WorldWideScience

Sample records for residual protein contamination

  1. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units.

    Science.gov (United States)

    Smith, Gordon Wg; Goldie, Frank; Long, Steven; Lappin, David F; Ramage, Gordon; Smith, Andrew J

    2011-01-10

    The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Residual protein was detected on 72% (n = 136) of instruments reprocessed centrally and 90% (n = 170) of instruments reprocessed locally. Significantly less protein (p podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency.

  2. Quantitative analysis of residual protein contamination of podiatry instruments reprocessed through local and central decontamination units

    Directory of Open Access Journals (Sweden)

    Ramage Gordon

    2011-01-01

    Full Text Available Abstract Background The cleaning stage of the instrument decontamination process has come under increased scrutiny due to the increasing complexity of surgical instruments and the adverse affects of residual protein contamination on surgical instruments. Instruments used in the podiatry field have a complex surface topography and are exposed to a wide range of biological contamination. Currently, podiatry instruments are reprocessed locally within surgeries while national strategies are favouring a move toward reprocessing in central facilities. The aim of this study was to determine the efficacy of local and central reprocessing on podiatry instruments by measuring residual protein contamination of instruments reprocessed by both methods. Methods The residual protein of 189 instruments reprocessed centrally and 189 instruments reprocessed locally was determined using a fluorescent assay based on the reaction of proteins with o-phthaldialdehyde/sodium 2-mercaptoethanesulfonate. Results Residual protein was detected on 72% (n = 136 of instruments reprocessed centrally and 90% (n = 170 of instruments reprocessed locally. Significantly less protein (p Conclusions Overall, the results show the superiority of central reprocessing for complex podiatry instruments when protein contamination is considered, though no significant difference was found in residual protein between local decontamination unit and central decontamination unit processes for Blacks files. Further research is needed to undertake qualitative identification of protein contamination to identify any cross contamination risks and a standard for acceptable residual protein contamination applicable to different instruments and specialities should be considered as a matter of urgency.

  3. Food toxicology. Residues and contaminants: Risks and consumer protection; Lebensmitteltoxikologie. Rueckstaende und Kontaminanten: Risiken und Verbraucherschutz

    Energy Technology Data Exchange (ETDEWEB)

    Nau, H. [Tieraerztliche Hochschule Hannover, ZA Lebensmitteltoxikologie (Germany); Steinberg, P. [Potsdam Univ., Inst. fuer Ernaehrungswissenschaft (Germany); Kietzmann, M. (eds.) [Tieraerztliche Hochschule Hannover, Inst. fuer Pharmakologie, Toxikologie/Pharmazie (Germany)

    2003-07-01

    In a detailed introduction, the basic methods of risk assessment for potentially toxic food constituents are presented as well as the analytical methods applied for measuring even very small concentrations of contaminants. The main classes of substances relevant in foods ar represented, i.e. animal drugs, fungicides and herbicides, natural toxins, contaminants, prions from BSE-infested animals and residues of 'new' proteins and 'new' DNA from genetically modified foods. New legislation in Germany and Europe is presented including the National Residue Monitoring Plant which is to enable annual monitoring of residue concentrations in foods derived from animals. (orig.)

  4. Release behavior of triazine residues in stabilised contaminated soils

    International Nuclear Information System (INIS)

    Ying, G.G.; Kookana, R.S.; Mallavarpu, M.

    2005-01-01

    This paper reports the release behavior of two triazines (atrazine and simazine) in stabilised soils from a pesticide-contaminated site in South Australia. The soils were contaminated with a range of pesticides, especially with triazine herbicides. With multiple extractions of each soil sample with deionised water (eight in total), 15% of atrazine and 4% of simazine residues were recovered, resulting in very high concentrations of the two herbicides in leachate. The presence of small fractions of surfactants was found to further enhance the release of the residues. Methanol content up to 10% did not substantially influence the concentration of simazine and atrazine released. The study demonstrated that while the stabilisation of contaminated soil with particulate activated carbon (5%) and cement mix (15%) was effective in locking the residues of some pesticides, it failed to immobilise triazine herbicides residues completely. Given the higher water solubility of these herbicides than other compounds more effective strategies to immobilise their residues is needed. - Stabilisation of contaminated soil with a mix of activated carbon and cement may fail to immobilise some contaminants like triazines

  5. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    International Nuclear Information System (INIS)

    Kovalev, Valeri I; Bartona, James S; Richardson, Patricia R; Jones, Anita C

    2006-01-01

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect ∼10 attomole/cm 2 with a scan speed of ∼3-10 cm 2 /s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed

  6. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Valeri I [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bartona, James S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Richardson, Patricia R [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom); Jones, Anita C [School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ (United Kingdom)

    2006-07-15

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect {approx}10 attomole/cm{sup 2} with a scan speed of {approx}3-10 cm{sup 2}/s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed.

  7. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells.

    Directory of Open Access Journals (Sweden)

    Harald Schwarz

    Full Text Available Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU. When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002-2 ng/ml. We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.

  8. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    Directory of Open Access Journals (Sweden)

    Robert Kalescky

    2016-04-01

    Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  9. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  10. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    Science.gov (United States)

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  11. Methodology for determining acceptable residual radioactive contamination levels at decommissioned nuclear facilities/sites

    International Nuclear Information System (INIS)

    Watson, E.C.; Kennedy, W.E. Jr.; Hoenes, G.R.; Waite, D.A.

    1979-01-01

    The ultimate disposition of decommissioned nuclear facilities and their surrrounding sites depends upon the degree and type of residual contamination. Examination of existing guidelines and regulations has led to the conclusion that there is a need for a general method to derive residual radioactive contamination levels that are acceptable for public use of any decommissioned nuclear facility or site. This paper describes a methodology for determining acceptable residual radioactive contamination levels based on the concept of limiting the annual dose to members of the public. It is not the purpose of this paper to recommend or even propose dose limits for the exposure of the public to residual radioactive contamination left at decommissioned nuclear facilities or sites. Unrestricted release of facilities and/or land is based on the premise that the potential annual dose to any member of the public using this property from all possible exposure pathways will not exceed appropriate limits as may be defined by Federal regulatory agencies. For decommissioned land areas, consideration should be given to people living directly on previously contaminated areas, growing crops, grazing food animals and using well water. Mixtures of radionuclides in the residual contamination representative of fuel reprocessing plants, light water reactors and their respective sites are presented. These mixtures are then used to demonstrate the methodology. Example acceptable residual radioactive contamination levels, based on an assumed maximum annual dose of one millirem, are calculated for several selected times following shutdown of a facility. It is concluded that the methodology presented in this paper results in defensible acceptable residual contamination levels that are directly relatable to risk assessment with the proviso that an acceptable limit to the maximum annual dose will be established. (author)

  12. BLAST-based structural annotation of protein residues using Protein Data Bank.

    Science.gov (United States)

    Singh, Harinder; Raghava, Gajendra P S

    2016-01-25

    In the era of next-generation sequencing where thousands of genomes have been already sequenced; size of protein databases is growing with exponential rate. Structural annotation of these proteins is one of the biggest challenges for the computational biologist. Although, it is easy to perform BLAST search against Protein Data Bank (PDB) but it is difficult for a biologist to annotate protein residues from BLAST search. A web-server StarPDB has been developed for structural annotation of a protein based on its similarity with known protein structures. It uses standard BLAST software for performing similarity search of a query protein against protein structures in PDB. This server integrates wide range modules for assigning different types of annotation that includes, Secondary-structure, Accessible surface area, Tight-turns, DNA-RNA and Ligand modules. Secondary structure module allows users to predict regular secondary structure states to each residue in a protein. Accessible surface area predict the exposed or buried residues in a protein. Tight-turns module is designed to predict tight turns like beta-turns in a protein. DNA-RNA module developed for predicting DNA and RNA interacting residues in a protein. Similarly, Ligand module of server allows one to predicted ligands, metal and nucleotides ligand interacting residues in a protein. In summary, this manuscript presents a web server for comprehensive annotation of a protein based on similarity search. It integrates number of visualization tools that facilitate users to understand structure and function of protein residues. This web server is available freely for scientific community from URL http://crdd.osdd.net/raghava/starpdb .

  13. Contaminant transport at a waste residue deposit

    DEFF Research Database (Denmark)

    Engesgaard, Peter Knudegaard; Traberg, Rikke

    1996-01-01

    Contaminant transport in an aquifer at an incinerator waste residue deposit in Denmark is simulated. A two-dimensional, geochemical transport code is developed for this purpose and tested by comparison to results from another code, The code is applied to a column experiment and to the field site...

  14. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs

  15. Protein-protein docking with dynamic residue protonation states.

    Directory of Open Access Journals (Sweden)

    Krishna Praneeth Kilambi

    2014-12-01

    Full Text Available Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His, Tyr, Lys on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half (79/161 the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures. Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity change in the Fc-FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the environmental factors, and they can be further expanded for pH-sensitive protein design.

  16. Development of irradiation technique on controlling food contamination residue

    International Nuclear Information System (INIS)

    Liu Bin; Xiong Shanbai; Xiong Guangquan; Cheng Wei; Chen Yuxia; Liao Tao; Li Xin; Lin Ruotai

    2010-01-01

    The current state of the researches of irradiation technology on controlling food mycotoxin, pesticide, veterinary drugs and fishery drugs residue was summarized. And the degradation rate, mechanism, products and toxicities of food contamination were expatiated. The free radical from irradiation attack the site of weaker bond, and the less or more toxic substances were produced, which lead to the degradation of the food contamination. The limitations and future application of irradiation technique on controlling food contamination were also analyzed. (authors)

  17. Characterization of Proteins in Filtrate from Biodegradation of Crop Residue

    Science.gov (United States)

    Horton, Wileatha; Trotman, A. A.

    1997-01-01

    Biodegradation of plant biomass is a feasible path for transformation of crop residue and recycling of nutrients for crop growth. The need to model the effects of factors associated with recycling of plant biomass resulting from hydroponic sweet potato production has led to investigation of natural soil isolates with the capacity for starch hydrolysis. This study sought to use nondenaturing gel electrophoresis to characterize the proteins present in filtered effluent from bioreactors seeded with starch hydrolyzing bacterial culture used in the biodegradation of senesced sweet potato biomass. The study determined the relative molecular weight of proteins in sampled effluent and the protein banding pattern was characterized. The protein profiles of effluent were similar for samples taken from independent runs under similar conditions of starch hydrolysis. The method can be used as a quality control tool for confirmation of starch hydrolysis of crop biomass. In addition, this method will allow monitoring for presence of contaminants within the system-protein profiles indicative of new enzymes in the bioreactors.

  18. Residual viral and bacterial contamination of surfaces after cleaning and disinfection.

    Science.gov (United States)

    Tuladhar, Era; Hazeleger, Wilma C; Koopmans, Marion; Zwietering, Marcel H; Beumer, Rijkelt R; Duizer, Erwin

    2012-11-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log(10) for poliovirus and close to 4 log(10) for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log(10) reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.

  19. Residual radioactive contamination at Maralinga and Emu, 1985

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1985-04-01

    An account is provided of residual contamination at Maralinga and Emu, in South Australia, where the United Kingdom Atomic Weapons Research Establishment conducted nuclear weapons development trials between 1953 and 1963. Detailed information is presented about contamination levels at sites on the range where radioactive materials were dispersed. Some of these were associated with trials involving natural uranium or short-lived isotopes which are no longer present. There are four sites where plutonium-239 was dispersed in substantial quantities from minor trials and information is presented about its distribution. Much of this material has been diluted by mixing with local soil, but there is a significant quantity of material present in the form of contaminated fragments, particularly at Taranaki. A considerable quantity of uranium-235 is also present at Taranaki. An assessment is made of the radiological significance of the dispersed plutonium and it is concluded that the material represents a potential long term hazard while it remains in its present form. Residual radioactivity associated with all but one of the seven major trial sites involving nuclear explosions continues to decay in a predictable way and will in the worst case, fall below levels considered safe for continuous occupancy within about fifty years. One site, Tadje, contains significant concentrations of plutonium over a small area and onsidered to be an additional plutonium-contaminated locality. Measurements of beryllium concentrations in soil are presented

  20. Pesticide residues and microbial contamination of water resources in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Cheah Uan Boh; Lum Keng Yeang

    2002-01-01

    Studies on the water resources of the Muda rice growing areas revealed evidence of pesticide residues in the agroecosystem. While the cyclodiene endosulfan was found as a ubiquitous contaminant, the occurrence of other organochlorine insecticides was sporadic. The presence of 2,4-D, paraquat and molinate residues was also evident but the occurrence of these herbicides was seasonal. Residue levels of molinate were generally higher than those from the other herbicides. The problem of thiobencarb and carbofuran residues was not encountered. Analyses for microbial contamination revealed that the water resources were unfit for drinking; coliform counts were higher during certain periods of the year than others. (Author)

  1. Monitoring pesticides residues and contaminants for some leafy vegetables at the market level

    International Nuclear Information System (INIS)

    Ibrahim, A. B. H.

    2004-03-01

    Pesticide residues and contaminants in selected leafy vegetables, namely (lettuce, garden rocket and salad onion) were monitored at market level in Riyadh City in Saudi Arabia, during the period june to july 2001. Fifteen samples of vegetables from the City vegetable market of Riyadh were collected and subjected to multi-pesticide residue detection and analysis by gas chromatography with mass spectrometer and electron capture detectors (GC/MS,ECD). Results of sample extracts analysis showed that the two vegetables of: garden rocket and salad onion contain pesticide residues and contaminants which have no Maximum Residue Limits (MRL) prescribed by Codex Alimentarius Commission (CAC) collaborate with World Health and Food and Agriculture Organizations (WHO/FAO). Whereas lettuce vegetable was found free of any identified pesticide residues or contaminants. Garden rocket was shown to contain dibutyl phthalate (0.04 ppm)-steryl chloride (0.02 ppm) tridecane (0.06 ppm)-hexadecane (0.07 ppm)-BIS (ethylhexyl) phthalate (0.006 ppm) and pyridinium, 1-hexyl chloride (0.01 ppm). The salad onion was found to contain 9-octadecanamide (0.13 ppm)-tridecane (0.15 ppm) and tetradecane (0.16 ppm). There are no established MRL s for these pesticides and contaminants detected in garden rocket and salad onion, although when impacts on human health were reviewed some of them were found probably hazardous. (Author)

  2. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Shahsavari, Esmaeil; Adetutu, Eric M; Anderson, Peter A; Ball, Andrew S

    2013-01-15

    Petrogenic hydrocarbons represent the most commonly reported environmental contaminant in industrialised countries. In terms of remediating petrogenic contaminated hydrocarbons, finding sustainable non-invasive technologies represents an important goal. In this study, the effect of 4 types of plant residues on the bioremediation of aliphatic hydrocarbons was investigated in a 90 day greenhouse experiment. The results showed that contaminated soil amended with different plant residues led to statistically significant increases in the utilisation rate of Total Petroleum Hydrocarbon (TPH) relative to control values. The maximum TPH reduction (up to 83% or 6800 mg kg(-1)) occurred in soil mixed with pea straw, compared to a TPH reduction of 57% (4633 mg kg(-1)) in control soil. A positive correlation (0.75) between TPH reduction rate and the population of hydrocarbon-utilising microorganisms was observed; a weaker correlation (0.68) was seen between TPH degradation and bacterial population, confirming that adding plant materials significantly enhanced both hydrocarbonoclastic and general microbial soil activities. Microbial community analysis using Denaturing Gradient Gel Electrophoresis (DGGE) showed that amending the contaminated soil with plant residues (e.g., pea straw) caused changes in the soil microbial structure, as observed using the Shannon diversity index; the diversity index increased in amended treatments, suggesting that microorganisms present on the dead biomass may become important members of the microbial community. In terms of specific hydrocarbonoclastic activity, the number of alkB gene copies in the soil microbial community increased about 300-fold when plant residues were added to contaminated soil. This study has shown that plant residues stimulate TPH degradation in contaminated soil through stimulation and perhaps addition to the pool of hydrocarbon-utilising microorganisms, resulting in a changed microbial structure and increased alkB gene

  3. Zinc species distribution in EDTA-extract residues of zinc-contaminated soil

    International Nuclear Information System (INIS)

    Chang, S.-H.; Wei, Y.-L.; Wang, H. Paul

    2007-01-01

    Soil sample from a site heavily contaminated with >10 wt.% zinc is sampled and extracted with aqueous solutions of ethylene diamine tetra-acetic acid (EDTA) that is a reagent frequently used to extract heavy metals in soil remediation. Three liquid/soil ratios (5/1, 20/1, and 100/1) were used in the extracting experiment. The molecular environment of the residual Zn in the EDTA-extract residues of zinc-contaminated soil is investigated with XANES technique. The results indicate that EDTA does not show considerable preference of chelating for any particular Zn species during the extraction. Zn species distribution in the sampled soil is found to resemble that in all EDTA-extract residues; Zn(OH) 2 is determined as the major zinc species (60-70%), seconded by organic zinc (21-26%) and zinc oxide (9-14%)

  4. Blast furnace residues for arsenic removal from mining-contaminated groundwater.

    Science.gov (United States)

    Carrillo-Pedroza, Fco Raúl; Soria-Aguilar, Ma de Jesús; Martínez-Luevanos, Antonia; Narvaez-García, Víctor

    2014-01-01

    In this work, blast furnace (BF) residues were well characterized and then evaluated as an adsorbent material for arsenic removal from a mining-contaminated groundwater. The adsorption process was analysed using the theories of Freundlich and Langmuir. BF residues were found to be an effective sorbent for As (V) ions. The modelling of adsorption isotherms by empirical models shows that arsenate adsorption is fitted by the Langmuir model, suggesting a monolayer adsorption of arsenic onto adsorbents. Arsenate adsorption onto BF residue is explained by the charge density surface affinity and by the formation of Fe (II) and Fe (III) corrosion products onto BF residue particles. The results indicate that BF residues represent an attractive low-cost absorbent option for the removal of arsenic in wastewater treatment.

  5. Residual contamination and corrosion on electrochemically marked uranium

    International Nuclear Information System (INIS)

    Seals, R.D.; Bullock, J.S.; Bennett, R.K.

    1981-01-01

    Residual contamination and potential corrosion problems on uranium parts resulting from PHB-1 and PHB-1E electroetchants have been investigated using ion microprobe mass analysis (IMMA), scanning electron microscopy (SEM), and light microscopy (LM). The effectiveness of various solvent cleaning sequences and the influence of the use of an abrasive cleaner were evaluated. The marking thicknesses and chlorine distributions were determined

  6. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  7. Quantification of Drive-Response Relationships Between Residues During Protein Folding.

    Science.gov (United States)

    Qi, Yifei; Im, Wonpil

    2013-08-13

    Mutual correlation and cooperativity are commonly used to describe residue-residue interactions in protein folding/function. However, these metrics do not provide any information on the causality relationships between residues. Such drive-response relationships are poorly studied in protein folding/function and difficult to measure experimentally due to technical limitations. In this study, using the information theory transfer entropy (TE) that provides a direct measurement of causality between two times series, we have quantified the drive-response relationships between residues in the folding/unfolding processes of four small proteins generated by molecular dynamics simulations. Instead of using a time-averaged single TE value, the time-dependent TE is measured with the Q-scores based on residue-residue contacts and with the statistical significance analysis along the folding/unfolding processes. The TE analysis is able to identify the driving and responding residues that are different from the highly correlated residues revealed by the mutual information analysis. In general, the driving residues have more regular secondary structures, are more buried, and show greater effects on the protein stability as well as folding and unfolding rates. In addition, the dominant driving and responding residues from the TE analysis on the whole trajectory agree with those on a single folding event, demonstrating that the drive-response relationships are preserved in the non-equilibrium process. Our study provides detailed insights into the protein folding process and has potential applications in protein engineering and interpretation of time-dependent residue-based experimental observables for protein function.

  8. Water dynamics clue to key residues in protein folding

    International Nuclear Information System (INIS)

    Gao, Meng; Zhu, Huaiqiu; Yao, Xin-Qiu; She, Zhen-Su

    2010-01-01

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  9. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Albert L., E-mail: albert.juhasz@unisa.edu.a [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Smith, Euan [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Waller, Natasha [CSIRO Land and Water, Glen Osmond, SA 5064 (Australia); Stewart, Richard [Remediate, Kent Town, SA 5067 (Australia); Weber, John [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia)

    2010-02-15

    The impact of residual PAHs (2250 +- 71 mug total PAHs g{sup -1}) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 +- 1286 mug total PAHs g{sup -1}) was assessed using a variety of ecological assays. Microtox{sup TM} results for aqueous soil extracts indicated that there was no significant difference in EC{sub 50} values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. - Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.

  11. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil

    International Nuclear Information System (INIS)

    Juhasz, Albert L.; Smith, Euan; Waller, Natasha; Stewart, Richard; Weber, John

    2010-01-01

    The impact of residual PAHs (2250 ± 71 μg total PAHs g -1 ) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 ± 1286 μg total PAHs g -1 ) was assessed using a variety of ecological assays. Microtox TM results for aqueous soil extracts indicated that there was no significant difference in EC 50 values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. - Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.

  12. Hanford tank residual waste - Contaminant source terms and release models

    International Nuclear Information System (INIS)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.

    2011-01-01

    Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the

  13. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  14. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  15. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.

    Directory of Open Access Journals (Sweden)

    Genki Terashi

    Full Text Available Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align, which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1 agreement with the gold standard alignment, (2 alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3 consistency of the multiple alignments, and (4 classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins

  16. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.

    Science.gov (United States)

    Terashi, Genki; Takeda-Shitaka, Mayuko

    2015-01-01

    Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both

  17. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Identification of NAD interacting residues in proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2010-03-01

    Full Text Available Abstract Background Small molecular cofactors or ligands play a crucial role in the proper functioning of cells. Accurate annotation of their target proteins and binding sites is required for the complete understanding of reaction mechanisms. Nicotinamide adenine dinucleotide (NAD+ or NAD is one of the most commonly used organic cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes. In the past, several NAD binding proteins (NADBP have been reported in the literature, which are responsible for a wide-range of activities in the cell. Attempts have been made to derive a rule for the binding of NAD+ to its target proteins. However, so far an efficient model could not be derived due to the time consuming process of structure determination, and limitations of similarity based approaches. Thus a sequence and non-similarity based method is needed to characterize the NAD binding sites to help in the annotation. In this study attempts have been made to predict NAD binding proteins and their interacting residues (NIRs from amino acid sequence using bioinformatics tools. Results We extracted 1556 proteins chains from 555 NAD binding proteins whose structure is available in Protein Data Bank. Then we removed all redundant protein chains and finally obtained 195 non-redundant NAD binding protein chains, where no two chains have more than 40% sequence identity. In this study all models were developed and evaluated using five-fold cross validation technique on the above dataset of 195 NAD binding proteins. While certain type of residues are preferred (e.g. Gly, Tyr, Thr, His in NAD interaction, residues like Ala, Glu, Leu, Lys are not preferred. A support vector machine (SVM based method has been developed using various window lengths of amino acid sequence for predicting NAD interacting residues and obtained maximum Matthew's correlation coefficient (MCC 0.47 with accuracy 74.13% at window length 17

  19. ContaMiner and ContaBase: a webserver and database for early identification of unwantedly crystallized protein contaminants

    Science.gov (United States)

    Hungler, Arnaud; Momin, Afaque; Diederichs, Kay; Arold, Stefan, T.

    2016-01-01

    Solving the phase problem in protein X-ray crystallography relies heavily on the identity of the crystallized protein, especially when molecular replacement (MR) methods are used. Yet, it is not uncommon that a contaminant crystallizes instead of the protein of interest. Such contaminants may be proteins from the expression host organism, protein fusion tags or proteins added during the purification steps. Many contaminants co-purify easily, crystallize and give good diffraction data. Identification of contaminant crystals may take time, since the presence of the contaminant is unexpected and its identity unknown. A webserver (ContaMiner) and a contaminant database (ContaBase) have been established, to allow fast MR-based screening of crystallographic data against currently 62 known contaminants. The web-based ContaMiner (available at http://strube.cbrc.kaust.edu.sa/contaminer/) currently produces results in 5 min to 4 h. The program is also available in a github repository and can be installed locally. ContaMiner enables screening of novel crystals at synchrotron beamlines, and it would be valuable as a routine safety check for ‘crystallization and preliminary X-ray analysis’ publications. Thus, in addition to potentially saving X-ray crystallographers much time and effort, ContaMiner might considerably lower the risk of publishing erroneous data. PMID:27980519

  20. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  1. Microbial Physiology of the Conversion of Residual Oil to Methane: A Protein Prospective

    Science.gov (United States)

    Morris, Brandon E. L.; Bastida-Lopez, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Suflita, Joseph M.

    2010-05-01

    Traditional petroleum recovery techniques are unable to extract the majority of oil in most petroliferous deposits. The recovery of even a fraction of residual hydrocarbon in conventional reserves could represent a substantive energy supply. To this end, the microbial conversion of residual oil to methane has gained increasing relevance in recent years [1,2]. Worldwide demand for methane is expected to increase through 2030 [3], as it is a cleaner-burning alternative to traditional fuels [4]. To investigate the microbial physiology of hydrocarbon-decomposition and ultimate methanogenesis, we initiated a two-pronged approach. First, a model alkane-degrading sulfate-reducing bacterium, Desulfoglaeba alkanexedens, was used to interrogate the predominant metabolic pathway(s) differentially expressed during growth on either n-decane or butyrate. A total of 81 proteins were differentially expressed during bacterial growth on butyrate, while 100 proteins were unique to the alkane-grown condition. Proteins related to alkylsuccinate synthase, or the homologous 1-methyl alkylsuccinate synthase, were identified only in the presence of the hydrocarbon. Secondly, we used a newly developed stable isotope probing technique [5] targeted towards proteins to monitor the flux of carbon through a residual oil-degrading bacterial consortium enriched from a gas-condensate contaminated aquifer [1]. Combined carbon and hydrogen stable isotope fractionation identified acetoclastic methanogenesis as the dominant process in this system. Such findings agree with the previous clone library characterization of the consortium. Furthermore, hydrocarbon activation was determined to be the rate-limiting process during the net conversion of residual oil to methane. References 1. Gieg, L.M., K.E. Duncan, and J.M. Suflita, Bioenegy production via microbial conversion of residual oil to natural gas. Appl Environ Micro, 2008. 74(10): p. 3022-3029. 2. Jones, D.M., et al., Crude-oil biodegradation via

  2. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography.

    Science.gov (United States)

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-04-01

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  3. Residues and contaminants in tea and tea infusions: a review.

    Science.gov (United States)

    Abd El-Aty, A M; Choi, Jeong-Heui; Rahman, Md Musfiqur; Kim, Sung-Woo; Tosun, Alev; Shim, Jae-Han

    2014-01-01

    Consumers are very aware of contaminants that could pose potential health hazards. Most people drink tea as an infusion (adding hot water); however, in some countries, including India, China and Egypt, tea is drunk as a decoction (tea and water are boiled together). An infusion usually brings the soluble ingredients into solution, whereas a decoction brings all soluble and non-soluble constituents together. Therefore, a cup of tea may contain various kinds of contaminants. This review focuses on green and black tea because they are most commonly consumed. The target was to examine the transfer rate of contaminants - pesticides, environmental pollutants, mycotoxins, microorganisms, toxic heavy metals, radioactive isotopes (radionuclides) and plant growth regulators - from tea to infusion/brewing, factors contributing to the transfer potential and contaminants degradation, and residues in or on the spent leaves. It is concluded that most contaminants leaching into tea infusion are not detected or are detected at a level lower than the regulatory limits. However, the traditional practice of over-boiling tea leaves should be discouraged as there may be a chance for more transfer of contaminants from the tea to the brew.

  4. The behaviour of residual contaminants at a former station site, Antarctica

    International Nuclear Information System (INIS)

    Webster, Jenny; Webster, Kerry; Nelson, Peter; Waterhouse, Emma

    2003-01-01

    Minor contamination by metals, phosphorus, and fuel products were found at a former research station site in Antarctica. - In 1994, New Zealand's only mainland Antarctic base, Vanda Station, was removed from the shores of Lake Vanda, in the McMurdo Dry Valleys region of southern Victoria Land, Antarctica. Residual chemical contamination of the station site has been identified, in the form of discrete fuel spills, locally elevated Pb, Zn, Ag and Cd concentrations in soil and elevated Cu, Ni, Co and phosphate concentrations in suprapermafrost fluids in a gully formerly used for domestic washing water disposal. Pathways for contaminant transfer to Lake Vanda, potential environmental impacts and specific remediation/monitoring options are considered. While some contaminants (particularly Zn) could be selectively leached from flooded soil, during a period of rising lake level, the small area of contaminated soils exposed and low level of contamination suggests that this would not adversely affect either shallow lake water quality or the growth of cyanobacteria. Phosphate-enhanced growth of the latter may, however, be a visible consequence of the minor contamination occurring at this site

  5. Lead speciation in 0.1N HCl-extracted residue of analog of Pb-contaminated soil

    International Nuclear Information System (INIS)

    Wei Yuling; Yang, Y.-W.; Lee, J.-F.

    2005-01-01

    The heavy metal in-taken by plants from contaminated soils is usually assessed by extraction with 0.1N HCl. This study characterized the chemical form of lead in the solid residue of 0.1N HCl-extracted Pb-contaminated kaolin. The results indicate that most lead in the 0.1N HCl-extracted residue of the Pb(NO 3 ) 2 -contaminated kaolin dried at 105 deg C is mainly in form of PbCl 2 . For other lead-containing kaolin sample heated at 900 deg C, the XAS analysis also shows that majority of the lead compound was converted into PbCl 2 precipitate that remained in the solid residue during the 0.1N HCl extraction. Because PbCl 2 is only slightly soluble in dilute acids or water, it is suggested that using 0.1N HCl liquid as an extracting reagent to represent the heavy metal uptake by plants might actually underestimate the uptake

  6. ContaMiner and ContaBase: a webserver and database for early identification of unwantedly crystallized protein contaminants

    KAUST Repository

    Hungler, Arnaud; Momin, Afaque Ahmad Imtiyaz; Diederichs, Kay; Arold, Stefan T.

    2016-01-01

    Solving the phase problem in protein X-ray crystallography relies heavily on the identity of the crystallized protein, especially when molecular replacement (MR) methods are used. Yet, it is not uncommon that a contaminant crystallizes instead of the protein of interest. Such contaminants may be proteins from the expression host organism, protein fusion tags or proteins added during the purification steps. Many contaminants co-purify easily, crystallize and give good diffraction data. Identification of contaminant crystals may take time, since the presence of the contaminant is unexpected and its identity unknown. A webserver (ContaMiner) and a contaminant database (ContaBase) have been established, to allow fast MR-based screening of crystallographic data against currently 62 known contaminants. The web-based ContaMiner (available at http://strube.cbrc.kaust.edu.sa/contaminer/) currently produces results in 5 min to 4 h. The program is also available in a github repository and can be installed locally. ContaMiner enables screening of novel crystals at synchrotron beamlines, and it would be valuable as a routine safety check for 'crystallization and preliminary X-ray analysis' publications. Thus, in addition to potentially saving X-ray crystallographers much time and effort, ContaMiner might considerably lower the risk of publishing erroneous data. A web server, titled ContaMiner, has been established, which allows fast molecular-replacement-based screening of crystallographic data against a database (ContaBase) of currently 62 potential contaminants. ContaMiner enables systematic screening of novel crystals at synchrotron beamlines, and it would be valuable as a routine safety check for 'crystallization and preliminary X-ray analysis' publications. © Arnaud Hungler et al. 2016.

  7. ContaMiner and ContaBase: a webserver and database for early identification of unwantedly crystallized protein contaminants

    KAUST Repository

    Hungler, Arnaud

    2016-11-02

    Solving the phase problem in protein X-ray crystallography relies heavily on the identity of the crystallized protein, especially when molecular replacement (MR) methods are used. Yet, it is not uncommon that a contaminant crystallizes instead of the protein of interest. Such contaminants may be proteins from the expression host organism, protein fusion tags or proteins added during the purification steps. Many contaminants co-purify easily, crystallize and give good diffraction data. Identification of contaminant crystals may take time, since the presence of the contaminant is unexpected and its identity unknown. A webserver (ContaMiner) and a contaminant database (ContaBase) have been established, to allow fast MR-based screening of crystallographic data against currently 62 known contaminants. The web-based ContaMiner (available at http://strube.cbrc.kaust.edu.sa/contaminer/) currently produces results in 5 min to 4 h. The program is also available in a github repository and can be installed locally. ContaMiner enables screening of novel crystals at synchrotron beamlines, and it would be valuable as a routine safety check for \\'crystallization and preliminary X-ray analysis\\' publications. Thus, in addition to potentially saving X-ray crystallographers much time and effort, ContaMiner might considerably lower the risk of publishing erroneous data. A web server, titled ContaMiner, has been established, which allows fast molecular-replacement-based screening of crystallographic data against a database (ContaBase) of currently 62 potential contaminants. ContaMiner enables systematic screening of novel crystals at synchrotron beamlines, and it would be valuable as a routine safety check for \\'crystallization and preliminary X-ray analysis\\' publications. © Arnaud Hungler et al. 2016.

  8. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  9. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Mang [School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, Jiangxi Province (China); State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang Zhongzhi, E-mail: zzzhang1955@hotmail.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Qiao Wei; Guan Yueming; Xiao Meng; Peng Chong [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China)

    2010-07-15

    The degradation of bioremediation residues by hydrogen peroxide in petroleum-contaminated soil was investigated at circumneutral pH using a Fenton-like reagent (ferric ion chelated with EDTA). Batch tests were done on 20 g soil suspended in 60 mL aqueous solution containing hydrogen peroxide and Fe{sup 3+}-EDTA complex under constant stirring. A slurry reactor was used to treat the soil based on the optimal reactant conditions. Contaminants were characterized by Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. The results showed that the optimal treatment condition was: the molar ratio of hydrogen peroxide to iron = 200:1, and pH 7.0. Under the optimum condition, total dichloromethane-extractable organics were reduced from 14,800 to 2300 mg kg{sup -1} soil when the accumulative H{sub 2}O{sub 2} dosage was 2.45 mol kg{sup -1} soil during the reactor treatment. Abundance of viable cells was lower in incubated Fenton-like treated soil than in untreated soil. Oxidation of contaminants produced remarkable compositional and structural modifications. A fused ring compound, identified as C{sub 34}H{sub 38}N{sub 1}, was found to exhibit the greatest resistance to oxidation.

  10. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  11. Contaminant interferences with SIMS analyses of microparticle impactor residues on LDEF surfaces

    International Nuclear Information System (INIS)

    Simon, C.G.; Batchelor, D.; Griffis, D.P.; Hunter, J.L.; Misra, V.; Ricks, D.A.; Wortman, J.J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets

  12. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  13. Residue preference mapping of ligand fragments in the Protein Data Bank.

    Science.gov (United States)

    Wang, Lirong; Xie, Zhaojun; Wipf, Peter; Xie, Xiang-Qun

    2011-04-25

    The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71 798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.

  14. Carbon Nanotubes Facilitate Oxidation of Cysteine Residues of Proteins.

    Science.gov (United States)

    Hirano, Atsushi; Kameda, Tomoshi; Wada, Momoyo; Tanaka, Takeshi; Kataura, Hiromichi

    2017-10-19

    The adsorption of proteins onto nanoparticles such as carbon nanotubes (CNTs) governs the early stages of nanoparticle uptake into biological systems. Previous studies regarding these adsorption processes have primarily focused on the physical interactions between proteins and nanoparticles. In this study, using reduced lysozyme and intact human serum albumin in aqueous solutions, we demonstrated that CNTs interact chemically with proteins. The CNTs induce the oxidation of cysteine residues of the proteins, which is accounted for by charge transfer from the sulfhydryl groups of the cysteine residues to the CNTs. The redox reaction simultaneously suppresses the intermolecular association of proteins via disulfide bonds. These results suggest that CNTs can affect the folding and oxidation degree of proteins in biological systems such as blood and cytosol.

  15. Practical analysis of specificity-determining residues in protein families.

    Science.gov (United States)

    Chagoyen, Mónica; García-Martín, Juan A; Pazos, Florencio

    2016-03-01

    Determining the residues that are important for the molecular activity of a protein is a topic of broad interest in biomedicine and biotechnology. This knowledge can help understanding the protein's molecular mechanism as well as to fine-tune its natural function eventually with biotechnological or therapeutic implications. Some of the protein residues are essential for the function common to all members of a family of proteins, while others explain the particular specificities of certain subfamilies (like binding on different substrates or cofactors and distinct binding affinities). Owing to the difficulty in experimentally determining them, a number of computational methods were developed to detect these functional residues, generally known as 'specificity-determining positions' (or SDPs), from a collection of homologous protein sequences. These methods are mature enough for being routinely used by molecular biologists in directing experiments aimed at getting insight into the functional specificity of a family of proteins and eventually modifying it. In this review, we summarize some of the recent discoveries achieved through SDP computational identification in a number of relevant protein families, as well as the main approaches and software tools available to perform this type of analysis. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall

    2016-01-01

    side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find......Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable...... that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably...

  17. Remediation of cadmium contaminated water and soil using vinegar residue biochar.

    Science.gov (United States)

    Li, Yuxin; Pei, Guangpeng; Qiao, Xianliang; Zhu, Yuen; Li, Hua

    2018-06-01

    This study investigated a new biochar produced from vinegar residue that could be used to remediate cadmium (Cd)-contaminated water and soil. Aqueous solution adsorption and soil incubation experiments were performed to investigate whether a biochar prepared at 700 °C from vinegar residue could efficiently adsorb and/or stabilize Cd in water and soil. In the aqueous solution adsorption experiment, the Cd adsorption process was best fitted by the pseudo-second-order kinetic and Freundlich isotherm models. If the optimum parameters were used, i.e., pH 5 or higher, a biochar dosage of 12 g L -1 , a 10 mg L -1 Cd initial concentration, and 15-min equilibrium time, at 25 °C, then Cd removal could reach about 100%. The soil incubation experiment evaluated the biochar effects at four different application rates (1, 2, 5, and 10% w/w) and three Cd contamination rates (0.5, 1, and 2.5 mg kg -1 ) on soil properties and Cd fractionation. Soil pH and organic matter increased after adding biochar, especially at the 10% application rate. At Cd pollution levels of 1.0 or 2.5 mg kg -1 , a 10% biochar application rate was most effective. At 0.5 mg Cd kg -1 soil, a 5% biochar application rate was most efficient at transforming the acid extractable and easily reducible Cd fractions to oxidizable and residual Cd. The results from this study demonstrated that biochar made from vinegar residue could be a new and promising alternative biomass-derived material for Cd remediation in water and soil.

  18. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    Science.gov (United States)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  19. Control levels for residual contamination in materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1993-09-01

    Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support joint efforts by the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water and Radiation Division (DOE/EH-232); by the U.S. Environmental Protection Agency (EPA); and by the U.S. Nuclear Regulatory Commission (NRC) to develop radiological control criteria for the recycle and reuse of scrap materials and equipment that contain residual radioactive contamination. The initial radiological control levels are the concentrations in or on materials considered for recycle or reuse that meet the individual (human) or industrial (electronics/film) dose criteria. The analysis identifies relevant radionuclides, potential mechanisms of exposure, and methods to determine possible non-health-related impacts from residual radioactive contamination in materials considered for recycle or reuse. The generic methodology and scenarios described here provide a basic framework for numerically deriving radiological control criteria for recycle or reuse. These will be adequately conservative for most situations

  20. Efficient identification of critical residues based only on protein structure by network analysis.

    Directory of Open Access Journals (Sweden)

    Michael P Cusack

    2007-05-01

    Full Text Available Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.

  1. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  2. Computational design, construction, and characterization of a set of specificity determining residues in protein-protein interactions.

    Science.gov (United States)

    Nagao, Chioko; Izako, Nozomi; Soga, Shinji; Khan, Samia Haseeb; Kawabata, Shigeki; Shirai, Hiroki; Mizuguchi, Kenji

    2012-10-01

    Proteins interact with different partners to perform different functions and it is important to elucidate the determinants of partner specificity in protein complex formation. Although methods for detecting specificity determining positions have been developed previously, direct experimental evidence for these amino acid residues is scarce, and the lack of information has prevented further computational studies. In this article, we constructed a dataset that is likely to exhibit specificity in protein complex formation, based on available crystal structures and several intuitive ideas about interaction profiles and functional subclasses. We then defined a "structure-based specificity determining position (sbSDP)" as a set of equivalent residues in a protein family showing a large variation in their interaction energy with different partners. We investigated sequence and structural features of sbSDPs and demonstrated that their amino acid propensities significantly differed from those of other interacting residues and that the importance of many of these residues for determining specificity had been verified experimentally. Copyright © 2012 Wiley Periodicals, Inc.

  3. Radiation protection of radioactively contaminated large areas by phytoremediation and subsequent utilization of the contaminated plant residues (PHYTOREST)

    International Nuclear Information System (INIS)

    Mirgorodsky, Daniel; Ollivier, Delphine; Merten, Dirk; Bergmann, Hans; Buechel, Georg; Willscher, Sabine; Wittig, Juliane; Jablonski, Lukasz; Werner, Peter

    2010-01-01

    Much progress has been achieved over the past 20 years in remediating sites contaminated by heavy metal. However, very large contaminated areas have presented major problems to this day because of remediation costs. Phytoremediation is a new, emerging, sustainable technique of remediating areas with low heavy-metal contamination. One advantage of phytoremediation is the comparatively low cost of the process, which may make it usable also on large areas with low levels of contamination. Besides extracting and immobilizing metals, respectively, phytoremediation among other things also contributes to improving soil quality in terms of physics, chemistry, and ecology. Consequently, phytoremediation offers a great potential for the future. Research into phytoremediation of an area contaminated by heavy metals and radionuclides is carried out on a site in a former uranium mining district in Eastern Thuringia jointly by the Friedrich Schiller University, Jena, and the Technical University of Dresden in a project funded by the German Federal Ministry for Education and Research. The project serves to promote the introduction of soft, biocompatible methods of long-term remediation and to develop conceptual solutions to the subsequent utilization of contaminated plant residues. Optimizing area management is in the focus of phytoremediation studies. (orig.)

  4. Relationships between residue Voronoi volume and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Cheng, Chih-Wen; Lin, Yu-Feng; Chen, Shao-Yu; Hwang, Jenn-Kang; Yen, Shih-Chung

    2018-02-01

    Functional and biophysical constraints can cause different levels of sequence conservation in proteins. Previously, structural properties, e.g., relative solvent accessibility (RSA) and packing density of the weighted contact number (WCN), have been found to be related to protein sequence conservation (CS). The Voronoi volume has recently been recognized as a new structural property of the local protein structural environment reflecting CS. However, for surface residues, it is sensitive to water molecules surrounding the protein structure. Herein, we present a simple structural determinant termed the relative space of Voronoi volume (RSV); it uses the Voronoi volume and the van der Waals volume of particular residues to quantify the local structural environment. RSV (range, 0-1) is defined as (Voronoi volume-van der Waals volume)/Voronoi volume of the target residue. The concept of RSV describes the extent of available space for every protein residue. RSV and Voronoi profiles with and without water molecules (RSVw, RSV, VOw, and VO) were compared for 554 non-homologous proteins. RSV (without water) showed better Pearson's correlations with CS than did RSVw, VO, or VOw values. The mean correlation coefficient between RSV and CS was 0.51, which is comparable to the correlation between RSA and CS (0.49) and that between WCN and CS (0.56). RSV is a robust structural descriptor with and without water molecules and can quantitatively reflect evolutionary information in a single protein structure. Therefore, it may represent a practical structural determinant to study protein sequence, structure, and function relationships. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Ising model for prediction of disordered residues from protein sequence alone

    International Nuclear Information System (INIS)

    Lobanov, Michail Yu; Galzitskaya, Oxana V

    2011-01-01

    Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered residues and disordered regions in protein chains using protein sequence alone. A new method (IsUnstruct) based on the Ising model for prediction of disordered residues from protein sequence alone has been developed. According to this model, each residue can be in one of two states: ordered or disordered. The model is an approximation of the Ising model in which the interaction term between neighbors has been replaced by a penalty for changing between states (the energy of border). The IsUnstruct has been compared with other available methods and found to perform well. The method correctly finds 77% of disordered residues as well as 87% of ordered residues in the CASP8 database, and 72% of disordered residues as well as 85% of ordered residues in the DisProt database

  6. Literature mining of protein-residue associations with graph rules learned through distant supervision

    Directory of Open Access Journals (Sweden)

    Ravikumar KE

    2012-10-01

    Full Text Available Abstract Background We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. Results The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. Conclusions The primary contributions of this work are to (1 demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2 show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  7. Literature mining of protein-residue associations with graph rules learned through distant supervision.

    Science.gov (United States)

    Ravikumar, Ke; Liu, Haibin; Cohn, Judith D; Wall, Michael E; Verspoor, Karin

    2012-10-05

    We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. The primary contributions of this work are to (1) demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2) show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  8. RSARF: Prediction of residue solvent accessibility from protein sequence using random forest method

    KAUST Repository

    Ganesan, Pugalenthi; Kandaswamy, Krishna Kumar Umar; Chou -, Kuochen; Vivekanandan, Saravanan; Kolatkar, Prasanna R.

    2012-01-01

    Prediction of protein structure from its amino acid sequence is still a challenging problem. The complete physicochemical understanding of protein folding is essential for the accurate structure prediction. Knowledge of residue solvent accessibility gives useful insights into protein structure prediction and function prediction. In this work, we propose a random forest method, RSARF, to predict residue accessible surface area from protein sequence information. The training and testing was performed using 120 proteins containing 22006 residues. For each residue, buried and exposed state was computed using five thresholds (0%, 5%, 10%, 25%, and 50%). The prediction accuracy for 0%, 5%, 10%, 25%, and 50% thresholds are 72.9%, 78.25%, 78.12%, 77.57% and 72.07% respectively. Further, comparison of RSARF with other methods using a benchmark dataset containing 20 proteins shows that our approach is useful for prediction of residue solvent accessibility from protein sequence without using structural information. The RSARF program, datasets and supplementary data are available at http://caps.ncbs.res.in/download/pugal/RSARF/. - See more at: http://www.eurekaselect.com/89216/article#sthash.pwVGFUjq.dpuf

  9. Thermodynamic Effects of Replacements of Pro Residues in Helix Interiors of Maltose-Binding Protein

    OpenAIRE

    Prajapati, RS; Lingaraju, GM; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-01-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by...

  10. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    Science.gov (United States)

    Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren

    2016-11-01

    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is

  11. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.

    Science.gov (United States)

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo

    2017-12-01

    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent

  12. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    Directory of Open Access Journals (Sweden)

    Yushen Du

    2016-11-01

    Full Text Available Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp, we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available.

  13. Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

    Directory of Open Access Journals (Sweden)

    Venkateswarulu Swarna

    2015-06-01

    Full Text Available Four locally available crop residues viz., jowar stover (JS, maize stover (MS, red gram straw (RGS and black gram straw (BGS were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP system. Lignin (% NDF was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC (% DM followed the reverse trend. The carbohydrate fractions A and B1 were higher in BGS while B2 was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B2 was higher in cereal stovers as compared to legume straws. Fraction B3 largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP (% CP or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

  14. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  15. On the relationship between residue structural environment and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Lin, Jau-Ji; Cheng, Chih-Wen; Lin, Yu-Feng; Hwang, Jenn-Kang; Huang, Tsun-Tsao

    2017-09-01

    Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the C α positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the C α atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared C α atoms with other substructures in their contributions to the sequence conservation. Our results show that C α positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between C α atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between C α and all-atom substructures. These results indicate that only C α atoms of a protein structure could reflect sequence conservation at the residue level. © 2017 Wiley Periodicals, Inc.

  16. InterMap3D: predicting and visualizing co-evolving protein residues

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Roque, francisco jose sousa simôes almeida; Wernersson, Rasmus

    2009-01-01

    InterMap3D predicts co-evolving protein residues and plots them on the 3D protein structure. Starting with a single protein sequence, InterMap3D automatically finds a set of homologous sequences, generates an alignment and fetches the most similar 3D structure from the Protein Data Bank (PDB......). It can also accept a user-generated alignment. Based on the alignment, co-evolving residues are then predicted using three different methods: Row and Column Weighing of Mutual Information, Mutual Information/Entropy and Dependency. Finally, InterMap3D generates high-quality images of the protein...

  17. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    Science.gov (United States)

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  18. Utilization of protein-rich residues in biotechnological processes.

    Science.gov (United States)

    Pleissner, Daniel; Venus, Joachim

    2016-03-01

    A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.

  19. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information

    Directory of Open Access Journals (Sweden)

    Panwar Bharat

    2013-02-01

    Full Text Available Abstract Background The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. Results In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL. It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i vitamin interacting residues (VIRs, (ii vitamin-A interacting residues (VAIRs, (iii vitamin-B interacting residues (VBIRs and (iv pyridoxal-5-phosphate (vitamin B6 interacting residues (PLPIRs have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM features of protein sequences. Finally, we selected best performing SVM modules and

  20. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.

    Science.gov (United States)

    Panwar, Bharat; Gupta, Sudheer; Raghava, Gajendra P S

    2013-02-07

    The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0

  1. Allowable residual contamination levels for decommissioning. Part 2. A summary of example results

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1985-01-01

    This paper contains a description of the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for decommissioning facilities in the 100 Areas of the Hanford Site. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm 2 ) and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are discussed for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement for a selected annual dose limit. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste. 6 references, 1 figures, 4 tables

  2. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.

    Science.gov (United States)

    Khashan, Raed; Zheng, Weifan; Tropsha, Alexander

    2012-08-01

    Accurate prediction of the structure of protein-protein complexes in computational docking experiments remains a formidable challenge. It has been recognized that identifying native or native-like poses among multiple decoys is the major bottleneck of the current scoring functions used in docking. We have developed a novel multibody pose-scoring function that has no theoretical limit on the number of residues contributing to the individual interaction terms. We use a coarse-grain representation of a protein-protein complex where each residue is represented by its side chain centroid. We apply a computational geometry approach called Almost-Delaunay tessellation that transforms protein-protein complexes into a residue contact network, or an undirectional graph where vertex-residues are nodes connected by edges. This treatment forms a family of interfacial graphs representing a dataset of protein-protein complexes. We then employ frequent subgraph mining approach to identify common interfacial residue patterns that appear in at least a subset of native protein-protein interfaces. The geometrical parameters and frequency of occurrence of each "native" pattern in the training set are used to develop the new SPIDER scoring function. SPIDER was validated using standard "ZDOCK" benchmark dataset that was not used in the development of SPIDER. We demonstrate that SPIDER scoring function ranks native and native-like poses above geometrical decoys and that it exceeds in performance a popular ZRANK scoring function. SPIDER was ranked among the top scoring functions in a recent round of CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods. Copyright © 2012 Wiley Periodicals, Inc.

  3. Assessment of alternatives for long-term management of uranium ore residues and contaminated soils located at DOE's Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    Merry-Libby, P.

    1985-01-01

    About 11,000 m 3 of uranium ore residues and 180,000 m 3 of slightly contaminated soils (wastes) are consolidated within a diked containment area at the Niagara Falls Storage Site located about 30 km north of Buffalo, New York. The residues account for less than 6% of the total volume of contaminated materials but almost 99% of the radioactivity. The average radium-226 concentration in the residues is 67,000 pCi/g. The US Department of Energy is considering several alternatives for long-term management of the wastes and residues, including: improvement of the containment at NFSS, modification of the form of the residues, management of the residues separately from the wastes, management of the wastes and residues at another humid site (Oak Ridge, Tennessee) or an arid site (Hanford, Washington), and dispersal of the wastes in the ocean. Potential radiological risks associated with implementation of any of the alternatives are expected to be smaller than the nonradiological risks of occupational and transportation-related injuries and deaths. Dispersal of the slightly contaminated wastes in the ocean is not expected to result in any significant radiological risk to humans. The residues and wastes will remain hazardous for thousands of years. After controls cease, the radioactive materials will eventually be dispersed in the environment. Loss of the earthen covers over the buried materials is predicted to occur from several hundred to more than two million years, depending primarily on the use of the land surface. Groundwater will eventually be contaminated in all alternatives; however, the groundwater pathway is relatively insignificant with respect to radiological risks to the general population. 2 references, 2 figures, 6 tables

  4. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern

    Science.gov (United States)

    Ismail, Baraem; Reuhs, Bradley L.; Nielsen, S. Suzanne

    The food chain that starts with farmers and ends with consumers can be complex, involving multiple stages of production and distribution (planting, harvesting, breeding, transporting, storing, importing, processing, packaging, distributing to retail markets, and shelf storing) (Fig. 18.1). Various practices can be employed at each stage in the food chain, which may include pesticide treatment, agricultural bioengineering, veterinary drug administration, environmental and storage conditions, processing applications, economic gain practices, use of food additives, choice of packaging material, etc. Each of these practices can play a major role in food quality and safety, due to the possibility of contamination with or introduction (intentionally and nonintentionally) of hazardous substances or constituents. Legislation and regulation to ensure food quality and safety are in place and continue to develop to protect the stakeholders, namely farmers, consumers, and industry. [Refer to reference (1) for information on regulations of food contaminants and residues.

  5. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Edward C Twomey

    Full Text Available Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15 protein in the complex with a mitogen-activated protein (MAP kinase, extracellular regulated kinase 2 (ERK2, which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  6. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil

    NARCIS (Netherlands)

    Blom, W.M.; Kruizinga, A.G.; Rubingh, C.M.; Remington, B.C.; Crevel, R.W.R.; Houben, G.F.

    2017-01-01

    Refined vegetable oils including refined peanut oil are widely used in foods. Due to shared production processes, refined non-peanut vegetable oils can contain residual peanut proteins. We estimated the predicted number of allergic reactions to residual peanut proteins using probabilistic risk

  7. In-situ protein determination to monitor contamination in a centrifugal partition chromatograph.

    Science.gov (United States)

    Bouiche, Feriel; Faure, Karine

    2017-05-15

    Centrifugal partition chromatography (CPC) works with biphasic liquid systems including aqueous two-phase systems. Metallic rotors are able to retain an aqueous stationary phase able to purify proteins. But the adhesion of proteins to solid surface may pose a cross-contamination risk during downstream processes. So it is of utmost importance to ensure the cleanliness of the equipment and detect possible protein contamination in a timely manner. Thereby, a direct method that allows the determination of the effective presence of proteins and the extent of contamination in the metallic CPC rotors was developed. This in-situ method is derived from the Amino Density Estimation by Colorimetric Assay (ADECA) which is based on the affinity of a dye, Coomassie Brillant Blue (CBB), with protonated N + groups of the proteins. In this paper, the ADECA method was developed dynamically, on a 25 mL stainless-steel rotor with various extents of protein contaminations using bovine serum albumin (BSA) as a fouling model. The eluted CBB dye was quantified and found to respond linearly to BSA contamination up to 70 mg injected. Limits of detection and quantification were recorded as 0.9 mg and 3.1 mg, respectively. While the non-specific interactions between the dye and the rotor cannot currently be neglected, this method allows for in situ determination of proteins contamination and should contribute to the development of CPC as a separation tool in protein purification processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall

    2016-01-01

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable...... side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find...

  9. Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.

    Science.gov (United States)

    Prajapati, R S; Lingaraju, G M; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan

    2003-12-01

    Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein. Copyright 2003 Wiley-Liss, Inc.

  10. Control criteria for residual contamination in materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.

    1993-11-01

    Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in determining the feasibility of developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, will be risk-based and will be developed through analysis of radiation exposure scenarios and pathways. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analyses will consider 42 key radionuclides that are generated during DOE operations and may be contained in recycled or reused metals or equipment

  11. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  12. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Directory of Open Access Journals (Sweden)

    Aysima Hacisuleyman

    2017-01-01

    Full Text Available It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  13. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Science.gov (United States)

    Hacisuleyman, Aysima; Erman, Burak

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  14. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  15. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-01-01

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL

  16. Coevolving residues of (beta/alpha)(8)-barrel proteins play roles in stabilizing active site architecture and coordinating protein dynamics.

    Science.gov (United States)

    Shen, Hongbo; Xu, Feng; Hu, Hairong; Wang, Feifei; Wu, Qi; Huang, Qiang; Wang, Honghai

    2008-12-01

    Indole-3-glycerol phosphate synthase (IGPS) is a representative of (beta/alpha)(8)-barrel proteins-the most common enzyme fold in nature. To better understand how the constituent amino-acids work together to define the structure and to facilitate the function, we investigated the evolutionary and dynamical coupling of IGPS residues by combining statistical coupling analysis (SCA) and molecular dynamics (MD) simulations. The coevolving residues identified by the SCA were found to form a network which encloses the active site completely. The MD simulations showed that these coevolving residues are involved in the correlated and anti-correlated motions. The correlated residues are within van der Waals contact and appear to maintain the active site architecture; the anti-correlated residues are mainly distributed on opposite sides of the catalytic cavity and coordinate the motions likely required for the substrate entry and product release. Our findings might have broad implications for proteins with the highly conserved (betaalpha)(8)-barrel in assessing the roles of amino-acids that are moderately conserved and not directly involved in the active site of the (beta/alpha)(8)-barrel. The results of this study could also provide useful information for further exploring the specific residue motions for the catalysis and protein design based on the (beta/alpha)(8)-barrel scaffold.

  17. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  18. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    Science.gov (United States)

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  19. Comparison of three 15N methods to correct for microbial contamination when assessing in situ protein degradability of fresh forages.

    Science.gov (United States)

    Kamoun, M; Ammar, H; Théwis, A; Beckers, Y; France, J; López, S

    2014-11-01

    The use of stable (15)N as a marker to determine microbial contamination in nylon bag incubation residues to estimate protein degradability was investigated. Three methods using (15)N were compared: (15)N-labeled forage (dilution method, LF), (15)N enrichment of rumen solids-associated bacteria (SAB), and (15)N enrichment of rumen liquid-associated bacteria (LAB). Herbage from forages differing in protein and fiber contents (early-cut Italian ryegrass, late-cut Italian ryegrass, and red clover) were freeze-dried and ground and then incubated in situ in the rumen of 3 steers for 3, 6, 12, 24, and 48 h using the nylon bag technique. The (15)N-labeled forages were obtained by fertilizing the plots where herbage was grown with (15)NH4 (15)NO3. Unlabeled forages (obtained from plots fertilized with NH4NO3) were incubated at the same time that ((15)NH4)2SO4 was continuously infused into the rumen of the steers, and then pellets of labeled SAB and LAB were isolated by differential centrifugation of samples of ruminal contents. The proportion of bacterial N in the incubation residues increased from 0.09 and 0.45 g bacterial N/g total N at 3 h of incubation to 0.37 and 0.85 g bacterial N/g total N at 48 h of incubation for early-cut and late-cut ryegrass, respectively. There were differences (P forage (late-cut ryegrass) was 0.51, whereas the corrected values were 0.85, 0.84, and 0.77 for the LF, SAB, and LAB methods, respectively. With early-cut ryegrass and red clover, the differences between uncorrected and corrected values ranged between 6% and 13%, with small differences among the labeling methods. Generally, methods using labeled forage or labeled SAB and LAB provided similar corrected degradability values. The accuracy in estimating the extent of degradation of protein in the rumen from in situ disappearance curves is improved when values are corrected for microbial contamination of the bag residue.

  20. A tiered analytical protocol for the characterization of heavy oil residues at petroleum-contaminated hazardous waste sites

    International Nuclear Information System (INIS)

    Pollard, S.J.T.; Kenefick, S.L.; Hrudey, S.E.; Fuhr, B.J.; Holloway, L.R.; Rawluk, M.

    1994-01-01

    The analysis of hydrocarbon-contaminated soils from abandoned refinery sites in Alberta, Canada is used to illustrate a tiered analytical approach to the characterization of complex hydrocarbon wastes. Soil extracts isolated from heavy oil- and creosote-contaminated sites were characterized by thin layer chromatography with flame ionization detection (TLC-FID), ultraviolet fluorescence, simulated distillation (GC-SIMDIS) and chemical ionization GC-MS analysis. The combined screening and detailed analytical methods provided information essential to remedial technology selection including the extent of contamination, the class composition of soil extracts, the distillation profile of component classes and the distribution of individual class components within various waste fractions. Residual contamination was characteristic of heavy, degraded oils, consistent with documented site operations and length of hydrocarbon exposure at the soil surface

  1. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China

    International Nuclear Information System (INIS)

    Wang, Changhui; Zhao, Yuanyuan; Pei, Yuansheng

    2012-01-01

    Highlights: ► Fe/Al water treatment residuals (FARs) can stabilize As, Pb, Ni, Zn, Cr and Cu. ► FARs cannot stabilize Ba and Cd. ► The properties of FARs and soil affect the FARs’ ability of stabilizing metals. - Abstract: In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work.

  2. The Relationship Between Low-Frequency Motions and Community Structure of Residue Network in Protein Molecules.

    Science.gov (United States)

    Sun, Weitao

    2018-01-01

    The global shape of a protein molecule is believed to be dominant in determining low-frequency deformational motions. However, how structure dynamics relies on residue interactions remains largely unknown. The global residue community structure and the local residue interactions are two important coexisting factors imposing significant effects on low-frequency normal modes. In this work, an algorithm for community structure partition is proposed by integrating Miyazawa-Jernigan empirical potential energy as edge weight. A sensitivity parameter is defined to measure the effect of local residue interaction on low-frequency movement. We show that community structure is a more fundamental feature of residue contact networks. Moreover, we surprisingly find that low-frequency normal mode eigenvectors are sensitive to some local critical residue interaction pairs (CRIPs). A fair amount of CRIPs act as bridges and hold distributed structure components into a unified tertiary structure by bonding nearby communities. Community structure analysis and CRIP detection of 116 catalytic proteins reveal that breaking up of a CRIP can cause low-frequency allosteric movement of a residue at the far side of protein structure. The results imply that community structure and CRIP may be the structural basis for low-frequency motions.

  3. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  4. Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model

    Science.gov (United States)

    Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.

    2013-01-01

    One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874

  5. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Nadeem A. Ansari

    2011-01-01

    Full Text Available Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs. This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related diseases. Antigenic characteristics of glycated lysine residues in proteins together with the presence of serum autoantibodies to the glycated lysine products and lysine-rich proteins in diabetes and arthritis patients indicates that these modified lysine residues may be a novel biomarker for protein glycation in aging and age-related diseases.

  6. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-01-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  7. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  8. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhui; Zhao, Yuanyuan [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China); Pei, Yuansheng, E-mail: yspei@bnu.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Fe/Al water treatment residuals (FARs) can stabilize As, Pb, Ni, Zn, Cr and Cu. Black-Right-Pointing-Pointer FARs cannot stabilize Ba and Cd. Black-Right-Pointing-Pointer The properties of FARs and soil affect the FARs' ability of stabilizing metals. - Abstract: In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work.

  9. Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.

    Science.gov (United States)

    Salsbury, Freddie R; Poole, Leslie B; Fetrow, Jacquelyn S

    2012-11-01

    One of the most popular and simple models for the calculation of pK(a) s from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pK(a) s. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pK(a) s; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pK(a) s. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pK(a) values (where the calculation should reproduce the pK(a) within experimental error). Both the general behavior of cysteines in proteins and the perturbed pK(a) in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pK(a) should be shifted, and validation of force field parameters for cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.

  10. Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification.

    Science.gov (United States)

    Chen, Yong; Li, Yang; Liu, Peng; Sun, Qun; Liu, Zhu

    2014-04-01

    A weakness of using immobilized metal affinity chromatography (IMAC) to purify recombinant proteins expressed in Pichia pastoris is the co-purification of native proteins that exhibit high affinities for Ni-IMAC. We have determined the elution profiles of P. pastoris proteins and have examined the native proteins that co-purify when eluting with 100 mM imidazole. Four major contaminants were identified: mitochondrial alcohol dehydrogenase isozyme III (mADH), nucleotide excision repair endonuclease, and the hypothetical proteins TPHA_0L01390 and TDEL_0B02190 which are homologous proteins derived from Tetrapisispora phaffii and Torulaspora delbrueckii, respectively. A new P. pastoris expression strain was engineered that eliminated the predominant contaminant, mADH, by gene disruption. The total amount of protein contaminants was reduced by 55 % without effecting cell growth. The present study demonstrates the feasibility of using a proteomic approach to facilitate bioprocess optimization.

  11. Environmental dredging residual generation and management.

    Science.gov (United States)

    Patmont, Clay; LaRosa, Paul; Narayanan, Raghav; Forrest, Casey

    2018-05-01

    The presence and magnitude of sediment contamination remaining in a completed dredge area can often dictate the success of an environmental dredging project. The need to better understand and manage this remaining contamination, referred to as "postdredging residuals," has increasingly been recognized by practitioners and investigators. Based on recent dredging projects with robust characterization programs, it is now understood that the residual contamination layer in the postdredging sediment comprises a mixture of contaminated sediments that originate from throughout the dredge cut. This mixture of contaminated sediments initially exhibits fluid mud properties that can contribute to sediment transport and contamination risk outside of the dredge area. This article reviews robust dredging residual evaluations recently performed in the United States and Canada, including the Hudson River, Lower Fox River, Ashtabula River, and Esquimalt Harbour, along with other projects. These data better inform the understanding of residuals generation, leading to improved models of dredging residual formation to inform remedy evaluation, selection, design, and implementation. Data from these projects confirm that the magnitude of dredging residuals is largely determined by site conditions, primarily in situ sediment fluidity or liquidity as measured by dry bulk density. While the generation of dredging residuals cannot be avoided, residuals can be successfully and efficiently managed through careful development and implementation of site-specific management plans. Integr Environ Assess Manag 2018;14:335-343. © 2018 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2018 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  12. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  13. Residual contamination from Cs-137 in the Sondrio area (Lombardy - Italy)

    International Nuclear Information System (INIS)

    Rimoldi, E.M.; Leonardi, L.; Cavallone, E.; Bignazzi, R.; Galimberti, A.

    2000-01-01

    The authors conducted the investigations on the contamination by Cs-137, resulting from Chernobyl's Accident, in the Sondrio area (Lombardy, Italy). Analyses were performed with NaI (T1) spectrometer. 130 samples collected from superficial earth layer (up to 15 cm) and deep earth layer (from 15 to 30 cm) of woods and meadows, pond's mud, mosses, mushrooms, wild wood fruits, forages, striated muscle from deer, chamois and roe deer, goat's and cow's milk, and running and stagnant water, were studied. Superficial earth samples always showed a higher Cs-137 concentration compared to deep earth samples, their mean activities being 68 Bq/kg (sup. wood) and 18 Bq/kg (sup. meadow). In 1 sample from superficial wood earth in Val Belsivo, the concentration was 1109 Bq/kg. The mud samples had a mean Cs-137 concentration of 96 Bq/kg. Cs-137 was always present in mosses with a mean activity of 234 Bq/kg, whereas in mushrooms contamination was continuous (mean, 63 Bq/kg). Cs-137 was absent in wild wood fruits and in forages except for one sample of bilberry (12 Bq/Kg) and one sample of forage (54 Bq/Kg). In the striated muscle samples from wild animals, chamois always showed high Cs-137 concentration (29 Bq/kg), but was intermediate in roe deer (18 Bq/kg) and lowest in deer (5 Bq/kg). In 4 deer and 4 roe deer, contamination was undetectable. Running and stagnant waters, and cow's milk were not contaminated whereas some Cs-137 activities were detected in goat milk samples (18 Bq/kg). It is concluded that residual contamination from Chernobyl's accident in the investigated areas has by now just become a scientific interest and no longer a sanitary issue, as the contamination levels detected in all the samples are clearly below the maximal admissible levels established by the European Gazettes. However, it is interesting to note that the recycling of Cs-137 is more present in wood, confirming the delicate environmental balance of this ecosystem. The routine radio

  14. Leaching and soil/groundwater transport of contaminants from coal combustion residues

    International Nuclear Information System (INIS)

    Hjelmar, O.; Hansen, E.A.; Larsen, F.; Thomassen, H.

    1992-01-01

    In this project the results of accelerated laboratory leaching tests on coal fly ash and flue gas desulfurization (FGD) products from the spray dryer absorption process (SDA) were evaluated by comparison to the results of large scale lysimeter leaching tests on the same residues. The mobility of chromium and molybdenum - two of the kev contaminants of coal combustion residue leachates - in various typical soil types was investigated by batch and column methods in the laboratory. Some of the results were confirmed by field observations at an old coal fly ash disposal site and by a lysimeter attenuation test with coal fly ash leachate on a clayed till. A large number of groundwater transport models and geochemical models were reviewed, and two of the models (Gove-Stollenwerk and CHMTRNS) were modified and adjusted and used to simulate column attenuation tests performed in the laboratory. One of the models (Grove-Stollenwerk) was used to illustrate a recommended method of environmental impact assessment, using lysimeter leaching data and laboratory column attenuation data to describe the emission and migration of Mo from a coal fly ash disposal site

  15. Flow of microemulsion through soil columns contaminated with asphaltic residue; Fluxo de microemulsoes atraves do solo contaminado com residuos asfalticos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia C.K.; Oliveira, Jose F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Oliveira, Roberto C.G.; Gonzalez, Gazpar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2004-07-01

    Nowadays, soil contamination with nonaqueous phase liquids (NAPLs) such as petroleum hydrocarbons is a major environmental problem. Significant efforts have been devoted to the development of processes to remediate sites contaminated with NAPLs. Unfortunately, most of the developed processes proved to be inefficient to remove the organic heavy fraction present in the NAPLs. Nevertheless, in our preliminary bench scale tests it was observed that, due to their high solubilization capacity and stability, microemulsions are able to remove organic heavy fractions like asphaltenes and resins, typically present in crude oils. The present work was dimensioned to evaluate, under up-flow condition, the performance of different microemulsions specially designed to remove asphaltenes fractions from soils using a column test set-up. The contaminant residual concentration was quantified by UV spectroscopy and the microemulsion efficiency determined using mass balance. The results showed that the microemulsions tested have a high capacity for removing asphaltenes fractions from contaminated soils. It was also observed that the predominant removal mechanism, solubilization or mobilization, depends essentially on the microemulsion's chemical formulation. Finally it was verified that microemulsion's formulations based on natural solvents compounds are also efficient for removing asphaltic residues. (author)

  16. Maximizing Selective Cleavages at Aspartic Acid and Proline Residues for the Identification of Intact Proteins

    Science.gov (United States)

    Foreman, David J.; Dziekonski, Eric T.; McLuckey, Scott A.

    2018-04-01

    A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500-2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa. [Figure not available: see fulltext.

  17. Bioelectronic Nose Using Odorant Binding Protein-Derived Peptide and Carbon Nanotube Field-Effect Transistor for the Assessment of Salmonella Contamination in Food.

    Science.gov (United States)

    Son, Manki; Kim, Daesan; Kang, Jinkyung; Lim, Jong Hyun; Lee, Seung Hwan; Ko, Hwi Jin; Hong, Seunghun; Park, Tai Hyun

    2016-12-06

    Salmonella infection is the one of the major causes of food borne illnesses including fever, abdominal pain, diarrhea, and nausea. Thus, early detection of Salmonella contamination is important for our healthy life. Conventional detection methods for the food contamination have limitations in sensitivity and rapidity; thus, the early detection has been difficult. Herein, we developed a bioelectronic nose using a carbon nanotube (CNT) field-effect transistor (FET) functionalized with Drosophila odorant binding protein (OBP)-derived peptide for easy and rapid detection of Salmonella contamination in ham. 3-Methyl-1-butanol is known as a specific volatile organic compound, generated from the ham contaminated with Salmonella. We designed and synthesized the peptide based on the sequence of the Drosophila OBP, LUSH, which specifically binds to alcohols. The C-terminus of the synthetic peptide was modified with three phenylalanine residues and directly immobilized onto CNT channels using the π-π interaction. The p-type properties of FET were clearly maintained after the functionalization using the peptide. The biosensor detected 1 fM of 3-methyl-1-butanol with high selectivity and successfully assessed Salmonella contamination in ham. These results indicate that the bioelectronic nose can be used for the rapid detection of Salmonella contamination in food.

  18. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    Science.gov (United States)

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  19. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for organic contaminants. 141.61 Section 141.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.61 Maximum contaminant...

  1. Effects of lysine residues on structural characteristics and stability of tau proteins

    International Nuclear Information System (INIS)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo

    2015-01-01

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  2. Effects of lysine residues on structural characteristics and stability of tau proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo, E-mail: nass@korea.ac.kr

    2015-10-23

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  3. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    Science.gov (United States)

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  4. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  5. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Directory of Open Access Journals (Sweden)

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  6. Nitrogen-to-Protein Conversion Factors for Crop Residues and Animal Manure Common in China.

    Science.gov (United States)

    Chen, Xueli; Zhao, Guanglu; Zhang, Yang; Han, Lujia; Xiao, Weihua

    2017-10-25

    Accurately determining protein content is essential in exploiting biomass as feed and fuel. A survey of biomass samples in China indicated protein contents from 2.65 to 3.98% for crop residues and from 6.07 to 10.24% for animal manure of dry basis. Conversion factors based on amino acid nitrogen (k A ) ranged from 5.42 to 6.00 for the former and from 4.78 to 5.36 for the latter, indicating that the traditional factor of 6.25 is not suitable for biomass samples. On the other hand, conversion factors from Kjeldahl nitrogen (k P ) ranged from 3.97 to 4.57 and from 2.76 to 4.31 for crop residues and animal manure, respectively. Of note, conversion factors were strongly affected by amino acid composition and levels of nonprotein nitrogen. Thus, k P values of 4.23 for crop residues, 4.11 for livestock manure, and 3.11 for poultry manure are recommended to better estimate protein content from total nitrogen.

  7. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.

    Science.gov (United States)

    Walia, Rasna R; Caragea, Cornelia; Lewis, Benjamin A; Towfic, Fadi; Terribilini, Michael; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2012-05-10

    RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition 'code' that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (Naïve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequence-based classifiers that use a position-specific scoring matrix (PSSM

  8. [Environment of tryptophan residues in proteins--a factor for stability to oxidative nitrosylation. I. Analysis of primary structure].

    Science.gov (United States)

    Beda, N V; Nedospasov, A A

    2001-01-01

    Micellar catalysis under aerobic conditions effectively accelerates oxidative nitrosylation because of solubilization of NO and O2 by protein membranes and hydrophobic nuclei. Nitrosylating intermediates NOx (NO2, N2O3, N2O4) form mainly in the hydrophobic phase, and therefore their solubility in aqueous phase is low and hydrolysis is rapid, local concentration of NOx in the hydrophobic phase being essentially higher than in aqueous. Tryptophan is a hydrophobic residue and can nitrosylate with the formation of isomer N-nitrosotryptophans (NOW). Without denitrosylation mechanism, the accumulation of NOW in proteins of NO-synthesizing organisms would be constant, and long-living proteins would contain essential amounts of NOW, which is however not the case. Using Protein Data Bank (more than 78,000 sequences) we investigated the distribution of tryptophan residues environment (22 residues on each side of polypeptide chain) in proteins with known primary structure. Charged and polar residues (D, H, K, N, Q, R, S) are more incident in the immediate surrounding of tryptophan (-6, -5, -2, -1, 1, 2, 4) and hydrophobic residues (A, F, I, L, V, Y) are more rare than in remote positions. Hence, an essential part of tryptophan residues is situated in hydrophilic environment, which decreases the nitrosylation velocity because of lower NOx concentration in aqueous phase and allows the denitrosylation reactions course via nitrosonium ion transfer on nucleophils of functional groups of protein and low-molecular compounds in aqueous phase.

  9. Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model

    Directory of Open Access Journals (Sweden)

    Tekpinar Mustafa

    2009-07-01

    Full Text Available Abstract Backgrounds It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and computational means. Results We have performed a large-scale evaluation of the predictions of dynamically important residues by a variety of computational protocols including three based on the perturbation and correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test cases with >500 pairs of protein structures. The dynamically important residues predicted by the perturbation and correlation analysis are found to be strongly or moderately conserved in >67% of test cases. They form a sparse network of residues which are clustered both in 3D space and along protein sequence. Their overall conservation is attributed to their dynamic role rather than ligand binding or high network connectivity. Conclusion By modeling how the protein structural fluctuations respond to residue-position-specific perturbations, our highly efficient perturbation and correlation analysis can be used to dissect the functional conformational changes in various proteins with a residue level of detail. The predictions of dynamically important residues serve as promising targets for mutational and functional studies.

  10. Allowable residual-contamination levels for decommissioning facilities in the 100 areas of the Hanford Site

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1983-07-01

    This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for five generic categories of facilities in the 100 Areas of the Hanford Site. The purpose of this study is to provide ARCL data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use provided by this report is intended to permit a full consideration of decommissioning alternatives. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm 2 ), and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are presented in an appendix for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste

  11. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  12. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. 40 CFR 141.62 - Maximum contaminant levels for inorganic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for inorganic contaminants. 141.62 Section 141.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.62 Maximum...

  14. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  15. Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues

    Directory of Open Access Journals (Sweden)

    Hana eUhlíková

    2016-02-01

    Full Text Available Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium spp. classified as oomycete PAMPs. Although alfa- and beta-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, beta-elicitins (possessing 6-7 lysine residues are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the alfa-isoforms (with only 1-3 lysine residues.To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of beta-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein’s charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins’ movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  16. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps

    KAUST Repository

    Oliva, Romina; Chermak, Edrisse; Cavallo, Luigi

    2015-01-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  17. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps

    KAUST Repository

    Oliva, Romina

    2015-07-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  18. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    Science.gov (United States)

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    Science.gov (United States)

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  20. Are tyrosine residues involved in the photoconversion of the water-soluble chlorophyll-binding protein of Chenopodium album?

    Science.gov (United States)

    Takahashi, S; Seki, Y; Uchida, A; Nakayama, K; Satoh, H

    2015-05-01

    Non-photosynthetic and hydrophilic chlorophyll (Chl) proteins, called water-soluble Chl-binding proteins (WSCPs), are distributed in various species of Chenopodiaceae, Amaranthaceae, Polygonaceae and Brassicaceae. Based on their photoconvertibility, WSCPs are categorised into two classes: Class I (photoconvertible) and Class II (non-photoconvertible). Chenopodium album WSCP (CaWSCP; Class I) is able to convert the chlorin skeleton of Chl a into a bacteriochlorin-like skeleton under light in the presence of molecular oxygen. Potassium iodide (KI) is a strong inhibitor of the photoconversion. Because KI attacks tyrosine residues in proteins, tyrosine residues in CaWSCP are considered to be important amino acid residues for the photoconversion. Recently, we identified the gene encoding CaWSCP and found that the mature region of CaWSCP contained four tyrosine residues: Tyr13, Tyr14, Tyr87 and Tyr134. To gain insight into the effect of the tyrosine residues on the photoconversion, we constructed 15 mutant proteins (Y13A, Y14A, Y87A, Y134A, Y13-14A, Y13-87A, Y13-134A, Y14-87A, Y14-134A, Y87-134A, Y13-14-87A, Y13-14-134A, Y13-87-134A, Y14-87-134A and Y13-14-87-134A) using site-directed mutagenesis. Amazingly, all the mutant proteins retained not only chlorophyll-binding activity, but also photoconvertibility. Furthermore, we found that KI strongly inhibited the photoconversion of Y13-14-87-134A. These findings indicated that the four tyrosine residues are not essential for the photoconversion. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    Directory of Open Access Journals (Sweden)

    Pontil Massimiliano

    2009-10-01

    Full Text Available Abstract Background Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (ΔΔG measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots" at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. Results We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which ΔΔG ≥ 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. Conclusion We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been

  2. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    Science.gov (United States)

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. 40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels (MCLs) for microbiological contaminants. 141.63 Section 141.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.63 Maximum...

  4. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    Science.gov (United States)

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  5. JUSTIFICATION FOR THE RADIOLOGICAL CRITERIA FOR THE USE OF AREAS WITH RESIDUAL RADIOACTIVE CONTAMINATION BASED ON THE DOSE APPROACH

    Directory of Open Access Journals (Sweden)

    V. Yu. Golikov

    2017-01-01

    Full Text Available The article presents a methodology for assessing the radiological criteria for the use of the territory (a land plot with buildings with residual radioactive contamination from the so-called “green area”, i.e., complete release from radiation control until a number of restrictions are imposed on the use of the territory. In accordance with the further use of the territory, a range of scenarios and pathways for the exposure of the population was considered. A set of models and their parameters, corresponding to the number of the considered pathways of exposure, was defined. Assuming a uniform distribution of a radionuclide with a unit concentration in the source zone, the distribution of effective doses for the population living in the territory with the residual radioactive contamination for different irradiation scenarios was calculated by stochastic modeling, 95% of the quantile of which was attributed to the dose in the representatives of the critical population group. Next, the value of radiological criteria, depending on the implemented scenario, was determined as the ratio of the dose constraint EL = 0,3 mSv/yr and 95% quantile in the distribution of the effective dose from a unit contamination. The numerical values of radiological criteria for the presence of radionuclides in the soil are presented, both for the radiation scenarios that correspond to the permanent residence of the population in the contaminated territory and for recreational use. A further consideration is given to the so-called worker scenario, which corresponds to the limited time spent on the contaminated territory and the simultaneous effects of radionuclides contained both in the soil and in the construction of the buildings. A comparison of the results of the own calculations with the data of other authors was carried out.

  6. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu; Wang Wei; Wu Licheng; Wu Weixiang

    2006-01-01

    Expression of Cry1Ab protein in Bt transgenic rice (KMD) and its residue in the rhizosphere soil during the whole growth in field, as well as degradation of the protein from KMD straw in five soils under laboratory incubation were studied. The residue of Cry1Ab protein in KMD rhizosphere soil was undetectable (below the limit of 0.5 ng/g air-dried soil). The Cry1Ab protein contents in the shoot and root of KMD were 3.23-8.22 and 0.68-0.89 μg/g (fresh weight), respectively. The half-lives of the Cry1Ab protein in the soils amended with KMD straw (4%, w/w) ranged from 11.5 to 34.3 d. The residence time of the protein varied significantly in a Fluvio-marine yellow loamy soil amended with KMD straw at the rate of 3, 4 and 7%, with half-lives of 9.9, 13.8 and 18 d, respectively. In addition, an extraction method for Cry1Ab protein in soil was developed, with extraction efficiencies of 46.4-82.3%. - Cry1Ab protein was not detected in the rhizosphere soil of field-grown Bt transgenic rice

  7. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.

    Directory of Open Access Journals (Sweden)

    Daniel Y Little

    Full Text Available The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1 removes a significant, non-coevolutionary bias and 2 accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations.

  8. A method for determining allowable residual contamination levels of radionuclide mixtures in soil

    International Nuclear Information System (INIS)

    Napier, B.A.

    1982-05-01

    An important consideration in the disposal of radioactive wastes, and consequently in the preparation of plans for remedial actions at contaminated sites, is the amount of radioactive contamination that may be allowed to remain at any particular waste site. The allowable residual contamination level (ARCL) is dependent on the radiation dose limit imposed, the physical and environmental characteristics of the waste site, and the time at which exposure to the wastes is assumed to occur. The steps in generating an ARCL are generally as follows: (1) develop plausible, credible site-specific exposure scenario; (2) calculate maximum annual radiation doses to an individual for each radionuclide based on the existing physical characteristics of the waste site and the site-specific exposure scenario; (3) calculate the ARCL for the dose limit desired, including all radionuclides present, uncorrected for site cleanup or barrier considerations; and (4) apply any corrections for proposed cleanup activity or addition of barriers to waste migration or uptake to obtain the ARCL applicable to the proposed action. Use of this method allows appropriate application of resources to achieve uniform compliance with a single regulatory standard, i.e., a radiation dose rate limit. Application and modification of the ARCL method requires appropriate models of the environmental transport and fate of radionuclides. Example calculations are given for several specific waste forms and waste site types in order to demonstrate the technique and generate comparisons with other approaches

  9. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

    International Nuclear Information System (INIS)

    Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles

    2003-01-01

    We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms

  10. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN...

  11. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins

    Science.gov (United States)

    Lin, Chih-Ying

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins. PMID:29381770

  12. Recovery of transuranics from process residues

    International Nuclear Information System (INIS)

    Gray, J.H.; Gray, L.W.

    1987-01-01

    Process residues are generated at both the Rocky Flats Plant (RFP) and the Savannah River Plant (SRP) during aqueous chemical and pyrochemical operations. Frequently, process operations will result in either impure products or produce residues sufficiently contaminated with transuranics to be nondiscardable as waste. Purification and recovery flowsheets for process residues have been developed to generate solutions compatible with subsequent Purex operations and either solid or liquid waste suitable for disposal. The ''scrub alloy'' and the ''anode heel alloy'' are examples of materials generated at RFP which have been processed at SRP using the developed recovery flowsheets. Examples of process residues being generated at SRP for which flowsheets are under development include LECO crucibles and alpha-contaminated hydraulic oil

  13. Sustainable System for Residual Hazards Management

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-01-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today's waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous long-term management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by external intrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the long-term success of the prescribed system. In fact

  14. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  15. Triosephosphate isomerase is a common crystallization contaminant of soluble His-tagged proteins produced in Escherichia coli

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Vinaik, Roohi; Gehring, Kalle

    2013-01-01

    Crystals of E. coli triosephosphate isomerase were obtained as a contaminant and its structure was determined to 1.85 Å resolution. Attempts to crystallize several mammalian proteins overexpressed in Escherichia coli revealed a common contaminant, triosephosphate isomerase, a protein involved in glucose metabolism. Even with triosephosphate isomerase present in very small amounts, similarly shaped crystals appeared in the crystallization drops in a number of polyethylene glycol-containing conditions. All of the target proteins were His-tagged and their purification involved immobilized metal-affinity chromatography (IMAC), a step that was likely to lead to triosephosphate isomerase contamination. Analysis of the triosephosphate isomerase crystals led to the structure of E. coli triosephosphate isomerase at 1.85 Å resolution, which is a significant improvement over the previous structure

  16. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G

    International Nuclear Information System (INIS)

    Cai Ling; Kosov, Daniel S.; Fushman, David

    2011-01-01

    We performed density functional calculations of backbone 15 N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245–253, 2009) to compute 15 N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15 N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15 N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.

  17. Defining an essence of structure determining residue contacts in proteins.

    Science.gov (United States)

    Sathyapriya, R; Duarte, Jose M; Stehr, Henning; Filippis, Ioannis; Lappe, Michael

    2009-12-01

    The network of native non-covalent residue contacts determines the three-dimensional structure of a protein. However, not all contacts are of equal structural significance, and little knowledge exists about a minimal, yet sufficient, subset required to define the global features of a protein. Characterisation of this "structural essence" has remained elusive so far: no algorithmic strategy has been devised to-date that could outperform a random selection in terms of 3D reconstruction accuracy (measured as the Ca RMSD). It is not only of theoretical interest (i.e., for design of advanced statistical potentials) to identify the number and nature of essential native contacts-such a subset of spatial constraints is very useful in a number of novel experimental methods (like EPR) which rely heavily on constraint-based protein modelling. To derive accurate three-dimensional models from distance constraints, we implemented a reconstruction pipeline using distance geometry. We selected a test-set of 12 protein structures from the four major SCOP fold classes and performed our reconstruction analysis. As a reference set, series of random subsets (ranging from 10% to 90% of native contacts) are generated for each protein, and the reconstruction accuracy is computed for each subset. We have developed a rational strategy, termed "cone-peeling" that combines sequence features and network descriptors to select minimal subsets that outperform the reference sets. We present, for the first time, a rational strategy to derive a structural essence of residue contacts and provide an estimate of the size of this minimal subset. Our algorithm computes sparse subsets capable of determining the tertiary structure at approximately 4.8 A Ca RMSD with as little as 8% of the native contacts (Ca-Ca and Cb-Cb). At the same time, a randomly chosen subset of native contacts needs about twice as many contacts to reach the same level of accuracy. This "structural essence" opens new avenues in the

  18. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2004-10-28

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  19. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2004-01-01

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy

  20. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  1. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  2. NPPD: A Protein-Protein Docking Scoring Function Based on Dyadic Differences in Networks of Hydrophobic and Hydrophilic Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Edward S. C. Shih

    2015-03-01

    Full Text Available Protein-protein docking (PPD predictions usually rely on the use of a scoring function to rank docking models generated by exhaustive sampling. To rank good models higher than bad ones, a large number of scoring functions have been developed and evaluated, but the methods used for the computation of PPD predictions remain largely unsatisfactory. Here, we report a network-based PPD scoring function, the NPPD, in which the network consists of two types of network nodes, one for hydrophobic and the other for hydrophilic amino acid residues, and the nodes are connected when the residues they represent are within a certain contact distance. We showed that network parameters that compute dyadic interactions and those that compute heterophilic interactions of the amino acid networks thus constructed allowed NPPD to perform well in a benchmark evaluation of 115 PPD scoring functions, most of which, unlike NPPD, are based on some sort of protein-protein interaction energy. We also showed that NPPD was highly complementary to these energy-based scoring functions, suggesting that the combined use of conventional scoring functions and NPPD might significantly improve the accuracy of current PPD predictions.

  3. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station

  4. Investigation of vitreous and crystalline ceramic materials for immobilization of alpha-contaminated residues

    International Nuclear Information System (INIS)

    Palmer, C.R.; Mellinger, G.B.; Rusin, J.M.

    1981-01-01

    Experimental investigations of two alternatives for immobilizing dispersible solid wastes contaminated with alpha-emitting radionuclides are reviewed. Borosilicate glasses and sintered silicate ceramics are being studied for such wastes, and results so far indicate both may offer attractive alternatives to waste generators. Waste oxide solubilities, de-vitrification behaviour and effects of residual carbon are examined for glasses incorporating incinerator ash and hydrated ferric oxide sludge. Glasses will accommodate these wastes at loadings of 30-60 wt% while maintaining good performance characteristics. A brief comparative evaluation of cold-pressed and sintered ceramics is also described. The effects on process and product properties of the choice of additives, waste loading and sintering temperature were determined. This approach also appears to promise economic waste loadings while achieving relatively durable waste forms. (author)

  5. Protein microarray: sensitive and effective immunodetection for drug residues

    Directory of Open Access Journals (Sweden)

    Zer Cindy

    2010-02-01

    Full Text Available Abstract Background Veterinary drugs such as clenbuterol (CL and sulfamethazine (SM2 are low molecular weight ( Results The artificial antigens were spotted on microarray slides. Standard concentrations of the compounds were added to compete with the spotted antigens for binding to the antisera to determine the IC50. Our microarray assay showed the IC50 were 39.6 ng/ml for CL and 48.8 ng/ml for SM2, while the traditional competitive indirect-ELISA (ci-ELISA showed the IC50 were 190.7 ng/ml for CL and 156.7 ng/ml for SM2. We further validated the two methods with CL fortified chicken muscle tissues, and the protein microarray assay showed 90% recovery while the ci-ELISA had 76% recovery rate. When tested with CL-fed chicken muscle tissues, the protein microarray assay had higher sensitivity (0.9 ng/g than the ci-ELISA (0.1 ng/g for detection of CL residues. Conclusions The protein microarrays showed 4.5 and 3.5 times lower IC50 than the ci-ELISA detection for CL and SM2, respectively, suggesting that immunodetection of small molecules with protein microarray is a better approach than the traditional ELISA technique.

  6. PHYSICOCHEMICAL CHARACTERISTICS, PESTICIDE RESIDUE AND AFLATOXIN CONTAMINATION OF COLD PRESSED PUMPKIN SEED (Cucurbita pepo L. OILS FROM CENTRAL ANATOLIA REGION OF TURKEY

    Directory of Open Access Journals (Sweden)

    FATMA NUR ARSLAN

    2017-06-01

    Full Text Available In this study, physicochemical characteristics, pesticide residues and aflatoxin contaminations of cold pressed pumpkin seed (Cucurbita pepo L. oils cultivated in four different central Anatolia regions of Turkey, were investigated. Lab-scale screw press machine was used to produce cold pressed pumpkin seed oils and the oil contents were found between 42.8%−47.4% for naked seeds. The physicochemical characteristic (refractive index, viscosity, color value, triglyceride profile analysis, peroxide value, iodine value, free fatty acid, saponification number, unsaponified matter, specific extinction values at 232 and 270 nm of cold pressed oils were determined by using different analytical techniques. The results showed that there was a non-significant difference between cold pressed pumpkin seed oils from different regions, in terms of physicochemical characteristics. The contents of pesticide residue and aflatoxin B1, B2, G1 and G2 contamination were determined by using validated UHPLC-MS/MS method. The chlorpyrifos pesticide residue was detected under the limit value declared by official authorities for the quality assessment of edible oils. Aflatoxins weren’t detected in any of studied pumpkin seed oils. Therefore, in food industry the positive effect of screw-pressing application could be useful for preservation of bioactive compounds during edible oil production and also enhancing of their functional properties.

  7. Reduction of negative environmental impact generated by residues of plant tissue culture laboratory

    Directory of Open Access Journals (Sweden)

    Yusleidys Cortés Martínez

    2016-01-01

    Full Text Available The research is based on the activity developed by teaching and research laboratories for biotechnology purposes with an environmental approach to determine potential contamination risk and analyze the residuals generated. The physical - chemical characterization of the residuals was carried out from contamination indicators that can affect the dumping of residual water. In order to identify the environmental risks and sources of microbial contamination of plant material propagated by in vitro culture that generate residuals, all the risk activities were identified, the type of risk involved in each activity was analyzed, as well as whether or not the standards were met of aseptic normative. The dilution and neutralization was proposed for residuals with extreme values of pH. Since the results of the work a set of measures was proposed to reduce the negative environmental impact of the laboratory residuals. Key words: biosafety, environmental management, microbial contamination

  8. Residual dipolar couplings : a new technique for structure determination of proteins in solution

    NARCIS (Netherlands)

    van Lune, Frouktje Sapke

    2004-01-01

    The aim of the work described in this thesis was to investigate how residual dipolar couplings can be used to resolve or refine the three-dimensional structure of one of the proteins of the phosphoenol-pyruvate phosphotransferase system (PTS), the main transport system for carbohydrates in

  9. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L

    Directory of Open Access Journals (Sweden)

    Li Ling

    2010-11-01

    Full Text Available Abstract Background Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism. Results The objective of this study was to identify resistance-associated proteins in response to A. flavus infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1 and a susceptible cultivar (Yueyou 7 under well-watered condition, drought stress, and A. flavus infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to A. flavus attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant

  10. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    Science.gov (United States)

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Katja E. Menger

    2015-06-01

    Full Text Available Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT, to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster.

  12. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

    Science.gov (United States)

    Rashydov, Namik M; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

  13. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  14. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue

    Directory of Open Access Journals (Sweden)

    Chaline Caren Coghetto

    Full Text Available Abstract In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L-1, corresponding to a productivity of 1.46 g L-1 h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.

  15. Optimization of the protein concentration process from residual peanut oil-cake

    Directory of Open Access Journals (Sweden)

    Gayol, M. F.

    2013-12-01

    Full Text Available The objective of this study was to find the best process conditions for preparing protein concentrate from residual peanut oil-cake (POC. The study was carried out on POC from industrial peanut oil extraction. Different protein extraction and precipitation conditions were used: water/ flour ratio (10:1, 20:1 and 30:1, pH (8, 9 and 10, NaCl concentration (0 and 0.5 M, extraction time (30, 60 and 120 min, temperature (25, 40 and 60 °C, extraction stages (1, 2 and 3, and precipitation pH (4, 4.5 and 5. The extraction and precipitation conditions which showed the highest protein yield were 10:1 water/flour ratio, extraction at pH 9, no NaCl, 2 extraction stages of 30 min at 40 °C and precipitation at pH 4.5. Under these conditions, the peanut protein concentrate (PC contained 86.22% protein, while the initial POC had 38.04% . POC is an alternative source of protein that can be used for human consumption or animal nutrition. Therefore, it adds value to an industry residue.El objetivo de este trabajo fue encontrar las mejores condiciones para obtener un concentrado de proteínas a partir de la torta residual de maní (POC. El estudio se llevó a cabo en POC provenientes de la extracción industrial de aceite de maní. Se utilizaron distintas condiciones para la extracción y precipitación de proteínas: relación agua / harina (10:1, 20:1 y 30:1, pH de extracción (8, 9 y 10, concentración de NaCl (0 y 0,5 M, tiempo de extracción (30, 60 y 120 min, temperatura (25, 40 y 60 °C, número de etapas de extracción (1, 2 y 3, y el pH de precipitación (4, 4,5 y 5. Las condiciones de extracción y de precipitación que mostraron mayor rendimiento de proteína fueron: relación de 10:1 en agua / harina, pH de extracción de 9, en ausencia de NaCl, 2 etapas de extracción de 30 min cada una a 40 °C y el pH de precipitación de 4,5. En estas condiciones, el concentrado de proteína de maní (PC fue de 86,22%, mientras que el porcentaje de proteínas de

  16. Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis

    Directory of Open Access Journals (Sweden)

    Pacífico Lucila G

    2007-01-01

    Full Text Available Abstract Background Recombinant proteins expressed in Escherichia coli vectors are generally contaminated with endotoxin. In this study, we evaluated the ability of Polymyxin B to neutralize the effect of LPS present as contaminant on Schistosoma mansoni recombinant proteins produced in E. coli in inducing TNF-α and IL-10. Peripheral blood mononuclear cells from individuals chronically infected with S. mansoni were stimulated in vitro with recombinant Sm22.6, Sm14 and P24 antigens (10 μg/mL in the presence of Polymyxin B (10 μg/mL. Results The levels of cytokines were measured using ELISA. There was greater than 90 % reduction (p S. mansoni recombinant proteins in the presence of Polymyxin B, a reduction in the levels of TNF-α and IL-10 was also observed. However, the percentage of reduction was lower when compared to the cultures stimulated with LPS, probably because these proteins are able to induce the production of these cytokines by themselves. Conclusion This study showed that Polymyxin B was able to neutralize the effect of endotoxin, as contaminant in S. mansoni recombinant antigens produced in E. coli, in inducing TNF-α and IL-10 production.

  17. Allowable residual contamination levels for decommissioning. Part 1. A description of the method

    International Nuclear Information System (INIS)

    Napier, B.A.; Kennedy, W.E. Jr.

    1984-10-01

    This paper contains a description of the methods used in a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for decommissioning facilities in the 100 Areas of the Hanford Site. The ARCL method is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. Thes modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use is intended to permit a full consideration of decommissioning alternatives. The analysis results in site-specific ARCL values that can be used for determining compliance with any annual dose limit selected. This flexibility permits proper consideration of field situations involving the radionuclide mixtures and physical conditions encountered. In addition, this method permits a full determination of as low as reasonably achievable (ALARA) conditions

  18. Residual radioactive contamination of the Maralinga range from nuclear weapons tests conducted in 1956 and 1957

    International Nuclear Information System (INIS)

    Cooper, M.B.; Duggleby, J.C.; Kotler, L.H.; Wise, K.N.

    1978-12-01

    Detailed geographical distributions and concentrations of long-lived radionuclides remaining from the major trials of nuclear weapons conducted at Maralinga in 1956 and 1957 are presented. It is shown that residual contamination due to fission products - mainly strontium-90, caesium-137 and europium-155 - are well below levels that could constitute a health hazard to occupants of the area. In the regions near the ground zeroes however, long-lived neutron activation products in soil - mainly cobalt-60 and europium-152 - are present in sufficient abundance to give rise to gamma-radiation dose-rates up to 2 milliroentgen per hour, which exceed maximum recommended dose-rates for continuous occupancy

  19. [The importance of C-terminal aspartic acid residue (D141) to the antirestriction activity of the ArdB (R64) protein].

    Science.gov (United States)

    Kudryavtseva, A A; Osetrova, M S; Livinyuk, V Ya; Manukhov, I V; Zavilgelsky, G B

    2017-01-01

    Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.

  20. Selective effects of charge on G protein activation by FSH-receptor residues 551-555 and 650-653.

    Science.gov (United States)

    Grasso, P; Deziel, M R; Reichert, L E

    1995-01-01

    Two cytosolic regions of the rat testicular FSH receptor (FSHR), residues 533-555 and 645-653, have been identified as G protein-coupling domains. We localized the activity in these domains to their C-terminal sequences, residues 551-555 (KIAKR, net charge +3) and 650-653 (RKSH, net charge +3), and examined the effects of charge on G protein activation by the C-terminal peptides, using synthetic analogs containing additions, through alanine (A) linkages, of arginine (R, +), histidine (H, +) or both. RA-KIAKR (net charge +4) mimicked the effect of FSHR-(551-555) on guanine nucleotide exchange in rat testis membranes, but reduced its ability to inhibit FSH-stimulated estradiol biosynthesis in cultured rat Sertoli cells. Further increasing net charge by the addition of H (HARA-KIAKR, net charge +5) increased guanosine 5'-triphosphate (GTP) binding, but eliminated FSHR-(551-555) effects on FSH-stimulated steroidogenesis. HA-RKSH (net charge +4) significantly inhibited guanine nucleotide exchange in rat testis membranes, but stimulated basal and potentiated FSH-induced estradiol biosynthesis in cultured rat Sertoli cells. Addition of two H residues (HAHA-RKSH, net charge +5) restored GTP binding and further potentiated basal and FSH-stimulated steroidogenesis. These results suggest that positive charges in G protein-coupling domains of the FSHR play a role in modulating G protein activation and postbinding effects of FSH, such as steroidogenesis.

  1. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rasia, Rodolfo M. [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France); Lescop, Ewen [CNRS, Institut de Chimie des Substances Naturelles (France); Palatnik, Javier F. [Universidad Nacional de Rosario, Instituto de Biologia Molecular y Celular de Rosario, Facultad de Ciencias Bioquimicas y Farmaceuticas (Argentina); Boisbouvier, Jerome, E-mail: jerome.boisbouvier@ibs.fr; Brutscher, Bernhard, E-mail: Bernhard.brutscher@ibs.fr [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France)

    2011-11-15

    It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less than 24 h on a single aligned protein sample, greatly improves convergence of the Rosetta-NMR protocol, allowing for overnight fold calculation of small proteins. We demonstrate the performance of our fast fold calculation approach for ubiquitin as a test case, and for two RNA-binding domains of the plant protein HYL1. Structure calculations based on simulated RDC data highlight the importance of an accurate and precise set of several complementary RDCs as additional input restraints for high-quality de novo structure determination.

  2. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods

    Science.gov (United States)

    This study demonstrates the application of a novel lipid removal product to the residue analysis of 65 pesticides and 52 environmental contaminants in kale, pork, salmon, and avocado by fast, low pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS). Sample preparation involves QuEChE...

  3. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  4. A Study of Residual Image in Charged-Coupled Device

    Directory of Open Access Journals (Sweden)

    Ho Jin

    2005-12-01

    Full Text Available For an image sensor CCD, electrons can be trapped at the front-side Si-SiO_2 surface interface in a case of exceeding the full well by bright source. Residual images can be made by the electrons remaining in the interface. These residual images are seen in the front-side-illuminated CCDs especially. It is not easy to find a quantitative analysis for this phenomenon in the domestic reports, although it is able to contaminate observation data. In this study, we find residual images in dark frames which were obtained from the front-side-illuminated CCD at Mt. Lemmon Optical Astronomy Observatory (LOAO, and analyze the effect to contaminated observation data by residual charges.

  5. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    Science.gov (United States)

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  6. Measurement methodology of vegetable samples from an area affected by residual contamination due to uranium mining sterile; Metodologia de medida de muestras vegetales procedentes de un terreno afectado por contaminacion residual debida a esteriles de mineria de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, N.; Suarez, J. A.; Yague, L.; Ortiz Gandia, M. I.; Marijuan, M. J.; Garcia, E.; Ortiz, T.; Alvarez, A.

    2013-07-01

    This paper presents the methodology established for radiological characterization of plant material generated during the first stage of the realization of a movement of land in an area of land affected by residual contamination due to the burial of sterile of uranium mining. (Author)

  7. Hydrolysis of insoluble fish protein residue from whitemouth croaker (Micropogonias furnieri by fungi

    Directory of Open Access Journals (Sweden)

    Vilásia Guimarães Martins

    2014-02-01

    Full Text Available A significant amount of insoluble fibrous protein, in the form of feather, hair, scales, skin and others are available as co-products of agro industrial processing. These wastes are rich in keratin and collagen. This study evaluated different fungi for the hydrolysis of insoluble fish protein residues. Proteins resulting from Micropogonias furnieri wastes through pH-shifting process were dried and milled for fermentation for 96 h. This resulted the production of keratinolytic enzymes in the medium. Trichoderma sp. on alkaline substrate (28.99 U mL-1 and Penicillium sp. on acidic substrate (31.20 U mL-1 showed the highest proteolytic activities. Penicillium sp. showed the largest free amino acid solubilization (0.146 mg mL-1 and Fusarium sp. the highest protein solubilization (6.17 mg mL-1.

  8. Introduction of potential helix-capping residues into an engineered helical protein.

    Science.gov (United States)

    Parker, M H; Hefford, M A

    1998-08-01

    MB-1 is an engineered protein that was designed to incorporate high percentages of four amino acid residues and to fold into a four-alpha-helix bundle motif. Mutations were made in the putative loop I and III regions of this protein with the aim of increasing the stability of the helix ends. Four variants, MB-3, MB-5, MB-11 and MB-13, have replacements intended to promote formation of an 'N-capping box'. The loop I and III sequences of MB-3 (both GDLST) and MB-11 (GGDST) were designed to cause alphaL C-terminal 'capping' motifs to form in helices I and III. MB-5 has a sequence, GPDST, that places proline in a favourable position for forming beta-turns, whereas MB-13 (GLDST) has the potential to form Schellman C-capping motifs. Size-exclusion chromatography suggested that MB-1, MB-3, MB-5, MB-11 and MB-13 all form dimers, or possibly trimers. Free energies for the unfolding of each of these variants were determined by urea denaturation, with the loss of secondary structure followed by CD spectroscopy. Assuming an equilibrium between folded dimer and unfolded monomer, MB-13 had the highest apparent stability (40.5 kJ/mol, with +/-2.5 kJ/mol 95% confidence limits), followed by MB-11 (39.3+/-5.9 kJ/mol), MB-3 (36.4+/-1.7 kJ/mol), MB-5 (34.7+/-2.1 kJ/mol) and MB-1 (29.3+/-1.3 kJ/mol); the same relative stabilities of the variants were found when a folded trimer to unfolded monomer model was used to calculate stabilities. All of the variants were relatively unstable for dimeric proteins, but were significantly more stable than MB-1. These findings suggest that it might be possible to increase the stability of a protein for which the three-dimensional structure is unknown by placing amino acid residues in positions that have the potential to form helix- and turn-stabilizing motifs.

  9. Direct determination of the redox status of cysteine residues in proteins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Satoshi [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Tatenaka, Yuki; Ohuchi, Yuya [Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202 (Japan); Hisabori, Toru, E-mail: thisabor@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan)

    2015-01-02

    Highlights: • A new DNA-maleimide which is cleaved by UV irradiation, DNA-PCMal, was developed. • DNA-PCMal can be used like DNA-Mal to analyze the redox state of cysteine residues. • It is useful for detecting the thiol redox status of a protein in vivo by Western blotting method. • Thus, DNA-PCMal can be a powerful tool for redox proteomics analysis. - Abstract: The redox states of proteins in cells are key factors in many cellular processes. To determine the redox status of cysteinyl thiol groups in proteins in vivo, we developed a new maleimide reagent, a photocleavable maleimide-conjugated single stranded DNA (DNA-PCMal). The DNA moiety of DNA-PCMal is easily removed by UV-irradiation, allowing DNA-PCMal to be used in Western blotting applications. Thereby the state of thiol groups in intracellular proteins can be directly evaluated. This new maleimide compound can provide information concerning redox proteins in vivo, which is important for our understanding of redox networks in the cell.

  10. The Replacement of 10 Non-Conserved Residues in the Core Protein of JFH-1 Hepatitis C Virus Improves Its Assembly and Secretion.

    Directory of Open Access Journals (Sweden)

    Loïc Etienne

    Full Text Available Hepatitis C virus (HCV assembly is still poorly understood. It is thought that trafficking of the HCV core protein to the lipid droplet (LD surface is essential for its multimerization and association with newly synthesized HCV RNA to form the viral nucleocapsid. We carried out a mapping analysis of several complete HCV genomes of all genotypes, and found that the genotype 2 JFH-1 core protein contained 10 residues different from those of other genotypes. The replacement of these 10 residues of the JFH-1 strain sequence with the most conserved residues deduced from sequence alignments greatly increased virus production. Confocal microscopy of the modified JFH-1 strain in cell culture showed that the mutated JFH-1 core protein, C10M, was present mostly at the endoplasmic reticulum (ER membrane, but not at the surface of the LDs, even though its trafficking to these organelles was possible. The non-structural 5A protein of HCV was also redirected to ER membranes and colocalized with the C10M core protein. Using a Semliki forest virus vector to overproduce core protein, we demonstrated that the C10M core protein was able to form HCV-like particles, unlike the native JFH-1 core protein. Thus, the substitution of a few selected residues in the JFH-1 core protein modified the subcellular distribution and assembly properties of the protein. These findings suggest that the early steps of HCV assembly occur at the ER membrane rather than at the LD surface. The C10M-JFH-1 strain will be a valuable tool for further studies of HCV morphogenesis.

  11. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue.

    Science.gov (United States)

    Coghetto, Chaline Caren; Vasconcelos, Carolina Bettker; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia

    In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL -1 , whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL -1 , corresponding to a productivity of 1.46gL -1 h -1 . This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Radiation protection of radioactively contaminated large areas by phytoremediation and subsequent utilization of the contaminated plant residues (PHYTOREST); Massnahmen zur Strahlenschutzvorsorge radioaktiv belasteter Grossflaechen durch Sanierung mittels Phytoremediation und anschliessende Verwertung der belasteten Pflanzenreststoffe (PHYTOREST)

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodsky, Daniel; Ollivier, Delphine; Merten, Dirk; Bergmann, Hans; Buechel, Georg [Jena Univ. (Germany). Inst. fuer Geowissenschaften; Willscher, Sabine; Wittig, Juliane; Jablonski, Lukasz; Werner, Peter [Technische Univ. Dresden, Pirna (Germany). Inst. fuer Abfallwirtschaft und Altlasten

    2010-12-15

    Much progress has been achieved over the past 20 years in remediating sites contaminated by heavy metal. However, very large contaminated areas have presented major problems to this day because of remediation costs. Phytoremediation is a new, emerging, sustainable technique of remediating areas with low heavy-metal contamination. One advantage of phytoremediation is the comparatively low cost of the process, which may make it usable also on large areas with low levels of contamination. Besides extracting and immobilizing metals, respectively, phytoremediation among other things also contributes to improving soil quality in terms of physics, chemistry, and ecology. Consequently, phytoremediation offers a great potential for the future. Research into phytoremediation of an area contaminated by heavy metals and radionuclides is carried out on a site in a former uranium mining district in Eastern Thuringia jointly by the Friedrich Schiller University, Jena, and the Technical University of Dresden in a project funded by the German Federal Ministry for Education and Research. The project serves to promote the introduction of soft, biocompatible methods of long-term remediation and to develop conceptual solutions to the subsequent utilization of contaminated plant residues. Optimizing area management is in the focus of phytoremediation studies. (orig.)

  13. Identification of residue pairing in interacting β-strands from a predicted residue contact map.

    Science.gov (United States)

    Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng

    2018-04-19

    Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .

  14. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    Science.gov (United States)

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  15. FreeContact: fast and free software for protein contact prediction from residue co-evolution.

    Science.gov (United States)

    Kaján, László; Hopf, Thomas A; Kalaš, Matúš; Marks, Debora S; Rost, Burkhard

    2014-03-26

    20 years of improved technology and growing sequences now renders residue-residue contact constraints in large protein families through correlated mutations accurate enough to drive de novo predictions of protein three-dimensional structure. The method EVfold broke new ground using mean-field Direct Coupling Analysis (EVfold-mfDCA); the method PSICOV applied a related concept by estimating a sparse inverse covariance matrix. Both methods (EVfold-mfDCA and PSICOV) are publicly available, but both require too much CPU time for interactive applications. On top, EVfold-mfDCA depends on proprietary software. Here, we present FreeContact, a fast, open source implementation of EVfold-mfDCA and PSICOV. On a test set of 140 proteins, FreeContact was almost eight times faster than PSICOV without decreasing prediction performance. The EVfold-mfDCA implementation of FreeContact was over 220 times faster than PSICOV with negligible performance decrease. EVfold-mfDCA was unavailable for testing due to its dependency on proprietary software. FreeContact is implemented as the free C++ library "libfreecontact", complete with command line tool "freecontact", as well as Perl and Python modules. All components are available as Debian packages. FreeContact supports the BioXSD format for interoperability. FreeContact provides the opportunity to compute reliable contact predictions in any environment (desktop or cloud).

  16. Deamidation of asparagine and glutamine residues in proteins and peptides: structural determinants and analytical methodology

    NARCIS (Netherlands)

    Bischoff, Rainer; Kolbe, H.V.

    1994-01-01

    Non-enzymatic deamidation of asparagine and glutamine residues in proteins and peptides are reviewed by first outlining the well-described reaction mechanism involving cyclic imide intermediates, followed by a discussion of structural features which influence the reaction rate. The second and major

  17. Inulin-125I-tyramine, an improved residualizing label for studies on sites of catabolism of circulating proteins

    International Nuclear Information System (INIS)

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1988-01-01

    Residualizing labels for protein, such as dilactitol-125I-tyramine (125I-DLT) and cellobiitol-125I-tyramine, have been used to identify the tissue and cellular sites of catabolism of long-lived plasma proteins, such as albumin, immunoglobulins, and lipoproteins. The radioactive degradation products formed from labeled proteins are relatively large, hydrophilic, resistant to lysosomal hydrolases, and accumulate in lysosomes in the cells involved in degradation of the carrier protein. However, the gradual loss of the catabolites from cells (t1/2 approximately 2 days) has limited the usefulness of residualizing labels in studies on longer lived proteins. We describe here a higher molecular weight (Mr approximately 5000), more efficient residualizing glycoconjugate label, inulin-125I-tyramine (125I-InTn). Attachment of 125I-InTn had no effect on the plasma half-life or tissue sites of catabolism of asialofetuin, fetuin, or rat serum albumin in the rat. The half-life for hepatic retention of degradation products from 125I-InTn-labeled asialofetuin was 5 days, compared to 2.3 days for 125I-DLT-labeled asialofetuin. The whole body half-lives for radioactivity from 125I-InTn-, 125I-DLT-, and 125I-labeled rat serum albumin were 7.5, 4.3, and 2.2 days, respectively. The tissue distribution of degradation products from 125I-InTn-labeled proteins agreed with results of previous studies using 125I-DLT, except that a greater fraction of total degradation products was recovered in tissues. Kinetic analyses indicated that the average half-life for retention of 125I-InTn degradation products in tissues is approximately 5 days and suggested that in vivo there are both slow and rapid routes for release of degradation products from cells

  18. Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2007-05-23

    This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.

  19. SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments

    DEFF Research Database (Denmark)

    Jessen, Leon Ivar; Hoof, Ilka; Lund, Ole

    2013-01-01

    Site does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set......) using a set of human immunodeficiency virus protease-inhibitor genotype–phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found...

  20. Reciprocally coupled residues crucial for protein kinase Pak2 activity calculated by statistical coupling analysis.

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Hsu

    2010-03-01

    Full Text Available Regulation of Pak2 activity involves at least two mechanisms: (i phosphorylation of the conserved Thr(402 in the activation loop and (ii interaction of the autoinhibitory domain (AID with the catalytic domain. We collected 482 human protein kinase sequences from the kinome database and globally mapped the evolutionary interactions of the residues in the catalytic domain with Thr(402 by sequence-based statistical coupling analysis (SCA. Perturbation of Thr(402 (34.6% suggests a communication pathway between Thr(402 in the activation loop, and Phe(387 (DeltaDeltaE(387F,402T = 2.80 in the magnesium positioning loop, Trp(427 (DeltaDeltaE(427W,402T = 3.12 in the F-helix, and Val(404 (DeltaDeltaE(404V,402T = 4.43 and Gly(405 (DeltaDeltaE(405G,402T = 2.95 in the peptide positioning loop. When compared to the cAMP-dependent protein kinase (PKA and Src, the perturbation pattern of threonine phosphorylation in the activation loop of Pak2 is similar to that of PKA, and different from the tyrosine phosphorylation pattern of Src. Reciprocal coupling analysis by SCA showed the residues perturbed by Thr(402 and the reciprocal coupling pairs formed a network centered at Trp(427 in the F-helix. Nine pairs of reciprocal coupling residues crucial for enzymatic activity and structural stabilization were identified. Pak2, PKA and Src share four pairs. Reciprocal coupling residues exposed to the solvent line up as an activation groove. This is the inhibitor (PKI binding region in PKA and the activation groove for Pak2. This indicates these evolutionary conserved residues are crucial for the catalytic activity of PKA and Pak2.

  1. Dityrosine, 3,4-Dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation

    DEFF Research Database (Denmark)

    Dalsgaard, Trine Kastrup; Nielsen, Jacob Holm; Brown, Bronwyn

    2011-01-01

    Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals, with thi......Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals...

  2. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    Science.gov (United States)

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  3. Cotton contamination

    CSIR Research Space (South Africa)

    Van der Sluijs, MHJ

    2018-05-01

    Full Text Available This review focusses on physical forms of contaminant including the presence, prevention and/or removal of foreign bodies, stickiness and seed-coat fragments rather than the type and quantity of chemical residues that might be present in cotton...

  4. Lindane residues in fish inhabiting Nigerian rivers

    International Nuclear Information System (INIS)

    Okereke, G.U.; Dje, Y.

    1997-01-01

    Analysis for residues of lindane in fish collected from various rivers close to rice agroecosystems showed that the concentrations of lindane ranged from none detectable to 3.4 mg kg -1 . Fish from rivers where strict regulations prohibits its use had no detectable lindane residues while appreciable amounts of lindane were found in fish were such restriction was not enforced with the variation attributed to the extent of use of lindane in the area of contamination. The investigation confirms that the use of lindane in rice production in Nigeria can cause the contamination of fish in nearby rivers. (author). 16 refs, 2 tab

  5. Evaluation of residue-residue contact predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the subset of predicted contact pairs versus all pairs of residues in the structure. The emphasis is placed on the prediction of long-range contacts (i.e., contacts between residues separated by at least 24 residues along sequence) in target proteins that cannot be easily modeled by homology. Although there is considerable activity in the field, the current analysis reports no discernable progress since CASP8.

  6. Protein Coexpression Using FMDV 2A: Effect of “Linker” Residues

    Directory of Open Access Journals (Sweden)

    Ekaterina Minskaia

    2013-01-01

    Full Text Available Many biomedical applications absolutely require, or are substantially enhanced by, coexpression of multiple proteins from a single vector. Foot-and-mouth disease virus 2A (F2A and “2A-like” sequences (e.g., Thosea asigna virus 2A; T2A are used widely for this purpose since multiple proteins can be coexpressed by linking open reading frames (ORFs to form a single cistron. The activity of F2A “cleavage” may, however, be compromised by both the use of shorter versions of F2A and the sequences (derived from multiple-purpose cloning sites used to link F2A to the upstream protein. To characterise these effects, different lengths of F2A and T2A were inserted between green and cherry fluorescent proteins. Mutations were introduced in the linker region immediately upstream of both F2A- and T2A-based constructs and activities determined using both cell-free translation systems and transfected cells. In shorter versions of F2A, activity may be affected by both the C-terminal sequence of the protein upstream and, equally strikingly, the residues immediately upstream introduced during cloning. Mutations significantly improved activity for shorter versions of F2A but could decrease activity in the case of T2A. These data will aid the design of cloning strategies for the co-expression of multiple proteins in biomedical/biotechnological applications.

  7. Intermolecular Modes between LH2 Bacteriochlorophylls and Protein Residues: The Effect on the Excitation Energies.

    Science.gov (United States)

    Anda, André; De Vico, Luca; Hansen, Thorsten

    2017-06-08

    Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.

  8. Review on Sources and Handling Method of Pesticide Residues in Animal Products

    Directory of Open Access Journals (Sweden)

    Indraningsih

    2006-06-01

    Full Text Available Field studies and literature search showed that some pesticide residues either organochlorines (OC or organophosphates (OP were detected in animal products (meat and milk . Pesticide residues in meat collected from West Java were detected at the level of 0 .8 ppb lindane and 62 ppb diazinon . While in meat from Lampung was detected at the level of 7 ppb lindane . 2 .7 heptachlor, 0 .8 endosulfan and 0 .5 ppb aldrin . Furthermore, pesticide residues were also detected in the milk collected from West, Central and East Java . The levels of lindane were 2,3 ; 15,9 ; 0,2 ppb ; heptachlor 8 ; 0 .4 and 0,05 ppb; diazinon 8 ; 0 and 1,8 ppb; CPM 0,4 ; 0,8 and 0 ppb ; endosulfan 0,1 ; 0,04 and 0,05 ppb for West, Central and East Java, respectively . The source of pesticide contamination in animal products is generally originated from feed materials, fodders . contaminated soils and water around the farm areas . Minimalization approach of pesticide residues in animal products could be conducted integratedly, such as through chemical process, biodegradation using microorganisms . Organic farming system is recognised as an alternative that may be applied to minimise contamination on agricultural land, eventually reducing pesticide residues in the agricultural products . Feeding with organic agricultural by-products with low pesticide residues appears to reduce pesticide residues in animal products . In order to eliminate pesticide contamination in soil, it has to be conducted progressively by implementing sustainable organic farming .

  9. Residual viral and bacterial contamination of surfaces after cleaning and disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Hazeleger, W.C.; Koopmans, M.; Zwietering, M.H.; Beumer, R.R.; Duizer, E.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses,

  10. Effects of environmental contaminants on reptiles: A review

    Science.gov (United States)

    Hall, R.J.

    1980-01-01

    The literature relating to the effects of environmental contaminants on reptiles is reviewed and certain generalizations based on studies of other kinds of vertebrates are presented. Reports of reptilian mortality from pesticide applications are numerous enough to establish the sensitivity of reptiles to these materials. Reports of residue analyses demonstrate the ability of reptiles to accumulate various contaminants. but the significance of the residues to reptilian populations is unknown. A few authors have reported the distribution of residues in reptilian tissues; others have investigated uptake or loss rates. Physiological studies have shown that organochlorines may inhibit enzymes involved in active transport and have correlated the activity of potential detoxifying enzymes with residue levels. There is some suggestion that pesticide residues may interfere with reproduction in oviparous snakes. Needs for future research are discussed.

  11. Report of the Scientific Committee of the Spanish Agency for Consumer Affairs, Food Safety and Nutrition (AECOSAN) in relation to the risk of the presence of sulphonamide residues in eggs resulting from cross-contamination in feed production

    OpenAIRE

    Scientific Committee

    2017-01-01

    Sulphonamides can be administered by adding them to feed within the framework of legal use to treat diseases in animals intended for use in the production of foods, except laying hens. Furthermore, in feed production, cross-contaminations can occur from medicated feed that lead to the appearance of residues of these medicines in animal by-products. In particular, on some occasions, sulphonamide residues have been detected in eggs resulting from cross-contamination in feed production. The Scie...

  12. Assessment of the potential radiological impact of residual contamination in the Maralinga and Emu areas

    International Nuclear Information System (INIS)

    Haywood, S.M.; Smith, J.

    1990-10-01

    The report presents an assessment of potential doses to future inhabitants of the Maralinga and Emu areas of Southern Australia, where nuclear weapons tests in the 1950s and 1960s resulted in widespread residual radioactive contamination. Annual effective doses of several millisieverts would be expected to result from continual occupancy within contours enclosing areas of several hundred square kilometres. Larger predicted annual effective doses - of the order of 0.5 Sv -would be expected to occur from 100% occupancy in small regions immediately surrounding the test sites, but continual occupancy of such areas is highly unlikely because of their small size. The most significant dose pathways are inhalation of resuspended activity and ingestion of soil by infants. An analysis of the effects of uncertainties in the dose calculation indicated the uncertainty distribution on predicted doses from the inhalation pathway. (author)

  13. Earthworm tolerance to residual agricultural pesticide contamination

    DEFF Research Database (Denmark)

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara

    2014-01-01

    of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus ®, 0.1 μg active...

  14. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation

    Directory of Open Access Journals (Sweden)

    Cody Caba

    2018-02-01

    Full Text Available Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI, the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin. A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  15. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation.

    Science.gov (United States)

    Caba, Cody; Ali Khan, Hyder; Auld, Janeen; Ushioda, Ryo; Araki, Kazutaka; Nagata, Kazuhiro; Mutus, Bulent

    2018-01-01

    Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys 57 and Lys 401 of human PDI in vitro . Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys 57 and Lys 401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys 57 and acLys 401 . The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  16. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    International Nuclear Information System (INIS)

    Negi, Sunita; Atilgan, Ali Rana; Atilgan, Canan

    2012-01-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca +2 ion between the two lobes.

  17. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    Science.gov (United States)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  18. Chlorination of tyrosyl residues in peptides and proteins by hypochlorous acid

    International Nuclear Information System (INIS)

    Kettle, A.J.; Chapman, A.L.P.; Senthilmohan, R.; Vile, G.F.; Chai, L.L.

    1998-01-01

    Full text: Hypochlorous acid (HOCI) is the major strong oxidant produced by neutrophils. These granulocytic cells use HOCI to kill bacteria and it is also proposed to promote inflammation. Previously, it was shown that HOCI converts tyrosyl residues in proteins to 3-chlorotyrosine. This chlorinated molecule is an ideal biomarker for determining the precise roles HOCI plays in bacterial killing and inflammatory tissue damage. We have investigated the reaction of HOCI with tyrosyl residues in peptides and proteins to establish whether or not chlorinated products in addition to 3-chlorotyrosine are formed. When 200μM HOCI was added to 500μg/ml of bovine serum albumin both 3-chlorotyrosine and 3,5-dichlorotyrosine were formed. The monochlorinated amino acid was the predominant product and its formation was complete by 20 minutes whereas levels of 3,5-dichlorotyrosine continued to increase for up to an hour. Amounts of both chlorinated products increased with increasing concentrations of HOCI until a plateau was reached at about 800μM. At all concentrations of HOCI a substantial amount of the tyrosine that had reacted was unaccounted for as either 3-chlorotyrosine or 3,5-dichlorotyrosine. Similar results were obtained with small peptides containing tyrosine. Sub-stoichiometric concentrations of HOCI converted tyrosyl residues in GGYR to 3-chlorotyrosine. At higher concentrations of HOCI, chlorination was rapid and both 3-chlorotyrosine and 3,5-dichlorotyrosine were produced but they accounted for less than 50% of the products. To identify the additional products of the reaction, we reacted HOCI with tyrosine analogues including N-acetyltyrosine, phydroxyphenylacetic acid, and 4-propylphenol. Separation of the reaction mixture by HPLC revealed that numerous products were formed besides mono and dichlorinated derivatives of the parent compounds. Analysis of the products by gas chromatography/mass spectrometry strongly indicated that mono and dichlorinated

  19. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  20. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.

    2004-01-01

    Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts...... as a general base. Most of our understanding of the role of Asp(181). is derived from studies with the Yersinia PTP and the mammalian PTP1B, and to some extent also TC (T-cell)-PTP and, the related PTPalpha and PTPepsilon. The neighbouring residue 182 is a phenylalanine in these four mammalian enzymes...... and a glutamine in Yersinia PTP. Surprisingly, little attention has been paid to the fact that this residue is a histidine in most other mammalian PTPs. Using a reciprocal single-point mutational approach with introduction of His(182) in PTP1B and Phe(182) in PTPH1, we demonstrate here that His(182)-PTPs...

  1. Mapping allostery through computational glycine scanning and correlation analysis of residue-residue contacts.

    Science.gov (United States)

    Johnson, Quentin R; Lindsay, Richard J; Nellas, Ricky B; Fernandez, Elias J; Shen, Tongye

    2015-02-24

    Understanding allosteric mechanisms is essential for the physical control of molecular switches and downstream cellular responses. However, it is difficult to decode essential allosteric motions in a high-throughput scheme. A general two-pronged approach to performing automatic data reduction of simulation trajectories is presented here. The first step involves coarse-graining and identifying the most dynamic residue-residue contacts. The second step is performing principal component analysis of these contacts and extracting the large-scale collective motions expressed via these residue-residue contacts. We demonstrated the method using a protein complex of nuclear receptors. Using atomistic modeling and simulation, we examined the protein complex and a set of 18 glycine point mutations of residues that constitute the binding pocket of the ligand effector. The important motions that are responsible for the allostery are reported. In contrast to conventional induced-fit and lock-and-key binding mechanisms, a novel "frustrated-fit" binding mechanism of RXR for allosteric control was revealed.

  2. Residues in food derived from animals

    International Nuclear Information System (INIS)

    Grossklaus, D.

    1989-01-01

    The first chapter presents a survey of fundamentals and methods of the detection and analysis of residues in food derived from animals, also referring to the resulting health hazards to man, and to the relevant legal provisions. The subsequent chapters have been written by experts of the Federal Health Office, each dealing with particular types of residues such as those of veterinary drugs, additives to animal feeds, pesticide residues, and with environmental pollutants and the contamination of animal products with radionuclides. (MG) With 35 figs., 61 tabs [de

  3. Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season.

    Science.gov (United States)

    Xiao, Manqiu; Dong, Shanshan; Li, Zhaolei; Tang, Xu; Chen, Yi; Yang, Shengmao; Wu, Chunyan; Ouyang, Dongxin; Fang, Changming; Song, Zhiping

    2015-12-01

    Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field. No significant difference was detected in the remaining mass, total C and total N among cultivars under aerobic conditions, whereas significant differences in the remaining mass and total C were detected between Kefeng6 and Kefeng8 and Minghui86 under the flooded condition. A higher decomposition rate constant (km) was measured under the flooded condition compared with the aerobic condition for leaf residues, whereas the reverse was observed for root residues. The enzyme-linked immunosorbent assay (ELISA), which was used to monitor the changes in the Cry1Ac protein in Bt rice residues, indicated that (1) the degradation of the Cry1Ac protein under both conditions best fit first-order kinetics, and the predicted DT50 (50% degradation time) of the Cry1Ac protein ranged from 3.6 to 32.5 days; (2) the Cry1Ac protein in the residue degraded relatively faster under aerobic conditions; and (3) by the end of the study (~154 days), the protein was present at a low concentration in the remaining residues under both conditions. The degradation rate constant was negatively correlated with the initial carbon content and positively correlated with the initial Cry1Ac protein concentration, but it was only correlated with the mass decomposition rate constants under

  4. Interpreting residues of petroleum hydrocarbons in wildlife tissues

    International Nuclear Information System (INIS)

    Hall, R.J.; Coon, N.C.

    1988-08-01

    This report is the first publication in the field of environmental-contaminant effects on wildlife to tell the reader how to interpret the results of analytical chemical results. Specifically, the publication describes how to interpret residues of petroleum hydrocarbons in wildlife tissues. Pollutant oil residues in avian species are emphasized

  5. Allowable residual contamination levels of radionuclides in soil from pathway analysis

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Baes, C.F. III

    1987-01-01

    The Remedial Action Program (RAP) at Oak Ridge National Laboratory will include well drilling, facility upgrades, and other waste management operations likely to involve soils contaminated with radionuclides. A preliminary protocol and generalized criteria for handling contaminated soils is needed to coordinate and plan RAP activities, but there exists only limited information on contaminate nature and distribution at ORNL RAP sites. Furthermore, projections of long-term decommissioning and closure options for these sites are preliminary. They have adapted a pathway analysis model, DECOM, to quantify risks to human health from radionuclides in soil and used it to outline preliminary criteria for determining the fate of contaminated soil produced during RAP activities. They assumed that the site could be available for unrestricted use immediately upon decontamination. The pathways considered are consumption of food grown on the contaminated soil, including direct ingestion of soil from poorly washed vegetables, direct radiation from the ground surface, inhalation of resuspended radioactive soil, and drinking water from a well drilled through or near the contaminated soil. We will discuss the assumptions and simplifications implicit in DECOM, the site-specific data required, and the results of initial calculations for the Oak Ridge Reservation

  6. The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Osmark, Peter; Neergaard, Thomas B.

    1999-01-01

    The acyl-coenzyme A-binding proteins (ACBPs) contain 26 highly conserved sequence positions. The majority of these have been mutated in the bovine protein, and their influence on the rate of two-state folding and unfolding has been measured. The results identify eight sequence positions, out of 24...... probed, that are critical for fast productive folding. The residues are all hydrophobic and located in the interface between the N- and C-terminal helices. The results suggest that one specific site dominated by conserved hydrophobic residues forms the structure of the productive rate-determining folding...... step and that a sequential framework model can describe the protein folding reaction....

  7. Food Forensics: Using Mass Spectrometry To Detect Foodborne Protein Contaminants, as Exemplified by Shiga Toxin Variants and Prion Strains.

    Science.gov (United States)

    Silva, Christopher J

    2018-06-13

    Food forensicists need a variety of tools to detect the many possible food contaminants. As a result of its analytical flexibility, mass spectrometry is one of those tools. Use of the multiple reaction monitoring (MRM) method expands its use to quantitation as well as detection of infectious proteins (prions) and protein toxins, such as Shiga toxins. The sample processing steps inactivate prions and Shiga toxins; the proteins are digested with proteases to yield peptides suitable for MRM-based analysis. Prions are detected by their distinct physicochemical properties and differential covalent modification. Shiga toxin analysis is based on detecting peptides derived from the five identical binding B subunits comprising the toxin. 15 N-labeled internal standards are prepared from cloned proteins. These examples illustrate the power of MRM, in that the same instrument can be used to safely detect and quantitate protein toxins, prions, and small molecules that might contaminate our food.

  8. Contamination analysis unit

    International Nuclear Information System (INIS)

    Gregg, H.R.; Meltzer, M.P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig

  9. Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings

    International Nuclear Information System (INIS)

    Montalvao, Rinaldo W.; De Simone, Alfonso; Vendruscolo, Michele

    2012-01-01

    Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural restraints in molecular dynamics simulations we show that it is possible to extract effectively the information provided by RDCs about the conformational fluctuations in the native states of proteins. The approach that we present can be used in a wide range of alignment media, including Pf1, charged bicelles and gels. The accuracy of the method is demonstrated by the analysis of the Q factors for RDCs not used as restraints in the calculations, which are significantly lower than those corresponding to existing high-resolution structures and structural ensembles, hence showing that we capture effectively the contributions to RDCs from conformational fluctuations.

  10. Surveillance of veterinary drug residues in pork meat in Madagascar

    Directory of Open Access Journals (Sweden)

    M. V. Rakotoharinome

    2015-06-01

    Table I presents the results of the percentage of positive samples in the various regions of Madagascar. On average 37.2% sam­ples were contaminated by antimicrobial residues. A significant increase from 32 to 39% was observed between 2010 and 2011, respectively. No significant differences were found between samples according to sex, breed or age class in individual ani­mals. No differences between pig farm origins were found either (Figure 1. However, Amoron’i Mania Region, and particularly suburban Ambositra, was the most contaminated area in 2010 (67%; n = 9 and Melaky region (Western Madagascar in 2011. Pork meat samples originating from the same production area were less contaminated by drug residues when the animals were slaughtered in urban abattoirs compared to provincial abat­toirs. In this first step toward a national surveillance system, we confirm that drug residues in animal products are a serious public health concern for Madagascar.

  11. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  12. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera development and longevity.

    Directory of Open Access Journals (Sweden)

    Judy Y Wu

    Full Text Available BACKGROUND: Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. METHODOLOGY/PRINCIPAL FINDINGS: Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment or in relatively uncontaminated brood comb (control. Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8 of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor

  13. De-contamination of pesticide residues in food by ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, Ahmed A.; Mohamed, Khaled A.; Al-Saqer, Omar A.

    2012-01-01

    The role of gamma irradiation on removal of pesticides in aqueous solutions or in vegetables and fruits was investigated. Radiation - induced decontamination of pesticides is generally greater in aqueous solutions than in selected vegetables and fruits. Residues of malathion (0.5 ppm in potatoes, 8 ppm in onions and dates), pirimiphos-methyl (1 ppm in onions and grapes) and cypermethrin (0.05 ppm in potatoes and 0.1 ppm in onions) were not reduced to below maximum residue limits (MRLs) for irradiation doses up to 1 kGy. The same trend was observed when irradiation was performed for grapes fortified with malathion (8 ppm) and cypermethrin (2 ppm) for absorbed doses up to 2 kGy. Ionizing radiation reduced the residues of pirimiphos-methyl (0.05 ppm in potatoes at1 kGy, 1 ppm in grapes at 2 kGy and 0.1 ppm in dates at1 kGy), malathion (8 ppm in grapes at 7 kGy) and cypermethrin (2 ppm in grapes at 7 kGy) to below maximum residue limits (MRLs). - Highlights: ► The role of irradiation on removal of pesticides in aqueous solutions or in food products was investigated. ► Radiation-induced removal of pesticides is generally greater in aqueous solutions than in food products. ► Radiation can reduce the pirimiphos-methyl in potatoes, grapes and dates to below MRLs. ► Radiation can reduce the malathion and cypermethrin in grapes to below MRLs. ► Radiation is used for dual objectives of reducing pesticide residues and improving food safety.

  14. Activated carbon immobilizes residual polychlorinated biphenyls in weathered contaminated soil.

    Science.gov (United States)

    Langlois, Valérie S; Rutter, Allison; Zeeb, Barbara A

    2011-01-01

    Activated carbon (AC) has recently been shown to be effective in sequestering persistent organic pollutants (POPs) from aquatic sediments. Most studies have demonstrated significant reductions of POP concentrations in water and in aquatic organisms; however, limited data exist on the possibility of using AC to immobilize remaining POPs at terrestrial contaminated sites. Under greenhouse conditions, pumpkin ssp cv. Howden) were grown, and red wiggler worms () were exposed to an industrial contaminated soil containing a mixture of polychlorinated biphenyls (PCBs), i.e., Aroclors 1254 and 1260) treated with one of four concentrations of AC (0.2, 0.8, 3.1, and 12.5%) for 2 mo. The addition of AC to contaminated soils virtually eliminated the bioavailability of PCBs to the plant and invertebrate species. There were reductions in PCB concentrations of more than 67% in ssp and 95% in . These data suggest that AC could be included as part of comprehensive site closure strategy at PCB-contaminated sites. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  16. Oxidative inactivation of the endogenous antioxidant protein DJ-1 by the food contaminants 3-MCPD and 2-MCPD.

    Science.gov (United States)

    Buhrke, Thorsten; Voss, Linn; Briese, Anja; Stephanowitz, Heike; Krause, Eberhard; Braeuning, Albert; Lampen, Alfonso

    2018-01-01

    3-Chloro-1,2-propanediol (3-MCPD) and 2-chloro-1,3-propanediol (2-MCPD) are heat-induced food contaminants being present either as free substances or as fatty acid esters in numerous foods. 3-MCPD was classified to be possibly carcinogenic to humans (category 2B) with kidney and testis being the primary target organs according to animal studies. A previous 28-day oral feeding study with rats revealed that the endogenous antioxidant protein DJ-1 was strongly deregulated at the protein level in kidney, liver, and testis of the experimental animals that had been treated either with 3-MCPD, 2-MCPD or their dipalmitate esters. Here we show that this deregulation is due to the oxidation of a conserved, redox-active cysteine residue (Cys106) of DJ-1 to a cysteine sulfonic acid which is equivalent to loss of function of DJ-1. Irreversible oxidation of DJ-1 is associated with a number of oxidative stress-related diseases such as Parkinson, cancer, and type II diabetes. It is assumed that 3-MCPD or 2-MCPD do not directly oxidize DJ-1, but that these substances induce the formation of reactive oxygen species (ROS) which in turn trigger DJ-1 oxidation. The implications of 3-MCPD/2-MCPD-mediated ROS formation in vivo for the ongoing risk assessment of these compounds as well as the potential of oxidized DJ-1 to serve as a novel effect biomarker for 3-MCPD/2-MCPD toxicity are being discussed.

  17. Evaluation of residue-residue contact prediction in CASP10

    KAUST Repository

    Monastyrskyy, Bohdan

    2013-08-31

    We present the results of the assessment of the intramolecular residue-residue contact predictions from 26 prediction groups participating in the 10th round of the CASP experiment. The most recently developed direct coupling analysis methods did not take part in the experiment likely because they require a very deep sequence alignment not available for any of the 114 CASP10 targets. The performance of contact prediction methods was evaluated with the measures used in previous CASPs (i.e., prediction accuracy and the difference between the distribution of the predicted contacts and that of all pairs of residues in the target protein), as well as new measures, such as the Matthews correlation coefficient, the area under the precision-recall curve and the ranks of the first correctly and incorrectly predicted contact. We also evaluated the ability to detect interdomain contacts and tested whether the difficulty of predicting contacts depends upon the protein length and the depth of the family sequence alignment. The analyses were carried out on the target domains for which structural homologs did not exist or were difficult to identify. The evaluation was performed for all types of contacts (short, medium, and long-range), with emphasis placed on long-range contacts, i.e. those involving residues separated by at least 24 residues along the sequence. The assessment suggests that the best CASP10 contact prediction methods perform at approximately the same level, and comparably to those participating in CASP9.

  18. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

    Directory of Open Access Journals (Sweden)

    Felix Simkovic

    2016-07-01

    Full Text Available For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based structure prediction. Such models can be used in structure solution by molecular replacement (MR where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (`decoys', is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.

  19. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    Science.gov (United States)

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  20. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings - an assessment of the interrelation of NMR restraints

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Pernille Rose; Axelsen, Jacob Bock [University of Copenhagen, Institute of Molecular Biology (Denmark); Lerche, Mathilde Hauge [Amersham Health (Sweden); Poulsen, Flemming M. [University of Copenhagen, Institute of Molecular Biology (Denmark)], E-mail: fmp@apk.molbio.ku.dk

    2004-01-15

    We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on {sup 1}H{sup N}-{sup 15}N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of {sup 13}CO-{sup 13}C{sup {alpha}} and {sup 15}N-{sup 13}CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 A resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

  1. Agrochemical residue-biota interactions in soil and aquatic ecosystems

    International Nuclear Information System (INIS)

    1980-01-01

    Two FAO/IAEA coordinated research programmes are concerned with isotopic tracer-aided studies of agrochemical residue-biota interactions in soils and aquatic ecosystems. They currently involve 18 studies in 14 countries: Brazil, Canada, Egypt, F.R. Germany, Hungary, India, Indonesia, Iraq, Israel, Malaysia, Thailand, Turkey, USA and USSR. The aim was to develop, standardize and apply labelled substrate techniques for comparative assays of primary autotrophic and microheterotrophic production and decay, and complementary tracer techniques to determine the fate, persistence and bioconcentration of trace contaminants. Comparable data were studied concerning the current status of water bodies and likely changes due to contaminants. Soil capacity to decompose undesirable contaminants and residues, and to promote desirable transformations were studied. The techniques were also applied as a diagnostic and prognostic tool, with priority given to rice ecosystems

  2. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    Science.gov (United States)

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  3. Identification of mannose interacting residues using local composition.

    Directory of Open Access Journals (Sweden)

    Sandhya Agarwal

    Full Text Available BACKGROUND: Mannose binding proteins (MBPs play a vital role in several biological functions such as defense mechanisms. These proteins bind to mannose on the surface of a wide range of pathogens and help in eliminating these pathogens from our body. Thus, it is important to identify mannose interacting residues (MIRs in order to understand mechanism of recognition of pathogens by MBPs. RESULTS: This paper describes modules developed for predicting MIRs in a protein. Support vector machine (SVM based models have been developed on 120 mannose binding protein chains, where no two chains have more than 25% sequence similarity. SVM models were developed on two types of datasets: 1 main dataset consists of 1029 mannose interacting and 1029 non-interacting residues, 2 realistic dataset consists of 1029 mannose interacting and 10320 non-interacting residues. In this study, firstly, we developed standard modules using binary and PSSM profile of patterns and got maximum MCC around 0.32. Secondly, we developed SVM modules using composition profile of patterns and achieved maximum MCC around 0.74 with accuracy 86.64% on main dataset. Thirdly, we developed a model on a realistic dataset and achieved maximum MCC of 0.62 with accuracy 93.08%. Based on this study, a standalone program and web server have been developed for predicting mannose interacting residues in proteins (http://www.imtech.res.in/raghava/premier/. CONCLUSIONS: Compositional analysis of mannose interacting and non-interacting residues shows that certain types of residues are preferred in mannose interaction. It was also observed that residues around mannose interacting residues have a preference for certain types of residues. Composition of patterns/peptide/segment has been used for predicting MIRs and achieved reasonable high accuracy. It is possible that this novel strategy may be effective to predict other types of interacting residues. This study will be useful in annotating the function

  4. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  5. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    Science.gov (United States)

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Process related contaminations causing climatic reliability issues

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Dutta, Mondira; Verdingovas, Vadimas

    2012-01-01

    contaminants during the wave and re-flow soldering process; however variation in temperature on the PCBA surface during soldering can result in considerable amounts of active residues being left locally. Typical no-clean flux systems used today consist of weak organic acids (WOA) and active residues left...

  7. Investigation of Filtration Membranes from the Dairy Protein Industry for Residual Fouling Using Infrared Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Jensen, Jannie Krog

    the reversible fouling can be removed/cleaned. The aim of this thesis is to investigate the residual fouling that is deposited on ultrafiltration and microfiltration membranes after usage. The membrane surfaces are investigated using infrared spectroscopy with an attenuated reflectance sampling unit...... and this is thesis work highlights the strengths and weaknesses of using infrared spectroscopy to investigate residual fouling on membranes and in particular the challenges with the infrared penetration depth when layering in the samples occurs. Real size production membrane cartridges at different stages of use...... microfiltration membrane cartridges were investigated with Attenuated- Total-Reflection Fourier-Transform-Infrared (ATR FT-IR) to map the residual fouling on both types of cartridges. The height of the characteristic amide peaks from proteins were used to determine the relative concentrations. The first...

  8. Distribution of radionuclides in leaf-stem biomass of lupine and clover under production of protein concentrates

    International Nuclear Information System (INIS)

    Novikov, Yu.F.; Lobach, G.A.; Buzenko, T.A.; Zaretskaya, T.P.

    1993-01-01

    The basic regularities of radionuclide distribution between the obtained products have been studied using the fractionation of lupine and clover phytomass as an example. The content of radionuclides in protein concentrates has been shown to be strongly related to the crop species. A scheme and a regime of the fractionation of leaf-stem lupine biomass contaminated with cesium radioisotopes and strontium-90 which ensured the minimizing of their residual content in protein-vitaminic and protein concentrates have been selected with due accout of experimental data

  9. Effects of organic and conventional rice on protein efficiency ratio and pesticide residue in rats

    Directory of Open Access Journals (Sweden)

    Wanpen Mesomya

    2012-11-01

    Full Text Available The comparative effects of organic rice and conventional rice on the protein efficiency ratio (PER in rats were investigated by feeding 40 male Sprague-Dawley rats for four weeks with three experimental diets containing polished conventional rice (PCR, unpolished conventional rice (UCR, unpolished organic rice (UOR and a control protein diet (casein under standardised conditions. All diets were prepared according to AOAC guidelines. The results showed no statistically significant difference (P > 0.05 among the values of PER (2.75 ± 0.14 - 2.80 ± 0.09 in rats fed with diets containing PCR, UCR or UOR. Similar growth was also observed among the three groups fed with different experimental diets. Additionally, residues of pesticides, viz. carbofuran, methyl parathion, p-nitrophenol and -cyfluthrin, in rat blood and rice samples were determined using liquid chromatography–electrospray ionisation tandem mass spectrometry. Pesticide residues were not detected in all serum samples of experimental rats and only p-nitrophenol was found (8.23 ± 0.65 - 12.84 ± 2.58 mg/kg in all samples of the cooked rice diets, indicating that organic rice produced similar effect as conventional rice on PER and growth in rats.

  10. Residual DNA-bound proteins are a source of in vitro transcription inhibitor peptides

    International Nuclear Information System (INIS)

    Venanzi, F.M.

    1989-01-01

    Enzymatic breakdown of residual proteins occurs at mild alkaline pH (pH optimum 8.5) as monitored by using radioiodinated, purified genomic DNA from calf thymus. These DNA fibers also possess a differential ability to hydrolyze added exogenous small and linker histones. The results described argue strongly that a putative protease activity, co-purified with DNA, is the source of short chain peptides which inhibit transcription in vitro. Therefore, we propose that RNA repressor peptides must be of higher molecular weight than previously reported

  11. A pairwise residue contact area-based mean force potential for discrimination of native protein structure

    Directory of Open Access Journals (Sweden)

    Pezeshk Hamid

    2010-01-01

    Full Text Available Abstract Background Considering energy function to detect a correct protein fold from incorrect ones is very important for protein structure prediction and protein folding. Knowledge-based mean force potentials are certainly the most popular type of interaction function for protein threading. They are derived from statistical analyses of interacting groups in experimentally determined protein structures. These potentials are developed at the atom or the amino acid level. Based on orientation dependent contact area, a new type of knowledge-based mean force potential has been developed. Results We developed a new approach to calculate a knowledge-based potential of mean-force, using pairwise residue contact area. To test the performance of our approach, we performed it on several decoy sets to measure its ability to discriminate native structure from decoys. This potential has been able to distinguish native structures from the decoys in the most cases. Further, the calculated Z-scores were quite high for all protein datasets. Conclusions This knowledge-based potential of mean force can be used in protein structure prediction, fold recognition, comparative modelling and molecular recognition. The program is available at http://www.bioinf.cs.ipm.ac.ir/softwares/surfield

  12. CHARACTERIZING TRANSFER OF SURFACE RESIDUES TO SKIN USING A VIDEO-FLUORESCENT IMAGING TECHNIQUE

    Science.gov (United States)

    Surface-to-skin transfer of contaminants is a complex process. For children's residential exposure, transfer of chemicals from contaminated surfaces such as floors and furniture is potentially significant. Once on the skin, residues and contaminated particles can be transferred b...

  13. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    Science.gov (United States)

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate

  14. Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: role of alkoxyl and peroxyl radicals

    DEFF Research Database (Denmark)

    Fuentes-Lemus, E.; Dorta, E.; Escobar, E.

    2016-01-01

    The oxidation of tryptophan (Trp) residues, mediated by peroxyl radicals (ROOc), follows a complex mechanism involving free radical intermediates, and short chain reactions. The reactivity of Trp towards ROOc should be strongly affected by its inclusion in peptides and proteins. To examine...... the latter, we investigated (by fluorescence) the kinetic of the consumption of free, peptide- and protein-Trp residues towards AAPH (2,20 -azobis(2-amidinopropane)dihydrochloride)-derived free radicals. Interestingly, the initial consumption rates (Ri ) were only slightly influenced by the inclusion of Trp...... concentrations (10–50 mM), the values of Ri were nearly constant; and at high Trp concentrations (50 mM to 1 mM), a slower increase of Ri than expected for chain reactions. Similar behavior was detected for all three systems (free Trp, and Trp in peptides and proteins). For the first time we are showing...

  15. 137Cs absorption factors (AFs) from contaminated cooking water to some vegetable and protein samples

    International Nuclear Information System (INIS)

    Malek, M.A.

    2006-01-01

    The radionuclide in contaminated freshwater may directly gain access to the human body through two major routes: drinking and cooking food with fresh water. During cooking, the radionuclide present in the water may be transferred to the various ingredients of the cooked food. The degree of contamination of food during cooking depends both on absorption power of the individual ingredients and the level of radionuclide present in the water. The ratio of the concentration of the radionuclide absorbed in the individual ingredients to the concentration in the cooking water can be designated as 'Absorption factor' (AF). AF can be used to predict the radionuclide absorbed by the ingredients cooked with contaminated water, to assess the internal radiation dose to the consumer and radionuclide transfer from the cooking water to the ingredients. A better understanding of the variables that affect the AF in various ingredients during cooking is central to deriving the contamination level of the ingredients. 10 kinds of greens and vegetable and 3 kinds of animal protein were boiled with 37 Cs contaminated freshwater and corresponding AFs were determined in both hot and cooled condition

  16. Measurement of residual radioactive surface contamination by 2-D laser heated TLD

    International Nuclear Information System (INIS)

    Jones, S.C.

    1997-06-01

    The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO 2 laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm 2 area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm 2 . Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites

  17. Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel

    International Nuclear Information System (INIS)

    Ishii, Yoshitaka; Markus, Michelle A.; Tycko, Robert

    2001-01-01

    Water-soluble biological macromolecules can be weakly aligned by dissolution in a strained, hydrated gel such as cross-linked polyacrylamide, an effect termed 'strain-induced alignment in a gel' (SAG). SAG induces nonzero nuclear magnetic dipole-dipole couplings that can be measured in high-resolution NMR spectra and used as structural constraints. The dependence of experimental 15 N- 1 H dipolar couplings extracted from two-dimensional heteronuclear single quantum coherence (HSQC) spectra on several properties of compressed polyacrylamide, including the extent of compression, the polyacrylamide concentration, and the cross-link density, is reported for the B1 immunoglobulin binding domain of streptococcal protein G (protein G/B1, 57 residues). It is shown that the magnitude of macromolecular alignment can be widely varied by adjusting these properties, although the orientation and asymmetry of the alignment tensor are not affected significantly. The dependence of the 15 N relaxation times T 1 and T 2 of protein G/B1 on polyacrylamide concentration are also reported. In addition, the results of 15 N relaxation and HSQC experiments on the RNA binding domain of prokaryotic protein S4 from Bacillus stearothermophilus (S4 Δ41, residues 43-200) in a compressed polyacrylamide gel are presented. These results demonstrate the applicability of SAG to proteins of higher molecular weight and greater complexity. A modified in-phase/anti-phase (IPAP) HSQC technique is described that suppresses natural-abundance 15 N background signals from amide groups in polyacrylamide, resulting in cleaner HSQC spectra in SAG experiments. The mechanism of protein alignment in strained polyacrylamide gels is contrasted with that in liquid crystalline media

  18. Synthesis and evaluation of radioactive and fluorescent residualizing labels for identifying sites of plasma protein catabolism

    International Nuclear Information System (INIS)

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1986-01-01

    Inulin and lactose were each coupled to tyramine by reductive amination with NaBH 3 CN and the tyramine then labeled with 125 I. Dilactitol- 125 I-tyramine (DLT) and inulin- 125 I-tyramine (InTn) were coupled by reductive amination and cyanuric chloride, respectively, to asialofetuin (ASF), fetuin and rat serum albumin (RSA). Attachment of either label had no effect on the circulating half-lives of the proteins. Radioactivity from labeled ASF was recovered in rat liver (> 90%) by 1 h post-injection and remained in liver with half-lives of 2 and 6 days, respectively, for the DLT and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn-labeled RSA were 5 and 6.5 days, respectively, again indicating that the larger glycoconjugate label residualized more efficiently in cells following protein degradation. (Lactitol) 2 -N-CH 2 -CH 2 -NH-fluroescein (DLF) was also coupled to ASF by reductive amination and recovered quantitatively in liver at 1 h post-injection. Native ASF was an effective competitor for clearance of DLF-ASF from the circulation. Fluorescent degradation products were retained in liver with a half-life of 1.2 days. Residualizing fluorescent labels should be useful for identification and sorting of cells active in the degradation of plasma proteins

  19. Transfer of heavy metals to biota after remediation of contaminated soils with calcareous residues.

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Martínez-Sánchez, Maria Jose; Agudo, Ines; Gonzalez, Eva; Perez-Espinosa, Victor; Belen Martínez, Lucia; Hernández, Carmen; García-Fernandez, Antonio Juan; Bech, Jaime

    2013-04-01

    A study was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (broccoli, lettuce and leek), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). Five consecutive crops of each vegetable were obtained in greenhouse. In a second stage, experiments were carried out with rabbits fed with such vegetables. The plants were cultivated in four types of soil. The first one was contaminated by heavy metals (S1), the second was a uncontaminated soil (blank soil) (S2), the third was the material obtained by mixing S1 with residues coming from demolition and construction activities (S3); while the fourth was the result of remediating S1 with lime residues coming from quarries (S4). The total metal content (As, Pb, Cd and Zn) of the soil samples, rizosphere, leached water and vegetable samples, were measured, and both the translocation and bioconcentration factors (TF and BCF, respectively) were calculated. In the second stage, the effect caused in rabbits fed with the vegetables was monitorized using both external observation and the analysis of blood, urine, and the levels of metals in muscles, liver and kidney. The statistical analysis of the results obtained showed that there were no significant differences in the heavy metal levels for the vegetables cultivated in S2, S3 and S4. The results for soil sample S1 did not have a normal distribution since the growing of the vegetables were not homogeneous and also strongly dependent on the type of vegetal. As regards the effect caused in rabbits, significant differences were observed for the animals fed with plants cultivated in S1 compared with the others.

  20. Pyrolysis of fibre residues with plastic contamination from a paper recycling mill: Energy recoveries

    International Nuclear Information System (INIS)

    Brown, Logan Jeremy; Collard, François-Xavier; Görgens, Johann

    2017-01-01

    Highlights: • Pyrolysis of fibre-plastics residues from paper recycling mill into fuel products. • Product with remarkable energy content up to 42.8 MJ/kg. • Influence of temperature on the product yields and fuel properties. • Effect of plastic composition on product properties. - Abstract: Pyrolysis is a promising technology for the production of marketable energy products from waste mixtures, as it decomposes heterogeneous material into homogenous fuel products. This research assessed the ability of slow pyrolysis to convert three waste streams, composed of fibre residues contaminated with different plastic mixtures, into char and tarry phase products at three different temperatures (300, 425 and 550 °C). The products were characterised in terms of mass yield, higher heating value (HHV) and gross energy conversion (EC). Significant amounts of hydrocarbon plastics in the feed materials increased the calorific values of the char (up to 32.9 MJ/kg) and tarry phase (up to 42.8 MJ/kg) products, comparable to high volatile bituminous A coal and diesel respectively. For all three waste streams converted at 300 °C, the majority of the energy in the feedstock was recovered in the char product (>80%), while deoxygenation of fibre component resulted in char with increased calorific value (up to 31.6 MJ/kg) being produced. Pyrolysis at 425 °C for two of the waste streams containing significant amounts of plastic produced both a valuable char and tarry phase, which resulted in an EC greater than 74%. Full conversion of plastic at 550 °C increased the tarry phase yield but dramatically decreased the char HHV. The influence of temperature on product yield and HHV was discussed based on the pyrolysis mechanisms and in relation to the plastic composition of the waste streams.

  1. Identification of functionally important amino acid residues in the mitochondria targeting sequence of Hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Li, Sai Kam; Ho, Sai Fan; Tsui, Kwok Wing; Fung, Kwok Pui; Waye, M.Y. Mary

    2008-01-01

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven amino acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated

  2. Prediction of interface residue based on the features of residue interaction network.

    Science.gov (United States)

    Jiao, Xiong; Ranganathan, Shoba

    2017-11-07

    Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields].

    Science.gov (United States)

    Hu, Di; Li, Chuan; Dong, Qian-Qian; Li, Li-Ming; Li, Guang-He

    2014-01-01

    The aims of this study were to determine the compositions and residual properties of petroleum hydrocarbon in soil, as well as to identify the source and weathering degree of the pollution. A total of 5 producing wells in Gudao and Hekou oil producing region of Shengli oilfields were analyzed. More than 50 individual target compounds including straight-and branched-chain alkanes( n-alkanes, pristine and phytane) and polycyclic aromatic hydrocarbons (PAHs) in soil samples and crude oil were determined by gas chromatography-mass spectrometry (GC-MS). The percentages of chain alkanes and PAHs in total solvent extractable matters(TSEM) of soil samples were both much lower than those in the crude oil samples. The compositions of petroleum hydrocarbon in soil samples differed from those in crude oil, which indicated the n-alkanes with carbon numbers contaminated soils, the relationship between the index and petroleum hydrocarbon compounds was analyzed using principal component analysis (PCA). The results showed that the n-alkanes with carbon numbers > 33 and the PAHs with rings between 3 and 5 were much harder to degrade. PCA of 4 indexes for source identification revealed more than 50% of the soil samples were polluted by crude oil, which needs more attention during remediation.

  4. Small mammals as monitors of environmental contaminants

    International Nuclear Information System (INIS)

    Talmage, S.S.; Walton, B.T.

    1991-01-01

    The merit of using small mammals as monitors of environmental contaminants was assessed using data from the published literature. Information was located on 35 species of small mammals from 7 families used to monitor heavy metals, radionuclides, and organic chemicals at mine sites, industrial areas, hazardous and radioactive waste disposal sites, and agricultural and forested land. To document foodchain transfer of chemicals, concentrations in soil, vegetation, and invertebrates, where available, were included. The most commonly trapped North American species were Peromyscus leucopus, Blarina brevicauda, and Microtus pennsylvanicus. In these species, exposure to chemicals was determined from tissue residue analyses, biochemical assays, and cytogenetic assays. Where enough information was available, suitable target tissues, or biological assays for specific chemicals were noted. In general, there was a relationship between concentrations of contaminants in the soil or food, and concentrations in target tissues of several species. This relationship was most obvious for the nonessential heavy metals, cadmium, lead, and mercury and for fluoride. Kidney was the single best tissue for residue analyses of inorganic contaminants. However, bone should be the tissue of choice for both lead and fluorine. Exposure to lead was also successfully documented using biochemical and histopathological endpoints. Bone was the tissue of choice for exposure to 90Sr, whereas muscle was an appropriate tissue for 137Cs. For organic contaminants, exposure endpoints depended on the chemical(s) of concern. Liver and whole-body residue analyses, as well as enzyme changes, organ histology, genotoxicity, and, in one case, population dynamics, were successfully used to document exposure to these contaminants

  5. Biostimulation and rainfall infiltration: influence on retention of biodiesel in residual clayey soil.

    Science.gov (United States)

    Thomé, Antônio; Cecchin, Iziquiel; Reginatto, Cleomar; Colla, Luciane M; Reddy, Krishna R

    2017-04-01

    This study investigates the retention of biodiesel in residual clayey soil during biostimulation by nutrients (nitrogen, phosphorus, and potassium) under conditions of rainfall infiltration. Several column tests were conducted in a laboratory under different void ratios (1.14, 1.24, and 1.34), varying moisture contents (15, 25, and 35%), and in both the presence and absence of biostimulation. The volume of biodiesel (which was equivalent to the volume of voids in the soil) was placed atop the soil and allowed to percolate for a period of 15 days. The soil was subjected to different rainfall infiltration conditions (0.30 or 60 mm). The greatest reductions in residual contaminants occurred after 60 mm of rain simulation, at values of up to 74% less than in samples with the same conditions but no precipitation. However, the residual contamination decay rate was greater with 0-30 mm (0.29 g/mm) of precipitation than with 30-60 mm (0.075 g/mm). Statistical assessment revealed that increased moisture and the presence of nutrients were the factors with the most powerful effect on contaminant retention in the soil. The residual contaminant level was 21 g/kg at a moisture content of 15% and no precipitation, decreasing to 12 g/kg at 35% moisture and no precipitation. Accordingly, it is possible to conclude that biostimulation and rainfall infiltration conditions can decrease the retention of contaminants in soil and allow a greater leaching or spreading of the contamination. All of these phenomena are worthy of careful examination for the in situ bioremediation of organic contamination. • The higher moisture in the soil, due to a high initial moisture content and/or infiltration of rainfall, can reduce contaminant retention, • The use of biostimulation through the addition of nutrients to accelerate the biodegradation of toxic organic contaminants may induce inadvertent undesirable interactions between the soil and the contaminant. • When adopting

  6. Woody biomass phytoremediation of contaminated brownfield land

    Energy Technology Data Exchange (ETDEWEB)

    French, Christopher J. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)]. E-mail: n.m.dickinson@livjm.ac.uk; Putwain, Philip D. [Ecological Restoration Consultants (ERC), Ness Botanic Gardens, University of Liverpool, Ness, Cheshire CH64 (United Kingdom)

    2006-06-15

    Economic and environmental regeneration of post-industrial landscapes frequently involves some element of re-afforestation or tree planting. We report field trials that evaluate whether woody biomass production is compatible with managing residual trace element contamination in brownfield soils. Large-scale mapping of contamination showed a heterogenous dispersion of metals and arsenic, and highly localised within-site hotspots. Yields of Salix, Populus and Alnus were economically viable, showing that short-rotation coppice has a potentially valuable role in community forestry. Mass balance modelling demonstrated that phytoextraction potentially could reduce contamination hotspots of more mobile elements (Cd and Zn) within a 25-30-year life cycle of the crops. Cd and Zn in stems and foliage of Salix were 4-13 times higher than EDTA-extractable soil concentrations. Lability of other trace elements (As, Pb, Cu, Ni) was not increased 3 years after planting the coppice; woody biomass may provide an effective reduction of exposure (phytostabilisation) to these less mobile contaminants. - Field trials show short-rotation coppice provides effective risk management and remediation solutions to hotspots of residual metal and As contamination of brownfield land.

  7. Woody biomass phytoremediation of contaminated brownfield land

    International Nuclear Information System (INIS)

    French, Christopher J.; Dickinson, Nicholas M.; Putwain, Philip D.

    2006-01-01

    Economic and environmental regeneration of post-industrial landscapes frequently involves some element of re-afforestation or tree planting. We report field trials that evaluate whether woody biomass production is compatible with managing residual trace element contamination in brownfield soils. Large-scale mapping of contamination showed a heterogenous dispersion of metals and arsenic, and highly localised within-site hotspots. Yields of Salix, Populus and Alnus were economically viable, showing that short-rotation coppice has a potentially valuable role in community forestry. Mass balance modelling demonstrated that phytoextraction potentially could reduce contamination hotspots of more mobile elements (Cd and Zn) within a 25-30-year life cycle of the crops. Cd and Zn in stems and foliage of Salix were 4-13 times higher than EDTA-extractable soil concentrations. Lability of other trace elements (As, Pb, Cu, Ni) was not increased 3 years after planting the coppice; woody biomass may provide an effective reduction of exposure (phytostabilisation) to these less mobile contaminants. - Field trials show short-rotation coppice provides effective risk management and remediation solutions to hotspots of residual metal and As contamination of brownfield land

  8. Biochemical attributes of Hens Fed Irradiated Aflatoxin B1 Contamination Diet

    International Nuclear Information System (INIS)

    Farag, M.D.E.H.; Abdul Azeem, A.M.; Abdalla, E.A.; Ahmed, N.A.H.

    2017-01-01

    The purpose of this study is to evaluate the effect of feeding diet artificially contaminated with aflatoxin B 1(AFB1) at level 0.2 mg kg"-"1 AFB1, and gamma (γ) irradiated (10, 20, and 30 kGy) on reducing the deleterious effects of laying hens Golden Montaza (GM) biochemical attributes. These include liver weight, AFB1 liver residue content, AST, ALT, ALP, creatinine, total proteins, albumin and globulin, as well as, the levels of T3, T4, TSH, FSH, LH, progesterone hormone and hepatic histology. At 38 week of age, groups of laying hens were fed on a normal non-contaminated diet (G1), aflatoxin-contaminated diet (G2), and irradiated contaminated diets (G3, G4 and G5) for 3 weeks, as a duration period. When the hens reached 42 weeks of age, they were fed on normal diet for 3 weeks, as a recovery period. Results showed that AST, ALT, ALP, and creatinine significantly increased in AFs treated groups in comparison with those received AFs-containing diet and irradiated up to 30 kGy. Layers fed contaminated diet of AFB1 suffered from a lower level of total proteins, albumin and globulin. Meanwhile, the results showed that the level of serum T4 was lower, but conversely the levels of FSH were higher for those fed on diets contaminated with AFB1 compared to those fed irradiated contaminated diets with AFB1, no significant change occurred in serum blood T3, TSH, LH and progesterone in all tested groups. Treated contaminated diets with γ-irradiation at 30 kGy reduced the incidence and severity of hepatic histology. The 30 kGy radiation dose was more effective, in this respect, in all biochemical indices. For recovery period diets non-contaminated with AFB1, the results showed improvements in all biochemical indices and recovered the hepatic structure with increasing the recovery period especially for those fed on irradiated diets through the experimental duration. In conclusion, feeding of diets contaminated with AFB1 altered the blood profiles, and damaged the liver

  9. Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography

    International Nuclear Information System (INIS)

    Kovalevsky, Andrey; Chatake, Toshiyuki; Shibayama, Naoya; Park, Sam-Yong; Ishikawa, Takuya; Mustyakimov, Marat; Fisher, S. Zoe; Langan, Paul; Morimoto, Yukio

    2010-01-01

    Using neutron diffraction analysis, the protonation states of 35 of 38 histidine residues were determined for the deoxy form of normal human adult hemoglobin. Distal and buried histidines may contribute to the increased affinity of the deoxy state for hydrogen ions and its decreased affinity for oxygen compared with the oxygenated form. The protonation states of the histidine residues key to the function of deoxy (T-state) human hemoglobin have been investigated using neutron protein crystallography. These residues can reversibly bind protons, thereby regulating the oxygen affinity of hemoglobin. By examining the OMIT F o − F c and 2F o − F c neutron scattering maps, the protonation states of 35 of the 38 His residues were directly determined. The remaining three residues were found to be disordered. Surprisingly, seven pairs of His residues from equivalent α or β chains, αHis20, αHis50, αHis58, αHis89, βHis63, βHis143 and βHis146, have different protonation states. The protonation of distal His residues in the α 1 β 1 heterodimer and the protonation of αHis103 in both subunits demonstrates that these residues may participate in buffering hydrogen ions and may influence the oxygen binding. The observed protonation states of His residues are compared with their ΔpK a between the deoxy and oxy states. Examination of inter-subunit interfaces provided evidence for interactions that are essential for the stability of the deoxy tertiary structure

  10. Method of removing contaminants from plastic resins

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  11. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  12. Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly.

    Directory of Open Access Journals (Sweden)

    Ying-Tzu Tseng

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV membrane (M proteins are capable of self-assembly and release in the form of membrane-enveloped vesicles, and of forming virus-like particles (VLPs when coexpressed with SARS-CoV nucleocapsid (N protein. According to previous deletion analyses, M self-assembly involves multiple M sequence regions. To identify important M amino acid residues for VLP assembly, we coexpressed N with multiple M mutants containing substitution mutations at the amino-terminal ectodomain, carboxyl-terminal endodomain, or transmembrane segments. Our results indicate that a dileucine motif in the endodomain tail (218LL219 is required for efficient N packaging into VLPs. Results from cross-linking VLP analyses suggest that the cysteine residues 63, 85 and 158 are not in close proximity to the M dimer interface. We noted a significant reduction in M secretion due to serine replacement for C158, but not for C63 or C85. Further analysis suggests that C158 is involved in M-N interaction. In addition to mutations of the highly conserved 107-SWWSFNPE-114 motif, substitutions at codons W19, W57, P58, W91, Y94 or F95 all resulted in significantly reduced VLP yields, largely due to defective M secretion. VLP production was not significantly affected by a tryptophan replacement of Y94 or F95 or a phenylalanine replacement of W19, W57 or W91. Combined, these results indicate the involvement of specific M amino acids during SARS-CoV virus assembly, and suggest that aromatic residue retention at specific positions is critical for M function in terms of directing virus assembly.

  13. Annatto seed residue (Bixa orellana L.: nutritional quality

    Directory of Open Access Journals (Sweden)

    Melissa Alessandra Valério

    2015-06-01

    Full Text Available Considering that annatto seeds are rich in protein, the present work aimed to evaluate the biological quality of this nutrient in the meal residue originating from annatto seed processing. We determined the general composition, mineral levels, amino acid composition and chemical scores, antinutritional factors, and protein quality using biological assays. The following values were obtained: 11.50% protein, 6.74% moisture, 5.22% ash, 2.22% lipids, 42.19% total carbohydrates and 28.45% fiber. The residue proved to be a food rich in fiber and also a protein source. Antinutritional factors were not detected. The most abundant amino acids were lysine, phenylalanine + tyrosine, leucine and isoleucine. Valine was the most limiting amino acid (chemical score 0.22. The protein quality of the seed residue and the isolated protein showed no significant differences. The biological value was lower than that of the control protein but higher than that found in other vegetables. Among the biochemical analyses, only creatinine level was decreased in the two test groups compared to the control group. Enzyme tests did not indicate liver toxicity. The results showed favorable aspects for the use of annatto seed residue in the human diet, meriting further research.

  14. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves

    Science.gov (United States)

    Zhang, Chen; Sanders, Johan P. M.; Xiao, Ting T.; Bruins, Marieke E.

    2015-01-01

    Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results. PMID:26200774

  15. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves.

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    Full Text Available Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results.

  16. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  17. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  18. Recent Advances and Uses of Monolithic Columns for the Analysis of Residues and Contaminants in Food

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Bao

    2015-02-01

    Full Text Available Monolithic columns are gaining interest as excellent substitutes to conventional particle-packed columns. These columns show higher permeability and lower flow resistance than conventional liquid chromatography columns, providing high-throughput performance, resolution and separation in short run times. Monoliths possess also great potential for the clean-up and preparation of complex mixtures. In situ polymerization inside appropriate supports allows the development of several microextraction formats, such as in-tube solid-phase and pipette tip-based extractions. These techniques using porous monoliths offer several advantages, including miniaturization and on-line coupling with analytical instruments. Additionally, monoliths are ideal support media for imprinting template-specific sites, resulting in the so-called molecularly-imprinted monoliths, with ultra-high selectivity. In this review, time-saving LC columns and preparative applications applied to the analysis of residues and contaminants in food in 2010–2014 are described, focusing on recent improvements in design and with emphasis in automated on-line systems and innovative materials and formats.

  19. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    International Nuclear Information System (INIS)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  20. [Effect of aeration on composting of date palm residues contaminated with Fusarium oxysporum f.sp. albedinis].

    Science.gov (United States)

    Chakroune, K; Bouakka, M; Hakkou, A

    2005-01-01

    Composting of date palm (Phoenix dactylifera L.) residues contaminated with Fusarium f.sp oxysporum albedinis, causal agent of the vascular wilt (Bayoud) of the date palm, has been achieved. The effect of the aeration of the piles by manual turning has been studied. The maintenance of an adequate humidity of 60%-70%, necessary to the good progress of the composting process, required the contribution of 11.4 L of water/kg of the dried residues. The evolution of the temperatures in the three piles presents the same phases. A latency phase, followed after 2-3 d of composting by a thermophilic phase, which lasts about 24 d, where the temperature remains elevated between 50 and 70 degrees C. Then a cooling phase that takes about 15 d, during which the temperatures fall to values between 25 and 35 degrees C, near room temperature. Fusarium f.sp oxysporum albedinis is eliminated completely during the thermophilic phase of composting, and increasing frequencies of turning accelerate its disappearance to a certain extent. On the other hand, pH remained steady and relatively basic oscillating between 8.2 and 8.7. Ninety percent (90%) of the the date palm residues are composed exclusively of organic matters. The total nitrogen represents only 0.4%. The contribution of manure decreases the ratio of carbon to nitrogen (C/N) from 115 to 48 in the initial mixture. After 80 d of composting and according to the frequency of return up, there is a reduction of the granulometry of the substratum, the C/N ratio (from 29% to 44%), the organic matter (from 15% to 23%), the total volume (from 25% to 35%), and of the dry weight of the swaths (from 16% to 24%). On the other hand there is an increase in total nitrogen rate (from 20% to 40%) and in the mineral matter (from 23% to 35%).

  1. Pesticide residues and bees--a risk assessment.

    Directory of Open Access Journals (Sweden)

    Francisco Sanchez-Bayo

    Full Text Available Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.

  2. Residual radioactivity of treated green diamonds.

    Science.gov (United States)

    Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel

    2017-08-01

    Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.

  3. Effect of the sequence data deluge on the performance of methods for detecting protein functional residues.

    Science.gov (United States)

    Garrido-Martín, Diego; Pazos, Florencio

    2018-02-27

    The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding how the sequence content of the databases affects them is relevant and timely. In this work we evaluate how the growth and change with time in the content of sequence databases affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating historical versions of the multiple sequence alignments that would have been obtained in the past based on the database contents at different time points, covering a period of 20 years. Applying the methods to these historical alignments allows quantifying the temporal variation in their performance. Our results show that the number of families to which these methods can be applied sharply increases with time, while their ability to detect potentially functional residues remains almost constant. These results are informative for the methods' developers and final users, and may have implications in the design of new sequencing initiatives.

  4. Proteomic approach for identifying gonad differential proteins in the oyster (Crassostrea angulata) following food-chain contamination with HgCl2.

    Science.gov (United States)

    Zhang, Qing-Hong; Huang, Lin; Zhang, Yong; Ke, Cai-Huan; Huang, He-Qing

    2013-12-06

    Hg discharged into the environmental waters can generally be bioaccumulated, transformed and transmited by living organisms, thus resulting in the formation of Hg-toxicity food chains. The pathway and toxicology of food chain contaminated with environmental Hg are rarely revealed by proteomics. Here, we showed that differential proteomics had the potential to understand reproduction toxicity mechanism in marine molluscs through the Hg-contaminated food chain. Hg bioaccumulation was found in every link of the HgCl2-Chlorella vulgaris-oyster-mice food chain. Morphological observations identified the lesions in both the oyster gonad and the mice ovary. Differential proteomics was used to study the mechanisms of Hg toxicity in the oyster gonad and to find some biomarkers of Hg contamination in food chain. Using 2-DE and MALDI-TOF/TOF MS, we identified 13 differential protein spots, of which six were up-regulated, six were down-regulated, while one was undecided. A portion of these differential proteins was further confirmed using real-time PCR and western blotting methods. Their major functions involved binding, protein translocation, catalysis, regulation of energy metabolism, reproductive functioning and structural molecular activity. Among these proteins, 14-3-3 protein, GTP binding protein, arginine kinase (AK) and 71kDa heat shock connate protein (HSCP 71) are considered to be suitable biomarkers of environmental Hg contamination. Furthermore, we established the gene correspondence, responding to Hg reproductive toxicity, between mouse and oyster, and then used real-time PCR to analyze mRNA differential expression of the corresponding genes in mice. The results indicated that the mechanism of Hg reproductive toxicity in mouse was similar to that in oyster. We suggest that the proteomics would be further developed in application research of food safety including toxicological mechanism. It is well known that mercury (Hg) is one of the best toxic metal elements in

  5. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Science.gov (United States)

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  6. First comparative analysis concerning the plasma platelet contamination during MNC collection.

    Science.gov (United States)

    Pfeiffer, Hella; Achenbach, Susanne; Strobel, Julian; Zimmermann, Robert; Eckstein, Reinhold; Strasser, Erwin F

    2017-08-01

    Monocytes can be cultured into dendritic cells with addition of autologous plasma, which is highly prone to platelet contamination due to the apheresis process. Since platelets affect the maturation process of monocytes into dendritic cells and might even lead to a diminished harvest of dendritic cells, it is very important to reduce the platelet contamination. A new collection device (Spectra Optia) was analyzed, compared to two established devices (COM.TEC, Cobe Spectra) and evaluated regarding the potential generation of source plasma. Concurrent plasma collected during leukapheresis was analyzed for residual cell contamination in a prospective study with the new Spectra Optia apheresis device (n=24) and was compared with COM.TEC and Cobe Spectra data (retrospective analysis, n=72). Donor pre-donation counts of platelets were analyzed for their predictive value of contaminating PLTs in plasma harvests. The newest apheresis device showed the lowest residual platelet count of the collected concurrent plasma (median 3.50×10 9 /l) independent of pre-donation counts. The other two devices and sets had a higher platelet contamination. The contamination of the plasma with leukocytes was very low (only 2.0% were higher than 0.5×10 9 /l). This study showed a significant reduction of platelet contamination of the concurrent plasma collected with the new Spectra Optia device. This plasma product with low residual platelets and leukocytes might also be used as plasma for fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294.

    Science.gov (United States)

    Yun, Bingling; Guan, Xiaolu; Liu, Yongzhen; Gao, Yanni; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Li; Li, Kai; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-10-26

    Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.

  8. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2016-09-01

    Full Text Available The dramatic transformation of the Zika virus (ZIKV from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV, finally culminating in a vaccine registered for use in endemic regions (CYD-TDV in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV, a member of the family Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE has provided key insights into the structure of the envelope (E and membrane (M proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc. (MEPPitope. These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288 that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40, with

  9. Prevalence of antibiotic residues in commercial milk and its variation by season and thermal processing methods

    Directory of Open Access Journals (Sweden)

    Fathollah Aalipour

    2013-01-01

    Full Text Available Aims: In this study, the prevalence of antibiotic residues in pasteurized and sterilized commercial milk available in Shahre-kourd, Iran, was investigated. In addition, the influence of seasonal temperature changes on the prevalence of contamination was studied. Materials and Methods: Commercial milk samples of 187, including 154 pasteurized and 33 sterilized, milk samples were collected from the market between early January 2012 and late July of the same year. The presence of antibiotic residues was detected using the microbiological detection test kit, Eclipse 100, as a semi-quantitative method. Results: The results showed that 37 of the samples (19.8% have contained antibiotic residues above the European Union Maximum Residues Limits (EU-MRLs, of which 28 samples (14.97% were found to be contaminated but at the concentrations below the EU-MRLs. There was no significant difference between the contamination rate of pasteurized and Ultra High Temperature (UHT-sterilized samples. Similarly, variation of weather temperature with seasons had no effect on the contamination prevalence of milk samples ( P > 0.05. Conclusion: Based on the result of this study, antibiotics residues were present in the majority of milk samples. Neither the season nor the type of thermal processing of the commercial milks had noticeable impact on the prevalence level of the milk samples. However, an increasing trend of prevalence level for antibiotic residues was observed with increasing the temperature through the warm season.

  10. Cancer immunology, bioinformatics and chemokine evidence link vaccines contaminated with animal proteins to autoimmune disease: a detailed look at Crohn's disease and Vitiligo

    OpenAIRE

    Arumugham, Vinu

    2017-01-01

    Cancer research has demonstrated that immunization with homologous xenogeneic proteins (such as vaccines contaminated with animal proteins that resemble human proteins) results in autoimmunity. Bioinformatics analysis demonstrates that animal proteins have occasional amino acids differences compared to equivalent human proteins. So mutated human protein epitopes can be identical to animal protein derived epitopes. Low affinity self reactive T cells suited for detection of mutated human epitop...

  11. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  12. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1984-01-01

    A new process for recovery of plutonium and americium from pyrochemical waste has been demonstrated. It is based on chloride solution anion exchange at low acidity, which eliminates corrosive HCl fumes. Developmental experiments of the process flowsheet concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 = from high chloride-low acid solution. Americium and other metals are washed from the ion exchange column with 1N HNO 3 -4.8M NaCl. The plutonium is recovered, after elution, via hydroxide precipitation, while the americium is recovered via NaHCO 3 precipitation. All filtrates from the process are discardable as low-level contaminated waste. Production-scale experiments are now in progress for MSE residues. Flow sheets for actinide recovery from electrorefining and direct oxide reduction residues are presented and discussed

  13. Actinide recovery from pyrochemical residues

    International Nuclear Information System (INIS)

    Avens, L.R.; Clifton, D.G.; Vigil, A.R.

    1985-05-01

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 6 2- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO 3 -4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO 3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  14. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  15. Remediation of deltamethrin contaminated cotton fields: residual and adsorption assessment

    Directory of Open Access Journals (Sweden)

    Rafique Uzaira

    2016-01-01

    Full Text Available Pakistan occupies a significant global position in the growing of high quality cotton. The extensive application of pesticides on agricultural products leads to environmental risk due to toxic residues in air, water and soil. This study examined the chemodynamic effect of Deltamethrin on cotton fields. Samples were collected from the cotton fields of D.G. Khan, Pakistan and analyzed for heavy metal speciation patterns. Batch experiments were administered in order to study the adsorption of Deltamethrin in cotton fields. The effect of different factors including pH, adsorbate dose, and adsorbent mass on adsorption were studied. It was observed that in general, adsorption increased with increases in the mass of adsorbate, although the trends were irregular. Residual fractions of deltamethrin in the soil and water of cotton fields were analyzed to assess concentrations of xenobiotics bound to soil particles. Results indicated that such residues are significantly higher in soil samples due to high Koc in comparison to water, indicating the former is an efficient degradation agent. Results from the batch experiment resulted in 95% removal with alkaline pH and an adsorbent-adsorbate ratio of 250:1. These results may be used to environment friendly resource management policies.

  16. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01. The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81 with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.

  17. Contamination of food with residues of antibiotics in the sulphonamide class, risk can be avoided

    Directory of Open Access Journals (Sweden)

    Carmen Lidia Chitescu,

    2010-12-01

    Full Text Available Sulfadimethoxine, sulfamethoxazole, sulfaquinoxaline and sulfadiazine are the most common usedsulfonamides in veterinary practice. The recommended withdrawal periods if not observed before slaughteringof the medicated animals, the products may obtain from such animals may be contaminated with residue. Theinterest in having reliable methods able to detect low amounts of sulfonamides in food is very actual. In thisstudy, a multiresidue analysis was performed to simultaneously determine those four sulfonamides in chickenmuscle tissue by the Waters LC.Criteria of validation: specificity, accuracy, precision, limit of detection, limit of quantification, and linearity,according to the European Commission Decision 2002/657/EC, show that the method can detect differentkinds of sulfonamides within one run, without mass spectrometry analyses, or Fluor metric derivatization ofanalyts.The method is accurate, simple, economical in both time and cost, capable of detecting sulfonamidesresidues below the maximum residue limits (MRL and easy to perform to routine samples, in normal conditionof laboratory.The sulfonamides were extracted with acetonitrile and acetone and dichloromethane. N-hexane wasadded for defeating the sample. Separation was carried out on a Zorbax SB- C18 analytical column, using asmobile phase a mixture of 75:25 = di-natrium-hydrogenphosphat solution 6 g/1000 ml (pH = 8.5 : methanol.The detection wavelength was set at: 254 nm Calibration graphs were linear with very good correlationcoefficients in the concentration range from 0.320 to 1.5μg /mL. The limits of quantification (LOQ for thesulfonamides were in the range of 6.6–0.34 μg /kg. The recovery for spiked chicken muscle with 50–150 μg/kg ranged more than 70%. The relative standard deviation (Reds of the sulfonamides for six measurementsat 50 go/kg, 100 μg /kg and 150 μg /kg was less then 15%.The applicability of the method to the analysis of chicken muscle tissue was

  18. Bioconversion of sago residue into value added products

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... In Sarawak, East Malaysia, agro-residues from sago starch processing industries are ... conversion to animal food or fuel ethanol (Species. Profiles for Pacific Island ..... serious contamination of the rivers. Based on study by.

  19. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  20. Applications of bauxite residue: A mini-review.

    Science.gov (United States)

    Verma, Ajay S; Suri, Narendra M; Kant, Suman

    2017-10-01

    Bauxite residue is the waste generated during alumina production by Bayer's process. The amount of bauxite residue (40-50 wt%) generated depends on the quality of bauxite ore used for the processing. High alkalinity and high caustic content in bauxite residue causes environmental risk for fertile soil and ground water contamination. The caustic (NaOH) content in bauxite residue leads to human health risks, like dermal problems and irritation to eyes. Moreover, disposal of bauxite residue requires a large area; such problems can only be minimised by utilising bauxite residue effectively. For two decades, bauxite residue has been used as a binder in cement industries and filler/reinforcement for composite materials in the automobile industry. Valuable metals and oxides, like alumina (Al 2 O 3 ), titanium oxide (TiO 2 ) and iron oxide Fe 2 O 3 , were extracted from bauxite residue to reduce waste. Bauxite residue was utilised in construction and structure industries to make geopolymers. It was also used in the making of glass-ceramics and a coating material. Recently bauxite residue has been utilised to extract rare earth elements like scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd) and dysprosium (Dy). In this review article, the mineralogical characteristics of bauxite residue are summarised and current progresses on utilisation of bauxite residue in different fields of science and engineering are presented in detail.

  1. Identification of residues within the African swine fever virus DP71L protein required for dephosphorylation of translation initiation factor eIF2α and inhibiting activation of pro-apoptotic CHOP

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Claire; Netherton, Chris; Goatley, Lynnette [The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF (United Kingdom); Moon, Alice; Goodbourn, Steve [Institute for Infection and Immunity, St. George' s, University of London, London SW17 0RE (United Kingdom); Dixon, Linda, E-mail: linda.dixon@pirbright.ac.uk [The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF (United Kingdom)

    2017-04-15

    The African swine fever virus DP71L protein recruits protein phosphatase 1 (PP1) to dephosphorylate the translation initiation factor 2α (eIF2α) and avoid shut-off of global protein synthesis and downstream activation of the pro-apoptotic factor CHOP. Residues V16 and F18A were critical for binding of DP71L to PP1. Mutation of this PP1 binding motif or deletion of residues between 52 and 66 reduced the ability of DP71L to cause dephosphorylation of eIF2α and inhibit CHOP induction. The residues LSAVL, between 57 and 61, were also required. PP1 was co-precipitated with wild type DP71L and the mutant lacking residues 52- 66 or the LSAVL motif, but not with the PP1 binding motif mutant. The residues in the LSAVL motif play a critical role in DP71L function but do not interfere with binding to PP1. Instead we propose these residues are important for DP71L binding to eIF2α. - Highlights: •The African swine fever virus DP71L protein recruits protein phosphatase 1 (PP1) to dephosphorylate translation initiation factor eIF2α (eIF2α). •The residues V{sup 16}, F{sup 18} of DP71L are required for binding to the α, β and γ isoforms of PP1 and for DP71L function. •The sequence LSAVL downstream from the PP1 binding site (residues 57–61) are also important for DP71L function. •DP71L mutants of the LSAVL sequence retain ability to co-precipitate with PP1 showing these sequences have a different role to PP1 binding.

  2. Nutritional potential of post extraction residues and silage from ...

    African Journals Online (AJOL)

    Nutritional potential of post extraction residues and silage from leaves of five cassava varieties as feed for ruminants. ... Results indicated that processing reduced (P < 0.05) the inherent nutrients of cassava leaf residues produced after the extraction of protein concentrate from cassava leaves with crude protein (CP) content ...

  3. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    International Nuclear Information System (INIS)

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [ 32 P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32 P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  4. Strategies for the detection of food pathogens and contaminants

    DEFF Research Database (Denmark)

    Hearty, Stephen; Leonard, Paul; Sheehan, Alfredo Darmanin

    molecules and once suitably high affinity antibodies have been isolated, it is relatively straightforward to design and optimise concentration-based assays using SPR. Recently we have investigated the potential of applying Biacore technology to routine food analysis. Our experiences have shown......We routinely use Biacore for affinity ranking and kinetic characterisation of diverse panels of hybridoma-derived and recombinant antibodies against a wide range of different clinically relevant antigens for diagnostic applications. Generally the analytes of interest are haptens or defined protein...... that molecular contaminants such as microbial toxins and drug/pesticide residues translate well onto Biacore-based assay formats. However, larger and more complex entities such as spores and whole bacterial cells represent an altogether more difficult challenge. Here, we present an overview of our experiences...

  5. Allowable residual contamination levels for decommissioning the 115-F and 117-F facilities at the Hanford Site

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1983-07-01

    This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for the 115-F and 117-F facilities at the Hanford Site. The purpose of this study is to provide data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. Information on restricted and controlled use is provided to permit a full consideration of decommissioning alternatives. Procedures are presented for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations and to determine instrument responses for various mixtures of radionuclides. Finally, a comparison is made between existing decommissioning guidance and the ARCL values calculated for unrestricted release of the 115-F and 117-F facilities. The comparison shows a good agreement

  6. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding.

    Science.gov (United States)

    Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence

    2011-10-01

    LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.

  7. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  8. Chlorinated pesticide residues in marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    of pesticide in contaminated river water into the Bay of Bengal. Con centration ranges of all these pesticide residues detected were, aldrine: 0.02-0.53, gamma BHC: 0.01-0.21, dieldrine: 0.05-0.51, and total DDT: 0.02-0.78, all in mu g g sup(-1) (wet wt)....

  9. The Effect of Different Methods of Fermentation on the Detection of Milk Protein Residues in Retail Cheese by Enzyme-Linked Immunosorbent Assay (ELISA).

    Science.gov (United States)

    Ivens, Katherine O; Baumert, Joseph L; Hutkins, Robert L; Taylor, Steve L

    2017-11-01

    Milk and milk products are among the most important allergenic food ingredients, both in the United States and throughout the world; cheeses are among the most important of these milk products. Milk contains several major antigenic proteins, each with differing susceptibilities to proteolytic enzymes. The extent of proteolysis in cheese varies as a result of conditions during manufacture and ripening. Proteolysis has the potential to degrade antigenic and allergenic epitopes that are important for residue detection and elicitation of allergic reactions. Commercial enzyme-linked immunosorbent assays (ELISAs) are not currently validated for use in detecting residues in hydrolyzed or fermented food products. Eighteen retail cheeses produced using 5 different styles of fermentation were investigated for detectable milk protein residues with 4 commercial ELISA kits. Mozzarella, Swiss, Blue, Limburger, and Brie cheeses were assessed. The Neogen Veratox® Casein and Neogen Veratox® Total Milk kits were capable of detecting milk residues in most cheeses evaluated, including blue-veined cheeses that exhibit extensive proteolysis. The other 2 ELISA kits evaluated, r-Biopharm® Fast Casein and ELISA Systems™ Casein, can detect milk residues in cheeses other than blue-veined varieties. ELISA results cannot be quantitatively compared among kits. The quantitative reliability of ELISA results in detection of cheese residues is questionable, but some methods are sufficiently robust to use as a semi-quantitative indication of proper allergen control for the validation of cleaning programs in industry settings. Many commercially available enzyme-linked immunosorbent assays (ELISAs) are not validated for detection of allergenic residues in fermented or hydrolyzed products. This research seeks to determine if commercial milk ELISAs can detect milk residues in varieties of cheese that have undergone different styles of fermentation and different degrees of proteolysis. Only certain

  10. Stability of tetrachlorvinphos residues in faba beans and soya bean oil towards different processing procedures

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Farghaly, M.

    1987-01-01

    Cooking of contaminated faba beans did not degrade the originally present potentially toxic residues, namely, tetrachlorvinphos and its desmethyl derivative to any appreciable extent. Processing of contaminated soya bean oil, on the other hand, led to degradation of tetrachlorvinphos and its metabolites to give mono and dimethyl phosphates. Feeding of mice with bound residues of tetrachlorvinphos in beans for 90 days led to an apparent decrease in the rate of body weight gain. (author)

  11. Identifying inter-residue resonances in crowded 2D {sup 13}C-{sup 13}C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yimin; Cross, Timothy A. [Florida State University, Department of Chemistry and Biochemistry (United States); Fu Riqiang, E-mail: rfu@magnet.fsu.edu [National High Magnet Field Lab (United States)

    2013-07-15

    The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional {sup 13}C-{sup 13}C chemical shift correlation spectra is presented. With the analyses of {sup 13}C-{sup 13}C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly {sup 13}C labeled protein that are consistent with the high resolution structure of the M2 (22-62) protein (Sharma et al., Science 330(6003):509-512, 2010)

  12. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  13. An assessment of soybeans and other vegetable proteins as source of salmonella contamination in pig production

    Directory of Open Access Journals (Sweden)

    Häggblom Per

    2010-02-01

    Full Text Available Abstract Background The impact of salmonella contaminated feed ingredients on the risk for spreading salmonella to pigs was assessed in response to two incidences when salmonella was spread by feed from two feed mills to 78 swine producing herds. Methods The assessment was based on results from the salmonella surveillance of feed ingredients before introduction to feed mills and from HACCP - based surveillance of the feed mills. Results from the mills of the Company (A that produced the salmonella contaminated feed, were by the Chi. Square test compared to the results from all the other (B - E feed producers registered in Sweden. Isolated serovars were compared to serovars from human cases of salmonellosis. Results Salmonella (28 serovars was frequently isolated from imported consignments of soybean meal (14.6% and rape seed meal (10.0%. Company A largely imported soybean meal from crushing plants with a history of unknown or frequent salmonella contamination. The risk for consignments of vegetable proteins to be salmonella contaminated was 2.4 times (P Conclusions Salmonella contaminated feed ingredients are an important source for introducing salmonella into the feed and food chain. Effective HACCP-based control and associated corrective actions are required to prevent salmonella contamination of feed. Efforts should be taken to prevent salmonella contamination already at the crushing plants. This is challenge for the EU - feed industry due to the fact that 98% of the use of soybean/meal, an essential feed ingredient, is imported from crushing plants of third countries usually with an unknown salmonella status.

  14. Pesticide Residues and Bees – A Risk Assessment

    Science.gov (United States)

    Sanchez-Bayo, Francisco; Goka, Koichi

    2014-01-01

    Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees. PMID:24718419

  15. Impact of toxic heavy metals and pesticide residues in herbal products

    Directory of Open Access Journals (Sweden)

    Nema S. Shaban

    2016-03-01

    Full Text Available Medicinal plants have a long history of use in therapy throughout the world and still make an important part of traditional medicine. The World Health Organization (WHO estimates that 65%–80% of the world's populations depend on the herbal products as their primary form of health care. This review is conducted to provide a general idea about chemical contaminants such as heavy metals and pesticide residues as major common contaminants of the herbal medicine, which impose serious health risks to human health. Additionally, we aim to provide different analytical methods for analysis of heavy metals and pesticide residues in the herbal medicine.

  16. Organochlorine residues in harp seals, Phoca groenlandica, from the Gulf of St. Lawrence and Hudson Strait: An evaluation of contaminant concentrations and burdens

    Energy Technology Data Exchange (ETDEWEB)

    Beck, G.G.; Smith, T.G. (Dept. of Fisheries and Oceans, Nanaimo, BC (Canada)); Addison, R.F. (Dept. of Fisheries and Oceans, Sidney, BC (Canada))

    1994-01-01

    Organochlorine contaminant concentrations and burdens were evaluated in blubber samples from 50 harp seals (Phoca groenlandica) obtained from the estuary and northern Gulf of St. Lawrence and Hudson Strait, Canada between December 1988 and December 1989. The concentration and burden of polychlorinated biphenyls (PCBs) increased significantly during the winter months for males occupying the St. Lawrence estuary. The potential for rapid accumulation of contaminants in the estuary was also observed among females: nine postpartum females (1 month after weaning) had higher organochlorine levels than prepartum females from the same location. The lowest observed contaminant concentrations and burdens were in seals from Hudson Strait in autumn. In winter specimens, males had DDT and PCB concentrations about 4 and 2 times as great, respectively, as females of similar age distribution and collection date. Congeners with IUPAC Nos. 138 and 153 accounted for more than 50% of total identifiable PCBs, which is consistent with their prevalence in other marine biota. The concentration of PCBs has declined and the percent p,p'-DDE of total DDT has increased between 1982 and the present study. Unlike the beluga whale (Delphinapterus leucas), harp seals occupy the more polluted waters of the estuary only seasonally, and this may account for their lower residue concentrations. 59 refs., 1 fig., 5 tabs.

  17. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Organochlorine residues in bat guano from nine Mexican caves, 1991

    Science.gov (United States)

    Clark, D.R.; Moreno-Valdez, A.; Mora, M.A.

    1995-01-01

    Samples of bat guano, primarily from Mexican free-tailed bats (Tadarida brasiliensis), were collected at nine bat roosts in caves in northern and eastern Mexico and analysed for organochlorine residues. DDE, the most abundant residue found in each cave, was highest (0.99 p.p.m. dry weight) at Ojuela Cave, Durango. Other studies of DDE in bat guano indicate that this concentration is too low to reflect harmful concentrations in the bats themselves. The DDE at Ojuela may represent either lingering residues from use of DDT years ago in the Ojuela area of perhaps depuration loss from migrant bats with summer maternity roost(s) in a DDE-contaminated area such as Carlsbad Cavern, New Mexico. Presence of o,p-DDT at Tio Bartolo Cave, Nuevo Leon, indicates recent use of DDT, but the concentration of this contaminant was low. Possible impacts on bat colonies of the organophosphorus and carbamate insecticides now in extensive use are unknown.

  19. Survival, growth, and body residues of hyalella azteca (Saussure) exposed to fipronil contaminated sediments from non-vegetated and vegetated microcosms.

    Science.gov (United States)

    Kröger, Robert; Lizotte, Richard E; Moore, Matthew T

    2009-09-01

    We assessed chronic effects of fipronil and metabolite contaminated sediments from non-vegetated and Thallia dealbata vegetated wetland microcosms on Hyalella azteca during wet and dry exposures. Mean sediment concentrations (ng g(-1)) ranged from 0.72-1.26, 0.01-0.69, 0.07-0.23, and 0.49-7.87 for fipronil, fipronil-sulfide, fipronil-sulfone, and fipronil-desulfinyl, respectively. No significant differences in animal survival or growth were observed between non-vegetated and vegetated microcosms during wet or dry exposures. Mean animal body residue concentrations (ng g(-1)) ranged from 28.4-77.6, 0-30.7, and 8.3-43.8 for fipronil, fipronil-sulfide, and fipronil-sulfone. Fipronil-desulfinyl was not detected in any animal samples.

  20. European sites contaminated by residues from the ore extracting and processing industries

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2000-01-01

    Activities linked with the ore extraction and processing industries may lead to enhanced levels of naturally occurring radionuclides (NORs) in products, by-products and waste and at the installations and in the surroundings of the facility. In the framework of the EC-DGXI CARE project (Common Approach for REstoration of contaminated sites) nine important categories of industries were identified and discussions were summarized on the industrial processes and the levels of NORs in parent material, waste and by-products. The most contaminating industries are uranium mining and milling, metal mining and smelting and the phosphate industry. Radionuclide levels in products and/or waste products from the oil and gas extraction industry and of the rare earth, zirconium and ceramics industries may be particularly elevated, but waste streams are limited. The impact on the public from coal mining and power production from coal is commonly considered low. No typical values are available for contaminant levels in materials, buildings and surroundings of radium extraction and luminizing plants, nor for thorium extraction and processing plants. An attempt to give an overview of sites in Europe contaminated with NORs, with emphasis on past practices, was only partly successful since information was often limited or unavailable. The most prominent case of environmental contamination due to mining and processing activities (uranium, metal and coal mining) is in eastern Germany. (author)

  1. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges.

    Science.gov (United States)

    Panja, Anindya Sundar; Bandopadhyay, Bidyut; Maiti, Smarajit

    2015-01-01

    Protein thermostability is an important field for its evolutionary perspective of mesophilic versus thermophilic relationship and for its industrial/ therapeutic applications. Presently, a total 400 (200 thermophilic and 200 mesophilic homologue) proteins were studied utilizing several software/databases to evaluate their amino acid preferences. Randomly selected 50 homologous proteins with available PDB-structure of each group were explored for the understanding of the protein charges, isoelectric-points, hydrophilicity, hydrophobicity, tyrosine phosphorylation and salt-bridge occurrences. These 100 proteins were further probed to generate Ramachandran plot/data for the gross secondary structure prediction in and comparison between the thermophilic and mesophilic proteins. Present results strongly suggest that nonpolar smaller volume amino acids Ala (χ2 = 238.54, psalt bridges in this study. The average percentage of salt-bridge of thermophiles is found to be higher by 20% than their mesophilic homologue. The GLU-HIS and GLU-LYS salt-bridge dyads are calculated to be significantly higher (psalt-bridges and smaller volume nonpolar residues (Gly, Ala and Val) and lesser occurrence of bulky polar residues in the thermophilic proteins. A more stoichiometric relationship amongst these factors minimized the hindrance due to side chain burial and increased compactness and secondary structural stability in thermophilic proteins.

  2. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  3. Identification of aspartate-184 as an essential residue in the catalytic subunit of cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Buechler, J.A.; Taylor, S.S.

    1988-01-01

    The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [ 14 C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified

  4. Daily Intake of Protein from Cod Residual Material Lowers Serum Concentrations of Nonesterified Fatty Acids in Overweight Healthy Adults: A Randomized Double-Blind Pilot Study

    Directory of Open Access Journals (Sweden)

    Iselin Vildmyren

    2018-06-01

    Full Text Available Improved process technologies have allowed fishing vessels to utilize residuals from cod fillet production (head, backbone, skin, cuttings, and entrails and convert this to high-quality protein powders for human consumption. In this double-blind pilot study, 42 healthy overweight or obese adults were randomized to three experimental groups consuming tablets corresponding to 6 g/day of proteins from cod residuals as presscake meal (Cod-PC, presscake and stickwater meal (Cod-PCW, or placebo tablets (control for eight weeks. The primary outcome of this study was changes in metabolites related to glucose regulation in overweight or obese healthy adults after intake of proteins from cod residuals. Cod-PC supplementation decreased postprandial serum nonesterified fatty acids (NEFA concentration and increased gene expressions of diglyceride acyltransferase 1 and 2 in subcutaneous adipose tissue compared with controls. Fasting insulin increased while fasting NEFA and 120-min postprandial glucose decreased within the Cod-PC group, but these changes did not differ from the other groups. In conclusion, supplementation with Cod-PC beneficially affected postprandial serum NEFA concentration compared with the other groups in overweight or obese adults. Supplementation with Cod-PCW, which contains a higher fraction of water-soluble protein compared to Cod-PC, did not affect serum markers of glucose regulation.

  5. A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties

    Czech Academy of Sciences Publication Activity Database

    Bukin, Y. S.; Dzhioev, Y.; Tkachev, S. E.; Kozlova, I.; Paramonov, A. I.; Růžek, Daniel; Qu, Z.; Zlobin, V. I.

    2017-01-01

    Roč. 238, JUN 15 (2017), s. 124-132 ISSN 0168-1702 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis virus * E protein * physicochemical properties amino acid residue * antigen * antibody Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 2.628, year: 2016

  6. Stabilization of arsenic and chromium polluted soils using water treatment residues

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov

    water and can be used as a soil amendment to decrease the mobility of CCA in contaminated soil. Stabilization with Fe-WTR was tested at the Collstrop site in Hillerød, Denmark. The site has been polluted with a wide range of wood impregnation agents including CCA during 40 years of wood impregnating...... of contaminants. Arsenic, chromium and copper cannot be degraded and existing methods for cleaning the soil are rarely used as they are expensive and technically demanding. Chemical stabilization of polluted soil is an alternative method for soil remediation, especially metal contamination, and consists in adding...... or other sorbents. Iron water treatment residues mainly consist of ferrihydrite, an oxidized iron oxy-hydroxide with a high reactivity and a large specific surface area with a high capacity for adsorption. Iron water treatment residues (Fe-WTR) are a by-product from treatment of groundwater to drinking...

  7. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  8. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues.

    Directory of Open Access Journals (Sweden)

    Chaya Rapp

    Full Text Available Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer, we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr and sulfotyrosine (sTyr residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.

  9. Antibiotic residues in milk from small dairy farms in rural Peru.

    Science.gov (United States)

    Redding, L E; Cubas-Delgado, F; Sammel, M D; Smith, G; Galligan, D T; Levy, M Z; Hennessy, S

    2014-01-01

    The use of antibiotics in livestock can pose a public health threat, especially if antibiotic residues remain in the food product. Understanding how often and why farmers sell products with antibiotic residues is critical to improving the quality of these products. To understand how often milk with antibiotic residues is sold on small farms in a major dairy-producing region of Peru and identify factors associated with selling milk with antibiotic residues, we tested milk samples for antibiotic residues from every provider on three routes of commercial milk companies and from bulk tanks of farmers currently treating cows with antibiotics. We also asked farmers if they sold milk from treated cows and examined factors associated with the tendency to do so. The prevalence of milk contamination with antibiotic residues on commercial routes was low (0-4.2%); however, 33/36 farmers treating their animals with antibiotics sold milk that tested positive for antibiotic residues. The self-reported sale of milk from treated cows had a sensitivity, specificity, and positive and negative predictive values of 75.8%, 100%, 100% and 27.2%, respectively (with testing of milk for residues as the gold standard). Finally, 69/156 randomly selected farmers reported selling milk from treated cows, and farmers' knowledge of antibiotics and the milk purchaser were significantly associated with a farmer's tendency to report doing so. Educating farmers on the risks associated with antibiotics and enforcement of penalties for selling contaminated milk by milk companies are needed to improve milk quality.

  10. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Vakser Ilya A

    2011-07-01

    Full Text Available Abstract Background Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom pairs in the non-interaction state. Results The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of

  11. 40 CFR 180.435 - Deltamethrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... in food handling establishments, including food service, manufacturing and processing establishments.... Contamination of food/feed or food/feed contact surfaces shall be avoided. (B) To assure safe use of the...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  12. 40 CFR 180.422 - Tralomethrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...-handling establishments, including food service, manufacturing, and processing establishments, such as... shall be limited to a maximum of 0.06 percent active ingredient. Contamination of food and food-contact...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  13. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... application of bifenthrin in food handling establishments, including food service, manufacturing and... ingredient. Contamination of food/feed or food/feed contact surfaces shall be avoided. (B) To assure safe use...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  14. 40 CFR 180.108 - Acephate; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... establishments, including food service, manufacturing and processing establishments, such as restaurants... avoid atomization or splashing of the spray. Contamination of food or food-contact surfaces shall be... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.108...

  15. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  16. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    International Nuclear Information System (INIS)

    Liao Maofu; Kielian, Margaret

    2005-01-01

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion

  17. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    Directory of Open Access Journals (Sweden)

    McDermott Drew

    2009-08-01

    Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up

  18. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Science.gov (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  19. Chlorinated pesticide residues in sediments from the Arabian Sea along the Central West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    Environmental contamination by persistent chlorinated pesticides has evoked major concern due to the presence of their residues in the environment. The quantitative distribution of chlorinated pesticides residues in the marine sediments from...

  20. Does Bt Corn Really Produce Tougher Residues

    Science.gov (United States)

    Bt corn hybrids produce insecticidal proteins that are derived from a bacterium, Bacillus thuringiensis. There have been concerns that Bt corn hybrids produce residues that are relatively resistant to decomposition. We conducted four experiments that examined the decomposition of corn residues und...

  1. Organophosphate Pesticide Residues in Okra and Brinjal Grown in Peri-Urban Environment of Big Cities of Punjab

    International Nuclear Information System (INIS)

    Randhawa, M.A.; Zaman, M.; Anjum, F.M.; Asghar, A.

    2015-01-01

    Peri urban farming system is main supplier of vegetables to urban population and organophosphate pesticides exposure due to consumption of okra and brinjal to urban population has been estimated in this study. Okra and brinjal samples (90 samples for each vegetable) were collected from peri-urban farming area of Faisalabad, Multan and Gujranwala and were analysed by GC-ECD for quantification of chlorpyrifos, profenophos and triazophos residues. Data were statistically analyzed to calculate, mean and standard deviation. Quantification of pesticides residues revealed that 85 (47.22 percentage) samples were contaminated and 15 (8.33 percentage of total samples and 17.64 percentage of contaminated) samples showed residues value higher than MRL'S. Out of 85 contaminated samples 27 (31.76 percentage) samples were contaminated with chlorpyrifos, 30 (35.29 percentage) samples with profenofos and 29 (34.11) were contaminated with triazophos. The mean concentration of chlorpyrifos in okra was 0.192 mg Kg-1 and brinjal 0.197 mg Kg-1. The mean concentration for profenofos in okra was 0.02 mg Kg-1 and brinjal 0.035 mg Kg-1. Similarly mean concentration for triazophos in okra was 0.009 mg Kg-1 and brinjal 0.01 mg Kg-1. Overall, 6.67 percentage samples of okra and 6.66 percentage samples of brinjal contaminated with chlorpyrifos exceeded EU MRL of 0.05 mg kg-1. Okra samples were found contaminated at frequency of 4.44 percentage and brinjal samples at frequency of 5.56 percentage with higher profenofos residues level than MRL of 0.05 mg kg-1. Approximately, 6.67 percentage samples of okra and 5.6 percentage samples of brinjal had profenofos residue level above MRL of 0.01 mg kg-1. This study may be helpful for building database regarding regional exposure of urban population and facilitate in estimation of possible risk to their health in our daily life. (author)

  2. Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands.

    Science.gov (United States)

    Pascal, Christine; Paté, Franck; Cheynier, Véronique; Delsuc, Marc-André

    2009-09-01

    Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline-rich proteins, which are natively unfolded proteins. A human salivary proline-rich protein, namely IB-5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan-3-ol in green tea, were studied here. Circular dichroism experiments showed that IB-5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB-5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB-5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB-5/EGCG aggregates.

  3. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review.

    Science.gov (United States)

    Rossi, Rosanna; Saluti, Giorgio; Moretti, Simone; Diamanti, Irene; Giusepponi, Danilo; Galarini, Roberta

    2018-02-01

    Milk is an important and beneficial food from a nutritional point of view, being an indispensable source of high quality proteins. Furthermore, it is a raw material for many dairy products, such as yoghurt, cheese, cream etc. Before reaching consumers, milk goes through production, processing and circulation. Each step involves potentially unsafe factors, such as chemical contamination that can affect milk quality. Antibiotics are widely used in veterinary medicine for dry cow therapy and mastitis treatment in lactating cows, which can cause the presence of antimicrobial residues in milk. In order to ensure consumers' safety, milk is analyzed to make sure that the fixed Maximum Residue Limits (MRLs) for antibiotics are not exceeded. Multiclass methods can monitor more drug classes through a single analysis, so they are faster, less time-consuming and cheaper than traditional methods (single-class); this aspect is particularly important for milk, which is a highly perishable food. Nevertheless, multiclass methods for veterinary drug residues in foodstuffs are real analytical challenges. This article reviews the major multiclass methods published for the determination of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry, with a special focus on sample preparation approaches.

  4. Risk element immobilization/stabilization potential of fungal-transformed dry olive residue and arbuscular mycorrhizal fungi application in contaminated soils.

    Science.gov (United States)

    García-Sánchez, Mercedes; Stejskalová, Tereza; García-Romera, Inmaculada; Száková, Jiřina; Tlustoš, Pavel

    2017-10-01

    The use of biotransformed dry olive residue (DOR) as organic soil amendment has recently been proposed due to its high contents of stabilized organic matter and nutrients. The potential of biotransformed DOR to immobilize risk elements in contaminated soils might qualify DOR as a potential risk element stabilization agent for in situ soil reclamation practices. In this experiment, the mobility of risk elements in response to Penicillium chrysogenum-10-transformed DOR, Funalia floccosa-transformed DOR, Bjerkandera adusta-transformed DOR, and Chondrostereum purpureum-transformed DOR as well as arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae, inoculation was investigated. We evaluated the effect of these treatments on risk element uptake by wheat (Triticum aestivum L.) plants in a pot experiment with Cd, Pb, and Zn contaminated soil. The results showed a significant impact of the combined treatment (biotransformed DOR and AMF inoculation) on wheat plant growth and element mobility. The mobile proportions of elements in the treated soils were related to soil pH; with increasing pH levels, Cd, Cu, Fe, Mn, P, Pb, and Zn mobility decreased significantly (r values between -0.36 and -0.46), while Ca and Mg mobility increased (r = 0.63, and r = 0.51, respectively). The application of biotransformed DOR decreased risk element levels (Cd, Zn), and nutrient concentrations (Ca, Cu, Fe, Mg, Mn) in the aboveground biomass, where the elements were retained in the roots. Thus, biotransformed DOR in combination with AMF resulted in a higher capacity of wheat plants to grow under detrimental conditions, being able to accumulate high amounts of risk elements in the roots. However, risk element reduction was insufficient for safe crop production in the extremely contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Residues effects of isoproturon in mature earthworm (Aporrectodea caliginosa) under laboratory conditions.

    Science.gov (United States)

    Youssef, Yahia; Mosleh, Ismaili

    2007-01-01

    This study was conducted to investigate the residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin in soil and mature earthworms under laboratory conditions. Mature earthworms (Aporrectodea caliginosa) were exposed for various durations (7, 15, 30, and 60 days) to soils contaminated with isoproturon concentrations (2, 4, 6, 8, and 10 mg.kg(-1) soil). The decrease in isoproturon concentration in the soil depended on initial concentration it was slower at higher concentrations. The isoproturon and its metabolites accumulated in earthworms it increased during the first 15 days and decreased thereafter. Acute toxicity of isoproturon was determined together with total soluble protein content and glycogen of worms. These parameters were related to isoproturon concentration in soil and earthworms. No lethal effect of isoproturon was observed even at the concentration 1000 mg.kg(-1) soil after 60 days of exposure. A reduction of total soluble protein was observed in all treated worms (maximum 59.54%). This study is suggesting the use of the total soluble protein content and glycogen of earthworms as biomarker of exposure to isoproturon.

  6. Semi-analytical Study of a One-dimensional Contaminant Flow in a ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The Bubnov-Galerkin weighted residual method was used to solve a one- dimensional contaminant flow problem in this paper. The governing equation of the contaminant flow, which is characterized by advection, dispersion and adsorption was discretized and solved to obtain the semi-analytical solution.

  7. Disposal of Rocky Flats residues as waste

    International Nuclear Information System (INIS)

    Dustin, D.F.; Sendelweck, V.S.

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes

  8. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  9. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco

    Directory of Open Access Journals (Sweden)

    Kapralov Maxim V

    2011-09-01

    Full Text Available Abstract Background One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories. Results We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time. Conclusion Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.

  10. Radioisotope studies of some effects and interactions of trace contaminants

    International Nuclear Information System (INIS)

    1976-01-01

    The coordinated programme of ''isotopic tracer-aided studies of the biological side-effects of foreign chemical residues in food and agriculture'', initiated in 1973, had involved the participation of 12 scientists from 10 countries. Pesticide residues, toxic metals, atmospheric sulphur dioxide were studied, and the use of radiotracer techniques as monitoring tools for existing contaminant levels or for their biological effects. The programme had been successful in the development and application of selected labelled substrate techniques. Specific aspects studied were the effects of environmental contaminants at the molecular level of the cell nucleus, the development and significance of radioimmunoassay procedure for trace contaminants, action and joint action of toxic elements, and the radiometric analysis of cholinesterase as an index of exposure to organophosphorus and carbamate pesticides. Ten papers were presented and 12 coordinated investigations discussed. A number of recommendations were made

  11. Identification and modulation of the key amino acid residue responsible for the pH sensitivity of neoculin, a taste-modifying protein.

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Nakajima

    Full Text Available Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS and a neoculin basic subunit (NBS. Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor-taste substance in particular.

  12. Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards

    Directory of Open Access Journals (Sweden)

    Noori Al-Waili

    2012-01-01

    Full Text Available Agricultural contamination with pesticides and antibiotics is a challenging problem that needs to be fully addressed. Bee products, such as honey, are widely consumed as food and medicine and their contamination may carry serious health hazards. Honey and other bee products are polluted by pesticides, heavy metals, bacteria and radioactive materials. Pesticide residues cause genetic mutations and cellular degradation and presence of antibiotics might increase resistant human or animal's pathogens. Many cases of infant botulisms have been attributed to contaminated honey. Honey may be very toxic when produced from certain plants. Ingestion of honey without knowing its source and safety might be problematic. Honey should be labeled to explore its origin, composition, and clear statement that it is free from contaminants. Honey that is not subjected for analysis and sterilization should not be used in infants, and should not be applied to wounds or used for medicinal purposes. This article reviews the extent and health impact of honey contamination and stresses on the introduction of a strict monitoring system and validation of acceptable minimal concentrations of pollutants or identifying maximum residue limits for bee products, in particular, honey.

  13. Review of alternative residual contamination guides for the 324 Building B-Cell Cleanout Project. Phase 1

    International Nuclear Information System (INIS)

    Vargo, G.J.; Durham, J.S.; Brackenbush, L.W.

    1995-09-01

    This report provides a proposed residual contamination guide (RCG) for the 324 Building B-Cell Cleanout Project, Phase 1, at the Hanford Site. The RCG is expressed as a fraction of the amount of highly dispersible radioactive material that would result in offsite doses equal to the Pacific Northwest Laboratory radiological risk guidelines following the worst credible accident scenario for release of the holdup material. The proposed RCG is 10 -1 to 10 -2 of the PNL radiological risk guidelines. As part of the development of the RCG, a number of factors were considered. These include the need to provide an appropriate level of flexibility for other activities within the 324 Building that could contribute to the facility's overall radiological risk, uncertainties inherent in safety analyses, and the possible contribution of other 300 Area facilities to overall radiological risk. Because of these factors and the nature of the cleanout project, the RCG is expressed as a range rather than a point value. This report also provides guidance on determining conformance to the RCG, including inspection and measurement techniques, quality assurance requirements, and consideration of uncertainty

  14. Improving yield and composition of protein concentrates from green tea residue in an agri-food supply chain: Effect of pre-treatment

    NARCIS (Netherlands)

    Zhang, Chen; Krimpen, Van Marinus M.; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Rather than improving crop-production yield, developing biorefinery technology for unused biomass from the agri-food supply chain may be the crucial factor to reach sustainable global food security. A successful example of food-driven biorefinery is the extraction of protein from green tea residues,

  15. Sequence and 3D structure based analysis of TNT degrading proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Bhattacherjee, Amrita; Mandal, Rahul Shubhra; Das, Santasabuj; Kundu, Sudip

    2014-03-01

    TNT, accidentally released at several manufacturing sites, contaminates ground water and soil. It has a toxic effect to algae and invertebrate, and chronic exposure to TNT also causes harmful effects to human. On the other hand, many plants including Arabidopsis thaliana have the ability to metabolize TNT either completely or at least to a reduced less toxic form. In A. thaliana, the enzyme UDP glucosyltransferase (UDPGT) can further conjugate the reduced forms 2-HADNT and 4-HADNT (2-hydroxylamino-4, 6- dinitrotoluene and 4-hydroxylamino-2, 6- dinitrotoluene) of TNT. Based on the experimental analysis, existing literature and phylogenetic analysis, it is evident that among 107 UDPGT proteins only six are involved in the TNT degrading process. A total of 13 UDPGT proteins including five of these TNT degrading proteins fall within the same group of phylogeny. Thus, these 13 UDPGT proteins have been classified into two groups, TNT-degrading and TNT-non-degrading proteins. To understand the differences in TNT-degrading capacities; using homology modeling we first predicted two structures, taking one representative sequence from both the groups. Next, we performed molecular docking of the modeled structure and TNT reduced form 2-hydroxylamino-4, 6- dinitrotoluene (2-HADNT). We observed that while the Trp residue located within the active site region of the TNT- degrading protein showed π-Cation interaction; such type of interaction was absent in TNT-non-degrading protein, as the respective Trp residue lay outside of the pocket in this case. We observed the conservation of this π-Cation interaction during MD simulation of TNT-degrading protein. Thus, the position and the orientation of the active site residue Trp could explain the presence and absence of TNT-degrading capacity of the UDPGT proteins.

  16. Combining specificity determining and conserved residues improves functional site prediction

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2009-06-01

    Full Text Available Abstract Background Predicting the location of functionally important sites from protein sequence and/or structure is a long-standing problem in computational biology. Most current approaches make use of sequence conservation, assuming that amino acid residues conserved within a protein family are most likely to be functionally important. Most often these approaches do not consider many residues that act to define specific sub-functions within a family, or they make no distinction between residues important for function and those more relevant for maintaining structure (e.g. in the hydrophobic core. Many protein families bind and/or act on a variety of ligands, meaning that conserved residues often only bind a common ligand sub-structure or perform general catalytic activities. Results Here we present a novel method for functional site prediction based on identification of conserved positions, as well as those responsible for determining ligand specificity. We define Specificity-Determining Positions (SDPs, as those occupied by conserved residues within sub-groups of proteins in a family having a common specificity, but differ between groups, and are thus likely to account for specific recognition events. We benchmark the approach on enzyme families of known 3D structure with bound substrates, and find that in nearly all families residues predicted by SDPsite are in contact with the bound substrate, and that the addition of SDPs significantly improves functional site prediction accuracy. We apply SDPsite to various families of proteins containing known three-dimensional structures, but lacking clear functional annotations, and discusse several illustrative examples. Conclusion The results suggest a better means to predict functional details for the thousands of protein structures determined prior to a clear understanding of molecular function.

  17. A novel approach for the detection of potentially hazardous pepsin stable hazelnut proteins as contaminants in chocolate-based food

    NARCIS (Netherlands)

    Akkerdaas, Jaap H.; Wensing, Marjolein; Knulst, André C.; Stephan, Oliver; Hefle, Susan L.; Aalberse, Rob C.; van Ree, Ronald

    2004-01-01

    Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and

  18. A protein relational database and protein family knowledge bases to facilitate structure-based design analyses.

    Science.gov (United States)

    Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine

    2010-08-01

    The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.

  19. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    Science.gov (United States)

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  20. Residue management at Rocky Flats

    International Nuclear Information System (INIS)

    Olencz, J.

    1995-01-01

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as open-quotes materials in-processclose quotes to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes

  1. Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix.

    Science.gov (United States)

    Zhang, Haicang; Gao, Yujuan; Deng, Minghua; Wang, Chao; Zhu, Jianwei; Li, Shuai Cheng; Zheng, Wei-Mou; Bu, Dongbo

    2016-03-25

    Strategies for correlation analysis in protein contact prediction often encounter two challenges, namely, the indirect coupling among residues, and the background correlations mainly caused by phylogenetic biases. While various studies have been conducted on how to disentangle indirect coupling, the removal of background correlations still remains unresolved. Here, we present an approach for removing background correlations via low-rank and sparse decomposition (LRS) of a residue correlation matrix. The correlation matrix can be constructed using either local inference strategies (e.g., mutual information, or MI) or global inference strategies (e.g., direct coupling analysis, or DCA). In our approach, a correlation matrix was decomposed into two components, i.e., a low-rank component representing background correlations, and a sparse component representing true correlations. Finally the residue contacts were inferred from the sparse component of correlation matrix. We trained our LRS-based method on the PSICOV dataset, and tested it on both GREMLIN and CASP11 datasets. Our experimental results suggested that LRS significantly improves the contact prediction precision. For example, when equipped with the LRS technique, the prediction precision of MI and mfDCA increased from 0.25 to 0.67 and from 0.58 to 0.70, respectively (Top L/10 predicted contacts, sequence separation: 5 AA, dataset: GREMLIN). In addition, our LRS technique also consistently outperforms the popular denoising technique APC (average product correction), on both local (MI_LRS: 0.67 vs MI_APC: 0.34) and global measures (mfDCA_LRS: 0.70 vs mfDCA_APC: 0.67). Interestingly, we found out that when equipped with our LRS technique, local inference strategies performed in a comparable manner to that of global inference strategies, implying that the application of LRS technique narrowed down the performance gap between local and global inference strategies. Overall, our LRS technique greatly facilitates

  2. [Perceived risks of food contaminants].

    Science.gov (United States)

    Koch, Severine; Lohmann, Mark; Epp, Astrid; Böl, Gaby-Fleur

    2017-07-01

    Food contaminants can pose a serious health threat. In order to carry out adequate risk communication measures, the subjective risk perception of the public must be taken into account. In this context, the breadth of the topic and insufficient terminological delimitations from residues and food additives make an elaborate explanation of the topic to consumers indispensable. A representative population survey used language adequate for lay people and a clear definition of contaminants to measure risk perceptions with regard to food contaminants among the general public. The study aimed to assess public awareness of contaminants and the perceived health risks associated with them. In addition, people's current knowledge and need for additional information, their attitudes towards contaminants, views on stakeholder accountability, as well as compliance with precautionary measures, such as avoiding certain foods to reduce health risks originating from contaminants, were assessed. A representative sample of 1001 respondents was surveyed about food contaminants via computer-assisted telephone interviewing. The majority of respondents rated contaminants as a serious health threat, though few of them spontaneously mentioned examples of undesirable substances in foods that fit the scientific or legal definition of contaminants. Mercury and dioxin were the most well-known contaminants. Only a minority of respondents was familiar with pyrrolizidine alkaloids. The present findings highlight areas that require additional attention and provide implications for risk communication geared to specific target groups.

  3. Tyrosine Residues Regulate Multiple Nuclear Functions of P54nrb.

    Science.gov (United States)

    Lee, Ahn R; Hung, Wayne; Xie, Ning; Liu, Liangliang; He, Leye; Dong, Xuesen

    2017-04-01

    The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Increasing protein stability by improving beta-turns.

    Science.gov (United States)

    Fu, Hailong; Grimsley, Gerald R; Razvi, Abbas; Scholtz, J Martin; Pace, C Nick

    2009-11-15

    Our goal was to gain a better understanding of how protein stability can be increased by improving beta-turns. We studied 22 beta-turns in nine proteins with 66-370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some beta-turn positions. We studied: Cold shock protein B (CspB), Histidine-containing phosphocarrier protein, Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase alpha-subunit, and Maltose binding protein. Of the 15 single proline mutations, 11 increased stability (Average = 0.8 +/- 0.3; Range = 0.3-1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. On the basis of this and our previous work, we conclude that proteins can generally be stabilized by replacing nonproline residues with proline residues at the i + 1 position of Type I and II beta-turns and at the i position in Type II beta-turns. Other turn positions can sometimes be used if the phi angle is near -60 degrees for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in beta-turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in beta-turns that could be replaced by Gly to increase protein stability. Improving beta-turns by substituting Pro residues is a generally useful way of increasing protein stability. 2009 Wiley-Liss, Inc.

  5. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  6. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy.

    Science.gov (United States)

    Qu, Xiu-Xia; Hao, Pei; Song, Xi-Jun; Jiang, Si-Ming; Liu, Yan-Xia; Wang, Pei-Gang; Rao, Xi; Song, Huai-Dong; Wang, Sheng-Yue; Zuo, Yu; Zheng, Ai-Hua; Luo, Min; Wang, Hua-Lin; Deng, Fei; Wang, Han-Zhong; Hu, Zhi-Hong; Ding, Ming-Xiao; Zhao, Guo-Ping; Deng, Hong-Kui

    2005-08-19

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is a recently identified human coronavirus. The extremely high homology of the viral genomic sequences between the viruses isolated from human (huSARS-CoV) and those of palm civet origin (pcSARS-CoV) suggested possible palm civet-to-human transmission. Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism. Using the single-round infection assay, we found that a two-amino acid substitution (N479K/T487S) of a huSARS-CoV for those of pcSARS-CoV almost abolished its infection of human cells expressing the SARS-CoV receptor ACE2 but no effect upon the infection of mouse ACE2 cells. Although single substitution of these two residues had no effects on the infectivity of huSARS-CoV, these recombinant S proteins bound to human ACE2 with different levels of reduced affinity, and the two-amino acid-substituted S protein showed extremely low affinity. On the contrary, substitution of these two amino acid residues of pcSARS-CoV for those of huSRAS-CoV made pcSARS-CoV capable of infecting human ACE2-expressing cells. These results suggest that amino acid residues at position 479 and 487 of the S protein are important determinants for SARS-CoV tropism and animal-to-human transmission.

  7. Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC–ESI-MS response for the bioanalysis of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shah; Pezzei, Cornelia [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); Güzel, Yüksel [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); ADSI-Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria); Rainer, Matthias [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); Huck, Christian W., E-mail: Christian.W.Huck@uibk.ac.at [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); Bonn, Günther K. [Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck (Austria); ADSI-Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria)

    2014-12-10

    Highlights: • A novel sample preparation technique for isolation of small molecules from human plasma. • Effectiveness of zirconium silicate for the removal of residual proteins after protein precipitation. • Abolishing the consumption of salts for the depletion of residual proteins after protein precipitation. • More than 99.6% removal of plasma proteins. - Abstract: An efficient blood plasma clean-up method was developed, where methanol protein precipitation was applied, followed by zirconium silicate assisted exclusion of residual proteins. A strong binding of zirconium (IV) silicate to the proteins enabled the elimination of remaining proteins after solvent deproteinization through a rapid solid-phase extraction (SPE) procedure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) was used for monitoring the proteins during clean-up practice applied to human plasma samples. The proteins were quantified by colorimetric detection using the bicinchoninic acid (BCA) assay. The presented analytical strategy resulted in the depletion of >99.6% proteins from human plasma samples. Furthermore, high-performance liquid chromatography hyphenated to diode-array and electrospray ionization mass spectrometric detection (HPLC–DAD/ESI MS) was applied for qualitative and quantitative analysis of the caffeoylquinic acids (CQAs) and their metabolites in human plasma. The procedure demonstrated high recoveries for the standard compounds spiked at different concentrations. Cynarin and chlorogenic acid were recovered in the range of 81–86% and 78–83%, respectively. Caffeic acid was extracted in the excess of 89–92%, while ferulic acid and dihydroxyhydrocinnamic acid showed a recovery of 87–91% and 92–95%, respectively. The method was partially validated in accordance with FDA-Industry Guidelines for Bioanalytical Method Validation (2001). The presented scheme improves the clean-up efficacy of the methanol deproteinization

  8. Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC–ESI-MS response for the bioanalysis of small molecules

    International Nuclear Information System (INIS)

    Hussain, Shah; Pezzei, Cornelia; Güzel, Yüksel; Rainer, Matthias; Huck, Christian W.; Bonn, Günther K.

    2014-01-01

    Highlights: • A novel sample preparation technique for isolation of small molecules from human plasma. • Effectiveness of zirconium silicate for the removal of residual proteins after protein precipitation. • Abolishing the consumption of salts for the depletion of residual proteins after protein precipitation. • More than 99.6% removal of plasma proteins. - Abstract: An efficient blood plasma clean-up method was developed, where methanol protein precipitation was applied, followed by zirconium silicate assisted exclusion of residual proteins. A strong binding of zirconium (IV) silicate to the proteins enabled the elimination of remaining proteins after solvent deproteinization through a rapid solid-phase extraction (SPE) procedure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) was used for monitoring the proteins during clean-up practice applied to human plasma samples. The proteins were quantified by colorimetric detection using the bicinchoninic acid (BCA) assay. The presented analytical strategy resulted in the depletion of >99.6% proteins from human plasma samples. Furthermore, high-performance liquid chromatography hyphenated to diode-array and electrospray ionization mass spectrometric detection (HPLC–DAD/ESI MS) was applied for qualitative and quantitative analysis of the caffeoylquinic acids (CQAs) and their metabolites in human plasma. The procedure demonstrated high recoveries for the standard compounds spiked at different concentrations. Cynarin and chlorogenic acid were recovered in the range of 81–86% and 78–83%, respectively. Caffeic acid was extracted in the excess of 89–92%, while ferulic acid and dihydroxyhydrocinnamic acid showed a recovery of 87–91% and 92–95%, respectively. The method was partially validated in accordance with FDA-Industry Guidelines for Bioanalytical Method Validation (2001). The presented scheme improves the clean-up efficacy of the methanol deproteinization

  9. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins

    Directory of Open Access Journals (Sweden)

    Liyuan Zhang

    2016-12-01

    Full Text Available Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize, M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize, M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060. The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB1 (M0 exhibited a decreasing tendency in average daily gain (ADG and total superoxide dismutase (T-SOD activity in serum, and T-SOD and glutathione peroxidase (GSH-Px activities in the liver significantly decreased along with the appearance of AFB1 and AFM1 compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks (p > 0.05, significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.

  10. Ameliorating Effects of Bacillus subtilis ANSB060 on Growth Performance, Antioxidant Functions, and Aflatoxin Residues in Ducks Fed Diets Contaminated with Aflatoxins.

    Science.gov (United States)

    Zhang, Liyuan; Ma, Qiugang; Ma, Shanshan; Zhang, Jianyun; Jia, Ru; Ji, Cheng; Zhao, Lihong

    2016-12-22

    Bacillus subtilis ANSB060 isolated from fish gut is very effective in detoxifying aflatoxins in feed and feed ingredients. The purpose of this research was to investigate the effects of B. subtilis ANSB060 on growth performance, body antioxidant functions, and aflatoxin residues in ducks fed moldy maize naturally contaminated with aflatoxins. A total of 1500 18-d-old male Cherry Valley ducks with similar body weight were randomly assigned to five treatments with six replicates of 50 ducks per repeat. The experiment design consisted of five dietary treatments labeled as C0 (basal diet containing 60% normal maize), M0 (basal diet containing 60% moldy maize contaminated with aflatoxins substituted for normal maize), M500, M1000, and M2000 (M0 +500, 1000 or 2000 g/t aflatoxin biodegradation preparation mainly consisted of B. subtilis ANSB060). The results showed that ducks fed 22.44 ± 2.46 μg/kg of AFB₁ (M0) exhibited a decreasing tendency in average daily gain (ADG) and total superoxide dismutase (T-SOD) activity in serum, and T-SOD and glutathione peroxidase (GSH-Px) activities in the liver significantly decreased along with the appearance of AFB₁ and AFM₁ compared with those in Group C0. The supplementation of B. subtilis ANSB060 into aflatoxin-contaminated diets increased the ADG of ducks ( p > 0.05), significantly improved antioxidant enzyme activities, and reduced aflatoxin accumulation in duck liver. In conclusion, Bacillus subtilis ANSB060 in diets showed an ameliorating effect to duck aflatoxicosis and may be a promising feed additive.

  11. Food contamination with environmentally hazardous chemical substances. Kontamination von Lebensmitteln mit Umweltchemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Petz, M [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.). Fachbereich 9 - Naturwissenschaften 2 - Chemie - Biologie

    1990-01-01

    The author explains the difference between residues and contaminants in food. Of the contaminants, the heavy metals lead, cadmium and mercury are discussed at length, e.g. their pathway through the food chain and their accumulation in plants, animals, and humans etc. PCB in food and in mother's milk are gone into, as are the consequences of this contamination. Finally, dibenzofuranes and dibenzodioxins are mentioned, again with a view to the contamination of mother's milk. The health hazards from contaminated food is related to the health hazards of malnutrition and overeating. (MG).

  12. Monitoring of Some Pesticides Residue in Consumed tea in Tehran Market

    Directory of Open Access Journals (Sweden)

    Maryam Amirahmadi

    2013-01-01

    Full Text Available Tea is an agricultural product of the leaves, leaf buds, and internodes of various cultivars and sub-varieties of the Camellia sinensis plant, processed and vulcanized using various methods. Tea is a main beverage in Iranian food basket so should be free from toxic elements such as pesticides residue. There is no data bank on the residue of pesticides in the consumed black tea in Iran. The present study is the first attempt for monitoring of 25 pesticide residues from different chemical groups in tea samples obtained from local markets in Tehran, I.R. Iran during the period 2011. A reliable and accurate method based on spiked calibration curve and QuEChERS sample preparation was developed for determination of pesticide residues in tea by gas chromatography--mass spectrometry (GC/MS. The using of spiked calibration standards for constructing the calibration curve substantially reduced adverse matrix-related effects and negative recovery affected by GCB on pesticides. The recovery of pesticides at 3 concentration levels (n = 3 was in range of 81.4 - 99.4%. The method was proved to be repeatable with RSDr lower than 20%. The limits of quantification for all pesticides were <=20 ng/g. 53 samples from 17 imported and manufactured brand were analyzed. Detectable pesticides residues were found in 28.3% (15 samples of the samples. All of the positive samples were contaminated with unregulated pesticides (Endosulfan Sulfate or Bifenthrin which are established by ISIRI. None of the samples had contamination higher than maximum residue limit set by EU and India.

  13. Monitoring of some pesticides residue in consumed tea in Tehran market

    Directory of Open Access Journals (Sweden)

    Hamedani Morteza Pirali

    2013-01-01

    Full Text Available Abstract Tea is an agricultural product of the leaves, leaf buds, and internodes of various cultivars and sub-varieties of the Camellia sinensis plant, processed and vulcanized using various methods. Tea is a main beverage in Iranian food basket so should be free from toxic elements such as pesticides residue. There is no data bank on the residue of pesticides in the consumed black tea in Iran. The present study is the first attempt for monitoring of 25 pesticide residues from different chemical groups in tea samples obtained from local markets in Tehran, I.R. Iran during the period 2011. A reliable and accurate method based on spiked calibration curve and QuEChERS sample preparation was developed for determination of pesticide residues in tea by gas chromatography–mass spectrometry (GC/MS. The using of spiked calibration standards for constructing the calibration curve substantially reduced adverse matrix-related effects and negative recovery affected by GCB on pesticides. The recovery of pesticides at 3 concentration levels (n = 3 was in range of 81.4 - 99.4%. The method was proved to be repeatable with RSDr lower than 20%. The limits of quantification for all pesticides were ≤20 ng/g. 53 samples from 17 imported and manufactured brand were analyzed. Detectable pesticides residues were found in 28.3% (15 samples of the samples. All of the positive samples were contaminated with unregulated pesticides (Endosulfan Sulfate or Bifenthrin which are established by ISIRI. None of the samples had contamination higher than maximum residue limit set by EU and India.

  14. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    Science.gov (United States)

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  15. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent.

    Science.gov (United States)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-10-15

    This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO4- associated crystalline complexes, and that immobile Ca/PO4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO4 as a simple, suitable and highly efficient material for the gentle immobilization of heavy metals in hazardous ASR thermal residue in dry condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quantitation of some amino-terminal residues in proteins using 3H-labelled dansyl chloride and 14C labelled amino acids

    International Nuclear Information System (INIS)

    Flengsrud, R.

    1979-01-01

    A method for quantitation of amino-terminal residues in proteins is presented. The method is a modification of a double isotope-labelling technique, using 3 H-labelled dansyl chloride and 14 C-labelled amino acids as internal standards. The method is demonstrated on human fibrinogen, horse myoglobin and on mouse myoloma IgA. A linear relationship between the ratio 3 H/ 14 C in the separated amino-terminal amino acid of the protein and the amount of protein added in the labelling mixture was obtained with standard deviations of +- 7.4%, +-3.4% and +-10.3%, respectively. An application of the method is demonstrated by measuring the increase in amino-terminal glycine in fibrinogen following the proteolytic action of thrombin. The method seems to be useful when 0.1 nmol or more of protein is used. (author)

  17. Characterization of Solids in Residual Wastes from Single-Shell Tanks at the Hanford Site, Washington, USA - 9277

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; Schaef, Herbert T.; Arey, Bruce W.; Heald, Steve M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Solid-phase characterization methods have been used in an ongoing study of residual wastes (i.e., waste remaining after final retrieval operations) from the underground single-shell storage tanks 241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112 at the U.S. Department of Energy's Hanford Site in Washington State. The results of studies completed to date show significant variability in the compositions of those residual wastes and the compositions, morphologies, and crystallinities of the individual phases that make up these wastes. These differences undoubtedly result from the various waste types stored and transferred in and out each tank and the sluicing and retrieval operations used for waste retrieval. Our studies indicate that these residual wastes are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases. Depending on the specific tank, various solids (e.g., gibbsite; boehmite; dawsonite; cancrinite; Fe oxides such as hematite, goethite, and maghemite; rhodochrosite; lindbergite; whewellite; nitratine; and numerous amorphous or poorly crystalline phases) have been identified by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy in residual wastes studied to date. Our studies also show that contact of residual wastes with Ca(OH)2- and CaCO3-saturated aqueous solutions, which were used as surrogates for the compositions of pore-fluid leachants derived from young and aged cements respectively, may alter the compositions of solid phases present in the contacted wastes. Fe oxides/hydroxides have been identified in all residual wastes studied to date. They occur in these wastes as discrete particles, particles intergrown within a matrix of other phases, and surface coatings on other particles or particle aggregates. These Fe oxides/hydroxides typically contain trace concentrations of other transition metals, such Cr, Mn

  18. PROTEIN ENRICHMENT OF SPENT SORGHUM RESIDUE USING ...

    African Journals Online (AJOL)

    BSN

    The optimum concentration of spent sorghum for protein enrichment with S. cerevisiae was 7.Sg/100 ml. Th.: protein ... production of single sell protein using Candida utilis and cassava starch effluem as substrate. ... wastes as substrates, Kluyveromyces fragilis and milk whey coconut water as substrate (Rahmat et al.,. 1995 ...

  19. Template-based protein-protein docking exploiting pairwise interfacial residue restraints

    NARCIS (Netherlands)

    Xue, Li C; Garcia Lopes Maia Rodrigues, João; Dobbs, Drena; Honavar, Vasant; Bonvin, Alexandre M J J

    2016-01-01

    Although many advanced and sophisticatedab initioapproaches for modeling protein-protein complexes have been proposed in past decades, template-based modeling (TBM) remains the most accurate and widely used approach, given a reliable template is available. However, there are many different ways to

  20. Photoactivation of the BLUF protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues

    KAUST Repository

    Gil, Agnieszka A.; Laptenok, Sergey P.; Iuliano, James N.; Lukacs, Andras; Verma, Anil; Hall, Christopher R.; Yoon, EunBin; Brust, Richard; Greetham, Gregory M.; Towrie, Michael; French, Jarrod B.; Meech, Stephen R.; Tonge, Peter J

    2017-01-01

    The flavin chromophore in blue light using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppA by the introduction of fluorotyrosine (F-Tyr) analogs that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark to light adapted form) photoreaction was observed, the change in Y21 pKa led to a 4,000-fold increase in the rate of dark state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppA, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppA, despite their sharing highly conserved FAD binding architectures.

  1. Photoactivation of the BLUF protein PixD Probed by the Site-Specific Incorporation of Fluorotyrosine Residues

    KAUST Repository

    Gil, Agnieszka A.

    2017-09-06

    The flavin chromophore in blue light using FAD (BLUF) photoreceptors is surrounded by a hydrogen bond network that senses and responds to changes in the electronic structure of the flavin on the ultrafast time scale. The hydrogen bond network includes a strictly conserved Tyr residue, and previously we explored the role of this residue, Y21, in the photoactivation mechanism of the BLUF protein AppA by the introduction of fluorotyrosine (F-Tyr) analogs that modulated the pKa and reduction potential of Y21 by 3.5 pH units and 200 mV, respectively. Although little impact on the forward (dark to light adapted form) photoreaction was observed, the change in Y21 pKa led to a 4,000-fold increase in the rate of dark state recovery. In the present work we have extended these studies to the BLUF protein PixD, where, in contrast to AppA, modulation in the Tyr (Y8) pKa has a profound impact on the forward photoreaction. In particular, a decrease in Y8 pKa by 2 or more pH units prevents formation of a stable light state, consistent with a photoactivation mechanism that involves proton transfer or proton coupled electron transfer from Y8 to the electronically excited FAD. Conversely, the effect of pKa on the rate of dark recovery is markedly reduced in PixD. These observations highlight very significant differences between the photocycles of PixD and AppA, despite their sharing highly conserved FAD binding architectures.

  2. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  3. Experimental studies on decontamination in first aid for contaminated wounds

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo

    1982-01-01

    The present study was designed to investigate the decontamination procedures in first aid for wounds contaminated with radionuclides. Abrasion of mouse skin was contaminated with 58 CoCl 2 . Irrigation by decontamination fluids began at 2 min after administration of the radionuclide and continued for 14 min. Tap water, 0.5% Hyamine solution or 10% Ca-DTPA solution were used as the decontamination fluids. Radioactivities of whole body, wounded skin surface and washed solution were measured with an animal counter with 5 cm NaI(Tl) and a well-type auto-gamma-counter. Decontamination effectiveness were expressed as follows: (1) absorption rate of radionuclide through the wound and (2) residual rate of radionuclide on the wound. More than 20% of the radionuclide applied on the wounded skin was absorbed in 15 min after contamination. The absorption rate decreased to 2% by the decontamination procedures. The Ca-DTPA solution reduced the residual rate of radionuclide on the wounds. The results suggested that the decontamination for the contaminated wounds should begin as soon as possible. Irrigation with 0.5% Hyamine solution has been advocated for the decontamination in the first aid. (author)

  4. ESTIMATION OF THE BURDEN OF PESTICIDE RESIDUES IN SLOVAK POPULATION

    Directory of Open Access Journals (Sweden)

    Jozef Sokol

    2010-07-01

    Full Text Available Pesticides used in the agriculture have to be applied according to the requirements of good agricultural practice and appropriate law. Pesticides leave detectable residues in agricultural crops, raw materials and ecosystem components. Pesticides reach the human population through the food chain. Information on the type and concentration of pesticide residues in food is in Slovakia collected trough the monitoring programs. Health risks associated with pesticides contaminants in human nutrition are very important and are recently studied by several expert groups. Prerequisite programs are necessary to protect public health. Risk analysis and monitoring of the population burden by pesticide contaminants have to be performed in expert level. The general strategy for assessment of toxicity of pesticides is listed by the World health Organisation. Scientific risk assessment is the basis for taking action and making the legislation at national and European community level.doi:10.5219/69

  5. CLOPYRALID DISSIPATION IN THE SOIL CONTAMINATED WITH HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Mariusz Kucharski

    2014-12-01

    Full Text Available The aim of the studies was to determine the influence of copper and zinc contamination on clopyralid dissipation in soil. The experiment was carried out in laboratory conditions (plant growth chamber. Clopyralid was applied to three different soils [similar textures, pH, organic carbon content and contrasting copper and zinc content: soil natural contaminated with Cu and Zn (S1, soil with natural low Cu and Zn concentration (S2 and soil S21 prepared in the laboratory (S2 soil additionally contaminated with Cu and Zn salts in the amounts equivalent to contamination level of S1 soil]. Soil samples were taken for analyses for 1 hour (initial concentration and 2, 4, 8, 16, 32, 64 and 96 days after treatment. Clopyralid residue was analysed using GC/ECD (gas chromatography with electron capture detector. Good linearity was found between logarithmic concentration of clopyralid residues and time. The differences in Cu and Zn content influenced the clopyralid decay in soil. The values of DT50 obtained in the experiment ranged from 21 to 27 days. A high concentration of Cu and Zn in soil slowed down clopyralid degradation (the DT50 value was higher – 25–27 days.

  6. ABC transporter Cdr1p harbors charged residues in the intracellular loop and nucleotide-binding domain critical for protein trafficking and drug resistance.

    Science.gov (United States)

    Shah, Abdul Haseeb; Banerjee, Atanu; Rawal, Manpreet Kaur; Saxena, Ajay Kumar; Mondal, Alok Kumar; Prasad, Rajendra

    2015-08-01

    The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Food contamination with environmentally hazardous chemical substances. Kontamination von Lebensmitteln mit Umweltchemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Petz, M. (Wuppertal Univ. (Gesamthochschule) (Germany, F.R.). Fachbereich 9 - Naturwissenschaften 2 - Chemie - Biologie)

    1990-01-01

    The author explains the difference between residues and contaminants in food. Of the contaminants, the heavy metals lead, cadmium and mercury are discussed at length, e.g. their pathway through the food chain and their accumulation in plants, animals, and humans etc. PCB in food and in mother's milk are gone into, as are the consequences of this contamination. Finally, dibenzofuranes and dibenzodioxins are mentioned, again with a view to the contamination of mother's milk. The health hazards from contaminated food is related to the health hazards of malnutrition and overeating. (MG).

  8. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  9. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  10. Revealing Pesticide Residues Under High Pesticide Stress in Taiwan's Agricultural Environment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen.

    Science.gov (United States)

    Nai, Yu-Shin; Chen, Tsui-Yao; Chen, Yi-Cheng; Chen, Chun-Ting; Chen, Bor-Yann; Chen, Yue-Wen

    2017-10-01

    Significant pesticide residues are among the most serious problems for sustainable agriculture. In the beekeeping environment, pesticides not only impact a honey bee's survival, but they also contaminate bee products. Taiwan's agricultural environment has suffered from pesticide stress that was higher than that found in Europe and America. This study deciphered problems of pesticide residues in fresh honey bee pollen samples collected from 14 monitoring apiaries in Taiwan, which reflected significant contaminations within the honey bee population. In total, 155 pollen samples were screened for 232 pesticides, and 56 pesticides were detected. Among the residues, fluvalinate and chlorpyrifos showed the highest concentrations, followed by carbendazim, carbaryl, chlorfenapyr, imidacloprid, ethion, and flufenoxuron. The average frequency of pesticide residues detected in pollen samples was ca. 74.8%. The amounts and types of pesticides were higher in winter and in southwestern Taiwan. Moreover, five of these pollen samples were contaminated with 11-15 pesticides, with average levels between 1,560 and 6,390 μg/kg. Compared with the literature, this study emphasized that pollen gathered by honey bee was highly contaminated with more pesticides in Taiwan than in the America, France, and Spain. The ubiquity of pesticides in the pollen samples was likely due to the field applications of common pesticides. Recently, the Taiwanese government began to improve the pesticide policy. According to the resurvey data in 2016, there were reductions in several pesticide contamination parameters in pollen samples from west to southwest Taiwan. A long-term investigation of pollen pesticide residues should be conducted to inspect pesticides usage in Taiwan's agriculture. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Hanford Tank 241-S-112 Residual Waste Composition and Leach Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Lindberg, Michael J.; Arey, Bruce W.; Schaef, Herbert T.

    2008-08-29

    This report presents the results of laboratory characterization and testing of two samples (designated 20406 and 20407) of residual waste collected from tank S-112 after final waste retrieval. These studies were completed to characterize the residual waste and assess the leachability of contami¬nants from the solids. This is the first report from this PNNL project to describe the composition and leach test data for residual waste from a salt cake tank. All previous PNNL reports (Cantrell et al. 2008; Deutsch et al. 2006, 2007a, 2007b, 2007c) describing contaminant release models, and characterization and testing results for residual waste in single-shell tanks were based on samples from sludge tanks.

  12. Characterization of enzymatically extracted sunflower seed oil as well as the protein residues

    Directory of Open Access Journals (Sweden)

    Sitohy, M. Z.

    1993-12-01

    Full Text Available Sunflower seed oil was enzymatically extracted with six different enzymes: cellulase, hemicellulase, animal proteinase, acid proteinase, pectinase and pectinex under the following conditions: substrate concentration in phosphate buffer (0.5M, pH 5 30%, enzyme concentration 2% (E/S, temperature 50°C and time 3 hours. The obtained oils were analyzed for physicochemical properties and fatty acid profiles. The protein residues were analyzed for amino acid compositions. The results showed that the enzymatic extraction with cellulase or hemicellulase could maintain good oil quality of the extracted oils as their levels of linoleic and oleic acids recorded similar values to those of the control oil extracted with organic solvents. Also the level of iodine value was in the same level of control. On the other hand, the use of proteases in the enzymatic extraction of sunflower seed oil caused some reductions in the levels of the unsaturated fatty acids as well as the iodine value. The pectinases showed a similar trend to that of the proteinase with the least recovery of linoleic acid among the different oils under study. Similarly, the use of cellulases did not change the amino acid composition of the protein residue as compared to the control, in the contrary to the extraction with the proteinases which caused reduction of some amino acids from the protein residues especially lysine, leucine, iso-leucine, alanine, arginine and aspartic. In that respect the use of pectinases behaved similar to cellulases.

    Aceite de semilla de girasol fue extraído enzimáticamente con seis enzimas diferentes: celulasa, hemicelulasa, proteinasa animal, proteinase acida, pectinasa y pectinex bajo las condiciones siguientes: concentración de sustrato en tampón fosfato (0,5M, pH 5 30%, concentración enzimática 2% (E/S, temperatura 50°C y tiempo 3 horas. Los aceites obtenidos fueron analizados por sus propiedades fisicoquímicas y perfiles de ácidos grasos

  13. Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.

    Science.gov (United States)

    Gong, Yehong; Zhu, Yuzhen; Zou, Yu; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen

    2017-01-26

    pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102H p and S83H p ). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102H p mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83H p mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.

  14. Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.

    Science.gov (United States)

    Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol

    2013-02-01

    A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.

  15. Production of arapaima protein hydrolysate using Aspergillus flavo-furcatis protease and pancreatin

    Directory of Open Access Journals (Sweden)

    Flávia de Carvalho Paiva

    2015-03-01

    Full Text Available The processing of arapaima (Arapaima gigas generates a lot of residues that can be used for the development of new products of industrial interest. This study aimed at evaluating the production of protein hydrolysates from arapaima residues using Aspergillus flavo-furcatis protease and commercial pancreatin, as well as characterizing their nutritional and microbiological qualities. The raw material used was meat mechanically separated from arapaima carcasses (MMSA. Two products were developed: a protein hydrolysate of arapaima using a commercial enzyme (PHACE and another one using microbial enzyme (PHAME. The MMSA and the hydrolysates were analyzed for chemical composition, microbiological quality, degree of hydrolysis, digestibility and amino acid profile. The results showed that the PHACE protein content was 73.47 %. This value was significantly higher, when compared to the PHAME (58.03 %. However, both products showed high digestibility values, absence of microbial contaminants and reduced lipid content. Among the enzymes used, pancreatin was the most efficient one in the preparation of the final product, which showed essential amino acids content higher than the requirements for human adults. The hydrolysate developed using A. flavo-furcatis enzymes presented essential amino acids score lower than 1.0, being tryptophan the most limiting one.

  16. Quantitative Evaluation of Contamination on Dental Zirconia Ceramic by Silicone Disclosing Agents after Different Cleaning Procedures

    Directory of Open Access Journals (Sweden)

    Sebastian Wille

    2015-05-01

    Full Text Available The aim of this study was to evaluate the effectiveness of cleaning procedures for air-abraded zirconia after contamination with two silicone disclosing agents. Air-abraded zirconia ceramic specimens (IPS e.max ZirCAD were contaminated with either GC Fit Checker white or GC Fit Checker II. Untreated zirconia specimens were used as control. Afterwards the surfaces were cleaned either with waterspray or ultrasonically in 99% isopropanol or using a newly developed cleaning paste (Ivoclean. After cleaning X-ray photoelectron spectroscopy (XPS was performed and the relative peak intensities of Zr, C and Si were used for a qualitative comparison of the residuals. There was no significant difference between the two different silicone disclosing agents. An additional cleaning step with isopropanol led to a significantly lower amount of residuals on the surface, but an additional cleaning process with Ivoclean did not reduce the amount of carbon residuals in comparison to the isopropanol cleaning. Just the silicone amount on the surface was reduced. None of the investigated cleaning processes removed all residuals from the contaminated surface. Standard cleaning processes do not remove all residuals of the silicone disclosing agent from the surface. This may lead to a failure of the resin-ceramic bonding.

  17. Dirt feedlot residue experiments. Quarterly progress report, December 1977--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Turk, M.

    1978-04-01

    Performance of the mobile fermentation system is reported. It made use of aged pen residue at the nominal loading rate of 0.25 lbs. volatile solids/ft./sup 3//day with a 10-day retention time and a fermentation temperature of 57/sup 0/C. Results of an experimental cattle feeding trial utilizing the protein in the fermentor liquid effluent as a replacement for standard protein supplements were encouraging. The evaluation of the capture efficiency of the system centrifuge both with and without a chemical flocculant was completed. An experimental cattle feeding trial utilizing the protein fermentation product (PFP) harvested by the centrifuge as replacement for the standard protein supplementwas initiated. The characterization of the cattle residues found in various cattle pens, feedlots, and locations was continued. An investigation was initiated into methods of separating the organic content of the feedlot residue from the sand and grit content. (JGB)

  18. Proposed derivation of skin contamination and skin decontamination limits

    International Nuclear Information System (INIS)

    Schieferdecker, H.; Koelzer, W.; Henrichs, K.

    1986-01-01

    From the primary dose limits for the skin, secondary dose limits were derived for skin contamination which can be used in practical radiation protection work. Analogous to the secondary dose limit for the maximum permissible body burden in the case of incorporation, dose limits for the 'maximum permissible skin burden' were calculated, with the help of dose factors, for application in the case of skin contamination. They can be derived from the skin dose limit values. For conditions in which the skin is exposed to temporary contamination, a limit of skin contamination was derived for immediately removable contamination and for one day of exposure. For non-removable contamination a dose limit of annual skin contamination was defined, taking into account the renewal of the skin. An investigation level for skin contamination was assumed, as a threshold, above which certain measures must be taken; these to include appropriate washing not more than three times, with the subsequent procedure determined by the level of residual contamination. The dose limits are indicated for selected radionuclides. (author)

  19. Contamination Detection and Mitigation Strategies for Unsymmetric Dimethylhydrazine/Nitrogen Tetroxide Non-Combustion Product Residues

    Science.gov (United States)

    Greene, Benjamin; Buchanan, Vanessa D.; Baker, David L.

    2006-01-01

    Dimethylamine and nitrite, which are non-combustion reaction products of unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide (NTO) propellants, can contaminate spacesuits during extra-vehicular activity (EVA) operations. They can react with water in the International Space Station (ISS) airlock to form N-nitrosodimethylamine (NDMA), a carcinogen. Detection methods for assessing nitrite and dimethylamine contamination were investigated. The methods are based on color-forming reactions in which intensity of color is proportional to concentration. A concept color detection kit using a commercially available presumptive field test for methamphetamine coupled with nitrite test strips was developed and used to detect dimethylamine and nitrite. Contamination mitigation strategies were also developed.

  20. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Lukshiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60 %) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  1. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Luksiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60%) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  2. Can understanding the packing of side chains improve the design of protein-protein interactions?

    Science.gov (United States)

    Zhou, Alice; O'Hern, Corey; Regan, Lynne

    2011-03-01

    With the long-term goal to improve the design of protein-protein interactions, we have begun extensive computational studies to understand how side-chains of key residues of binding partners geometrically fit together at protein-peptide interfaces, e.g. the tetratrico-peptide repeat protein and its cognate peptide). We describe simple atomic-scale models of hydrophobic dipeptides, which include hard-core repulsion, bond length and angle constraints, and Van der Waals attraction. By completely enumerating all minimal energy structures in these systems, we are able to reproduce important features of the probability distributions of side chain dihedral angles of hydrophic residues in the protein data bank. These results are the crucial first step in developing computational models that can predict the side chain conformations of residues at protein-peptide interfaces. CSO acknowledges support from NSF grant no. CMMT-1006527.

  3. Detection of antibiotic residues in food by Charm II test

    International Nuclear Information System (INIS)

    Addali, Mohamed

    2014-01-01

    Antibiotics are used in food to: -therapy and prophylaxis, -increase the productivity of the food producing animals. The presence of antimicrobial residues: -constitutes a potential human health hazard. has significant impact on international food trade. has implications on technological process in dairy industry. Detection of antibiotic residues is of great interest. It helps protect humans against the effects of such residues, the more it can support the participation of our country in international trade. Charm II test is one of the methods of detection of antimicrobial residues. The tests utilize microbial or antibody receptor assay technology. The sample is incubated with a binding agent (microbial cells with specific receptor sites or with specific antibodies attached) and a tracer (the radio-labeled version of the antibiotic to be detected). The amount of tracer on the binding agent is measured using a scintillation counter and is compared to a pre-determined cut-off or control point. If contaminating antibiotic is present, it will prevent the binding of the tracer by occupying the receptors on the binding agent. The less labeled tracer detected, the more contaminating antibiotic there is present in the sample. This work, carried out at the Radiochemical Laboratory of the National Centre of Nuclear Science and Technology, has two parts: 1/ The first is reserved to a literature review provides an overview on antibiotics and the charm II method. 2/ The second is devoted to the experimental study and presentation of results.

  4. Pesticide residue quantification analysis by hyperspectral imaging sensors

    Science.gov (United States)

    Liao, Yuan-Hsun; Lo, Wei-Sheng; Guo, Horng-Yuh; Kao, Ching-Hua; Chou, Tau-Meu; Chen, Junne-Jih; Wen, Chia-Hsien; Lin, Chinsu; Chen, Hsian-Min; Ouyang, Yen-Chieh; Wu, Chao-Cheng; Chen, Shih-Yu; Chang, Chein-I.

    2015-05-01

    Pesticide residue detection in agriculture crops is a challenging issue and is even more difficult to quantify pesticide residue resident in agriculture produces and fruits. This paper conducts a series of base-line experiments which are particularly designed for three specific pesticides commonly used in Taiwan. The materials used for experiments are single leaves of vegetable produces which are being contaminated by various amount of concentration of pesticides. Two sensors are used to collected data. One is Fourier Transform Infrared (FTIR) spectroscopy. The other is a hyperspectral sensor, called Geophysical and Environmental Research (GER) 2600 spectroradiometer which is a batteryoperated field portable spectroradiometer with full real-time data acquisition from 350 nm to 2500 nm. In order to quantify data with different levels of pesticide residue concentration, several measures for spectral discrimination are developed. Mores specifically, new measures for calculating relative power between two sensors are particularly designed to be able to evaluate effectiveness of each of sensors in quantifying the used pesticide residues. The experimental results show that the GER is a better sensor than FTIR in the sense of pesticide residue quantification.

  5. Peptides containing internal residues of pyroglutamic acid: proton NMR characteristics

    International Nuclear Information System (INIS)

    Khan, S.A.

    1986-01-01

    The proton NMR characteristics of internal pyroglutamic acid (Glp; 5-oxoproline) residues in seven tripeptides of the general structure Boc-Xxx-Glp-Yyy-NH 2 were studied. In general, the chemical shifts of several diagnostic protons moved downfield on going from the Glu-containing peptides (Boc-Xxx-Glu-Yyy-NH 2 ) to the corresponding Glp-containing peptides. The C-2 proton of the Xxx residue was shifted by about 1.1 ppm. The N-2 proton of the Yyy residue was shifted by about 0.5 ppm. The C-2 proton of the Glx residue itself was shifted by about 0.5 ppm. One of the Glx C-3 protons was also shifted by about 0.5 ppm, but the other remained essentially unchanged. Finally, the Glx C-4 protons were shifted by about 0.3 ppm. Internal Glu residues are readily converted chemically into internal Glp residues. This conversion also occurs as a side reaction during HP cleavage of the protecting group from Glu(OBzl) residues. The spontaneous fragmentation of serum proteins C3, C4 and λ 2 -macroglobulin under denaturing conditions is probably due to regioselective hydrolysis of an internal Glp residue formed in each of these proteins upon denaturation. These proton NMR characteristics may be useful in establishing the presence of internal Glp residues in synthetic and natural peptides

  6. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    Science.gov (United States)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  7. Alternative preparation of inclusion bodies excludes interfering non-protein contaminants and improves the yield of recombinant proinsulin.

    Science.gov (United States)

    Mackin, Robert B

    2014-01-01

    The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix.

  8. Modeling coding-sequence evolution within the context of residue solvent accessibility.

    Science.gov (United States)

    Scherrer, Michael P; Meyer, Austin G; Wilke, Claus O

    2012-09-12

    Protein structure mediates site-specific patterns of sequence divergence. In particular, residues in the core of a protein (solvent-inaccessible residues) tend to be more evolutionarily conserved than residues on the surface (solvent-accessible residues). Here, we present a model of sequence evolution that explicitly accounts for the relative solvent accessibility of each residue in a protein. Our model is a variant of the Goldman-Yang 1994 (GY94) model in which all model parameters can be functions of the relative solvent accessibility (RSA) of a residue. We apply this model to a data set comprised of nearly 600 yeast genes, and find that an evolutionary-rate ratio ω that varies linearly with RSA provides a better model fit than an RSA-independent ω or an ω that is estimated separately in individual RSA bins. We further show that the branch length t and the transition-transverion ratio κ also vary with RSA. The RSA-dependent GY94 model performs better than an RSA-dependent Muse-Gaut 1994 (MG94) model in which the synonymous and non-synonymous rates individually are linear functions of RSA. Finally, protein core size affects the slope of the linear relationship between ω and RSA, and gene expression level affects both the intercept and the slope. Structure-aware models of sequence evolution provide a significantly better fit than traditional models that neglect structure. The linear relationship between ω and RSA implies that genes are better characterized by their ω slope and intercept than by just their mean ω.

  9. Modeling coding-sequence evolution within the context of residue solvent accessibility

    Directory of Open Access Journals (Sweden)

    Scherrer Michael P

    2012-09-01

    Full Text Available Abstract Background Protein structure mediates site-specific patterns of sequence divergence. In particular, residues in the core of a protein (solvent-inaccessible residues tend to be more evolutionarily conserved than residues on the surface (solvent-accessible residues. Results Here, we present a model of sequence evolution that explicitly accounts for the relative solvent accessibility of each residue in a protein. Our model is a variant of the Goldman-Yang 1994 (GY94 model in which all model parameters can be functions of the relative solvent accessibility (RSA of a residue. We apply this model to a data set comprised of nearly 600 yeast genes, and find that an evolutionary-rate ratio ω that varies linearly with RSA provides a better model fit than an RSA-independent ω or an ω that is estimated separately in individual RSA bins. We further show that the branch length t and the transition-transverion ratio κ also vary with RSA. The RSA-dependent GY94 model performs better than an RSA-dependent Muse-Gaut 1994 (MG94 model in which the synonymous and non-synonymous rates individually are linear functions of RSA. Finally, protein core size affects the slope of the linear relationship between ω and RSA, and gene expression level affects both the intercept and the slope. Conclusions Structure-aware models of sequence evolution provide a significantly better fit than traditional models that neglect structure. The linear relationship between ω and RSA implies that genes are better characterized by their ω slope and intercept than by just their mean ω.

  10. Advanced new technologies for residue upgrading

    International Nuclear Information System (INIS)

    Gillis, D.

    1997-01-01

    Viewgraphs summarizing UOP technologies for residue are provided. The upgrading technologies include: (1) Aquaconversion, (2) the Discriminatory Destructive Distillation process (3D), and (3) the RCD uniflex process. The Aquaconversion process is based on catalytic hydrovisbreaking. It makes use of a homogeneous (liquid phase) catalyst. The hydrogen is derived from water. The advantages of this process are improved residue stability and quality at higher conversion levels, high synthetic crude yields, low operational complexity, reduced transportation costs. The 3D process is a unique carbon rejection contaminant removal process which can process whole crudes through viscous residues. FCC type equipment is used. Performance characteristics and advantages of the process were highlighted. The RCD uniflex process makes use of proven fixed bed and ebullated bed technologies in a new process configuration in which the fixed bed system is located upstream of the ebullated bed system. In this process, the catalyst volume increases exponentially with increasing processing severity. Performance characteristics, design features, benefits and development progress to date are described. 1 tab., 21 figs

  11. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein.

    Science.gov (United States)

    Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim

    2009-09-15

    The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.

  12. Determination of cadmium, lead and mercury residual levels in meat ...

    African Journals Online (AJOL)

    Determination of cadmium, lead and mercury residual levels in meat of canned light tuna ( Katsuwonus pelamis and Thunnus albacares ) and fresh little tunny ( Euthynnus alletteratus ) in Libya. ... Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety.

  13. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    Science.gov (United States)

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.

  14. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  15. Contamination profile of aflatoxin M1 residues in milk supply chain of Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Sana Jawaid

    2015-01-01

    Full Text Available Aflatoxin M1 (AFM1 is a potent carcinogen, teratogen and mutagen found in the milk when lactating animals consume feed contaminated with aflatoxin B1 (AFB1. In the present study, the contamination of AFM1 was evaluated in the milk supply chain of the province of Sindh, Pakistan. For the broader profiling of targeted toxin, enzyme-linked immunosorbent assay (ELISA was used for the determination of AFM1 in both branded and non-branded milk samples. The results showed that 96.43% of samples (81 out of 84 were contaminated with AFM1 in the range of 0.01–0.76 μg/L. The average contamination level was 0.38 μg/L. The determined values of AFM1 in the collected milk samples were above the standard limit of the European Commission while 70% of the samples exceeded levels established by United States regulations. According to these results, the estimated daily intake of AFM1 for adults was determined as 3.1 ng/kg of body weight per day.

  16. Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments

    Science.gov (United States)

    Akbari, A.; Ghoshal, S.

    2016-12-01

    We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could

  17. Northern Alabama colonies of the endangered grey bat Myotis grisescens: Organochlorine contamination and mortality

    Science.gov (United States)

    Clark, D.R.; Bagley, F.M.; Johnson, W.W.

    1988-01-01

    From 1976 to 1986, dead and dying grey bats Myotis grisescens and grey bat guano were collected from caves along the Tennessee River in northern Alabama to determine the possible role of organochlorine chemicals.sbd.in particular wastes from a former DDT manufacturing plant near Huntsville.sbd.in the mortalities. Concentrations of chemical residues in brains were less than known lethal levels: certain observations and analyses did indicate the possibility of past organochlorine-induced bat deaths. Levels of contaminants in bats declined slowly during the 10-year sampling period, but heavy residue burdens persist. The high ratio of DDD to DDE in residue from the former DDT plant made them identifiable as far as 140 km downriver. Grey bats concentrated chemical rsidues to higher levels and demonstrated the presence of these residues over much greater distances than did red-winged blackbirds Agelaius phoeniceus. Grey bats may be the most sensitive indicator available for monitoring the contamination from this former DDT manufacturing site.

  18. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment.

    Science.gov (United States)

    Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J

    2010-11-01

    Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  19. Modular design of synthetic protein mimics. Characterization of the helical conformation of a 13-residue peptide in crystals

    International Nuclear Information System (INIS)

    Karle, I.L.; Flippen-Anderson, J.L.; Uma, K.; Balaram, P.

    1989-01-01

    The incorporation of α-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib) 3 -OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven α-type hydrogen bonds in the middle and 3 10 -type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH hor-ellipsis OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in α-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration

  20. Threonine 89 Is an Important Residue of Profilin-1 That Is Phosphorylatable by Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    David Gau

    Full Text Available Dynamic regulation of actin cytoskeleton is at the heart of all actin-based cellular events. In this study, we sought to identify novel post-translational modifications of Profilin-1 (Pfn1, an important regulator of actin polymerization in cells.We performed in vitro protein kinase assay followed by mass-spectrometry to identify Protein Kinase A (PKA phosphorylation sites of Pfn1. By two-dimensional gel electrophoresis (2D-GE analysis, we further examined the changes in the isoelectric profile of ectopically expressed Pfn1 in HEK-293 cells in response to forskolin (FSK, an activator of cAMP/PKA pathway. Finally, we combined molecular dynamics simulations (MDS, GST pull-down assay and F-actin analyses of mammalian cells expressing site-specific phosphomimetic variants of Pfn1 to predict the potential consequences of phosphorylation of Pfn1.We identified several PKA phosphorylation sites of Pfn1 including Threonine 89 (T89, a novel site. Consistent with PKA's ability to phosphorylate Pfn1 in vitro, FSK stimulation increased the pool of the most negatively charged form of Pfn1 in HEK-293 cells which can be attenuated by PKA inhibitor H89. MDS predicted that T89 phosphorylation destabilizes an intramolecular interaction of Pfn1, potentially increasing its affinity for actin. The T89D phosphomimetic mutation of Pfn1 elicits several changes that are hallmarks of proteins folded into alternative three-dimensional conformations including detergent insolubility, protein aggregation and accelerated proteolysis, suggesting that T89 is a structurally important residue of Pfn1. Expression of T89D-Pfn1 induces actin:T89D-Pfn1 co-clusters and dramatically reduces overall actin polymerization in cells, indicating an actin-sequestering action of T89D-Pfn1. Finally, rendering T89 non-phosphorylatable causes a positive charge shift in the isoelectric profile of Pfn1 in a 2D gel electrophoresis analysis of cell extracts, a finding that is consistent with

  1. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    Science.gov (United States)

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier

  2. The effect of pesticide residue on caged mosquito bioassays.

    Science.gov (United States)

    Barber, J A S; Greer, Mike; Coughlin, Jamie

    2006-09-01

    Wind tunnel experiments showed that secondary pickup of insecticide residue by mosquitoes in cage bioassays had a significant effect on mortality. Cage bioassays using adult Ochlerotatus taeniorhynchus (Wiedemann) investigated the effect of exposure time to a contaminated surface. Cages were dosed in a wind tunnel using the LC50 for naled (0.124 mg a.i./ml) and an LC25 (0.0772 mg a.i./ml) for naled. Half of the bioassay mosquitoes were moved directly into clean cages with the other half remaining in the sprayed, hence contaminated, cage. Treatment mortality was assessed at 8, 15, 30, 60, 120, 240, and 1,440 min postapplication. Cage contamination had a significant effect on mosquito mortality for both the LC25 and LC50 between 15 and 30 min postapplication.

  3. Toward High Carrier Mobility and Low Contact Resistance:Laser Cleaning of PMMA Residues on Graphene Surfaces

    Institute of Scientific and Technical Information of China (English)

    Yuehui Jia; Xin Gong; Pei Peng; Zidong Wang; Zhongzheng Tian; Liming Ren; Yunyi Fu; Han Zhang

    2016-01-01

    Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.

  4. Food safety of milk and dairy product of dairy cattle from heavy metal contamination

    Science.gov (United States)

    Harlia, E.; Rahmah, KN; Suryanto, D.

    2018-01-01

    Food safety of milk and dairy products is a prerequisite for consumption, which must be free from physical, biological and chemical contamination. Chemical contamination of heavy metals Pb (Plumbum/Lead) and Cd (Cadmium) is generally derived from the environment such as from water, grass, feed additives, medicines and farm equipment. The contamination of milk and dairy products can affect quality and food safety for human consumption. The aim of this research is to investigate contamination of heavy metals Pb and Cd on fresh milk, pasteurized milk, and dodol milk compared with the Maximum Residue Limits (MRL). The methods of this researched was through case study and data obtained analyzed descriptively. Milk samples were obtained from Bandung and surrounding areas. The number of samples used was 30 samples for each product: 30 samples of fresh milk directly obtained from dairy farm, 30 samples of pasteurized milk obtained from street vendors and 30 samples of dodol milk obtained from home industry. Parameters observed were heavy metal residues of Pb and Cd. The results showed that: 1) approximately 83% of fresh milk samples were contaminated by Pb which 57% samples were above MRL and 90% samples were contaminated by Cd above MRL; 2) 67% of pasteurized milk samples were contaminated by Pb below MRL; 3) 60% of dodol milk samples were contaminated by Pb and Cd above MRL.

  5. Measures for radiation prevention and remediation of islightly radioactive contaminated sites by phytoremediation and subsequent utilization of the loaded plant residues (PHYTOREST). Final report

    International Nuclear Information System (INIS)

    Willscher, Sabine; Werner, Peter; Jablonski, Lukasz; Wittig, Juliane

    2013-01-01

    contaminated geosubstrates now can be carried out within the radiation protection regulations. Hence, the project provides a substantial contribution to the radiation protection of HM/R contaminated soils. Within the research project, ways for the utilization of HM/R- contaminated plant residuals were highlighted; this gives a substantial contribution for minimization of wastes, the winning of sustainable bioenergy and the recycling of materials. Here, different ways of solutions were investigated. The research project was carried out within the scientific funding program ''Closedown and decommissioning of nuclear facilities''. The results of the project will contribute to the development of a biologically benign, sustainable technique for the remediation of large contaminated areas that originate mostly from the legacy of the former U mining. As a general result of this comprehensive research project, a phytostabilization/ phytoextraction of such SM/R contaminated sites is feasible with a protection of ground water, and the plant crop from phytoremediation of the HM/R contaminated field site can be utilized for the winning of bioenergy (gaseous/ liquid products or thermal utilization). The beneficial combination of phytoremediation and subsequent utilization of the biomass can be further developed to an innovative and sustainable remediation technology with national and international application potential.

  6. Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

    2007-09-13

    As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

  7. Contaminants in milk and impact of heating: an assessment study.

    Science.gov (United States)

    Awasthi, Vandana; Bahman, Sanjivan; Thakur, Lalit K; Singh, Santosh Kumar; Dua, Ajit; Ganguly, Sanjeev

    2012-01-01

    The major contaminants usually encountered in milk and milk products include pesticide residues, heavy metals, and aflatoxin M1 (AFM1). Primarily, milk get contaminated before milching, from the cattle feed, from sources/materials used during the processing of milk as well as improper handling of the milk during the pre- and postprocessing period. The purpose of this study was to evaluate the effect of household practices on milk contaminants. Samples of pasteurized as well as unpasteurized milk (Vendor's milk) were analyzed for AFM1, pesticide residues, and heavy metals. Simulating the household practices, the impact of boiling on these contaminants was assessed. The contaminant Aflatoxin M1 (AFM1) was detected at a concentration ranging from 0.071-0.075 ppb in unpasteurized as well as pasteurized milk samples analyzed during the course of study. Moreover, boiling had no impact on the quantity of AFM1 present in the milk. Pesticides and heavy metal contents were found to be within acceptable limits in all the milk samples tested. Mycotoxins especially aflatoxins in cattle feed and their consequential presence in milk and milk products is a serious concern world over as they are reported carcinogens. These fungal toxins are resistant to high temperatures and may lead to various health hazards. Preventive steps must be taken at each stage to ensure good quality of milk and milk products free from these contaminants. Awareness programs and education for the dairy farmers and milk processors may be helpful in this regard.

  8. Effect of blood contamination on results of dipstick evaluation and urine protein-to-urine creatinine ratio for urine samples from dogs and cats.

    Science.gov (United States)

    Vientós-Plotts, Aida I; Behrend, Ellen N; Welles, Elizabeth G; Chew, Dennis J; Gaillard, Philippe R; Busler, Jessica N; Lee, Hollie P

    2018-05-01

    OBJECTIVE To evaluate effects of blood contamination on dipstick results, specific gravity (SG), and urine protein-to-urine creatinine ratio (UPCR) for urine samples from dogs and cats. SAMPLE Urine samples collected from 279 dogs and 120 cats. PROCEDURES Urine pools were made for each species (dogs [n = 60] and cats [30]). Blood was added to an aliquot of a pool, and serial dilutions were prepared with the remaining urine. Color and dipstick variables were recorded, and SG and UPCR were measured. For cats, 1 set of pools was used; for dogs, 2 sets were used. Comparisons were made between undiluted urine and spiked urine samples for individual colors. Repeated-measures ANOVA on ranks was used to compare dipstick scores and UPCR results; χ 2 tests were used to compare proteinuria categorizations (nonproteinuric, borderline, or proteinuric). RESULTS Any blood in the urine resulted in significantly increased dipstick scores for blood. In both species, scores for bilirubin and ketones, pH, and SG were affected by visible blood contamination. No significant difference for the dipstick protein reagent results was evident until a sample was visibly hematuric. The UPCR was significantly increased in dark yellow samples of both species. Proteinuria categorizations differed significantly between undiluted urine and urine of all colors, except light yellow. CONCLUSIONS AND CLINICAL RELEVANCE Any degree of blood contamination affected results of dipstick analysis. Effects depended on urine color and the variable measured. Microscopic blood contamination may affect the UPCR; thus, blood contamination may be a differential diagnosis for proteinuria in yellow urine samples.

  9. Remaining Sites Verification Package for the 600-243 Petroleum-Contaminated Soil Bioremediation Pad. Attachment to Waste Site Reclassification Form 2007-033

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 600-243 waste site consisted of a bioremediation pad for petroleum-contaminated soils resulting from the 1100 Area Underground Storage Tank (UST) upgrades in 1994. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  10. Effect of anaerobic digestion at 35, 55 and 60°C on pharmaceuticals and organic contaminants

    DEFF Research Database (Denmark)

    Davidsson, Åsa; Kjerstadius, H.; Haghighatafshar, S.

    2014-01-01

    The application of treated sewage sludge on farmland is a suggested method for recycling nutrients and reducing demand for commercial fertilizer. However, sludge needs to be safe from possible contaminants which can cause acute and long-term health and environmental problems. Residual pharmaceuti......The application of treated sewage sludge on farmland is a suggested method for recycling nutrients and reducing demand for commercial fertilizer. However, sludge needs to be safe from possible contaminants which can cause acute and long-term health and environmental problems. Residual...

  11. An efficient method to eliminate the protease activity contaminating commercial bovine pancreatic DNase I.

    Science.gov (United States)

    Le, Tien; Lee, Hak Jin; Jin, Hyung Jong

    2015-08-15

    A method was developed to eliminate the proteases contaminating commercial DNase I, which can cause degradation of target protein during the purification process. Bio Basic DNase stock solution (in Tris-HCl buffer [pH 8.0] containing 5mM CaCl2) was first incubated at 50 °C to generate autolysis of proteases and zymogens, leading to a significant reduction in protease activity while preserving DNase activity. The residual protease activity was completely inhibited by further incubation with 2mM PMSF (phenylmethylsulfonyl fluoride) or 2× S8830 inhibitor cocktail. This approach could be readily applicable to eliminate the protease activity in any DNase products or during the preparation of commercial DNase. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Determination of pesticide residues in fruits of Nawabshah district, Sindh, Pakistan

    International Nuclear Information System (INIS)

    Anwar, T.; Ahmad, I.; Tahir, S.

    2011-01-01

    Eight fruit samples of apple, guava, orange, grapes, pear, persimmon, banana and pear purchased from the local markets of Nawabshah district, Sindh and residues of pesticide of organophosphate (OP), pyrethroid and organochlorine (OC) (i.e., dichlorvos, fenvalerate, dimethoate, methyl parathion, fenitrothion, cypermethrin, endosulfan, deltamethrin, mevinphos, chlorpyriphos, profenofos and dicofol) were monitored in fruit samples by Gas Chromatography (GC). All the fruit samples were found contaminated except banana and among these only apple samples were found exceeding the maximum residue limits (MRL) of Codex Alimentarius Commission. (author)

  13. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  14. Chemical modelling of trace elements in pore water from PFBC residues containing ammonia

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Brandberg, F.

    1993-01-01

    Ammonia is added to the PFBC process with the purpose to reduce the emissions of NO x in the stack gases. The design of the system for cleaning the stack gases will lead to an increased adsorption of ammonia and an accumulation of soluble ammonium salts in the cyclone ash from PFBC processes. This can be an environmental problem since the amounts will increase over the coming years and there will be a need to dispose the residues. When infiltrating rainwater penetrates the disposed residues ammonia and ammonium salts result in a contamination of the pore water with ammonia in the disposed residues. This entail the solubility of several trace elements in the residues that form soluble complexes with ammonia will increase and cause an increased contamination of groundwater and surface water. In this study the increased solubilities is calculated for the trace elements cadmium, cobalt, copper, mercury, nickel, silver and zinc in the residues using thermodynamical data. The calculations have been performed with probable solid phases of the trace elements at oxidizing and reducing conditions as a function of pH and at varying concentration of ammonia in the pore water. The thermodynamic calculations have been performed with the geochemical code EQ3NR. The results from the calculations show that as a concentration of 17 mg NH 3 /l in the pore water of the residues increases the solubilities for copper and silver. If the concentration of ammonia increases to 170 mg NH 3 /l will the solubilities increase also for cadmium, nickel and zinc. (12 refs., 39 figs.)

  15. Pesticide residues in canned foods, fruits, and vegetables: the application of Supercritical Fluid Extraction and chromatographic techniques in the analysis.

    Science.gov (United States)

    El-Saeid, Mohamed H

    2003-12-11

    Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE) and Supercritical Fluid Chromatography (SFC) techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates. By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues +/- RSD% ranging from 0.03 +/- 0.005 to 0.05 +/- 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 +/- 0.005 to 0.8 +/- 0.01 ppm. Five different fungicides, ranging from 0.05 +/- 0.02 to 0.8 +/- 0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  16. Effects of feeding grains naturally contaminated with Fusarium mycotoxins on hepatic fractional protein synthesis rates of laying hens and the efficacy of a polymeric glucomannan mycotoxin adsorbent.

    Science.gov (United States)

    Chowdhury, S R; Smith, T K

    2005-11-01

    Experiments were conducted to evaluate the effects of feeding grains naturally contaminated with a combination of Fusarium mycotoxins on hepatic fractional protein synthesis rates (FSR) of laying hens. Thirty-six 32-wk-old laying hens were fed diets formulated with 1) uncontaminated grains, 2) contaminated grains, or 3) contaminated grains + 0.2% polymeric glucomannan mycotoxin adsorbent for a period of 4 wk. Hepatic FSR were measured in vivo by the flooding-dose method. The feeding of contaminated grains decreased hepatic FSR in laying hens compared with controls after 4 wk. The hepatic FSR of birds fed contaminated grains and contaminated grains + glucomannan mycotoxin adsorbent were not different. It was concluded that the in vivo hepatic FSR of laying hens was inhibited by the feeding of grains naturally contaminated with Fusarium mycotoxins and that this may explain some of the adverse effects seen when contaminated grains were fed to laying hens.

  17. The earthworm gastrointestinal effect on the release of organic bound residues in soils

    Science.gov (United States)

    Du, J. H.

    2018-03-01

    Earthworm activities promote the release of bound residues and the digestive activities of earthworms contribute to the process. Earthworm digestive effects on bound residues can be divided into physical and chemical effects. Physical effects include gastrointestinal abrasion and mixing. The abrasion of soil and litter residues in earthworm gizzards and intestine can grind the food into fine particles, which increase the contact surface with microbial and promote the desorption of bound residues. Chemical effects are attributed to the secreted surfactant substances and digestive enzymes. The surfactants, especially at levels that lead to micellization, can enhance the desorption process of the organic contaminants that sored in the soil. The enzymes in earthworm digestive tracts can decompose the humus in soil, which may promote the release of organic residues that bind with humus.

  18. Novel Technology for Wide-Area Screening of ERC-Contaminated Soils

    National Research Council Canada - National Science Library

    Fisher, Mark

    2005-01-01

    Long-term use of high explosives (HE) on DoD training ranges and other defense installations has in some cases resulted in contamination of soil and groundwater with residues of HE and explosive-related compounds (ERCs...

  19. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  20. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  1. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  2. Development of irradiation technique on degradation residue of pesticide veterinary drugs and mycotoxins in food

    International Nuclear Information System (INIS)

    He Jiang; Huang Min; Chen Hao; Wu Ling; Gao Peng; Wang Yan; Lei Qing

    2011-01-01

    Irradiation technology is a new processing technology, It was widely used in food, medicines and medical supplies, chemical and other industries. In this paper, illustrated their applications in the degradation of pesticides, veterinary drugs and mycotoxins aspects residual pollution in food. Analysis of residual contaminants in food irradiation control study limitations and look forward to the prospect of food irradiation technology. (authors)

  3. TOF-SIMS Analysis of Crater Residues from Wild 2 Cometary on Stardust Aluminum Foil

    Science.gov (United States)

    Leutner, Jan; Stephan, Thomas; Kearsley, T.; Horz, Friedrich; Flynn, George J.; Sandford, Scott A.

    2006-01-01

    Impact residues of cometary particles on aluminum foils from the Stardust mission were investigated with TOF-SIMS for their elemental and organic composition. The residual matter from comet 81P/Wild 2 shows a wide compositional range, from nearly monomineralic grains to polymict aggregates. Despite the comparably small analyzed sample volume, the average element composition of the investigated residues is similar to bulk CI chondritic values. Analysis of organic components in impact residues is complicated, due to fragmentation and alteration of the compounds during the impact process and by the presence of contaminants on the aluminum foils. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) that are unambiguously associated with the impact residues were observed, and thus are most likely of cometary origin.

  4. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  5. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.

    Science.gov (United States)

    Xu, Lei; Wen, Bin; Wang, Yuan; Tian, Changqing; Wu, Mingcai; Zhu, Guoping

    2017-06-19

    Cryptochromes (CRYs) and photolyases belong to the cryptochrome/photolyase family (CPF). Reduced FAD is essential for photolyases to photorepair UV-induced cyclobutane pyrimidine dimers (CPDs) or 6-4 photoproducts in DNA. In Drosophila CRY (dCRY, a type I animal CRY), FAD is converted to the anionic radical but not to the reduced state upon illumination, which might induce a conformational change in the protein to relay the light signal downstream. To explore the foundation of these differences, multiple sequence alignment of 650 CPF protein sequences was performed. We identified a site facing FAD (Ala377 in Escherichia coli CPD photolyase and Val415 in dCRY), hereafter referred to as "site 377", that was distinctly conserved across these sequences: CPD photolyases often had Ala, Ser, or Asn at this site, whereas animal CRYs had Ile, Leu, or Val. The binding affinity for reduced FAD, but not the photorepair activity of E. coli photolyase, was dramatically impaired when replacing Ala377 with any of the three CRY residues. Conversely, in V415S and V415N mutants of dCRY, FAD was photoreduced to its fully reduced state after prolonged illumination, and light-dependent conformational changes of these mutants were severely inhibited. We speculate that the residues at site 377 play a key role in the different preferences of CPF proteins for reduced FAD, which differentiate animal CRYs from CPD photolyases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    Science.gov (United States)

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi

  7. Erythromycin residue in honey from the Southern Marmara region of Turkey.

    Science.gov (United States)

    Gunes, Nazmiye; Cibik, Recep; Gunes, Mesut Ertan; Aydin, Levent

    2008-11-01

    Honey samples, collected from the Southern Marmara region of Turkey, were analysed for erythromycin residues by liquid chromatography-mass spectrometry using electrospray ionization in the positive ion mode (LC-ESI-MS). Fifty samples, comprising chestnut, pine, linden and multi-flower honeys, were collected directly from hives and analyzed. The limit of detection and quantification were 6 and 20 ng g(-1), respectively, and recovery ranged from 85 to 89%. Four of the honey samples (8%) were found to be contaminated with erythromycin residues at concentrations ranging from 50 to 1776 ng g(-1). An erythromycin-fortified cake feeding assay was also performed in a defined hive to test the transfer of erythromycin residue to the honey matrix. In this test hive, the residue level in the honey, 3 months after dosing, was approximately 28 ng g(-1).

  8. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears

  9. Effects of pretreatment of wheat bran on the quality of protein-rich residue for animal feeding and on monosaccharide release for ethanol production

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.; Kabel, M.A.; Briens, M.; Poel, van der A.F.B.; Hendriks, W.H.

    2012-01-01

    The effects of hydrothermal conditions for pretreating wheat bran on the quality of residual protein for animal feeding, and on monosaccharide release for ethanol production were studied according to a 4 × 2 × 2 design with the factors, temperature (120, 140, 160, and 180 °C), acidity (pH 2.3 and

  10. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  11. Analysis of residuals from enzyme kinetic and protein folding experiments in the presence of correlated experimental noise.

    Science.gov (United States)

    Kuzmic, Petr; Lorenz, Thorsten; Reinstein, Jochen

    2009-12-01

    Experimental data from continuous enzyme assays or protein folding experiments often contain hundreds, or even thousands, of densely spaced data points. When the sampling interval is extremely short, the experimental data points might not be statistically independent. The resulting neighborhood correlation invalidates important theoretical assumptions of nonlinear regression analysis. As a consequence, certain goodness-of-fit criteria, such as the runs-of-signs test and the autocorrelation function, might indicate a systematic lack of fit even if the experiment does agree very well with the underlying theoretical model. A solution to this problem is to analyze only a subset of the residuals of fit, such that any excessive neighborhood correlation is eliminated. Substrate kinetics of the HIV protease and the unfolding kinetics of UMP/CMP kinase, a globular protein from Dictyostelium discoideum, serve as two illustrative examples. A suitable data-reduction algorithm has been incorporated into software DYNAFIT [P. Kuzmic, Anal. Biochem. 237 (1996) 260-273], freely available to all academic researchers from http://www.biokin.com.

  12. Using Tracer Technology to Characterize Contaminated Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  13. Exploring Surface Analysis Techniques for the Detection of Molecular Contaminants on Spacecraft

    Science.gov (United States)

    Rutherford, Gugu N.; Seasly, Elaine; Thornblom, Mark; Baughman, James

    2016-01-01

    Molecular contamination is a known area of concern for spacecraft. To mitigate this risk, projects involving space flight hardware set requirements in a contamination control plan that establishes an allocation budget for the exposure of non-volatile residues (NVR) onto critical surfaces. The purpose of this work will focus on non-contact surface analysis and in situ monitoring to mitigate molecular contamination on space flight hardware. By using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) with Raman Spectroscopy, an unlikely contaminant was identified on space flight hardware. Using traditional and surface analysis methods provided the broader view of the contamination sources allowing for best fit solutions to prevent any future exposure.

  14. Mapping the residues of protein kinase CK2 implicated in substrate recognition

    DEFF Research Database (Denmark)

    Sarno, S; Boldyreff, B; Marin, O

    1995-01-01

    , hampering the calculation of kinetic parameters. In contrast 3 mutants (K74-77A, K79R80K83A and R191,195K198A) phosphorylated the peptide with reduced efficiency accounted for by increased Km and decreased Vmax values. By using derivatives of the RRRADDSDDDDD peptide in which individual aspartyl residues......, respectively. These data support the conclusion that the basic residues present in the p+1 loop of CK2 alpha specifically recognize the acidic determinant adjacent to the C-terminal side of serine, while the specificity determinants located more down-stream are variably recognized by different residues...

  15. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    Science.gov (United States)

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  16. Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein.

    Science.gov (United States)

    Cortines, Juliana R; Motwani, Tina; Vyas, Aashay A; Teschke, Carolyn M

    2014-05-01

    Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving

  17. Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3

    Directory of Open Access Journals (Sweden)

    Beat Vögeli

    2015-12-01

    Full Text Available We compiled an NMR data set consisting of exact nuclear Overhauser enhancement (eNOE distance limits, residual dipolar couplings (RDCs and scalar (J couplings for GB3, which forms one of the largest and most diverse data set for structural characterization of a protein to date. All data have small experimental errors, which are carefully estimated. We use the data in the research article Vogeli et al., 2015, Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics, J. Struct. Biol., 191, 3, 306–317, doi:10.1016/j.jsb.2015.07.008 [1] for cross-validation in multiple-state structural ensemble calculation. We advocate this set to be an ideal test case for molecular dynamics simulations and structure calculations.

  18. Prediction of Protein Hotspots from Whole Protein Sequences by a Random Projection Ensemble System

    Directory of Open Access Journals (Sweden)

    Jinjian Jiang

    2017-07-01

    Full Text Available Hotspot residues are important in the determination of protein-protein interactions, and they always perform specific functions in biological processes. The determination of hotspot residues is by the commonly-used method of alanine scanning mutagenesis experiments, which is always costly and time consuming. To address this issue, computational methods have been developed. Most of them are structure based, i.e., using the information of solved protein structures. However, the number of solved protein structures is extremely less than that of sequences. Moreover, almost all of the predictors identified hotspots from the interfaces of protein complexes, seldom from the whole protein sequences. Therefore, determining hotspots from whole protein sequences by sequence information alone is urgent. To address the issue of hotspot predictions from the whole sequences of proteins, we proposed an ensemble system with random projections using statistical physicochemical properties of amino acids. First, an encoding scheme involving sequence profiles of residues and physicochemical properties from the AAindex1 dataset is developed. Then, the random projection technique was adopted to project the encoding instances into a reduced space. Then, several better random projections were obtained by training an IBk classifier based on the training dataset, which were thus applied to the test dataset. The ensemble of random projection classifiers is therefore obtained. Experimental results showed that although the performance of our method is not good enough for real applications of hotspots, it is very promising in the determination of hotspot residues from whole sequences.

  19. Removal and treatment of radioactive, organochlorine, and heavy metal contaminants from solid surfaces

    International Nuclear Information System (INIS)

    Grieco, S.A.; Neubauer, E.D.

    1996-01-01

    The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria. The O'Brien ampersand Gere companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system removes fixed radioactive and hazardous contamination yet leaves the surface intact. Blasting residuals are treated using physical/chemical processes. Bench- and pilot-scale testing of the system was conducted on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after treatment. Waste residuals volume was decreased by 71 %. Preliminary analyses suggest that this system provides significant waste volume reduction and is more economical than alternative surface decontamination techniques that are commercially available or under development

  20. Nuclear, biological and chemical contamination survivability of Army material

    International Nuclear Information System (INIS)

    Feeney, J.J.

    1987-01-01

    Army Regulation (AR) 70-71, Nuclear, Biological and Chemical (NBC) Contamination Survivability of Army Material, published during 1984, establishes Army policy and procedures for the development and acquisition of material to ensure its survivablility and sustainability on the NBC-contaminated battlefield. This regulation defines NBC contamination as a term that includes both the individual and collective effects of residual radiological, biological, and chemical contamination. AR 70-71 applies to all mission-essential equipment within the Army. NBC contamination survivability is the capability of a system and its crew to withstand an NBC-contaminated environment, including decontamination, without losing the ability to accomplish the assigned mission. Characteristics of NBC contamination survivability are decontaminability, hardness, and compatability. These characteristics are engineering design criteria which are intended for use only in a developmental setting. To comply with AR 70-71, each mission-essential item must address all three criteria. The Department of Defense (DOD) has published a draft instruction addressing acquisition of NBC contamination survivable systems. This instruction will apply throughout DOD to those programs, systems and subsystems designated by the Secretary of Defense as major systems acquisition programs and to those non-major systems that have potential impact on critical functions

  1. Biosensors for detection of mercury in contaminated soils

    International Nuclear Information System (INIS)

    Bontidean, Ibolya; Mortari, Alessia; Leth, Suzanne; Brown, Nigel L.; Karlson, Ulrich; Larsen, Martin M.; Vangronsveld, Jaco; Corbisier, Philippe; Csoeregi, Elisabeth

    2004-01-01

    Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities

  2. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    OpenAIRE

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly ...

  3. A novel approach for the detection of potentially hazardous pepsin stable hazelnut proteins as contaminants in chocolate-based food.

    Science.gov (United States)

    Akkerdaas, Jaap H; Wensing, Marjolein; Knulst, André C; Stephan, Oliver; Hefle, Susan L; Aalberse, Rob C; van Ree, Ronald

    2004-12-15

    Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and detecting rabbit antibodies were raised against pepsin-digested hazelnut and untreated hazelnut protein, respectively. The assay showed a detection limit of 0.7 ng/mL hazelnut protein or food matrix and a maximum of 0.034% cross-reactivity (peanut). Chocolate samples spiked with 0.5-100 microg hazelnut/g chocolate showed a mean recovery of 97.3%. In 9/12 food products labeled "may contain nuts", hazelnut was detected between 1.2 and 417 microg hazelnut/g food. It can be concluded that the application of antibodies directed to pepsin-digested food extracts in ELISA can facilitate specific detection of stable proteins that have the highest potential of inducing severe food anaphylaxis.

  4. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments

    International Nuclear Information System (INIS)

    Singh, Nimisha; Turner, Andrew

    2009-01-01

    Antifouling paint residues collected from the hard-standings of a marine leisure boat facility have been chemically characterised. Scanning electron microscopy revealed distinct layers, many containing oxidic particles of Cu and Zn. Quantitative analysis indicated concentrations of Cu and Zn averaging about 300 and 100 mg g -1 , respectively, and small proportions of these metals ( -1 , respectively. Estuarine sediment collected near a boatyard contained concentrations of Cu and Zn an order of magnitude greater than respective concentrations in 'background' sediment, and mass balance calculations suggested that the former sample was contaminated by about 1% by weight of paint particles. Clearly, antifouling residues represent a highly significant, heterogeneous source of metallic contamination in the marine environment where boating activities occur.

  5. Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions

    Science.gov (United States)

    Kim, C.; Ko, K.; Son, J.; Kim, J.

    2008-12-01

    One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the

  6. Detection of pesticides residues in water samples from organic and conventional paddy fields of Ledang, Johor, Malaysia

    Science.gov (United States)

    Abdullah, Md Pauzi; Othman, Mohamed Rozali; Ishak, Anizan; Nabhan, Khitam Jaber

    2016-11-01

    Pesticides have been used extensively by the farmers in Malaysia during the last few decades. Sixteen water samples, collected from paddy fields both organic and conventional, from Ledang, Johor, were analyzed to determine the occurrence and distribution of organochlorine (OCPs) and organophosphorus (OPPs) pesticide residues. GC-ECD instrument was used to identify and determine the concentrations of these pesticide residues. Pesticide residues were detected in conventional fields in the range about 0.036-0.508 µg/L higher than detected in organic fields about 0.015-0.428 µg/L. However the level of concentration of pesticide residues in water sample from both paddy fields are in the exceed limit for human consumption, according to European Economic Commission (EEC) (Directive 98/83/EC) at 0.1 µg/L for any pesticide or 0.5 µg/L for total pesticides. The results that the organic plot is still contaminated with pesticides although pesticides were not use at all in plot possibly from historical used as well as from airborne contamination.

  7. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent

    International Nuclear Information System (INIS)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-01-01

    Graphical abstract: Schematic representation of possible mechanisms determining the heavy metals immobilization efficiencyof ASR dust/thermal residues after treatment with nanometallic Ca/CaO/PO 4 . - Highlights: • Nanometallic Ca/CaO/PO 4 for heavy metals immobilization in ASR residue. • Heavy metals immobilization in dry condition attained about 95–100%. • Remaining heavy metals were lower than the Korean standard regulatory limit. • The amounts of heavy metals detectable on the ASR dust surface decreased. • Nanometallic Ca/CaO/PO 4 has a promising potential for heavy metal remediation. - Abstract: This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO 4 dispersion mixture immobilized 95–100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO 4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO 4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO 4 − associated crystalline complexes, and that immobile Ca/PO 4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO 4 as a simple, suitable and highly efficient material for the gentle

  8. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu [Department of Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023 (Japan); Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2015-10-15

    Graphical abstract: Schematic representation of possible mechanisms determining the heavy metals immobilization efficiencyof ASR dust/thermal residues after treatment with nanometallic Ca/CaO/PO{sub 4}. - Highlights: • Nanometallic Ca/CaO/PO{sub 4} for heavy metals immobilization in ASR residue. • Heavy metals immobilization in dry condition attained about 95–100%. • Remaining heavy metals were lower than the Korean standard regulatory limit. • The amounts of heavy metals detectable on the ASR dust surface decreased. • Nanometallic Ca/CaO/PO{sub 4} has a promising potential for heavy metal remediation. - Abstract: This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO{sub 4} dispersion mixture immobilized 95–100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO{sub 4} was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO{sub 4} mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO{sub 4}− associated crystalline complexes, and that immobile Ca/PO{sub 4} salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO{sub 4} as a simple, suitable and

  9. Engineering assessment of radioactive sands and residues, Lowman Site, Lowman, Idaho

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Lowman site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive sands and residues at Lowman, Idaho. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of radioactive sands and residues and radiation exposure of individuals and nearby populations, and investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 191,000 tons of radioactive sands, residues, and contaminated soils at the Lowman site constitutes the most significant environmental impact, although windblown radioactive sands and external gamma radiation also are factors

  10. Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds

    Directory of Open Access Journals (Sweden)

    Michaela Mühlberg

    2015-05-01

    Full Text Available To add new tools to the repertoire of protein-based multivalent scaffold design, we have developed a novel dual-labeling strategy for proteins that combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide–alkyne cycloaddition (CuAAC and oxime ligation. This method was applied to the conjugation of biotin and β-linked galactose residues to yield an enzymatically active thermophilic lipase, which revealed specific binding to Erythrina cristagalli lectin by SPR binding studies.

  11. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  12. Aqueous recovery of plutonium from pyrochemical processing residues

    International Nuclear Information System (INIS)

    Gray, L.W.; Gray, J.H.

    1984-01-01

    Pyrochemical processes provide rapid methods to reclaim plutonium from scrap residues. Frequently, however, these processes yield an impure plutonium product and waste residues that are contaminated with actinides and are therefore nondiscardable. The Savannah River Laboratory and Plant and the Rocky Flats Plant are jointly developing new processes using both pyrochemistry and aqueous chemistry to generate pure product and discardable waste. An example of residue being treated is that from the molten salt extraction (MSE), a mixture of NaCl, KCl, MgCl 2 , PuCl 3 , AmCl 3 , PuO 2 , and Pu 0 . This mixture is scrubbed with molten aluminum containing a small amount of magnesium to produce a nonhomogeneous Al-Pu-Am-Mg alloy. This process, which rejects most of the NaCl-KCl-MgCl 2 salts, results in a product easily dissolved in 6M HNO 3 -0.1M HF. Any residual chloride in the product is removed by precipitation with Hg(I) followed by centrifuging. Plutonium and americium are then separated by the standard Purex process. The americium, initially diverted to the solvent extraction waste stream, can either be recovered or sent to waste

  13. Quantification of residual solvents in antibody drug conjugates using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Medley, Colin D., E-mail: medley.colin@gene.com [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States); Kay, Jacob [Research Pharmaceutical Services, 520 Virginia Dr. Fort, Washington, PA (United States); Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P. [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States)

    2014-11-19

    Highlights: • Sensitive residual solvents detection in ADCs. • 125 ppm QL for common conjugation solvents. • Generic and validatable method. - Abstract: The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  14. Residual risk of bacterial contamination of platelets: six years of experience with sterility testing.

    Science.gov (United States)

    Ramirez-Arcos, Sandra; DiFranco, Caesar; McIntyre, Terri; Goldman, Mindy

    2017-09-01

    Canadian Blood Services screens 100% of platelet concentrates (PCs) for bacterial contamination with the BacT/ALERT system. Quality-control sterility testing of 1% (≥10 units) of outdated PCs is performed monthly. Data from routine screening, quality-control testing, and septic reactions obtained from 2010 to 2016 are presented herein. In total, 601,988 buffy coat PC pools and 186,737 apheresis PCs were routinely screened with aerobic cultures over 6 years. Outdate quality-control testing of 8535 buffy coat and 8498 apheresis PCs was performed using aerobic and anaerobic cultures during the same period. Results were classified as "true-positives" when the same bacterium was isolated in initial and confirmatory cultures or "false-negatives" when bacteria were missed in early screening and were captured during quality-control sterility testing or through investigation of sepsis cases. During routine screening, the true-positive rates between buffy coat (0.94 per 10,000) and apheresis (0.96 per 10,000) PCs were similar (p = 0.9473). Seventy-five bacteria isolated during PC screening included Gram-positive and Gram-negative organisms. Six false-negative septic reactions were reported that implicated coagulase-negative staphylococci (n = 3) and Staphylococcus aureus (n = 3) for approximate rates of 1 per 100,000 transfusion reactions and 1 per 500,000 fatalities. During quality-control testing, the false-negative rates between buffy coat (8 per 10,000) and apheresis (9 per 10,000) PCs were similar (p = 0.7897). All 15 quality-control isolates were Gram-positive bacteria. The current bacterial screening protocol is efficacious for identifying Gram-negative bacteria. However, the high proportion of Gram-positive organisms detected on outdate quality-control testing and septic transfusion events demonstrates a residual safety risk that merits further intervention. © 2017 AABB.

  15. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    Science.gov (United States)

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  16. Mutation of adjacent cysteine residues in the NSs protein of Rift Valley fever virus results in loss of virulence in mice.

    Science.gov (United States)

    Monteiro, Gaby E R; Jansen van Vuren, Petrus; Wichgers Schreur, Paul J; Odendaal, Lieza; Clift, Sarah J; Kortekaas, Jeroen; Paweska, Janusz T

    2018-04-02

    The NSs protein encoded by the S segment of Rift Valley fever virus (RVFV) is the major virulence factor, counteracting the host innate antiviral defence. It contains five highly conserved cysteine residues at positions 39, 40, 149, 178 and 194, which are thought to stabilize the tertiary and quaternary structure of the protein. Here, we report significant differences between clinical, virological, histopathological and host gene responses in BALB/c mice infected with wild-type RVFV (wtRVFV) or a genetic mutant having a double cysteine-to-serine substitution at residues 39 and 40 of the NSs protein (RVFV-C39S/C40S). Mice infected with the wtRVFV developed a fatal acute disease; characterized by high levels of viral replication, severe hepatocellular necrosis, and massive up-regulation of transcription of genes encoding type I and -II interferons (IFN) as well as pro-apoptotic and pro-inflammatory cytokines. The RVFV-C39S/C40S mutant did not cause clinical disease and its attenuated virulence was consistent with virological, histopathological and host gene expression findings in BALB/c mice. Clinical signs in mice infected with viruses containing cysteine-to-serine substitutions at positions 178 or 194 were similar to those occurring in mice infected with the wtRVFV, while a mutant containing a substitution at position 149 caused mild, non-fatal disease in mice. As mutant RVFV-C39S/C40S showed an attenuated phenotype in mice, the molecular mechanisms behind this attenuation were further investigated. The results show that two mechanisms are responsible for the attenuation; (1) loss of the IFN antagonistic propriety characteristic of the wtRVFV NSs and (2) the inability of the attenuated mutant to degrade Proteine Kinase R (PKR). Copyright © 2018. Published by Elsevier B.V.

  17. Structural and sequence features of two residue turns in beta-hairpins.

    Science.gov (United States)

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  18. Hazardous drug residue on exterior vial surfaces: evaluation of a commercial manufacturing process.

    Science.gov (United States)

    Power, Luci A; Sessink, Paul J M; Gesy, Kathy; Charbonneau, Flay

    2014-04-01

    Hazardous drug residue on the exterior surface of drug vials poses a potential risk for exposure of health care workers involved in handling these products. The purpose of this article is to heighten the awareness of this serious issue and to evaluate a commercial manufacturing process for removing and containing hazardous drug (HD) residue on exterior vial surfaces. Additionally, findings from this study are interpreted, incorporated into the current body of evidence, and discussed by experts in this field. This study includes separate evaluations for the presence or absence of surface drug contamination on the vials of 3 HD products: 5-fluorouracil, cisplatin, and methotrexate. The drug products were packaged in vials using a patented prewashing/decontamination method, application of a polyvinylchloride (PVC) base, and use of clear glass vials. An additional step of encasing the vial in a shrink-wrapped sheath was used for 5-fluorouracil and cisplatin. Of all 5-fluorouracil (110 vials), methotrexate (60 vials), and cisplatin (60 vials) tested, only 2 had detectable amounts of surface residue. One 5-fluorouracil vial was found to have approximately 4 mg of 5-fluorouracil on the surface of the vial. The second contaminated vial was cisplatin, which was discovered to have 131 ng of platinum, equal to 200 ng of cisplatin or 0.2 μL of cisplatin solution, on the vial sheath. Using validated extraction and analytic methods, all but 2 of the 230 tested vials were found to be free of surface drug contamination. Pharmacy leaders need to take an active role in promoting the need for clean HD vials. Manufacturers should be required to provide their clients with data derived from externally validated analytic studies, reporting the level of HD contamination on the exterior of their vial products.

  19. Studies by nuclear and physico-chemical methods of tissue's metallic contamination located around biomaterials. Toxicity measurements of several biomaterials residual radioactivity

    International Nuclear Information System (INIS)

    Guibert, Geoffroy

    2004-01-01

    Implants used as biomaterials fulfill conditions of functionality, compatibility and occasionally bio-activity. There are four main families of biomaterials: metals and metal alloys, polymers, bio-ceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. These debris develop different problems: toxicity, inflammatory reactions, prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters which have an influence on tissue response. We characterize metallic contamination coming from knee prosthesis into surrounding capsular tissue by depth migration, in vivo behaviours, content, size and nature of debris. The PIXE-RBS and STEM-EDXS methods, that we used, are complementary, especially about characterization scale. Debris contamination distributed in the whole articulation is very heterogeneous. Debris migrate on several thousands μm in tissue. Solid metallic particles, μm, are found in the most polluted samples, for both kinds of alloys TA6V and CrCoMo. In the mean volume analysed by PIXE, the in vivo mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TA6V debris and chemical evolution of CrCoMo debris. Complementary measures of TA6V grains, on a nano-metric scale by STEM-EDXS, show a dissolution of coarse grain (μm) in smaller grains (nm). Locally, TA6V grains of a phase are detected and could indicate a preferential dissolution of β phase (grain boundaries) with dropping of Al and V, both toxic and carcinogenic elements. A thin target protocol development correlates PIXE and histological analysis on the same zone. This protocol allows to locate other pathologies in relationship with weaker metal contamination, μg/g, thanks to the great sensitivity of PIXE method. Harmlessness with respect to the residual radioactivity of several natural or synthetic biomaterials is established, using ultra low background noise γ detection system. (author)

  20. Whole-protein alanine-scanning mutagenesis of allostery: A large percentage of a protein can contribute to mechanism.

    Science.gov (United States)

    Tang, Qingling; Fenton, Aron W

    2017-09-01

    Many studies of allosteric mechanisms use limited numbers of mutations to test whether residues play "key" roles. However, if a large percentage of the protein contributes to allosteric function, mutating any residue would have a high probability of modifying allostery. Thus, a predicted mechanism that is dependent on only a few residues could erroneously appear to be supported. We used whole-protein alanine-scanning mutagenesis to determine which amino acid sidechains of human liver pyruvate kinase (hL-PYK; approved symbol PKLR) contribute to regulation by fructose-1,6-bisphosphate (Fru-1,6-BP; activator) and alanine (inhibitor). Each nonalanine/nonglycine residue of hL-PYK was mutated to alanine to generate 431 mutant proteins. Allosteric functions in active proteins were quantified by following substrate affinity over a concentration range of effectors. Results show that different residues contribute to the two allosteric functions. Only a small fraction of mutated residues perturbed inhibition by alanine. In contrast, a large percentage of mutated residues influenced activation by Fru-1,6-BP; inhibition by alanine is not simply the reverse of activation by Fru-1,6-BP. Moreover, the results show that Fru-1,6-BP activation would be extremely difficult to elucidate using a limited number of mutations. Additionally, this large mutational data set will be useful to train and test computational algorithms aiming to predict allosteric mechanisms. © 2017 Wiley Periodicals, Inc.

  1. Effect of cooking on residues of the quinolones oxolinic acid and flumequine in fish.

    Science.gov (United States)

    Steffenak, I; Hormazabal, V; Yndestad, M

    1994-01-01

    The effect of cooking on residues of the quinolones oxolinic acid and flumequine in fish was investigated. Salmon containing residues of oxolinic acid and flumequine was boiled or baked in the oven. Samples of raw and cooked muscle, skin, and bone, as well as of the water in which the fish was boiled and juice from the baked fish, were analysed. Oxolinic acid and flumequine did not degrade at the temperatures reached when cooking the fish. However, fish muscle free from drug residues may be contaminated during boiling and baking due to leakage of the drug from reservoirs in the fish.

  2. Application of environmental management system for a energetic plant with oil residual biomass; Aplicacion de un sistema de gestion medio ambiental a una planta generadora de energia que utiliza la biomasa residual del olivar

    Energy Technology Data Exchange (ETDEWEB)

    Linan Veganzones, M.J.; Soca Olazabal, N.; Pizarro Camacho, D

    1998-12-01

    Being the alpechin one of the most contaminant residues by the mediterranean agrarian industry, as of today there is no integral depuration procedure. In this paper we show the innovative approach being used to eliminate the alpechin along with the oil miller residual biomass. What it more, the only agroindustrial complex which has introduced such approach is using an EMAS so that actual achievements could be realistically measured. (Author) 12 refs.

  3. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  4. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of Western France.

    Directory of Open Access Journals (Sweden)

    Olivier Lambert

    Full Text Available The honey bee, Apis mellifera, is frequently used as a sentinel to monitor environmental pollution. In parallel, general weakening and unprecedented colony losses have been reported in Europe and the USA, and many factors are suspected to play a central role in these problems, including infection by pathogens, nutritional stress and pesticide poisoning. Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides and veterinary drug residues.A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC-MS/MS. The analysis revealed that 95.7%, 72.3% and 58.6% of the honey, honey bee and pollen samples, respectively, were contaminated by at least one compound. The frequency of detection was higher in the honey samples (n = 28 than in the pollen (n = 23 or honey bee (n = 20 samples, but the highest concentrations were found in pollen. Although most compounds were rarely found, some of the contaminants reached high concentrations that might lead to adverse effects on bee health. The three most frequent residues were the widely used fungicide carbendazim and two acaricides, amitraz and coumaphos, that are used by beekeepers to control Varroa destructor. Apiaries in rural-cultivated landscapes were more contaminated than those in other landscape contexts, but the differences were not significant. The contamination of the different matrices was shown to be higher in early spring than in all other periods.Honey bees, honeys and pollens are appropriate sentinels for monitoring pesticide and veterinary drug environmental pollution. This study revealed the widespread occurrence of multiple residues in beehive matrices and suggests a potential issue with the effects of these residues alone or in combination on honey bee health.

  5. Generic GPCR residue numbers - aligning topology maps while minding the gaps

    DEFF Research Database (Denmark)

    Isberg, Vignir; de Graaf, Chris; Bortolato, Andrea

    2015-01-01

    Generic residue numbers facilitate comparisons of, for example, mutational effects, ligand interactions, and structural motifs. The numbering scheme by Ballesteros and Weinstein for residues within the class A GPCRs (G protein-coupled receptors) has more than 1100 citations, and the recent crysta...

  6. Investigation of enrofloxacin residues in broiler tissues using ELISA and LC-MS/MS.

    Science.gov (United States)

    Panzenhagen, Pedro Henrique N; Aguiar, Waldemir S; Gouvêa, Raquel; de Oliveira, Andréa M G; Barreto, Fabiano; Pereira, Virgínia L A; Aquino, Maria Helena C

    2016-01-01

    This study investigated the efficiency of an enrofloxacin ELISA test kit to detect the presence of enrofloxacin residues in broiler tissues compared with LC-MS/MS. Broiler tissues from 72 samples consisting of 60 breast muscle, six pools of livers (500 g each) and six pools of kidneys (500 g each) were obtained from six different slaughterhouses. Breast muscle from 10 carcasses and pools of livers and kidneys from approximately 200 carcasses of the same flock were collected from each slaughterhouse. ELISA and HPLC were used to identify and quantify the contamination of the samples with enrofloxacin. A total of 72% of the analysed samples contained enrofloxacin residues detected by the ELISA and 22.2% were detected by LC-MS/MS. The mean values of enrofloxacin contamination found in chicken breast by ELISA and HPLC were 8.63 and 12.25 μg kg(-1), respectively. None of the samples exceeded the maximum limit of 100 μg kg(-1) by both methods set by the European Union as well as the Brazilian Agriculture Ministry. All positive samples for enrofloxacin residues detected by LC-MS/MS were also positive by ELISA. These data confirm the efficiency of the ELISA test, and suggest its use as a screening method for enrofloxacin residues in poultry tissues due to its quick results, low price and ease of applicability.

  7. Computational studies on non-succinimide-mediated stereoinversion mechanism of aspartic acid residues assisted by phosphate

    Science.gov (United States)

    Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Takahashi, Ohgi; Oda, Akifumi

    2018-03-01

    Although nearly all of the amino acids that constitute proteins are l-amino acids, d-amino acid residues in human proteins have been recently reported. d-amino acid residues cause a change in the three-dimensional structure of proteins, and d-aspartic acid (Asp) residues are considered to be one of the causes of age-related diseases. The stereoinversion of Asp residues in peptides and proteins is thought to proceed via a succinimide intermediate; however, it has been reported that stereoinversion can occur even under conditions where a succinimide intermediate cannot be formed. In order to elucidate the non-succinimide-mediated stereoinversion pathway, we investigated the stereoinversion of l-Asp to d-Asp catalysed by phosphate and estimated the activation barrier using B3LYP/6-31+G(d,p) density functional theory (DFT) calculations. For the DFT calculations, a model compound in which the Asp residue is capped with acetyl and methyl-amino groups on the N- and C-termini, respectively, was used. The calculated activation barrier was not excessively high for the stereoinversion to occur in vivo. Therefore, this stereoinversion mechanism may compete with the succinimide-mediated mechanism.

  8. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: beneficial reuse

    NARCIS (Netherlands)

    Harmsen, J.; Rulkens, W.H.; Sims, R.C.; Rijtema, P.E.; Zweers, A.J.

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described

  9. Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2002-02-06

    The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA

  10. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  11. Development of contamination-free x-ray optics for next-generation light sources

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Haruhiko, E-mail: hohashi@spring8.or.jp; Senba, Yasunori; Yumoto, Hirokatsu; Koyama, Takahisa; Miura, Takanori; Kishimoto, Hikaru [JASRI / SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 JAPAN (Japan)

    2016-07-27

    We studied typical forms of contamination on X-ray mirrors that cause degradation of beam quality, investigated techniques to remove the contaminants, and propose methods to eliminate the sources of the contamination. The total amount of carbon-containing substances on various materials in the vicinity of a mirror was measured by thermal desorption-gas chromatography/mass spectrometry and thermal desorption spectroscopy. It was found that cleanliness and ultra-high vacuum techniques are required to produce the contamination-free surfaces that are essential for the propagation of high-quality X-ray beams. The reduction of carbonaceous residue adsorbed on the surfaces, and absorbed into the bulk, of the materials in the vicinity of the mirrors is a key step toward achieving contamination-free X-ray optics.

  12. Transfer of C-terminal residues of human apolipoprotein A-I to insect apolipophorin III creates a two-domain chimeric protein with enhanced lipid binding activity.

    Science.gov (United States)

    Horn, James V C; Ellena, Rachel A; Tran, Jesse J; Beck, Wendy H J; Narayanaswami, Vasanthy; Weers, Paul M M

    2017-08-01

    Apolipophorin III (apoLp-III) is an insect apolipoprotein (18kDa) that comprises a single five-helix bundle domain. In contrast, human apolipoprotein A-I (apoA-I) is a 28kDa two-domain protein: an α-helical N-terminal domain (residues 1-189) and a less structured C-terminal domain (residues 190-243). To better understand the apolipoprotein domain organization, a novel chimeric protein was engineered by attaching residues 179 to 243 of apoA-I to the C-terminal end of apoLp-III. The apoLp-III/apoA-I chimera was successfully expressed and purified in E. coli. Western blot analysis and mass spectrometry confirmed the presence of the C-terminal domain of apoA-I within the chimera. While parent apoLp-III did not self-associate, the chimera formed oligomers similar to apoA-I. The chimera displayed a lower α-helical content, but the stability remained similar compared to apoLp-III, consistent with the addition of a less structured domain. The chimera was able to solubilize phospholipid vesicles at a significantly higher rate compared to apoLp-III, approaching that of apoA-I. The chimera was more effective in protecting phospholipase C-treated low density lipoprotein from aggregation compared to apoLp-III. In addition, binding interaction of the chimera with phosphatidylglycerol vesicles and lipopolysaccharides was considerably improved compared to apoLp-III. Thus, addition of the C-terminal domain of apoA-I to apoLp-III created a two-domain protein, with self-association, lipid and lipopolysaccharide binding properties similar to apoA-I. The apoA-I like behavior of the chimera indicate that these properties are independent from residues residing in the N-terminal domain of apoA-I, and that they can be transferred from apoA-I to apoLp-III. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Decontamination tests on tritium-contaminated materials

    International Nuclear Information System (INIS)

    Boutot, P.; Schipfer, P.

    1967-01-01

    These tests are designed to try out various processes liable to be applied to the decontamination of a material contaminated with tritium. The samples are thin stainless- steel slabs contaminated in the laboratory with elements extracted from industrial installations. The measurement of the initial and residual activities is carried out using an open-window BERTHOLD counter. The best results are obtained by passing a current of pre-heated (300 deg. C) air containing water vapour. This process makes it possible to reach a decontamination factor of 99.5 per cent in 4 hours. In a vacuum, the operation has to be prolonged to 100 hours in order to obtain a decontamination factor of 99.2 per cent. Wet-chemical or electrolytic treatments are efficient but their use is limited by the inherent corrosion risks. A study of the reappearance of the contamination has made it possible to observe that this phenomenon occurs whatever the process used. (authors) [fr

  14. Analysis of pirlimycin residues in beef muscle, milk and honey by a biotin-streptavidin-amplified enzyme-linked immunosorbent assay

    Science.gov (United States)

    Food contamination caused by veterinary drug residues is a world-wide public health concern and requires continuous monitoring. In this paper, we describe a biotin–streptavidin-amplified ELISA (BA-ELISA) for detecting pirlimycin residues in beef, milk, and honey. The IC50 value of the BA-ELISA was...

  15. Uncertainty of food contamination origin and liability rules: Implications for bargaining power

    OpenAIRE

    Boutouis, M. Z.; Benhassine, W.; Perito, Maria Angela

    2018-01-01

    We propose an industrial organization model to analyze the role of bargaining power and liability rules in creating incentives for downstream and upstream supply chain operators to invest in good practices. We investigate the case in which either upstream production practices or downstream distribution may cause product contamination resulting in noncompliance with the authorized thresholds of residues (maximum residue limit [MRL]). We provide a comparative analysis of the retailers' liabilit...

  16. Bee pollen as a bioindicator of environmental pesticide contamination.

    Science.gov (United States)

    de Oliveira, Renata Cabrera; Queiroz, Sonia Claudia do Nascimento; da Luz, Cynthia Fernandes Pinto; Porto, Rafael Silveira; Rath, Susanne

    2016-11-01

    Honeybees and bee products are potential bioindicators of the presence of contaminants in the environment, enabling monitoring of large areas due to the long distances travelled by bees. This work evaluates the use of bee pollen as a bioindicator of environmental contamination by pesticides. A GC-MS/MS analytical method for multiresidue determination of 26 different pesticides in pollen was developed and validated in accordance with the recommendations of the European Union SANCO guide. Environmental monitoring was conducted using the analysis of 145 pollen samples collected from ten beehives in the experimental apiary of Embrapa in Jaguariúna (São Paulo State, Brazil). Bioallethrin and pendimethalin were identified in four and eighteen samples, respectively, at concentrations below the LOQ of the method (25 ng g(-1)). Passive sampling with polyurethane foam discs was used as a control, and no pesticides were found. The detection of pesticide residues in seven samples (33%) from commercial apiaries in Ribeirão Preto (São Paulo State) confirmed the efficiency of the analytical method and the need for environmental monitoring for the presence of pesticide residues. The results demonstrated the potential of bee pollen as a bioindicator of environmental contamination by pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. ASAView: Database and tool for solvent accessibility representation in proteins

    Directory of Open Access Journals (Sweden)

    Fawareh Hamed

    2004-05-01

    Full Text Available Abstract Background Accessible surface area (ASA or solvent accessibility of amino acids in a protein has important implications. Knowledge of surface residues helps in locating potential candidates of active sites. Therefore, a method to quickly see the surface residues in a two dimensional model would help to immediately understand the population of amino acid residues on the surface and in the inner core of the proteins. Results ASAView is an algorithm, an application and a database of schematic representations of solvent accessibility of amino acid residues within proteins. A characteristic two-dimensional spiral plot of solvent accessibility provides a convenient graphical view of residues in terms of their exposed surface areas. In addition, sequential plots in the form of bar charts are also provided. Online plots of the proteins included in the entire Protein Data Bank (PDB, are provided for the entire protein as well as their chains separately. Conclusions These graphical plots of solvent accessibility are likely to provide a quick view of the overall topological distribution of residues in proteins. Chain-wise computation of solvent accessibility is also provided.

  18. Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance

    Science.gov (United States)

    Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.

    2016-01-01

    Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.

  19. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation.

    Science.gov (United States)

    Morshedi, Dina; Ebrahim-Habibi, Azadeh; Moosavi-Movahedi, Ali Akbar; Nemat-Gorgani, Mohsen

    2010-04-01

    Studies on the aggregation of mutant proteins have provided new insights into the genetics of amyloid diseases and the role of the net charge of the protein on the rate, extent, and type of aggregate formation. In the present work, hen egg white lysozyme (HEWL) was employed as the model protein. Acetylation and (separately) citraconylation were employed to neutralize the charge on lysine residues. Acetylation of the lysine residues promoted amyloid formation, resulting in more pronounced fibrils and a dramatic decline in the nucleation time. In contrast, citraconylation produced the opposite effect. In both cases, native secondary and tertiary structures appeared to be retained. Studies on the effect of pH on aggregation suggested greater possibilities for amorphous aggregate formation rather than fibrillation at pH values closer to neutrality, in which the protein is known to take up a conformation more similar to its native form. This is in accord with reports in the literature suggesting that formation of amorphous aggregates is more favored under relatively more native conditions. pH 5 provided a critical environment in which a mixture of amorphous and fibrillar structures were observed. Use of Tango and Aggrescan software which describe aggregation tendencies of different parts of a protein structure suggested critical importance of some of the lysine residues in the aggregation process. Results are discussed in terms of the importance of the net charge in control of protein-protein interactions leading to aggregate formation and possible specific roles of lysine residues 96 and 97. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Removal of contaminated asphalt layers by using heat generating powder metallic systems

    International Nuclear Information System (INIS)

    Barinov, A.S.; Karlina, O.K.; Ojovan, M.I.

    1996-01-01

    Heat generating systems on the base of powder metallic fuel were used for the removal of contaminated asphalt layers. Decontamination of spots which had complex geometric form was performed. Asphalt layers with deep contamination were removed essentially all radionuclides being retained in asphalt residue. Only a small part (1 - 2 %) of radionuclides could pass to combustion slag. No radionuclides were detected in aerosol-gas phase during decontamination process