WorldWideScience

Sample records for residual smoldering combustion

  1. Smoldering Combustion Experiments in Microgravity

    Science.gov (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  2. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  3. Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA

    Science.gov (United States)

    James Reardon; Gary Curcio; Roberta Bartlette

    2009-01-01

    Smoldering combustion of wetland organic soils in the south-eastern USA is a serious management concern. Previous studies have reported smoldering was sensitive to a wide range of moisture contents, but studies of soil moisture dynamics and changing smoldering combustion potential in wetland communities are limited. Linking soil moisture measurements with estimates of...

  4. Brown carbon in tar balls from smoldering biomass combustion

    Science.gov (United States)

    R. K. Chakrabarty; H. Moosmuller; L.-W. A. Chen; K. Lewis; W. P. Arnott; C. Mazzoleni; M. K. Dubey; C. E. Wold; W. M. Hao; S. M. Kreidenweis

    2010-01-01

    We report the direct observation of laboratory production of spherical, carbonaceous particles - "tar balls" - from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Angstrom coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent...

  5. NUMERICAL STUDY OF FORWARD SMOLDERING COMBUSTION (in Spanish)

    OpenAIRE

    Rein, Guillermo; Torero, Jose Luis; Ellzey, Janet L.

    2002-01-01

    (in English) Abstract This paper presents the results from the numerical study of the forward smoldering combustion process. The study is based on the transient model developed at University of Texas at Austin but extended with some modifications. In the model, the equations of conservation of energy and mass are solved. The chemistry is represented by a simplified scheme which consists of three reactions. Equations are discretized in space and solved in time. Neither thermal nor che...

  6. Brown carbon in tar balls from smoldering biomass combustion

    OpenAIRE

    R. K. Chakrabarty; H. Moosmüller; L.-W. A. Chen; K. Lewis; W. P. Arnott; C. Mazzolen; M. Dubey; C. E. Wold; W. M. Hao; S. M. Kreidenweis

    2010-01-01

    We report the direct observation of laboratory production of spherical, carbonaceous particles – "tar balls" – from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent imaginary part of its refractive index – optically defined as "brown carbon" – is an important component of tar balls. The spectrum of the...

  7. Brown carbon in tar balls from smoldering biomass combustion

    Science.gov (United States)

    Chakrabarty, R. K.; Moosmüller, H.; Chen, L.-W. A.; Lewis, K.; Arnott, W. P.; Mazzoleni, C.; Dubey, M. K.; Wold, C. E.; Hao, W. M.; Kreidenweis, S. M.

    2010-07-01

    We report the direct observation of laboratory production of spherical, carbonaceous particles - "tar balls" - from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent imaginary part of its refractive index - optically defined as "brown carbon" - is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV) spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths) and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth's radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere.

  8. Brown carbon in tar balls from smoldering biomass combustion

    Directory of Open Access Journals (Sweden)

    R. K. Chakrabarty

    2010-07-01

    Full Text Available We report the direct observation of laboratory production of spherical, carbonaceous particles – "tar balls" – from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC indicate that a class of light absorbing organic carbon (OC with wavelength dependent imaginary part of its refractive index – optically defined as "brown carbon" – is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth's radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere.

  9. Effect of density on forward and upward smoldering combustion of cellulosic material

    Science.gov (United States)

    Veronica, Sherly; Putri, R. H.; Fitriani, F.; Ramadhan, M. L.; Riki, M.; Reynaldo, S.; Imran, F. A.; Nugroho, Yulianto S.

    2017-03-01

    Smoldering is a slow, flameless and the most persistent type of combustion. Wildland fire or ground fire is an example of smoldering combustion which has become one of the most important issue in Indonesia and no effective solution has been found to solve this phenomenon yet. The organic materials contained in peatland can potentially become a flammable fuel with the presence of a trigger for wildland fire. In this experimental work tobacco material was used to study smoldering phenomenon. The relation between material density with temperature distribution and mass loss rate are conducted in the experiment. The transmissivity of the smoke produced by the smoldering combustion will also be analyzed. Experiments are carried out for the material density ranging from 0.12 - 0.2 g/cm3. The result showed that smoldering combustion are affected by density, due to the allowance of airflow and heat propagation. The result showed that material bed with the lowest density of 0.12 g/cm3 has the slowest smoldering velocity and mass loss rate while the material bed with the highest density of 0.2 g/cm3 has the fastest smoldering velocity and mass loss rate. The smoke took a longer period time to reach the bed surface at higher bed density.

  10. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    Science.gov (United States)

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  11. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  12. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  13. Measurement of the heat of smoldering combustion in straws and stalks by means of simultaneous thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    He, Fang; Yi, Weiming; Zha, Jianwen [School of Light Industry and Agricultural Engineering, Shandong University of Technology, Zibo, Shandong 255049 (China)

    2009-01-15

    In order to investigate reaction heat of agro-stalks smoldering, wheat straw, corn stalk, cotton stalk, millet straw, sorghum stalk and sweet potato rattan powder were smoldered and pyrolyzed in a simultaneous thermal analyzer (STA). The samples were placed in a platinum crucible (5 mm x 5 mm) with a lid (with a 1 mm hole) on a high-accuracy differential scanning calorimetry-heat capacity (DSC-cp) holder in the furnace of an STA and heated from 303 to 1073 K at a heating rate of 10 K min{sup -1}. Sweeping gas with a flow rate of 25 ml min{sup -1} was air and nitrogen during smoldering and pyrolysis, respectively. Results showed that the heat emission characteristic of the smoldering process differed remarkably from the pyrolysis process. Based on the analysis of the DSC curves, oxidative polymer degradation heat and char oxidation heat were obtained from experimental data. It showed that the oxidative polymer degradation heat of the agro-stalks is more than 6.92 MJ kg{sup -1} consumed matter, higher than that of cellulose paper. And char oxidation heat is around 23 MJ kg{sup -1} consumed matter, similar to that of cellulose paper, but higher than that of cigarette. Total net heat emission of smoldering in STA was also obtained. These data can be used as reference data in analyzing smoldering of agro-stalks under similar conditions. (author)

  14. Radioactivity of combustion residues from coal-fired power stations

    International Nuclear Information System (INIS)

    Vom Berg, W.; Puch, K.H.

    1996-01-01

    Each year in Germany, about 18 mill. t of combustion residues are produced from the combustion of bituminous coal and lignite. They are utilized to a great extent in the construction industry and in mining. During the combustion of coal, the radio-nuclides remain predominantly in the ash. The radionuclide concentration in lignite ash is within the range of that in natural soil. The combustion residues of bituminous coal contain radio-nuclides of a similar order of magnitude as also can occur in natural rock. The utilization of combustion residues in construction materials makes a negligible contribution to radiation exposure through retention in buildings. (orig.) [de

  15. Unburned carbon in combustion residues from mainly solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem H; Lind B; Lagerkvist A

    2012-02-15

    Unburned carbon in 21 combustion residues from solid biofuels is investigated using several methods of analysis (a.o. LOI and TOC), as well as micro-Raman spectroscopy. The results are used to discuss the distribution of unburned carbon in the residues from the different combustion plants and its nature (organic or elemental). The consequences of the elemental nature of carbon for environmental properties of the residue are noted

  16. Methodology for Evaluating Encapsulated Beneficial Uses of Coal Combustion Residuals

    Science.gov (United States)

    The primary purpose of this document is to present an evaluation methodology developed by the EPA for making determinations about environmental releases from encapsulated products containing coal combustion residuals.

  17. Smoldering News From STS-77 Endeavour

    Science.gov (United States)

    Koudelka, John M.; Fernandez-Pello, A. Carlos

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour for its second flight in May 1996, as part of the STS-77 mission. This experiment is part of a series of studies focused on the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of this study is to provide a better understanding of the controlling mechanisms of smoldering in microgravity and normal Earth gravity (1g). As with other forms of combustion, gravity affects the availability of air and transport of heat, and therefore, the rate of combustion. The results of the microgravity experiments will be compared with identical ones carried out in 1g. In addition, they will be used to verify present theories of smolder combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvements in fire safety practices. Two smoldering combustion tests with polyurethane foam were successfully accomplished during the STS-77 mission. The tests investigated smoldering combustion in a quiescent (no-flow) enriched oxygen environment, and in an air environment with a 2-mm/sec airflow through the fuel sample. The primary data from the tests are the ignition characteristics, spread rate, smolder reaction temperature, and products of combustion (solid and gas). On both the first mission on STS-69 and the second mission on STS-77, a smolder front propagated the length of the forced-flow samples, with the spread rate between the corresponding upward and downward 1g smolder rates. Neither of the quiescent cases propagated combustion (the first case was due in part to a problem with the experiment electronics). These

  18. Characterization and Mutagenicity of Biomass Smoke from Peat and Red Oak Fuel under Smolder and Flame Combustions

    Science.gov (United States)

    Although wildfire smoke is known to cause adverse health effects, less is known about the relative effects of wildfire smoke from different fuel types or combustion conditions. In this study, we describe a novel in-tandem application of controlled combustion and cryo-trapping tec...

  19. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  20. A Mathematical Model of Cigarette Smoldering Process

    Directory of Open Access Journals (Sweden)

    Chen P

    2014-12-01

    Full Text Available A mathematical model for a smoldering cigarette has been proposed. In the analysis of the cigarette combustion and pyrolysis processes, a receding burning front is defined, which has a constant temperature (~450 °C and divides the cigarette into two zones, the burning zone and the pyrolysis zone. The char combustion processes in the burning zone and the pyrolysis of virgin tobacco and evaporation of water in the pyrolysis zone are included in the model. The hot gases flow from the burning zone, are assumed to go out as sidestream smoke during smoldering. The internal heat transport is characterized by effective thermal conductivities in each zone. Thermal conduction of cigarette paper and convective and radiative heat transfer at the outer surface were also considered. The governing partial differential equations were solved using an integral method. Model predictions of smoldering speed as well as temperature and density profiles in the pyrolysis zone for different kinds of cigarettes were found to agree with the experimental data. The model also predicts the coal length and the maximum coal temperatures during smoldering conditions. The model provides a relatively fast and efficient way to simulate the cigarette burning processes. It offers a practical tool for exploring important parameters for cigarette smoldering processes, such as tobacco components, properties of cigarette paper, and heat generation in the burning zone and its dependence on the mass burn rate.

  1. Washing of Rocky Flats Combustible Residues (Conducted March - May 1995)

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Barr; Ann R. Schake; David A. Romero; Gordon D. Jarvinen

    1999-03-01

    The scope of this project is to determine the feasibility of washing plutonium-containing combustible residues using ultrasonic disruption as a method for dislodging particulate. Removal of plutonium particulate and, to a lesser extent, solubilized plutonium from the organic substrate should substantially reduce potential fire, explosion or radioactive release hazards due to radiolytic hydrogen generation or high flammability. Tests were conducted on polypropylene filters which were used as pre-filters in the rich-residue ion-exchange process at the Los Alamos Plutonium Facility. These filters are similar to the Ful-Flo{reg_sign} cartridges used at Rocky Flats that make up a substantial fraction of the combustible residues with the highest hazard rating. Batch experiments were run on crushed filter material in order to determine the amount of Pu removed by stirring, stirring and sonication, and stirring and sonication with the introduction of Pu-chelating water-soluble polymers or surfactants. Significantly more Pu is removed using sonication and sonication with chelators than is removed with mechanical stirring alone.

  2. Smoldering - The Fire Scenario

    OpenAIRE

    Torero, Jose L

    2000-01-01

    There are certain fire initiation scenarios that are particularly common, one of great significance is a fire initiated from the ignition of a porous fuel. Nearly 40% of the deaths due to fire can be traced to cigarette induced smolder of upholstered furniture and the mechanisms that control the process that transforms the weak smolder reaction occurring in the cigarette to a fire are still mostly unknown. A general description of this fire scenario and a discussion of its threats is pr...

  3. Field Measurements of Trace Gases and Aerosols Emitted by Undersampled Combustion Sources Including Wood and Dung Cooking Fires, Garbage and Crop Residue Burning, and Indonesian Peat Fires

    Science.gov (United States)

    Stockwell, C.; Jayarathne, T. S.; Goetz, D.; Simpson, I. J.; Selimovic, V.; Bhave, P.; Blake, D. R.; Cochrane, M. A.; Ryan, K. C.; Putra, E. I.; Saharjo, B.; Stone, E. A.; DeCarlo, P. F.; Yokelson, R. J.

    2017-12-01

    Field measurements were conducted in Nepal and in the Indonesian province of Central Kalimantan to improve characterization of trace gases and aerosols emitted by undersampled combustion sources. The sources targeted included cooking with a variety of stoves, garbage burning, crop residue burning, and authentic peat fires. Trace gas and aerosol emissions were studied using a land-based Fourier transform infrared spectrometer, whole air sampling, photoacoustic extinctiometers (405 and 870nm), and filter samples that were analyzed off-line. These measurements were used to calculate fuel-based emission factors (EFs) for up to 90 gases, PM2.5, and PM2.5 constituents. The aerosol optical data measured included EFs for the scattering and absorption coefficients, the single scattering albedo (at 870 and 405 nm), as well as the absorption Ångström exponent. The emissions varied significantly by source, although light absorption by both brown and black carbon (BrC and BC, respectively) was important for all non-peat sources. For authentic peat combustion, the emissions of BC were negligible and absorption was dominated by organic aerosol. The field results from peat burning were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat and compare well to the limited data available from other field studies. The EFs can be used with estimates of fuel consumption to improve regional emissions inventories and assessments of the climate and health impacts of these undersampled sources.

  4. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    Science.gov (United States)

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  5. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Beasley, G.A. [eds.

    1994-10-01

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Major leaching processes of combustion residues - Characterisation, modelling and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Yan Jinying

    1998-12-31

    Characterising leaching behaviour provides ample evidence to identify the major leaching processes of combustion residues. Neutralisation and chemical weathering govern the leaching reactions and control the release of elements from combustion residues, and are thus considered to be the major leaching processes. According to experimental investigations and geochemical simulations, the leaching kinetics of buffering materials are key issues for the understanding of the neutralizing processes. The acid neutralizing capacity at different pH levels depends mainly on the mineralogy of the combustion residues. In combustion residues, the dissolution of glass phases is expected to play an important role in a long-term neutralizing process. The neutralizing process in a flow system is significantly different from that in a batch system. The neutralizing ability of a combustion residue may be strongly affected by solute transport and carbonation reactions in a natural leaching environment. The chemical weathering mainly involves the matrix of combustion residues consisting mostly of glass phases. The dissolution kinetics of waste glass and other possible processes involved in the chemical weathering have been investigated and incorporated into a kinetic reactive transport model. Most important processes in the chemical weathering can be simulated simultaneously using this model. The results show that there is a complicated relationship between the factors controlling the long-term chemical weathering. The environmental impact of the glass dissolution cannot be neglected. Although the glass dissolution provides considerable buffering capacity in long-term weathering, the carbonate is usually a dominant buffering mineral in actual weathering processes. The transformation of carbonate should be considered as an important process in the chemical weathering. The formation of secondary minerals may considerably alter the mineralogy of the waste, and thus change the leaching

  7. Smoldering Multiple Myeloma

    OpenAIRE

    Gao, Minjie; Yang, Guang; Kong, Yuanyuan; Wu, Xiaosong; Shi, Jumei

    2015-01-01

    Smoldering multiple myeloma (SMM) is an asymptomatic precursor stage of multiple myeloma (MM) characterized by clonal bone marrow plasma cells (BMPC) ≥ 10% and/or M protein level ≥ 30 g/L in the absence of end organ damage. It represents an intermediate stage between monoclonal gammopathy of undetermined significance (MGUS) and symptomatic MM. The risk of progression to symptomatic MM is not uniform, and several parameters have been reported to predict the risk of progression. These include t...

  8. Smoldering multiple myeloma

    OpenAIRE

    Rajkumar, S. Vincent; Landgren, Ola; Mateos, María-Victoria

    2015-01-01

    Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder. SMM is distinguished from monoclonal gammopathy of undetermined significance by a much higher risk of progression to multiple myeloma (MM). There have been major advances in the diagnosis, prognosis, and management of SMM in the last few years. These include a revised disease definition, identification of several new prognostic factors, a classification based on underlying cytogenetic changes, and...

  9. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine.

    Science.gov (United States)

    Galhetas, Margarida; Lopes, Helena; Freire, Márcia; Abelha, Pedro; Pinto, Filomena; Gulyurtlu, Ibrahim

    2012-04-01

    This paper presents the study of the combustion of char residues produced during co-gasification of coal with pine with the aim of characterizing them for their potential use for energy. These residues are generally rich in carbon with the presence of other elements, with particular concern for heavy metals and pollutant precursors, depending on the original fuel used. The evaluation of environmental toxicity of the char residues was performed through application of different leaching tests (EN12457-2, US EPA-1311 TCLP and EA NEN 7371:2004). The results showed that the residues present quite low toxicity for some of pollutants. However, depending on the fuel used, possible presence of other pollutants may bring environmental risks. The utilization of these char residues for energy was in this study evaluated, by burning them as a first step pre-treatment prior to landfilling. The thermo-gravimetric analysis and ash fusibility studies revealed an adequate thermochemical behavior, without presenting any major operational risks. Fluidized bed combustion was applied to char residues. Above 700°C, very high carbon conversion ratios were obtained and it seemed that the thermal oxidation of char residues was easier than that of the coals. It was found that the char tendency for releasing SO(2) during its oxidation was lower than for the parent coal, while for NO(X) emissions, the trend was observed to increase NO(X) formation. However, for both pollutants the same control techniques might be applied during char combustion, as for coal. Furthermore, the leachability of ashes resulting from the combustion of char residues appeared to be lower than those produced from direct coal combustion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  11. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  13. Utilization of stabilized municipal waste combustion ash residues as construction material

    International Nuclear Information System (INIS)

    Shieh, C.S.

    1992-01-01

    Stabilized municipal waste combustion (MWC) ash residues were investigated for their potential as construction material that can be beneficially used in terrestrial and marine environments. End-use products, such as patio stones, brick pavers, solid blocks, and reef units, were fabricated and tested for their engineering and chemical characteristics. engineering feasibility and environmental acceptability of using stabilized ash residues as construction material are discussed in this paper. Ash samples were collected from two mass-burn facilities and one refuse derived fuel (RDF) facility in Florida

  14. Beneficial Use and Recycling of Municipal Waste Combustion Residues - A Comprehensive Resource Document

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, C.; Shepherd, P.

    1999-04-26

    This document summarizes information from worldwide sources on the beneficial use of residues from the combustion of municipal. The information presented, including results of numerous research projects, field demonstrations, and actual full-scale projects, demonstrates that the ash can be safely used. It includes data on ash characteristics, environmental considerations, guidance on selected ash use applications, and information on federal and state regulations and policies affecting ash use.

  15. List of Publicly Accessible Internet Sites Hosting Compliance Data and Information Required by the Disposal of Coal Combustion Residuals Rule

    Science.gov (United States)

    This page is to make accessible a list of the websites coal-fired power plants have created to post for the public to view with respect to their compliance with the disposal of coal combustion residuals final rule.

  16. Improved Combustion Products Monitor for the ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer – Combustion Products, used on the International Space Station as a warning monitor of smoldering or combustion events, is being...

  17. Improved Combustion Products Monitor for the ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer - Combustion Products is used on the International Space Station as a warning monitor of smoldering or combustion events and, after...

  18. Disposal of residue from sifting of combustible waste; Avsaettning av siktrest fraan foerbehandling av braennbart avfall

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik

    2012-11-01

    In waste to energy plants, unwanted species in the fuel may cause corrosion, deposits, agglomeration in the fuel bed, and emissions of pollutants. Countermeasures to such problems are often costly. For at least some of the waste, the fuel properties can be improved by introducing a pretreatment system in which the fine fraction is separated from the waste by sifting. This method has been studied in an earlier Waste Refinery project, WR-06. That study pointed at advantages in performance of the boiler plant and a rough economical analysis indicated substantial benefits. The drawback of the pretreatment was that the residue (the fine fraction) showed as high content of total organic carbon (TOC) as 37 %, by weight. Such a waste fraction is not allowed to be landfilled in Sweden. High TOC content is also a limiting factor for usage as a secondary construction material. To become an applicable pretreatment method, it is necessary to find an appropriate disposal method for the residue material. Present work investigates different possibilities to handle the sifting residue, assuming it has the same properties as in previous study. The residue from sifting needs further treatment, preferably with energy recovery. There are some alternatives, such as combustion, gasification, anaerobic or aerobic digestion. To reduce problems associated by combustion, the waste may be burnt in another more suitable furnace. An alternative is gasification, but that treatment method is not yet an established process for waste fuels. Another option is treatment by anaerobic or aerobic digestion. The high concentrations of metals, however, limit the use of the biologically treated waste to landfilling sites, where it may be utilized as a construction material. The high metal concentrations in the sifting residue imply that it must be kept separate from other biodegradable wastes which are used to produce fertilizers. Thus, this treatment alternative will likely require substantial new

  19. [Smoldering multiple myeloma].

    Science.gov (United States)

    Fouquet, G; Guidez, S; Herbaux, C; Demarquette, H; Leleu, X

    2014-04-01

    Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell neoplasia, characterized by monoclonal plasma cell proliferation in the absence of end-organ damage, but with a high risk of progression to multiple myeloma. It has therefore to be distinguished from monoclonal gammapathy of undetermined significance (MGUS), which has a much lower risk of progression, but also from multiple myeloma, which remains an incurable disease and requires a specific treatment. The critical question in the management of SMM is whether an early therapeutic strategy could help delaying the progression to multiple myeloma, in order to lower the risk of serious complications related to this progression, or even to cure the disease. This early treatment could not be proposed to all SMM patients, who are indeed asymptomatic, and in whom the risk of toxicity could make it difficult to justify the potential benefit obtained. The challenge is to target early at diagnosis SMM patients with a high risk of progression, using available routine tests sufficiently reliable to warrant the therapeutic sanction which relies on it. Today however, apart from randomized studies, recommendations are to maintain therapeutic abstention in SMM patients. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  20. Smoldering multiple myeloma.

    Science.gov (United States)

    Rajkumar, S Vincent; Landgren, Ola; Mateos, María-Victoria

    2015-05-14

    Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder. SMM is distinguished from monoclonal gammopathy of undetermined significance by a much higher risk of progression to multiple myeloma (MM). There have been major advances in the diagnosis, prognosis, and management of SMM in the last few years. These include a revised disease definition, identification of several new prognostic factors, a classification based on underlying cytogenetic changes, and new treatment options. Importantly, a subset of patients previously considered SMM is now reclassified as MM on the basis of biomarkers identifying patients with an ≥80% risk of progression within 2 years. SMM has assumed greater significance on the basis of recent trials showing that early therapy can be potentially beneficial to patients. As a result, there is a need to accurately diagnose and risk-stratify patients with SMM, including routine incorporation of modern imaging and laboratory techniques. In this review, we outline current concepts in diagnosis and risk stratification of SMM, and provide specific recommendations on the management of SMM. © 2015 by The American Society of Hematology.

  1. Smoldering Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Minjie Gao

    2015-01-01

    Full Text Available Smoldering multiple myeloma (SMM is an asymptomatic precursor stage of multiple myeloma (MM characterized by clonal bone marrow plasma cells (BMPC ≥ 10% and/or M protein level ≥ 30 g/L in the absence of end organ damage. It represents an intermediate stage between monoclonal gammopathy of undetermined significance (MGUS and symptomatic MM. The risk of progression to symptomatic MM is not uniform, and several parameters have been reported to predict the risk of progression. These include the level of M protein and the percentage of BMPC, the proportion of immunophenotypically aberrant plasma cells, and the presence of immunoparesis, free light-chain (FLC ratio, peripheral blood plasma cells (PBPC, pattern of serum M protein evolution, abnormal magnetic resonance imaging (MRI, cytogenetic abnormalities, IgA isotype, and Bence Jones proteinuria. So far treatment is still not recommended for SMM, because several trials suggested that patients with SMM do not benefit from early treatment. However, the Mateos et al. trial showed a survival benefit after early treatment with lenalidomide plus dexamethasone in patients with high-risk SMM. This trial has prompted a reevaluation of early treatment in an asymptomatic patient population.

  2. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires.

    Science.gov (United States)

    Kim, Yong Ho; Warren, Sarah H; Krantz, Q Todd; King, Charly; Jaskot, Richard; Preston, William T; George, Barbara J; Hays, Michael D; Landis, Matthew S; Higuchi, Mark; DeMarini, David M; Gilmour, M Ian

    2018-01-24

    The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed. A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella . The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively. PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10

  3. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  4. Identification of accelerants, fuels and post-combustion residues using a colorimetric sensor array.

    Science.gov (United States)

    Li, Zheng; Jang, Minseok; Askim, Jon R; Suslick, Kenneth S

    2015-09-07

    A linear (1 × 36) colorimetric sensor array has been integrated with a pre-oxidation technique for detection and identification of a variety of fuels and post-combustion residues. The pre-oxidation method permits the conversion of fuel vapor into more detectable species and therefore greatly enhances the sensitivity of the sensor array. The pre-oxidation technique used a packed tube of chromic acid on an oxide support and was optimized in terms of the support and concentration. Excellent batch to batch reproducibility was observed for preparation and use of the disposable pre-oxidation tubes. Twenty automotive fuels including gasolines and diesel from five gasoline retailers were individually identifiable with no confusions or misclassifications in quintuplicate trials. Limits of detection were at sub-ppm concentrations for gasoline and diesel fuels. In addition, burning tests were performed on commonly used fire accelerants, and clear differentiation was achieved among both the fuels themselves and their volatile residues after burning.

  5. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  6. Characterization of residues from waste combustion in fluidized bed boilers. Evaluation report

    International Nuclear Information System (INIS)

    Hagman, U.; Elander, P.

    1996-04-01

    In this report a thorough characterization of the solid residues from municipal solid waste combustion in a Kvaerner EnviroPower bubbling fluidized bed boiler in Lidkoeping, is presented. Three different end products are generated, namely bottom ash, cyclone ash, and filter ash. The bottom ash, consisting of bed ash and hopper ash, is screened and useful bed material recycled. In the characterization, also the primary constituents bed ash and hopper ash have been included. A chemical characterization have been performed including total inorganic contents, content of unburnt matter, leaching behaviour (availability tests, column tests, pH-static tests) and leaching tests according to certain standards for classification (AFX31-210, DIN38414, TCLP). Physical characterization have included grain size distribution, grain density, compaction properties and stabilization of cyclone ash with subsequent testing of comprehensive strength and saturated hydraulic conductivity. From an environmental point of view, the quality of the bottom ash and probably the cyclone ash from fluidized bed combustion as determined in this study, indicate a potential for utilization. Utilization of the bottom ash could be accepted in certain countries, e.g. France, according to their current limit values. In other countries, e.g. Sweden, no general limit values are given and utilization have to be applied for in each case. The judgement is then based, not only on total contents in the residue and its leaching behaviour, but also on the specific environmental conditions at the site. 7 refs, 17 figs, 12 tabs

  7. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    Science.gov (United States)

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  8. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features.

    Science.gov (United States)

    Fernandes, Milena B; Skjemstad, Jan O; Johnson, Bruce B; Wells, John D; Brooks, Peter

    2003-06-01

    Scanning electron microscopy, surface area determination, elemental analysis, organic matter extraction and solid-state cross polarization/magic angle spinning and Bloch decay/magic angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy were used to investigate distinctive features among carbonaceous combustion residues. Black carbon (BC) samples included diesel soot, urban dust, carbon black, chimney soot, vegetation fire residues, wood and straw charcoals. Particles varied from small spheres (100 m(2)/g), to large layered structures in plant-derived BC (generally 1 micrometer) liquid-like structures, while spherules >100 nm were unique to urban dust. The ratios of amorphous to soot carbon (SC) (isolated by thermal degradation) were not necessarily correlated with the degree of aromaticity estimated from H/C ratios. In particular, values of SC in diesel soot were clearly overestimated. Solvent-extractable organic matter (SEOM) was 13% for urban dust, chimney and diesel soot. SEOM is thought to clog pores or to form large waxy globules, hence reducing surface areas. The ratio of polar/nonpolar SEOM was generally 30 for plant-derived BC. NMR analysis revealed essentially one chemical shift in the aromatic C region of charcoals, while diesel soot also showed important aliphatic contributions. Aliphatic and oxygenated C predominated over aryl C in urban dust and chimney soot. These morphological and chemical characteristics of the BC samples are discussed in terms of their environmental implications.

  9. Leaching and soil/groundwater transport of contaminants from coal combustion residues

    International Nuclear Information System (INIS)

    Hjelmar, O.; Hansen, E.A.; Larsen, F.; Thomassen, H.

    1992-01-01

    In this project the results of accelerated laboratory leaching tests on coal fly ash and flue gas desulfurization (FGD) products from the spray dryer absorption process (SDA) were evaluated by comparison to the results of large scale lysimeter leaching tests on the same residues. The mobility of chromium and molybdenum - two of the kev contaminants of coal combustion residue leachates - in various typical soil types was investigated by batch and column methods in the laboratory. Some of the results were confirmed by field observations at an old coal fly ash disposal site and by a lysimeter attenuation test with coal fly ash leachate on a clayed till. A large number of groundwater transport models and geochemical models were reviewed, and two of the models (Gove-Stollenwerk and CHMTRNS) were modified and adjusted and used to simulate column attenuation tests performed in the laboratory. One of the models (Grove-Stollenwerk) was used to illustrate a recommended method of environmental impact assessment, using lysimeter leaching data and laboratory column attenuation data to describe the emission and migration of Mo from a coal fly ash disposal site

  10. The Behavior of Mercury in Coal Combustion Residue-Contaminated Sediments

    Science.gov (United States)

    Gofstein, T.; Heyes, A.

    2014-12-01

    Coal combustion residues (CCRs), the products of coal combustion, contain high concentrations of heavy metals such as mercury. Recent structural failures of on-site containment ponds and leaching of CCRs has potentially endangered the health of adjacent water bodies. This study examines the influence of CCR enrichment of river sediments through the study of mercury, an abundant constituent of CCRs, and the concomitant production of methylmercury. We hypothesized that CCR contamination increases the exposure to mercury for aquatic life through leaching and resuspension mechanisms. Resuspension experiments were conducted using CCR-contaminated sediments from the Dan River and uncontaminated sediments enriched with 0%, 10%, and 30% CCRs in the laboratory. Sediments were sieved to obtain the silt-clay fraction, which was then resuspended in solution with a dispersant to obtain the separate silt and clay fractions and then analyzed for total mercury concentrations. We found that CCR particles and the mercury they contain are present primarily in the silt and clay fractions of sediment and there is a direct relationship between CCR concentrations and total mercury concentrations. These findings have implications for both the bioavailability of mercury to methylating bacteria, higher organisms prone to direct ingestion of fine particles, CCR spill event remediation, current industrial waste disposal practices, and further research required in this field. Our seven day incubations of river sediment cores enriched with CCRs did not increase methylmercury in porewater above controls, suggesting that there is no immediate risk of increased methylmercury bioaccumulation, however this does not necessarily reflect the long-term effects of CCRs on river ecology, which requires further research.

  11. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion.

    Science.gov (United States)

    Viganò, F; Consonni, S; Grosso, M; Rigamonti, L

    2010-01-01

    Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor.

  12. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  13. Boron and strontium isotopic characterization of coal combustion residuals: validation of new environmental tracers.

    Science.gov (United States)

    Ruhl, Laura S; Dwyer, Gary S; Hsu-Kim, Heileen; Hower, James C; Vengosh, Avner

    2014-12-16

    In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs.

  14. Quality of diets with fluidized bed combustion residue treatment: I. Rat trials

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, N.J.; Reid, R.L.; Head, M.K.; Hern, J.L.; Bennett, O.L.

    Feeding trials were conducted with rats (Rattus rattus) to examine effects of soil application, or dietary inclusion, of fluidized bed combustion residue (FBCR) on the composition and quality of foods. Four diets (vegetable protein, egg protein, chicken, chicken + dietary FBCR) prepared with either FBCR or lime (control) treatments, were fed to weanling, female rats in three growth and reproduction trials. Intake, growth rate, and composition of body and organs of rats were measured. Rats in one trial were bred, their litters maintained on dietary treatments, and the offspring rebred. Treatment (FBCR vs. lime) x diet interactions on food composition and animal responses generally were not significant. Treatment had little effect on element composition of diets; mineral concentrations were in normal ranges. Diet treatment with FBCR depressed (P<0.01) food intake and growth of rats in one trial, but not in others, and had no effect (P<0.05) on body water, protein, ether extract, or gross energy composition. Some differences in element concentrations in the carcass and organs of rats and pups resulted from FBCR treatment, but effects were small and inconsistent. Litters from the first reproductive cycle appeared normal, except for animals fed the chicken + dietary FBCR treatment, on which pups showed poor growth and anemia. Offspring from certain diets were rebred and litters showed a high mortality, although this was not associated specifically with FBCR treatment. Results indicated no major detrimental effects on food composition, or growth, tissue element accumulation, and reproduction in the rat relating to use of FBCR as a soil amendment. 20 refs., 9 tabs.

  15. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions

    Science.gov (United States)

    Fushimi, Akihiro; Saitoh, Katsumi; Hayashi, Kentaro; Ono, Keisuke; Fujitani, Yuji; Villalobos, Ana M.; Shelton, Brandon R.; Takami, Akinori; Tanabe, Kiyoshi; Schauer, James J.

    2017-08-01

    Open burning of crop residue is a major source of atmospheric fine particle emissions. We burned crop residues (rice straws, barley straws, wheat straws, and rice husks produced in Japan) in an outdoor chamber and measured particle mass, composition (elemental carbon: EC, organic carbon: OC, ions, elements, and organic species), and oxidative potential in the exhausts. The fine particulate emission factors from the literature were within the range of our values for rice straws but were 1.4-1.9 and 0.34-0.44 times higher than our measured values for barley straw and wheat straw, respectively. For rice husks and wheat straws, which typically lead to combustion conditions that are relatively mild, the EC content of the particles was less than 5%. Levoglucosan seems more suitable as a biomass burning marker than K+, since levoglucosan/OC ratios were more stable than K+/particulate mass ratios among crop species. Stigmasterol and β-sitosterol could also be used as markers of biomass burning with levoglucosan or instead of levoglucosan. Correlation analysis between chemical composition and combustion condition suggests that hot or flaming combustions enhance EC, K+, Cl- and polycyclic aromatic hydrocarbons emissions, while low-temperature or smoldering combustions enhance levoglucosan and water-soluble organic carbon emissions. Oxidative potential, measured with macrophage-based reactive oxygen species (ROS) assay and dithiothreitol (DTT) assay, of open burning fine particles per particulate mass as well as fine particulate emission factors were the highest for wheat straws and second highest for rice husks and rice straws. Oxidative potential per particulate mass was in the lower range of vehicle exhaust and atmosphere. These results suggest that the contribution of open burning is relatively small to the oxidative potential of atmospheric particles. In addition, oxidative potential (both ROS and DTT activities) correlated well with water-insoluble organic species

  16. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  17. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines

    International Nuclear Information System (INIS)

    Wu, Yuhu; Kumar, Madan; Shen, Tielong

    2016-01-01

    Highlights: • An in-cylinder pressure based measuring method for the RGF is derived. • A stochastic logical dynamical model is proposed to represent the transient behavior of the RGF. • The receding horizon controller is designed to reduce the variance of the RGF. • The effectiveness of the proposed model and control approach is validated by the experimental evidence. - Abstract: In four stroke internal combustion engines, residual gas from the previous cycle is an important factor influencing the combustion quality of the current cycle, and the residual gas fraction (RGF) is a popular index to monitor the influence of residual gas. This paper investigates the cycle-to-cycle transient behavior of the RGF in the view of systems theory and proposes a multi-valued logic-based control strategy for attenuation of RGF fluctuation. First, an in-cylinder pressure sensor-based method for measuring the RGF is provided by following the physics of the in-cylinder transient state of four-stroke internal combustion engines. Then, the stochastic property of the RGF is examined based on statistical data obtained by conducting experiments on a full-scale gasoline engine test bench. Based on the observation of the examination, a stochastic logical transient model is proposed to represent the cycle-to-cycle transient behavior of the RGF, and with the model an optimal feedback control law, which targets on rejection of the RGF fluctuation, is derived in the framework of stochastic logical system theory. Finally, experimental results are demonstrated to show the effectiveness of the proposed model and the control strategy.

  18. Nickel, sulfur and vanadium determination in residues from crude oil distillation by ICPOES after microwave-induced combustion

    International Nuclear Information System (INIS)

    Mello, P.A.; Pereira, J.S.F.; Dressler, V.L.; Flores, E.M.M.

    2009-01-01

    Full text: A microwave-induced combustion method is proposed for digestion of atmospheric and vacuum residues from heavy crude oil for simultaneous Ni, S and V determination by ICPOES. Ammonium nitrate solution (6 M, 50 μl) was used as igniter. Operational parameters were investigated as maximum sample mass, initial O 2 pressure, type and concentration of absorbing solutions (H 2 O, H 2 O 2 , and HNO 3 ) and the necessity of additional reflux steps. Accuracy was better than 98 %. Limits of detection were 0.2, 2 and 0.1 mg kg -1 for Ni, S and V, respectively. (author)

  19. Parametric study of the heat transfer coefficient in bi-dimensional smoldering simulation

    Directory of Open Access Journals (Sweden)

    Ghabi Chekib

    2007-01-01

    Full Text Available In this paper, we present the transient modeling results of 2-D forward smoldering in a cylindrical configuration filled with a foam porous material. The objective of the study is to explain the effect of the heat losses from lateral boundaries in the front smolder propagation. The developed numerical code is capable of predicting the fire initiation and the smoldering (slow-burning characteristics of foam insulation materials. The finite volume discretization and the bi-conjugate gradient stabilized method are used to solve the system governing equations. The chemical kinetics model is based on a first order pyrolysis reaction, followed by oxidation of the porous fuel and the carbonaceous char residual. This second oxidation reaction might promote the transition from smoldering to flaming and thus fire initiation. The gas and solid temperature, and the oxygen and the char mass fraction two-dimensional temporal evolutions are computed. Different heat and mass transfer coefficients are used to simulate the heat losses to the surrounding. Non-reacted foam regions are observed near the side wall, confirming experimental observations. The base case is chosen to represent the experimental conditions reported in the literature. The numerical predictions show very good agreement with the published experimental and 1-D numerical results.

  20. Fly ash classification efficiency of electrostatic precipitators in fluidized bed combustion of peat, wood, and forest residues.

    Science.gov (United States)

    Ohenoja, Katja; Körkkö, Mika; Wigren, Valter; Österbacka, Jan; Illikainen, Mirja

    2018-01-15

    The increasing use of biomasses in the production of electricity and heat results in an increased amount of burning residue, fly ash which disposal is becoming more and more restricted and expensive. Therefore, there is a great interest in utilizing fly ashes instead of just disposing of it. This study aimed to establish whether the utilization of fly ash from the fluidized bed combustion of peat, wood, and forest residues can be improved by electrostatic precipitator separation of sulfate, chloride, and some detrimental metals. Classification selectivity calculations of electrostatic precipitators for three different fuel mixtures from two different power plants were performed by using Nelson's and Karnis's selectivity indices. Results showed that all fly ashes behaved similarly in the electrostatic separation process SiO 2 resulted in coarse fractions with Nelson's selectivity of 0.2 or more, while sulfate, chloride, and the studied detrimental metals (arsenic, cadmium, and lead) enriched into fine fractions with varying selectivity from 0.2 to 0.65. Overall, the results of this study suggest that it is possible to improve the utilization potential of fly ashes from fluidized bed combustion in concrete, fertilizer, and earth construction applications by using electrostatic precipitators for the fractionating of fly ashes in addition to their initial function of collecting fly ash particles from flue gases. The separation of the finer fractions (ESP 2 and 3) from ESP 1 field fly ash is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Environmental performance of the Kvaerner BFB boilers for MSW combustion -- Analysis of gaseous emissions and solid residues

    International Nuclear Information System (INIS)

    Lundberg, M.; Hagman, U.; Andersson, B.A.; Olofsson, J.

    1997-01-01

    Kvaerner Pulping AB (formerly Kvaerner EnviroPower AB) has, due to the stringent demands on emissions performance, developed a state-of-the-art bubbling fluidized bed boiler (BFB) designed for waste fuel firing with very low emissions to the air. A complete evaluation of the environmental performance of the Kvaerner BFB technique for MSW combustion is now possible thanks to a thorough characterization study of the solid residues from the Lidkoeping plant. This paper gives an overall mapping of the emissions performance. Data from the operating plants on solid residue characteristics and leachability, heavy metal and dioxin emissions, nitrogen oxides, carbon monoxide, acid gases, and other emissions to air are presented. Comparisons are made with legislative limits and data from the mass burning technique. It is concluded that the emissions are low compared both with data from traditional mass burn incinerators and with legislative limits in the USA and Europe. Furthermore, the bottom and cyclone ash characteristics are shown not to cause any particular problem from an environmental point of view, and that the leachability is well below the existing legislative limits in Europe and the USA. The results show that fluidized bed combustion of municipal solid waste is a very competitive alternative to the traditional mass burning technique in every respect

  2. Energy Generation from Horse Husbandry Residues by Anaerobic Digestion, Combustion, and an Integrated Approach

    Directory of Open Access Journals (Sweden)

    Meike Nitsche

    2017-02-01

    Full Text Available Horse-related activities often occur close to urban areas, where acreage for horse manure disposal is scarce, and subsequently alternative recovery options are necessary. Anaerobic digestion, direct combustion, and the integrated generation of solid fuel and biogas from biomass (IFBB process are potential techniques focusing on energy provision. In this study, samples of horse faeces were analysed for chemical composition as pure feedstock and in mixture with straw or wood shavings, as well as for energy yield by biogas production or from combustion of solid fuel. It was observed that chemical properties of faeces, in a mixture with wood shavings, were promising for direct combustion, but achieved low methane yields. The methane yield of pure faeces and the straw mixture was 222.33 ± 13.60 and 233.01 ± 31.32 lN·kg-1 volatile solids (VSadded, respectively. The IFBB process divided the biomass into a press cake with reduced mineral concentration and a press fluid. Methane yields of press fluids were low (108.2 lN·kg-1 VSadded, on average. The chemical composition of the press cake allowed for combustion and led to a higher gross energy potential than anaerobic digestion (two-fold higher for pure manure and the mixture with straw, and five-fold higher for the mixture with shavings. Consequently, the gross energy potential of IFBB is higher compared to anaerobic digestion, however it should be noted that local conditions might favour the implementation of anaerobic digestion.

  3. New approaches to smoldering myeloma.

    Science.gov (United States)

    Mateos, María-Victoria; San Miguel, Jesús F

    2013-12-01

    Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell disorder characterized by the presence of one or both features of serum M-protein ≥ 30 g/L and bone marrow plasma cell infiltration ≥ 10 %. However, myeloma-related symptomatology is absent from this condition. The risk of progression to active MM is not uniform, and several markers are useful for identifying SMM patients at high risk of progression to active MM. These include the size of the M-protein and the infiltration in the bone marrow, the serum-free light-chain ratio, the presence of immunoparesis and percentage of plasma cell with aberrant phenotype by flow cytometry, or the presence of focal lesions in magnetic resonance imaging. Overall, the presence of these factors identifies patients who have a 50 % probability of progression at 2 years, and the forthcoming challenge will be to identify ultra-high-risk patients who have an 80 % risk of progression at 2 years. The current standard of care is not to treat until progression to symptomatic disease occurs. Several trials of melphalan, thalidomide and bisphosphonates have been conducted in the overall SMM patient population to examine the delay in time to progression (TTP) to symptomatic disease, but these have shown no significant benefit. However, a randomized trial that focused on high-risk SMM patients allocated to receive early treatment with lenalidomide plus dexamethasone versus observation did report a significant benefit with respect to TTP and overall survival. In summary, high-risk SMM patients should be targetted for early treatment, and more so efforts should be made to identify the ultra-high-risk subgroup within the high-risk SMM patient population which may be considered as early MM and thereby candidates for receiving therapy before they develop myeloma-related symptomatology.

  4. Baseline mutational patterns and sustained MRD negativity in patients with high-risk smoldering myeloma.

    Science.gov (United States)

    Mailankody, Sham; Kazandjian, Dickran; Korde, Neha; Roschewski, Mark; Manasanch, Elisabet; Bhutani, Manisha; Tageja, Nishant; Kwok, Mary; Zhang, Yong; Zingone, Adriana; Lamy, Laurence; Costello, Rene; Morrison, Candis; Hultcrantz, Malin; Christofferson, Austin; Washington, Megan; Boateng, Martin; Steinberg, Seth M; Stetler-Stevenson, Maryalice; Figg, William D; Papaemmanuil, Elli; Wilson, Wyndham H; Keats, Jonathan J; Landgren, Ola

    2017-10-10

    Early results of a prospective phase 2 clinical trial of carfilzomib, lenalidomide, and dexamethasone followed by lenalidomide maintenance in high-risk smoldering myeloma showed promising results that were previously published. Here, we provide novel insights into the genetic landscape of high-risk smoldering myeloma and information on sustained minimal residual disease (MRD) negativity with an expanded cohort of patients. Eighteen patients with high-risk smoldering myeloma were enrolled between 29 May 2012, and 14 January 2014. We included patients with newly diagnosed multiple myeloma enrolled in a parallel trial who received the same therapy (reference group). The overall response rate was 100%. With median potential follow-up of 43.3 months, 10 (63%) remain in MRD negativity, and the estimated 4-year progression-free and overall survival rates are 71% and 100%, respectively. Importantly, we report differences in mutational patterns in patients with high-risk smoldering myeloma and newly diagnosed multiple myeloma, reflected in a lower frequency of mutations in significant myeloma genes (6.6% vs 45%) and NFKB pathway genes (6.6% vs 25%). Treatment with carfilzomib, lenalidomide, and dexamethasone followed by lenalidomide maintenance was associated with a 100% response rate and 63% MRD negativity with a safety profile consistent with previous reports for this regimen. This study had a small numbers of participants, but there seemed to be important differences in the genetic landscape of patients with high-risk smoldering myeloma and those with newly diagnosed multiple myeloma, suggestive of a more treatment-responsive biology in early disease.

  5. A smoldering / indolent myeloma with extensive abdominal ...

    African Journals Online (AJOL)

    A case of indolent/smoldering myeloma in a 70-year-old man is reported. He presented with an unusual multiple symptomatic myeloma with extramedulary impairment and absence of bone pain. He was treated with pulses of high-dose dexamethasone with commendable clinical improvement. Keywords: myeloma ...

  6. The use of sewage sludge as additive to avoid operational problems at combustion of shredder residues

    International Nuclear Information System (INIS)

    Gyllenhammar, Marianne

    2010-01-01

    When shredder light fraction (SLF) from recovery of metal scrap is energy recovered it is usually mixed with more than 90% of other wastes. SLF is a fuel with high energy content but also with relatively high chlorine and metal content and could cause deposit and corrosion problems in incineration plants. Sewage sludge has previously been shown to reduce deposition and corrosion problems in combustion of alkali and chlorine containing biomass. In this work 20 % SLF (by energy content) has been combusted together with municipal solid waste and industrial wastes, with and without addition of 3 % (by energy content) sewage sludge. The initial fireside corrosion rate was then compared to the corrosion rate during combustion of the normal fuel mix, i.e. only municipal solid waste and industrial wastes. The tests were done at the 20 MW fluidized bed boiler of Lidkoping heat production plant. During the tests air-cooled corrosion and deposit probes were exposed for 24 hours. Deposit probes were placed at three different flue gas temperatures - in the combustion chamber, upstream and downstream the convection pass. The corrosion probes were placed upstream the convection pass and on the probes there were three different materials at three different water temperatures (280, 350 and 420 degree Celsius). The tests showed that sewage sludge could help avoiding deposition and corrosion problems when incinerating SLF. The amount of deposits was reduced and the content of the deposits was less corrosive when sewage sludge was added. The project was financed by Waste Refinery as a collaboration project between Stena Metall AB, Metso AB, High Temperature Corrosion Center at Chalmers University of Technology, SP Technical Research Institute of Sweden and Lidkopings Varmeverk. (author)

  7. Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char.

    Science.gov (United States)

    Deng, Shuanghui; Tan, Houzhang; Wang, Xuebin; Yang, Fuxin; Cao, Ruijie; Wang, Zhao; Ruan, Renhui

    2017-09-01

    Gaining the valuable fuels from sewage sludge is a promising method. In this work, the fast pyrolysis characteristics of sewage sludge (SS), wheat straw (WS) and their mixtures in different proportions were carried out in a drop-tube reactor. The combustion reactivity of the residual char obtained was investigated in a thermogravimetric analyzer (TGA). Results indicate that SS and WS at different pyrolysis temperatures yielded different characteristic gas compositions and product distributions. The co-pyrolysis of SS with WS showed that there existed a synergistic effect in terms of higher gas and bio-oil yields and lower char yield, especially at the WS adding percentage of 80wt%. The addition of WS to SS increased the carbon content in the SS char and improved char porous structures, resulting in an improvement in the combustion reactivity of the SS char. The research results can be used to promote co-utilization of sewage sludge and biomass. Copyright © 2017. Published by Elsevier Ltd.

  8. Genomic analysis of high-risk smoldering multiple myeloma

    OpenAIRE

    López-Corral, Lucía; Mateos, María Victoria; Corchete, Luis A.; Sarasquete, María Eugenia; de la Rubia, Javier; de Arriba, Felipe; Lahuerta, Juan-José; García-Sanz, Ramón; San Miguel, Jesús F.; Gutiérrez, Norma C.

    2012-01-01

    Smoldering myeloma is an asymptomatic plasma cell dyscrasia with a heterogeneous propensity to progress to active myeloma. In order to investigate the biology of smoldering myeloma patients with high risk of progression, we analyzed the genomic characteristics by FISH, SNP-arrays and gene expression profile of a group of patients with high-risk smoldering myeloma included in a multicenter randomized trial. Chromosomal abnormalities detected by FISH and SNP-arrays at diagnosis were not associa...

  9. Smoldering medullary thyroid carcinoma liver metastasis 37 years after resection of an organ-confined tumor.

    Science.gov (United States)

    Waters, Kevin M; Ali, Syed Z; Erozan, Yener S; Olson, Matthew T

    2015-01-01

    Medullary thyroid carcinoma (MTC) is an uncommon thyroid tumor that usually behaves aggressively. After resection, serological surveillance for calcitonin and carcinoembryonic antigen (CEA) is used to prompt a radiographic search for metastatic disease. We report a case of a 65-year-old woman who presented with a large liver metastasis 37 years after she underwent thyroidectomy for organ-confined MTC. Her clinical course over that time showed a smoldering pattern in which she was symptom free until presentation even though her serum calcitonin and CEA concentrations were elevated for 17 years, and a small equivocal radiographic lesion in the liver was detected 10 years prior to presentation. Cytopathology from an ultrasound guided fine needle aspiration of the hepatic lesion was diagnostic for metastatic MTC. This case highlights the ability for smoldering residual MTC to suddenly transform to aggressive biological behavior after a long period of clinical remission. © 2014 Wiley Periodicals, Inc.

  10. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    Energy Technology Data Exchange (ETDEWEB)

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  11. Smoldering Multiple Myeloma: Emerging Concepts and Therapeutics.

    Science.gov (United States)

    Sundararajan, Srinath; Kumar, Abhijeet; Korde, Neha; Agarwal, Amit

    2016-04-01

    Smoldering multiple myeloma (SMM) is a pre-malignant condition with an inherent risk for progression to multiple myeloma (MM). The 2014 IMWG guidelines define smoldering multiple myeloma as a monoclonal gammopathy disorder with serum monoclonal protein (IgG or IgA) ≥30 g/L or urinary monoclonal protein ≥500 mg per 24 h and/or clonal bone marrow plasma cells 10-60 % without any myeloma-defining events or amyloidosis. The risk for progression of SMM to MM vary based on clinical, laboratory, imaging, and molecular characteristics. Observation, with periodic monitoring is the current standard of care for SMM. Over last few years, research advances in SMM have led to the delineation of newer risk factors for progression and identification of a "high-risk" group that would potentially benefit from early treatment. This review focuses on advances in the SMM risk-stratification model and recent clinical trials in this patient population.

  12. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-11-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE, allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority

  13. Dilemmas in Treating Smoldering Multiple Myeloma

    OpenAIRE

    Ahn, Inhye E.; Mailankody, Sham; Korde, Neha; Landgren, Ola

    2014-01-01

    Novel therapies hold promise for high-risk smoldering multiple myeloma (SMM). Recent studies suggest that modern combination approaches can be options for high-risk SMM to obtain deep molecular responses with favorable toxicity profiles. Although pioneering treatment trials based on small numbers of patients suggest progression-free and overall survival benefits, application of the data to real-life practice remains to be validated. Therapeutic modulation of disease tempo, disease burden, clo...

  14. Smoldering Wave-Front Velocity in Fiberboard.

    Science.gov (United States)

    1980-09-01

    upstream of phases. least 2 weeks or until moisture the plates. Then a Bunsen burner equilibrium had been reached. When flame (burning natural gas) was...important parameters of in- plates. If necessary, the burner flame terest is the propagation velocity of Experimental Wave- was reapplied until no more...decomposition process once smoldering continued in the Involved the process has been Initiated. The material. Flames were observed in the distinguishing

  15. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    Science.gov (United States)

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  16. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    Science.gov (United States)

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.

  17. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    Science.gov (United States)

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Computational fluid dynamics (CFD) analysis of the combustion process of a leather residuals gasification fuel gas: influence of fuel moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Antonietti, Anderson Jose; Beskow, Arthur Bortolin; Silva, Cristiano Vitorino da [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)], E-mails: arthur@uricer.edu.br, mlsperb@unisinos.br; Indrusiak, Maria Luiza Sperb [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)], E-mail: cristiano@uricer.edu.br

    2010-07-01

    This work presents a numerical study of the combustion process of leather residuals gasification gas, aiming the improvement of the process efficiency, considering different concentrations of water on the gas. The heating produced in this combustion process can be used to generation of thermal and/or electrical energy, for use at the leather industrial plant. However, the direct burning of this leather-residual-gas into the chambers is not straightforward. The alternative in development consists in processing this leather residuals by gasification or pyrolysis, separating the volatiles and products of incomplete combustion, for after use as fuel in a boiler. At these processes, different quantities of water can be used, resulting at different levels of moisture content in this fuel gas. This humidity can affect significantly the burning of this fuel, producing unburnt gases, as the carbon monoxide, or toxic gases as NOx, which must have their production minimized on the process, with the purpose of reducing the emission of pollutants to the atmosphere. Other environment-harmful-gases, remaining of the chemical treatment employed at leather manufacture, as cyanide, and hydrocarbons as toluene, must burn too, and the moisture content has influence on it. At this way, to increase understanding of the influence of moisture in the combustion process, it was made a numerical investigation study of reacting flow in the furnace, evaluating the temperature field, the chemical species concentration fields, flow mechanics and heat transfer at the process. The commercial CFD code CFX Ansys Inc. was used. Considering different moisture contents in the fuel used on the combustion process, with this study was possible to achieve the most efficient burning operation parameters, with improvement of combustion efficiency, and reduction of environmental harmful gases emissions. It was verified that the different moisture contents in the fuel gas demand different operation conditions

  19. Potentially toxic elements in lignite and its combustion residues from a power plant.

    Science.gov (United States)

    Ram, L C; Masto, R E; Srivastava, N K; George, J; Selvi, V A; Das, T B; Pal, S K; Maity, S; Mohanty, D

    2015-01-01

    The presence of potentially toxic elements in lignite and coal is a matter of global concern during energy extraction from them. Accordingly, Barsingsar lignite from Rajasthan (India), a newly identified and currently exploited commercial source of energy, was evaluated for the presence of these elements and their fate during its combustion. Mobility of these elements in Barsingsar lignite and its ashes from a power plant (Bikaner-Nagaur region of Thar Desert, India) is presented in this paper. Kaolinite, quartz, and gypsum are the main minerals in lignite. Both the fly ash and bottom ash of lignite belong to class-F with SiO₂ > Al₂O₃ > CaO > MgO. Both the ashes contain quartz, mullite, anhydrite, and albite. As, In, and Sr have higher concentration in the feed than the ashes. Compared to the feed lignite, Ba, Co, U, Cu, Cd, and Ni are enriched (10-5 times) in fly ash and Co, Pb, Li, Ga, Cd, and U in bottom ash (9-5 times). Earth crust-normalization pattern showed enrichment of Ga, U, B, Ag, Cd, and Se in the lignite; Li, Ba, Ga, B, Cu, Ag, Cd, Hg, Pb, and Se, in fly ash; and Li, Sr, Ga, U, B, Cu, Ag, Cd, Pb, and Se in bottom ash. Hg, Ag, Zn, Ni, Ba, and Se are possibly associated with pyrite. Leaching test by toxicity characteristic leaching procedure (TCLP) showed that except B all the elements are within the safe limits prescribed by Indian Standards.

  20. Comparison of NAA XRF and ICP-OES Methods on Analysis of Heavy Metals in Coals and Combustion Residues

    Directory of Open Access Journals (Sweden)

    Agus Taftazani

    2017-07-01

    Full Text Available Heavy metals in the samples of coals and combustion residues (bottom ash and fly ash from Pacitan coal-fired power plant (CPP have been identified by using NAA, XRF, and ICP-OES methods. This research was aimed to understand the analysis results correlation coefficient (R and determine the enrichment ratio (ER value of the samples by using three analysis methods. The results showed 10 elements have been simultaneously detected in all samples. The correlation coefficient of analysis results of metals content in coals by using NAA-XRF, XRF-ICP OES and with ICPOES-NAA methods gives R2£1 respectively. The correlation coefficient of analysis results of metals content in bottom ash and fly ash by using the methods of NAA-XRF, XRF-ICPOES, and ICPOES-NAA gained R2»1 respectively. ICP-OES method was most satisfactory in this study. The value of ER for identified metals by using the three methods in the samples of bottom ash and fly ash yielded the value over one, and ER value of fly ash was greater in comparison to the bottom ash.

  1. Chemical modifiers for direct determination of cobalt in coal combustion residues by ultrasonic slurry-sampling-ETAAS

    Energy Technology Data Exchange (ETDEWEB)

    Felipe-Sotelo, M.; Carlosena, A.; Fernandez, E.; Lopez-Mahia, P.; Muniategui, S.; Prada, D. [Dept. of Analytical Chemistry, Univ. of La Coruna (Spain)

    2001-12-01

    Five modifiers were tested for the direct determination of cobalt in coal fly ash and slag by ultrasonic slurry-sampling electrothermal atomic absorption spectrometry (USS-ETAAS).The furnace temperature programs and the appropriate amount for each modifier were optimized to get the highest signal and the best separation between the atomic and background signals. Nitric acid (0.5% v/v) was the most adequate chemical modifier for cobalt determination, selecting 1450 C and 2100 C as pyrolysis and atomization temperatures, respectively. This modifier also acts as liquid medium for the slurry simplifying the procedure. The remaining modifiers enhanced the background signal, totally overlapped with cobalt peak. The method optimized gave a limit of detection of 0.36 {mu}g g{sup -1}, a characteristic mass of 13{+-}1 pg and an overall-method precision which is highly satisfactory (<7%, RSD). The method was validated by analyzing two certified coal fly ash materials, and satisfactory recoveries were obtained (83-90%) and no statistical differences were observed between the experimental and the certified cobalt concentrations. Additionally, certified sediment, soil and urban particulate matter were assayed; again good results were obtained. The developed methodology was used to determine cobalt in several coal combustion residues from five Spanish power plants. (orig.)

  2. How I treat smoldering multiple myeloma

    OpenAIRE

    Ghobrial, Irene M.; Landgren, Ola

    2014-01-01

    Smoldering myeloma is a heterogeneous clinical entity where a subset of patients has an indolent course of disease that mimics monoclonal gammopathy of undermined significance, whereas others have a more aggressive course that has been described as “early myeloma.” It is defined as either serum M-protein ≥3 g/L or ≥10% monoclonal plasma cells in the bone marrow. There are currently no molecular factors to differentiate risks of progression for these patients. Current recommendations of therap...

  3. [The pathology of smoldering multiple myeloma].

    Science.gov (United States)

    Shibayama, Hirohiko

    2015-01-01

    The precursor states (named as monoclonal gammopathy of undetermined significance [MGUS] and smoldering multiple myeloma [SMM]) consistently exist before symptomatic multiple myeloma is diagnosed. After approximately 30 years have passed since Kyle et al. advocated MGUS and SMM for the first time, the pathology and prognosis of these diseases have been clarified considerably. Recently, the safety and efficacy of the early treatment for the patients with high risk SMM are shown. In this article, the current understanding of the pathology of SMM as well as MGUS including the diagnosis, prognosis and treatment is reviewed.

  4. Estudio termodinámico de un motor de encendido por comprensión utilizando aceite residual de frituras como combustible alterno

    OpenAIRE

    Álvarez Basantes, Alex Marcelo; Álvarez Basantes, Carlos David; Montesdeoca Pichucho, Oscar Fabián

    2013-01-01

    El presente estudio consiste; en someter a un motor de encendido por compresión a otro tipo de combustible como es el aceite residual de frituras, realizando un análisis termodinámico a través de las temperaturas medidas en la admisión, el escape, el cabezote y la temperatura ambiente, además se muestra el análisis de gases obtenido al usar diesel comercial y aceite residual de frituras (ARF). The present study is, to submit to a compression ignition engine to another type of fuel and resi...

  5. How I treat smoldering multiple myeloma.

    Science.gov (United States)

    Ghobrial, Irene M; Landgren, Ola

    2014-11-27

    Smoldering myeloma is a heterogeneous clinical entity where a subset of patients has an indolent course of disease that mimics monoclonal gammopathy of undermined significance, whereas others have a more aggressive course that has been described as "early myeloma." It is defined as either serum M-protein ≥ 3 g/L or ≥ 10% monoclonal plasma cells in the bone marrow. There are currently no molecular factors to differentiate risks of progression for these patients. Current recommendations of therapy continue to be patient observation or patient enrollment in clinical trials. However, new definitions of active multiple myeloma recently agreed upon by the International Myeloma Working Group may alter the timing of therapy. On the basis of emerging data of therapy in these patients, it seems reasonable to believe that future recommendations for therapy of patients with smoldering myeloma will become an increasingly important topic. In this article, we review the current knowledge of this disease and risk factors associated with progression. We also examine biological insights and alterations that occur in the tumor clone and the surrounding bone marrow niche. Finally, we review clinical trials that have been performed in these patients and provide recommendations for follow-up of patients with this unique disease entity. © 2014 by The American Society of Hematology.

  6. PRODUCCIÓN DE ELECTRICIDAD EN CELDAS DE COMBUSTIBLE MICROBIANAS UTILIZANDO AGUA RESIDUAL: EFECTO DE LA DISTANCIA ENTRE ELECTRODOS

    Directory of Open Access Journals (Sweden)

    Germán Buitrón

    2011-01-01

    Full Text Available Se evaluó la influencia de la separación de electrodos sobre la producción de electricidad y la eliminación de materia orgánica en celdas de combustible microbianas usando agua residual. Para ello se construyeron tres celdas de geometría semejante pero con diferente volumen. En promedio, se obtuvo una eficiencia de eliminación de materia orgánica del 71%. La duración del ciclo fue de 0.97 días para la celda de 40 mL, 1.03 días para la celda de 80 mL y 5.93 días para la celda de 120 mL. El aumento de distancia entre los electrodos (4, 8 y 12 cm no causó un efecto negativo en la generación de electricidad, pues en la mayor separación (celda de 120 mL se alcanzó un voltaje máximo de 660 mV, mientras que para las celdas de 40 y 80 mL fue de 540 mV y 532 mV, respectivamente. La densidad de potencia máxima se presentó en la celda con separación de 12 cm (408 mW/m2. Sin embargo, se observó que la potencia volumétrica disminuyó a medida que aumentó la separación entre los electrodos.

  7. Smoldering multiple myeloma: present position and potential promises.

    Science.gov (United States)

    Tageja, Nishant; Manasanch, Elisabet E; Korde, Neha; Kwok, Mary; Mailankody, Sham; Bhutani, Manisha; Roschewski, Mark; Landgren, Ola

    2014-01-01

    Since smoldering multiple myeloma (SMM) was first described over three decades ago based on a case series of six patients, its definition and our understanding of the entity have evolved considerably. The risk of progression to symptomatic myeloma (MM) varies greatly among individuals diagnosed with myeloma precursor disease. Epidemiologic, molecular, flow cytometric and radiological techniques have demonstrated that this transformation to MM from precursor states is not sudden but rather a continuous overlapping series of events with evidence of end-organ damage that could manifest in the earliest stages of disease. Contemporary antimyeloma therapies can yield rapid, deep, and durable responses with manageable toxicities, and molecular-cell-based measures are now available to rule out minimal residual disease. With this information, clinical studies with correlative measures can now be developed to test the fundamental hypothesis that intervention in early myeloma may provide a measurable clinical benefit to patients by either delaying progression or eradicating plasma cell clones. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Genomic analysis of high-risk smoldering multiple myeloma.

    Science.gov (United States)

    López-Corral, Lucía; Mateos, María Victoria; Corchete, Luis A; Sarasquete, María Eugenia; de la Rubia, Javier; de Arriba, Felipe; Lahuerta, Juan-José; García-Sanz, Ramón; San Miguel, Jesús F; Gutiérrez, Norma C

    2012-09-01

    Smoldering myeloma is an asymptomatic plasma cell dyscrasia with a heterogeneous propensity to progress to active myeloma. In order to investigate the biology of smoldering myeloma patients with high risk of progression, we analyzed the genomic characteristics by FISH, SNP-arrays and gene expression profile of a group of patients with high-risk smoldering myeloma included in a multicenter randomized trial. Chromosomal abnormalities detected by FISH and SNP-arrays at diagnosis were not associated to risk of progression to symptomatic myeloma. However, the overexpression of four SNORD genes (SNORD25, SNORD27, SNORD30 and SNORD31) was correlated with shorter time to progression (Psmoldering patients who progressed to symptomatic myeloma were sequentially analyzed, newly acquired lesions together with an increase in the proportion of plasma cells carrying a given abnormality were observed. These findings suggest that gene expression profiling is a valuable technique to identify smoldering myeloma patients with high risk of progression. (Clinical Trials NCT00443235).

  9. Treating Patients with High-Risk Smoldering Myeloma

    Science.gov (United States)

    In this phase III clinical trial, patients with smoldering myeloma classified as high risk for progression will be randomly assigned to undergo standard observation or six 4-week courses of treatment with the drug lenalidomide.

  10. Treatment of high-risk smoldering myeloma.

    Science.gov (United States)

    Korde, Neha

    2016-12-01

    Multiple myeloma (MM) is a hematologic malignancy of the plasma cell that causes symptoms of bone pain, renal failure, and anemia. It is usually preceded by a precursor disease state, such as smoldering multiple myeloma (SMM) or monoclonal gammopathy of undetermined significance (MGUS), and traditional dogma dictates that treatment should be initiated on frank MM symptom development. Emerging evidence suggests that a defined group of "high-risk SMM" may benefit from early treatment, before organ damage and symptoms actually occur. The following article frames the evidence for treatment of high-risk SMM by defining risk categories, reviewing existing therapeutic trial data, and exploring the long-term biologic implications of early treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dilemmas in treating smoldering multiple myeloma.

    Science.gov (United States)

    Ahn, Inhye E; Mailankody, Sham; Korde, Neha; Landgren, Ola

    2015-01-01

    Novel therapies hold promise for high-risk smoldering multiple myeloma (SMM). Recent studies suggest that modern combination approaches can be options for high-risk SMM to obtain deep molecular responses with favorable toxicity profiles. Although pioneering treatment trials based on small numbers of patients suggest progression-free and overall survival benefits, application of the data to real-life practice remains to be validated. Therapeutic modulation of disease tempo, disease burden, clonal evolution, and tumor microenvironment in SMM remains to be understood and calls for reliable biomarkers reflective of disease biology. Here, we review studies that open a new management platform for SMM, address ongoing dilemmas in practice and under investigation, and highlight emerging scientific questions in the era of SMM treatment. © 2014 by American Society of Clinical Oncology.

  12. Smoldering multiple myeloma risk factors for progression

    DEFF Research Database (Denmark)

    Sørrig, Rasmus; Klausen, Tobias W; Salomo, Morten

    2016-01-01

    Several risk scores for disease progression in Smoldering Multiple Myeloma (SMM) patients have been proposed, however, all have been developed using single center registries. To examine risk factors for time to progression (TTP) to Multiple Myeloma (MM) for SMM we analyzed a nationwide population......-based cohort of 321 newly diagnosed SMM patients registered within the Danish Multiple Myeloma Registry between 2005 and 2014. Significant univariable risk factors for TTP were selected for multivariable Cox regression analyses. We found that both an M-protein ≥ 30g/l and immunoparesis significantly influenced......-high risk of transformation to MM. Using only immunoparesis and M-protein ≥ 30g/l, we created a scoring system to identify low, intermediate and high risk SMM. This first population-based study of SMM patients confirms that an M-protein ≥ 30g/l and immunoparesis remain important risk factors for progression...

  13. Accumulation of coal combustion residues and their immunological effects in the yellow-bellied slider (Trachemys scripta scripta).

    Science.gov (United States)

    Haskins, David L; Hamilton, Matthew T; Jones, Amanda L; Finger, John W; Bringolf, Robert B; Tuberville, Tracey D

    2017-05-01

    Anthropogenic activities such as industrial processes often produce copious amounts of contaminants that have the potential to negatively impact growth, survival, and reproduction of exposed wildlife. Coal combustion residues (CCRs) represent a major source of pollutants globally, resulting in the release of potentially harmful trace elements such as arsenic (As), cadmium (Cd), and selenium (Se) into the environment. In the United States, CCRs are typically stored in aquatic settling basins that may become attractive nuisances to wildlife. Trace element contaminants, such as CCRs, may pose a threat to biota yet little is known about their sublethal effects on reptiles. To assess the effects of CCR exposure in turtles, we sampled 81 yellow-bellied sliders (Trachemys scripta scripta) in 2014-2015 from CCR-contaminated and uncontaminated reference wetlands located on the Savannah River Site (Aiken, SC, USA). Specific aims were to (1) compare the accumulation of trace elements in T. s. scripta claw and blood samples between reference and CCR-contaminated site types, (2) evaluate potential immunological effects of CCRs via bacterial killing assays and phytohaemagglutinin (PHA) assays, and (3) quantify differences in hemogregarine parasite loads between site types. Claw As, Cd, copper (Cu), and Se (all p ≤ 0.001) and blood As, Cu, Se, and strontium (Sr; p ≤ 0.015) were significantly elevated in turtles from CCR-contaminated wetlands compared to turtles from reference wetlands. Turtles from reference wetlands exhibited lower bacterial killing (p = 0.015) abilities than individuals from contaminated sites but neither PHA responses (p = 0.566) nor parasite loads (p = 0.980) differed by site type. Despite relatively high CCR body burdens, sliders did not exhibit apparent impairment of immunological response or parasite load. In addition, the high correlation between claw and blood concentrations within individuals suggests that nonlethal tissue sampling may be

  14. The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Jensen, Anker Degn; Dam-Johansen, Kim

    2010-01-01

    Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NOx combustion technologies. In this work, pulverized fuel has...... by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA...... adsorption capacity based on measurements on a carbon black. The NOx formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NOx formation. The type of fuel had high impact on the AEA adsorption behavior of the ash...

  15. Effect of torrefaction pre-treatment on physical and combustion characteristics of biomass composite briquette from rice husk and banana residue

    Directory of Open Access Journals (Sweden)

    Amira Atan Nor

    2018-01-01

    Full Text Available Biomass is an alternative renewable energy sources that can generates energy almost same as fossil fuel. The depletion sources of fossil fuel had increase the potential use of biomass energy. In Malaysia, rice husk and banana residues are abundantly left and not treated with proper disposal method which later may contribute to environment and health problems. Thus the development of biomass composite briquette made from rice husk and banana residue is one of the potential ways to reduce the problems and hence may contribute the better way to treat the waste by recycling the waste into a form of biomass product. The biomass briquettes are used for thermal applications because it can produce a complete combustion as it has a consistent quality and high burning efficiency. However, the quality of the biomass briquette can be added by application of torrefaction pre-treatment method. Torrefaction is a thermal method that can produce more high quality of the briquette with high calorific value, high fixed carbon content, low volatile matter, and low ash content. This study was conducted to assess the physical and combustion characteristic of the biomass briquette from rice husk and banana residue which was produced through torrefaction process. The biomass briquette, were densified by using hot press machine with temperature of 180°C for about 30 minutes. The briquette produce are 150 μm in particle size with varies in mixing ratio of rice husk to banana residue which are 100:0, 80:20 and 60:40. After the briquetting process, the biomass fuel briquettes have been undergoes parameter testing and the data have been analysed. Result showed the best biomass briquette is developed from torrefied rice husk and banana residue mixed at ratio of 60:40. Moreover, SEM image reveal that torrefaction pre-treatment has shrinkage the fibres size which confirming the thermal stability of the briquette.

  16. Co-Combustion of Fast Pyrolysis Bio-Oil Derived from Coffee Bean Residue and Diesel in an Oil-Fired Furnace

    Directory of Open Access Journals (Sweden)

    Shuhn-Shyurng Hou

    2017-10-01

    Full Text Available The combustion characteristics of co-firing bio-oil produced from the fast pyrolysis process of coffee bean residue and diesel in a 300-kWth oil-fired furnace are investigated. Using bio-oil to completely replace fossil fuels has limitations since bio-oil has undesirable properties, such as high water and oxygen contents, high viscosity, and low heating value. However, a low blend ratio of bio-oil used as a substitute for petroleum-derived oil has advantages; i.e., it can be easily combusted in existing furnaces without modifications. Thus, a promising solution is the partial substitution of diesel with bio-oil, rather than completely replacing it. A furnace test is performed for diesel alone and bio-oil/diesel blends with 5 vol % bio-oil. The results show that excellent stable combustion is observed during the co-firing test. Compared with diesel, with 5 vol % bio-oil content in the blends, both the wall temperature and gas temperature drop only slightly and exhibit similar furnace temperature distribution; meanwhile, comparable NO emissions (smaller than 57 ppm are obtained, and lower CO2 emissions are achieved because biomass is both carbon neutral and renewable. Moreover, SO2 and CO emissions under these two burning conditions are very low; SO2 and CO emissions are smaller than 6 and 35 ppm, respectively.

  17. An exploratory screening of organic substances in combustion residues; En orienterande screening av organiska aemnen i askor

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Lennart; Lind, Bo (Swedish Geotechnical Inst., Linkoeping (Sweden)); Bjurstroem, Henrik (AaF-Process, Stockholm (Sweden))

    2008-09-15

    Ash consists of the inorganic incombustible part of fuels, but it also always contains a small amount of organic matter, occurring as trace substances with concentrations in the order of mg/kg and lower. A few types of compounds are analysed comparatively frequently, e.g. PCDD/F (the so-called dioxins), but knowledge about the other organic substances is far from exhaustive. In this investigation, three ash samples have been subjected to a semi-quantitative GC/MS screening of semi-volatile substances. In this method of analysis the substances are extracted, separated in a gas chromatograph and identified as well as quantified using a mass spectrometer. Even if this type of analysis can be performed by researchers at universities, we chose to let commercial analytical laboratories do it in order to assess results from a nearly routine work. Residues from woody biofuels (recovered wood, virgin wood and bark) were chosen in order to complement the information that has previously been obtained on ash from municipal solid waste incineration. The GC/MS screening was carried out on both non-derivatised samples (non-polar compounds) and derivatised samples (polar compounds). The investigation aimed also at assessing the potential and the limitations of the screening method. In addition, the potentially hazardous properties of each identified substance were examined. Screening without and with derivatization is a cost-effective method to chart the content of semi-volatile organic substances. The results are relevant, but the method commercially available in Sweden is at present not mature enough for the use considered. It must be further developed before it can be included in e.g. regulatory texts. Limitations may be found in several steps of the method, principally: - Extraction and derivatisation, as the internal standard added is recovered only to a small extent for some ash samples, indicating that not everything has been found - Detection, i.e. both the sensitivity of

  18. Shall we treat smoldering multiple myeloma in the near future?

    Science.gov (United States)

    Landgren, Ola

    2017-12-08

    In recent years, several new drugs have been approved for the treatment of multiple myeloma. Many of these newer drugs are highly efficacious and less toxic than older chemotherapy drugs. In 2014, the diagnostic criteria for multiple myeloma were revised. The intent with the new criteria was to identify patients who require therapy at an earlier stage than at manifestation of organ complications. A subset of patients who were previously defined as having high-risk smoldering multiple myeloma was redefined as having multiple myeloma. In this context, it is logical to raise questions regarding the optimal clinical management of patients who are diagnosed with smoldering multiple myeloma in the current era. When is the optimal time to start therapy? Do the clinical trajectories for patients suggest there are distinct sub-entities hidden in the current category of smoldering multiple myeloma? How can we move the field forward from here? This paper reviews and dissects data and models on the topics of clinical features, underlying biology, and early treatment trials in smoldering multiple myeloma. The text highlights assumptions, facts, and gaps in the literature. As indicated in the title of the paper, the recurrent theme of the text is this: shall we treat smoldering multiple myeloma in the near future? © 2016 by The American Society of Hematology. All rights reserved.

  19. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic

    International Nuclear Information System (INIS)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-01-01

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 deg. C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  20. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  1. Characterisation of polycyclic aromatic hydrocarbons in flue gas and residues of a full scale fluidized bed combustor combusting non-hazardous industrial waste.

    Science.gov (United States)

    Van Caneghem, J; Vandecasteele, C

    2014-11-01

    This paper studies the fate of PAHs in full scale incinerators by analysing the concentration of the 16 EPA-PAHs in both the input waste and all the outputs of a full scale Fluidized Bed Combustor (FBC). Of the analysed waste inputs i.e. Waste Water Treatment (WWT) sludge, Refuse Derived Fuel (RDF) and Automotive Shredder Residue (ASR), RDF and ASR were the main PAH sources, with phenanthrene, fluoranthene and pyrene being the most important PAHs. In the flue gas sampled at the stack, naphthalene was the only predominant PAH, indicating that the PAHs in FBC's combustion gas were newly formed and did not remain from the input waste. Of the other outputs, the boiler and fly ash contained no detectable levels of PAHs, whereas the flue gas cleaning residue contained only low concentrations of naphthalene, probably adsorbed from the flue gas. The PAH fingerprint of the bottom ash corresponded rather well to the PAH fingerprint of the RDF and ASR, indicating that the PAHs in this output, in contrast to the other outputs, were mainly remainders from the PAHs in the waste inputs. A PAH mass balance showed that the total PAH input/output ratio of the FBC ranged from about 100 to about 2600 depending on the waste input composition and the obtained combustion conditions. In all cases, the FBC was clearly a net PAH sink. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Implications of Experimentally Controlled Gravitational Accelerations for Combustion Science

    Science.gov (United States)

    Sacksteder, Kurt R.

    1991-01-01

    An overview of basic combustion problems which have been investigated under the condition of reduced gravity is presented to identify promising research directions. Attention is given to the broad categories of gas-jet diffusion flames, droplet combustions, particle clouds, flame spreading over liquid pools, smoldering, and flame spreading over solid fuels. Fire safety in spacecraft is the primary application that is addressed by the studies of combustion under microgravity. The need for more complete testing of the issues discussed in orbiting spacecraft is identified in the light of limited earth-based testing. Attention is also directed toward the need for advanced diagnostic methods for in-flight and other combustion investigations.

  3. The road to treating smoldering multiple myeloma.

    Science.gov (United States)

    Korde, Neha; Mailankody, Sham; Landgren, Ola

    2014-09-01

    The management of smoldering multiple myeloma (SMM) has been a challenge to clinicians, ever since the condition was first characterized in 1980. While the risk of progression to symptomatic myeloma is greater for SMM (10% per year) compared to MGUS (1% per year), several SMM patients remain asymptomatic for years without evidence of disease progression. Early clinical trials focusing on early treatment of SMM have been equivocal with no clear benefit. However, the last decade has seen a greater understanding of the pathogenesis of plasma cell disorders, including SMM, and development of better therapeutics. A recent randomized trial has provided evidence of clinical benefit with early treatment of high-risk SMM. In this review, we summarize issues related to the early treatment of SMM including risk stratification and possible outcomes with therapy initiation. In the context of reviewing recent clinical trial data supporting early treatment, we define challenges faced by clinicians and provide future directions to the road to treating SMM. Published by Elsevier Inc.

  4. Combustion demonstration plant in circulant fluidized bed of residual coal; Planta de Demostracion de Combustion en Lecho Fluido Circulante de Carbones Residuales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This report incorporates a summary of the operation results during the period of demonstration after started up. The report pretend to give an overview of the operation conditions along of the first year: Running hours, availability, electricity production, shooting downs, incidences, efficiency, fuel characteristics influence, pollutants emissions and standards comparations, etc. The main operation conclusions are: High availability, great number of running hours at full equivalent load; some months even over 100% regarding time scheduled. High reduction of gaseous emissions, really very low respecting the required by the applicable standards. It has been developed the engineering of a prototype project, by 30MW, using mixtures of solid fuels, residues and coals. (Author)

  5. Guidance for classification of residues from combustion and incineration in accordance with the Swedish ordinance for waste; Vaegledning foer klassificering av foerbraenningsrester enligt Avfallsfoerordningen

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Peter [AaF Energi och Miljoe AB, Stockholm (Sweden); Haglund, Jan-Erik [Soederenergi AB, Stockholm (Sweden); Sjoeblom, Rolf [Tekedo AB, Nykoeping (Sweden)

    2004-05-01

    A new ordinance for waste came into force in Sweden on the first of January 2002, replacing some previous ordinances. The new ordinance is based on certain EU directives and contains amongst other things new rules regarding how certain streams of waste are to be classified into hazardous waste and non-hazardous waste. In a number of cases, the classification is to be made according to whether or not the waste possesses one or more of a number o properties H1 - H14, i e if the waste contains hazardous substances. The new rules are based on the regulation that exists for chemical substances and preparations. When attempts have been made to use these new rules in practice - e g for residues from incineration and combustion - it has become apparent that they are very difficult or even impossible to apply. The primary reason for this is that the residues contain a very large number (thousands) of substances which would have to be analysed and for which the hazard would have to be assessed correctly in accordance with the criteria for the properties (H4 - H8 and H10 - H11). Furthermore, some of the properties listed in the ordinance for waste lack criteria for assessment of hazard. These are H13 (can give rise to another substance which may be hazardous, e g leachate) and H14 (hazardous to the environment). Moreover, there are significant differences between the Ordinance of waste and the regulation of the National Chemicals Inspectorate. It is on the latter that the rules in the Ordinance of waste are based, and this is also the cause of many of the questions and of the uncertainties in the classification. In the present report, a method is developed and described for classification of residues from combustion and incineration. The method is to be applicable in practice without compromising environmental and health aspects. As a part of the present work, a compilation of content and alteration of chemical substances in is carried out. In another chapter, the experience

  6. Emission Factor from Small Scale Tropical Peat Combustion

    Science.gov (United States)

    Setyawati, W.; Damanhuri, E.; Lestari, P.; Dewi, K.

    2017-03-01

    Peatfire in Indonesia recently had become an important issue regarding its global warming impact of green house gases emitted. Emission factor is one of important variables to determine total emission of carbon released by peatfire. But currently there were only a few studies about Indonesian peat fire emission factors. The previous studies of Indonesian peat fire emission factor reported the results from a very limited number of samples and during smoldering combustion stages only. Therefore this study attempts to quantify carbon dioxide (CO2) and methane (CH4) emission factors from laboratory peat combustion based on higher number of samples and taken both of combustion stages (flaming and smoldering) into consideration. Peats were sampled from five different districts in Pontianak, West Kalimantan. Ultimate analysis showed that pure peat composed of relatively high carbon content (52.85 - 59.43% dry basis). Laboratory experiments were carried out by burning small amout of peats in a mini furnace and measuring their CO2 and CH4 emission concentration during flaming and smoldering. CO2, CO and CH4 average emission factors and their related average MCE for flaming were found to be 2,088 ± 21 g/kg (n = 17), 3.104 ± 7.173 g/kg (n = 17), 0.143 ± 0.132 g/kg (n = 17) and 0.998 ± 0.005 (n = 17), respectively, while for smoldering were 1,831 ± 131 g/kg (n = 17), 138 ± 72 g/kg (n = 17), 17 ± 12 g/kg (n = 17) and 0.894 ± 0.055 g/kg (n = 17), respectively. This emission factors based on the laboratory combustion experiment can be conveniently used to estimate CO2 and CH4 emission from Indonesian peat fire. Equation models to correlate between MCE and emission factors for both flaming and smoldering were developed. MCE and CO2 emission factor during flaming was relatively higher than smoldering. On the contrary, CO and CH4 emission factors were relatively smaller during flaming than smoldering.

  7. Measurement of moisture in smoldering smoke and implications for fog

    Science.gov (United States)

    Gary L. Achtemeier

    2006-01-01

    Smoke from wildland burning in association with fog has been implicated as a visibility hazard over roadways in the southern United States. A project began in 2002 to determine whether moisture released during the smoldering phases of southern prescribed burns could contribute to fog formation. Temperature and relative humidity measurements were taken from 27...

  8. Spatial distribution of polycyclic aromatic hydrocarbons in soil, sediment, and combusted residue at an e-waste processing site in southeast China.

    Science.gov (United States)

    Leung, Anna O W; Cheung, Kwai Chung; Wong, Ming Hung

    2015-06-01

    The environmental pollution and health impacts caused by the primitive and crude recycling of e-waste have become urgent global issues. Guiyu, China is a major hotspot of e-waste recycling. In this study, the levels and distribution of polycyclic aromatic hydrocarbons in soil in Guiyu were determined to investigate the effect of e-waste activities on the environment and to identify possible sources of these pollutants. Sediment samples from a local duck pond, water gullies, a river tributary, and combusted residue from e-waste burning sites were also investigated. The general trend found in soil (Σ16 PAHs) was acid leaching site > duck pond > rice field > printer roller dump site > reservoir (control site) and ranged from 95.2 ± 54.2 to 5,210 ± 89.6 ng/g (dry wt). The highest average total PAH concentrations were found in combusted residues of wires, cables, and other computer electrical components located at two e-waste open burning sites (18,600 and 10,800 ± 3,940 ng/g). These were 195- and 113-fold higher than the PAH concentrations of soil at the control site. Sediment PAH concentrations ranged from 37.2 ± 6 to 534 ± 271 ng/g. Results of this study provide further evidence of significant input of PAHs to the environment attributed to crude e-waste recycling.

  9. Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    . Chemical analyses of untreated and treated ash confirmed that most As, but only smaller amounts of Cu and Cr was removed due to the electrodialytic extraction. Overall metal contents in the original ash residue were: 1.4 g As, 2.76 g Cu and 2.48 g Cr, after electrodialytic extraction these amounts were...

  10. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  11. Residuals, bioaccessibility and health risk assessment of PAHs in winter wheat grains from areas influenced by coal combustion in China.

    Science.gov (United States)

    Tian, Kai; Bao, Huanyu; Zhang, Xuechen; Shi, Taoran; Liu, Xueping; Wu, Fuyong

    2018-03-15

    Polycyclic aromatic hydrocarbons (PAHs) contamination in atmospheric and soil was serious, which is mainly due to high level of emission of PAHs in China resulted from the predominating use of coal in energy consumption and continuous development of economy and society for years. However, the status of PAHs in winter wheat grains from the areas influenced by coal combustion in China was still not clear. During harvest season, the winter wheat grains were collected from agricultural fields surrounding coal-fired power plants located in Shaanxi and Henan Provinces. This study found that the mean concentrations of 15 priority PAHs ranged from 69.58 to 557.0μgkg -1 . Three-ring PAHs (acenaphthene, acenaphthylene, fluorene, phenanthrene and anthracene) were dominant in the grains, accounting for approximately 70-81% of the total PAHs. The bioaccessibility of low molecular weight (LMW, 2-3 ring) PAHs (51.1-52.8%), high molecular weight (HMW, 4-6 ring) PAHs (19.8-27.6%) and total PAHs (40.9-48.0%) in the intestinal condition was significantly (pvalues of incremental lifetime cancer risk (ILCR) for children, adolescents, adults and seniors were all higher than the baseline value (10 -6 ) and some even fell in the range of 10 -5 -10 -4 , which indicated that most grains from the areas affected by coal combustion possessed considerable cancer risk. The present study also indicated that the children were the age group most sensitive to PAHs contamination. The pilot research provided relevant information for the regulation of PAHs in the winter wheat grains and for the safety of the agro-products growing in the PAHs-contaminated areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of alternate fuels. Report No. 2. Analysis of basic refractories degraded by residual oil combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G. C.; Tennery, V. J.

    1978-02-01

    Industrial conversion in the U.S. to alternate fuels from natural gas is presently under way and will accelerate rapidly as a result of gas curtailments and National policy considerations. Currently the prime alternate fuels are distillate and residual oils and coal. Conversion to residual oils or coal for high-temperature process heat applications is anticipated to result in accelerated refractory and insulation corrosion and degradation due to reactions between fuel impurities and the ceramic linings of high-temperature equipment. Understanding the nature of such reactions and identification of means for preventing or retarding them will be of considerable assistance to both refractory manufacturers and users as well as a significant contribution to energy conservation.

  13. Lightweight combustion residues-based structural materials for use in mines. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Yoginder P.; Zhang, Yuzhuo; Ghosh, A.K.; Palmer, S.R; Peng, Suping, Xiao, Y. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-12-31

    The overall goal of this project is to develop, design and test artificial supports (post and crib members) for use in mines manufactured from coal combustion by-product (CCB) based lightweight structural materials. The lightweight cement-fly ash grout with density ranging from 70 to 110 pcf has been developed incorporating very high volume (50--60 % of whole solid materials) fly ash. Characterization of individual component materials for the CCB-based structural materials has been performed for Class F fly ash, ASTM Type I cement, lime, silica fume, polypropylene fibers, protein-based foam, water-reducing agents, and calcium chloride. During the past quarter, we emphasized on screening mix designs and establishing mixing and curing procedures. We have demonstrated for the first time that cellular cement-fly ash grout can be developed with very low water: cement ratio (0.32--0.45). After forming, all the samples in the molds were moist cured in a chamber for 24-hours, at 90% relatively humidity (RH) and at 72{degrees}F. They were then demolded and transferred to a low pressure steam chamber (150{degrees}F and 100% RH). After steaming for 24 hours the samples were removed to a moist cure chamber prior to testing.

  14. Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India

    Science.gov (United States)

    Bharadwaj, Anshu

    Biomass based power generation has the potential to add up to 20,000 MW of distributed capacity in India close to the rural load centers. However, the present production of biomass-based electricity is modest, contributing a mere 300 MW of installed capacity. In this thesis, we shall examine some of the scientific, technological and policy issues concerned with the generation and commercial viability of biomass-based electric power. We first consider the present status of biomass-based power in India and make an attempt to understand the reasons for low utilization. Our analysis suggests that the small-scale biomass power plants (rice or sugar mills where power plants of capacities in excess of 5 MW are possible without biomass transportation. We then simulate a biomass gasification combustion cycle using a naturally aspirated spark ignition engine since it can run totally on biomass gas. The gasifier and engine are modeled using the chemical equilibrium approach. The simulation is used to study the impact of fuel moisture and the performance of different biomass feedstock. Biomass power plants when used for decentralized power generation; close to the rural load centers can solve some of the problems of rural power supply: provide voltage support, reactive power and peak shaving. We consider an innovative option of setting up a rural electricity micro-grid using a decentralized biomass power plant and selected a rural feeder in Tumkur district, Karnataka for three-phase AC load flow studies. Our results suggest that this option significantly reduces the distribution losses and improves the voltage profiles. We examine a few innovative policy options for making a rural micro-grid economically viable and also a pricing mechanism for reactive power and wheeling. We next consider co-firing biomass and coal in utility boilers as an attractive option for biomass utilization because of low capital costs; high efficiency of utility boilers; lower CO2 emissions (per k

  15. The Changing Landscape of Smoldering Multiple Myeloma: A European Perspective

    OpenAIRE

    Caers, Jo; Fern?ndez de Larrea, Carlos; Leleu, Xavier; Heusschen, Roy; Zojer, Niklas; Decaux, Olivier; Kastritis, Efstathios; Minnema, Monique; Jurczyszyn, Artur; Beguin, Yves; W?sch, Ralph; Palumbo, Antonio; Dimopoulos, Meletios; Mateos, Maria Victoria; Ludwig, Heinz

    2016-01-01

    Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder and bridges monoclonal gammopathy of undetermined significance to multiple myeloma (MM). A subset of ultra-high-risk SMM patients (?10%) have been reclassified by the International Myeloma Working Group as MM, with a substantial risk of progression to overt MM (?80% within 2 years). However, for most SMM patients, the standard of care remains observation until development of symptomatic MM occurs.

  16. Acute activation, desensitization and smoldering activation of human acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Barbara G Campling

    Full Text Available The behavioral effects of nicotine and other nicotinic agonists are mediated by AChRs in the brain. The relative contribution of acute activation versus chronic desensitization of AChRs is unknown. Sustained "smoldering activation" occurs over a range of agonist concentrations at which activated and desensitized AChRs are present in equilibrium. We used a fluorescent dye sensitive to changes in membrane potential to examine the effects of acute activation and chronic desensitization by nicotinic AChR agonists on cell lines expressing human α4β2, α3β4 and α7 AChRs. We examined the effects of acute and prolonged application of nicotine and the partial agonists varenicline, cytisine and sazetidine-A on these AChRs. The range of concentrations over which nicotine causes smoldering activation of α4β2 AChRs was centered at 0.13 µM, a level found in smokers. However, nicotine produced smoldering activation of α3β4 and α7 AChRs at concentrations well above levels found in smokers. The α4β2 expressing cell line contains a mixture of two stoichiometries, namely (α4β22β2 and (α4β22α4. The (α4β22β2 stoichiometry is more sensitive to activation by nicotine. Sazetidine-A activates and desensitizes only this stoichiometry. Varenicline, cytisine and sazetidine-A were partial agonists on this mixture of α4β2 AChRs, but full agonists on α3β4 and α7 AChRs. It has been reported that cytisine and varenicline are most efficacious on the (α4β22α4 stoichiometry. In this study, we distinguish the dual effects of activation and desensitization of AChRs by these nicotinic agonists and define the range of concentrations over which smoldering activation can be sustained.

  17. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma.

    Science.gov (United States)

    Kyle, Robert A; Remstein, Ellen D; Therneau, Terry M; Dispenzieri, Angela; Kurtin, Paul J; Hodnefield, Janice M; Larson, Dirk R; Plevak, Matthew F; Jelinek, Diane F; Fonseca, Rafael; Melton, Lee Joseph; Rajkumar, S Vincent

    2007-06-21

    Smoldering (asymptomatic) multiple myeloma is an asymptomatic plasma-cell proliferative disorder associated with a high risk of progression to symptomatic multiple myeloma or amyloidosis. Prognostic factors for the progression and outcome of this disease are unclear. We searched a computerized database and reviewed the medical records of all patients at Mayo Clinic who fulfilled the criteria of the International Myeloma Working Group for the diagnosis of smoldering multiple myeloma between 1970 and 1995. Bone marrow aspirate and biopsy specimens were studied, and patients were followed throughout the course of disease. During the 26-year period, 276 patients fulfilled the criteria for smoldering multiple myeloma. During 2131 cumulative person-years of follow-up, symptomatic multiple myeloma or amyloidosis developed in 163 persons (59%). The overall risk of progression was 10% per year for the first 5 years, approximately 3% per year for the next 5 years, and 1% per year for the last 10 years; the cumulative probability of progression was 73% at 15 years. At diagnosis, significant risk factors for progression included the serum level and type of monoclonal protein, the presence of urinary light chain, the extent and pattern of bone marrow involvement, and the reduction in uninvolved immunoglobulins. The proportion of plasma cells in the bone marrow and the serum monoclonal protein level were combined to create a risk-stratification model with three distinct prognostic groups. The risk of progression from smoldering multiple myeloma to symptomatic disease is related to the proportion of bone marrow plasma cells and the serum monoclonal protein level at diagnosis. Copyright 2007 Massachusetts Medical Society.

  18. Effect of weathering transformations of coal combustion residuals on trace elements mobility in view of the environmental safety and sustainability of their disposal and use. II. Element release.

    Science.gov (United States)

    Stefaniak, Sebastian; Kmiecik, Ewa; Miszczak, Ewa; Szczepańska-Plewa, Jadwiga; Twardowska, Irena

    2015-06-01

    This paper is the second one of two companion papers. It presents results of a study aimed at assessing the effect of real time weathering transformations of Coal Combustion Residuals (CCRs) on trace element binding/release and its environmental implications. The study is based on the chemical composition of pore solutions extracted from primary alkaline Class F CCRs, 0 to >40 years old, sampled from the surface layer and vertical profiles at four selected typical CCRs impoundments. The long-term weathering transformations were found to lead to gradual acidification to pH elements to release during internal acidification processes occurring at consecutive Wash-out I (pH > 8), Dissolution II (8 ≥ pH ≥ 7) and Delayed Release III (pH elements occurring in the CCRs are represented by three major groups showing the highest release to pore water: (a) within the acidic pH range (Na, K, Zn, Fe, Cd, Mo, Cr, B, Mn, Be and Ni; (b) within the near-neutral pH range (Al, V, Ba, Cu and Ag) and also Sb, Hg and Co not analyzed at pH Elements whose concentrations exceeded the threshold values for good chemical status of groundwater (TVs) at all weathering stages over the entire pH range studied were K, Al, B, Cr, Mo, V, As, Se, Sb and Hg, while Na, Zn, Fe and Cd showed particularly high delayed release at pH < 7, thus confirming the need of a precautionary approach to CCRs uncontrolled disposal and bulk reuse as common fill in view of long term environmental safety and sustainability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius)

    International Nuclear Information System (INIS)

    Kuzmick, Danika M.; Mitchelmore, Carys L.; Hopkins, William A.; Rowe, Christopher L.

    2007-01-01

    Coal combustion residues (CCRs), largely derived from coal-fired electrical generation, are rich in numerous trace elements that have the potential to induce sublethal effects including oxidative stress, alterations in antioxidant status and DNA single strand breaks (SSB). CCRs are frequently discharged into natural and man-made aquatic systems. As the effects of CCRs have received relatively little attention in estuarine systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study. Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food over a full life cycle. Survival to metamorphosis was significantly reduced in CCR-exposed larvae (17 ± 4 versus 70 ± 13% in the controls) but not in the juveniles or adults. The COMET assay, a general but sensitive assay for genotoxicity, was used to quantify DNA SSB in the adults. Total antioxidant potential was examined to assess the overall antioxidant scavenging capacity of CCR-exposed and non-exposed adult grass shrimp. Grass shrimp exposed to CCR significantly accumulated selenium and cadmium compared to unexposed shrimp, although an inverse relationship was seen for mercury accumulation. Chronic CCR exposure caused DNA SSB in hepatopancreas cells, as evidenced by the significantly increased percent tail DNA, tail moment, and tail length as compared to reference shrimp. However, no significant difference was observed in total antioxidant potential. Our findings suggest that genotoxicity may be an important mode of toxicity of CCR, and that DNA SSB may serve as a useful biomarker of exposure and effect of this very common, complex waste stream

  20. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma.

    Science.gov (United States)

    Kyle, Robert A; San-Miguel, Jesus F; Mateos, Maria-Victoria; Rajkumar, S Vincent

    2014-10-01

    Monoclonal gammopathy of undetermined significance (MGUS) is characterized by an M spike less than 3 g/dL and a bone marrow containing fewer than 10% plasma cells without evidence of CRAB (hypercalcemia, renal insufficiency, anemia, or bone lesions). Light chain MGUS has an abnormal free light chain (FLC) ratio, increased level of the involved FLC, no monoclonal heavy chain, and fewer than 10% monoclonal plasma cells in the bone marrow. Smoldering multiple myeloma has an M protein of at least 3 g/dL and/or at least 10% monoclonal plasma cells in the bone marrow without CRAB features. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Endoscopic Treatment of Recurrent Acute Pancreatitis and Smoldering Acute Pancreatitis.

    Science.gov (United States)

    Das, Rohit; Yadav, Dhiraj; Papachristou, Georgios I

    2015-10-01

    Recurrent acute pancreatitis (RAP) is a challenging condition that can lead to chronic pancreatitis and long-term morbidity. Etiology-based treatment can potentially have an impact on the natural history of RAP and its progression to chronic pancreatitis. In cases of divisum-associated RAP and idiopathic RAP, several studies have been performed to evaluate the efficacy of endoscopic therapy in alleviation of symptoms and frequency of AP events. This review discusses the literature available on these topic as well as touching on the role of endoscopic therapy in smoldering acute pancreatitis. Published by Elsevier Inc.

  2. Piloted Ignition to Flaming in Smoldering Fire-Retarded Polyurethane Foam

    Science.gov (United States)

    Putzeys, O.; Fernandez-Pello, A. C.; Urban, D. L.

    2007-01-01

    Experimental results are presented on the piloted transition from smoldering to flaming in the fire-retarded polyurethane foam Pyrell . The samples are small rectangular blocks with a square cross section, vertically placed in the wall of a vertical wind tunnel. Three of the vertical sample sides are insulated and the fourth side is exposed to an upward oxidizer flow of variable oxygen concentration and to a variable radiant heat flux. The gases emitted from the smoldering reaction pass upwards through a pilot, which consists of a coiled resistance heating wire. In order to compensate for the solid-phase and gas-phase effects of the fire retardants on the piloted transition from smoldering to flaming in Pyrell, it was necessary to assist the process by increasing the power supplied to the smolder igniter and the pilot (compared to that used for non-fire retarded foam). The experiments indicate that the piloted transition from smoldering to flaming occurs when the gaseous mixture at the pilot passes the lean flammability limit. It was found that increasing the oxygen concentration or the external heat flux increases the likelihood of a piloted transition from smoldering to flaming, and generally decreases the time delay to transition. The piloted transition to flaming is observed in oxygen concentrations of 23% and above in both low-density and high-density Pyrell. Comparisons with previous experiments show that the piloted transition from smoldering to flaming is possible under a wider range of external conditions (i.e. lower oxygen concentration) than the spontaneous transition from smoldering to flaming. The results show that the fire retardants in Pyrell are very effective in preventing the piloted transition to flaming in normal air, but Pyrell is susceptible to smoldering and the piloted transition to flaming in oxygen-enriched environments. Therefore, precautions should be taken in the design of applications of Pyrell in oxygen-enriched environments to reduce

  3. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma.

    Science.gov (United States)

    Mateos, María-Victoria; Hernández, Miguel-Teodoro; Giraldo, Pilar; de la Rubia, Javier; de Arriba, Felipe; López Corral, Lucía; Rosiñol, Laura; Paiva, Bruno; Palomera, Luis; Bargay, Joan; Oriol, Albert; Prosper, Felipe; López, Javier; Olavarría, Eduardo; Quintana, Nuria; García, José-Luis; Bladé, Joan; Lahuerta, Juan-José; San Miguel, Jesús-F

    2013-08-01

    For patients with smoldering multiple myeloma, the standard of care is observation until symptoms develop. However, this approach does not identify high-risk patients who may benefit from early intervention. In this randomized, open-label, phase 3 trial, we randomly assigned 119 patients with high-risk smoldering myeloma to treatment or observation. Patients in the treatment group received an induction regimen (lenalidomide at a dose of 25 mg per day on days 1 to 21, plus dexamethasone at a dose of 20 mg per day on days 1 to 4 and days 12 to 15, at 4-week intervals for nine cycles), followed by a maintenance regimen (lenalidomide at a dose of 10 mg per day on days 1 to 21 of each 28-day cycle for 2 years). The primary end point was time to progression to symptomatic disease. Secondary end points were response rate, overall survival, and safety. After a median follow-up of 40 months, the median time to progression was significantly longer in the treatment group than in the observation group (median not reached vs. 21 months; hazard ratio for progression, 0.18; 95% confidence interval [CI], 0.09 to 0.32; Psmoldering myeloma delays progression to active disease and increases overall survival. (Funded by Celgene; ClinicalTrials.gov number, NCT00480363.).

  4. Smoldering multiple myeloma: prevalence and current evidence guiding treatment decisions

    Directory of Open Access Journals (Sweden)

    Blum A

    2018-04-01

    Full Text Available Agnieszka Blum, Despina Bazou, Peter O’Gorman Department of Hematology, Mater Misericordiae University Hospital, Dublin, UK Abstract: Smoldering multiple myeloma (SMM is an asymptomatic plasma cell proliferative disorder associated with risk of progression to symptomatic multiple myeloma (MM or amyloidosis. In comparison to monoclonal gammopathy of undetermined significance (MGUS, SMM has a much higher risk of progression to MM. Thanks to advances in our understanding of the risk factors, the subset of patients with ultra-high risk of progression to MM (80%–90% at 2 years has been identified. The revision of the diagnostic criteria resulted in changes in the management of this cohort of patients. In contrast to the management guidelines for MGUS patients, SMM patients need to be studied more intensively in order to identify biomarkers necessary for accurate risk stratification. In this review, we focus on the risk of progression from SMM to MM, as well as the influence of early treatment on overall survival, time to progression and quality of life. Keywords: smoldering multiple myeloma, risk factor, biomarker, genomic aberrations, glycan analysis

  5. High-risk smoldering myeloma: Perspective on watchful monitoring.

    Science.gov (United States)

    Leng, Siyang; Lentzsch, Suzanne

    2016-12-01

    In a 2008 paper, Dispenzieri and colleagues at the Mayo Clinic proposed a risk stratification system for patients with smoldering multiple myeloma (SMM) based on the presence of three risk factors: serum M-protein ≥3 g/dL, bone marrow plasma cell percentage ≥10%, and a free light chain (FLC) ratio (κ to λ) of either ≤0.125 or ≥8. The patient in this vignette has all three risk factors, classifying him as high-risk, with an associated median time to progression (TTP) of 1.9 years. This is significantly worse than a patient with intermediate-risk (median TTP 5.1 years) or low-risk (10 years) disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Laboratory measurements of emissions of nonmethane volatile organic compounds from biomass burning in Chinese crop residues

    Science.gov (United States)

    Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.

    2014-12-01

    The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.

  7. Experimental findings on thermal use of residues and biofuels in circulating fluidized bed combustion systems; Experimentelle Ergebnisse zur thermischen Nutzung von Rest- und Biobrennstoffen in zirkulierenden Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Girndt, H. [Technische Univ. Dresden (Germany); Albrecht, J. [Lurgi Lentjes Babcock, Frankfurt am Main (Germany); Youssef, M. [Minia Univ. (Egypt)

    1996-12-31

    The energy Engineering Institute of Dresden Technical University investigated the combustion and emission characteristics of a number of combustion systems, including a circulating fluidized bed system with a capacity of 0.3 MW{sub th}. Egypt`s sugar cane industry produces large volumes of bagasse. The conbustion and emission characteristics of this biofuel in a circulating fludized bed combustion systems were investigated in a joint research project of the University of Minia and Dresden Technical University. (orig.) [Deutsch] Am Institut fuer Energietechnik der TU Dresden wird das Verbrennungs- und Emissionsverhalten verschiedenster Brennstoffe in unterschiedlichen Feuerungssystemen untersucht. Neben anderen Pilotanlagen steht eine zirkulierende Wirbelschichtfeuerung (ZWFS) mit einer Leistung von 0.3 MW{sub th} zur Verfuegung. In der Zuckerrohrindustrie Aegyptens fallen grosse Mengen von Bagasse an. In einer gemeinsamen Forschungsarbeit zwischen der Universitaet Minia und der TU Dresden sollte das Verbrennungs- und Emissionsverhalten dieses Biobrennstoffes in einer ZWSF untersucht werden. (orig)

  8. Pyrolysis reactor and fluidized bed combustion chamber

    Science.gov (United States)

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  9. Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120).

    Science.gov (United States)

    Khan, Rashid; Dhodapkar, Madhav; Rosenthal, Adam; Heuck, Christoph; Papanikolaou, Xenofon; Qu, Pingping; van Rhee, Frits; Zangari, Maurizio; Jethava, Yogesh; Epstein, Joshua; Yaccoby, Shmuel; Hoering, Antje; Crowley, John; Petty, Nathan; Bailey, Clyde; Morgan, Gareth; Barlogie, Bart

    2015-09-01

    Multiple myeloma is preceded by an asymptomatic phase, comprising monoclonal gammopathy of uncertain significance and smoldering myeloma. Compared to the former, smoldering myeloma has a higher and non-uniform rate of progression to clinical myeloma, reflecting a subset of patients with higher risk. We evaluated the gene expression profile of smoldering myeloma plasma cells among 105 patients enrolled in a prospective observational trial at our institution, with a view to identifying a high-risk signature. Baseline clinical, bone marrow, cytogenetic and radiologic data were evaluated for their potential to predict time to therapy for symptomatic myeloma. A gene signature derived from four genes, at an optimal binary cut-point of 9.28, identified 14 patients (13%) with a 2-year therapy risk of 85.7%. Conversely, a low four-gene score (smoldering myeloma with a 5.0% chance of progression at 2 years. The top 40 probe sets showed concordance with indices of chromosome instability. These data demonstrate high discriminatory power of a gene-based assay and suggest a role for dysregulation of mitotic checkpoints in the context of genomic instability as a hallmark of high-risk smoldering myeloma. Copyright© Ferrata Storti Foundation.

  10. Combustion noise

    Science.gov (United States)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  11. Systemic Mastocytosis with Smoldering Multiple Myeloma: Report of a Case.

    Science.gov (United States)

    Ghanem, Sassine; Garcia, Gwenalyn; Ying, Liu; Hurford, Matthew; Odaimi, Marcel

    2016-01-01

    Systemic mastocytosis (SM) is a disease characterized by a clonal infiltration of mast cells affecting various tissues of the body. It is grouped into six different subtypes according to the World Health Organization classification. It is called indolent systemic mastocytosis (ISM) when there is no evidence of end organ dysfunction, while the presence of end organ dysfunction defines aggressive systemic mastocytosis (ASM). When SM coexists with a clonal hematological disorder, it is classified as systemic mastocytosis with associated clonal hematological nonmast cell lineage disease (SM-AHNMD). Over 80% of SM-AHNMD cases involve disorders of the myeloid cell lines. To our knowledge, there are only 8 reported cases to date of SM associated with a plasma cell disorder. We report a patient with ISM who was found to have concomitant smoldering multiple myeloma. His disease later progressed to ASM. We discuss this rare association between SM and a plasma cell disorder, and potential common pathophysiologic mechanisms linking the two disorders will be reviewed. We also discuss prognostic factors in SM as well as the management options considered during the evolution of the patient's disease.

  12. Smoldering multiple myeloma requiring treatment: time for a new definition?

    Science.gov (United States)

    Dispenzieri, Angela; Stewart, A Keith; Chanan-Khan, Asher; Rajkumar, S Vincent; Kyle, Robert A; Fonseca, Rafael; Kapoor, Prashant; Bergsagel, P Leif; McCurdy, Arleigh; Gertz, Morie A; Lacy, Martha Q; Lust, John A; Russell, Stephen J; Zeldenrust, Steven R; Reeder, Craig; Roy, Vivek; Buadi, Francis; Dingli, David; Hayman, Suzanne R; Leung, Nelson; Lin, Yi; Mikhael, Joseph; Kumar, Shaji K

    2013-12-19

    Smoldering multiple myeloma (SMM) bridges the gap between monoclonal gammopathy of undetermined significance (a mostly premalignant disorder) and active multiple myeloma (MM). Until recently, no interventional study in patients with SMM showed improved overall survival (OS) with therapy as compared with observation. A report from the PETHEMA-GEM (Programa Español de Tratamientos en Hematologica) group described both fewer myeloma-related events and better OS among patients with high-risk SMM who were treated with lenalidomide and dexamethasone. This unique study prompted us to review current knowledge about SMM and address the following questions: (1) Are there patients currently defined as SMM who should be treated routinely? (2) Should the definitions of SMM and MM be reconsidered? (3) Has the time come when not treating is more dangerous than treating? (4) Could unintended medical harm result from overzealous intervention? Our conclusion is that those patients with the highest-risk SMM (extreme bone marrow plasmacytosis, extremely abnormal serum immunoglobulin free light chain ratio, and multiple bone lesions detected only by modern imaging) should be reclassified as active MM so that they can receive MM-appropriate therapy and the paradigm of careful observation for patients with SMM can be preserved.

  13. Smoldering multiple myeloma: when to observe and when to treat?

    Science.gov (United States)

    Mateos, María-Victoria; San Miguel, Jesús-F

    2015-01-01

    Smoldering multiple myeloma (SMM) is an asymptomatic disorder characterized by the presence of at least 3 g/dL of serum M-protein and/or 10% to 60% bone marrow plasma cell infiltration with no myeloma-defining event. The risk of progression to active multiple myeloma (MM) is not uniform and several markers are useful for identifying patients at high risk of progression. The definition of the disease has recently been revisited and patients with asymptomatic MM at 80% to 90% of progression risk at 2 years are now considered to have MM. Although the current standard of care is not to treat, a randomized trial in patients with high-risk SMM that compared early treatment versus observation demonstrated that early intervention resulted in substantial benefits in terms of time to progression and overall survival (OS). These findings highlight the need to follow a correct diagnosis by an accurate risk stratification to plan an optimized follow-up according to the risk of disease progression.

  14. Smoldering multiple myeloma: to treat or not to treat.

    Science.gov (United States)

    Gentile, Massimo; Offidani, Massimo; Vigna, Ernesto; Corvatta, Laura; Recchia, Anna Grazia; Morabito, Lucio; Martino, Massimo; Morabito, Fortunato; Gentili, Silvia

    2015-04-01

    Smoldering multiple myeloma (SMM) is an asymptomatic disorder characterized by the presence of ≥ 30 g/l serum M-protein and/or ≥ 10% bone marrow plasma cell infiltration. The progression risk to active multiple myeloma (MM) is not uniform, and several prognostic parameters are useful for identifying patients at high risk of progression. A watch-and-wait approach has been the standard of care up to now. However, recently, it has been demonstrated that a subset of high-risk cases can benefit from early treatment with new drugs. In this editorial, we focus on SMM and evaluate the diagnostic work-up and the prognostic factors predicting progression to symptomatic MM. We also review the studies in which the role of early treatment has been evaluated for patients with SMM. After the update performed by the International Myeloma Working Group regarding MM diagnosis, it is now time to change the therapeutic paradigm for this disease. While "ultra high-risk" myeloma should now be considered as active MM, for low-risk patients the "watch-and-wait" strategy is still recommended. More caution is needed for the high-risk group: physicians should continue monitoring patients using every tool now available while waiting for results from ongoing trials that will establish if this group will benefit from an early intervention.

  15. Monoclonal gammopathy and smoldering multiple myeloma: diagnosis, staging, prognosis, management.

    Science.gov (United States)

    Hillengass, Jens; Moehler, Thomas; Hundemer, Michael

    2011-01-01

    Monoclonal gammopathy of unknown significance (MGUS) as one of the most common premalignant disorders and smoldering multiple myeloma (sMM) are both caused by a proliferation of monoclonal plasma cells leading to a detectable serum monoclonal protein and/or excess of plasma cells in the bone marrow. Prerequisite for the diagnosis is that plasma cell disease does not cause clinical symptoms. Cytogenetic aberrations are detectable in the majority of patient in the clonally expanded plasma cells. MGUS consistently proceeds symptomatic MM. The lifetime risk of progression into symptomatic multiple myeloma lies between 15% and 59% for patients with MGUS or sMM. Prognostic parameters for development of symptomatic multiple myeloma from MGUS or sMM are concentration of monoclonal protein, bone marrow plasmocytosis, a non- IgG subtype and an abnormal free-light chain ratio. Detection of more than 1 focal lesion in whole body MRI, 95% or more of bone marrow plasma cells displaying an aberrant phenotype in flow cytometry and an evolving clinical course in two consecutive follow-up visits are additional prognostic parameters for sMM. Currently there is no accepted secondary prevention strategy available for sMM and MGUS progression. Future studies are required to combine increasing knowledge on risk factors and molecular pathogenesis with targeted agents to prevent progression.

  16. Smoldering Multiple Myeloma: Who and When to Treat.

    Science.gov (United States)

    Mateos, María-Victoria; González-Calle, Verónica

    2017-11-01

    Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell disorder characterized by the presence of ≥ 3 g/dL serum M-protein and/or 10% to 60% bone marrow plasma cell infiltration with no myeloma-defining event. The risk of progression to active multiple myeloma (MM) is not uniform, and several markers are useful for identifying patients at high risk of progression. The definition of the disease has recently been revisited and asymptomatic MMs at 80% to 90% of progression risk at 2 years are now considered to be active MM candidates for treatment. In the future, more precise biomarkers are necessary for accurate risk stratification to plan an optimized follow-up according to the risk of progression, as well as to expand the group of patients that can obtain a benefit if they receive early treatment. A phase 3, randomized trial in high-risk patients with SMM comparing early treatment versus observation has shown a significant benefit in terms of time to progression and overall survival for early intervention and confirmatory clinical trials will definitively contribute to establish the early treatment as standard of care in high-risk SMM. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. MGUS and Smoldering Multiple Myeloma: Diagnosis and Epidemiology.

    Science.gov (United States)

    Mateos, María-Victoria; Landgren, Ola

    Monoclonal gammopathy of undetermined significance (MHUS) is characterized by the presence of a serum M-protein less than 3 g/dL, less than 10 % clonal plasma cells in the bone marrow, and the absence of myeloma-defining event. Smoldering multiple myeloma (SMM) is an asymptomatic disorder characterized by the presence of ≥3 g/dL serum M-protein and/or 10-60 % bone marrow plasma cell infiltration with no myeloma-defining event. The risk of progression to multiple myeloma (MM) requiring therapy varies greatly for individual patients, but it is uniform and 1 % per year for MGUS, while higher (10 % per year) and not uniform for SMM patients. The definition of MM was recently revisited patients previously labeled as SMM with a very high risk of progression (80-90 % at 2 years) were included in the updated definition of MM requiring therapy. The standard of care is observation for MGUS patients and although this also applies for SMM, a recent randomized trial targeting high-risk SMM showed that early intervention was associated with better progression-free and overall survival. Biomarkers have become an integrated part of diagnostic criteria for MM requiring therapy, as well as clinical risk stratification of patients with SMM. This paper reviews and discusses clinical implications for MGUS and SMM patients.

  18. Systemic Mastocytosis with Smoldering Multiple Myeloma: Report of a Case

    Directory of Open Access Journals (Sweden)

    Sassine Ghanem

    2016-01-01

    Full Text Available Systemic mastocytosis (SM is a disease characterized by a clonal infiltration of mast cells affecting various tissues of the body. It is grouped into six different subtypes according to the World Health Organization classification. It is called indolent systemic mastocytosis (ISM when there is no evidence of end organ dysfunction, while the presence of end organ dysfunction defines aggressive systemic mastocytosis (ASM. When SM coexists with a clonal hematological disorder, it is classified as systemic mastocytosis with associated clonal hematological nonmast cell lineage disease (SM-AHNMD. Over 80% of SM-AHNMD cases involve disorders of the myeloid cell lines. To our knowledge, there are only 8 reported cases to date of SM associated with a plasma cell disorder. We report a patient with ISM who was found to have concomitant smoldering multiple myeloma. His disease later progressed to ASM. We discuss this rare association between SM and a plasma cell disorder, and potential common pathophysiologic mechanisms linking the two disorders will be reviewed. We also discuss prognostic factors in SM as well as the management options considered during the evolution of the patient’s disease.

  19. The Changing Landscape of Smoldering Multiple Myeloma: A European Perspective.

    Science.gov (United States)

    Caers, Jo; Fernández de Larrea, Carlos; Leleu, Xavier; Heusschen, Roy; Zojer, Niklas; Decaux, Olivier; Kastritis, Efstathios; Minnema, Monique; Jurczyszyn, Artur; Beguin, Yves; Wäsch, Ralph; Palumbo, Antonio; Dimopoulos, Meletios; Mateos, Maria Victoria; Ludwig, Heinz; Engelhardt, Monika

    2016-03-01

    Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder and bridges monoclonal gammopathy of undetermined significance to multiple myeloma (MM), based on higher levels of circulating monoclonal immunoglobulin and bone marrow plasmocytosis without end-organ damage. Until a Spanish study reported fewer MM-related events and better overall survival among patients with high-risk SMM treated with lenalidomide and dexamethasone, prior studies had failed to show improved survival with earlier intervention, although a reduction in skeletal-related events (without any impact on disease progression) has been described with bisphosphonate use. Risk factors have now been defined, and a subset of ultra-high-risk patients have been reclassified by the International Myeloma Working Group as MM, and thus will require optimal MM treatment, based on biomarkers that identify patients with a >80% risk of progression. The number of these redefined patients is small (∼10%), but important to unravel, because their risk of progression to overt MM is substantial (≥80% within 2 years). Patients with a high-risk cytogenetic profile are not yet considered for early treatment, because groups are heterogeneous and risk factors other than cytogenetics are deemed to weight higher. Because patients with ultra-high-risk SMM are now considered as MM and may be treated as such, concerns exist that earlier therapy may increase the risk of selecting resistant clones and induce side effects and costs. Therefore, an even more accurate identification of patients who would benefit from interventions needs to be performed, and clinical judgment and careful discussion of pros and cons of treatment initiation need to be undertaken. For the majority of SMM patients, the standard of care remains observation until development of symptomatic MM occurs, encouraging participation in ongoing and upcoming SMM/early MM clinical trials, as well as consideration of bisphosphonate use in

  20. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  1. Steroid-resistant nephrotic syndrome secondary to primary focal segmental glomerulosclerosis and smoldering multiple myeloma.

    Science.gov (United States)

    Shah, Rupin; Shah, Nishi; Shah, Arun; Mehta, Ankit N

    2014-01-01

    We present a patient with steroid-resistant nephrotic syndrome due to focal segmental glomerulosclerosis along with smoldering multiple myeloma. While investigating the cause of proteinuria, a monoclonal gammopathy with a negative kidney biopsy for myeloma-related pathology was discovered.

  2. Post-fire tree stress and growth following smoldering duff fires

    Science.gov (United States)

    Morgan Varner; Francis E. Putz; Robert J. Mitchell; J. Kevin Hiers; Joseph J. O’Brien; Doria R. Gordon

    2009-01-01

    Understanding the proximate causes of post-fire conifer mortality due to smoldering duff fires is essential to the restoration and management of coniferous forests throughout North America. To better understand duff fire-caused mortality, we investigated tree stress and radial growth following experimental fires in a long-unburned forest on deep sands in northern...

  3. Steroid-resistant nephrotic syndrome secondary to primary focal segmental glomerulosclerosis and smoldering multiple myeloma

    OpenAIRE

    Shah, Rupin; Shah, Nishi; Shah, Arun; Mehta, Ankit N.

    2014-01-01

    We present a patient with steroid-resistant nephrotic syndrome due to focal segmental glomerulosclerosis along with smoldering multiple myeloma. While investigating the cause of proteinuria, a monoclonal gammopathy with a negative kidney biopsy for myeloma-related pathology was discovered.

  4. Fighting Smoldering Fires in Silos – A Cautionary Note on Using Carbon Dioxide to Inert

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2017-01-01

    this approach. A recent article in Biomass and Bioenergy examines an explosion in a Norwegian wood pellet silo when attempting to suppress a smoldering fire with CO₂. The article argues that the electrostatic hazard of CO₂ is widely under-appreciated and incidents like this are avoidable....

  5. Sewage sludge as additive to reduce the initial fireside corrosion caused by combustion of shredder residues in a waste-fired BFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, T.; Pettersson, J.; Johansson, L.G.; Svensson, J.E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Environmental Inorganic Chemistry; Davidsson, K. [SP Technical Research Institute of Sweden, Boraas (Sweden)

    2010-07-01

    Corrosion/deposition field tests have been carried out in a commercial waste-fired BFB boiler using air-cooled probes. The influence of 20% shredder light fraction (SLF), from recovery of metal scrap material, mixed with waste was studied at different material temperatures (280-420 C). In addition, 3% sewage sludge was added to the 20% SLF/waste mixture. The initial deposit and corrosion products were compared to when the normal waste (municipal solid waste and industrial wastes) fuel was used. After 24 hours exposure, the deposits were analyzed as for elemental composition while the corrosion products were characterised by ESEM/EDX and XRD. The results show that combustion of 20% SLF increased the amount of deposition, which in addition contains a larger fraction chlorine. This causes a higher initial corrosion rate. Adding 3% sewage sludge removes the effect of the SLF and deposits and corrosion products were comparable with the ones formed during the reference exposure. The results indicate that the initial fireside corrosion is chlorine induced and no signs of low-melting heavy metals salts were observed in the corrosion products. (orig.)

  6. [Imaging in smoldering (asymptomatic) multiple myeloma. Past, present and future].

    Science.gov (United States)

    Bhutani, M; Landgren, O

    2014-06-01

    Emerging clinical trial data support treatment of high-risk smoldering multiple myeloma (SMM) upon diagnosis, and not only at the time of progression to symptomatic complications (multiple myeloma). Early detection of bone and/or bone marrow involvement by sensitive imaging modalities may help define SMM patients at a high risk of progression. Current (2011) consensus guidelines recognize skeletal survey as a cornerstone modality for assessment of bone involvement at initial diagnosis and during follow-up of SMM. Skeletal survey has severe limitations related to underdetection of bone lesions and also provides no information on bone marrow abnormalities. Modern imaging strategies such as fluorodeoxyglucose positron-emission tomography/CT (FDG PET/CT) and MRI, in conjunction with functional innovations, provide improved estimates of global abnormalities in the bone marrow and bone compartments. These methods have the potential to objectively quantify early transformation from SMM to multiple myeloma. Although frequently used for staging and risk prognostication in multiple myeloma, modern imaging techniques have only been evaluated to a limited extent in SMM. Scant data in SMM indicate the prognostic value of two or more MRI-detected focal bone marrow abnormalities, which, if present, predict rapid progression to multiple myeloma. Data evaluating the role of FDG PET/CT in detecting early bone marrow abnormalities as an aid to predicting risk or directing treatment in SMM is currently lacking. The superior specificity and sensitivity of modern imaging techniques compared to skeletal survey suggest that these should have a place in standard practice management of patients at a high risk of SMM progression. The model imaging of the future should be an all-in-one strategy offering high diagnostic performance for bone marrow abnormalities and low-volume bone lesions, as well as allowing monitoring by minimizing radiation exposure and the need for contrast agents. Newer

  7. Effect of weathering transformations of coal combustion residuals on trace element mobility in view of the environmental safety and sustainability of their disposal and use. I. Hydrogeochemical processes controlling pH and phase stability.

    Science.gov (United States)

    Stefaniak, Sebastian; Miszczak, Ewa; Szczepańska-Plewa, Jadwiga; Twardowska, Irena

    2015-06-01

    Coal combustion residuals (CCRs) are one of the most abundant high-volume waste materials disposed in impoundments worldwide. Some methods of CCR recycling, e.g. their use as structural fill for low lying areas or as soil amendment, also expose this material to atmospheric conditions. Combustion processes result in concentration of trace elements in CCRs at about an order of magnitude compared to coal. In order to assess an effect of long-term weathering transformations of CCRs on trace element binding/release, a study has been carried out. It is based on the chemical composition of real pore solutions extracted from the most abundant primary alkaline Class F bituminous CCRs, 0 to >40 years old, sampled from the surface layer and vertical profiles at four different impoundments. In this part of the study, results of a hydrogeochemical simulation of the saturation state of real pore solutions with respect to mineral phases of CCRs with use of the PHREEQC program, related to actual pH values reflecting the full cycle of weathering transformations, have been discussed. This study is the first geochemical proof of the general trend towards a progressive acidification up to pH < 4 of primary alkaline CCRs due to release of protons during internal processes of formation of gibbsite and aluminosilicate minerals, buffered by carbonates at the alkaline - near-neutral stages, and followed by parallel dissolution and buffering by aluminosilicates at pH < 7 after carbonate depletion, to the level up to pH∼3.5-4.0. The intrinsic geochemical changes have resulted in the different susceptibility of trace elements to release and associated changes in risk to the environment at consecutive stages of weathering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  9. Combining mechanical-biological residual waste treatment plants with the carbonisation-combustion process; Kombination MBA mit dem Schwel-Brenn-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Diekmann, J.; Wiehn, G. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany). Bereich Energieerzeugung

    1998-09-01

    The disposal market for household waste is strongly influenced by the legal framework governing it. A further factor that makes it difficult for the authorities responsible for disposal to decide on residual waste disposal by means of thermal or mechanical-biological treatment plants is the downward pressure on disposal prices from inexpensive, underused landfills. This makes it all the more important for a future-oriented waste management to develop a both economically and ecologically optimised waste disposal concept. In this situation there is much in favour of adopting a concept consisting of a combination of mechanical, mechanical-biological, and thermal treatment which takes due account of waste disposal concepts at the regional and supraregional scale. [Deutsch] Der Entsorgungsmarkt fuer Siedlungsabfaelle wird stark durch die Entwicklung der rechtlichen Rahmenbedingungen beeinflusst. Hinzu kommt, dass der Entscheidungsprozess der oeffentlichen Entsorgungstraeger zur Restabfallentsorgung mittels thermischer oder mechanisch-biologischer Anlagen durch den Druck auf die Entsorgungspreise aufgrund der kostenguenstigen, nicht ausgelasteten Deponien erschwert wird. Umso mehr muss das Ziel einer zukunftsorientierten Abfallwirtschaft sein, unter oekonomischen und oekologischen Gesichtspunkten ein optimiertes Abfallkonzept aufzubauen. Hier kann es sehr hilfreich sein, sich eines Konzeptes, bestehend aus der Kombination von mechanischer, mechanisch-biologischer und thermischer Behandlung unter Beruecksichtigung des regionalen und ueberregionalen Abfallkonzeptes zu bedienen. (orig./SR)

  10. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  11. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  12. Experimental biomass burning emission assessment by combustion chamber

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  13. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM): a practical guide to management.

    Science.gov (United States)

    Maciocia, Nicola; Wechalekar, Ashutosh; Yong, Kwee

    2017-12-01

    Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma are precursor conditions of symptomatic multiple myeloma (MM). Diagnostic principles are aimed at excluding MM requiring therapy, other conditions associated with paraproteins that may require different management, and risk stratifying patients for the purposes of tailored follow-up and investigation. The International Myeloma Working Group have recently published a revised definition of MM, which singles out a small group of patients with smoldering multiple myeloma who are at very high risk of progression and organ damage; such patients are now included under the definition of MM and recommended to start anti-myeloma treatment. Furthermore, the recently published National Institute of Health and Care Excellence guideline recommends cross-sectional imaging techniques in place of skeletal survey. These recent recommendations are discussed, and practical guidance for investigation and management are presented. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Spurious platelet count due to cryoglobulins in a patient with smoldering myeloma

    Directory of Open Access Journals (Sweden)

    Naveen Kakkar

    2014-01-01

    Full Text Available Use of automated hematology analyzers for routine blood count reporting has increased the reproducibility and accuracy of test results. However, at times, these instruments may generate spurious test results. Such results can result in inappropriate investigations or treatment decisions in patients. Spuriously normal or high platelet counts carry the risk of under diagnosis of the true thrombocytopenia with adverse clinical implications. We present a patient with smoldering myeloma with spurious platelet count due to cryoglobulins.

  15. Biofuels Combustion

    Science.gov (United States)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  16. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  17. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  18. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  19. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  20. Effect of a fire retardant on the ignition of pine wood exposed to smoldering particles of pine bark

    Science.gov (United States)

    Kasymov, Denis; Paletsky, Alexander

    2017-10-01

    This paper represents the laboratory research results on the interaction of smoldering pine bark particles with pine wood. Fire retardant treatment "FUKAM" was studied to estimate its effect on the probability of wood ignition. The wind speed and the number and geometric sizes of particles were varied in the experiments. The results have shown that the increase in the wind speed leads to the increase in the probability of wood ignition by the particles of the same size, and fire-retardant treatment significantly increases the protective properties of wood exposed to smoldering pine bark particles.

  1. Application of coal combustion residues to the stabilization/solidification of industrial wastes (IRIS); Desarrollo de un Proceso, a Escala Piloto de Inertizacion de Residuos Industriales con Cenizas Volantes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Stabilization/solidification (S/S) processes, also called inertization processes, are a group of techniques which employ additives to reduce the mobility of the hazardous components from the waste and make possible for the residue to be accepted for its disposal in a safe way. These processes, mainly applied to wastes that contain heavy metals (such as lead, zinc, cadminum, mercury, copper, nickel, titanium, chromium-III, chromium-VI, arsenic,....) change the waste into a solid-like material in which the metals are trapped (nets and matrix) by physical or chemical links. The IRIS Project, carried out by AICIA through the ECSC Coal Programme with the participation of two industrial partners (Sevillana de Electricidad and EGMASA, a public-owned company for waste treatment), has developed, at pilot scale, a new S/S process for inorganic industrial wastes that uses great quantities of fly ash in the place of other more commonly used and expansive reagents. A pilot plant for 200 kg/h has been designed, built and operated. This facility has allowed to add improvements and scientific foundations to existing S/S technology. It has also allowed to obtain industrial scale parameters for fixed and portable plants. Experiencie have been mainly carried out using fly ash from high quality coals, but types of ash have been tested coming from coals with a greater calcium content, from fluidised bed combustion boilers and from desulphurisation processes, giving very suitable characteristics for their application to S/S processes. The addition of fly ash (up to 30%) in the IRIS process improves the results in comparison with the S/S processes that use only cement, because the final pH obtained (8-11) does not allow amphoteric metallic ions to escape in the leachate. The same as other S/S processes, IRIS can be applied also to wastes that contain certain metals (chromium-VI, arsenic, for example) with specific pre-treatments (redox, for example). The efficiency of the IRIS treatment

  2. Treatment With Carfilzomib-Lenalidomide-Dexamethasone With Lenalidomide Extension in Patients With Smoldering or Newly Diagnosed Multiple Myeloma.

    Science.gov (United States)

    Korde, Neha; Roschewski, Mark; Zingone, Adriana; Kwok, Mary; Manasanch, Elisabet E; Bhutani, Manisha; Tageja, Nishant; Kazandjian, Dickran; Mailankody, Sham; Wu, Peter; Morrison, Candis; Costello, Rene; Zhang, Yong; Burton, Debra; Mulquin, Marcia; Zuchlinski, Diamond; Lamping, Liz; Carpenter, Ashley; Wall, Yvonne; Carter, George; Cunningham, Schuyler C; Gounden, Verena; Sissung, Tristan M; Peer, Cody; Maric, Irina; Calvo, Katherine R; Braylan, Raul; Yuan, Constance; Stetler-Stevenson, Maryalice; Arthur, Diane C; Kong, Katherine A; Weng, Li; Faham, Malek; Lindenberg, Liza; Kurdziel, Karen; Choyke, Peter; Steinberg, Seth M; Figg, William; Landgren, Ola

    2015-09-01

    Carfilzomib-lenalidomide-dexamethasone therapy yields deep responses in patients with newly diagnosed multiple myeloma (NDMM). It is important to gain an understanding of this combination's tolerability and impact on minimal residual disease (MRD) negativity because this end point has been associated with improved survival. To assess the safety and efficacy of carfilzomib-lenalidomide-dexamethasone therapy in NDMM and high-risk smoldering multiple myeloma (SMM). Clinical and correlative pilot study at the National Institutes of Health Clinical Center. Patients with NDMM or high-risk SMM were enrolled between July 11, 2011, and October 9, 2013. Median follow-up was 17.3 (NDMM) and 15.9 months (SMM). Eight 28-day cycles were composed of carfilzomib 20/36 mg/m2 on days 1, 2, 8, 9, 15, and 16; lenalidomide 25 mg on days 1 through 21; and dexamethasone 20/10 mg (cycles 1-4/5-8) on days 1, 2, 8, 9, 15, 16, 22, and 23. Patients who achieved at least stable disease subsequently received 24 cycles of lenalidomide extended dosing. Primary end points were neuropathy of grade 3 or greater (NDMM) and at least very good partial response rates (SMM). Minimal residual disease was also assessed. Of 45 patients with NDMM, none had neuropathy of grade 3 or greater. Of 12 patients with high-risk SMM, the most common of any-grade adverse events were lymphopenia (12 [100%]) and gastrointestinal disorders (11 [92%]). All patients with SMM achieved at least a very good partial response during the study period. Among the 28 patients with NDMM and the 12 with SMM achieving at least a near-complete response, MRD negativity was found in 28 of 28 (100% [95% CI, 88%-100%]), 11 of 12 (92% [95% CI, 62%-100%]) (multiparametric flow cytometry), 14 of 21 (67% [95% CI, 43%-85%]), and 9 of 12 (75% [95% CI, 43%-94%]) (next-generation sequencing), respectively. In patients with NDMM, 12-month progression-free survival for MRD-negative vs MRD-positive status by flow cytometry and next

  3. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  4. Smoldering myeloma presenting as progressive multifocal leukoencephalopathy: a case report

    Directory of Open Access Journals (Sweden)

    Troppmann Martina

    2012-07-01

    Full Text Available Abstract Introduction Progressive multifocal leukoencephalopathy is an opportunistic infection occurring in patients with severe cellular immunodeficiency. This case highlights the role of cellular immunodeficiency in the reactivation of John Cunningham virus in a case of an early stage plasmacytoma. Case presentation A 76-year-old Caucasian woman presented with progressive left-sided hemiparesis, accompanied by hypoesthesia, hypoalgesia and neuropsychological symptoms. Magnetic resonance imaging demonstrated new hyperattenuating lesions in the right thalamus and left-sided subcortically. A polymerase chain reaction test revealed 4500 copies of John Cunningham virus-deoxyribonucleic acid/ml in cerebrospinal fluid. Human immunodeficiency virus infection was ruled out. A bone marrow biopsy showed an early stage immunoglobulin G-kappa plasmacytoma. Cidofovir (5mg/kg weekly for three weeks was started. A significant improvement of her neuropsychological symptoms was achieved, but motor system and sensory symptoms did not change. Conclusions This case shows a rapid course of progressive multifocal leukoencephalopathy with severe residual deficits. In the diagnostic workup of all patients with atypical neurologic symptoms or immunodeficiency, progressive multifocal leukoencephalopathy should be included as a differential diagnosis.

  5. [Recurrent invasive pneumococcal disease in a patient with IgG-κ smoldering multiple myeloma].

    Science.gov (United States)

    Chiba, Masahiro; Oshimi, Kazuo; Matsukawa, Toshihiro; Okada, Kouhei; Miyagishima, Takuto

    A 68-year-old female with smoldering multiple myeloma (IgG-κ type) was admitted to the hospital owing to general fatigue, fever, and pain in the right leg. On the day following admission, she developed shock, and a blood culture revealed Streptococcus pneumoniae. She was diagnosed with septic shock and invasive pneumococcal disease (IPD). She received antibiotics and intravenous immunoglobulin and improved after several days. She had a history of recurrent IPD and had received the pneumococcal polysaccharide vaccine 23 (PPSV23) 2 years earlier. Therefore, we inquired with the National Institute of Infectious Diseases if the pneumococcal serotype isolated from her present IPD contained PPSV23. The results showed that her serotype was 19F, a serotype present in PPSV23. We administered pneumococcal conjugate vaccine 13 (PCV13) ; however, she was unable to mount high enough opsonophagocytic assay titers against some serotypes, including 19F. We think she was unable to mount effective humoral immune responses to PPSV23 or PCV13 owing to her underlying disease, smoldering myeloma. It should be considered how IPD can be effectively prevented in patients with multiple myeloma.

  6. Study of MGUS, Smoldering Myeloma, Early MDS and CLL to Assess Molecular Events of Progression and Clinical Outcome

    Science.gov (United States)

    2017-08-25

    Monoclonal Gammopathy of Undetermined Significance (MGUS); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic-Myeloproliferative Diseases; Hematological Malignancies; B-cell Malignancy, Low-grade; Myelodysplastic Syndrome With Low-grade Lesions; IgG Monoclonal Gammopathy of Uncertain Significance; Smoldering Multiple Myeloma; Waldenstrom Macroglobulinemia

  7. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    Science.gov (United States)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  8. Investigating dominant characteristics of fires across the Amazon during 2005-2014 through satellite data synthesis of combustion signatures

    Science.gov (United States)

    Tang, W.; Arellano, A. F.

    2017-01-01

    Estimates of fire emissions remain uncertain due to limited constraints on the variations in fire characteristics. Here we demonstrate the utility of space-based observations of smoke constituents in addressing this limitation. We introduce a satellite-derived smoke index (SI) as an indicator of the dominant phase of large-scale fires. This index is calculated as the ratio of the geometric mean of observed fractional enhancements (due to fire) in carbon monoxide and aerosol optical depth to that of nitrogen dioxide. We assess the usefulness of this index on fires in the Amazon. We analyze the seasonal, regional, and interannual joint distribution of SI and fire radiative power (FRP) in relation to fire hotspots, land cover, Drought Severity Index, and deforestation rate estimates. We also compare this index with an analogous quantity derived from field data or emission inventories. Our results show that SI changes from low (more flaming) to high (more smoldering) during the course of a fire season, which is consistent with the changes in observed maximum FRPs from high to low. We also find that flaming combustion is more dominant in areas where deforestation fires dominate, while smoldering combustion has a larger influence during drought years when understory fires are more likely enhanced. Lastly, we find that the spatiotemporal variation in SI is inconsistent with current emission inventories. Although we recognize some limitations of this approach, our results point to the utility of SI as a proxy for overall combustion efficiency in the parameterization of fire emission models.

  9. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  10. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  11. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  12. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  13. Co-combustion of Fossil Fuels and Waste

    DEFF Research Database (Denmark)

    Wu, Hao

    and the utilization of a waste-derived material as an additive; 3) the combustion of a biomass residue rich in phosphorus. Co-combustion of coal and SRF was conducted in an entrained flow reactor (EFR). The work revealed that when coal was co-fired with up to 25 wt% SRF, the burnout and the emissions of SO2...

  14. Equation for Combustion Noise

    Science.gov (United States)

    Liu, T. M.

    1982-01-01

    Mathematical relationship derived for interactions between turbulent flame and combustion noise. Relationship is rigorous theoretical correlation of combustion noise and combustion process. Establishes foundation for acoustic measurements as tool for investigating structure of turbulent flames. Mathematical relationship is expected to aid researchers in field of noise generated by combustion.

  15. Co-combustion of automotive shredder residue (ASR) and sewage sludge with a mixture of industrial and household waste in an 20MW fluidized bed combustor; Samfoerbraenning av bilfluff, roetslam och avfall i en 20 MW fluidbaeddpanna - Studier av braenslesammansaettningens paaverkan paa belaeggningsbildning

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Johansson, Andreas; Johansson, Linda; Wikstroem-Blomqvist, Evalena

    2007-07-01

    In order to prevent a further increased use of resources and to decrease the environmental impact from landfills, organic wastes are today diverted towards material and energy recovery. This creates a waste market with an increasing number of waste fractions that needs to be treated properly. As an example, in Sweden it has recently been prohibited to landfill source separated combustible waste (2002) and organic waste (2005). Wastes as automotive shredder residue (ASR) and sewage sludge can no longer be landfilled and needs to be either material or energy recovered, which challenge the waste treatment sector. This work investigates the effects of ASR and sewage sludge co-combustion in a 20 MW Energy-from-Waste plant (bubbling fluidised bed). The long term objective of the work is to increase the fuel flexibility, the boiler availability and the power production. This report focus on boiler operation and combustion performance in terms of agglomeration, deposit rates and emissions. In addition to the tests with ASR and sewage sludge, repeated measurements were performed during normal load as a reference. The results show that the co-combusted fractions of ASR and sewage sludge, which on mass basis constituted 6 % and 15 % respectively, did not increase the risk for agglomeration or deposits on heat-exchanging surfaces. Instead, compared to the two reference cases, the deposit rates decreased when sewage sludge was added. Only minor variation in the emissions was seen between the different cases. The levels of I-TEQs were far below the legislated values in all cases

  16. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  17. Severe reversible pulmonary hypertension in smoldering multiple myeloma: two cases and review of the literature.

    Science.gov (United States)

    Feyereisn, Wayne L; Fenstad, Eric R; McCully, Robert B; Lacy, Martha Q

    2015-03-01

    An association between pulmonary hypertension (PH) and POEMS syndrome (characterized by polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes) as well as other plasma cell dyscrasias, including multiple myeloma (MM), has been shown to exist. Recent case reports have identified a reversible form of PH that occurs outside of previously identified etiologies. We report two cases of PH in the setting of smoldering MM (SMM) that resolved with chemotherapy and stem cell transplantation. Although other features were individualized among the cases (dermatomyositis, scleromyxedema), treatment of MM and SMM resulted in a normalization of right ventricular systolic pressure and improvement in right ventricular dysfunction that was previously unresponsive to PH therapies. The magnitude and sustained nature of reversibility in these four cases could offer clues about the pathophysiology and treatment of PH.

  18. Impact of fire-fighters training on a female with smoldering multiple myeloma.

    Science.gov (United States)

    Boullosa, D A; Leicht, A S; Tuimil, J L

    2010-09-01

    The purpose of this study was to examine the influence of a fire-fighting training regime on the cardiac autonomic control of a middle-aged female diagnosed with smoldering multiple myeloma (SMM). Cardiac autonomic control was monitored by heart rate variability (HRV) analysis in the patient during the last six-week period of a one and half year training period. Compared with healthy, physically active age-matched females, the patient demonstrated similar HRV parameters. Furthermore, the patient experienced a positive evolution of the SMM during this training period. These findings indicate: 1) the beneficial effects of high intensity physical training on cardiac autonomic function in a SMM patient; 2) the potential value of HRV monitoring in cancer patients undertaking regular physical activity.

  19. Diagnosis and management of smoldering multiple myeloma: the razor's edge between clonality and cancer.

    Science.gov (United States)

    Muchtar, Eli; Kumar, Shaji K; Magen, Hila; Gertz, Morie A

    2018-02-01

    Smoldering multiple myeloma (SMM) is a rare plasma cell disorder, and as the disease is asymptomatic, diagnosis is often incidental. SMM is characterized by increased marrow infiltration by clonal plasma cells and/or elevated serum M-protein in the absence of a myeloma-defining event (MDE). In recent years, SMM has gained increased attention owing to a broadening of the criteria for MDE, which include apart from the CRAB criteria, three additional parameters. Survival advantage may be offered by early treatment in the high-risk subset, based on a single trial. In this review, we assess the risk factors and models for progression to multiple myeloma. A review of our diagnostic and management approaches to SMM is presented.

  20. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML

    Directory of Open Access Journals (Sweden)

    Bita Fakhri

    2017-01-01

    Full Text Available Posttransplant Lymphoproliferative Disorder (PTLD is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT. Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML. Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM; thus a diagnosis of smoldering multiple myeloma (SMM was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.

  1. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML.

    Science.gov (United States)

    Fakhri, Bita; Fiala, Mark; Slade, Michael; Westervelt, Peter; Ghobadi, Armin

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.

  2. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: biological insights and early treatment strategies.

    Science.gov (United States)

    Landgren, Ola

    2013-01-01

    After decades of virtually no progress, multiple myeloma survival has improved significantly in the past 10 years. Indeed, multiple myeloma has perhaps seen more remarkable progress in treatment and patient outcomes than any other cancer during the last decade. Recent data show that multiple myeloma is consistently preceded by a precursor state (monoclonal gammopathy of undetermined significance [MGUS]/smoldering multiple myeloma [SMM]). This observation provides a framework for prospective studies focusing on transformation from precursor disease to multiple myeloma and for the development of treatment strategies targeting "early myeloma." This review discusses current biological insights in MGUS/SMM, provides an update on clinical management, and discusses how the integration of novel biological markers, molecular imaging, and clinical monitoring of MGUS/SMM could facilitate the development of early treatment strategies for high-risk SMM (early myeloma) patients in the future.

  3. Is it time for preemptive drug treatment of asymptomatic (smoldering) multiple myeloma?

    Science.gov (United States)

    Fawole, Adewale; Abonour, Rafat; Stender, Michael; Shatavi, Seerin; Gaikazian, Susanna; Anderson, Joseph; Jaiyesimi, Ishmael

    2015-01-01

    Asymptomatic (smoldering) multiple myeloma is a heterogeneous plasma cell proliferative disorder with a variable rate of progression to active multiple myeloma or related disorders. Hypercalcemia, renal insufficiency, anemia, bone lesions or recurrent bacterial infections characterize active multiple myeloma. Some patients with asymptomatic myeloma develop active disease rapidly, and others can stay asymptomatic for many years. Those who are likely to progress within the first 2 years of diagnosis have been categorized as having high-risk disease. The availability of novel agents in the treatment of active multiple myeloma and our better understanding of the heterogeneity of asymptomatic multiple myeloma have spurred interest in the early treatment of these patients. We have reviewed the current proposed definitions of high-risk asymptomatic multiple myeloma, the concerns about future therapy in view of the transient nature, remissions and toxicities of the therapies, and the eventual relapses that characterize this incurable disease.

  4. Exercise is medicine: case report of a woman with smoldering multiple myeloma.

    Science.gov (United States)

    Boullosa, Daniel A; Abreu, Laurinda; Tonello, Lais; Hofmann, Peter; Leicht, Anthony S

    2013-07-01

    This study aimed to evaluate the influence of a supervised training program on the changes in serum monoclonal protein level (i.e., IgG), percentage of bone marrow plasma cells (BMPCs), fitness performance, and cardiac autonomic control (i.e., HR variability [HRV] and HR complexity [HRC]) in a female diagnosed with smoldering multiple myeloma (SMM). A middle-age female patient with smoldering multiple myeloma and former elite athlete was monitored for 4 yr while participating in a supervised multimodal training regimen designed for the development of various physical capacities. The patient had the possibility of self-selection of daily training volume. Changes in fitness components, IgG levels, and BMPCs were evaluated throughout a 4-yr monitoring period (i.e., follow-up). HRV was examined via 24-h HR recordings during a 6-wk period at the second and the third year of the follow-up. Exercise performance in all fitness components was improved while IgG levels and BMPCs decreased (from 2.53 to 1.84 g · dL(-1) and from 20% to 10%, respectively). Time and frequency domain HRV parameters exhibited significant increases (18%-29%) with HRC remaining unchanged. The current case report results indicated that a multimodal training program designed for the development of various physical capacities improved exercise performance, hematological function, and cardiac autonomic control that may improve long-term prognosis for SMM. Examination of similar exercise training regimens for hematological and other cancer populations may assist in the development of simple nonpharmacological treatments for improved prognosis.

  5. Novel application of a combustion chamber for experimental assessment of biomass burning emission

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, E.; Corona, P.; Ciccioli, P.; Calfapietra, C.

    2014-09-01

    Biomass burning is an important ecological factor in the Mediterranean ecosystem and a significant source of several atmospheric gases and particles. This paper demonstrates the performance of a recently developed combustion chamber, showing its capability in estimating the emission from wildland fire through a case study with dried leaf litter of Quercus robur. The combustion chamber was equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect volatile organic compounds (VOCs) and particles, and a portable analyzer to measure carbon monoxide (CO) and carbon dioxide (CO2) emission. VOCs were determined by gas chromatography-mass spectrometry (GC-MS) after enrichment on adsorption traps, but also monitored on-line with a proton-transfer-reaction mass spectrometer (PTR-MS). Preliminary qualitative analyses of emissions from burning dried leaf litter of Q. robur found CO and CO2 as the main gaseous species emitted during the flaming and smoldering stages. Aromatic VOCs, such as benzene and toluene, were detected together with several oxygenated VOCs, like acetaldehyde and methanol. Moreover, a clear picture of the carbon balance during the biomass combustion was obtained with the chamber used. The combustion chamber will allow to distinguish the contribution of different plant tissues to the emissions occurring during different combustion phases.

  6. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  7. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  8. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    -2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...... combustion, waste incineration, residual oil combustion and in 2009 also combustion of biomass. The emission from waste incineration plants has decreased profoundly also in recent years due to installation and improved performance of flue gas cleaning devices. The emission from power plants have also...

  9. Specifics of phytomass combustion in small experimental device

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2015-01-01

    Full Text Available A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass, which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  10. Method of processing combustible nuclear waste material

    International Nuclear Information System (INIS)

    Allen, C.R.; Greenhalgh, W.O.; Cowan, R.G.

    1982-01-01

    In treating combustible radio-waste which may contain volatile radio nuclides, e.g. Ru, the waste is heated and agitated with concentrated sulphuric acid, and the resulting residue which comprises elemental carbon which retains the volatile radio-nuclides is separated from the acid. Compounds which form borosilicate glass may be added to the waste, and after removal of sulphate, the resulting residual mixture may be fused into a glass. If the sulphate is not removed from the borosilicate mix, the residual mixture produces a ceramic product on heating. (author)

  11. Dioxines, furans and other pollutants emissions bond to the combustion of natural and additive woods

    International Nuclear Information System (INIS)

    Collet, S.

    2000-02-01

    This report deals especially on the dioxines and furans bond to the combustion of wood in industrial furnaces and domestic furnaces. It aims to define the environmental strategy which would allow the combustion of wood residues to produce energy. The first part recalls general aspects concerning the wood. The six other parts presents the wood resources and wastes, the additive used, the combustion and the different factors of combustion and finally the pollutants emissions. (A.L.B.)

  12. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  13. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  14. Differential Mutagenicity and Lung Toxicity of Smoldering Versus Flaming Emissions from a Variety of Biomass Fuels

    Science.gov (United States)

    Wildfire smoke properties change with combustion conditions and biomass fuel types. However the specific role of wildfire conditions on the health effects following smoke exposure are uncertain. This study applies a novel combustion and smoke-collection system to examine emission...

  15. Theoretical Adiabatic Temperature and Chemical Composition of Sodium Combustion Flame

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2003-01-01

    Sodium fire safety analysis requires fundamental combustion properties, e.g., heat of combustion, flame temperature, and composition. We developed the GENESYS code for a theoretical investigation of sodium combustion flame.Our principle conclusions on sodium combustion under atmospheric air conditions are (a) the maximum theoretical flame temperature is 1950 K, and it is not affected by the presence of moisture; the uppermost limiting factor is the chemical instability of the condensed sodium-oxide products under high temperature; (b) the main combustion product is liquid Na 2 O in dry air condition and liquid Na 2 O with gaseous NaOH in moist air; and (c) the chemical equilibrium prediction of the residual gaseous reactants in the flame is indispensable for sodium combustion modeling

  16. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  17. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  18. Fuel and Combustion Characteristics of Organic Wastes

    Science.gov (United States)

    Namba, Kunihiko; Ida, Tamio

    From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies for prevent global warning. This study is an attempt to burn biomass lamps made from residues in order to thermally recycle waste products of drink industries. The pyrolytic properties of shochu dregs and used tea leaves were observed by thermo-gravimertic analysis (TG) to obtained fundamental data of drink waste pyrolysis. It observed that shochu dregs pyrolyze under lower temperature than used tea leaves. These wastes were compressed by hot press apparatus in the temperature range from 140 to 180 °C for use as Bio-fuel (BF). The combustion behavior of BF was observed in fall-type electric furnace, where video-recording was carried out at sequential steps, such as ignition, visible envelope flame combustion and char combustion to obtain combustion characteristics such as ignition delay, visible flame combustion time and char combustion time.

  19. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  20. Opportunities in pulse combustion

    Science.gov (United States)

    Brenchley, D. L.; Bomelburg, H. J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  1. Upper Gastrointestinal Bleeding from Gastric Amyloidosis in a Patient with Smoldering Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Mihajlo Gjeorgjievski

    2015-01-01

    Full Text Available Amyloidosis is a common complication of patients with monoclonal gammopathy of undetermined significance (MGUS, smoldering multiple myeloma (SMM, and multiple myeloma (MM. This proteinaceous material can be deposited intercellularly in any organ system, including the gastrointestinal (GI tract. In the GI tract, amyloidosis affects the duodenum most commonly, followed by the stomach and colorectum. Gastric amyloidosis causes symptoms of nausea, vomiting, early satiety, abdominal pain, and GI bleeding. A case of upper GI bleeding from gastric amyloidosis is presented in a patient with SMM. Esophagogastroduodenoscopy (EGD revealed a gastric mass. Endoscopic biopsies revealed amyloid deposition in the lamina propria, consistent with gastric amyloidosis. Liquid chromatography tandem mass spectrometry performed on peptides extracted from Congo red-positive microdissected areas of paraffin-embedded stomach specimens revealed a peptide profile consistent with AL- (lambda- type amyloidosis. Based on this and multiple other case reports, we recommend that patients with GI bleeding and MGUS, SMM, or MM undergo EGD and pathologic examination of endoscopic biopsies of identified lesions using Congo red stains for amyloidosis for early diagnosis and treatment.

  2. Upper Gastrointestinal Bleeding from Gastric Amyloidosis in a Patient with Smoldering Multiple Myeloma.

    Science.gov (United States)

    Gjeorgjievski, Mihajlo; Purohit, Treta; Amin, Mitual B; Kurtin, Paul J; Cappell, Mitchell S

    2015-01-01

    Amyloidosis is a common complication of patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM). This proteinaceous material can be deposited intercellularly in any organ system, including the gastrointestinal (GI) tract. In the GI tract, amyloidosis affects the duodenum most commonly, followed by the stomach and colorectum. Gastric amyloidosis causes symptoms of nausea, vomiting, early satiety, abdominal pain, and GI bleeding. A case of upper GI bleeding from gastric amyloidosis is presented in a patient with SMM. Esophagogastroduodenoscopy (EGD) revealed a gastric mass. Endoscopic biopsies revealed amyloid deposition in the lamina propria, consistent with gastric amyloidosis. Liquid chromatography tandem mass spectrometry performed on peptides extracted from Congo red-positive microdissected areas of paraffin-embedded stomach specimens revealed a peptide profile consistent with AL- (lambda-) type amyloidosis. Based on this and multiple other case reports, we recommend that patients with GI bleeding and MGUS, SMM, or MM undergo EGD and pathologic examination of endoscopic biopsies of identified lesions using Congo red stains for amyloidosis for early diagnosis and treatment.

  3. Smoldering (asymptomatic) multiple myeloma: current diagnostic criteria, new predictors of outcome, and follow-up recommendations.

    Science.gov (United States)

    Bladé, Joan; Dimopoulos, Meletios; Rosiñol, Laura; Rajkumar, S Vincent; Kyle, Robert A

    2010-02-01

    To provide an overview on smoldering (asymptomatic) multiple myeloma (SMM) including current diagnostic criteria, predictors of progression, pattern of progression, and outcome. A comprehensive review of the literature on risk factors for progression, treatment attempts to delay progression and outcome in patients with SMM. The risk factors for progression of SMM include: plasma cell mass including M-protein size and percentage of bone marrow clonal plasma cells (BMPC), abnormal free light chain ratio, proportion of phenotypically abnormal BMPC, immunoparesis, evolution pattern (evolving v nonevolving), and pattern of magnetic resonance imaging abnormalities. Most patients with SMM progress with anemia and/or skeletal involvement. Immediate therapy with cytotoxic agents, such as melphalan/prednisone has not resulted in improved outcome. Patients should not be treated until progressive disease with end-organ damage occurs. Increasing anemia is the most reliable indicator of progression. These recently recognized predictors of outcome may be helpful for better disease monitoring and for investigation of new treatment approaches. Thus, recommendations for follow-up every to 3 to 6 months depending on the risk of progression are suggested, and clinical trials with new noncytotoxic biologically derived agents to delay progression, particularly in high-risk patients, are ongoing.

  4. Evolving M-protein pattern in patients with smoldering multiple myeloma: impact on early progression.

    Science.gov (United States)

    Fernández de Larrea, Carlos; Isola, Ignacio; Pereira, Arturo; Cibeira, Ma Teresa; Magnano, Laura; Tovar, Natalia; Rodríguez-Lobato, Luis-Gerardo; Calvo, Xavier; Aróstegui, Juan I; Díaz, Tania; Lozano, Ester; Rozman, María; Yagüe, Jordi; Bladé, Joan; Rosiñol, Laura

    2018-02-02

    Smoldering multiple myeloma (SMM) is a biologically heterogeneous, clinically defined entity with a variable rate of progression to symptomatic multiple myeloma (MM). Reliable markers for progression are critical for the development of potential therapeutic interventions. We retrospectively evaluated the predictive value of the evolving pattern of serum M-protein among other progression risk factors in 206 patients with SMM diagnosed between 1973 and 2012. Median time from recognition of evolving type to progression into symptomatic MM was 1.1 years (95% CI 0.5-2.0) and progression rate at 3 years was 71%. Development of the evolving type drastically worsened the prognostic estimation made at diagnosis for every covariate predictive of progression (serum M-protein size, bone marrow plasma cell infiltration, immunoparesis and Mayo Clinic risk). On average, the hazard ratio for progression to symptomatic MM increased to 5.1 (95% CI 3.4-7.6) after recognition of the evolving type. In conclusion, in patients with SMM the evolving pattern accurately predicts the risk of early progression to symptomatic disease, thereby allowing the identification of ultra-high risk patients who would be candidates for immediate therapy.

  5. Predictive value of longitudinal whole-body magnetic resonance imaging in patients with smoldering multiple myeloma.

    Science.gov (United States)

    Merz, M; Hielscher, T; Wagner, B; Sauer, S; Shah, S; Raab, M S; Jauch, A; Neben, K; Hose, D; Egerer, G; Weber, M A; Delorme, S; Goldschmidt, H; Hillengass, J

    2014-09-01

    Previous studies demonstrated the relevance of focal lesions (FL) in whole-body magnetic resonance imaging (wb-MRI) at the initial workup of patients with smoldering multiple myeloma (SMM). The aim of this study was to assess the effects of longitudinal wb-MRIs on progression into multiple myeloma (MM). Sixty-three patients with SMM were analyzed who received at least two wb-MRIs for follow-up before progression into MM. Radiological progressive disease (MRI-PD) was defined as detection of new FL or increase in diameter of existing FL and a novel or progressive diffuse infiltration. Radiological stable disease (MRI-SD) was defined by no change compared with the prior MRI. Patients were followed-up every 3-6 months, including a serological and clinical evaluation. One Hundred and eighty-two wb-MRIs were analyzed. MRI-PD occurred in 31 patients (49%), and 25 (40%) patients developed MM. MRI-PD was highly significantly associated with progression into MM, regardless of findings at the initial MRI. In multivariate analysis, MRI-PD remained a risk factor, independent of relevant baseline parameters like serum monoclonal protein or ⩾95% aberrant plasma cells in the bone marrow. Patients with MRI-SD had no higher risk of progression, even when FL were present at the initial MRI. Therefore, MRI is suitable for the follow-up of patients with SMM.

  6. Smoldering (asymptomatic) multiple myeloma: revisiting the clinical dilemma and looking into the future.

    Science.gov (United States)

    Waxman, Adam J; Kuehl, Michael; Balakumaran, Arun; Weiss, Brendan; Landgren, Ola

    2010-08-01

    Recent studies show that multiple myeloma (MM) is consistently preceded by an asymptomatic precursor state. Smoldering MM (SMM) is a MM precursor defined by an M-protein concentration >or= 3 g/dL and/or >or= 10% bone marrow plasma cells, in the absence of end-organ damage. Compared with individuals diagnosed with monoclonal gammopathy of undetermined significance (MGUS), patients with SMM have a much higher annual risk of developing MM. However, based on clinical observations, the natural history of SMM varies greatly, from stable MGUS-like disease to highly progressive disease. Using conventional clinical markers, SMM patients can be stratified into 3 risk groups. Importantly, because of considerable molecular heterogeneity, we currently lack reliable markers to predict prognosis for individual SMM patients. Furthermore, until recently, potent drugs with reasonable toxicity profiles have not been available for the development of early MM treatment strategies. Consequently, current clinical guidelines emphasize the application of close clinical monitoring followed by treatment when the patient develops symptomatic MM. This review focuses on novel biomarkers, molecular profiles, and microenvironmental interactions of interest in myelomagenesis. We also discuss how the integration of novel biologic markers and clinical monitoring of SMM could facilitate the development of early treatment strategies for high-risk SMM patients in the future.

  7. Modeling progression risk for smoldering multiple myeloma: results from a prospective clinical study.

    Science.gov (United States)

    Cherry, Benjamin M; Korde, Neha; Kwok, Mary; Manasanch, Elisabet E; Bhutani, Manisha; Mulquin, Marcia; Zuchlinski, Diamond; Yancey, Mary Ann; Maric, Irina; Calvo, Katherine R; Braylan, Raul; Stetler-Stevenson, Maryalice; Yuan, Constance; Tembhare, Prashant; Zingone, Adriana; Costello, Rene; Roschewski, Mark J; Landgren, Ola

    2013-10-01

    The risk of progression to multiple myeloma (MM) from the precursor condition smoldering MM (SMM) varies considerably among individual patients. Reliable markers for progression to MM are vital to advance the understanding of myeloma precursor disease and for the development of intervention trials designed to delay/prevent MM. The Mayo Clinic and Spanish PETHEMA have proposed models to stratify patient risk based on clinical parameters. The aim of our study was to define the degree of concordance between these two models by comparing the distribution of patients with SMM classified as low, medium and high risk for progression. A total of 77 patients with SMM were enrolled in our prospective natural history study. Per study protocol, each patient was assigned risk scores based on both the Mayo and the Spanish models. The Mayo Clinic model identified 38, 35 and four patients as low, medium and high risk, respectively. The Spanish PETHEMA model classified 17, 22 and 38 patients as low, medium and high risk, respectively. There was significant discordance in overall patient risk classification (28.6% concordance) and in classifying patients as low versus high (p < 0.0001), low versus non-low (p = 0.0007) and high versus non-high (p < 0.0001) risk. There is a need for prospectively validated models to characterize individual patient risk of transformation to MM.

  8. Smoldering multiple myeloma: pathophysiologic insights, novel diagnostics, clinical risk models, and treatment strategies.

    Science.gov (United States)

    Kazandjian, Dickran; Mailankody, Sham; Korde, Neha; Landgren, Ola

    2014-09-01

    Smoldering multiple myeloma (SMM) is a plasma cell disorder first described in 1980 when 6 patients were observed to meet the diagnostic criteria of multiple myeloma, defined as bone marrow plasmacytosis of 10% or greater or M protein level of 3 g/dL or greater, but did not have end-organ damage. Subsequent studies showed that the cumulative risk of SMM progression to symptomatic myeloma in 15 years was 73%. Since this time, advances have been made in understanding the biology of progression; namely, the contribution of branching evolution and microenvironment models to clonal heterogeneity. In parallel to this, clinical risk models using standard platforms of serum, bone marrow, and fluorescence in situ hybridization markers along with newer technologies of flow cytometry, gene expression profiling, and magnetic resonance imaging have been developed for prognostic stratification. Treatment has extended to the early myeloma category owing to more sensitive diagnostic approaches. The development of novel treatments will have to take into consideration our current knowledge of biological transformation. While it may be attractive to initiate early treatment in light of recent studies for high-risk SMM patients, clinical trial evidence of efficacy vs toxicity is still in its infancy. In our opinion, high-risk SMM patients should be strongly encouraged to enroll in treatment clinical trials, but treatment with unapproved agents or indications is not supported outside of trials.

  9. Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma.

    Science.gov (United States)

    Willrich, Maria A V; Murray, David L; Kyle, Robert A

    2018-01-01

    Monoclonal gammopathies (MG) are defined by increased proliferation of clonal plasma cells, resulting in a detectable abnormality called monoclonal component or M-protein. Detection of the M-protein as either narrow peaks on protein electrophoresis and discrete bands on immunofixation is the defining feature of MG. MG are classified as low-tumor burden disorders, pre-malignancies and malignancies. Since significant disease can be present at any level, several different tests are employed in order to encompass the inherent diverse nature of the M-proteins. In this review, we discuss the main characteristics and limitations of clinical assays to detect M-proteins: protein electrophoresis, immunofixation, immunoglobulin quantitation, serum free light chains and heavy-light chain assays, as well as the newly developed MALDI-TOF mass spectrometric methods. In addition, the definitions of the pre-malignancies monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), as well as monoclonal gammopathy of renal significance (MGRS) are presented in the context of the 2014 international guidelines for definition of myeloma requiring treatment, and the role of the laboratory in test selection for screening and monitoring these conditions is highlighted. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Severe Pulmonary Hypertension Caused by Smoldering Plasma Cell Myeloma: An Autopsy Case of POEMS Syndrome

    Directory of Open Access Journals (Sweden)

    Katsuya Chinen

    2012-01-01

    Full Text Available The POEMS syndrome (coined to refer to polyneuropathy, organomegaly, endocrinopathy, M protein, and skin changes is a rare variant of plasma cell disorders with multiple systemic manifestations. Recently, pulmonary hypertension (PH has become established as a complication, but pathological studies of this condition are scarce and the detailed pathogenesis remains to be elucidated. We present herein a case of a 49-year-old woman who was diagnosed as having idiopathic PH and was treated in accordance. However, she eventually died of respiratory failure and an autopsy revealed the presence of smoldering plasma cell myeloma and multiple organomegaly in addition to severe PH. The latter was attributed to stenosis and occlusion of the arterioles of the lungs due to marked plasma cell proliferation, quite different from the histology of idiopathic PH. From these findings, together with the clinical details, we concluded that the patient’s PH was a complication of the POEMS syndrome. This case showed a unique pulmonary vascular pathology featuring plasma cell proliferation and it provides clues towards understanding the pathogenesis with this background.

  11. Smoldering multiple myeloma risk factors for progression: a Danish population-based cohort study.

    Science.gov (United States)

    Sørrig, Rasmus; Klausen, Tobias W; Salomo, Morten; Vangsted, Annette J; Østergaard, Brian; Gregersen, Henrik; Frølund, Ulf Christian; Andersen, Niels F; Helleberg, Carsten; Andersen, Kristian T; Pedersen, Robert S; Pedersen, Per; Abildgaard, Niels; Gimsing, Peter

    2016-09-01

    Several risk scores for disease progression in patients with smoldering multiple myeloma (SMM) have been proposed; however, all have been developed using single-center registries. To examine risk factors for time to progression (TTP) to multiple myeloma (MM) for SMM, we analyzed a nationwide population-based cohort of 321 patients with newly diagnosed SMM registered within the Danish Multiple Myeloma Registry between 2005 and 2014. Significant univariable risk factors for TTP were selected for multivariable Cox regression analyses. We found that both an M-protein ≥30 g/L and immunoparesis significantly influenced TTP (HR 2.7, 95%CI (1.5;4.7), P = 0.001, and HR 3.3, 95%CI (1.4;7.8), P = 0.002, respectively). High free light chain (FLC) ratio did not significantly influence TTP in our cohort. Therefore, our data do not support recent IMWG proposal of identifying patients with FLC ratio above 100 as having ultra high-risk of transformation to MM. Using only immunoparesis and M-protein ≥30 g/L, we created a scoring system to identify low-, intermediate-, and high-risk SMM. This first population-based study of patients with SMM confirms that an M-protein ≥30 g/L and immunoparesis remain important risk factors for progression to MM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The road to cure in multiple myeloma starts with smoldering disease.

    Science.gov (United States)

    Salem, Karma Z; Ghobrial, Irene M

    2015-04-12

    Smoldering multiple myeloma (SMM) is a heterogeneous clinical entity that defines patients in the spectrum of disease progression from monoclonal gammopathy of undetermined significance to multiple myeloma (MM). Current standard of care is observation until end organ damage occurs. In spite of this, the scientific community has begun to question whether the strategy of watchful waiting should be replaced with earlier therapeutic intervention with the ultimate goal of preventing clonal heterogeneity and end organ damage. In this review, we challenge the concept of observation as the best option of therapy in SMM. We present current data on diagnosis, prognostic factors of disease progression and studies that have been conducted to date to determine whether earlier therapeutic interventions will lead to an improvement in overall survival of patients with MM. If the recommendations of treatment of SMM were to change, the scientific body of evidence would have to overcome four major hurdles: to demonstrate that early intervention leads to prolonged survival and delay in development of end organ damage, that it does not have long-term toxicities, that it is implemented in patients with a high-likelihood of developing myeloma and that it does not lead to the outgrowth of more resistant clones. Only well-designed clinical trials will determine whether cure can be achieved with earlier interventions.

  13. Management of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM).

    Science.gov (United States)

    Kyle, Robert A; Rajkumar, S Vincent

    2011-06-01

    Monoclonal gammopathy of undetermined significance (MGUS) is defined as a serum M protein level of less than 3 g/dL, less than 10% clonal plasma cells in the bone marrow, and the absence of end-organ damage. The prevalence of MGUS is 3.2% in the white population but is approximately twice that high in the black population. MGUS may progress to multiple myeloma, AL amyloidosis, Waldenström macroglobulinemia, or lymphoma. The risk of progression is approximately 1% per year, but the risk continues even after more than 25 years of observation. Risk factors for progression include the size of the serum M protein, the type of serum M protein, the number of plasma cells in the bone marrow, and the serum free light chain ratio. Smoldering (asymptomatic) multiple myeloma (SMM) is characterized by the presence of an M protein level of 3 g/dL or higher and/or 10% or more monoclonal plasma cells in the bone marrow but no evidence of end-organ damage. The overall risk of progression to a malignant condition is 10% per year for the first 5 years, approximately 3% per year for the next 5 years, and 1% to 2% per year for the following 10 years. Patients with both MGUS and SMM must be followed up for their lifetime.

  14. Crohn's disease and smoldering multiple myeloma: a case report and literature review

    Directory of Open Access Journals (Sweden)

    So Young Park

    2017-04-01

    Full Text Available Crohn's disease (CD is a chronic inflammatory bowel disease (IBD that presents with abdominal pain, weight loss, and diarrhea. Although the etiology has not been fully elucidated, both environmental and genetic causes are known to be involved. In chronic inflammatory conditions such as IBD, B lymphocytes are chronically stimulated, and they induce monoclonal expansion of plasma cells, sometimes resulting in monoclonal gammopathy of undetermined significance. Immunomodulators that are commonly used to control inflammation, such as tumor necrosis factor-α (TNF-α blockers could increase the possibility of hematologic malignancy. The pathogenesis of multiple myeloma in association with TNF-α inhibitor therapy is attributed to decreased apoptosis of plasma cell populations. Here, we describe a case of a 36-year-old male patient who was diagnosed with immunoglobulin A subtype smoldering multiple myeloma during the treatment for CD with infliximab and adalimumab. We report this case along with a review of the literature on cases of multiple myeloma that occurred in conjunction with CD.

  15. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma.

    Science.gov (United States)

    Larsen, J T; Kumar, S K; Dispenzieri, A; Kyle, R A; Katzmann, J A; Rajkumar, S V

    2013-04-01

    A markedly elevated serum free light chain (FLC) ratio may serve as a biomarker for malignant transformation in high-risk smoldering multiple myeloma (SMM) and identify patients who are at imminent risk of progression. We retrospectively studied the predictive value of the serum (FLC) assay in 586 patients with SMM diagnosed between 1970 to 2010. A serum involved/uninvolved FLC ratio ≥ 100 was used to define high-risk SMM, which included 15% (n=90) of the total cohort. Receiver operating characteristics analysis determined the optimal FLC ratio cut-point to predict progression to symptomatic multiple myeloma (MM) within 2 years of diagnosis, which resulted in a specificity of 97% and sensitivity of 16%. Fifty-six percent of patients developed progressive disease during median follow-up of 52 months, but this increased to 98% in the subgroup of patients with FLC ratio ≥ 100. The median time to progression in the FLC ratio ≥ 100 group was 15 months versus 55 months in the FLC <100 group (P<0.0001). The risk of progression to MM within the first 2 years in patients with an FLC ratio ≥ 100 was 72%; the risk of progression to MM or light chain amyloidosis in 2 years was 79%. We conclude that a high FLC ratio ≥ 100 is a predictor of imminent progression in SMM, and such patients may be considered candidates for early treatment intervention.

  16. Crohn's disease and smoldering multiple myeloma: a case report and literature review.

    Science.gov (United States)

    Park, So Young; Kim, Jae Min; Kang, Hyun Joon; Kim, Minje; Han, Jae Joon; Maeng, Chi Hoon; Baek, Sun Kyung; Yoon, Hwi-Joong; Kim, Si-Young; Kim, Hyo Jong

    2017-04-01

    Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) that presents with abdominal pain, weight loss, and diarrhea. Although the etiology has not been fully elucidated, both environmental and genetic causes are known to be involved. In chronic inflammatory conditions such as IBD, B lymphocytes are chronically stimulated, and they induce monoclonal expansion of plasma cells, sometimes resulting in monoclonal gammopathy of undetermined significance. Immunomodulators that are commonly used to control inflammation, such as tumor necrosis factor-α (TNF-α) blockers could increase the possibility of hematologic malignancy. The pathogenesis of multiple myeloma in association with TNF-α inhibitor therapy is attributed to decreased apoptosis of plasma cell populations. Here, we describe a case of a 36-year-old male patient who was diagnosed with immunoglobulin A subtype smoldering multiple myeloma during the treatment for CD with infliximab and adalimumab. We report this case along with a review of the literature on cases of multiple myeloma that occurred in conjunction with CD.

  17. Imaging in smoldering (asymptomatic) multiple myeloma. Past, present and future; Bildgebung bei ''smoldering'' (asymptomatischem) multiplem Myelom. Vergangenheit, Gegenwart und Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Bhutani, M.; Landgren, O. [Center for Cancer Research, National Cancer Institute, National Institutes of Health, Multiple Myeloma Section, Lymphoid Malignancies Branch, Bethesda, MD (United States)

    2014-06-15

    Emerging clinical trial data support treatment of high-risk smoldering multiple myeloma (SMM) upon diagnosis, and not only at the time of progression to symptomatic complications (multiple myeloma). Early detection of bone and/or bone marrow involvement by sensitive imaging modalities may help define SMM patients at a high risk of progression. Current (2011) consensus guidelines recognize skeletal survey as a cornerstone modality for assessment of bone involvement at initial diagnosis and during follow-up of SMM. Skeletal survey has severe limitations related to underdetection of bone lesions and also provides no information on bone marrow abnormalities. Modern imaging strategies such as fluorodeoxyglucose positron-emission tomography/CT (FDG PET/CT) and MRI, in conjunction with functional innovations, provide improved estimates of global abnormalities in the bone marrow and bone compartments. These methods have the potential to objectively quantify early transformation from SMM to multiple myeloma. Although frequently used for staging and risk prognostication in multiple myeloma, modern imaging techniques have only been evaluated to a limited extent in SMM. Scant data in SMM indicate the prognostic value of two or more MRI-detected focal bone marrow abnormalities, which, if present, predict rapid progression to multiple myeloma. Data evaluating the role of FDG PET/CT in detecting early bone marrow abnormalities as an aid to predicting risk or directing treatment in SMM is currently lacking. The superior specificity and sensitivity of modern imaging techniques compared to skeletal survey suggest that these should have a place in standard practice management of patients at a high risk of SMM progression. The model imaging of the future should be an all-in-one strategy offering high diagnostic performance for bone marrow abnormalities and low-volume bone lesions, as well as allowing monitoring by minimizing radiation exposure and the need for contrast agents. Newer

  18. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  19. Comparative study on systems of residual water treatment in the process industry by evaporation, using fossils fuels or solar energy; Estudio comparativo sobre sistemas de tratamiento de aguas residuales de la industria de procesamiento por evaporacion, utilizando combustibles fosiles o energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Landgrave Romero, Julio; Canseco Contreras, Jose [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The residual water treatment of the process industry, nowadays is an imminent necessity in our country. In the present study two different forms are considered to concentrate residual waters: multiple effect evaporation and solar evaporation. The use of solar evaporation lagoons is a good possibility to conserving energy by means of the diminution of fossil fuel consumption. The design basis of the evaporation systems via multiple effect, as well as solar evaporation, the results of the respective sizing and the estimation of the corresponding costs are presented. A practical case is described on the cooking of cotton linters (flock) [Spanish] El tratamiento de aguas residuales de la industria de proceso, hoy en dia es una necesidad inminente en nuestro pais. En el presente trabajo se consideran dos formas distintas para concentrar las aguas residuales: evaporacion de multiple efecto y evaporacion solar. El empleo de lagunas de evaporacion solar es una buena posibilidad para conseguir el ahorro de energia mediante disminucion del consumo de combustibles fosiles. Se presentan las bases de diseno de los sistemas de evaporacion via multiple efecto, asi como solar, los resultados del dimensionamiento respectivo y la estimacion de los costos correspondientes. Se describe un caso practico sobre el cocido de linters de algodon (borra)

  20. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  1. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  2. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  3. Direct In Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated from Smoldering Hard and Softwoods.

    Science.gov (United States)

    Radney, James G; You, Rian; Zachariah, Michael R; Zangmeister, Christopher D

    2017-05-16

    Particles from smoldering biomass burning (BB) represent a major source of carbonaceous aerosol in the terrestrial atmosphere. In this study, mass specific absorption spectra of laboratory-generated smoldering wood particles (SWP) from 3 hardwood and 3 softwood species were measured in situ. Absorption data spanning from λ = 500 to 840 nm were collected using a photoacoustic spectrometer coupled to a supercontinuum laser with a tunable wavelength and bandwidth filter. SWP were size- (electrical mobility) and mass-selected prior to optical characterization allowing data to be reported as mass-specific absorption cross sections (MAC). The median measured MAC at λ = 660 nm for smoldering oak particles was 1.1 (0.57/1.8) × 10 -2 m 2 g -1 spanning from 83 femtograms (fg) to 517 fg (500 nm ≤ mobility diameter ≤950 nm), MAC values in parentheses are the 16 th and 84 th percentiles of the measured data (i.e., 1σ). The collection of all six wood species (Oak, Hickory, Mesquite, Western redcedar, Baldcypress, and Blue spruce) had median MAC values ranging from 1.4 × 10 -2 m 2 g -1 to 7.9 × 10 -2 m 2 g -1 at λ = 550 nm with absorption Ångström exponents (AAE) between 3.5 and 6.2. Oak, Western redcedar, and Blue spruce possessed statistically similar (p > 0.05) spectra while the spectra of Hickory, Mesquite, and Baldcypress were distinct (p < 0.01) as calculated from a point-by-point analysis using the Wilcox rank-sum test.

  4. Concept and operational results of a conversion to enhance the performance of steam generators for the combustion of refinery residues; Konzept und Betriebsergebnisse des Umbaus zur Leistungssteigerung der Dampferzeuger fuer die Verbrennung von Raffinerie-Rueckstaenden

    Energy Technology Data Exchange (ETDEWEB)

    Braecker, Roland [Balcke-Duerr GmbH, Ratingen (Germany); Thierbach, Hans-Ulrich [Steinmueller-Engineering GmbH, Gummersbach (Germany); Raehder, Uwe [PCK Raffinerie GmbH, Schwedt (Germany)

    2008-07-01

    Two natural circulation steam generators fired with refinery residual oils with a design capacity of 620 t/h, which had been commissioned at the end of the 90s, were upgraded at PCK Schwedt in order to increase their capacity to 750 t/h. Technical details of the upgrade, measures guaranteeing trouble-free operation and first operating results are presented. Experience clearly demonstrates that minor boiler fouling and high full-load availability of the boiler are achieved using HSC-R as fuel. (orig.)

  5. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  6. Flameless Combustion Workshop

    National Research Council Canada - National Science Library

    Gutmark, Ephraim

    2005-01-01

    .... "Flameless Combustion" is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability limits and therefore extremely low NOx production, efficient...

  7. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  8. Combustion mode switching with a turbocharged/supercharged engine

    Science.gov (United States)

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  9. Prognostic factors associated with progression of smoldering multiple myeloma to symptomatic form.

    Science.gov (United States)

    Rago, Angela; Grammatico, Sara; Za, Tommaso; Levi, Anna; Mecarocci, Sergio; Siniscalchi, Agostina; De Rosa, Luca; Felici, Stefano; Bongarzoni, Velia; Piccioni, Anna Lina; La Verde, Giacinto; Pisani, Francesco; Franceschini, Luca; Paviglianiti, Anna Lisa; Caravita, Tommaso; Petrucci, Maria Teresa; De Stefano, Valerio; Cimino, Giuseppe

    2012-11-15

    Smoldering multiple myeloma (SMM) presents a high risk of progression to symptomatic MM (sy-MM). Herein, we analyzed some predictors of development of sy-MM. In 144 patients with SMM, we also compared the risk of progression predicted by bone marrow plasma cell (BMPC) involvement on the bone marrow biopsy (BMB) versus bone marrow aspirates (BMA). From January 1980 to July 2010, 397 patients with SMM observed in 12 centers of the Multiple Myeloma GIMEMA (Gruppo Italiano Malattie EMatologiche dell'Adulto) Latium Working Group have been analyzed. At progression to sy-MM, the severity of clinical presentation was graded according to the need of intensive supportive care. After a median follow-up of 135 months, the cumulative incidence of progression rates to sy-MM were 45%, 55%, and 75% at 10, 15, and 20 years, respectively. Hemoglobin ≤12.5 g/dL, monoclonal component ≥2.5 g/dL, and BMPC ≥60% were the only parameters negatively affecting the cumulative incidence of progression. In particular, 10 of 397 (2.5%) patients with BMPC ≥60% had a 5.6-fold increased risk of fast progression (within 2 years), which occurred with severe clinical manifestations in 62% of cases. BMB was more sensitive for the detection of BMPC involvement, even though BMA was a more reliable indicator of a rapid progression to sy-MM. The highest risk of rapid evolution to sy-MM and the severity of clinical manifestation at the progression suggest that SMM patients with a BMPC ≥60% should be treated soon after diagnosis. Moreover, BMPC is a more reliable index for progression to sy-MM if assessed by BMA. Copyright © 2012 American Cancer Society.

  10. Evolving changes in disease biomarkers and risk of early progression in smoldering multiple myeloma.

    Science.gov (United States)

    Ravi, P; Kumar, S; Larsen, J T; Gonsalves, W; Buadi, F; Lacy, M Q; Go, R; Dispenzieri, A; Kapoor, P; Lust, J A; Dingli, D; Lin, Y; Russell, S J; Leung, N; Gertz, M A; Kyle, R A; Bergsagel, P L; Rajkumar, S V

    2016-07-29

    We studied 190 patients with smoldering multiple myeloma (SMM) at our institution between 1973 and 2014. Evolving change in monoclonal protein level (eMP) was defined as ⩾10% increase in serum monoclonal protein (M) and/or immunoglobulin (Ig) (M/Ig) within the first 6 months of diagnosis (only if M-protein ⩾3 g/dl) and/or ⩾25% increase in M/Ig within the first 12 months, with a minimum required increase of 0.5 g/dl in M-protein and/or 500 mg/dl in Ig. Evolving change in hemoglobin (eHb) was defined as ⩾0.5 g/dl decrease within 12 months of diagnosis. A total of 134 patients (70.5%) progressed to MM over a median follow-up of 10.4 years. On multivariable analysis adjusting for factors known to predict for progression to MM, bone marrow plasma cells ⩾20% (odds ratio (OR)=3.37 (1.30-8.77), P=0.013), eMP (OR=8.20 (3.19-21.05), P<0.001) and eHb (OR=5.86 (2.12-16.21), P=0.001) were independent predictors of progression within 2 years of SMM diagnosis. A risk model comprising these variables was constructed, with median time to progression of 12.3, 5.1, 2.0 and 1.0 years among patients with 0-3 risk factors respectively. The 2-year progression risk was 81.5% in individuals who demonstrated both eMP and eHb, and 90.5% in those with all three risk factors.

  11. Diagnosis, risk stratification and management of monoclonal gammopathy of undetermined significance and smoldering multiple myeloma.

    Science.gov (United States)

    van de Donk, N W C J; Mutis, T; Poddighe, P J; Lokhorst, H M; Zweegman, S

    2016-05-01

    Monoclonal gammopathy of undetermined significance (MGUS) is one of the most common premalignant disorders. IgG and IgA MGUS are precursor conditions of multiple myeloma (MM), whereas light-chain MGUS is a precursor condition of light-chain MM. Smoldering MM (SMM) is a precursor condition with higher tumor burden and higher risk of progression to symptomatic MM compared to MGUS. Assessment of the risk of progression of patients with asymptomatic monoclonal gammopathies is based on various factors including clonal burden, as well as biological characteristics, such as cytogenetic abnormalities and light-chain production. Several models have been constructed that are useful in daily practice for predicting risk of progression of MGUS or SMM. Importantly, the plasma cell clone may occasionally be responsible for severe organ damage through the production of a M-protein which deposits in tissues or has autoantibody activity. These disorders are rare and often require therapy directed at eradication of the underlying clone. Importantly, recent studies have shown that asymptomatic patients with a bone marrow plasma cell percentage ≥60%, free light-chain ratio ≥100, or >1 focal lesion on MRI (myeloma-defining events) have a 80% risk of developing symptomatic MM within 2 years. These patients are now considered to have MM requiring therapy, similar to patients with symptomatic disease. In this review, we provide an overview of the new diagnostic criteria of the monoclonal gammopathies and discuss risk of progression to active MM. We also provide recommendations for the management of patients with MGUS and SMM including risk-adapted follow-up. © 2016 John Wiley & Sons Ltd.

  12. [Significant changes in diagnostic and therapeutic procedures in smoldering multiple myeloma].

    Science.gov (United States)

    Jurczyszyn, Artur; Olszewska-Szopa, Magdalena; Skotnicki, Aleksander B

    2015-01-01

    Smoldering multiple myeloma (SMM) is a precursor disease of multiple myeloma (MM) with an average annual risk of progression to MM of 10%. Several prognostic factors have been identified and combined in models to discriminate patient groups with different outcomes. These factors include size of the M-protein, plasma cell (PC) infiltration in the bone marrow (BM), serum free light-chain ratio, immunoparesis and percentage of aberrant BMPCs on flow cytometry or the presence of focal lesions on magnetic resonance imaging. The current standard of care has been to initiate treatment with progression to symptomatic MM. Current approaches aim at identifying patients with an ultra-high risk of progression (≥ 80% within the first 2 years) who are considered as 'early myeloma' patients requiring therapy. A recent trial on high-risk SMM patients, comparing early treatment with lenalidomide plus dexamethasone (Rd) versus observation, reported a benefit with respect to time to progression and survival for Rd-treated patients. Therefore, in 2014, the International Myeloma Working Group (IMWG) revised the diagnostic criteria and proposed to treat patients with ultra-high risk SMM as symptomatic MM. Promising markers for further studies may be high levels of circulating and high proliferative rate of PCs, abnormal PC phenotype with > 95% plus immunoparesis, evolving SMM, specific cytogenetic subtypes, genomic and additional biomarkers; all being acknowledged by the IMWG be added to the diagnostic criteria in the future, if any proves to be associated with a risk of progression of SMM to MM of at least 80% within 2 years.

  13. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma.

    Science.gov (United States)

    Rajkumar, S V; Gupta, V; Fonseca, R; Dispenzieri, A; Gonsalves, W I; Larson, D; Ketterling, R P; Lust, J A; Kyle, R A; Kumar, S K

    2013-08-01

    We studied 351 patients with smoldering multiple myeloma (SMM) in whom the underlying primary molecular cytogenetic subtype could be determined based on cytoplasmic immunoglobulin fluorescent in situ hybridization studies. Hundred and fifty-four patients (43.9%) had trisomies, 127 (36.2%) had immunoglobulin heavy chain (IgH) translocations, 14 (4%) both trisomies and IgH translocations, 53 (15.1%) no abnormalities detected and 3 (0.9%) had monosomy13/del(13q) in the absence of any other abnormality. Among 127 patients with IgH translocations, 57 were t(11;14), 36 t(4;14), 11 musculoaponeurotic fibrosarcoma (MAF) translocations, and 23 other or unknown IgH translocation partner. Time to progression (TTP) to symptomatic multiple myeloma was significantly shorter in patients with the t(4;14) compared with patients with t(11;14), median 28 versus 55 months, respectively, P=0.025. The median TTP was 28 months with t(4;14) (high-risk), 34 months with trisomies alone (intermediate-risk), 55 months with t(11;14), MAF translocations, other/unknown IgH translocations, monosomy13/del(13q) without other abnormalities, and those with both trisomies and IgH translocations (standard-risk), and not reached in patients with no detectable abnormalities (low-risk), P=0.001. There was a trend to shorter TTP with deletion 17p (median TTP, 24 months). Overall survival from diagnosis of SMM was significantly inferior with t(4;14) compared with t(11;14), median 105 versus 147 months, respectively, P=0.036.

  14. Dioxines, furans and other pollutants emissions bond to the combustion of natural and additive woods; Facteurs d'emission. Emissions de dioxines, de furanes et d'autres polluants liees a la combustion de bois naturels et adjuvantes

    Energy Technology Data Exchange (ETDEWEB)

    Collet, S

    2000-02-15

    This report deals especially on the dioxines and furans bond to the combustion of wood in industrial furnaces and domestic furnaces. It aims to define the environmental strategy which would allow the combustion of wood residues to produce energy. The first part recalls general aspects concerning the wood. The six other parts presents the wood resources and wastes, the additive used, the combustion and the different factors of combustion and finally the pollutants emissions. (A.L.B.)

  15. Materials Combustion Testing and Combustion Product Sensor Evaluations in FY12

    Science.gov (United States)

    Meyer, Marit E.; Hunter, Gary; Ruff, Gary; Mudgett, Paul D.; Hornung, Steven D.; McClure, Mark B.; Pilgrim, Jeffrey S.; Bryg, Victoria; Makel, Darby

    2013-01-01

    NASA Centers continue to collaborate to characterize the chemical species and smoke particles generated by the combustion of current space-rated non-metallic materials including fluoropolymers. This paper describes the results of tests conducted February through September 2012 to identify optimal chemical markers both for augmenting particle-based fire detection methods and for monitoring the post-fire cleanup phase in human spacecraft. These studies follow up on testing conducted in August 2010 and reported at ICES 2011. The tests were conducted at the NASA White Sands Test Facility in a custom glove box designed for burning fractional gram quantities of materials under varying heating profiles. The 623 L chamber was heavily instrumented to quantify organics (gas chromatography/mass spectrometry), inorganics by water extraction followed by ion chromatography, and select species by various individual commercially-available sensors. Evaluating new technologies for measuring carbon monoxide, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and other species of interest was a key objective of the test. Some of these sensors were located inside the glovebox near the fire source to avoid losses through the sampling lines; the rest were located just outside the glovebox. Instruments for smoke particle characterization included a Tapered Element Oscillating Microbalance Personal Dust Monitor (TEOM PDM) and a TSI Dust Trak DRX to measure particle mass concentration, a TSI PTrak for number concentration and a thermal precipitator for collection of particles for microscopic analysis. Materials studied included Nomex(R), M22759 wire insulation, granulated circuit board, polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE), Kapton(R), and mixtures of PTFE and Kapton(R). Furnace temperatures ranged from 340 to 640 C, focusing on the smoldering regime. Of particular interest in these tests was confirming burn repeatability and production of acid gases with different

  16. Combustion of poultry litter in a fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; D. Boavida; J. Seabra Barros; I. Cabrita; J. Leahy; B. Kelleher; M. Leahy [DEECA-INETI, Lisbon (Portugal)

    2003-04-01

    Combustion studies of poultry litter alone or mixed with peat by 50% on weight basis were undertaken in an atmospheric bubbling fluidised bed. Because of high moisture content of poultry litter, there was some uncertainty whether the combustion could be sustained on 100% poultry litter and as peat is very available in Ireland, its presence was considered to help to improve the combustion. However, the results showed that, as long as the moisture content of poultry litter was kept below 25%, the combustion did not need the addition of peat. The main parameters that were investigated are (i) moisture content, (ii) air staging, and (iii) variations in excess air levels along the freeboard. The main conclusions of the results are (i) combustion was influenced very much by the conditions of the fuel supply, (ii) the steady fuel supply was strongly dependent on the moisture content of the poultry litter, (iii) temperature appeared to be still very influential in reducing the levels of unburned carbon and hydrocarbons released from residues, (iv) the air staging in the freeboard improved combustion efficiency by enhancing the combustion of volatiles released from residues in the riser and (vi) NOx emissions were influenced by air staging in the freeboard. Particles collected from the bed and the two cyclones were analysed to determine the levels of heavy metals and the leachability tests were carried out with ashes collected to verify whether or not they could safely be used in agricultural lands. 8 refs., 1 fig., 8 tabs.

  17. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  18. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  19. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  20. Fifteenth combustion research conference

    International Nuclear Information System (INIS)

    1993-01-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers

  1. Fifteenth combustion research conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  2. The Heat of Combustion of Tobacco and Carbon Oxide Formation

    Directory of Open Access Journals (Sweden)

    Norman AB

    2014-12-01

    Full Text Available Recent studies demonstrated a relationship between mass burn rates of straight-grade cigarettes and heats of combustion of the tobacco materials. In the present work, relationships between measured heats of combustion and elemental composition of the tobacco materials were further analyzed. Heats of combustion measured in oxygen were directly correlated with the carbon and hydrogen content of the tobacco materials tested. Ash content of the materials was inversely related to the heats of combustion. The water insoluble residues from exhaustively extracted tobacco materials showed higher heats of combustion and higher carbon content than the non-extracted materials, confirming a direct relationship between carbon content and heat of combustion. A value for the heat of formation of tobacco was estimated (1175 cal/g from the heat of combustion data and elemental analysis results. The estimated value for heat of formation of tobacco appears to be constant regardless of the material type. Heat values measured in air were uniformly lower than the combustion heats in oxygen, suggesting formation of CO and other reaction products. Gases produced during bomb calorimetry experiments with five tobacco materials were analyzed for CO and CO2 content. When the materials were burned in oxygen, no CO was found in the gases produced. Measured heats of combustion matched estimates based on CO2 found in the gas and conversion of the sample hydrogen content to water. Materials burned in air produced CO2 (56% to 77% of the sample carbon content and appreciable amounts of CO (7% to 16% of the sample carbon content. Unburned residue containing carbon and hydrogen was found in the air combustion experiments. Estimated heat values based on amounts of CO and CO2 found in the gas and water formed from the hydrogen lost during combustion in air were higher than the measured values. These observations indicate formation of products containing hydrogen when the materials

  3. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    Science.gov (United States)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  4. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  5. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  6. Combination of skin-directed therapy and oral etoposide for smoldering adult T-cell leukemia/lymphoma with skin involvement.

    Science.gov (United States)

    Sawada, Yu; Shimauchi, Takatoshi; Yamaguchi, Takashi; Okura, Risa; Hama-Yamamoto, Kayo; Fueki-Yoshioka, Haruna; Ohmori, Shun; Yamada, Shigenori; Yoshizawa, Mayuko; Hiromasa, Kana; Tajiri, Makiko; Kabashima-Kubo, Rieko; Yoshioka, Manabu; Sugita, Kazunari; Yoshiki, Ryutaro; Hino, Ryosuke; Kobayashi, Miwa; Izu, Kunio; Nakamura, Motonobu; Tokura, Yoshiki

    2013-03-01

    Approximately 50% of patients with adult T-cell leukemia/lymphoma (ATLL) have skin involvement, and the smoldering, skin lesion-bearing cases are often treated with various skin-directed therapies, such as phototherapy and radiation therapy. Daily oral administration of etoposide plus prednisolone (EP) is also used for smoldering-type ATLL. However, it remains unclear whether these therapies improve patients' survival. We retrospectively analyzed the prognosis of patients with smoldering, skin lesion-bearing ATLL (n = 62), who were treated, as first therapy, with one skin-directed therapy (n = 29), oral EP alone (n = 14) or a combination of skin-directed therapy and oral EP (n = 19). Multivariate analysis revealed that the hazard ratios (HRs) for the overall survival (OS) and progression-free survival (PFS) with the combination therapy were significantly lower than those with the skin-directed therapy (HR 0.1, p = 0.001; HR 0.2, p = 0.002, respectively). These results suggest that the combination of skin-directed therapy and oral EP improves the clinical outcome of patients with smoldering, skin lesion-bearing ATLL.

  7. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  8. Combustion en lit fluidisé Fluidized-Bed Combustion

    Directory of Open Access Journals (Sweden)

    Chrysostome G.

    2006-11-01

    Full Text Available Après quelques rappels généraux sur la fluidisation où seront présentés en par-ticulier les avantages qu'elle offre en combustion, on exposera l'état actuel du développement des générateurs à lit fluidisé opérant avec les combustibles suivants : charbon, combustibles pétroliers, résidus divers ; il sera fait mention de la contribution de l'Institut Français du Pétrole (IFP dans les deux derniers domaines.On présentera ensuite les installations les plus récentes en traitement de minerais (grillage des sulfures, calcination de calcaires. En raison de son importance on examinera encore les possibilités de désulfuration au sein de lits fluidisés, de même que seront commentés les travaux de régénération des absorbants.On terminera enfin en mentionnant les développements des lits circulants ou rapides, considérés comme les réacteurs de la seconde génération. After a general review of fluidization including in particular the advantages it offers for combustion, this article describes the present state of the development of fluidized-bed gcnerators operating with the following fuels : cool, petroleum fuels, different residues. Mention is made of Institut Français du Pétrole (IFP contribution in the last two fields. Then the most recent ore-treating installations are described (roasting of sulfides, calcination of limestones. Because of its importance, the possibilities of desulfurizoticn inside fluidized beds is examined, and research on the regeneration of absorbants is commented on. The article ends by mentioning the development of circulating or fast beds which are considered as second generation reactors.

  9. Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    Science.gov (United States)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-09-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November 2012) a large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high-resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 - including the fuel properties, the nature of the burn simulations, and the instrumentation employed - and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning, and for several of these compounds, this is the first time their emissions are reported for important fuel types. The main fire types included African grasses, Asian rice straw, cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EFs) and emission ratios (ERs) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models. Crop residue fires are widespread globally and account for the most burned area in the US, but their emissions were previously poorly characterized. Extensive results are presented for burning rice and wheat straw: two major global crop residues

  10. Early versus deferred treatment for smoldering multiple myeloma: a meta-analysis of randomized, controlled trials.

    Science.gov (United States)

    Gao, Minjie; Yang, Guang; Tompkins, Van S; Gao, Lu; Wu, Xiaosong; Tao, Yi; Hu, Xiaojing; Hou, Jun; Han, Ying; Xu, Hongwei; Zhan, Fenghuang; Shi, Jumei

    2014-01-01

    Whether patients with smoldering multiple myeloma (SMM) needed to receive early interventional treatment remains controversial. Herein, we conducted a meta-analysis comparing the efficacy and safety of early treatment over deferred treatment for patients with SMM. MEDLINE and Cochrane Library were searched to May 2014 for randomized controlled trials (RCTs) that assessed the effect of early treatment over deferred treatment. Primary outcome measure was mortality, and secondary outcome measures were progression, response rate, and adverse events. Overall, 5 trials including 449 patients were identified. There was a markedly reduced risk of disease progression with early treatment (Odds Ratio [OR] = 0.13, 95% confidence interval [CI] = 0.07 to 0.24). There were no significant differences in mortality and response rate (OR = 0.85, 95% CI = 0.45 to 1.60, and OR = 0.63, 95% CI = 0.32 to 1.23, respectively). More patients in the early treatment arm experienced gastrointestinal toxicities (OR = 10.02, 95%CI = 4.32 to 23.23), constipation (OR = 8.58, 95%CI = 3.20 to 23.00) and fatigue or asthenia (OR = 2.72, 95%CI = 1.30 to 5.67). No significant differences were seen with the development of acute leukemia (OR = 2.80, 95%CI = 0.42 to 18.81), hematologic cancer (OR = 2.07, 95%CI = 0.43 to 10.01), second primary tumors (OR = 3.45, 95%CI = 0.81 to 14.68), nor vertebral compression (OR = 0.18, 95%CI = 0.02 to 1.59). Early treatment delayed disease progression but increased the risk of gastrointestinal toxicities, constipation and fatigue or asthenia. The differences on vertebral compression, acute leukemia, hematological cancer and second primary tumors were not statistically significant. Based on the current evidence, early treatment didn't significantly affect mortality and response rate. However, further much larger trials were needed to provide more evidence.

  11. Early versus deferred treatment for smoldering multiple myeloma: a meta-analysis of randomized, controlled trials.

    Directory of Open Access Journals (Sweden)

    Minjie Gao

    Full Text Available Whether patients with smoldering multiple myeloma (SMM needed to receive early interventional treatment remains controversial. Herein, we conducted a meta-analysis comparing the efficacy and safety of early treatment over deferred treatment for patients with SMM.MEDLINE and Cochrane Library were searched to May 2014 for randomized controlled trials (RCTs that assessed the effect of early treatment over deferred treatment. Primary outcome measure was mortality, and secondary outcome measures were progression, response rate, and adverse events.Overall, 5 trials including 449 patients were identified. There was a markedly reduced risk of disease progression with early treatment (Odds Ratio [OR] = 0.13, 95% confidence interval [CI] = 0.07 to 0.24. There were no significant differences in mortality and response rate (OR = 0.85, 95% CI = 0.45 to 1.60, and OR = 0.63, 95% CI = 0.32 to 1.23, respectively. More patients in the early treatment arm experienced gastrointestinal toxicities (OR = 10.02, 95%CI = 4.32 to 23.23, constipation (OR = 8.58, 95%CI = 3.20 to 23.00 and fatigue or asthenia (OR = 2.72, 95%CI = 1.30 to 5.67. No significant differences were seen with the development of acute leukemia (OR = 2.80, 95%CI = 0.42 to 18.81, hematologic cancer (OR = 2.07, 95%CI = 0.43 to 10.01, second primary tumors (OR = 3.45, 95%CI = 0.81 to 14.68, nor vertebral compression (OR = 0.18, 95%CI = 0.02 to 1.59.Early treatment delayed disease progression but increased the risk of gastrointestinal toxicities, constipation and fatigue or asthenia. The differences on vertebral compression, acute leukemia, hematological cancer and second primary tumors were not statistically significant. Based on the current evidence, early treatment didn't significantly affect mortality and response rate. However, further much larger trials were needed to provide more evidence.

  12. Denitrification mechanism in combustion of biocoal briquettes.

    Science.gov (United States)

    Kim, Heejoon; Li, Tianji

    2005-02-15

    Pulp black liquor (PBL), an industrial waste from paper production, has been previously shown to be an effective binder and denitrification agent for coal briquettes. This study investigated the denitrification mechanism of PBL in both the volatile combustion and char combustion stages of coal briquettes. X-ray diffraction and ion chromatography were used to analyze the residual ashes of combustion. The exhaust gas was analyzed by a flue gas analysis system and a Q-mass spectrometry system. The denitrification mechanism of PBL in the volatile combustion stage was found to result from the emission of NH3. The denitrification of PBL in the char combustion stage was associated with the NaOH contained in PBL. The direct reaction of NaOH with NO gas was examined, and some interesting phenomena were observed. Pure carbon or pure NaOH showed only limited reaction with NO. However, the mixture of NaOH and carbon (NaOH + C) significantly enhanced the reaction. This mixture increased the NO removal up to 100%. Subsequently, denitrification lasted for a long time period, with about 25% of NO removal. The pyrolysis characteristic of NaNO3, a compound resulting from denitrification, was also affected by the presence of carbon. In the presence of carbon, the NOx emission resulting from the pyrolysis of NaNO3 was reduced by a factor of 6. Since the denitrification phenomena appeared only in the absence of oxygen, a model of oxygen distribution in a burning coal briquette was employed to explain the reactions occurring in real combustion of coal briquettes.

  13. Dry low combustion system with means for eliminating combustion noise

    Science.gov (United States)

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  14. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  15. Indoor combustion and asthma.

    Science.gov (United States)

    Belanger, Kathleen; Triche, Elizabeth W

    2008-08-01

    Indoor combustion produces both gases (eg, nitrogen dioxide, carbon monoxide) and particulate matter that may affect the development or exacerbation of asthma. Sources in the home include both heating devices (eg, fireplaces, woodstoves, kerosene heaters, flued [ie, vented] or nonflued gas heaters) and gas stoves for cooking. This article highlights the recent literature examining associations between exposure to indoor combustion and asthma development and severity. Since asthma is a chronic condition affecting both children and adults, both age groups are included in this article. Overall, there is some evidence of an association between exposure to indoor combustion and asthma, particularly asthma symptoms in children. Some sources of combustion such as coal stoves have been more consistently associated with these outcomes than other sources such as woodstoves.

  16. Combustion irreversibilities: Numerical simulation and analysis

    Science.gov (United States)

    Silva, Valter; Rouboa, Abel

    2012-08-01

    An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.

  17. Experimental investigation on the combustion characteristics of aluminum in air

    Science.gov (United States)

    Feng, Yunchao; Xia, Zhixun; Huang, Liya; Yan, Xiaoting

    2016-12-01

    With the aim of revealing the detailed process of aluminum combustion in air, this paper reports an experimental study on the combustion of aluminum droplets. In this work, the aluminum wires were exposed and heated by a CO2 laser to produce aluminum droplets, and then these droplets were ignited and burnt in air. The changing processes of aluminum wires, droplets and flames were directly recorded by a high-speed camera, which was equipped with a high magnification zoom lens. Meanwhile, the spectrum distribution of the flame was also registered by an optical spectrometer. Besides, burning residuals were collected and analyzed by the methods of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Experimental results show that, during combustion, the aluminum droplet is covered by a spherical vapor-phase flame, and the diameter of this flame is about 1.4 times of the droplet diameter, statistically. In the later stages of combustion, the molten aluminum and condensed oxide products can react to generate gaseous Al and Al2O spontaneously. Little holes are found on the surface of residuals, which are the transport channels of gaseous products, namely the gaseous Al and Al2O. The combustion residuals are consisted by lots of aluminum oxide particles with diameters less than 1 μm.

  18. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  19. Residual risk

    African Journals Online (AJOL)

    ing the residual risk of transmission of HIV by blood transfusion. An epidemiological approach assumed that all HIV infections detected serologically in first-time donors were pre-existing or prevalent infections, and that all infections detected in repeat blood donors were new or incident infections. During 1986 - 1987,0,012%.

  20. Fluidized bed combustion and its application to refused fuels. Combustion en leche fluido y su aplicacion a combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Euba, J.

    1994-01-01

    As a consequence of the energetic crisis produced in th 70's it was proposed to find new power supplies and it also was the start of the use of traditional energy, which up to that date had not been profitable. At the same time, the worry about the pollutant emissions to the environment was increasing and finally it was approved a new legislation on atmosphere pollution, which is the Directive of the European community Council of 24th November 1988. Under these circumstances there are very important the new technologies for the supply of residual combustion with low values of pollution, where it is very important the combustion in fluidized bed. (Author)

  1. Angiogenic cytokines profile in smoldering multiple myeloma: no difference compared to MGUS but altered compared to symptomatic myeloma.

    Science.gov (United States)

    Gkotzamanidou, Maria; Christoulas, Dimitrios; Souliotis, Vasillis L; Papatheodorou, Athanasios; Dimopoulos, Meletios A; Terpos, Evangelos

    2013-12-20

    Symptomatic multiple myeloma (MM) evolves from an asymptomatic precursor state termed monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM). Angiogenesis plays a key role in the pathogenesis of MM but there are very limited data for angiogenesis in SMM. We measured the circulating levels of angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), and angiogenin in 54 patients with SMM. The results were compared with those of 27 MGUS patients, 55 MM patients, and 22 healthy controls. The expression of VEGF-A gene was also evaluated in 10 patients with SMM, 10 with symptomatic MM, and 10 with MGUS. The ratio of circulating Ang-1/Ang-2 was reduced in MM patients with symptomatic disease due to a dramatic increase of Ang-2 (pmyeloma, the alterations of angiopoietins along with VEGF contribute to myeloma cell growth, supporting the target of these molecules for the development of novel anti-myeloma agents.

  2. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients.

    Science.gov (United States)

    Paiva, B; Gutiérrez, N-C; Chen, X; Vídriales, M-B; Montalbán, M-Á; Rosiñol, L; Oriol, A; Martínez-López, J; Mateos, M-V; López-Corral, L; Díaz-Rodríguez, E; Pérez, J-J; Fernández-Redondo, E; de Arriba, F; Palomera, L; Bengoechea, E; Terol, M-J; de Paz, R; Martin, A; Hernández, J; Orfao, A; Lahuerta, J-J; Bladé, J; Pandiella, A; Miguel, J-F San

    2012-08-01

    The presence of CD19 in myelomatous plasma cells (MM-PCs) correlates with adverse prognosis in multiple myeloma (MM). Although CD19 expression is upregulated by CD81, this marker has been poorly investigated and its prognostic value in MM remains unknown. We have analyzed CD81 expression by multiparameter flow cytometry in MM-PCs from 230 MM patients at diagnosis included in the Grupo Español de Mieloma (GEM)05>65 years trial as well as 56 high-risk smoldering MM (SMM). CD81 expression was detected in 45% (103/230) MM patients, and the detection of CD81(+) MM-PC was an independent prognostic factor for progression-free (hazard ratio=1.9; P=0.003) and overall survival (hazard ratio=2.0; P=0.02); this adverse impact was validated in an additional series of 325 transplant-candidate MM patients included in the GEM05 myeloma.

  3. Combustion Characterization of Individual Bio-oil Droplets

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Jensen, Peter Arendt

    2015-01-01

    Single droplet combustion characteristics has been investigated for bio-oil slurries, containing biomass residue, and compared to conventional fuels for pulverized burners, such as fuel oil (start up) and wood chips (solid biomass fuel). The investigated fuels ignition delays and pyrolysis behavior...

  4. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    Application of Fly Ash from Solid Fuel Combustion in Concrete Kim H. Pedersen Abstract Industrial utilization of fly ash from pulverized coal combustion plays an important role in environmentally clean and cost effective power generation. Today, the primary market for fly ash utilization...... is as pozzolanic additive in the production of concrete. However, the residual carbon in fly ash can adsorb the air entraining admixtures (AEAs) added to enhance air entrainment in concrete in order to increase its workability and resistance toward freezing and thawing conditions. The problem has increased...... with implementation of low-NOx combustion technologies. The present thesis concerns three areas of importance within this field: 1) testing of fly ash adsorption behavior; 2) the influence of fuel type and combustion conditions on the ash adsorption behaviour including full-scale experiments at the power plant...

  5. Combustion behavior of spent solvent in a submerged combustion process

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide.

    1993-10-01

    An experimental study has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. A bench-scale equipment of submerged combustor having combustion capacity of 1.39 liter of tri-n-butyl phosphate (TBP) per hour was used to obtain process data such as the distribution behavior of radioactive nuclides in the submerged combustion process. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of TBP and/or n-dodecane, and on the distribution behaviors of combustion products such as ruthenium and iodine in the submerged combustion process. (author)

  6. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  7. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  8. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  9. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  10. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  11. Transition nozzle combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  12. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  13. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  14. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.

    Science.gov (United States)

    Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini

    2014-07-01

    Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Combuster. [low nitrogen oxide formation

    Science.gov (United States)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  16. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  17. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  18. Combustion Engine Identification and Control

    OpenAIRE

    Blasco Serrano, Daniel

    2013-01-01

    The topic of this thesis is system identification and control of two different internal combustion engines, Partially Premixed Combustion (PPC) engine and a more conventional Combustion Ignited (CI) diesel engine. The control of both engines is aimed to emission reduction and to increase the eficiency. There is an introduction to the internal combustion engine, as well as theory used about system identification and Model Predictive Control (MPC). A physical model of a PPC en...

  19. 75 FR 32142 - Combustible Dust

    Science.gov (United States)

    2010-06-07

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of combustible dust Web Chat. SUMMARY: OSHA invites interested parties to participate in a Web Chat on the workplace hazards of combustible dust. OSHA plans to use the information gathered in response to this Web...

  20. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  1. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    Science.gov (United States)

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  2. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    Most fossil fuels contain sulphur and also biofuels and household waste have a sulphur content. As a consequence sulphur species will often be present in combustion processes. In this paper the fate and influence of fuel sulphur species in combustion will be treated. First a description...... of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...

  3. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  4. Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds

    Science.gov (United States)

    Umo, N. S.; Murray, B. J.; Baeza-Romero, M. T.; Jones, J. M.; Lea-Langton, A. R.; Malkin, T. L.; O'Sullivan, D.; Neve, L.; Plane, J. M. C.; Williams, A.

    2015-05-01

    Ice-nucleating particles can modify cloud properties with implications for climate and the hydrological cycle; hence, it is important to understand which aerosol particle types nucleate ice and how efficiently they do so. It has been shown that aerosol particles such as natural dusts, volcanic ash, bacteria and pollen can act as ice-nucleating particles, but the ice-nucleating ability of combustion ashes has not been studied. Combustion ashes are major by-products released during the combustion of solid fuels and a significant amount of these ashes are emitted into the atmosphere either during combustion or via aerosolization of bottom ashes. Here, we show that combustion ashes (coal fly ash, wood bottom ash, domestic bottom ash, and coal bottom ash) nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. In order to quantitatively assess the impact of combustion ashes on mixed-phase clouds, we propose that the atmospheric abundance of combustion ashes should be quantified since up to now they have mostly been classified together with mineral dust particles. Also, in reporting ice residue compositions, a distinction should be made between natural mineral dusts and combustion ashes in order to quantify the contribution of combustion ashes to atmospheric ice nucleation.

  5. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  6. Release of Inorganic Elements during Wood Combustion. Release to the Gas Phase of Inorganic Elements during: Wood Combustion. Part 1: Development and Evaluation of Quantification Methods

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Alonso-Ramírez, Violeta; Jensen, Peter Arendt

    2006-01-01

    During wood combustion, inorganic elements such as alkali metals, sulfur, chlorine, and some heavy metals are partly released to the gas phase, which may cause problems in combustion facilities because of deposit formation and corrosion. Furthermore, it may cause harmful emissions of gases...... elements was quantified by a mass balance based on the weights and inorganic compositions of the fuel and the ash residues obtained by high-temperature (500-1150 C) treatment in a laboratory-scale tube reactor. However, method A involved the pyrolysis and combustion of a small fuel sample (~30 g...

  7. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  8. Combustion engine system

    Science.gov (United States)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  9. Dynamic features of combustion

    Science.gov (United States)

    Oppenheim, A. K.

    1985-01-01

    The dynamic features of combustion are discussed for four important cases: ignition, inflammation, explosion, and detonation. Ignition, the initiation of a self-sustained exothermic process, is considered in the simplest case of a closed thermodynamic system and its stochastic distribution. Inflammation, the initiation and propagation of self-sustained flames, is presented for turbulent flow. Explosion, the dynamic effects caused by the deposition of exothermic energy in a compressible medium, is illustrated by self-similar blast waves with energy deposition at the front and the adiabatic non-self-similar wave. Detonation, the most comprehensive illustration of all the dynamic effects of combustion, is discussed with a phenomenological account of the development and structure of the wave.

  10. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  11. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  12. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)

    2003-05-01

    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  13. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma.

    Science.gov (United States)

    Bianchi, G; Kyle, R A; Larson, D R; Witzig, T E; Kumar, S; Dispenzieri, A; Morice, W G; Rajkumar, S V

    2013-03-01

    Smoldering multiple myeloma (SMM) carries a 50% risk of progression to multiple myeloma (MM) or related malignancy within the first 5 years following diagnosis. The goal of this study was to determine if high levels of circulating plasma cells (PCs) are predictive of SMM transformation within the first 2-3 years from diagnosis. Ninety-one patients diagnosed with SMM at Mayo Clinic from January 1994 through January 2007, who had testing for circulating PCs using an immunofluorescent assay and adequate follow-up to ascertain disease progression, were studied. High level of circulating PCs was defined as absolute peripheral blood PCs >5 × 10(6)/l and/or >5% PCs per 100 cytoplasmic immunoglobulin (Ig)-positive peripheral blood mononuclear cells. Patients with high circulating PCs (14 of 91 patients, 15%) were significantly more likely to progress to active disease within 2 years compared with patients without high circulating PCs, 71% versus 24%, respectively, P=0.001. Corresponding rates for progression within 3 years were 86% versus 34%, respectively, P<0.001. Overall survival (OS) after both SMM diagnosis and MM diagnosis was also significantly different. High levels of circulating PCs identify SMM patients with an elevated risk of progression within the first 2-3 years following diagnosis.

  14. Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: identification of patients needing therapy.

    Science.gov (United States)

    Siontis, B; Kumar, S; Dispenzieri, A; Drake, M T; Lacy, M Q; Buadi, F; Dingli, D; Kapoor, P; Gonsalves, W; Gertz, M A; Rajkumar, S V

    2015-10-23

    We studied 188 patients with a suspected smoldering multiple myeloma (MM) who had undergone a positron emission tomography-computed tomography (PET-CT) scan as part of their clinical evaluation. PET-CT was positive (clinical radiologist interpretation of increased bone uptake and/or evidence of lytic bone destruction) in 74 patients and negative in 114 patients. Of these, 25 patients with a positive PET-CT and 97 patients with a negative PET-CT were observed without therapy and formed the study cohort (n=122). The probability of progression to MM within 2 years was 75% in patients with a positive PET-CT observed without therapy compared with 30% in patients with a negative PET-CT; median time to progression was 21 months versus 60 months, respectively, P=0.0008. Of 25 patients with a positive PET-CT, the probability of progression was 87% at 2 years in those with evidence of underlying osteolysis (n=16) and 61% in patients with abnormal PET-CT uptake but no evidence of osteolysis (n=9). Patients with positive PET-CT and evidence of underlying osteolysis have a high risk of progression to MM within 2 years when observed without therapy. These observations support recent changes to imaging requirements in the International Myeloma Working Group updated diagnostic criteria for MM.

  15. Bence Jones proteinuria in smoldering multiple myeloma as a predictor marker of progression to symptomatic multiple myeloma.

    Science.gov (United States)

    González-Calle, V; Dávila, J; Escalante, F; de Coca, A G; Aguilera, C; López, R; Bárez, A; Alonso, J M; Hernández, R; Hernández, J M; de la Fuente, P; Puig, N; Ocio, E M; Gutiérrez, N C; García-Sanz, R; Mateos, M V

    2016-10-01

    The diagnosis of smoldering multiple myeloma (SMM) includes patients with a heterogeneous risk of progression to active multiple myeloma (MM): some patients will never progress, whereas others will have a high risk of progression within the first 2 years. Therefore, it is important to improve risk assessment at diagnosis. We conducted a retrospective study in a large cohort of SMM patients, in order to investigate the role of Bence Jones (BJ) proteinuria at diagnosis in the progression to active MM. We found that SMM patients presenting with BJ proteinuria had a significantly shorter median time to progression (TTP) to MM compared with patients without BJ proteinuria (22 vs 88 months, respectively; hazard ratio=2.3, 95% confidence interval=1.4-3.9, P=0.002). We also identified risk subgroups based on the amount of BJ proteinuria: ⩾500 mg/24 h, <500 mg/24 h and without it, with a significantly different median TTP (13, 37 and 88 months, P<0.001). Thus, BJ proteinuria at diagnosis is an independent variable of progression to MM that identifies a subgroup of high-risk SMM patients (51% risk of progression at 2 years) and ⩾500 mg of BJ proteinuria may allow, if validated in another series, to reclassify these patients to MM requiring therapy before the end-organ damage development.

  16. Pathway-based network analysis of myeloma tumors: monoclonal gammopathy of unknown significance, smoldering multiple myeloma, and multiple myeloma.

    Science.gov (United States)

    Dong, L; Chen, C Y; Ning, B; Xu, D L; Gao, J H; Wang, L L; Yan, S Y; Cheng, S

    2015-08-14

    Although many studies have been carried out on monoclonal gammopathy of unknown significances (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM), their classification and underlying pathogenesis are far from elucidated. To discover the relationships among MGUS, SMM, and MM at the transcriptome level, differentially expressed genes in MGUS, SMM, and MM were identified by the rank product method, and then co-expression networks were constructed by integrating the data. Finally, a pathway-network was constructed based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and the relationships between the pathways were identified. The results indicated that there were 55, 78, and 138 pathways involved in the myeloma tumor developmental stages of MGUS, SMM, and MM, respectively. The biological processes identified therein were found to have a close relationship with the immune system. Processes and pathways related to the abnormal activity of DNA and RNA were also present in SMM and MM. Six common pathways were found in the whole process of myeloma tumor development. Nine pathways were shown to participate in the progression of MGUS to SMM, and prostate cancer was the sole pathway that was involved only in MGUS and MM. Pathway-network analysis might provide a new indicator for the developmental stage diagnosis of myeloma tumors.

  17. [Clinical courses and risk factors for progression of smoldering multiple myeloma: a nationwide cohort study in Japan].

    Science.gov (United States)

    Takamatsu, Yasushi; Muta, Tsuyoshi

    2015-08-01

    We carried out a cohort study of smoldering multiple myeloma (SMM) in Japan. The clinical data of 207 patients with SMM, median age 69 years (range: 27-90), were collected from 63 institutions. The subtype of myeloma was IgG type in 168, IgA type in 30, and Bence Jones type in 9 patients. At a median follow-up of 39 months, 53% of the patients had progressed to symptomatic MM (within 5 years of the initial diagnosis). As previously described, a serum free light chain ratio>8 or <0.125, along with the number of bone marrow plasma cells being 10% or more and the serum M-protein level being at least 3 g/dl, was a significant predictor of rapid progression. We found that the rate of increase in serum M-protein levels correlated negatively with the risk of progression. The probability of progression within 5 years was 100% in patients whose rate of serum M-protein level increase was 2 mg/dl/day or higher. This indicates that the serum M-protein level increase rate might be a useful predictor of disease progression in SMM.

  18. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies

    Science.gov (United States)

    Kristinsson, Sigurdur Y.

    2011-01-01

    Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed. PMID:21441462

  19. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  20. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  1. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  2. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  3. Propellant combustion at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Schoyer, H.F.R.; Korting, P.A.O.G.

    1986-03-01

    The combustion characteristics of a family of composite propellants have been investigated at low (i.e., subatmospheric) pressures and three different temperatures. Although a de Vieille-type burning rate law appeared to be applicable, the burning rate exponent and coefficient vary strongly with the initial temperatures. Indications are that this is primarily due to the presence of nitroguanidine and oxalate. Combustion efficiency proved to be poor. At low pressures, all propellants are susceptible to irregular burning: above 50 kPa oscillatory combustion was hardly observed. All propellants exhibit distinct preferred frequencies for oscillatory combustion. These frequencies, being much lower than the acoustic frequency of the test system, are associated with the combustion characteristics of the propellants. They depend strongly on the combustion pressure and the initial propellant temperature.

  4. Co-combustion of risk husk with coal in a fluidized bed

    International Nuclear Information System (INIS)

    Ghani, A.K.; Alias, A.B.; Savory, R.M.; Cliffe, K.R.

    2006-01-01

    Power generation from biomass is an attractive technology which utilizes agricultural residue waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk) was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and CO emissions were studied and compared with those for pure coal combustion. Biomass waste with up to 70% mass fraction can be co-combusted in a fluidized bed combustor designed for coal combustion with a maximum drop of efficiency of 20% depending upon excess air levels. CO levels fluctuated between 200-700 ppm were observed when coal is added. It is evident from this research that efficient co-firing of rice husk with coal can be achieved with minimum modification of existing coal-fired boilers. (Author)

  5. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1977-11-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester, a residue recovery system, and an off-gas treatment system

  6. Example Problems in LES Combustion

    Science.gov (United States)

    2016-09-26

    memorandum is the evaporation and subsequent combustion of liquid fuel droplets. Kerosene, a complex hydrogen mixture, is explored from the standpoint of...AFRL-RW-EG-TP-2016-002 Example Problems in LES Combustion Douglas V. Nance Air Force Research Laboratory Munitions...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Example Problem in LES Combustion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  7. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  8. The modes of gaseous combustion

    CERN Document Server

    Rubtsov, Nickolai M

    2016-01-01

    This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.

  9. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  10. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  11. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  12. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    OpenAIRE

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by ...

  13. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  14. Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers

    Science.gov (United States)

    Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.

    The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.

  15. Objetivo: Ahorro de combustible

    OpenAIRE

    Cabrero Sopena, Rosa María; Catalán Mogorrón, Heliodoro Fco.

    2011-01-01

    Con los precios de la energía en escalada imparable y particularmente, el gasóleo en precios históricos, se hace indispensable que el agricultor intente ahorrar en la partida energética de su explotación agrícola. El tractor se pondrá en el punto de mira del ahorro. Curioso paradigma, el gran amigo del agricultor, el tractor, se convierte en el máximo responsable de la partida energética. Una cifra, el consumo de combustible puede llegar incluso al 50% del coste horario total en la vida de...

  16. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  17. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  18. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  19. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  20. Field Test Kit for Gun Residue Detection

    Energy Technology Data Exchange (ETDEWEB)

    WALKER, PAMELA K.; RODACY, PHILIP J.

    2002-01-01

    One of the major needs of the law enforcement field is a product that quickly, accurately, and inexpensively identifies whether a person has recently fired a gun--even if the suspect has attempted to wash the traces of gunpowder off. The Field Test Kit for Gunshot Residue Identification based on Sandia National Laboratories technology works with a wide variety of handguns and other weaponry using gunpowder. There are several organic chemicals in small arms propellants such as nitrocellulose, nitroglycerine, dinitrotoluene, and nitrites left behind after the firing of a gun that result from the incomplete combustion of the gunpowder. Sandia has developed a colorimetric shooter identification kit for in situ detection of gunshot residue (GSR) from a suspect. The test kit is the first of its kind and is small, inexpensive, and easily transported by individual law enforcement personnel requiring minimal training for effective use. It will provide immediate information identifying gunshot residue.

  1. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  2. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  3. Management of Peat Fires on Smoldering Phase (Case Study: District Siak and District Kampar Riau Province

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2016-01-01

    Full Text Available The difficulty of finding land for farming activities in Indonesia caused some communities began to switch utilizing peat land for agricultural areas such as oil palm. Oil palm plantation is a commodity that has been developed in Indonesia.Oil palm planted area has increased rapidly.Since 1967 extensive oil palm plantations has increased 35times to 5.6 million ha in 2005 and about 7.8 million ha in 2009. The biggest expansion of oil palm plantations occur in 6 province,one of them is Riau.Most people take a practical way to open agricultural areas by burning peat.Riau Province in Indonesia is one of the major hotspots for peat fires during the dry season. Peat fire at smouldering phaseemits a lot of compounds that are not completely oxidized (e.g. CO, VOCs, PAHs that more dangerous than the emissions released during combustion at flaming fires. Particulate Matter (PM 2.5 is one of the emissions from peat fires too.However, existing data on VOCs and PM 2.5 of smoke from peat fires Indonesia is still limited.The aim of this study was to analyze the concentration of VOCs and PM 2.5 on emissions from peat fires in the Langkai Village Siak District and RimboPanjang Village Kampar District Riau Province when compared with background site and the permissible exposure limit and provide recommendations based on the results of this research.VOCs measurement method is based on NIOSH 1500 and EPA TO-17 while the PM 2.5 based on IMPROVE A method. The average concentration of PM 2.5 is 996.72 ± 531.01μg/m3. PM2.5 concentrations increased (compared with the background site was very high at 4,838%.This condition causes a decrease in air quality and serious health problems. While the results of the maximum TVOCs concentration obtained in Siak District was 391,880 g/m3, while in Kampar Districtwas 195,940 g/m3. TVOCs concentration atSiak Districtwas 130.63 times greater than the existing quality standards, while at Kampar District regency was 65.31 times

  4. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion

    Energy Technology Data Exchange (ETDEWEB)

    Branca, Carmen; Di Blasi, Colomba; Casu, Angela; Morone, Vincenza; Costa, Caterina

    2003-03-24

    A three-step series mechanism is shown to provide a good description of the oxidative degradation of a rigid polyurethane foam. Kinetic constants have been estimated by the simultaneous evaluations of four weight loss curves measured for heating rates between 5 and 20 K/min and a final temperature of 873 K. The following parameters have been obtained for the three reaction steps: (I) A{sub 1}=2.6x10{sup 12} s{sup -1}, E{sub 1}=133.6 kJ/mol; (II) A{sub 2}=3.3x10{sup 4} s{sup -1}, E{sub 2}=81 kJ/mol; (III) A{sub 3}=8.7x10{sup 8} s{sup -1}, E{sub 3}=180 kJ/mol. The thermal response of the foam has also been examined in a cone calorimeter for low (25 kW/m{sup 2}) and high (50 kW/m{sup 2}) radiation intensities, which lead to flaming combustion for a period of 90 and 75s, respectively. In the latter case, a transition from flaming to slow smoldering also takes place. Finally, for both radiation intensities, SEM micrographs show the complete loss of the initial closed-cell structure.

  5. 75 FR 3881 - Combustible Dust

    Science.gov (United States)

    2010-01-25

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  6. 75 FR 10739 - Combustible Dust

    Science.gov (United States)

    2010-03-09

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  7. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  8. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  9. Combustion Tests of Rocket Motor Washout Material: Focus on Air toxics Formation Potential and Asbestos Remediation

    Energy Technology Data Exchange (ETDEWEB)

    G. C. Sclippa; L. L. Baxter; S. G. Buckley

    1999-02-01

    The objective of this investigation is to determine the suitability of cofiring as a recycle / reuse option to landfill disposal for solid rocket motor washout residue. Solid rocket motor washout residue (roughly 55% aluminum powder, 40% polybutadiene rubber binder, 5% residual ammonium perchlorate, and 0.2-1% asbestos) has been fired in Sandia's MultiFuel Combustor (MFC). The MFC is a down-fired combustor with electrically heated walls, capable of simulating a wide range of fuel residence times and stoichiometries. This study reports on the fate of AP-based chlorine and asbestos from the residue following combustion.

  10. Immunogenicity and persistence of the 13-valent Pneumococcal Conjugate Vaccine (PCV13) in patients with untreated Smoldering Multiple Myeloma (SMM): A pilot study.

    Science.gov (United States)

    Bahuaud, Mathilde; Bodilis, Hélène; Malphettes, Marion; Maugard Landre, Anaïs; Matondo, Caroline; Bouscary, Didier; Batteux, Frédéric; Launay, Odile; Fermand, Jean-Paul

    2017-11-01

    Smoldering multiple myeloma (SMM) is an asymptomatic clonal plasma cell disorder that frequently progress to multiple myeloma (MM), a disease at high risk of pneumococcal infections. Moreover, if the polysaccharide vaccine is poorly immunogenic in MM, the 13-valent conjugated vaccine has never been tested in clonal plasma cell disorders. We evaluated its immunogenicity for 7 serotypes in 20 patients ≥ 50 years of age with smoldering multiple myeloma (SMM) pre and post routine-vaccination with PCV13. Concentrations of IgG specific for 7 serotypes were measured at baseline, 1, 6, and 12 months after vaccination by standardized ELISA and an Opsonophagocytic Assay (OPA). The primary endpoint was the proportion of patients responding to at least 5 of the 7 serotypes by ELISA at one month. At 1 month post vaccination, 12 patients (60%) were responders by ELISA, among whom 8 were also responders by OPA. At 6 months, 6 (30% of total) of the 12 responders had persistent immunity, and only 2 (10% of total) at 12 months. These results suggested a partial response in this population and a rapid decrease in antibody levels in the first months of vaccination. Although one injection of the 13-valent pneumococcal conjugate vaccine is immunogenic in some patients with SMM, the response is transient. Repeated injections are likely to be needed for effective and sustained protection.

  11. Immunogenicity and persistence of the 13-valent Pneumococcal Conjugate Vaccine (PCV13 in patients with untreated Smoldering Multiple Myeloma (SMM: A pilot study

    Directory of Open Access Journals (Sweden)

    Mathilde Bahuaud

    2017-11-01

    Full Text Available Smoldering multiple myeloma (SMM is an asymptomatic clonal plasma cell disorder that frequently progress to multiple myeloma (MM, a disease at high risk of pneumococcal infections. Moreover, if the polysaccharide vaccine is poorly immunogenic in MM, the 13-valent conjugated vaccine has never been tested in clonal plasma cell disorders. We evaluated its immunogenicity for 7 serotypes in 20 patients ≥ 50 years of age with smoldering multiple myeloma (SMM pre and post routine-vaccination with PCV13.Concentrations of IgG specific for 7 serotypes were measured at baseline, 1, 6, and 12 months after vaccination by standardized ELISA and an Opsonophagocytic Assay (OPA. The primary endpoint was the proportion of patients responding to at least 5 of the 7 serotypes by ELISA at one month.At 1 month post vaccination, 12 patients (60% were responders by ELISA, among whom 8 were also responders by OPA. At 6 months, 6 (30% of total of the 12 responders had persistent immunity, and only 2 (10% of total at 12 months. These results suggested a partial response in this population and a rapid decrease in antibody levels in the first months of vaccination.Although one injection of the 13-valent pneumococcal conjugate vaccine is immunogenic in some patients with SMM, the response is transient. Repeated injections are likely to be needed for effective and sustained protection. Keywords: Immunology, Vaccines, Infectious disease

  12. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  13. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  14. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU

    2014-06-01

    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  15. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization

    International Nuclear Information System (INIS)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger

    2017-01-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  16. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  17. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  18. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency

    Science.gov (United States)

    Bertrand, Amelie; Stefenelli, Giulia; Bruns, Emily A.; Pieber, Simone M.; Temime-Roussel, Brice; Slowik, Jay G.; Prévôt, André S. H.; Wortham, Henri; El Haddad, Imad; Marchand, Nicolas

    2017-11-01

    To reduce the influence of biomass burning on air quality, consumers are encouraged to replace their old woodstove with new and cleaner appliances. While their primary emissions have been extensively investigated, the impact of atmospheric aging on these emissions, including secondary organic aerosol (SOA) formation, remains unknown. Here, using an atmospheric smog chamber, we aim at understanding the chemical nature and quantify the emission factors of the primary organic aerosols (POA) from three types of appliances for residential heating, and to assess the influence of aging thereon. Two, old and modern, logwood stoves and one pellet burner were operated under typical conditions. Emissions from an entire burning cycle (past the start-up operation) were injected, including the smoldering and flaming phases, resulting in highly variable emission factors. The stoves emitted a significant fraction of POA (up to 80%) and black carbon. After ageing, the total mass concentration of organic aerosol (OA) increased on average by a factor of 5. For the pellet stove, flaming conditions were maintained throughout the combustion. The aerosol was dominated by black carbon (over 90% of the primary emission) and amounted to the same quantity of primary aerosol emitted by the old logwood stove. However, after ageing, the OA mass was increased by a factor of 1.7 only, thus rendering OA emissions by the pellet stove almost negligible compared to the other two stoves tested. Therefore, the pellet stove was the most reliable and least polluting appliance out of the three stoves tested. The spectral signatures of the POA and aged emissions by a High Resolution - Time of Flight - Aerosol Mass Spectrometer (Electron Ionization (EI) at 70 eV) were also investigated. The m/z 44 (CO2+) and high molecular weight fragments (m/z 115 (C9H7+), 137 (C8H9O2+), 167 (C9H11O3+) and 181 (C9H9O4+, C14H13+)) correlate with the modified combustion efficiency (MCE) allowing us to discriminate further

  19. SCR at bio fuel combustion

    International Nuclear Information System (INIS)

    Andersson, Christer; Odenbrand, I.; Andersson, L.H.

    1998-10-01

    In this project the cause for and the extent of catalyst deactivation has been investigated when using 100 % wood as fuel. The trend of deactivation has been studied as a function of the flue gas temperature, the type of catalyst and the type of combustion technique used. The field tests have been performed in the CFB boiler in Norrkoeping, firing forest residues, and in the boiler in Jordbro, firing pulverized wood (PC). Samples of four different commercial catalyst types have been exposed to flue gas in a test rig connected to the convection section of the boiler. The samples have been analysed at even time intervals. The results after 2 100 hours show a large difference in deactivation trend between the two plants; when using a conventional honeycomb catalyst 80 % of the original activity remains in the CFB boiler but only 20 % remains in the PC boiler. The deactivation in the CFB boiler is about 3 - 4 times faster than what is expected for a conservative design for a coal fired boiler. The results show that the general deactivation trend is similar for the plate and the honeycomb catalyst types. With a catalyst optimised for bio fuels the deactivation rate was about 2/3 compared with a conventional catalyst. At an operating temperature of 315 deg C the deactivation was not as rapid as at 370 deg C. The amount of easily dissolved potassium increases on the surface of the catalyst, especially in the PC boiler, and this is probably the reason for the deactivation. The total amount of potassium in the flue gas is about 5 times higher in the CFB boiler compared with the PC boiler. This indicates that only a certain form of potassium attacks the catalyst and that the total alkali content of the fuel is not a good indicator of the deactivation tendency. The potassium on the catalyst dissolves easily in both water and sulphuric acid. A wash of deactivated catalyst samples with water resulted in higher activity than for the fresh samples if the washing was supplemented

  20. Combustion modeling in waste tanks

    International Nuclear Information System (INIS)

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  1. Sodium nitrate combustion limit tests

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  2. Fifth International Microgravity Combustion Workshop

    Science.gov (United States)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  3. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering

    1996-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  4. Combustion Noise in Modern Aero-Engines

    OpenAIRE

    Duran, I.; Moreau, S.; Nicoud, F.; T., Livebardon; Bouty, E.; Poinsot, T.

    2014-01-01

    International audience; Combustion noise has recently been the subject of attention of both the aeroacoustic and the combustion research communities. Over the last decades, engine manufacturershave made important efforts to significantly reduce fan and jet noise, which increased the relative importance of combustion noise. Two main mechanisms of combustion-noise generation have been identified: direct combustion noise, generated by acoustic waves propagating to the outlet, and indirect combus...

  5. Rotary internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, J.

    1989-12-05

    This patent describes an internal combustion engine assembly. It includes: a central rotor means formed with at least one peripheral fuel cavity. The cavity having a first surface defining a thrust surface and a second surface defining a contoured surface; a housing means enclosing the rotor and having an internal wall encircling the rotor. The internal wall being intercepted by at least two recesses defining cylinder means. The housing means and the rotor means being relatively rotatable; piston means individual to each the cylinder means and reciprocable therein; each piton means having a working face complementary to aid contoured surface; and power means for urging the working face into intimate areal contact with the contoured surface to create a first seal means. The housing means having at lest one fuel inlet port, at least one fuel ignition means and at least one exhaust port whereby during the course of a revolution of the rotor means relative to the housing means, the first seal means, the power means, the respective ports, the ignition means and the fuel cavity cooperate to develop fuel compression, fuel ignition and exhaust functions.

  6. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1982-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some reactor loss-of-coolant reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, the authors have conducted open tube tests and closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen where the peak overpressure is reduced by two and one-half. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  7. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1984-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss of coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, several open-tube tests and more than 100 closed-vessel tests of hydrogen/air combustion, with and without foam were conducted. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by 2 1/2. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam, and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  8. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.; Griffiths, S.; Shepherd, J.

    1983-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, we have conducted several open tube tests and over one hundred closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by a factor of two and one-half. Despite this overall pressure reduction, the flame speed is increase by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  9. Environmental and economic evaluations of energy recovery from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Antonopoulos, A.A.; Sobek, A.A.

    1979-08-01

    Agricultural and forestry residues have been converted to energy for centuries. The technologies employed range from straightforward approaches such as combustion to produce heat to more involved approaches such as pyrolysis of the residues to produce medium-Btu synthetic gas, charcoal, and oil. Thus there is no one technology that can be characterized as the best or most promising for conversion of agricultural and forestry residues into energy. Therefore, to accurately assess the potential of agricultural and forestry residues as energy resources, an array of current conversion options should be addressed. Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems ae examined. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  10. Techniques de combustion Combustin Techniques

    Directory of Open Access Journals (Sweden)

    Perthuis E.

    2006-11-01

    Full Text Available L'efficacité d'un processus de chauffage par flamme est étroitement liée à la maîtrise des techniques de combustion. Le brûleur, organe essentiel de l'équipement de chauffe, doit d'une part assurer une combustion complète pour utiliser au mieux l'énergie potentielle du combustible et, d'autre part, provoquer dans le foyer les conditions aérodynamiques les plus propices oux transferts de chaleur. En s'appuyant sur les études expérimentales effectuées à la Fondation de Recherches Internationales sur les Flammes (FRIF, au Groupe d'Étude des Flammes de Gaz Naturel (GEFGN et à l'Institut Français du Pétrole (IFP et sur des réalisations industrielles, on présente les propriétés essentielles des flammes de diffusion aux combustibles liquides et gazeux obtenues avec ou sans mise en rotation des fluides, et leurs répercussions sur les transferts thermiques. La recherche des températures de combustion élevées conduit à envisager la marche à excès d'air réduit, le réchauffage de l'air ou son enrichissement à l'oxygène. Par quelques exemples, on évoque l'influence de ces paramètres d'exploitation sur l'économie possible en combustible. The efficiency of a flame heating process is closely linked ta the mastery of, combustion techniques. The burner, an essential element in any heating equipment, must provide complete combustion sa as to make optimum use of the potential energy in the fuel while, at the same time, creating the most suitable conditions for heat transfers in the combustion chamber. On the basis of experimental research performed by FRIF, GEFGN and IFP and of industrial achievements, this article describesthe essential properties of diffusion flames fed by liquid and gaseous fuels and produced with or without fluid swirling, and the effects of such flames on heat transfers. The search for high combustion temperatures means that consideration must be given to operating with reduced excess air, heating the air or

  11. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M. [Borealis Polymers Oy, Porvoo (Finland)

    1997-10-01

    The current project focuses on eventual changes in ash characteristics during co-combustion of refuse derived fuel with coal, peat, wood or bark, which could lead to slagging, fouling and corrosion in the boiler. Ashes were produced at fluidised bed (FB) combustion conditions in the 15 kW reactor at VTT Energy, Jyvaeskylae, the fly ash captured by the cyclone was further analysed by XRF at Outokumpu Geotechnical Laboratory, Outokumpu. The sintering behaviour of these ashes was investigated using a test procedure developed at the Combustion Chemistry Research Group at Aabo Akademi University. The current extended programme includes a Danish refuse-derived fuel (RDF), co-combusted with bark/coal (5 tests) and wood/coal (2 tests), a RF from Jyvaskyla (2 tests with peat/coal) and de-inking sludges co- combusted at full-scale with wood waste or paper mill sludge (4 ashes provided by IVO Power). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 deg C, significant changes in sintering are seen with pellets treated at 1000 deg C. Ash from 100 % RDF combustion does not sinter, 25 % RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Contrary to the earlier hypothesis a 25 % coal addition seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows, that (again), in general, an increased level of alkali chlorides and sulphates gives increased sintering. Finally, some results on sintering tendency measurements on ashes from full-scale CFB co-combustion of deinking sludge with wood waste and paper mill sludge are given. This shows that these ashes show very little, if any, sintering tendency, which can be explained from ash chemistry

  12. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    Science.gov (United States)

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Application of LES for Analysis of Unsteady Effects on Combustion Processes and Misfires in DISI Engine

    Directory of Open Access Journals (Sweden)

    Goryntsev D.

    2013-10-01

    Full Text Available Cycle-to-cycle variations of combustion processes strongly affect the emissions, specific fuel consumption and work output. Internal combustion engines such as Direct Injection Spark-Ignition (DISI are very sensitive to the cyclic fluctuations of the flow, mixing and combustion processes. Multi-cycle Large Eddy Simulation (LES analysis has been used in order to characterize unsteady effects of combustion processes and misfires in realistic DISI engine. A qualitative analysis of the intensity of cyclic variations of in-cylinder pressure, temperature and fuel mass fraction is presented. The effect of ignition probability and analysis of misfires are pointed out. Finally, the fuel history effects along with the effect of residual gas on in-cylinder pressure and temperature as well as misfires are discussed.

  14. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  15. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  16. Biogas utilization as flammable for internal combustion engine

    International Nuclear Information System (INIS)

    Cardenas, H.

    1995-01-01

    In this work the energetic potential stored in form of generated biogas of organic industrial wastes treatment is analyzed. Biogas utilization as flammable at internal combustion engine coupled to electrical energy generating is studied in the Wastewater Treatment Plant of Bucaramanga city (Colombia). This Plant was designed for 160.000 habitants treatment capacity, 1300 m3/h wealth, 170 BDO/m3 residues concentration and 87% process efficiency. The plant generate 2.000 m3/d of biogas. In laboratory trials was worked with biogas originating from Treatment Plant, both without purifying and purified, and the obtained results were compared with both yields determined with 86-octanes gasoline and natural gas. The analysis of pollutant by-products generated in combustion process as leak gases, present corrosive compounds and not desirable. elements in biogas composition are included

  17. Advanced solutions in combustion-based WtE technologies.

    Science.gov (United States)

    Martin, Johannes J E; Koralewska, Ralf; Wohlleben, Andreas

    2015-03-01

    Thermal treatment of waste by means of combustion in grate-based systems has gained world-wide acceptance as the preferred method for sustainable management and safe disposal of residual waste. In order to maintain this position and to address new challenges and/or priorities, these systems need to be further developed with a view to energy conservation, resource and climate protection and a reduction in the environmental impact in general. MARTIN GmbH has investigated continuously how the implementation of innovative concepts in essential parts of its grate-based Waste-to-Energy (WtE) combustion technology can be used to meet the above-mentioned requirements. As a result of these efforts, new "advanced solutions" were developed, four examples of which are shown in this article. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Acid digestion of combustible wastes: a status report

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1975-05-01

    Work at the Hanford Engineering Development Laboratory on development of the acid digestion process for treating combustible wastes is discussed. Materials such as paper, rubber, and plastics are readily decomposed into a low volume, noncombustible residue. Engineering results using the Acid Digestion Test Unit are discussed. Tests to date generally duplicated earlier laboratory results with respect to waste processing rates, volume reduction, off-gas generation rates and volumes, acid consumption, and completeness of reaction. Demonstrated processing rates were as high as 5 kg/hr for short duration run periods. The tests indicated engineering feasibility of the acid digestion process and showed acid digestion to be a potentially attractive method for treating combustible nuclear wastes. Other areas discussed in the report are behavior of plutonium and americium during acid digestion, behavior of various construction materials, and safety. An integrated flowsheet for operation of an acid digestion unit is also presented. (U.S.)

  19. Glycine-nitrate combustion synthesis of oxide ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Pederson, L.R.; Maupin, G.D.; Bates, J.L.; Thomas, L.E.; Exarhos, G.J. (Pacific Northwest Lab., Richland, WA (United States))

    1990-09-01

    A new combustion synthesis method, the glycine-nitrate process, has been used to prepare oxide ceramic powders, including substituted chromite and manganite powders of high quality. A precursor was prepared by combining glycine with metal nitrates in their appropriate stoichiometric ratios in an aqueous solution. The precursor was heated to evaporate excess water, yielding a viscous liquid. Further heating to about 180[degrees]C caused the precursor liquid to autoignite. Combustion was rapid and self-sustaining, with flame temperatures ranging from 1100 to 1450[degrees]C. The chromite product was compositionally homogeneous with a specific surface area of 32 m[sup 2]/g, while the manganite product was composed of two distinct phases with a 23 m[sup 2]/g surface area after calcination. When compared to similar compositions made using the amorphous citrate process, glycine-nitrate-produced powders had greater compositional uniformity, lower residual carbon levels and smaller particle sizes.

  20. Acid digestion and pressurization control in combustible radwaste treatment

    International Nuclear Information System (INIS)

    Allen, C.R.; Cowan, R.G.; Grelecki, C.J.

    1978-01-01

    Acid digestion has been developed to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to process radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September, 1977, and is currently undergoing nonradioactive shakedown tests. Radioactive operation is expected in May, 1978. Because of uncertainties in waste composition and reactivity, the system was required to contain pressurizations. This led to the development of a simple and inexpensive system, which is capable of attenuating a shock wave from a full scale vapor detonation. The system has potential application in a wide spectrum of chemical reactors, since the fabrication materials are resistant to a very wide range of corrosive chemical attack

  1. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  2. Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Indoor Solid Fuel Combustion

    Science.gov (United States)

    Shen, Guofeng; Tao, Shu; Wang, Wei; Yang, Yifeng; Ding, Junnan; Xue, Miao; Min, Yujia; Zhu, Chen; Shen, Huizhong; Li, Wei; Wang, Bin; Wang, Rong; Wang, Wentao; Wang, Xilong; Russell, Armistead G.

    2011-01-01

    Indoor solid fuel combustion is a dominant source of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) and the latter are believed to be more toxic than the former. However, there is limited quantitative information on the emissions of OPAHs from solid fuel combustion. In this study, emission factors of OPAHs (EFOPAH) for nine commonly used crop residues and five coals burnt in typical residential stoves widely used in rural China were measured under simulated kitchen conditions. The total EFOPAH ranged from 2.8±0.2 to 8.1±2.2 mg/kg for tested crop residues and from 0.043 to 71 mg/kg for various coals and 9-fluorenone was the most abundant specie. The EFOPAH for indoor crop residue burning were 1~2 orders of magnitude higher than those from open burning, and they were affected by fuel properties and combustion conditions, like moisture and combustion efficiency. For both crop residues and coals, significantly positive correlations were found between EFs for the individual OPAHs and the parent PAHs. An oxygenation rate, Ro, was defined as the ratio of the EFs between the oxygenated and parent PAH species to describe the formation potential of OPAHs. For the studied OPAH/PAH pairs, mean Ro values were 0.16 ~ 0.89 for crop residues and 0.03 ~ 0.25 for coals. Ro for crop residues burned in the cooking stove were much higher than those for open burning and much lower than those in ambient air, indicating the influence of secondary formation of OPAH and loss of PAHs. In comparison with parent PAHs, OPAHs showed a higher tendency to be associated with particulate matter (PM), especially fine PM, and the dominate size ranges were 0.7 ~ 2.1 µm for crop residues and high caking coals and < 0.7 µm for the tested low caking briquettes. PMID:21375317

  3. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2017-04-01

    Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230±35kg/m 3 , which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl - , S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl - and S were lower. This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. Copyright © 2016. Published by Elsevier B.V.

  4. HCCI Combustion: Analysis and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard

    2001-05-14

    Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

  5. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  6. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  7. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  8. Ignition and combustion of sodium, fire consequences, extinguishment and prevention

    International Nuclear Information System (INIS)

    Malet, J.C.

    1996-01-01

    This document presents the results of work carried out at the IPSN on: sodium inflammation, sodium combustion (pool fires and sprayed jet fires), extinguishment (passive means and extinguishing powder), the physico-chemical behaviour of aerosols and their filtration, the protection means of concretes, intervention during and after a fire, treatment of residues, intervention equipment. The calculation codes developed during these studies are described. The experimental basis which allowed the qualification of these codes and the technological means aimed at prevention and sodium fire fighting, was obtained using programmes carried out in the experimental facilities existing in Cadarache or in collaboration with the German teams of Karlsruhe

  9. Combustion without air pollution

    International Nuclear Information System (INIS)

    Kassebohm, B.

    1991-01-01

    This paper reports on Stadtwerke Dusseldorf AG which is the utility company which is responsible for the City of Dusseldorf. To ensure the supply of power and district heat, it operates power plants with a total capacity of around 1100 MW, 600 MW of which are generated by coal-fired power plants with 13 boiler installations located at three different sites. In addition, it operates the refuse incineration plant of the City of Dusseldorf with a Capacity of 450 000 tons per year of municipal refuses and industrial wastes. Within the last few years, all of the above plants had to be retrofitted with flue gas cleaning systems for the removal of SO 2 , HCL, HF, NO x , PAH etc. The semi-dry flue cleaning process System Dusseldorf which was developed by Stadtwerke Dusseldorf meets these requirements additional to simple and space-saving technology, flexible capacity, no waste water, no sewage problems, attractive investment and operating cost, utilization of residual products, adaptability to other flue gas cleaning technologies. As anticipated, the dust, SO 2 HCL, HF etc. emissions after the coke filter pre-cleaning stage were zero but with an inlet concentration of around 350 to 400 mg NO 2 /m 3 only

  10. Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips

    Science.gov (United States)

    Arif, Ali Talib; Maschowski, Christoph; Garra, Patxi; Garcia-Käufer, Manuel; Petithory, Tatiana; Trouvé, Gwenaëlle; Dieterlen, Alain; Mersch-Sundermann, Volker; Khanaqa, Polla; Nazarenko, Irina; Gminski, Richard; Gieré, Reto

    2017-08-01

    Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.

  11. Characterization of biomass burning: Fourier transform infrared analysis of wood and vegetation combustion products

    Science.gov (United States)

    Padilla, Diomaris

    The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A

  12. Combustion heater for oil shale

    Science.gov (United States)

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  13. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2014-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  14. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  15. Experimental observations of aluminum particle combustion during hypervelocity water impact and penetration

    Science.gov (United States)

    Rudolphi, John Joseph

    Experiments conducted at the University of Illinois Urbana-Champaign have investigated the reaction between Al shaped charge jets and underwater environments. Although many qualitative and semi-quantitative characteristics are known, including pressure field augmentation, light emission from combusting material, and oxide-containing powder residues, the actual combustion mechanism has not been isolated. The difficulty of studying combustion in this physical situation is due to the extremely transient nature of the combustion and the difficulty of implementing common diagnostics. This research presents a novel approach to isolating the combustion which occurs between particulated jet material traveling at high velocities (1500 - 3000 m/s) in underwater environments as would be found in shaped charge jet penetration. A method of accelerating small packets (10 mg - 20 mg) of Al particles using a light gas gun was developed to simulate conditions experienced by particulated shaped charge jet material during water penetration. In particle sizes tested (75 mum - 5 mum), only large particles at high velocities (75 mum - 45 mum at velocities greater than 2500 m/s) exhibited evidence of combustion. XRD and SEM analyses were used to verify residue composition and to characterize individual particle morphology. XRD analysis yielded a global residue composition while SEM analysis gave a single particle composition. Both analyses verified the presence or absence of oxidized material. Surprisingly, no oxidation was indicated in particles smaller than 45 mum even at velocities greater than 3000 m/s. Images of shaped charge residue and light gas gun experiment residue qualitatively verified similar particle oxidation and surface morphologies characterized by the presence of numerous hollow nodules and porous, oxidized surfaces. In addition, controlled experiments involving Al and Cu shaped charges fired into H2O and oil verified the particle sizes created during penetration and

  16. Application of the FIRST Combustion model to Spray Combustion

    NARCIS (Netherlands)

    de Jager, B.; Kok, Jacobus B.W.

    2004-01-01

    Liquid fuel is of interest to apply to gas turbines. The large advantage is that liquids are easily storable as compared to gaseous fuels. Disadvantage is that liquid fuel has to be sprayed, vaporized and mixed with air. Combustion occurs at some stage of mixing and ignition. Depending on the

  17. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  18. Combustion noise and combustion instabilities in propulsion systems

    Science.gov (United States)

    Culick, F. E. C.; Paparizos, L.; Sterling, J.; Burnley, V.

    1992-01-01

    This paper is concerned with some aspects of non-linear behavior of unsteady motions in combustion chambers. The emphasis is on conditions under which organized oscillations having discrete frequencies may exist in the presence of random motions. In order to treat the two types of motions together, and particularly to investigate coupling between noise and combustion instabilities, the unsteady field is represented as a synthesis of acoustic modes having time-varying amplitudes. Each of the amplitudes are written as the sum of two parts, one associated with the random field and the remainder representing the organized oscillations. After spatial averaging, the general problem is reduced to solution of a set of second-order ordinary differential equations whose structure depends on the sorts of nonlinear processes accounted for. This formulation accommodates any physical process; in particular, terms are included to represent noise sources, although only limited modeling is discussed. Our results suggest that random sources of noise have only small effects on combustion instabilities and seem not to be a cause of unstable motions. However, the coupling between the two sorts of unsteady motions may be important as an essential process in a proposed scheme for noise control. It is now a familiar observation that many nonlinear deterministic systems are capable of exhibiting apparently random motions called 'chaos.' This is a particularly interesting possibility for systems which also executed non-deterministic random motions. In combustion chambers, a nonlinear deterministic system (acoustical motions) exists in the presence of noise produced by flow separation, turbulent motions, and energy released by combustion processes. The last part of the paper is directed to the matter of discovering whether or not chaotic motions exist in combustion systems. Analysis has not progressed sufficiently far to answer the question. We report here recent results of processing data

  19. Scramjet Combustion Stability Behavior Modeling, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  20. Scramjet Combustion Stability Behavior Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  1. Liquid Fuel Combustion Using Porous Inert Media

    National Research Council Canada - National Science Library

    Agrawal, Ajay K; Gollahalli, Subramanayam R

    2006-01-01

    Combustion using porous inert media (PIM) offers benefits such as high power density, stable operation over a wider turndown ratio, homogeneous product gases, lower combustion noise and reduced emissions of NOx, CO, particulates, etc...

  2. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  3. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  4. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  5. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  6. Furnaces with multiple ?ameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple ?ameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a

  7. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  8. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  9. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-10-01

    Full Text Available Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS supplied by the Italian electric utility company (ENEL have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  10. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  11. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-01-01

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372

  12. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  13. Treatment of Explosives Residues From Range Activities

    Science.gov (United States)

    2010-01-01

    metal wire (steel wire heated till it was glowing orange in a bunsen burner ) were used as sources of ignition. These sources were meant to represent...laboratory conditions. Neither red-hot metal probes nor open flames resulted in ignition or smoldering.  Methods to efficiently mix and apply...soybean oil in a very dry and in a moderately wet state. Both an open flame (butane-type lighter used for lighting candles, barbecues, etc.) and a hot

  14. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  15. Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine

    OpenAIRE

    Broatch Jacobi, Jaime Alberto; Margot , Xandra; Novella Rosa, Ricardo; Gómez-Soriano, Josep

    2016-01-01

    In the last decade, different advanced combustion concepts based on generating totally or partially premixed conditions have been investigated in CI (compression ignition) engines with the aim of achieving lower NOx (nitrous oxides) and soot emissions. Most of the drawbacks inherent to this type of combustions, such as the combustion phasing control or combustion stability, can be mitigated by combining the PPC (Partially Premixed Combustion) concept fueled by gasoline and a small...

  16. Combustive management of oil spills

    International Nuclear Information System (INIS)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris

  17. Study of sodium combustion and fire extinction by pulverized substances. Role of additives

    International Nuclear Information System (INIS)

    Reuillon, Marcelline.

    1976-01-01

    A study is presented on inflammation and combustion of liquid sodium, extinction of the metal fires by comburant concentration reducing and cooling, liquid covering, powder smothering. The role of the additives is discussed. The setting up and the experimental process are given. The sodium combustion residues are analyzed. Various powder mixtures based on alkaline carbonates, NaCl-Na 2 CO 3 , NaCl-Na 2 CO 3 ,H 2 O etc... are studied. An attempt of interpretation on sodium fire extinction is presented [fr

  18. Low-NO{sub x}, wood chip combustion

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Oravainen, H.; Haemaelaeinen, J.; Paakkinen, K. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    The regulations for nitrogen oxide emissions vary in different countries, but the general trend in the future will probably be that the emissions limits will be lowered also for wood combustion plants, which are small or medium size units. Thus, the development of wood chip burning furnaces (grate furnaces, fluidized bed combustors, stoker furnaces) with lower nitrogen oxide emissions, is important. The wood used in the combustor, its particle size, moisture and fuel properties (nitrogen content) affect the nitrogen emissions. The nitrogen oxide release is also much affected by the design and operation of the combustor (air staging, fuel air preheat, flue gas circulation, air to fuel mass ratio). The fate of nitrogen compounds originally in the virgin wood depends much on the design of the combustor system and by proper planning it is possible to reduce the emission of nitrogen oxides. Basic knowledge of the release of nitrogen compounds from single wood particles is attained. The release of gaseous nitrogen compounds from wood particles during pyrolysis and combustion is studied experimentally and by modelling. Nitrogen release is studied experimentally by two ways, by analysing the gas and by quenching the particle and analysing the char residue. Formation of nitrogen oxide emissions in a fuel bed is studied by modelling and by combustion experiments with a pot furnace. This research gives general information of nitrogen oxide formation in wood bunting especially in fixed beds. The development of a horizontal stoker burner for wood chips with low emissions is the practical aim of the research. (orig.)

  19. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  20. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  1. Agricultural pesticide residues

    International Nuclear Information System (INIS)

    Fuehr, F.

    1984-01-01

    The utilization of tracer techniques in the study of agricultural pesticide residues is reviewed under the following headings: lysimeter experiments, micro-ecosystems, translocation in soil, degradation of pesticides in soil, biological availability of soil-applied substances, bound residues in the soil, use of macro- and microautography, double and triple labelling, use of tracer labelling in animal experiments. (U.K.)

  2. Modeling of Laser-Induced Metal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  3. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  4. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    turbulent premixed flows . Hence, Tau_c is here varied via the mixture stoichiometry (Phi) with variations in Tau_f pursued in a parallel study...transitions in turbulent premixed flows . Hence, τc is here varied via the mixture stoichiometry (Φ) with variations in τf pursued in a parallel study...combustion products that alter or govern the mixing fluid flow dynamics lead to a gradual alignment of Umix/Ub with the HCP fluid flow direction. This

  5. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    Science.gov (United States)

    2012-11-01

    to JACS, 2012 7.1 μm Mid infra - red Faraday Rotation Spectroscopy (FRS), 1396 cm-1 Quantitative HO2 Measurement (very challenging!): 2L + 1... red absorption spectroscopy and MBMS system are developed and successfully measured H2O2 and other intermediate species. 6. A mid-infrared Faraday...flux 1000 times faster! Plasma assisted combustion dramatically changed the ”SPEED” of low temperature chemistry CH2O PLIF measurements at 355 nm

  6. Towards a coherent European approach for taxation of combustible waste

    International Nuclear Information System (INIS)

    Dubois, Maarten

    2013-01-01

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO x emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO x emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects

  7. Co-combustion of sewage sludge; Mitverbrennung von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, K.J. [Technische Univ. Berlin (Germany). Fachgebiet Abfallwirtschaft

    1998-09-01

    Thermal sewage disposal pursues the following aims: destruction of organic pollutants contained in the sludge; concentration and removal or almost complete fixation of inorganic pollutants in the residue matrix; minimisation of the mass solid residue; production of useful products; utilisation of the caloric content. The thermal treatment chain should be as short as possible; intermediate stages in separate reactors such as digestion, drying, degasification or gasification should be avoided if the material is ultimately to be combusted. The present paper examines and assesses the co-combustion of sewage sludge. [Deutsch] Mit der thermischen Klaerschlammentsorgung werden folgende Ziele verfolgt: - Zerstoerung der im Schlamm enthaltenen organischen Schadstoffe, - Konzentration und Ausschleusung oder weitestgehende Fixierung der anorganischen Schadstoffe in die Reststoffmatrix, - Minimierung der Masse an festen Restabfaellen, - Herstellung verwertbarer Produkte, - Nutzung des Waermeeinhalts. Die thermische Behandlungskette sollte moeglichst kurz sein; Zwischenschritte wie Faulung, Trocknung, Ent- oder Vergasung in getrennten Reaktoren sollten vermieden werden, wenn letztendlich doch verbrannt wird. Das Verfahren der Mitverbrennung von Klaerschlamm wird hier untersucht und bewertet. (orig./SR)

  8. Recycling a hydrogen rich residual stream to the power and steam plant

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250 Buenos Aires, Ciudad Autonoma de Buenos Aires (Argentina); Eliceche, A.M. [Chemical Engineering Department, Universidad Nacional del Sur, PLAPIQUI-CONICET, Camino La Carrindanga Km 7 (8000) Bahia Blanca (Argentina)

    2010-06-15

    The benefits of using a residual hydrogen rich stream as a clean combustion fuel in order to reduce Carbon dioxide emissions and cost is quantified. A residual stream containing 86% of hydrogen, coming from the top of the demethanizer column of the cryogenic separation sector of an ethylene plant, is recycled to be mixed with natural gas and burned in the boilers of the utility plant to generate high pressure steam and power. The main advantage is due to the fact that the hydrogen rich residual gas has a higher heating value and less CO{sub 2} combustion emissions than the natural gas. The residual gas flowrate to be recycled is selected optimally together with other continuous and binary operating variables. A Mixed Integer Non Linear Programming problem is formulated in GAMS to select the operating conditions to minimize life cycle CO{sub 2} emissions. (author)

  9. Environmental remediation with products of fluidized bed combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    Commercialization of fluidized bed combustion (FBC) technology could be enhanced by increased utilization of FBC products (ash). In the US, coal combustion products (CCP) are not hazardous under RCRA and are regulated as residual waste by the states. The composition of CCP from fluidized beds is primarily determined by the inorganic constituents in coal, the sorbent reaction products and the unreacted sorbent. The combustion system and the inclusion of other fuels may also affect the chemical composition, physical properties and leaching behavior. The alkalinity of the FBC material, residual lime and pozzolanic properties are desirable characteristics for use in soil stabilization and mine reclamation. At reclaimed surface coal mines, placement of CCP is intended to reduce the amount of acid mine drainage (AMD) produced at such sites. Neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion are believed to be the mechanisms facilitated by the alkaline material. Comparison of water quality, before and after injection of a grout composed of FBC ash and water indicated small increases in pH and decreases in acidity at discharge points. The concentrations of calcium and magnesium in water samples generally increased compared to background levels. The average concentration of trace elements (arsenic, cobalt, copper, nickel and zinc) was slightly elevated in the injection areas, but in down dip and discharge water samples were comparable to background levels. Over a four year period, the average acidity in the injected area decreased by approximately 30%, a value similar to another site where a mixture of class F fly ash and cement was injected. Although coal mine remediation is a beneficial environmental use of FBC products, its effectiveness may be related to the amount of FBCB used and the method of emplacement

  10. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  11. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  12. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  13. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  14. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  15. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  16. Noise induced phenomena in combustion

    Science.gov (United States)

    Liu, Hongliang

    Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.

  17. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  18. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1982-09-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. To help assess the usefulness of aqueous foams in a mitigation plan, several open tube tests and over one hundred closed vessel tests of hydrogen/air combustion with and without foam have been conducted. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by two and one-half. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  19. Electrorheology Leads to Efficient Combustion

    Science.gov (United States)

    Tao, R.; Huang, K.; Tang, H.; Bell, D.

    2009-03-01

    Improving engine efficiency and reducing pollutant emissions are important. Since combustion starts at the interface between fuel and air and most harmful emissions come from incomplete burning, reducing the size of fuel droplets for the fuel injection would increase the total surface area to start burning, leading to a cleaner and more efficient engine. While most efforts are focused on ultra-dilute mixtures at extremely high pressure to produce much finer mist of fuel for combustion, the new technology is still under development and only for next generation vehicles. Here we report our fuel injection technology based on new physics principle that proper application of electrorheology can reduce the viscosity of petroleum fuels. A small device is thus introduced just before the fuel injection for the engine, producing a strong electric field to reduce the fuel viscosity, resulting in much smaller fuel droplets in atomization. Both lab tests and road tests confirm our theory and indicate that such a device improves fuel mileage significantly and reduces emission. The technology is expected to have broad applications, applicable to current internal combustion engines and future engines as well. Supported by STWA and RAND.

  20. [Residual neuromuscular blockade].

    Science.gov (United States)

    Fuchs-Buder, T; Schmartz, D

    2017-06-01

    Even small degrees of residual neuromuscular blockade, i. e. a train-of-four (TOF) ratio >0.6, may lead to clinically relevant consequences for the patient. Especially upper airway integrity and the ability to swallow may still be markedly impaired. Moreover, increasing evidence suggests that residual neuromuscular blockade may affect postoperative outcome of patients. The incidence of these small degrees of residual blockade is relatively high and may persist for more than 90 min after a single intubating dose of an intermediately acting neuromuscular blocking agent, such as rocuronium and atracurium. Both neuromuscular monitoring and pharmacological reversal are key elements for the prevention of postoperative residual blockade.

  1. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  2. Combustion characteristics of Athabasca froth treatment tailings in a simulated fluidilized bed

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, P.; Ghosh, M.; Speirs, B. C. [Imperial Oil Resources (Canada); Leon, M. A.; Rao, S.; Dutta, A.; Basu, P. [Greenfield Research Inc. (Canada)

    2011-07-01

    In surface-mined oil sands, a stream of water, asphaltenes, solids and residual bitumen/solvent, known as PFT tailings, is created during the bitumen production process. The aim of this study was to investigate the use of this PFT tailings stream as a fuel source for combustion in a fluidized bed for energy recovery. To do so, physical and fluidization characteristics of the fuel as well as combustion kinetics were assessed through laboratory analysis. In addition, the fuel's combustion characteristics were investigated through experiments in a quartz wool matrix tubular reactor and theoretical calculations at various moisture contents. Results showed that this fuel can be burned in a fluidized bed with a reactivity comparable to that of coal samples. This research found that PFT tailings could be used to generate energy during disposal but further work will have to be undertaken in a hot CFB combustor to confirm this.

  3. Residuation in orthomodular lattices

    Directory of Open Access Journals (Sweden)

    Chajda Ivan

    2017-04-01

    Full Text Available We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.

  4. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  5. Characterization of Hospital Residuals

    International Nuclear Information System (INIS)

    Blanco Meza, A.; Bonilla Jimenez, S.

    1997-01-01

    The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es

  6. Gasification characteristics of auto shredder residue

    International Nuclear Information System (INIS)

    Navee, S.; Ramzan, N.

    2011-01-01

    Given the large volume of used tyre waste generated each year it is imperative that suitable re-use and disposal techniques are developed for dealing with this problem; presently these include rethreading, reprocessing for use as safe playground and sports surfaces, use as noise reduction barriers and utilisation as a fuel source. This paper reports on pilot scale studies designed to investigate the suitability of automotive waste for energy recovery via gasification. The study was carried out into auto shredder residue, which is a mixture of three distinct waste streams: tyres, rubber/plastic and general automotive waste. The tests included proximate, ultimate and elemental analysis, TGA, as well as calorific value determinations. In addition, the waste was tested in a desktop gasifier, and analysis was carried out to determine the presence and type of combustible gases. It was concluded that tyre waste and rubber/plastic waste are quite suitable fuels for gasification. (author)

  7. Application of pilot technologies for energy utilization of agricultural residues in Northern Greece

    Directory of Open Access Journals (Sweden)

    Zabaniotou Anastasia A.

    2007-01-01

    Full Text Available The enormous potential of agro biomass can be exploited to produce sustainable bioenergy. Proper management and further exploitation of this potential could lead to economically profitable approximations and solutions for the agricultural industry and even energy production industry. Gasification in-situ with energy production or pyrolysis of the above mentioned residues, under a non-oxidizing atmosphere for alternative fuels production could be a solution to the environmental problems that land filling or conventional combustion could create. The present work focuses on combustion and pyrolysis of cotton gin residues in Greece, as an alternative way of energy production. The purpose of presentation of a case study of the two alternatives methods (combustion and gasification or pyrolysis, by using cotton ginning waste as biofuel, is to show the appropriateness of new bioenergy sources by coupling them with energy production technologies. These technologies can be applied in northern Greece as well as in other Balkan or Mediterranean countries. .

  8. Seven-year median time to progression with thalidomide for smoldering myeloma: partial response identifies subset requiring earlier salvage therapy for symptomatic disease

    Science.gov (United States)

    van Rhee, Frits; Shaughnessy, John D.; Epstein, Joshua; Yaccoby, Shmuel; Pineda-Roman, Mauricio; Hollmig, Klaus; Alsayed, Yazan; Hoering, Antje; Szymonifka, Jackie; Anaissie, Elias; Petty, Nathan; Kumar, Naveen S.; Srivastava, Geetika; Jenkins, Bonnie; Crowley, John; Zeldis, Jerome B.

    2008-01-01

    Smoldering multiple myeloma (SMM) is usually followed expectantly without therapy. We conducted a phase 2 trial in 76 eligible patients with SMM, combining thalidomide (THAL, 200 mg/d) with monthly pamidronate. In the first 2 years, THAL dose reduction was required in 86% and drug was discontinued in 50%. Within 4 years, 63% improved, including 25% qualifying for partial response (PR); by then, 34 patients had progressed and 17 required salvage therapy. Unexpectedly, attaining PR status was associated with a shorter time to salvage therapy for disease progression (P < .001), perhaps reflecting greater drug sensitivity of more aggressive disease. Low beta-2-microglobulin levels less than 2 mg/L were independently associated with superior overall and event-free survival. Four-year survival and event-free survival estimates of 91% and 60%, respectively, together with a median postsalvage therapy survival of more than 5 years justify the conduct of a prospective randomized clinical trial to determine the clinical value of preemptive therapy in SMM. Trial registered at http://www.clinicaltrials.gov under identifier NCT00083382. PMID:18669874

  9. Expression of the IL-6 receptor alpha-chain (CD126) in normal and abnormal plasma cells in monoclonal gammopathy of undetermined significance and smoldering myeloma.

    Science.gov (United States)

    Salem, Dalia Abdel-Raouf; Korde, Neha; Venzon, David J; Liewehr, David J; Maric, Irina; Calvo, Katherine R; Braylan, Raul; Tembhare, Prashant R; Yuan, Constance M; Landgren, Carl Ola; Stetler-Stevenson, Maryalice

    2018-01-01

    IL-6 activity in normal plasma cells (nPCs) and abnormal plasma cells (aPCs) is CD126 (subunit of IL-6 receptor) dependent. We quantified CD126 expression on nPCs and aPCs in monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma (SMM), and multiple myeloma (MM). CD126 was detected on all nPCs and aPCs indicating that CD126 does not have diagnostic utility. CD126 expression was higher in aPCs than in nPCs in 85% SMM but only 41% MGUS and there was evidence that CD126 was higher in aPCs than nPCs in the SMM (p = .048) but not MGUS (p = .96) patients. There is also a greater association between nPC and aPC CD126 expression in low risk MGUS than observed in high risk MGUS and SMM, suggesting normal regulation of CD126 decreases with disease progression. Future studies need to elucidate the role of bone marrow milieu versus escape from normal CD126 regulation in malignant transformation of clonal plasma cells.

  10. Quantification of circulating clonal plasma cells via multiparametric flow cytometry identifies patients with smoldering multiple myeloma at high risk of progression.

    Science.gov (United States)

    Gonsalves, W I; Rajkumar, S V; Dispenzieri, A; Dingli, D; Timm, M M; Morice, W G; Lacy, M Q; Buadi, F K; Go, R S; Leung, N; Kapoor, P; Hayman, S R; Lust, J A; Russell, S J; Zeldenrust, S R; Hwa, L; Kourelis, T V; Kyle, R A; Gertz, M A; Kumar, S K

    2017-01-01

    The presence of high numbers of circulating clonal plasma cells (cPCs) in patients with smoldering multiple myeloma (SMM), detected by a slide-based immunofluorescence assay, has been associated with a shorter time to progression (TTP) to MM. The significance of quantifying cPCs via multiparameter flow cytometry, a much more readily available diagnostic modality, in patients with SMM has not been evaluated. This study evaluated 100 patients with a known or new diagnosis of SMM who were seen at the Mayo Clinic, Rochester from January 2008 until December 2013. Patients with ⩾150 cPCs (N=9) were considered to have high number of cPCs based on the 97% specificity and 78% PPV of progression to MM within 2 years of cPC assessment. The median TTP of patients with ⩾150 cPCs was 9 months compared with not reached for patients with <150 cPCs (P<0.001). Thus, quantification of cPCs via multiparametric flow cytometry identifies patients with SMM at very high risk of progression to MM within 2 years and warrants confirmation in larger studies. In the future, this may allow reclassification of such patients as having MM requiring therapy prior to them enduring end-organ damage.

  11. Urinary Metabolite Profiling Offers Potential for Differentiation of Liver-Kidney Yin Deficiency and Dampness-Heat Internal Smoldering Syndromes in Posthepatitis B Cirrhosis Patients

    Directory of Open Access Journals (Sweden)

    Xiaoning Wang

    2015-01-01

    Full Text Available Zheng is the basic theory and essence of traditional Chinese medicine (TCM in diagnosing diseases. However, there are no biological evidences to support TCM Zheng differentiation. In this study we elucidated the biological alteration of cirrhosis with TCM “Liver-Kidney Yin Deficiency (YX” or “Dampness-Heat Internal Smoldering (SR” Zheng and the potential of urine metabonomics in TCM Zheng differentiation. Differential metabolites contributing to the intergroup variation between healthy controls and liver cirrhosis patients were investigated, respectively, and mainly participated in energy metabolism, gut microbiota metabolism, oxidative stress, and bile acid metabolism. Three metabolites, aconitate, citrate, and 2-pentendioate, altered significantly in YX Zheng only, representing the abnormal energy metabolism. Contrarily, hippurate and 4-pyridinecarboxylate altered significantly in SR Zheng only, representing the abnormalities of gut microbiota metabolism. Moreover, there were significant differences between two TCM Zhengs in three metabolites, glycoursodeoxycholate, cortolone-3-glucuronide, and L-aspartyl-4-phosphate, among all differential metabolites. Metabonomic profiling, as a powerful approach, provides support to the understanding of biological mechanisms of TCM Zheng stratification. The altered urinary metabolites constitute a panel of reliable biological evidence for TCM Zheng differentiation in patients with posthepatitis B cirrhosis and may be used for the potential biomarkers of TCM Zheng stratification.

  12. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management.

    Science.gov (United States)

    Kyle, R A; Durie, B G M; Rajkumar, S V; Landgren, O; Blade, J; Merlini, G; Kröger, N; Einsele, H; Vesole, D H; Dimopoulos, M; San Miguel, J; Avet-Loiseau, H; Hajek, R; Chen, W M; Anderson, K C; Ludwig, H; Sonneveld, P; Pavlovsky, S; Palumbo, A; Richardson, P G; Barlogie, B; Greipp, P; Vescio, R; Turesson, I; Westin, J; Boccadoro, M

    2010-06-01

    Monoclonal gammopathy of undetermined significance (MGUS) was identified in 3.2% of 21 463 residents of Olmsted County, Minnesota, 50 years of age or older. The risk of progression to multiple myeloma, Waldenstrom's macroglobulinemia, AL amyloidosis or a lymphoproliferative disorder is approximately 1% per year. Low-risk MGUS is characterized by having an M protein <15 g/l, IgG type and a normal free light chain (FLC) ratio. Patients should be followed with serum protein electrophoresis at six months and, if stable, can be followed every 2-3 years or when symptoms suggestive of a plasma cell malignancy arise. Patients with intermediate and high-risk MGUS should be followed in 6 months and then annually for life. The risk of smoldering (asymptomatic) multiple myeloma (SMM) progressing to multiple myeloma or a related disorder is 10% per year for the first 5 years, 3% per year for the next 5 years and 1-2% per year for the next 10 years. Testing should be done 2-3 months after the initial recognition of SMM. If the results are stable, the patient should be followed every 4-6 months for 1 year and, if stable, every 6-12 months.

  13. Co-sintering of treated APC-residues with bottom ash

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Bergfeldt, Britta; Vehlow, Jürgen

    2001-01-01

    Air pollution control residues stabilised by means of the Ferrox process can be sager disposed of due to lower contents of soluble salts and lesssoluble heavy metals stabilised in iron oxides. Co-combustion tests in the Karlsruhe test incinerator TAMARA were carried out in order to investigate...

  14. HIGH TEMPERATURE INTERACTIONS BETWEEN RESIDUAL OIL ASH AND DISPERSED KAOLINITE POWDERS

    Science.gov (United States)

    The potential use of sorbents to manage ultrafine ash aerosol emissions from residual oil combustion was investigated using a downfired 82-kW-rated laboratory-scale refractory-lined combustor. The major constituents were vanadium (V), iron (Fe), nickel, (Ni) and zinc (Zn). Of the...

  15. PM2.5 emissions and source profiles from open burning of crop residues

    NARCIS (Netherlands)

    Ni, Haiyan; Tian, Jie; Wang, Xiaoliang; Wang, Qiyuan; Han, Yongming; Cao, Junji; Long, Xin; Chen, L-W. Antony; Chow, Judith C.; Watson, John G.; Huang, Ru-Jin; Dusek, Ulrike

    2017-01-01

    Wheat straw, rice straw, and corn stalks, the major agricultural crop residues in China, were collected from six major crop producing regions, and burned in a laboratory combustion chamber to determine PM2.5 source profiles and speciated emission factors (EFs). Organic carbon (OC) and water-soluble

  16. Co-sintering of treated APC-residues with bottom ash

    DEFF Research Database (Denmark)

    Bergfeldt, B.; Jensen, Dorthe Lærke; Vehlow, J.

    2001-01-01

    Air pollution control residues stabilised by means of the Ferrox process can be sager disposed of due to lower contents of soluble salts and lesssoluble heavy metals stabilised in iron oxides. Co-combustion tests in the Karlsruhe test incinerator TAMARA were carried out in order to investigate th...

  17. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  18. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    Science.gov (United States)

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions

  19. Celda combustible polimérica

    OpenAIRE

    Esquivel Bojórquez, Juan Pablo; Sabaté Vizcarra, María Neus; Santander Vallejo, Joaquín; Torres Herrero, Nuria; Gràcia Tortadès, Isabel; Cané Ballart, Carles

    2010-01-01

    La presente invención se refiere a una celda combustible polimérica fabricada con la fotoresina SU-8, todos los componentes de la celda de combustible, colectores de corriente y MEA, están fabricados en base a este mismo material. Además la presente invención también se refiere a su procedimiento de obtención y a los usos de dicha celda combustible.

  20. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  1. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  2. The combustion of solid fuels and wastes

    CERN Document Server

    Tillman, David

    1991-01-01

    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  3. 14 CFR 25.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  4. 14 CFR 29.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  5. High Impact Technology Compact Combustion (HITCC) Compact Core Technologies

    Science.gov (United States)

    2016-01-01

    were combusted in a vitiated stream. The molecular weight and hydrogen -to-carbon ratios of these fuels were measured by Princeton University [17...AFRL-RQ-WP-TR-2016-0010 HIGH IMPACT TECHNOLOGY COMPACT COMBUSTION (HITCC) COMPACT CORE TECHNOLOGIES Andrew W. Caswell Combustion ...ANDREW W. CASWELL CHARLES J. CROSS, Branch Chief Program Engineer Combustion Branch Combustion Branch Turbine Engine Division Turbine

  6. 46 CFR 105.10-10 - Combustible liquid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Combustible liquid. 105.10-10 Section 105.10-10 Shipping... Combustible liquid. (a) The term combustible liquid means any liquid having a flashpoint above 80 °F. (as..., combustible liquids are referred to by grades, as follows: (1) Grade D. Any combustible liquid having a...

  7. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  8. Coal combustion: Effect of process conditions on char reactivity. Final technical report, September 1, 1991--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Zygourakis, K.

    1996-02-01

    Coal utilization involves two major stages: coal pyrolysis and char combustion. Figure 1.1 summarizes the steps of these processes. During the pyrolysis stage, heated particles from plastic coals soften, swell and release their volatiles before resolidifying again. During the combustion or gasification stage, char particles may ignite and fragment as the carbon is consumed leaving behind a solid ash residue. Process conditions such as pyrolysis heating rate, heat treatment temperature, pyrolysis atmosphere, and particle size are shown to chemically and physically affect the coal during pyrolysis and the resulting char. Consequently, these pyrolysis conditions as well as the combustion conditions such as the oxygen concentration and combustion temperature affect the char reactivity and ignition phenomena during the combustion stage. Better understanding of the fundamental mechanisms of coal pyrolysis and char combustion is needed to achieve greater and more efficient utilization of coal. Furthermore, this knowledge also contributes to the development of more accurate models that describe the transient processes involved in coal combustion. The project objectives were to investigate the effect of pyrolysis conditions on the macropore structure and subsequent reactivity of chars.

  9. Experimental investigations of extracted rapeseed combustion emissions in a small scale stationary fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Dinh Tung, N.; Steinbrecht, D. [Rostock University, Faculty of Mechanical Engineering and Marine Technology, Chair of Environmental Technology, Justus-von-Liebig-Weg 6, D - 18059 Rostock (Germany); Tung, N. D. [Hanoi University of Agriculture- Hanoi/Vietnam, Faculty of Mechanical Engineering, Trau Quy - Gia Lam - Hanoi (Viet Nam); Vincent, T. [Rostock University, Chair of Energy Systems, Justus-von-Liebig-Weg 6, D - 18059 Rostock (Germany)

    2009-07-01

    The objective of this study was to observe the combustion process of extracted rapeseed (ER) grist in a stationary fluidized bed combustor (SFBC) and evaluate the chemical compositions of the flue gas emissions. The experimental tests of ER combustion in the 90 to 200 kW SFB combustion test facility show that the optimal ER combustion temperature is within the range from 850 to 880 {sup o}C. Temperature and the concentration of exhausted emissions (e.g. O{sub 2}, CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, C{sub org}) were measured with dedicated sensors distributed within the combustor, along its height and in the flue gas duct. The experimental results showed that with respect to German emission limits the concentration of SO{sub 2} and NO{sub x} in the flue gas were high whereas that of CO was low. This study furthermore is applicable for the abundant biomass residue resources in Vietnam (rice husk, rice straw, bagasse, cassava residues, coconut shell etc.), which have similar chemical compositions to ER. (author)

  10. Experimental Investigations of Extracted Rapeseed Combustion Emissions in a Small Scale Stationary Fluidized Bed Combustor

    Directory of Open Access Journals (Sweden)

    Dieter Steinbrecht

    2009-02-01

    Full Text Available The objective of this study was to observe the combustion process of extracted rapeseed (ER grist in a stationary fluidized bed combustor (SFBC and evaluate the chemical compositions of the flue gas emissions. The experimental tests of ER combustion in the 90 to 200 kW (Kilowatt SFB combustion test facility show that the optimal ER combustion temperature is within the range from 850 to 880° C. Temperature and the concentration of exhausted emissions (e.g. O2, CO, CO2, NO, NO2, SO2, Corg were measured with dedicated sensors distributed within the combustor, along its height and in the flue gas duct. The experimental results showed that with respect to German emission limits the concentration of SO2 and NOx in the flue gas were high whereas that of CO was low. This study furthermore is applicable for the abundant biomass residue resources in Vietnam (rice husk, rice straw, bagasse, cassava residues, coconut shell etc., which have similar chemical compositions to ER.

  11. Improving post-detonation energetics residues estimations for the Life Cycle Environmental Assessment process for munitions.

    Science.gov (United States)

    Walsh, Michael; Gullett, Brian; Walsh, Marianne; Bigl, Matthew; Aurell, Johanna

    2018-03-01

    The Life Cycle Environmental Assessment (LCEA) process for military munitions tracks possible environmental impacts incurred during all phases of the life of a munition. The greatest energetics-based emphasis in the current LCEA process is on manufacturing. A review of recent LCEAs indicates that energetics deposition on ranges from detonations and disposal during training is only peripherally examined through assessment of combustion products derived from closed-chamber testing or models. These assessments rarely report any measurable energetic residues. Field-testing of munitions for energetics residues deposition has demonstrated that over 30% of some energetic compounds remain after detonation, which conflicts with the LCEA findings. A study was conducted in the open environment to determine levels of energetics residue deposition and if combustion product results can be correlated with empirical deposition results. Energetics residues deposition, post-detonation combustion products, and fine aerosolized energetics particles following open-air detonation of blocks of Composition C4 (510 g RDX/block) were quantified. The deposited residues amounted to 3.6 mg of energetic per block of C4, or less than 0.001% of the original energetics. Aerial emissions of energetics were about 7% of the amount of deposited energetics. This research indicates that aerial combustion products analysis can provide a valuable supplement to energetics deposition data in the LCEA process but is insufficient alone to account for total residual energetics. This study demonstrates a need for the environmental testing of munitions to quantify energetics residues from live-fire training. Published by Elsevier Ltd.

  12. Conclusive experimental study of prevention measures against sodium combustion residuum reignition. Run-F9-1, Run-F9-2

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyasu; Ohno, Shuji; Miyahara, Shinya

    2004-04-01

    Nitrogen gas can be an extinguisher or a mitigating material in the case of sodium leak and fire accident in an air atmosphere, which may occur at a liquid metal cooled nuclear power plant. However, sodium combustion residuum sometimes reignites in the air atmosphere even at room temperature when it was produced by nitrogen gas injection to the burning sodium. Then, in this study we executed conclusive experiments of prevention measures against sodium combustion residuum reignition by a mixture of carbon-dioxide (CO 2 ) gas, humidity and nitrogen gas. The experiments were carried out with the FRAT-1 test equipment; the humidity conditions were changed in air which were used to sodium combustion atmosphere and exposure air for confirmation of prevented combustion residue reignition. First of all, the sodium of about 2.5 kg was leaked in air atmosphere, and next, the sodium combustion was stopped by nitrogen gas injection. Next, the combustion residuum was cooled in the nitrogen atmosphere, and then the combustion residuum was exposed to atmosphere of carbon-dioxide (4%); humidity (6000vppm); oxygen (3%)-nitrogen (based gas) mixture. It was confirmed that the combustion residuum was not reignition even if exposed to the air atmosphere again at the end of experiment. We had confirmed that the prevention measures against sodium combustion residuum reignition to establish by this research were effective. (author)

  13. Study on the valorization routes of ashes from thermoelectric power plants working under mono-and co-combustion regimes

    Science.gov (United States)

    Barbosa, Rui Pedro Fernandes

    The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for

  14. Experimental analysis of the influence of air-flow rate on wheat straw combustion in a fixed bed

    Directory of Open Access Journals (Sweden)

    Čepić Zoran M.

    2017-01-01

    Full Text Available Biomass in the form of crop residues represents a significant energy source in regions whose development is based on agricultural production. Among many possibilities of utilizing biomass for energy generation, combustion is the most common. With the aim of improving and optimizing the combustion process of crop residues, an experimental rig for straw combustion in a fixed bed was constructed. This paper gives a brief review of working characteristics of the experimental rig, as well as the results for three different measuring regimes, with the purpose to investigate the effect of air-flow rate on the wheat straw combustion in a fixed bed. For all three regimes analysed in this paper bulk density of the bed was the same, 60 kg/m3, combustion air was without preheating and air-flow rates were: 1152, 1872, and 2124 kg/m2h. The effect of air-flow rate on the ignition rate, burning rate, temperature profile of the bed and flue gas composition were analysed. It was concluded that in the regime with the lowest air-flow rate progress of combustion had two clearly conspicuous stages: the ignition propagation stage and the char and unburned material oxidation stage. At the highest air-flow rate the entire combustion occurred mostly in a single stage, due to increased air supply oxidized the char, remaining above the ignition front, simultaneously with the reactions of volatiles. Despite that, the optimal combustion process, the highest value of ignition rate, burning rate, and bed temperature was achieved with air-flow rate of 1872 kg/m2h.

  15. Engine Valve Actuation For Combustion Enhancement

    Science.gov (United States)

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  16. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  17. Effects of Coal Combustion Additives on the Forms and Recovery of Uranium in Coal Bottom Ash

    Science.gov (United States)

    Tang, Ye; Li, Yilian

    2017-04-01

    Recovering uranium from uranium-rich coal ash is an important way to utilize unconventional uranium resource. Although it might be expected that the uranium in residual form would prevent uranium recovery from coal ash, raising the recovery rate in way of controlling residual uranium has not yet been studied. In this study, three different kinds of combustion promoting additives were investigated by coal combustion experiments, in order to decrease the proportion of residual-form uranium in ash and increase the acid leaching rate. Analytical procedures included Tessier sequential extraction, acidleaching, and characterization(ICP-MS, XRF, BET and SEM-EDS). It was showed that the effects of additives in reducing residual uranium were as the following order: alkaline earth metal compounds > transition metal compounds> alkali metal compounds. Adding alkali metal additives(KCl, NaCl, K2CO3, Na2CO3) raised the percentage of residual uranium largely. Additionally, one transition metal additive(Fe2O3) reached a decreasing amplitude of 5.15%, while the other two additives(MnO2 and Fe3O4)made the rates increased. However, coal combustion with alkaline earth metal compounds mixed had target effects. Among this kind of additives(Ca(OH)2, CaCO3, CaO, CaCl2), CaCO3displayed the best effect on restricting the rising proportion of residual uranium by 18%. Moreover, the leaching recovery research indicated that CaCO3 could raise the recovery rate by 10.8%. The XRF profiles supported that the CaCO3 could lower the concentration of SiO2 in the bottom ash from 79.76% to 49.69%. Besides, The BET and SEM revealed that the decomposition of CaCO3 brought about a variation of surface structures and area, which promoted the contact between the leaching agent and bottom ash. The uranium content increase was determined by ICP-MS and EDS. These findings suggest that CaCO3 could be a favorable additive for the controlling of residual uranium and improvement of uranium recovery rates. Key words

  18. Three-dimensional combustion modelling of a biomass fired pulverized fuel boiler

    OpenAIRE

    Stastny, M.;Ahnert, F.;Spliethoff, H.

    2017-01-01

    A Computational fluid dynamic (CFD) model was applied for a 200 MW pulverised fuel boiler. Peat, demolition wood and wood residuals were used as fuel. The computer code FLUENT was used for the modelling of the combustion process inside the boiler. The RNG k-epsilon turbulence model together with wall functions was adapted for characterization of the flue gas behaviour. Reaction between fuel and oxidizer was modelled using the mixture-fraction/PDF approach. The CFD calculations were compared w...

  19. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  20. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  1. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...... for power production, such as sun, wind or nuclear power. However, presently and in the near future the most important technology to reduce SO2 emissions from power production is flue gas desulphurization (FGD). There are several methods of FGD, but the majority of the plants are wet scrubbers...

  2. COMBUSTION PROPERTIES OF EUCALYPTUS WOOD

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available In this study, the combustion properties of some impregnation materials (abiotic and biotic factors used for eucalyptus wood in interior or exterior environments were investigated. The experimental samples were prepared from Eucalyptus wood based on ASTM-D-1413-76 Tanalith-CBC, boric acid, borax, vacsol-WR, immersol-WR, polyethylen glycole-400 and ammonium sulphate were used as an impregnation material. The results indicated that, vacuum treatment on Eucalyptus gave the lowest retention value of salts. Compounds containing boron+salt increased fire resistance however water repellents decreased the wood flammability.

  3. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  4. Modeling nitrogen chemistry in combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    Understanding of the chemical processes that govern formation and destruction of nitrogen oxides (NOx) in combustion processes continues to be a challenge. Even though this area has been the subject of extensive research over the last four decades, there are still unresolved issues that may limit...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  5. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils.

    Science.gov (United States)

    Ren, Xueyong; Meng, Jiajia; Moore, Andrew M; Chang, Jianmin; Gou, Jinsheng; Park, Sunkyu

    2014-01-01

    The degradation properties and combustion performance of raw bio-oil, aged bio-oil, and bio-oil from torrefied wood were investigated through thermogravimetric analysis. A three-stage process was observed for the degradation of bio-oils, including devolatilization of the aqueous fraction and light compounds, transition of the heavy faction to solid, and combustion of carbonaceous residues. Pyrolysis kinetics parameters were calculated via the reaction order model and 3D-diffusion model, and combustion indexes were used to qualitatively evaluate the thermal profiles of tested bio-oils for comparison with commercial oils such as fuel oils. It was found that aged bio-oil was more thermally instable and produced more combustion-detrimental carbonaceous solid. Raw bio-oil and bio-oil from torrefied wood had comparable combustion performance to fuel oils. It was considered that bio-oil has a potential to be mixed with or totally replace the fuel oils in boilers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Experimental study of the kinetics of dry, forward combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.W.; Buthod, A.P.; Allag, O.

    1979-02-01

    Results are presented of an experimental investigation of dry, forward combustion with two main objectives, viz, (1) to develop a method for determining the kinetic perameters of fuel laydown and burnoff from combustion tube data, and (2) to evaluate them for a particular crude-sand mixture. In the light of past experimental work, a two-step chain reaction model is postulated in which fuel laydown and burnoff are considered as competitive kinetic reactions. Laboratory equipment consisting of a combustion tube assembly and sampling probe, a flow control system, an electronic control assembly, and a fluid analysis system are described in detail. The sampling probe provides a novel method for taking fluid samples at selected interior points within the combustion cell. Six experimental runs were performed using a 27/sup 0/ API Prudhoe Bay crude. Analyses of the data indicte that, in addition to the coke residue, some light ends of the crude enter into the total fuel consumed by the burning zone. The use of the moveable sampling probe permitted the reconstruction of CO + CO/sub 2/ production rate curves as functions of time and distance. A technique is presented for solving the integral equation and estimating the activation energies, pre-exponential factors, and some associated constants for fuel deposition and combustion. It was found that operating pressure has essentially no effect on the exponential energy, but it does affect the preexponential (or frequency) factor. It is concluded that the essential phenomena of forward combustion can be adequately depicted by the two-step chain reaction concept, and that kinetic data,or their bounds, can be determined from combustion tube data.

  7. Combustion

    National Research Council Canada - National Science Library

    Glassman, Irvin

    1996-01-01

    ... permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK. Phone (44) 1865 843830, Fax: (44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage: http://www.elsevier.com by selecting "...

  8. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A.N.; Webster, G.A. [Imperial College, London (United Kingdom); Webster, P.J. [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  9. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  10. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  11. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  12. Cars diagnostics for combustion and plasma processes

    International Nuclear Information System (INIS)

    Eckbreth, A.C.; Stufflebeam, J.H.

    1988-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is an analysis approach for nonintrusive temperature and species measurements in hostile environments. Widely utilized in combustion, it may be able to significantly impact materials processing research. CARS is described. Its applications to combustion and plasma process environments are reviewed and contrasted

  13. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been ...

  14. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  15. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  16. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  17. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  18. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  19. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  20. A model for premixed combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M.C.; Richards, G.A.

    1996-09-01

    This paper describes a simulation based on a time dependent, nonlinear control volume analysis. The combustion is modeled as a well-stirred reactor having finite kinetics. Flow properties and species in the nozzle, combustion, and tailpipe regions are determined using a control volume formulation of the conservation equation.

  1. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  2. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  3. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-27

    This report compared the composition of samples from Wesseling and Leuna. In each case the sample was a residue from carbonization of the residues from hydrogenation of the brown coal processed at the plant. The composition was given in terms of volatile components, fixed carbon, ash, water, carbon, hydrogen, oxygen, nitrogen, volatile sulfur, and total sulfur. The result of carbonization was given in terms of (ash and) coke, tar, water, gas and losses, and bitumen. The composition of the ash was given in terms of silicon dioxide, ferric oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium and sodium oxides, sulfur trioxide, phosphorus pentoxide, chlorine, and titanium oxide. The most important difference between the properties of the two samples was that the residue from Wesseling only contained 4% oil, whereas that from Leuna had about 26% oil. Taking into account the total amount of residue processed yearly, the report noted that better carbonization at Leuna could save 20,000 metric tons/year of oil. Some other comparisons of data included about 33% volatiles at Leuna vs. about 22% at Wesseling, about 5 1/2% sulfur at Leuna vs. about 6 1/2% at Leuna, but about 57% ash for both. Composition of the ash differed quite a bit between the two. 1 table.

  4. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  5. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  6. 2003 Laser Diagnostic in Combustion Conference

    Energy Technology Data Exchange (ETDEWEB)

    Mark G. Allen

    2004-09-10

    The GRC Laser Diagnostics in Combustion aims at bringing together scientists and engineers working in the front edge of research and development to discuss and find new ways to solve problems connected to combustion diagnostics. Laser-based techniques have proven to be very efficient tools for studying combustion processes thanks to features as non-intrusiveness in combination with high spatial and temporal resolution. Major tasks for the community are to develop and apply techniques for quantitative measurements with high precision e.g of species concentrations, temperatures, velocities and particles characteristics (size and concentration). These issues are of global interest, considering that the major part of the World's energy conversion comes from combustion sources and the influence combustion processes have on the environment and society.

  7. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  8. Developments in the technology for the combustion of water emulsions in Mexican fuel oil; Desarrollos en la tecnologia para la combustion de emulsiones agua en combustoleo mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Diego, Antonio Marin; Martinez Flores, Marco A.; Tamayo Flores, Gustavo; Alarcon Quiroz, Ernesto; Melendez Cervantes, Carlos [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    The residual petroleum oil (fuel oil) is the most used fuel in boilers of electrical and industrial power stations. Nevertheless, the use of this fuel can generate diverse problems such as the elevated particle emissions, that affect the boiler efficiency, darken the visibility by the smoke that leaves the chimneys and is emitted to the Environment. In addition, sulfur trioxide is produced, which reacts with the water present in the combustion gases, forming sulfuric acid that, when emitted, also affects the visibility of the plume and can be condensed, originating corrosion and increased accumulation of deposits in the boilers. The experimental research was made in a comparative base, between combustion tests of fuel oil, with emulsions where the water concentration and the size of the drops of this one was varied. A diagram of the supply of fuel and preparation of emulsions in a pilot furnace is shown. The article contains graphs of the effect of the water concentration of the emulsions in the particulate emission. The article contains figures of the cenospheres produced by the fuel oil combustion (500 x) and the ones produced by the combustion with 5% of water (500 x). Also shows graphs of the effect of the water drop size of emulsions in the particulate emission, of the reduction of the sulfur trioxide with soluble magnesium products in the water of emulsions, and of the free particle acidity with neutralizers of water emulsions of soluble magnesium. [Spanish] El aceite residual de petroleo (combustoleo) es el combustible mas utilizado en calderas de centrales electricas e industriales. Sin embargo, el uso de este combustible puede generar diverso problemas como las emisiones elevadas de particulas, que afectan la eficiencia de una caldera, obscurecen la visibilidad pero el humo que sale de las chimeneas y se emiten al medio ambiente. Ademas se produce trioxido de azufre, el cual reacciona con el vapor de agua presente en los gases de combustion, formado acido

  9. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization; Bilanz natuerlicher Radionuklide in der Braunkohleverstromung und Unbedenklichkeit bei der Verwendung von Rueckstaenden und Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger [IAF-Radiooekologie GmbH, Radeberg (Germany)

    2017-04-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  10. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Gulyurtlu, Ibrahim; Abelha, Pedro; Teixeira, P.; Crujeira, Teresa; Boavida, Dulce; Marques, F.; Cabrita, Isabel [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The growing demand for energy and the requirements regarding CO{sub 2} emissions to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained.

  11. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    M. Helena Lopes; I. Gulyurtlu; P. Abelha; P. Teixeira; T. Crujeira; D. Boavida; F. Marques; I. Cabrita [INETI, Lisbon (Portugal)

    2006-07-01

    The growing demand for energy and the requirement regarding CO{sub 2} emissions, to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained. 19 refs., 5 figs., 7 tabs.

  12. Distributed combustion in a cyclonic burner

    Science.gov (United States)

    Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele

    2017-11-01

    Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion

  13. 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease.

    Science.gov (United States)

    Zamagni, E; Nanni, C; Gay, F; Pezzi, A; Patriarca, F; Bellò, M; Rambaldi, I; Tacchetti, P; Hillengass, J; Gamberi, B; Pantani, L; Magarotto, V; Versari, A; Offidani, M; Zannetti, B; Carobolante, F; Balma, M; Musto, P; Rensi, M; Mancuso, K; Dimitrakopoulou-Strauss, A; Chauviè, S; Rocchi, S; Fard, N; Marzocchi, G; Storto, G; Ghedini, P; Palumbo, A; Fanti, S; Cavo, M

    2016-02-01

    Identification of patient sub-groups with smoldering multiple myeloma (SMM) at high risk of progression to active disease (MM) is an important goal. 18F-FDG PET/CT (positron emission tomography (PET) integrated with computed tomography (PET/CT) using glucose labelled with the positron-emitting radionuclide (18)F) allows for assessing early skeletal involvement. Identification of osteolytic lesions by this technique has recently been incorporated into the updated International Myeloma Working Group criteria for MM diagnosis. However, no data are available regarding the impact of focal lesions (FLs) without underlying osteolysis on time to progression (TTP) to MM. We hence prospectively studied a cohort of 120 SMM patients with PET/CT. PET/CT was positive in 16% of patients (1 FL: 8, 2 FLs: 3, >3 FLs: 6, diffuse bone marrow involvement: 2). With a median follow-up of 2.2 years, 38% of patients progressed to MM, in a median time of 4 years, including 21% with skeletal involvement. The risk of progression of those with positive PET/CT was 3.00 (95% confidence interval 1.58-5.69, P=0.001), with a median TTP of 1.1 versus 4.5 years for PET/CT-negative patients. The probability of progression within 2 years was 58% for positive versus 33% for negative patients. In conclusion, PET/CT positivity significantly increased the risk of progression of SMM to MM. PET/CT could become a new tool to define high-risk SMM.

  14. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients.

    Science.gov (United States)

    Bae, J; Prabhala, R; Voskertchian, A; Brown, A; Maguire, C; Richardson, P; Dranoff, G; Anderson, K C; Munshi, N C

    2015-01-01

    We evaluated a cocktail of HLA-A2-specific peptides including heteroclitic XBP1 US184-192 (YISPWILAV), heteroclitic XBP1 SP367-375 (YLFPQLISV), native CD138260-268 (GLVGLIFAV) and native CS1239-247 (SLFVLGLFL), for their ability to elicit multipeptide-specific cytotoxic T lymphocytes (MP-CTLs) using T cells from smoldering multiple myeloma (SMM) patients. Our results demonstrate that MP-CTLs generated from SMM patients' T cells show effective anti-MM responses including CD137 (4-1BB) upregulation, CTL proliferation, interferon-γ production and degranulation (CD107a) in an HLA-A2-restricted and peptide-specific manner. Phenotypically, we observed increased total CD3(+)CD8(+) T cells (>80%) and cellular activation (CD69(+)) within the memory SMM MP-CTL (CD45RO(+)/CD3(+)CD8(+)) subset after repeated multipeptide stimulation. Importantly, SMM patients could be categorized into distinct groups by their level of MP-CTL expansion and antitumor activity. In high responders, the effector memory (CCR7(-)CD45RO(+)/CD3(+)CD8(+)) T-cell subset was enriched, whereas the remaining responders' CTL contained a higher frequency of the terminal effector (CCR7(-)CD45RO(-)/CD3(+)CD8(+)) subset. These results suggest that this multipeptide cocktail has the potential to induce effective and durable memory MP-CTL in SMM patients. Therefore, our findings provide the rationale for clinical evaluation of a therapeutic vaccine to prevent or delay progression of SMM to active disease.

  15. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells.

    Science.gov (United States)

    López-Corral, Lucía; Gutiérrez, Norma C; Vidriales, Maria Belén; Mateos, Maria Victoria; Rasillo, Ana; García-Sanz, Ramón; Paiva, Bruno; San Miguel, Jesús F

    2011-04-01

    Genetic aberrations detected in multiple myeloma (MM) have also been reported in the premalignant conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Our aim was to investigate in depth the level of clonal heterogeneity of recurrent genetic abnormalities in these conditions. Immunoglobulin heavy chain (IGH) translocations, 13q14 and 17p13 deletions, and 1q21 gains using FISH were evaluated in 90 MGUS, 102 high-risk SMM, and 373 MM. To this end, we not only purified plasma cells (PC) for the FISH analysis (purity > 90%), but subsequently, we examined the correlation between the proportion of PC with cytogenetic changes and the number of clonal PC present in the same sample, as measured by multiparametric flow cytometry. We observed a significant difference between the proportion of clonal PC with specific genetic abnormalities in MGUS compared with SMM and in SMM compared with MM. Thus, the median proportion of PC with IGH translocations globally considered, t(11;14) and 13q deletions was significantly lower in MGUS than in SMM, and in SMM than in MM [IGH translocations: 34% vs. 57% vs. 76%; t(11;14): 38% vs. 61% vs. 81%; and 13q deletion: 37% vs. 61% vs. 74% in MGUS, SMM, and MM, respectively]. For t(4;14), the difference was significant in the comparison between MGUS/SMM and MM and for 1q between MGUS and SMM/MM. This study demonstrates that the progression from MGUS to SMM, and eventually to MM, involves a clonal expansion of genetically abnormal PC.

  16. Evaluation of the QTc prolongation potential of a monoclonal antibody, siltuximab, in patients with monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, or low-volume multiple myeloma.

    Science.gov (United States)

    Thomas, Sheeba K; Suvorov, Alexander; Noens, Lucien; Rukavitsin, Oleg; Fay, Joseph; Wu, Ka Lung; Zimmerman, Todd M; van de Velde, Helgi; Bandekar, Rajesh; Puchalski, Thomas A; Qi, Ming; Uhlar, Clarissa; Samoylova, Olga S

    2014-01-01

    A phase 1 study evaluated the QTc prolongation potential of siltuximab, a chimeric, anti-interleukin-6 mAb, in patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or low-volume MM. Patients with baseline QTcF and QTcB ≤ 500 ms, QRS < 100 ms, PR < 200 ms and no significant cardiac disease received siltuximab 15 mg/kg q3w, the highest dosage used in clinical studies, for 4 cycles. Twelve-lead ECGs obtained at multiple time points pre- and post-infusion at cycles 1 and 4 were evaluated by central cardiology laboratory. No effect on QTc interval was concluded if the upper limit of least square (LS) mean 90 % CI for QTc change from baseline at each time point was <20 ms. An effect on QTc prolongation was ruled out, as the upper bound of 90 % CI was <10 ms at each time point in 27 evaluable patients (13 MGUS, 13 SMM, 1 low-volume MM) with no differences between disease types. Maximum mean QTc increase from baseline occurred 3 h after cycle 1 infusion (QTcF = 3.2 [LS mean 90 % CI -0.01, 6.45] ms; QTcB = 2.7 [-0.69, 6.14] ms). At all other time points, mean QTcF and QTcB increase from baseline was ≤1.5 ms and upper bound 90 % CI was ≤5.1 ms. Twenty patients had mostly low-grade AEs, including nausea, fatigue (20 % each); thrombocytopenia, headache (each 13 %); dyspnea, leukopenia, neutropenia, paresthesia, abnormal hepatic function, URTI (each 10 %). Three MGUS patients achieved 50 % M-protein reduction. There was no association between siltuximab pharmacokinetics and QTc interval. Siltuximab did not affect the QTc interval. Overall safety was similar to other single-agent siltuximab studies.

  17. Quantification of Number of CD38 Sites on Bone Marrow Plasma Cells in Patients with Light Chain Amyloidosis and Smoldering Multiple Myeloma.

    Science.gov (United States)

    Kriegsmann, Katharina; Dittrich, Tobias; Neuber, Brigitte; Awwad, Mohamed H S; Hegenbart, Ute; Goldschmidt, Hartmut; Hillengass, Jens; Hose, Dirk; Seckinger, Anja; Müller-Tidow, Carsten; Ho, Anthony D; Schönland, Stefan; Hundemer, Michael

    2018-03-25

    Recent approaches in multiple myeloma (MM) treatment have targeted CD38. As antigen expression levels on plasma cells (PCs) were demonstrated to affect response to monoclonal antibody (mAb) treatment, a precise characterization of PC phenotype is warranted. Anti-CD38 mAb (isatuximab) was tested for antibody-dependent cellular cytotoxicity (ADCC) in MM cell lines. Quantification of the number of sites (NOS) of CD38 on bone marrow PCs and other immune cells obtained from light chain (AL) amyloidosis (n=46) and smoldering multiple myeloma (SMM) patients (n=19) was performed with two different quantitative flow cytometry (QFCM) applications. ADCC activity of isatuximab was observed in cell lines with >100 x10 3 CD38-NOS only. The average PC CD38-NOS was 153 ±53 x10 3 in AL amyloidosis and 138.7 ±53 x10 3 in SMM patients. Eight (17%) AL amyloidosis and 4 (21%) SMM patients showed a PC CD38-NOS level <100 x10 3 . In 4 AL amyloidosis and 2 SMM patients <10% of PCs had a CD38-NOS ≥100 x10 3 . The CD38-NOS identified on bone marrow lymphocytes, monocytes and granulocytes was 2 log units below the CD38-NOS on PCs (P<0.001). No significant differences in CD38-NOS expression levels on any of the analyzed PC subpopulations in AL amyloidosis and SMM patients were identified. Levels of CD38 expression affect the isatuximab-mediated ADCC in vitro. As PCs of patients with AL amyloidosis and SMM do not homogenously express high CD38 our data provide a rationale for assessment of CD38-NOS in patients with PC disorders prior to anti-CD38 treatment. This article is protected by copyright. All rights reserved. © 2018 International Clinical Cytometry Society.

  18. Immune status of high-risk smoldering multiple myeloma patients and its therapeutic modulation under LenDex: a longitudinal analysis.

    Science.gov (United States)

    Paiva, Bruno; Mateos, María Victoria; Sanchez-Abarca, Luis Ignacio; Puig, Noemi; Vidriales, María-Belén; López-Corral, Lucía; Corchete, Luis A; Hernandez, Miguel T; Bargay, Joan; de Arriba, Felipe; de la Rubia, Javier; Teruel, Ana-Isabel; Giraldo, Pilar; Rosiñol, Laura; Prosper, Felipe; Oriol, Albert; Hernández, José; Esteves, Graça; Lahuerta, Juan José; Bladé, Joan; Perez-Simon, Jose Antonio; San Miguel, Jesús F

    2016-03-03

    There is significant interest in immunotherapy for the treatment of high-risk smoldering multiple myeloma (SMM), but no available data on the immune status of this particular disease stage. Such information is important to understand the interplay between immunosurveillance and disease transformation, but also to define whether patients with high-risk SMM might benefit from immunotherapy. Here, we have characterized T lymphocytes (including CD4, CD8, T-cell receptor γδ, and regulatory T cells), natural killer (NK) cells, and dendritic cells from 31 high-risk SMM patients included in the treatment arm of the QUIREDEX trial, and with longitudinal peripheral blood samples at baseline and after 3 and 9 cycles of lenalidomide plus low-dose dexamethasone (LenDex). High-risk SMM patients showed at baseline decreased expression of activation-(CD25/CD28/CD54), type 1 T helper-(CD195/interferon-γ/tumor necrosis factor-α/interleukin-2), and proliferation-related markers (CD119/CD120b) as compared with age-matched healthy individuals. However, LenDex was able to restore the normal expression levels for those markers and induced a marked shift in T-lymphocyte and NK-cell phenotype. Accordingly, high-risk SMM patients treated with LenDex showed higher numbers of functionally active T lymphocytes. Together, our results indicate that high-risk SMM patients have an impaired immune system that could be reactivated by the immunomodulatory effects of lenalidomide, even when combined with low-dose dexamethasone, and support the value of therapeutic immunomodulation to delay the progression to multiple myeloma. The QUIREDEX trial was registered to www.clinicaltrials.gov as #NCT00480363. © 2016 by The American Society of Hematology.

  19. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: a review of the current understanding of epidemiology, biology, risk stratification, and management of myeloma precursor disease.

    Science.gov (United States)

    Agarwal, Amit; Ghobrial, Irene M

    2013-03-01

    The term monoclonal gammopathy of undetermined significance (MGUS) was coined in 1978. The recent advances in our knowledge about MGUS and smoldering multiple myeloma (SMM) have helped us better understand the pathogenesis of myeloma. It seems that myeloma evolves from a precursor state in almost all cases. We do not completely understand the multistep process from the precursor state to myeloma, but studies like whole genome sequencing continue to improve our understanding of this process. The process of transformation may not be linear acquisition of changes, but rather a branched heterogeneous process. Clinical features that are prognostic of rapid transformation have been identified, but no specific molecular markers have been identified. Even with recent advances, multiple myeloma remains an incurable disease in the vast majority, and intervening at the precursor state provides a unique opportunity to alter the natural history of the disease. A limitation is that a vast majority of patients with precursor disease, especially low-risk MGUS, will never progress to myeloma in their lifetime, and treating these patients is not only unnecessary but may be potentially harmful. The challenge is to identify a subset of patients with the precursor state that would definitely progress to myeloma and in whom interventions will have a meaningful impact. As our understanding of the molecular and genetic processes improves, these studies will guide the selection of high-risk patients more appropriately and ultimately direct a tailored management strategy to either delay progression to symptomatic myeloma or even "cure" a person at this premalignant stage. ©2012 AACR.

  20. Prognostic Impact of Serum Heavy/Light Chain Pairs in Patients With Monoclonal Gammopathy of Undetermined Significance and Smoldering Myeloma: Long-Term Results From a Single Institution.

    Science.gov (United States)

    Magnano, Laura; Fernández de Larrea, Carlos; Elena, Montserrat; Cibeira, María Teresa; Tovar, Natalia; Aróstegui, Juan I; Pedrosa, Fabiola; Rosiñol, Laura; Filella, Xavier; Yagüe, Jordi; Bladé, Joan

    2016-06-01

    Asymptomatic monoclonal gammopathies, such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM), are clinical conditions that usually precede symptomatic multiple myeloma. Therefore, risk stratification is crucial owing to the heterogeneous progression rate among these patients. In previous years, suppression of the uninvolved chain of specific heavy/light chain (HLC) pairs in serum has been identified as a new risk factor in MGUS. The aim of the present study was to investigate the prognostic effect of involved and uninvolved HLC pairs and HLC ratios on progression in a series of patients with MGUS and SMM. All specific serum HLC pairs were measured in 114 patients diagnosed with SMM (n = 27) and MGUS (n = 87) from 1983 to 2003. Also, the HLC ratios were calculated. Progression to symptomatic multiple myeloma was observed in 13 patients (8 with SMM and 5 with MGUS). The risk of progression was 6 times greater in those with SMM (P = .001) and 4 times greater for those with the IgA isotype (P = .01). The suppression of any IgM isotypes (IgMκ or IgMλ) in patients with IgA or IgG gammopathy or any IgA isotypes (IgAκ or IgAλ) in patients with IgG or IgM gammopathy was associated with a shorter time to progression to symptomatic gammopathy (P = .001 and P = .03, respectively). On multivariate analysis, the evolving pattern and suppression of any IgM HLC pair remained significant. HLC ratios could be a valuable tool in the risk stratification of patients with SMM and MGUS, especially patients with IgG isotypes. Copyright © 2016 Elsevier Inc. All rights reserved.