresses have been performed, using the hole drilling method (drilling of a hole at the center of a gauge roset stuck at the surface of the material). Owing to the obtained results, it is possible to explain the decrease in the crack propagation rate observed, on fatigue crack growth test performed on specimens taken in the transition ferritic/austenitic zone. The stress intensity factor due to the residual stresses is valued by weight function method. It is possible to explain qualitatively the phenomena observed under cyclic loading when using the obtained value of this stress intensity factor. A more quantitative approach based on the use of an efficient stress intensity factor, allow to better describe the effect of residual stresses on the fatigue crack propagation in bimetallic welds [fr

  14. Temperature dependence of residual stress in TiC coated Mo

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Fukutomi, M.; Kamada, K.

    1984-01-01

    The effects of fabrication temperature and heat treatment on the residual stress in TiC coated Mo have been studied by using X-ray diffractometry. TiC coatings on Mo single crystal substrates with (100) and (111) surfaces were carried out with the Activated Reactive Evaporation (ARE) method. It was found that all Mo substrates measured show tensile residual stresses, and their values decrease as the fabrication temperature increases from 300 to 700 0 C. On the other hand, TiC films measured showed compressive residual stresses, for both TiC/Mo(100) and TiC/Mo(111) specimens. These compressive stresses also decreased with increasing the fabrication temperature. The residual stresses measured were higher in TiC/Mo(100) than in TiC/Mo(111). It was found that the compressive stresses in as-grown TiC films change to the tensile stresses after annealing at 1700 0 C for 30 min. The preferred orientations of TiC films were observed to depend on the fabrication temperature. However, no epitaxial growth of TiC films was found as far as the present experiment was concerned. (orig.)

  15. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    Science.gov (United States)

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-06-01

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Residual stress in the first wall coating materials of TiC and TiN for fusion reactor

    International Nuclear Information System (INIS)

    Qiu Shaoyu

    1997-01-01

    Residual stresses measurement in the first wall coating of a fusion reactor of TiC and TiN films by X-ray diffraction 'sin 2 ψ methods' were described. The authors have studied on the effect of conditions of specimen preparation (such as coating method, substrate materials, film thickness and deposition temperature) on the residual stress of TiC and TiN films coated onto Mo, 316LSS and Pocographite by chemical vapor deposition (CVD) and physical vapor deposition (PVD) method. All films prepared in this study were found to have a compressive stresses and the CVD method gave lower residual stress than PVD method. TiC film coated on Mo substrate at 1100 degree C by CVD method showed that residual stress as the film thickness was raised from 14 μm to 60 μm, on the other hand, residual stress by PVD method exhibited a high compressive stresses, this kind of stress was principally the intrinsic stress, and a marked decrease in the residual with raising the deposition temperature (200 degree C∼650 degree C) was demonstrated. Origins of the residual stress were discussed by correlation with differences between thermal expansion coefficients, and also with fabrication methods

  17. Modeling of residual stress state in turning of 304L

    International Nuclear Information System (INIS)

    Valiorgue, F.; Rech, J.; Bergheau, J.M.

    2010-01-01

    Research presented in this paper aims to link machining parameters to residual stress state and helps understanding mechanisms responsible of machined surface properties modifications. The first presented works are based on an experimental campaign. They reproduce the finishing turning operation of 304L and allow observing the residual stress state evolution at the work piece surface and for an affected depth of 0.2 mm for such processes. Then, the finishing turning operation is simulated numerically in order to realize the same sensitivity study to cutting parameters. This simulation is based on an hybrid approach mixing experimental data and numerical simulation. This method allows getting round the classical difficulties of turning simulation by applying equivalent thermo mechanical loadings onto the work piece surface without modeling the material separation phenomena. Moreover the numerical model uses an hardening law taking into account dynamic recrystallization phenomena. (authors)

  18. Neutron diffraction measurements of residual stresses in NPP construction materials

    International Nuclear Information System (INIS)

    Hinca, R.; Bokuchava, G.

    2001-01-01

    Neutron diffraction is one of the most powerful methods for condensed matter studies. This method is used for non-destructive determination of residual stresses in material. The fundamental aspects of neutron diffraction are discussed, together with a brief description of the experimental facility. The principal advantage of using neutrons rather than the more conventional X-rays is the fact that neutron can penetrate deeply (2-4 cm for steel and more than 10 cm for aluminium) into metals to determine internal parameters within the bulk of materials. We present results of measurements residual stresses in NPP construction material - austenitic stainless steel (Cr-18%, Ni-10%, Ti-1%) coated with high-nickel alloy. (authors)

  19. Effect of shot peening treatment in the behavior of residual stress in duplex stainless steel during medium cycle fatigue; Efeito do tratamento de shot peening no comportamento das tensoes residuais em aco inoxidavel duplex durante fadiga de medio ciclo

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Peter D.S.; Rebello, Joao Marcos A. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Fonseca, Maria P. Cindra, E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Escola de Engenharia. Programa de Pos-Graduacao em Engenharia Mecanica

    2010-07-01

    The lifetime of duplex stainless steel parts experiencing cyclic fatigue is directly influenced by the residual stresses present in the ferrite and austenite phases. The motivation for this work was to analyze the behaviour of the residual stresses fields introduced by shot peening treatment in both phases, in the sample surface as in the subsurface layers, in low fatigue cycles, using the X-rays diffraction technique. The results shows that the compressive residual stresses introduced by the shot peening treatment in both phases improved fatigue life of the material. However, the cyclical loads produce partial or total relief in these residual stresses fields. It was verified that the shot peening process induced the formation of microcracks only in the ferrite phase. The largest variations in the total compressive residual stresses fields also occurred in this phase. The samples surfaces were analyzed by scanning electron microscopy. (author)

  20. Structure, microstructure and residual stresses in borided steels

    Czech Academy of Sciences Publication Activity Database

    Pala, Z.; Mušálek, Radek; Kyncl, J.; Harcuba, P.; Stráský, J.; Kolařík, K.

    2013-01-01

    Roč. 20, č. 2 (2013), s. 93-95 ISSN 1211-5894. [Struktura 2013 - Kolokvium Krystalografické společnosti. Češkovice (Blansko), 09.09.2013-13.09.2013] Institutional support: RVO:61389021 Keywords : boriding * surface hardening * iron borides * tooth-shaped microstructure * residual stresses Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.xray.cz/ms/bul2013-2/s6.pdf

  1. INTERFACE DEVICE FOR NONDESTRUCTIVE TESTING OF RESIDUAL SURFACE STRESSES

    Directory of Open Access Journals (Sweden)

    Gennady A. Perepelkin

    2016-01-01

    Full Text Available The paper considers the organization of connection of a personal computer with a device for nondestructive testing of residual surface stresses. The device works is based on the phenomenon of diffraction of ionizing radiation from the crystal lattice near the surface of the crystallites. Proposed software interface to the organization for each type of user: the device developers, administrators, users. Some aspects of the organization of communication microcontroller to a PC via USB-port

  2. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

    Science.gov (United States)

    Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin

    2018-01-01

    Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

  3. Optimum injection pressure of a cavitating jet on introduction of compressive residual stress into stainless steel

    International Nuclear Information System (INIS)

    Soyama, Hitoshi; Nagasaka, Kazuya; Takakuwa, Osamu; Naito, Akima

    2011-01-01

    In order to mitigate stress corrosion cracking of components used for nuclear power plants, introduction of compressive residual stress into sub-surface of the components is an effective maintenance method. The introduction of compressive residual stress using cavitation impact generated by injecting a high speed water jet into water was proposed. Water jet peening is now applying to reduce stress corrosion cracking of shrouds in the nuclear power plants. However, accidental troubles such as dropping off the components and cutting of the pipes by the jet occurred at the maintenance. In order to peen by the jet without damage, optimum injection pressure of the jet should be revealed. In the case of 'cavitation peening', cavitation is generated by injecting the high speed water jet into water. As working pressure at the cavitation peening is the pressure at cavitation bubble collapse, the injection pressure of the jet is not main parameter. The cavitation impact is increasing with the scale of the jet, i.e., scaling effect of the cavitation. It was revealed that the large scale jet at low injection pressure can introduce compressive residual stress into stainless steel comparing with the small scale jet at high injection pressure. As expected, a water jet at high injection pressure might make damage of the components. Namely, in order to avoid damage of the components, the jet at the low injection pressure will be suit for the introduction of compressive residual stress. In the present paper, in order to make clear optimum injection pressure of the cavitating jet for the introduction of compressive residual stress without damage, the residual stress of stainless steel treated by the jet at various injection pressure was measured by using an X-ray diffraction method. The injection pressure of the jet p 1 was varied from 5 MPa to 300 MPa. The diameter of the nozzle throat of the jet d was varied from 0.35 mm to 2.0 mm. The residual stress changing with depth was

  4. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  5. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    Science.gov (United States)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  6. Nondestructive control of residual stresses during welding and recharge processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Merino, F.; Aragon, B.

    1993-01-01

    In this work, the stress state of material during welding and recharge processes is controlled with the help of Barkhausen effect. The changes, occurred in the longitudinal and transversal stress profile are show during deposition of welding rings. It is proved that the stress state of the base-material depends on the amount of recharge layers, deposited on it

  7. Simulation of the collimator of the residual stress instrument

    International Nuclear Information System (INIS)

    Li, Jian; Wang, Xiaoying; Xie, Chaomei

    2009-04-01

    In order to understand the detailed influence from the collimator system to the main index of the Residual Stress Nertron Diffractometer (RSND) such as the flux at sample position, and the resolution of the spectrometer, the MCStas simulation software is used to build the proper Model of the Collimator system to complete the calculation and simulation. During the simulation, the authors setup the divergence and length of each collimator to check if it had big effect to the whole system. Based on the simulation, the authors obtained an optimized result: When the α 1 =α 2 =30', the horizontal flux at the sample position can be 2.3 x 10 6 n·cm -2 ·s -1 , the vertical flux can be 3.5 x 10 6 n·cm -2 ·s -1 , and when the α 1 =α 2 =10' the best resolution of the spectrometer can be 0.2 degree. This is a valuable result for the RDND. (authors)

  8. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  9. Experimental analysis of residual stresses in pre-straightened SAE 1045 steel

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Carla Adriana Theis Soares; Rocha, Alexandre da Silva, E-mail: carla.adriana@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Formacao de Metais; Epp, Jérémy; Zoch, Hans-Werner [Stiftung Institut für Werkstofftechnik IWT, University of Bremen (Germany)

    2017-11-15

    This paper aims at analyzing the effects of the roller pre-straightening of wire-rods on residual stress distributions in SAE 1045 steel bars. The combined drawing process is used in industrial production of bars in order to obtain a good surface quality and improved mechanical properties complying with specifications of the final products. In this process, prior to the drawing step, a roller straightening of the steel wire-rod is essential, because it provides the minimum straightness necessary for drawing. Metallographic analysis and hardness test were done for selected samples after different processing steps. Also, residual stress analysis of pre-straightened wire-rods by X-ray diffraction and neutron diffraction were carried out. The hardness tests show higher values near the surface and lower in the center of the wire-rod. Besides, the residual stresses results show a big inhomogeneity from one peripheral position to another and also in the evaluated cross section. (author)

  10. Evaluation of residual stress on pipe welded joints using laser interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho Seob; Na, Man Gyun; Kim, Koung Suk [Chosun University, Gwangju (Korea, Republic of)

    2014-02-15

    Residual stresses that occur during the welding process, are the main cause of failure and defects in welded structures. This paper, presents the use of an electronic processing laser speckle interferometer to measure the residual stress of a welded pipe for a nuclear power plant. A tensile testing machine was used to evaluate a welded pipe that failed in compression. The inform plane deformation and modulus of elasticity of the base metal and welds were measured using an interferometer. Varying the load on the welded pipe had a larger effect on the deformation of the base metal the other properties of the base metal and welds. The elastic moduli of the base metal and weld of the welded pipe were 202.46 and 212.14 GPa, respectively, the residual stress was measured to be 6.29 MPa.

  11. Experimental analysis of residual stresses in pre-straightened SAE 1045 steel

    International Nuclear Information System (INIS)

    Diehl, Carla Adriana Theis Soares; Rocha, Alexandre da Silva

    2017-01-01

    This paper aims at analyzing the effects of the roller pre-straightening of wire-rods on residual stress distributions in SAE 1045 steel bars. The combined drawing process is used in industrial production of bars in order to obtain a good surface quality and improved mechanical properties complying with specifications of the final products. In this process, prior to the drawing step, a roller straightening of the steel wire-rod is essential, because it provides the minimum straightness necessary for drawing. Metallographic analysis and hardness test were done for selected samples after different processing steps. Also, residual stress analysis of pre-straightened wire-rods by X-ray diffraction and neutron diffraction were carried out. The hardness tests show higher values near the surface and lower in the center of the wire-rod. Besides, the residual stresses results show a big inhomogeneity from one peripheral position to another and also in the evaluated cross section. (author)

  12. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Robert, E-mail: Robert.Stegemann@bam.de [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Wimpory, Robert; Boin, Mirko [HZB Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Kreutzbruck, Marc [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2017-03-15

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. - Highlights: • Comparison of magnetic microstructure with neutron diffraction stress analysis. • High spatial resolution magnetic stray field images of hypereutectoid TIG welds. • Spatial variations of the stray fields are below the magnetic field of the earth. • GMR spin valve gradiometer arrays adapted for the evaluation of magnetic microstructures. • Magnetic stray fields are closely linked to microstructure of the material.

  13. Modeling of Residual Stress and Machining Distortion in Aerospace Components (PREPRINT)

    Science.gov (United States)

    2010-03-01

    John Gayda, “The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys,” NASA/TM-2001-210717. 2...Wei-Tsu Wu, Guoji Li, Juipeng Tang, Shesh Srivatsa, Ravi Shankar, Ron Wallis, Padu Ramasundaram and John Gayda, “A process modeling system for heat...Materials Processing Technology 98 (2000) 189-195. 6. M.A. Rist, S. Tin, B.A. Roder, J.A. James, and M.R. Daymond , “Residual Stresses in a

  14. Mapping residual and internal stress in materials by neutron diffraction

    International Nuclear Information System (INIS)

    Withers, Ph.J.

    2007-01-01

    Neutron diffraction provides one of the few means of mapping residual stresses deep within the bulk of materials and components. This article reviews the basic scientific methodology by which internal strains and stresses are inferred from recorded diffraction peaks. Both conventional angular scans and time-of-flight measurements are reviewed and compared. Their complementarity with analogous synchrotron X-ray methods is also highlighted. For measurements to be exploited in structural integrity calculations underpinning the safe operation of engineering components, measurement standards have been defined and the major findings are summarised. Examples are used to highlight the unique capabilities of the method showing how it can provide insights ranging from the basic physics of slip mechanisms in hexagonal polycrystalline materials, through the materials optimisation of stress induced transformations in smart nano-materials, to the industrial introduction of novel friction welding processes exploiting stress residual measurements transferred from prototype sub-scale tests to the joining of full-scale aero-engine assemblies. (author)

  15. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    Science.gov (United States)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  16. Neutron diffraction measurements of residual stress in a powder metallurgy component

    International Nuclear Information System (INIS)

    Schneider, L.C.R.; Hainsworth, S.V.; Cocks, A.C.F.; Fitzpatrick, M.E.

    2005-01-01

    Residual stresses in a typical industrial green component were determined using neutron diffraction. The measured residual stresses were found to correlate with cross-sectional variations. Residual stress at the edge of the compact in contact with the die wall during compaction reached up to +80 MPa (tension) and -100 MPa (compression)

  17. A neutron diffraction study of residual stress and plastic strain in welded beryllium rings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W.; Varma, R.; Bourke, M.A.M.; Holden, T.M. [Los Alamos National Lab., Los Alamos, NM (United States); Ely, T.; Spooner, S. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2002-07-01

    We present a study of residual stresses associated with the welding of beryllium rings. Using novel analysis techniques, information about residual stresses and plastic deformation of the base metal were obtained. In the post-welded state, the rings have a strong tensile circumferential residual stress and show evidence of significant plastic deformation. (orig.)

  18. Residual stress control and design of next-generation ultra-hard gear steels

    Science.gov (United States)

    Qian, Yana

    In high power density transmission systems, Ni-Co secondary hardening steels have shown great potential for next-generation gear applications due to their excellent strength, toughness and superior fatigue performance. Study of residual stress generation and evolution in Ferrium C61 and C67 gear steels revealed that shot peening and laser peening processes effectively produce desired beneficial residual stress in the steels for enhanced fatigue performance. Surface residual stress levels of -1.4GPa and -1.5GPa were achieved in shot peened C61 and laser peened C67, respectively, without introducing large surface roughness or defects. Higher compressive residual stress is expected in C67 according to a demonstrated correlation between attainable residual stress and material hardness. Due to the lack of appropriate shot media, dual laser peening is proposed for future peening optimization in C67. A novel non-destructive synchrotron radiation technique was implemented and applied for the first time for residual stress distribution analysis in gear steels with large composition and property gradients. Observed substantial residual stress redistribution and material microstructure change during the rolling contact fatigue screening test with extremely high 5.4GPa load indicates the unsuitability of the test as a fatigue life predictor. To exploit benefits of higher case hardness and associated residual stress, a new material and process (CryoForm70) aiming at 70Rc surface hardness was designed utilizing the systems approach based on thermodynamics and secondary hardening mechanisms. The composition design was first validated by the excellent agreement between experimental and theoretical core martensite start temperature in the prototype. A novel cryogenic deformation process was concurrently designed to increase the case martensite volume fraction from 76% to 92% for enhanced strengthening efficiency and surface hardness. High temperature vacuum carburizing was

  19. Quantification of residual stress from photonic signatures of fused silica

    International Nuclear Information System (INIS)

    Cramer, K. Elliott; Yost, William T.; Hayward, Maurice

    2014-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10 −12 Pa −1 . Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented

  20. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  1. Evaluation of cladding residual stresses in clad blocks by measurements and numerical simulations

    International Nuclear Information System (INIS)

    Dupas, P.; Moinereau, D.

    1996-01-01

    Reactor pressure vessels are internally clad with austenitic stainless steel. This welding operation generates residual stresses which can have an important role in integrity assessments. In order to evaluate these stresses, an experimental and numerical programme has been conducted. The experiments includes cladding operations, macrographic analyses, temperature and residual stresses measurements with different methods. According to these measurements, transversal stresses (perpendicular to the welding direction) and longitudinal stresses (parallel to the welding direction) are highly tensile in stainless steel and they are compressive in the HAZ. Finite element calculations were used to simulate both welding operations and post weld heat treatment. These calculations coupled the thermal, metallurgical and mechanical aspects in a 2D representation. Different models were studied including effect of generalised plane strain, transformation plasticity, creep and tempering. The transversal stresses calculated are similar to the measured ones, but the longitudinal stresses showed to be very sensitive to the model used. As expected because of the two-dimension model, the longitudinal stresses can't be well estimated. More work is needed to improve measurements of stresses in depth (important differences appeared between the different methods). A predictive model would be also very useful to determine the thermal loading which is at present dependant on measurements. A 3D calculation appears to be necessary to evaluate longitudinal stresses. (orig.)

  2. Residual Stress Measurement of Coarse Crystal Grain in Aluminium Casting Alloy by Neutron Diffraction

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Watanabe, Yoshitaka; Hanabusa, Takao

    2009-01-01

    Full text: Neutron stress measurement can detect strain and stress information in deep region because of large penetration ability of neutron beams. The present paper describes procedure and results in the residual stress measurement of aluminium casting alloy by neutron diffraction. Usually, the aluminium casting alloy includes the large crystal grains. The existence of large crystal grains makes it difficult to estimate the residual stresses in highly accuracy. In this study, the modified three axial method using Hook's equation was employed for neutron stress measurement. These stress measurements were performed under the two kinds of new techniques. One is a rocking curve method to calculate the principal strains in three directions. The peak profiles which appear discretely on rocking curves were translated to principle stresses by the Bragg law and the basic elastic theory. Another is the consideration of measurement positions and the edge effect in the neutron irradiated area (volume gage). The edge effect generates the errors of 2θ-peak position in the neutron stress measurement. In this study, the edge effect was investigated in detail by a small bit of copper single crystal. The copper bit was moved and scanned on three dimensionally within the gage volume. Furthermore, the average strains of symmetrical positions are measure by the sample turning at 180 degrees, because the error distributions of the 2θ-peak position followed to positions inside the gage volume. Form these results of this study, the residual stresses in aluminium casting alloy which includes the large crystal grains were possible to estimate by neutron stress measurement with the rocking curve method and the correction of the edge effect. (author)

  3. The effect of residual stress on mechanical resistance of ZrSiO{sub 4}/Al{sub 2}O{sub 3} laminates

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Carriedo, M.; Gutierrez, C. A.; Lopez-Cuevas, J.; Pech-Canul, M. I.; Rodeiguez-Galicia, J. L.

    2016-08-01

    Layered ceramics were obtained by sequential slip casting of suspensions containing different proportions of zircon (Z) and alumina (A) as follow; 60Z40A, 40Z60A, 50Z50A and 80Z20A. Three laminar samples were fabricated using five thick layers and four thin layers, being the composition 60Z40A used for the thick layers and 40Z60A, 50Z50A and 80Z20A for the thin layers. From those thick/thin layers configurations, the residual stresses were: -46.27 MPa/+173.53 MPa, -11.25 MPa/+42.19 MPa and +9.70 MPa/-36.38 MPa for 60Z40A/40Z60A, 60Z40A/50Z50A and 60Z40A/80Z20A, respectively. The CTE (thermal expansion coefficient) was determined using monolithic samples of each composition; all laminar components were characterized by SEM and by the determination of the modulus of rupture. The result showed that the modulus of rupture were higher than the properties obtained for a monolithic 60Z40A sample, being 218% and 182% higher for laminar components configuration of 60Z40A/50Z50Aand 60Z40A/80Z20A, respectively. Also, due to high strain mismatch the laminar component 60Z40A/40Z60A showed lower mechanical properties than the 60Z40A monolithic sample. (Author)

  4. Creep Modeling in a Composite Rotating Disc with Thickness Variation in Presence of Residual Stress

    Directory of Open Access Journals (Sweden)

    Vandana Gupta

    2012-01-01

    Full Text Available Steady-state creep response in a rotating disc made of Al-SiC (particle composite having linearly varying thickness has been carried out using isotropic/anisotropic Hoffman yield criterion and results are compared with those using von Mises yield criterion/Hill's criterion ignoring difference in yield stresses. The steady-state creep behavior has been described by Sherby's creep law. The material parameters characterizing difference in yield stresses have been used from the available experimental results in literature. Stress and strain rate distributions developed due to rotation have been calculated. It is concluded that the stress and strain distributions got affected from the thermal residual stress in an isotropic/anisotropic rotating disc, although the effect of residual stress on creep behavior in an anisotropic rotating disc is observed to be lower than those observed in an isotropic disc. Thus, the presence of residual stress in composite rotating disc with varying thickness needs attention for designing a disc.

  5. Residual stress analysis on materials with steep stress gradient by using X-ray incidence at higher angles

    International Nuclear Information System (INIS)

    Ohya, Shin-ichi; Yoshioka, Yasuo; Maeno, Shigeki

    1996-01-01

    X-ray stress measurements for isotropic polycrystalline are materials are usually carried out by the sin 2 ψ method under the assumption of no stress gradient in X-ray penetration depth. When a steep stress gradient exists in the vicinity of surface layer, however, non-linear sin 2 ψ relation is observed and the sin 2 ψ method cannot be applied on such cases. Although several X-ray stress analyzers have been developed for materials with steep stress gradient in the surface layer, it is desirable to use diffraction data at higher incident angles of ψ 0 as possible as close on 90 degrees in order to determine the both values of surface stress and stress gradient with high accuracy. In the present study, an X-ray stress analyzer based on Ω geometry was fabricated to enable X-ray incidence at higher angle of ψ 0 . The X-ray detector was positioned on -η side against X-ray incident beam. Both of the residual surface stress and stress gradient were determined by use of the COSψ method on shot-peened steel and silicon nitride specimens. This prototype stress analyzer was found effective to perform a biaxial or triaxial stress analysis. (author)

  6. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    Science.gov (United States)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  7. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  8. Reduction method for residual stress of welded joint using random vibration

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro

    2005-01-01

    Welded joints are used for construction of many structures. Residual stress is induced near the bead caused by locally given heat. Tensile residual stress on the surface may reduce fatigue strength. In this paper, a new method for reduction of residual stress using vibration during welding is proposed. As vibrational load, random vibration, white noise and filtered white noise are used. Two thin plates are butt-welded. Residual stress is measured with a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. It is concluded that tensile residual stress near the bead is reduced by using random vibration during welding

  9. Rate of fatigue crack growth in residual stress fields of welded titanium joints with different contents of embrittling impurities

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Pokrovskij, V.V.; Yarusevich, V.L.; Mikhajlov, V.I.; Sher, V.A.

    1990-01-01

    Resistance to fatigue crack growth (FCG) has been studied in welded joints of structural titanium alloys contaminated by embrittling impurities. Besides, effect of crack closing has been taken into account what makes it possible to determine the effective coefficient of the stress intensity. The rate of fatigue crack growth is proved to considerably depend on the value and direction of residual stresses. The rate dependence of FCG in welded joints of structural titanium alloys on the swing of effective coefficient of stress intensity is invariant to the value and direction of weld residual stresses

  10. Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Blodgett, M.P.; Yu, F.; Nagy, P.B.

    2005-01-01

    Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation

  11. Welding induced residual stress evaluation using laser-generated Rayleigh waves

    Science.gov (United States)

    Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles

    2018-04-01

    Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.

  12. Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Rogers, Richard B.; Nesbitt, James A.; Puleo, Bernadette J.; Miller, Robert A.; Telesman, Ignacy; Draper, Susan L.; Locci, Ivan E.

    2017-01-01

    Protective ductile coatings will be necessary to mitigate oxidation and corrosion attack on superalloy disks exposed to increasing operating temperatures in some turbine engine environments. However, such coatings must be resistant to harmful surface cracking during service. The objective of this study was to investigate how residual stresses evolve in such coatings. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of shot peening and fatigue cycling on average residual stresses and other aspects of the coating were assessed. Shot peening did induce beneficial compressive residual stresses in the coating and substrate. However, these stresses became more tensile in the coating with subsequent heating and contributed to cracking of the coating in long intervals of cycling at 760 C. Substantial compressive residual stresses remained in the substrate adjacent to the coating, sufficient to suppress fatigue cracking. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  13. Residual stress improvement in multi-layer welded plates using water-shower cooling during welding process

    International Nuclear Information System (INIS)

    Yanagida, Nobuyoshi; Koide, Hiroo

    2006-01-01

    To reduce tensile residual stress in a welded region, we developed a new welding method that applies a water-shower behind the welding torch. When this method is applied to welding of austenitic stainless steel plates, cooling conditions mainly determine how much the residual stress can be reduced. To determine the conditions, we first used FEM to evaluate the effects of interpass temperature on the residual stress. And we found effective conditions for reducing tensile residual stress. To verify the validity of the conditions, specimens welded with or without water shower cooling were manufactured. Residual stresses of the specimens were experimentally measured. It was found that tensile residual stresses were generated on the surface of the welds and those were reduced in the case that the water-shower was applied. These measurement results agree well with the FEM analyses. It can therefore be concluded that the water-shower cooling during welding is appropriate for reducing tensile residual stress in austenitic stainless steel welding. (author)

  14. Influence of weld-induced residual stresses on the hysteretic behavior of a girth-welded circular stainless steel tube

    Science.gov (United States)

    Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan

    2018-04-01

    The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.

  15. Residual Stress Developed During the Cure of Thermosetting Polymers: Optimizing Cure Schedule to Minimize Stress.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael; Stavig, Mark E.; Jaramillo, Rex

    2016-06-01

    When thermosetting polymers are used to bond or encapsulate electrical, mechanical or optical assemblies, residual stress, which often affects the performance and/or reliability of these devices, develops within the structure. The Thin-Disk-on-Cylinder structural response test is demonstrated as a powerful tool to design epoxy encapsulant cure schedules to reduce residual stress, even when all the details of the material evolution during cure are not explicitly known. The test's ability to (1) distinguish between cohesive and adhesive failure modes and (2) demonstrate methodologies to eliminate failure and reduce residual stress, make choices of cure schedules that optimize stress in the encapsulant unambiguous. For the 828/DEA/GMB material in the Thin-Disk-on-Cylinder geometry, the stress associated with cure is significant and outweighs that associated with cool down from the final cure temperature to room temperature (for measured lid strain, Scure I > I I e+h erma * II) * The difference between the final cure temperature and 1 1 -- the temperature at which the material gels, Tf-T ge i, was demonstrated to be a primary factor in determining the residual stress associated with cure. Increasing T f -T ge i leads to a reduction in cure stress that is described as being associated with balancing some of the 828/DEA/GMB cure shrinkage with thermal expansion. The ability to tune residual stress associated with cure by controlling T f -T ge i would be anticipated to translate to other thermosetting encapsulation materials, but the times and temperatures appropriate for a given material may vary widely.

  16. BOOK REVIEW: Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation

    Science.gov (United States)

    Fitzpatrick, ed M. E.; Lodini, A.

    2003-09-01

    The presence of residual stresses within engineering components is often a key feature in determining their usable lifetimes and failure characteristics. Residual surface compression can, for example, restrict the propagation of surface cracks through the bulk. As a consequence, it is essential to characterize the magnitude and spatial distribution of residual stresses and, at least for non-destructive testing, this is most widely achieved using diffraction of neutron and high energy synchrotron radiations. This book aims to provide a detailed description of the methodology used to determine residual stresses. The major emphasis is placed on the neutron method, this being the more widely established approach at present. It contains 20 chapters contributed by 23 authors, divided into five major parts. The overall layout is very logical, with the first part giving a general introduction to the use of neutrons and x-rays for materials research and summarizing the methods used for their production. Part 2 considers the more specific aspects of extracting the residual stress distribution within a bulk sample and includes some valuable comments on a number of potential experimental problems, such as the determination of the stress-free lattice parameter and the effects of broadening of the Bragg peaks. The experimental facilities currently available or under development are described in part 3, with the remaining two parts devoted to general and specific applications of the residual stress measurement technique. As expected with such a large number of different authors, there is some variation in style and quality. However, the text is generally easy to follow and, more importantly, it is largely free of the problems of inconsistent notation and dupication of material that can afflict multi-authored texts. My only negative comment concerns the latter portion of the book devoted to specific applications of the technique, which is illustrative rather than comprehensive. In

  17. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    Science.gov (United States)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  18. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.; Salama, Khaled N.

    2012-01-01

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  19. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-27

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  20. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Juergen; Schulze, Volker [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials; Hessert, Roland; Koenig, Gerhard [MTU Aero Engines, Munich (Germany)

    2012-01-15

    The residual stress state induced by shot peening should be taken into account in the dimensioning of turbine components. Understanding the changes in the residual stress state caused by the application of quasi-static and cyclic loads is a prerequisite. In order to describe the residual stress state after quasi-static loading, several different shot peened Inconel 718 specimens were loaded isothermally up to specific tensile loadings. To analyze the residual stress state after cyclic loading, isothermal low cycle fatigue tests were performed. These tests were stopped after a defined number of cycles. Finally, after the specimens had been subjected to different loads, the surface residual stresses and - for special loadings - the residual stress depth distributions were determined experimentally by using X-ray diffraction. The surface - core model was adapted so that the complete residual stress depth distribution after quasi-static and cyclic loading can now be described. (orig.)

  1. Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs

    International Nuclear Information System (INIS)

    Scuracchio, Bruno Geoffroy; Batista de Lima, Nelson; Schön, Cláudio Geraldo

    2013-01-01

    Highlights: ► Proper choice of peening media is needed for higher fatigue strength in leaf springs. ► Optimum double-peening condition for leaf springs: 0.8 mm shot, followed by 0.3 mm. ► Fatigue life correlates with residual stress levels at the surface (up to 0.02 mm). ► Residual stress profile below 0.02 mm has no measurable effect over fatigue life. ► Failure of the investigated parts is nucleation-controlled. - Abstract: Improvement of fatigue life in parts subjected to cyclic stresses by application of mechanical surface treatment processes is already well known, both in the industry and in the academy. Dealing with automotive springs, the shot peening process becomes an essential step in manufacturing. In the case of leaf springs, however, a systematic investigation of the effect of shot peening on fatigue life is still required. The aim of the present work is to improve the knowledge on the role of shot peening in manufacturing leaf springs for vehicles, through the analysis of residual stresses by X-ray diffraction and fatigue tests on a series of samples that were subject to ten different peening schedules. Among the investigated processes, the usage of 0.8 mm diameter cast steel shot followed by a second peening with 0.3 mm diameter cast steel shot leads to optimal performance, regarding fatigue life. X-ray diffraction analysis shows that this improved performance may be attributed to residual compressive stress maintained until a depth of 0.02 mm below the surface, which directly influences fatigue crack nucleation. Residual stresses induced by shot peening in larger depths have no influence on the sample’s fatigue life

  2. Experimental stress analysis for determination of residual stresses and integrity monitoring of components and systems

    International Nuclear Information System (INIS)

    1993-01-01

    For an analysis of the safety-related significance of residual stresses, mechanical, magnetic as well as ultrasonic and diffraction methods can be applied as testing methods. The results of an interlaboratory test concerning the experimental determination of residual stresses in a railway track are included. Further, questions are analyzed concerning the in-service inspections of components and systems with regard to their operational safety and life. Measurement methods are explained by examples from power plant engineering, nuclear power plant engineering, construction and traffic engineering as well as aeronautics. (DG) [de

  3. Residual stresses associated with the hydraulic expansion of steam generator tubing into tubesheets

    International Nuclear Information System (INIS)

    Middlebrooks, W.B.; Harrod, D.L.; Gold, R.E.

    1991-01-01

    Westinghouse has used three different processes for the full depth expansion of tubes into the tube sheets of recirculating nuclear steam generators: mechanical rolling, explosive expansion and hydraulic expansion. Each process aims at expanding tubes tightly to tube sheets, leaving the smallest possible secondary side crevice depth, and minimizing the residual stress in the expanded tubes, all for the purpose of mitigating the effect of corrosion phenomena. The hydraulic expansion process was qualified and has been implemented since 1978, and more than 1.1 million tube ends have been hydraulically expanded into production units. In this paper, the results of the recent analytical studies related to the residual stress in the expanded tubes are summarized. The method of hydraulic expansion is explained, and some important parameters are given. Finite element method, theoretical incremental analysis, tube sheet yielding and residual stress, contact pressure, sensitivity analysis and temperature effect in the central region of tube sheets, and the residual stress in the transition zone are described. (K.I.)

  4. Investigation of Performance and Residual Stress Generation of AlSi10Mg Processed by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Lianfeng Wang

    2018-01-01

    Full Text Available During the selective laser melting (SLM process, the scanned layers are subjected to rapid thermal cycles. By working on the mechanical properties, residual stress, and microstructure, the high-temperature gradients can have significant effect on the proper functioning and the structural integrity of built parts. This work presents a comprehensive study on the scanning path type and preheating temperature for AlSi10Mg alloy during SLM. According to the results, SLM AlSi10Mg parts fabricated in chessboard scanning strategy have higher mechanical properties or at least comparable to the parts fabricated in uniformity scanning strategy. In the SLM processing, the residual stress in different parts of the specimen varies with temperature gradient, and the residual stress at the edge of the specimen is obviously larger than that at the center. Under the chessboard scanning and preheating temperature 160°C, the residual stress in each direction of the specimens reaches the minimum. Under different forming processes, the morphology of the microstructure is obviously different. With the increase of preheating temperature, the molten pool in the side surface is obviously elongated and highly unevenly distributed. From the coupling relationship between the residual stress and microstructure, it can be found that the microstructure of top surface is affected by residual stresses σx and σy. But the side surface is mainly governed by residual stress σy; moreover, the greater the residual stress, the more obvious the grain tilt. In the XY and XZ surfaces, the scanning strategy has little influence on the tilt angle of the grain. But, the tilt angle and morphology of the microstructure are obviously affected by the preheating temperature. The results show that the residual stresses can effectively change the properties of the materials under the combined influence of scanning strategy and preheating temperature.

  5. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  6. Residual stress measurements in coil, linepipe and girth welded pipe

    International Nuclear Information System (INIS)

    Law, M.; Prask, H.; Luzin, V.; Gnaeupel-Herold, T.

    2006-01-01

    Residual stresses in gas pipelines come from forming operations in producing the coil and pipe, seam welding the pipe, and girth welding pipes together to form a gas pipeline. Welding is used extensively in gas pipelines, the welds are made without post weld heat treatment. The three normal stresses were measured by neutron diffraction for three types of sample: coil, unwelded rings cut from the pipe made from this coil, and girth welded rings cut from linepipe. All three specimens came from three thicknesses of manufacture (5.4, 6.4, and 7.1 mm). The welds are manual metal arc cellulosic electrode welds made in X70 linepipe, these were measured at 5 through-thickness positions at 19 locations (from the center of the weld up to 35 mm away from the weld) with a spatial resolution of 1 mm 3 . The coil and unwelded rings were measured at the same five through-thickness positions

  7. Numerical and Experimental Analyses of Residual Stresses in

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Hattel, Jesper; Lorentzen, Torben

    1999-01-01

    Butt-welding in one pass with SMAW of two 10mm mild steel plates is investigated. In order to predict the residual stress fields associated with the welding procedure, a finite element model in 3D has been developed in ABAQUS. This model applies a sequential thermal and mechanical numerical...... analysis. In order to evaluate and refine the model parameters for the thermal analysis, the numerical results from this analysis are compared with experimental measurements of the temperature. To evaluate the predicted stress/strain fields, the mechanical model has been validated experimentally. This has...... been done using the novel non-destructive technique of neutron diffraction.The thermal model takes into account the moving heat source in the V-shaped weld. The heat source is modelled by filler material being added continuously in connection with a body flux. In order to obtain a more realistic weld...

  8. Effects of oxygen partial pressure and annealing temperature on the residual stress of hafnium oxide thin-films on silicon using synchrotron-based grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Debaleen [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Sinha, Anil Kumar [ISU, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Homi Bhabha National Institute, BARC, Mumbai 400 094 (India); Chakraborty, Supratic, E-mail: supratic.chakraborty@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2016-10-30

    Highlights: • Residual stress estimation thin hafnium oxide film with thickness of <10 nm. • A mathematical expression is proposed for stress estimation of thin-film using GIXRD. • Residual stress varies with argon content in Ar/O{sub 2} plasma and annealing temperature. • Variation of stress is explained by IL swelling and enhanced structural relaxation. - Abstract: Synchrotron radiation-based grazing incidence X-ray diffraction (GI-XRD) technique is employed here to estimate the residual stress of < 10 nm thin hafnium oxide film deposited on Si (100) substrate at different argon/oxygen ratios using reactive rf sputtering. A decrease in residual stress, tensile in nature, is observed at higher annealing temperature for the samples deposited with increasing argon ratio in the Ar/O{sub 2} plasma. The residual stress of the films deposited at higher p{sub Ar} (Ar:O{sub 2} = 4:1) is also found to be decreased with increasing annealing temperature. But the stress is more or less constant with annealing temperature for the films deposited at lower Ar/O{sub 2} (1:4) ratio. All the above phenomena can be explained on the basis of swelling of the interfacial layer and enhanced structural relaxation in the presence of excess Hf in hafnium oxide film during deposition.

  9. A study for high accuracy measurement of residual stress by deep hole drilling technique

    Science.gov (United States)

    Kitano, Houichi; Okano, Shigetaka; Mochizuki, Masahito

    2012-08-01

    The deep hole drilling technique (DHD) received much attention in recent years as a method for measuring through-thickness residual stresses. However, some accuracy problems occur when residual stress evaluation is performed by the DHD technique. One of the reasons is that the traditional DHD evaluation formula applies to the plane stress condition. The second is that the effects of the plastic deformation produced in the drilling process and the deformation produced in the trepanning process are ignored. In this study, a modified evaluation formula, which is applied to the plane strain condition, is proposed. In addition, a new procedure is proposed which can consider the effects of the deformation produced in the DHD process by investigating the effects in detail by finite element (FE) analysis. Then, the evaluation results obtained by the new procedure are compared with that obtained by traditional DHD procedure by FE analysis. As a result, the new procedure evaluates the residual stress fields better than the traditional DHD procedure when the measuring object is thick enough that the stress condition can be assumed as the plane strain condition as in the model used in this study.

  10. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  11. Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment

    International Nuclear Information System (INIS)

    Li, M.; Atteridge, D.G.; Anderson, W.E.; West, S.L.

    1994-01-01

    This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application

  12. Prediction method of long-term reliability in improving residual stresses by means of surface finishing

    International Nuclear Information System (INIS)

    Sera, Takehiko; Hirano, Shinro; Chigusa, Naoki; Okano, Shigetaka; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2012-01-01

    Surface finishing methods, such as Water Jet Peening (WJP), have been applied to welds in some major components of nuclear power plants as a counter measure to Primary Water Stress Corrosion Cracking (PWSCC). In addition, the methods of surface finishing (buffing treatment) is being standardized, and thus the buffing treatment has been also recognized as the well-established method of improving stress. On the other hand, the long-term stability of peening techniques has been confirmed by accelerated test. However, the effectiveness of stress improvement by surface treatment is limited to thin layers and the effect of complicated residual stress distribution in the weld metal beneath the surface is not strictly taken into account for long-term stability. This paper, therefore, describes the accelerated tests, which confirmed that the long-term stability of the layer subjected to buffing treatment was equal to that subjected to WJP. The long-term reliability of very thin stress improved layer was also confirmed through a trial evaluation by thermal elastic-plastic creep analysis, even if the effect of complicated residual stress distribution in the weld metal was excessively taken into account. Considering the above findings, an approach is proposed for constructing the prediction method of the long-term reliability of stress improvement by surface finishing. (author)

  13. Evaluation of hyper-tempering and machining residual stresses in a pipe and a cast elbow

    International Nuclear Information System (INIS)

    Dupas, P.; Le Delliou, P.; Sussen, L.

    1995-01-01

    Cast elbows in austeno-ferritic stainless steel from the primary circuit of nuclear power plants suffer from important residual stresses initiated during their manufacturing (hyper-tempering followed by machining). Measurements and calculations were performed to determine these stresses. Measurements show a difference between circumferential stresses in the depth of a pipe and of an elbow. On the contrary, calculations indicate similar profiles. Thus, the experimental differences cannot be explained by a geometrical effect of the elbow. (J.S.). 4 refs., 5 figs

  14. Residual stresses of manufacture on the PWR vessel head penetrations

    International Nuclear Information System (INIS)

    Le Hong, S.; Todeschini, P.; Ternon, F.; Cipiere, M.F.; Gimond, C.; Faure, F.

    1997-01-01

    Since the detection in September 1991 of a leakage on a vessel head adapter of Bugey 3 during the decadal hydro-test, a study has been led by Framatome and EDF on the phenomenon, which has been identified as a stress corrosion cracking. The stress parameter particularly is an important factor in regard to the behaviour of the Alloy 600 in primary water. It has been the subject of a calculation program, which is not presented here, and of an experimental program which contents: 1 - the determination of residual stresses on the inner surface of the adapter and on the weld metal by the hole method and the diffraction of X-Rays on representative mock-ups and on a vessel head during manufacturing; 2 - the visualization of the stress field at the surface by corrosion tests on representative mock-ups in sodium hydroxide at 350 o C. The results are globally consistent with each other and give an important contribution to the interpretation of the results of the controls on site. (authors)

  15. Prediction of residual stresses in the heat affected zone

    International Nuclear Information System (INIS)

    Taleb, L.; Petit, S.; Jullien, J.F.

    2004-01-01

    In this paper the behavior of a disc made up of carbon manganese steel and subjected to an axisymmetric heating in its middle zone is considered. The applied thermal cycle generates localized metallurgical solid-solid phase transformations. Contrary to the study performed some years ago, the present work is concerned with relatively thick discs that lead to variable behavior according to axial direction. Experimentally, temperature and axial displacement of the face below have continuously been measured during tests. At the end of tests, the nature and the proportions of the final phases as well as residual stresses on both faces of the discs has also been assessed. These experimental results have been compared to numerical simulations using the finite element code ASTER, developed by EDF (Electricity of France), ASTER enables us to take into account the main mechanical consequences of phase transformations. From the obtained results it can be pointed out the significant importance to take into account the transformation induced plasticity (TRIP) phenomenon for better estimation of residual stresses. (authors)

  16. The residual stress evaluation for expansion process of steam generator tubes

    International Nuclear Information System (INIS)

    King, C.-S.; Lee, S.-C.; Shim, D.-N.

    2004-01-01

    The reliability of a nuclear power plant is affected by the reliability of steam generator tube and the reliability of steam generator tube is affected by stress corrosion cracking(SCC). Many steam generator tubes were experiencing stress corrosion cracking and stress corrosion cracking is affected material characteristics, corrosive environments and added stresses. The added stresses have the manufacturing stresses and operating stresses, the manufacturing stresses include the residual stresses generating in the tube manufacture and tube expanding procedure. We will investigate for influence which affected to residual stresses with tube plastic deformation method and measurement region. (author)

  17. Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Kim, Yun Jae [Korea Unviersity, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    In nuclear power plants, ferritic low alloy steel components were connected with austenitic stainless steel piping system through alloy 82/182 butt weld. There have been incidents recently where cracking has been observed in the dissimilar metal weld. Alloy 82/182 is susceptible to primary water stress corrosion cracking. Weld-induced residual stress is main factor for crack growth. Therefore exact estimation of residual stress is important for reliable operating. This paper presents residual stress computation performed by 6'' safety and relief nozzle. Based on 2 dimensional and 3 dimensional finite element analyses, effect of welding variables on residual stress variation is estimated for sensitivity analysis.

  18. A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Araghchi, M., E-mail: M.Araghchi@ma.iut.ac.ir [Department of Materials Engineering, Malek Ashtar University of Technology, Isfahan (Iran, Islamic Republic of); Mansouri, H.; Vafaei, R. [Department of Materials Engineering, Malek Ashtar University of Technology, Isfahan (Iran, Islamic Republic of); Guo, Yina [Bernal Institute, University of Limerick, Limerick (Ireland)

    2017-03-24

    Residual stresses induced during quenching of aluminum alloys cause distortion and have a negative effect on their properties. The purpose of this study is to reduce the residual stresses and improve mechanical properties by using a novel cryogenic treatment. Water quenched samples were cooled down by immersion in liquid nitrogen at −196 °C, following by rapid heating in hot oil at 180 °C and finally they were artificially aged. Residual stresses was measured by the hole drilling strain gauge method. The mechanical properties and microstructure of a heat treated samples were investigated by means of hardness measurements, tensile tests and transmission electron microscopy. The results showed that this treatment can relieve up to 71% of the residual stresses compared to 29% related to the traditional cryogenic treatment that used boiling water as the reheating medium. In addition, there is a considerable increase of about 75 MPa in the ultimate tensile strength in comparison to the T6 heat-treated alloy. TEM observations revealed that the S′ precipitates were fine and uniformly distributed in the microstructure due to deformation during reheating in hot oil.

  19. Comparison of neutron and synchrotron diffraction measurements of residual stress in bead-on-plate weldments

    International Nuclear Information System (INIS)

    Paradowska, A.M.; Price, J.W.; Finlayson, T.R.; Lienert, U.; Ibrahim, R.

    2010-01-01

    This paper explores the use of neutron and synchrotron diffractions for the evaluation of residual stresses in welded components. It has been shown that it is possible to achieve very good agreement between the two independent diffraction techniques. This study shows the significance of the weld start and end sites on the residual strain/stress distribution. Quantitative evaluation of the residual stress development process for multibead weldments has been presented. Some measurements were also taken before and after postweld stress relieving to establish the reduction and redistribution of the residual stress. The detailed measurements of residual stress around the weld achieved in this work significantly improve the knowledge and understanding of residual stress in welded components.

  20. Residual stress measurement of the jacket material for ITER coil by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Nickel-Iron based super alloy INCOLOY 908 is used for the jacket of a central solenoid coil (CS coil) of the International Thermonuclear Experimental Reactor (ITER). INCOLOY 908, however, has a possibility of fracture due to Stress Accelerated Grain Boundary Oxidation (SAGBO) under a tensile residual stress beyond 200MPa. Therefore it is necessary to measure the residual stress of the jacket to avoid SAGBO. We performed residual stress measurement of the jacket by neutron diffraction using the neutron diffractometer for residual stress analysis (RESA) installed at JRR-3M in JAERI. A sample depth dependence of internal strain was obtained from the (111) plane spacing. A residual stress distribution was calculated from the strain using Young`s modulus and Poisson`s ratio that were evaluated by a tensile test with neutron diffraction. The result shows that the tensile residual stress exceeds 200MPa of the SAGBO condition in some regions inside the jacket. (author)

  1. On residual stress prescriptions for fitness for service assessment of pipe girth welds

    International Nuclear Information System (INIS)

    Dong, Pingsha; Song, Shaopin; Zhang, Jinmiao; Kim, Myung H.

    2014-01-01

    This paper aims to provide a detailed assessment of some of the existing residual stress profiles stipulated in widely used fitness-for-service assessment codes and standards, such as BS 7910 Appendix Q and API 579 RP Annex E, by taking advantage of some comprehensive residual stress studies that have recently become available. After presenting a case study on which residual stress measurements are available for validating finite element based residual stress analysis procedure, residual stress profiles stipulated in BS 7910 for pipe girth welds are selected for detailed evaluation by comparing residual stress distribution characteristics shown in parametric finite element results. A shell theory based full-field residual stress profile estimation scheme is then presented to illustrate how an improved estimation of residual stress profiles can be achieved in light of some of the deficiencies in BS 7910 and API 579 identified in this study. - Highlights: • Critically assessed girth weld residual stress profiles in major FFS Codes and Standards. • Identified deficiencies in relating to pipe geometry, heat input, and axial distance from weld. • Presented a shell theory based scheme for prescribing full-field residual stress profiles

  2. Modelling and experimental characterisation of a residual stress field in a ferritic compact tension specimen

    International Nuclear Information System (INIS)

    Wenman, M.R.; Price, A.J.; Steuwer, A.; Chard-Tuckey, P.R.; Crocombe, A.

    2009-01-01

    The aim of the work is to elucidate the influence of plasticity behaviour on the residual stress field in a ferritic reactor pressure vessel steel. To this end, we investigate two compressively pre-loaded compact tension (CT) specimens to generate a mechanical residual stress field. One specimen was subsequently pre-cracked by fatigue before both specimens were measured using high-energy synchrotron X-ray diffraction. A fine grain size microstructure (∼5-10 μm grain size) allowed a small X-ray beam slit size and therefore gauge volume. The results provide an excellent data set for validation of finite element (FE) modelling predictions against which they have been compared. The results of both mechanical testing and modelling suggest that the use of a combined hardening model is needed to accurately predict the residual stress field present in the specimen after pre-loading. Some discrepancy between the modelled crack tip stress values and those found by X-ray diffraction remain which can be partly explained by volume averaging effects in the presence of very high stress/strain gradients.

  3. Modelling and experimental characterisation of a residual stress field in a ferritic compact tension specimen

    Energy Technology Data Exchange (ETDEWEB)

    Wenman, M.R., E-mail: m.wenman@imperial.ac.u [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Price, A.J. [Faculty of Engineering and Physical Sciences (J5), University of Surrey, Guildford GU2 7XH (United Kingdom); Steuwer, A. [ESS Scandinavia, Stora Algatan 4, 22350 Lund (Sweden) and Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Chard-Tuckey, P.R. [Nuclear Department, Defence College of Management and Technology, HMS Sultan, Gosport, Hants PO12 3BY (United Kingdom); Crocombe, A. [Faculty of Engineering and Physical Sciences (J5), University of Surrey, Guildford GU2 7XH (United Kingdom)

    2009-12-15

    The aim of the work is to elucidate the influence of plasticity behaviour on the residual stress field in a ferritic reactor pressure vessel steel. To this end, we investigate two compressively pre-loaded compact tension (CT) specimens to generate a mechanical residual stress field. One specimen was subsequently pre-cracked by fatigue before both specimens were measured using high-energy synchrotron X-ray diffraction. A fine grain size microstructure (approx5-10 mum grain size) allowed a small X-ray beam slit size and therefore gauge volume. The results provide an excellent data set for validation of finite element (FE) modelling predictions against which they have been compared. The results of both mechanical testing and modelling suggest that the use of a combined hardening model is needed to accurately predict the residual stress field present in the specimen after pre-loading. Some discrepancy between the modelled crack tip stress values and those found by X-ray diffraction remain which can be partly explained by volume averaging effects in the presence of very high stress/strain gradients.

  4. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel

    Science.gov (United States)

    Lu, Yaqing; Hui, Hu; Gong, Jianguo

    2018-05-01

    Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.

  5. The adhesion strength and residual stress of colloidal-sol gel derived β-Tricalcium-Phosphate/Fluoridated-Hydroxyapatite biphasic coatings

    International Nuclear Information System (INIS)

    Cheng Kui; Zhang, Sam; Weng Wenjian; Khor, Khiam Aik; Miao Shundong; Wang Yongsheng

    2008-01-01

    β-tricalcium phosphate (β-TCP) powders are embedded in a fluoridated hydroxyapatite (FHA) matrix to form β-TCP-FHA composites via colloidal-sol gel method. This composite layer is deposited on top of a FHA layer to form a β-TCP-FHA/FHA biphasic coating. The effect of the nanosized powder on the residual stress is characterized through the X-ray diffraction peak shift. The powder incorporation increases the residual stress, while a large amount of β-TCP (Ca powder /Ca sol ratio is higher than 1/2) results in less gel shrinkage that partially compensates the mismatch of thermal expansion coefficient and thus the residual stress. Despite the elevated residual stress as more powders are embedded, the coating adhesion strength remains virtually constant: around 430 mN-500 mN in scanning scratch test

  6. Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    Science.gov (United States)

    Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.

    2017-12-01

    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.

  7. Investigation of residual stresses in thick-walled vessels with combination of autofrettage and wire-winding

    International Nuclear Information System (INIS)

    Sedighi, M.; Jabbari, A.H.

    2013-01-01

    Wire-winding and autofrettage processes can be used to introduce beneficial residual stress in the cylinder of thick-walled pressure vessels. In both techniques, internal residual compressive stress will increase internal pressure capacity, improve fatigue life and reduce fatigue crack initiation. The purpose of this paper is to analyze the effects of wire-winding on an autofrettaged thick-walled vessel. Direct method which is a modified Variable Material Properties (VMP) method has been used in order to calculate residual stresses in an autofrettaged vessel. Since wire-winding is done after autofrettage process, the tangent and/or Young's modulus could be changed. For this reason, a new wire-winding method based on Direct Method is introduced. The obtained results for wire-wound autofrettaged vessels are validated by finite element method. The results show that by using this approach, the residual hoop stresses in a wire-wound autofrettaged vessel have a more desirable distribution in the cylinder. -- Highlights: • Combination of autofrettage and wire-winding in pressure vessels has been presented. • A new method based on Direct method is presented for wire-winding process. • Residual hoop stresses are compared in vessels cylinders for different cases. • The residual hoop stress has a more desirable stress distribution. • The benefits of the combined vessel are highlighted in comparison with single cases

  8. Simultaneous analysis of residual stress and stress intensity factor in a resist after UV-nanoimprint lithography based on electron moiré fringes

    International Nuclear Information System (INIS)

    Wang, Qinghua; Kishimoto, Satoshi

    2012-01-01

    In this study, the residual stress in a resist (PAK01) film and the stress intensity factor (SIF) of an induced crack are simultaneously estimated during ultraviolet nanoimprint lithography (UV-NIL) based on electron moiré fringes. A micro grid in a triangular arrangement on the resist film fabricated by UV-NIL is directly used as the model grid. Electron moiré fringes formed by the interference between the fabricated grid and the electron scan beam are used to measure the displacement distribution around the tip of a crack induced by the residual stress in the resist. The SIF of the crack is estimated using a displacement extrapolation method. The residual strain fields and the corresponding residual stress in the resist film far from the crack are determined and analyzed. This method is effective for evaluating the grid quality fabricated by the UV-NIL technique. (paper)

  9. Residual stresses in U-bending deformations and expansion joints of heat exchanger tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Jang, Jin Sung; Kuk, Ii Hiun; Bae, Kang Gug; Kim, Sung Chung

    2000-01-01

    Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's rew-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319MPa in axial direction at the position of ψ=0 deg. Tensile residual stresses (+) of 0σ zz =45 MPa and σ θθ =25MPa were introduced in the intrados surface at the position of ψ=0 deg. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of ψ=90 deg, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U-bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction

  10. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    International Nuclear Information System (INIS)

    Reyes-Ruiz, C.; Figueroa, I.A.; Braham, C.; Cabrera, J.M.; Zanellato, O.; Baiz, S.; Gonzalez, G.

    2016-01-01

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  11. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ruiz, C.; Figueroa, I.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico); Braham, C. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB-Universidad Politécnica de Cataluña, Av Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnológic, Pl. de la Ciencia 2, 08243 Manresa (Spain); Zanellato, O.; Baiz, S. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Gonzalez, G., E-mail: joseggr@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico)

    2016-07-18

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  12. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  13. Macroscopic and microscopic determinations of residual stresses in thin oxide dispersion strengthened steel tubes

    International Nuclear Information System (INIS)

    Bechade, J.L.; Toualbi, L.; Bosonnet, S.; Carlan, Y. de; Castelnau, O.

    2014-01-01

    To improve the efficiency of components operating at high temperatures, many efforts are deployed to develop new materials. Oxide Dispersion Strengthened (ODS) materials could be used for heat exchangers or cladding tubes for the new GENIV nuclear reactors. This type of materials are composed with a metallic matrix (usually iron base alloy for nuclear applications or nickel base alloy for heat exchangers) reinforced by a distribution of nano-oxides. They are obtained by powder metallurgy and mechanical alloying. The creep resistance of these materials is excellent, and they usually exhibit a high tensile strength at room temperature. Depending on the cold working and/or the heat treatments, several types of microstructure can be obtained: recrystallised, stress relieved. One of the key challenges is to transform ODS materials into thin tubes (up to 500 microns thick) within a robust fabrication route while keeping the excellent mechanical properties. To prevent cracking during the process or to obtain a final product with low residual stresses, it is important to quantify the effect of the heat treatments on the release of internal stresses. The aim of this study is to show how residual stresses can be determined on different thin tubes using two complementary approaches: (i) macroscopic stresses determination in the tube using beam theory (small cuts along the longitudinal and circumferential directions and measurements of the deflection), (ii) stress determination from x-ray diffraction analyses (surface analyses, using 'sin"2ψ' method with different hypothesis). Depending on the material and the heat treatment, residual stresses vary dramatically and can reach 800 MPa which is not far from the yield stress; comparisons between both methods are performed and suggestions are given in order to optimize the thermo-mechanical treatment of thin ODS tubes. (authors)

  14. Comparison of Measured Residual Stress in an Extra Thick Multi-pass Weld Using Neutron Diffraction Method and Inherent Strain Method

    International Nuclear Information System (INIS)

    Park, JeongUng; An, GyuBaek; Woo, Wan Chuck

    2015-01-01

    With the increase of large-scale containership, a large amount of high-strength steels with extra thick plates is being extensively used. The welding stress existing in the extra thick welded plates has a significant effect on the integrity of the component in terms of brittle fracture and fatigue behavior. It has been reported that welding residual stress distribution in an extra thick plate can affect the propagation path of the crack. Therefore, it is important to measure the distribution of welding residual stresses for the reliable design of the welded structures. So far various researches have been carried out for the determination of residual stresses on the surface of steels. In this paper, the total residual stresses in the 70 mm thick multipass FACW butt joint were measured by integrating initial stress into ISM. Concretely, two methods named as initial stress integrated ISM and initial inherent strain integrated ISM were employed to determine the total residual stresses. Furthermore, the distributions of residual stresses were compared with the results of the Neutron Diffraction Method(NDM). In order to measure the three dimensional residual stresses in the welded joint with initial stresses existing before welding, initial stress integrated ISM and initial inherent strain integrated ISM were developed. The residual stresses in 70 mm-thick butt joint by flux cored arc welding were carried out with a good accuracy using the two developed methods. The residual stresses in welded joint using both initial stress integrated ISM and initial inherent strain integrated ISM agreed well with the results measured by Neutron Diffraction Method. This suggests that the integrated ISM is a reliable method for residual stress measurement if initial stress existed

  15. Residual stresses analysis of friction stir welding using one-way FSI simulation

    International Nuclear Information System (INIS)

    Kang, Sung Wook; Jang, Beom Seon; Song, Ha Cheol

    2015-01-01

    When certain mechanisms, such as plastic deformations and temperature gradients, occur and are released in a structure, stresses remain because of the shape of the structure and external constraints. These stresses are referred to as residual stresses. The base material locally expands during heating in the welding process. When the welding is completed and cooled to room temperature, the residual stresses are left at nearly the yield strength level. In the case of friction stir welding, the maximum temperature is 80% to 90% of the melting point of the materials. Thus, the residual stresses in the welding process are smaller than those in other fusion welding processes; these stresses have not been considered previously. However, friction stir welding residual stresses are sometimes measured at approximately 70% or above. These residual stresses significantly affect fatigue behavior and lifetime. The present study investigates the residual stress distributions in various welding conditions and shapes of friction stir welding. In addition, the asymmetric feature is considered in temperature and residual stress distribution. Heat transfer analysis is conducted using the commercial computational fluid dynamics program Fluent, and results are used in the finite element structural analysis with the ANSYS Multiphysics software. The calculated residual stresses are compared with experimental values using the X-ray diffraction method.

  16. Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments

    OpenAIRE

    Robinson, J.S; Tanner, D.A

    2003-01-01

    peer-reviewed Residual stresses develop in the aluminium alloy 7010 when the material is quenched from the solution heat treatment temperature. Residual stress measurements have been made using the X-ray diffraction technique and a longitudinal split sawcut method to determine the magnitude of residual stress that develops in specimens sectioned from large open die forgings as a result of (a) quenching these specimens into water at different temperatures, and (b) cold water quenching from ...

  17. Analysis and modeling of simulated residual stress of mold injected plastic parts by using robust correlations

    OpenAIRE

    Vargas, Carlos; Sierra, Juan; Posada, Juan; Botero-Cadavid, Juan F.

    2017-01-01

    ABSTRACT The injection molding process is the most widely used processing technique for polymers. The analysis of residual stresses generated during this process is crucial for the part quality assessment. The present study evaluates the residual stresses in a tensile strength specimen using the simulation software Moldex3D for two polymers, polypropylene and polycarbonate. The residual stresses obtained under a simulated design of experiment were modeled using a robust multivariable regressi...

  18. Residual stress measurement with focused acoustic waves and direct comparison with X-ray diffraction stress measurements

    International Nuclear Information System (INIS)

    Sathish, Shamachary; Moran, Thomas J.; Martin, Richard W.; Reibel, Richard

    2005-01-01

    The technique of measuring small changes in acoustic wave velocity due to external or internal stress has been used for quantitative determination of residual stress in materials during the last decade. Application of similar methodology with focused acoustic waves leads to residual stress measurement with spatial resolution of a few millimeters to a few microns. The high spatial resolution residual stress measurement required development of new methodologies in both the design of acoustic lenses and the instrumentation for acoustic wave velocity determination. This paper presents two new methodologies developed for the measurement of residual stress with spatial resolution of a few millimeters. The design of new type of acoustic lens for achieving higher spatial resolution in residual stress measurement is introduced. Development of instrumentation for high precision local surface wave velocity measurement will be presented. Residual stresses measured around a crack tip in a sample of Ti-6A1-4V using a focused beam will be compared with X-ray diffraction measurements performed on the same region of the sample. Results of residual stress measurements along a direction perpendicular to the electron beam weld in a sample of Ti-6A1-4V, determined using focused acoustic waves and X-ray diffraction technique, are also presented. The spatial resolution and penetration depth of X-rays and focused acoustic beams with reference to residual stress measurements are discussed

  19. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    Science.gov (United States)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  20. On the residual stress and picostructure of titanium nitride films. Pt. 1

    International Nuclear Information System (INIS)

    Perry, A.J.; Valvoda, V.; Rafaja, D.; Williamson, D.L.; Sartwell, B.D.

    1992-01-01

    Titanium nitride films, dual energy ion implanted with argon or krypton, have been studied with a Seemann-Bohlin fine focus goniometer at grazing angles in the range 2-10. The implantation of 1% of either gas has little effect on the lattice parameters or the residual stress. It is thought that the gas atoms are on substitutional lattice sites and are associated with vacancies created during the implantation process. At 4% of implanted gas, it precipitates out in the form of bubbles; in the case of argon these are crystalline and their lattice parameter is close to that for solid argon as recorded in the literature. The lattice parameters and the residual stresses are affected slightly by the implantation: argon reduces the former and makes the latter more tensile, whereas the krypton has the opposite effects. It is thought that the difference in behavior is due to a difference in size of the bubbles or to the greater compressibility of argon

  1. Relaxation of Shot-Peened Residual Stresses Under Creep Loading (Preprint)

    National Research Council Canada - National Science Library

    Buchanan, Dennis J; John, Reji; Brockman, Robert A

    2008-01-01

    .... Compressive residual stresses retard initiation and growth of fatigue cracks. During the component loading history, loading, or during elevated temperature static loading, such as thermal exposure and creep...

  2. X-ray residual stress analysis on machined and tempered HPSN-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Immelmann, S.; Welle, E.; Reimers, W. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1997-11-15

    The residual stress state induced by grinding and tempering of hot pressed silicon nitride (HPSN) samples is studied by X-ray diffraction. The results reveal that the residual stress values at the surface of the samples as well as their gradient within the penetration depth of the X-rays depend on the sintering aid and thus, on the glassy phase content of the HPSN. Tempering of the ground HPSN reduces the residual stress values due to microplastic deformation, whereas an oxidation of the glassy phase leads to the formation of compressive residual stresses. (orig.) 35 refs.

  3. Reduction of Residual Stresses in Sapphire Cover Glass Induced by Mechanical Polishing and Laser Chamfering Through Etching

    Directory of Open Access Journals (Sweden)

    Shih-Jeh Wu

    2016-10-01

    Full Text Available Sapphire is a hard and anti-scratch material commonly used as cover glass of mobile devices such as watches and mobile phones. A mechanical polishing using diamond slurry is usually necessary to create mirror surface. Additional chamfering at the edge is sometimes needed by mechanical grinding. These processes induce residual stresses and the mechanical strength of the sapphire work piece is impaired. In this study wet etching by phosphate acid process is applied to relief the induced stress in a 1” diameter sapphire cover glass. The sapphire is polished before the edge is chamfered by a picosecond laser. Residual stresses are measured by laser curvature method at different stages of machining. The results show that the wet etching process effectively relief the stress and the laser machining does not incur serious residual stress.

  4. Numerical weld modeling - a method for calculating weld-induced residual stresses

    International Nuclear Information System (INIS)

    Fricke, S.; Keim, E.; Schmidt, J.

    2001-01-01

    In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Bruemmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors - Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1-29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the 'last pass heat sink welding' (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program FERESA (finite element residual stress analysis) was based on a commercially

  5. A unified momentum equation approach for computing thermal residual stresses during melting and solidification

    Science.gov (United States)

    Yeo, Haram; Ki, Hyungson

    2018-03-01

    In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.

  6. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  7. An analytical method on the surface residual stress for the cutting tool orientation

    Science.gov (United States)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confi