WorldWideScience

Sample records for residual oil sludge

  1. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  2. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    International Nuclear Information System (INIS)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-01-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  3. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings

    DEFF Research Database (Denmark)

    Larsen, Julie Dam; Nielsen, Steen M; Scheutz, Charlotte

    2017-01-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological...... processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during...

  4. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    Science.gov (United States)

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  5. Separation of oil and grease from oil sludge using surfactant

    International Nuclear Information System (INIS)

    Ainon Abdul Aziz; Syed Hakimi Sakuma Syed Ahmad; Zalina Laili

    2005-01-01

    The objective of the experiments was to observe the efficiency of the surfactant to remove oil and grease from oil sludges using various surfactant concentration ranging from 10 %, 15 %, 20 % and 30 %. The surfactant solution consists of two mixtures of Aqua 2000 and D Bond. The oil sludge were subjected to heating and surfactant treatment process. Remaining oil and grease concentration were observed on the oil sludges after treatment. Small scale experiments were conducted by heating process, without heating process and heating process with addition of sodium chloride. Surfactant solution was added in each process. Results shows that there is separation of oil and grease from the oil sludges. There were formation of mini emulsions (oil in water). The higher the concentration of surfactant used, the higher the concentrations of mini emulsion formed as observed. Solid remains after the treatment process were found to contain lesser oil concentration with presence of bitumen, sediment, organic and inorganic materials. After a washing process using distilled water, the solid was still black but less oily than before the treatment. There is no separation of oil occurred in aqueous solution for the control experiment. (Author)

  6. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  7. Improved surfactants formulation for remediation of oil sludge recovery

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Shahidan Radiman

    2000-01-01

    Surfactant enhanced remediation based on mobilisation of the residual NAPLs (oil sludge) which is radioactive depends on the tendency of the surfactants to lower interfacial tension. Mobilisation has greater potential than solubilisation to increase the rate of remediation. Optimised surfactants formulation was determined with concentration of Aqua 2000 and D Bond of 1% wt respectively, sodium chloride concentration of 2 gmL -1 and addition of 3% wt butanol as cosolvent. The formulation was of benefit not only able to decrease further the interfacial tension of aqueous solution containing oil emulsion, but also to make possible to be more mobile and destruction of mixed liquid crystals that formed. Formation of liquid crystals can hinders significantly recovery efficiency of aqueous solution containing oil emulsion in field remediation work. In a 100 litres soil column experiment conducted containing oil emulsion in field sludge soil and using the surfactants formulation for flushing, miniemulsion formed sizes maintained at average size between 125 nm and 280 nm before and after remediation. Total oil and grease concentration removed from the soil were significant due to the decreased in oil emulsion sizes, increase mobility and solubility. (Author)

  8. Factors of enzymatic biodiesel production from sludge palm oil (SPO ...

    African Journals Online (AJOL)

    ika

    2013-07-31

    Jul 31, 2013 ... Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study ... of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. ... Increasing energy crisis and environmental concerns by.

  9. Microbial enhanced separation of oil from a petroleum refinery sludge.

    Science.gov (United States)

    Joseph, P J; Joseph, Ammini

    2009-01-15

    Petroleum refineries around the world have adopted different technological options to manage the solid wastes generated during the refining process and stocking of crude oil. These include physical, chemical and biological treatment methods. In this investigation bacterial mediated oil separation is effected. Two strains of Bacillus were isolated from petroleum-contaminated soils, and inoculated into slurry of sludge, and sludge-sand combinations. The bacteria could effect the separation of oil so as to form a floating scum within 48h with an efficiency of 97% at < or =5% level of sludge in the sludge-sand mixture. The activity was traced to the production of biosurfactants by bacteria.

  10. Phase Chemistry of Tank Sludge Residual Components

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Nagy, Kathryn L.

    2000-01-01

    About four or five distinct reprocessing technologies were used at various times in Hanford's history. After removing U and Pu (or later 137Cs and 90Sr), the strongly acidic HLW was ''neutralized'' to high pH (>13) and stored in steel-lined tanks. High pH was necessary to prevent tank corrosion. While each technology produced chemically distinct waste, all wastes were similar in that they were high pH, concentrated, aqueous solutions. Dominant dissolved metals were Fe and/or Al, usually followed by Ni, Mn, or Cr. In an effort to reduce waste volume, many of the wastes were placed in evaporators or allowed to ''self-boil'' from the heat produced by their own radioactive decay. Consequently, today's HLW has been aging at temperatures ranging from 20 to 160 C. Previous studies of synthetic HLW sludge analogues have varied in their exact synthesis procedures and recipes, although each involved ''neutralization'' of acidic nitrate salt solutions by concentrated NaOH. Some recipes included small amounts of Si, SO4 2-, CO3 2-, and other minor chemical components in the Hanford sludges. The work being conducted at the University of Colorado differs from previous studies and from parallel current investigations at Sandia National Laboratories in the simplicity of the synthetic sludge we are investigating. We are emphasizing the dominant role of Fe and Al, and secondarily, the effects of Ni and Si on the aging kinetics of the solid phases in the sludge

  11. Characteristics of residues from thermally treated anaerobic sludges

    International Nuclear Information System (INIS)

    Friedman, A.A.; Smith, J.E.; De Santis, J.; Ptak, T.; Ganley, R.C.

    1988-01-01

    Sludge management and disposal are probably the most difficult and expensive operations involved in wastewater treatment today. To minimize final disposal costs many waste treatment facilities practice some form of anaerobic digestion and dewatering to reduce the volume and offensiveness of their by-product sludges. One potential alternative for reducing sludge volumes consists of high temperature, partial oxidation of these previously digested sludges (PDS) and subsequent anaerobic biological conversion of resulting soluble organics to methane. This paper describes solids destruction, residue characteristics and biodegradability factors that should be considered in the design of liquid thermal treatment processes for the management of anaerobic sludges. To date only very limited information is available concerning the suitability of thermally treated PDS to serve as a substrate for the generation of methane. The primary objective of this research was to determine the feasibility of producing methane efficiently from the residual VSS in anaerobically digested sludges. Secondary goals were to establish the ''best'' conditions for thermal treatment for solubilizing PDS, to observe the effect of the soluble products on methanogenesis and to evaluate process sidestreams for dewaterability and anaerobic biodegradability

  12. Oil and coal from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, H

    1981-01-01

    Under the leadership of professor Ernst Bayer a research group of Tuebingen succeeded in producing oil and coal from sewage sludge. The conversion of biomass into fossil fuels which in nature can only be calculated in historical periods of time is here brought about by the use of a catalyst on the basis of silicate and aluminium oxide, dopened with copper. First breakeven evaluations have given a real chance to be able to operate economically in a large scale plant the process being developed in laboratory tests.

  13. Oil sludge treatment using thermal and ash vitrification technology

    International Nuclear Information System (INIS)

    Rohyiza Baan; Sharifah Aishah, S.A.K.; Mohamad Puad Abu; Mohd Abdul Wahab Yusof

    2010-01-01

    In this paper, an experimental study of crude oil sludge terminal for volume reduction and radionuclide stability was treated by using integrated thermal treatment system. The pre-thermal treatment of oil sludge was carried out in fluidized bed combustor at temperature 500 degree Celsius, and then the ash produced from that process was vitrified in high temperature furnace at temperature above 1000 degree Celsius. The main contents of oil sludge are composed of 80% carbon, 11% sulphur, 50% volatile matter and 30% ash. The high heating value was 35,722 kJ/ kg. Analysis by gamma spectrometer was showed the radionuclide as Ra-226 (52.23 Bq/ kg), Ra-228 (47.48 Bq/ kg), K-40 (172.55 Bq/ kg), whereas analysis by neutron activation analysis (NAA) for U (0.5 μg/ g) and Th (0.5 μg/ g) was present in low concentration. Trace elements as Ba, Cd, Cr, Hg, As, Pb, Al, Zn, Ni was determine by using ICPMS. Thermal analysis has shown loss of mass and residual decomposition in the TG and DTA curves. The concentration of radionuclide in ash from fluidized bed combustor process was increased for Ra-226 (264.27 Bq/ kg) and Ra-228 (253.77 Bq/ kg). The slag was produced from ash vitrification process was characterized by X-ray fluorescence (XRF) and showed that silica oxide and potassium oxide were found. The slag characterization by X-ray diffraction (XRD) showed that slag composed of crystalline. The toxicity characteristic leaching procedure (TCLP) test showed that the slag resulted in very low leachability of heavy metals. Most of the toxic metals are fixed in the vitrification process and the leachate values meet the standard level of Malaysian Department of Environmental (DOE) of hazardous materials. The average concentration of each element varied between 1.5-14.0 mg/ kg. (author)

  14. Characterization and migration of oil and solids in oily sludge during centrifugation.

    Science.gov (United States)

    Wang, Jun; Han, Xu; Huang, Qunxing; Ma, Zengyi; Chi, Yong; Yan, Jianhua

    2018-05-01

    The migration behaviors of oil, water and solids in sludge during centrifugation were elaborated. Size distribution, surface topography and lypohydrophilic properties were studied in detail. The average size of solids was 61 μm in original sludge, 31 μm in upper layer and 235 μm in bottom layer. The result shows that solvent is essential to separate oil phase into molecular light and weight fractions during centrifugation. With solvent/oil ratio increases from 1:2, 1:1, 2:1 to 5:1, molecular weight in upper layer decreases from 1044, 1043, 1020 to 846 combined with that in bottom layer increases. A model was proposed to calculate the oil residue content in solid phases after sedimentation. The findings of this paper provide information for optimizing the oil recovery and clean treatment.

  15. Enzymatic biodiesel production from sludge palm oil (SPO) using ...

    African Journals Online (AJOL)

    Biodiesel is a non-toxic, renewable and environmental friendly fuel. This study involved the production of biodiesel from sludge palm oil (SPO), a low-cost waste oil via enzymatic catalysis. The enzyme catalyst was a Candida cylindracea lipase, locally-produced using palm oil mill effluent as the low cost based medium.

  16. Biological degradation of oil sludge: A review of the current state of ...

    African Journals Online (AJOL)

    The adverse effects of oil sludge on soil ecology and fertility have been of ... of contaminated land, with a view to making such land available for further use. Oil ... on the biological remediation technologies employed in the treatment oil sludge.

  17. Review on innovative techniques in oil sludge bioremediation

    Science.gov (United States)

    Mahdi, Abdullah M. El; Aziz, Hamidi Abdul; Eqab, Eqab Sanoosi

    2017-10-01

    Petroleum hydrocarbon waste is produced in worldwide refineries in significant amount. In Libya, approximately 10,000 tons of oil sludge is generated in oil refineries (hydrocarbon waste mixtures) annually. Insufficient treatment of those wastes can threaten the human health and safety as well as our environment. One of the major challenges faced by petroleum refineries is the safe disposal of oil sludge generated during the cleaning and refining process stages of crude storage facilities. This paper reviews the hydrocarbon sludge characteristics and conventional methods for remediation of oil hydrocarbon from sludge. This study intensively focuses on earlier literature to describe the recently selected innovation technology in oily hydrocarbon sludge bioremediation process. Conventional characterization parameters or measurable factors can be gathered in chemical, physical, and biological parameters: (1) Chemical parameters are consequently necessary in the case of utilization of topsoil environment when they become relevant to the presence of nutrients and toxic compounds; (2) Physical parameters provide general data on sludge process and hand ability; (3) Biological parameters provide data on microbial activity and organic matter presence, which will be used to evaluate the safety of the facilities. The objective of this research is to promote the bioremediating oil sludge feasibility from Marsa El Hariga Terminal and Refinery (Tobruk).

  18. Studies on sludge from storage tank of waxy crude oil. Part I: structure and composition of distillate fractions

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, S.A.; Zarapkar, S.S.; Joshi, G.C. [D.G. Ruparel College, Bombay (India). Dept. of Chemistry

    1995-08-01

    Tank bottom sludge from storage tanks of Bombay High crude oil deposited during ten years have been studied. The yield of the sludge is approximately 0.1% wt. of the crude oil through-put. The residue boiling above 500{degree}C amounts to over 50%. The distillate fractions collected at 50{degree}C intervals have been analyzed extensively and compared to fractions from whole crude of same boiling range. The sludge distillate are distinctly more paraffinic in nature. 15 refs., 7 tabs.

  19. Radioactivity partitioning of oil sludge undergoing incineration process

    International Nuclear Information System (INIS)

    Muhamat Omar; Suhaimi Hamzah; Muhd Noor Muhd Yunus

    1997-01-01

    Oil sludge waste is a controlled item under the Atomic Energy Act (Act 304) 1984 of which the radioactivity content shall be subjected to analysis. Apart from that the treatment method also shall be approved by Atomic Energy Licensing Board (AELB). Thus, an analysis of the oil sludge for MSE fluidized incinerator was conducted to comply with above requirements using various techniques. Further screening analysis of fly ash as well as bed material were done to study the effect of incinerating the sludge. This paper highlights the analysis techniques and discusses the results with respect to the radioactivity level and the fate of radionuclides subjected to the processing of the waste

  20. Improved waste-activated sludge dewatering using sludge/oil ...

    African Journals Online (AJOL)

    2014-10-07

    Oct 7, 2014 ... 2Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, ... conventional heating methods in chemical reactions is becom- ... the dewaterability of sludge and reduces the organic matter ..... It is unlikely that this technique will be applied in.

  1. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  2. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Tae-In, E-mail: tiohm1@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Chae, Jong-Seong; Lim, Kwang-Soo [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Moon, Seung-Hyun [Waste Energy Research Center, Korea Institute of Energy Research, Jang-dong Yusung-gu, Daejeon 305-343 (Korea, Republic of)

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  3. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    International Nuclear Information System (INIS)

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-01-01

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  4. Uptake of heavy metals by Brachiaria Decumbens and its mutant as a remediation agent for soil contaminated with oil sludge

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2006-01-01

    The Malaysian petroleum industry produces thousands of tonnes of oil sludge per year. Oil sludge is the residue accumulated during processing of petroleum at petroleum processing plants. Besides soil, mud and sand, oil sludge is often rich in radioactive substances, heavy metals and other toxic materials from hydrocarbon group which could contaminate and environment. In the present study the pasture grass Brachiaria decumbens and its mutant B. decumbens Kluang Comel were evaluated on their effectiveness as remediation agents for contaminated soils. The contaminating agent tested was the oil sludge with its hydrocarbons vaporised, obtained from the Waste Management Centre, MINT. Amongst the indicators for an effective remediation agent is the ability to accumulate heavy metals in their tissues without affecting their growth. This trial was conducted at MINT glasshouse, whereby the test plants were planted in pots in soil added with vaporised oil sludge. Analysis of heavy metals was through Inductive Coupled Plasma Mass Spectrometry (ICPMS) and Neutron Activation Analysis (NAA). This paper discusses the accumulation of heavy metals by B. decumbens and its mutant Kluang Comel and their growth performance, hence assessing their suitability as remediation agent in soil contaminated with oil sludge. (Author)

  5. Characterization of oily sludge from a Tehran oil refinery.

    Science.gov (United States)

    Heidarzadeh, Nima; Gitipour, Saeid; Abdoli, Mohammad Ali

    2010-10-01

    In this study, oily sludge samples generated from a Tehran oil refinery (Pond I) were evaluated for their contamination levels and to propose an adequate remediation technique for the wastes. A simple, random, sampling method was used to collect the samples. The samples were analyzed to measure Total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH) and heavy metal concentrations in the sludge. Statistical analysis showed that seven samples were adequate to assess the sludge with respect to TPH analyses. The mean concentration of TPHs in the samples was 265,600 mg kg⁻¹. A composite sample prepared from a mix of the seven samples was used to determine the sludge's additional characteristics. Composite sample analysis showed that there were no detectable amounts of PAHs in the sludge. In addition, mean concentrations of the selected heavy metals Ni, Pb, Cd and Zn were 2700, 850, 100, 6100 mg kg⁻¹, respectively. To assess the sludge contamination level, the results from the analysis above were compared with soil clean-up levels. Due to a lack of national standards for soil clean-up levels in Iran, sludge pollutant concentrations were compared with standards set in developed countries. According to these standards, the sludge was highly polluted with petroleum hydrocarbons. The results indicated that incineration, biological treatment and solidification/stabilization treatments would be the most appropriate methods for treatment of the sludges. In the case of solidification/stabilization, due to the high organic content of the sludge, it is recommended to use organophilic clays prior to treatment of the wastes.

  6. Residual sludge from dimensional stones: characterisation for their exploitation in civil and environmental applications

    Science.gov (United States)

    Antonella Dino, Giovanna; Clemente, Paolo; De Luca, Domenico Antonio; Lasagna, Manuela

    2013-04-01

    Residual sludge coming from dimensional stones working plants (diamond framesaw and ganguesaw with abrasive shots processes) represents a problem for Stone Industries. In fact the cost connected to their landfilling amounts to more than 3% of operating costs of dimensional stone working plants. Furthermore their strict feature as waste to dump (CER code 010413) contrasts the EU principles of "resource preservation" and "waste recovery". The main problems related to their management are: size distribution (fine materials, potentially asphyxial), presence of heavy metals (due to the working processes) and TPH content (due to oil machines losses). Residual sludge, considered according to Italian Legislative Decree n.152/06, can be used, as waste, for environmental restoration of derelict land or in cement plants. It is also possible to think about their systematic treatment in consortium plats for the production of Secondary Raw Materials (SRM) or "New Products" (NP, eg. artificial loam, waterproofing materials, ....). The research evidences that, on the basis of a correct sludge management, treatment and characterization, economic and environmental benefits are possible (NP or SRM in spite of waste to dump). To individuate different applications of residual sludge in civil and environmental contexts, a geotechnical (size distribution, permeability, Atterberg limits, cohesion and friction angle evaluation, Proctor soil test) characterization was foreseen. The geotechnical tests were conducted on sludge as such and on three different mixes: - Mix 1 - Bentonite clay (5-10%) added to sludge a.s (90-95%); - Mix 2 - Sludge a.s. (90-80-70%) added to coarse materials coming from crushed dimensional stones (10-20-30%); - Mix 3 - Sludge a.s. (50-70%) mixed with sand, compost, natural loam (50-30% mixture of sand, compost, natural loam). The results obtained from the four sets of tests were fundamental to evaluate: - the characteristics of the original materials; - the chance

  7. Treatment of petroleum industry oil sludge by Rhodotorula sp

    Energy Technology Data Exchange (ETDEWEB)

    Shailubhai, K.; Rao, N.N.; Modi, V.V.

    1984-06-01

    A Rhodotorula sp., isolated from soil, which showed a versatile capacity to degrade various aromatic and aliphatic hydrocarbons, was used to treat oil sludge. As a result of treatment, there was significant decrease in BOD, COD and contents of various petroleum fractions. The susceptibility to degradation was in the following order: saturate fraction >aromatic fraction> asphaltic fraction.

  8. Studies on sludge from waxy crude oil storage tank. II. Solvent fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, S.A.; Zarapkar, S.S.; Joshi, G.C. [D.G. Ruparel College, Bombay (India). Dept. of Chemistry

    1995-12-31

    The sludge formed from crude oil (Bombay Hindu Crude oil) dump storage has been analysed by solvent extraction with a series of solvents of increasing polarity. The extract fractions so obtained have been analysed extensively. The nature of the sludge is compared with the similar sludges reported by other workers. 9 refs., 4 figs., 2 tabs.

  9. Effects of oil and oil burn residues on seabird feathers

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Linnebjerg, Jannie Fries; Sørensen, Martin X.

    2016-01-01

    It is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified....... To protect seabirds, a rapid removal of oil is crucial and in situ burning could be an efficient method. In the present work exposure effects of oil and burn residue in different doses was studied on seabird feathers from legally hunted Common eider (Somateria mollissima) by examining changes in total weight...... of the feather and damages on the microstructure (Amalgamation Index) of the feathers before and after exposure. The results of the experiments indicate that burn residues from in situ burning of an oil spill have similar or larger fouling and damaging effects on seabird feathers, as compared to fresh oil....

  10. Research results of sewage sludge and waste oil disposal by entrained bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schingnitz, M.; Goehler, P.; Wenzel, W.; Seidel, W. (Noell-DBI Energie- und Entsorgungstechnik GmbH, Freiberg (Germany))

    1992-01-01

    Presents results of gasifying sewage sludge and waste oil with the GSP technology, developed by the Freiberg Fuel Institute (FRG). The GSP reactor was developed in 1976 for gasification of pulverized brown coal. An industrial reactor of this design operated for over 5 years with a total coal throughput of more than 300,000 t. The design of the gasification generator and the flowsheet of a 3 MW experimental pilot plant for waste gasification are presented. The PCB content in the gasification sludge is 6.14 mg/kg, in waste oil - 160 mg/kg. Gasification takes place at high temperatures of more than 1,400 C for complete destruction of toxic pollutants. Gasification results compare composition of raw gas produced by gasification of brown coal, sewage sludge and waste oil. A detailed list of content of pollutants (PCDD, PCDF, PAH, dioxin and furan) in the gasification gas, in process waters and in solid residue of the process water is provided. It is concluded that the GSP gasification process is suitable for safe disposal of waste with toxic content. 3 refs.

  11. Isolation of Asphaltene-Degrading Bacteria from Sludge Oil

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2015-03-01

    Full Text Available Sludge oil contains 30%–50% hydrocarbon fractions that comprise saturated fractions, aromatics, resins, and asphaltene. Asphaltene fraction is the most persistent fraction. In this research, the indigenous bacteria that can degrade asphaltene fractions from a sludge oil sample from Balikpapan that was isolated using BHMS medium (Bushnell-Hass Mineral Salt with 0.01% (w/v yeast extract, 2% (w/v asphaltene extract, and 2% (w/v sludge oil. The ability of the four isolates to degrade asphaltene fractions was conducted by the biodegradation asphaltene fractions test using liquid cultures in a BHMS medium with 0.01% (w/v yeast extract and 2% (w/v asphaltene extract as a carbon source. The parameters measured during the process of biodegradation of asphaltene fractions include the quantification of Total Petroleum Hydrocarbon (g, log total number of bacteria (CFU/ml, and pH. There are four bacteria (isolates 1, 2, 3, and 4 that have been characterized to degrade asphaltic fraction and have been identified as Bacillus sp. Lysinibacillus fusiformes, Acinetobacter sp., and Mycobacterium sp., respectively. The results showed that the highest ability to degrade asphaltene fractions is that of Bacillus sp. (isolate 1 and Lysinibacillus fusiformes (Isolate 2, with biodegradation percentages of asphaltene fractions being 50% and 55%, respectively, and growth rate at the exponential phase is 7.17x107 CFU/mL.days and 4.21x107 CFU/mL.days, respectively.

  12. Recycling of radioactive oil sludge waste into pavement brick

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Hishamuddin Hussein; Choo Thye Foo; Nurul Wahida Ahmad Khairuddin; MAsliana MUslimin; Wilfred Sylvester Paulus

    2010-01-01

    Malaysia produces about 1450 tons of radioactive oil sludge waste per year and there is an urgent need to find a permanent solution to the storage and disposal of this radioactive waste problem. Several treatment methods such bacteria farming, ultracentrifuge, steam reforming and incineration are currently being used but the core issue of the radioactive material in the oil sludge had not been solved. The paper relates a study on utilizing the radioactive component of the oil sludge and turning them into pavement brick. Characteristic study of this radioactive component by XRD and XRF show that it mainly comprised of quartz and anorthite minerals. While the radioactivity analysis by gamma technique shows that more than 90 % of this radioactivity comes from this soil component with Ra-226 and Ra-228 as the main radionuclides. A vitrified brick was then produced from this sediment by mixing it with low radioactive local red clay. The result also shows that the formation of the vitrified layer may be due high content of K in the red clay. Tensile test on the brick shows that it has more than four times the strength of commercial clay brick. Long duration leaching test on the brick also shows that there is no dissolution of radionuclide from the brick. (author)

  13. Effects of palm oil mill effluent (POME) anaerobic sludge from 500 m ...

    African Journals Online (AJOL)

    In this study, co-composting of pressed-shredded empty fruit bunches (EFB) and palm oil mill effluent (POME) anaerobic sludge from 500 m3 closed anaerobic methane digested tank was carried out. High nitrogen and nutrients content were observed in the POME anaerobic sludge. The sludge was subjected to the ...

  14. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  15. Reuse of residual sludge from stone-processing: differences and similarities between sludge coming from carbonate and silicate stones

    Science.gov (United States)

    Careddu, Nicola; Antonella Dino, Giovanna

    2015-04-01

    Residual sludge coming from dimension stone working activities represents a serious environmental and economic problem both for Stone Industry and citizens. Indeed, most of time, residual sludge is landfilled because of the difficulties to recover it; such difficulties are mainly connected to local legislation and a lack of proper protocols. In general, it is possible to individuate two different categories of sludge: residual sludge coming from carbonate rocks (CS) and those coming from silicate rocks (SS). Both of them are characterised by a very fine size distribution. CS is composed mainly by the same compounds of the processed stones (marble, limestone, travertine). The reason of this is related to the very slow wear of diamond tools during processing which entails a negligible content of heavy metals. CS becomes very interesting, from an economic point of view, when it has a CaCO3 grade > 95 %. On the contrary, SS is characterised by high heavy metal and TPH content. Residual sludge from the processing of silicate rocks can be split in three different sub-categories, depending on the way they are produced, and in particular: sludge from gangsaw using abrasive steel shot (GSS), sludge from multi diamond-saw block cutter (DBC), and mixed sludge (MS) from gangsaw and block cutter. These three sub-categories show different problems connected to heavy metal content, indeed on the one hand GSS is characterised by a high percentage of Ni, Cr, Cu, etc., on the other hand DBC is characterised by Co and Cu high content. In general, sludge, management of which in Italy is administered in accordance with the Italian Legislative Decree 152/06, can be used as waste from for environmental restoration or for cement plants. Several researches investigate the possible reuse of these materials but, at present time, there is no evidence of its systematic recovery as "recycled product" or "by-product". On the basis of the results of these researches it is possible to highlight

  16. Hydrogenation upgrading of heavy oil residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S.; Mazneva, O.A.; Galkina, N.I. [Fossil Fuel Inst., Moscow (Russian Federation). Hydrogenation and Gasification Dept.; Suvorov, U.P.; Khadjiev, S.N. [Inst. Oil and Chemical Synthesis, Moscow (Russian Federation). Hydrogenation of Heavy Residues Dept.

    1997-12-31

    At present time in the world there is no simple and effective technology at low pressure (<15-20 MPa) which could give the opportunity to use oil residues for distillate fractions production. In Russia a process for hydrogenation (up 6 MPa hydrogen pressure) of high boiling point (b.p. >520 C) oil products, including high S, V and Ni contents ones, into distillates, feedstock for catalytic cracking (b.p. 360-520 C) and metal concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with heavy oil residues, dispersed and then subjected to additional supercavitation in a special apparatus. (orig.)

  17. Combustion of crude oil sludge containing naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    The characteristics of crude oil sludge fi-om the crude oil terminal are very unique because it contains both heavy metals and also Naturally Occurring Radioactive Material (NORM). As a result, the Department of Environmental (DOE) and the Atomic Energy Licensing Board (AELB) considered it as Scheduled Wastes and Low Level Radioactive Waste (LLRW) respectively. As a Scheduled Wastes, there is no problem in dealing with the disposal of it since there already exist a National Center in Bukit Nanas to deal with this type of waste. However, the Center could not manage this waste due to the presence of NORM by which the policy regarding the disposal of this kind of waste has not been well established. This situation is unclear to certain parties, especially with respect to the relevant authorities having final jurisdiction over the issue as well as the best practical method of disposal of this kind of waste. Existing methods of treatment viewed both from literature and current practice include that of land farming, storing in plastic drum, re-injection into abandoned oil well, recovery, etc., found some problems. Due to its organic nature, very low level in radioactivity and the existence of a Scheduled Waste incineration facility in Bukit Nanas, there is a potential to treat this sludge by using thermal treatment technology. However, prior to having this suggestion to be put into practice, there are issues that need to be addressed. This paper attempts to discuss the potentials and the related issues of combusting crude oil sludge based on existing experimental data as well as mathematical modeling

  18. Effect of oil palm sludge on cowpea nodulation and weed control in ...

    African Journals Online (AJOL)

    A field trial was conducted at the Rivers State University of Science and Technology Research and Training farm Port Harcourt to test the effect of oil palm sludge on cowpea nodulation and weed control. The cultivars of cowpea used were Dan Kano, Bornu local and Sokoto local while the oil palm sludge levels applied ...

  19. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    Science.gov (United States)

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  20. Improving material and energy recovery from the sewage sludge and biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Kliopova, Irina, E-mail: irina.kliopova@ktu.lt; Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  1. Improving material and energy recovery from the sewage sludge and biomass residues

    International Nuclear Information System (INIS)

    Kliopova, Irina; Makarskienė, Kristina

    2015-01-01

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg −1 of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  2. Bioremediation of petrochemical sludge from oil refining operations

    International Nuclear Information System (INIS)

    Prince, M.J.; Sambasivam, Yasodha

    1991-01-01

    Petroleum refineries have historically produced large quantities of hydrocarbon sludge as a waste product. A common past practice for disposal of this material was to deposit it in open pits. These hazardous waste sites now require remediation to meet current environmental regulations. This report will present data from a feasibility study on bioremediation for one such site. Data will be presented on the characteristics and composition of the crude sludge including organic analysis by GC/MS techniques, loss on ignition, TOC pH, oil and grease levels, metals content by atomic adsorption and bacteria plate counts. The effectiveness of bioremediation will be examined using data from shaker flask studies with indigenous and other bacteria sources. Key parameters being monitored will include toxicity using a Microtox assay, oil and grease levels, and the concentration of individual chemical species using GC/MS analysis. Biological data such as bacteria growth rates and nutrient uptake rates will also be presented and compared to biodegradation rates

  3. ESTERIFICATION OF FATTY ACID FROM PALM OIL WASTE (SLUDGE OIL BY USING ALUM CATALYST

    Directory of Open Access Journals (Sweden)

    Thamrin Usman

    2010-06-01

    Full Text Available Esterification of fatty acids from palm oil waste (sludge oil as biodiesel liquid base has been done by using alum [Al2(SO43.14H2O] catalyst. Some reaction variables like reaction time, catalyst quantity, and molar ratio of sample-reactant was applied for optimal reaction. Yield of 94.66% was obtained at reaction condition 65 °C, 5 h, sample-reactant ratio 1:20, and catalyst quantity 3% (w/w. GC-MS analysis request showed that composition of methyl esters biodiesel are methyl caproic (0.67%, methyl lauric (0.21%, methyl miristic (1.96%, methyl palmitic (49.52%, methyl oleic (41.51%, and methyl stearic (6.13%. Physical properties of synthesized product (viscosity, refraction index and density are similar with those of commercial product.   Keywords: alum, biodiesel, esterification, sludge oil

  4. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Tri Retno, D.L.; Mulyana, N.

    2013-01-01

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  5. Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil.

    Science.gov (United States)

    Mater, L; Sperb, R M; Madureira, L A S; Rosin, A P; Correa, A X R; Radetski, C M

    2006-08-25

    In this study sequential steps were used to treat and immobilize oil constituents of an oil sludge-contaminated soil. Initially, the contaminated soil was oxidized by a Fenton type reaction (13 wt% for H(2)O(2); 10mM for Fe(2+)). The oxidative treatment period of 80 h was carried out under three different pH conditions: 20 h at pH 6.5, 20 h at pH 4.5, and 40 h at pH 3.0. The oxidized contaminated sample (3 kg) was stabilized and solidified for 2h with clay (1 kg) and lime (2 kg). Finally, this mixture was solidified by sand (2 kg) and Portland cement (4 kg). In order to evaluate the efficiency of different processes to treat and immobilize oil contaminants of the oil sludge-contaminated soil, leachability and solubility tests were performed and extracts were analyzed according to the current Brazilian waste regulations. Results showed that the Fenton oxidative process was partially efficient in degrading the oil contaminants in the soil, since residual concentrations were found for the PAH and BTEX compounds. Leachability tests showed that clay-lime stabilization/solidification followed by Portland cement stabilization/solidification was efficient in immobilizing the recalcitrant and hazardous constituents of the contaminated soil. These two steps stabilization/solidification processes are necessary to enhance environmental protection (minimal leachability) and to render final product economically profitable. The treated waste is safe enough to be used on environmental applications, like roadbeds blocks.

  6. Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char.

    Science.gov (United States)

    Deng, Shuanghui; Tan, Houzhang; Wang, Xuebin; Yang, Fuxin; Cao, Ruijie; Wang, Zhao; Ruan, Renhui

    2017-09-01

    Gaining the valuable fuels from sewage sludge is a promising method. In this work, the fast pyrolysis characteristics of sewage sludge (SS), wheat straw (WS) and their mixtures in different proportions were carried out in a drop-tube reactor. The combustion reactivity of the residual char obtained was investigated in a thermogravimetric analyzer (TGA). Results indicate that SS and WS at different pyrolysis temperatures yielded different characteristic gas compositions and product distributions. The co-pyrolysis of SS with WS showed that there existed a synergistic effect in terms of higher gas and bio-oil yields and lower char yield, especially at the WS adding percentage of 80wt%. The addition of WS to SS increased the carbon content in the SS char and improved char porous structures, resulting in an improvement in the combustion reactivity of the SS char. The research results can be used to promote co-utilization of sewage sludge and biomass. Copyright © 2017. Published by Elsevier Ltd.

  7. Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ahring, B.K.

    1997-01-01

    Combined anaerobic digestion of oil mill effluent (OME) together with manure, household waste (HHW) or sewage sludge was investigated. In batch experiments it was shown that OME could be degraded into biogas when codigested with manure. In codigestion with HHW or sewage sludge, OME dilution...

  8. Recycling of oil sludge through of the incorporation in bricks; Reciclagem de borra oleosa atraves de incorporacao em blocos ceramicos de vedacao

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Mara R.F.V. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Holanda, Francisco S.R. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil)

    2004-07-01

    The oil industry in Sergipe State generates a waste hard to treat or dispose of, called oil sludge, basically consisting of oil, solids and water. The final disposition, treatment and recycling of this waste is considered a high priority of the oil companies in the discussion of the policies related to its sustainable management. The objective of this work was to study an alternative of recycling the oil sludge as one component in the mixture of ceramic blocks producing for the civil construction industry. A characterization of the oil sludge was carried out to define the best treatment related to the addition of the residue mixtures with clay and water to make the ceramic blocks in rates ranging from 0 to 25% in weight. The quality of the ceramic blocks was evaluated based on mechanical resistance, water absorption, efflorescence, total soluble salts and retention capacity of heavy metals, which are measured by leaching and solubilization tests. A better mixture was achieved with the addition of oil sludge until the rate of 10% to 20% in weight to make the ceramic blocks, with maintenance of the desirable characteristics related to this type of construction supply, besides no negative effects to the environment. (author)

  9. Method of removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues

    Energy Technology Data Exchange (ETDEWEB)

    Palmquist, F T.E.

    1949-09-08

    A method is described for removing paraffin from mineral oils, shale oils, tar oils, and their fractions or residues by centrifuging in the presence of oil-dissolving and paraffin-precipitating solvents, by which the precipitated paraffin is made to pass through an indifferent auxiliary liquid, in which a removal of oil takes place, characterized in that as auxiliary liquid is used a liquid or mixture of liquids whose surface tension against the oil solution is sufficiently low for the paraffin to pass the layer of auxiliary liquid in the form of separate crystals.

  10. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.

    Science.gov (United States)

    Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing

    2009-08-15

    The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  12. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution

    International Nuclear Information System (INIS)

    Zhang Hongzi; Xiang Hai; Zhang Guoliang; Cao Xia; Meng Qing

    2009-01-01

    The presence of high-strength oil and grease (O and G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O and G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O and G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O and G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12 h was required for removing approximately 95% of O and G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  13. Heating oil, distillates and residuals outlook

    International Nuclear Information System (INIS)

    Ervin, M.J.

    2004-01-01

    M.J. Ervin and Associates offers strategic planning support to the downstream petroleum industry in terms of price market monitoring, market analysis, media commentary and benchmarking of marketing operations. This presentation included graphs depicting supply and demand for heating oil distillates and residuals from the mid 1990s to 2004. It was noted that the long-term decline in residuals demand in the United States and Canada are due to environmental issues, the use of natural gas as an alternative, and the increasing complexity of refineries. Graphs depicting market impacts of refinery utilization and inventory trends showed that middle distillate production will increase at the expense of gasoline production. Middle distillates and gasoline markets will be more sensitive to supply disruptions, resulting in more frequent price spikes. Inventory trends indicate a greater reliance on product imports. The demand for heating fuel has stabilized due to the continued penetration of natural gas in eastern states and provinces. The demand for diesel fuel has growth 1.5 to 2 per cent while the demand for jet fuel has remained relatively flat and depends greatly on the growth of the gross national product (GNP). tabs., figs

  14. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge.

    Science.gov (United States)

    Langford, Katherine H; Reid, Malcolm; Thomas, Kevin V

    2011-08-01

    A robust multi-residue method was developed for the analysis of a selection of pharmaceutical compounds, illicit drugs and personal care product bactericides in sediments and sludges. Human pharmaceuticals were selected for analysis in Scottish sewage sludge and freshwater sediments based on prescription, physico-chemical and occurrence data. The method was suitable for the analysis of the selected illicit drugs amphetamine, benzoylecgonine, cocaine, and methamphetamine, the pharmaceuticals atenolol, bendroflumethiazide, carbamazepine, citalopram, diclofenac, fluoxetine, ibuprofen, and salbutamol, and the bactericides triclosan and triclocarban in sewage sludge and freshwater sediment. The method provided an overall recovery of between 56 and 128%, RSDs of between 2 and 19% and LODs of between 1 and 50 ng g(-1). Using the methodology the human pharmaceuticals atenolol, carbamazepine and citalopram and the bactericides triclosan and triclocarban were detected in Scottish sewage sludge. The illicit drugs cocaine, its metabolite benzoylecgonine, amphetamine and methamphetamine were not detected in any of the samples analysed. Triclosan and triclocarban were present at the highest concentrations with triclocarban detected in all but one sample and showing a pattern of co-occurrence in both sludge and sediment samples.

  15. Essential oil production of lemongrass (Cymbopogon citratus under organic compost containing sewage sludge

    Directory of Open Access Journals (Sweden)

    Júlia V. d'Ávila

    Full Text Available ABSTRACT One of the main urban polluting agents are the sewers, which even with proper treatment end up generating a polluting waste, the sewage sludge. One of the options for the disposal of this sludge is the use in agriculture, due to its high content of organic matter and nutrients. This study aimed to use urban sewage sludge for lemongrass cultivation and essential oil production. The plants were grown in soil containing different organic compost doses (0, 5, 10, 20, 40 and 60 t ha-1, formed from the sewage sludge composting process and waste of urban vegetation pruning. At harvest, plants were analyzed for the concentration of nutrients, chlorophyll content, number of tillers, biomass production, essential oil content and the microbiological quality of the leaves. The results showed that the addition of the compost increased the levels of nutrients in the plants, mainly nitrogen, positively influencing the production of tillers, biomass, chlorophyll contents, yield and essential oil content.

  16. Bio-oil from Flash Pyrolysis of Agricultural Residues

    DEFF Research Database (Denmark)

    Ibrahim, Norazana

    This thesis describes the production of bio-oils from flash pyrolysis of agricultural residues, using a pyrolysis centrifugal reactor (PCR). By thermal degradation of agricultural residues in the PCR, a liquid oil, char and non-condensable gases are produced. The yield of each fraction...

  17. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields

    International Nuclear Information System (INIS)

    Lazar, I.; Dobrota, S.; Voicu, A.; Stefanescu, M.; Sandulescu, L.; Petrisor, I.G.

    1999-01-01

    During oil production and processing activities, significant quantities of oily sludge are produced. The sludge represents not only an environmental pollution source but also occupies big spaces in storage tanks. Romania, an experienced European oil-producing and processing country, is faced with environmental problems generated by oily sludge accumulations. Many such accumulations are to be submitted to bioremediation processes based on the hydrocarbon degradation activity of naturally occurring, selectively isolated bacteria. In this paper the results concerning a laboratory screening of several natural bacterial consortia and laboratory tests to establish the performance in degradation of hydrocarbons contained in oily sludges from Otesti oil field area, are presented. As a result of the laboratory screening, we selected six natural bacterial consortia (BCSl-I 1 to BCSl-I 6 ) with high ability in degradation of hydrocarbons from paraffinic and non-paraffinic asphaltic oils (between 25.53%-64.30% for non-paraffinic asphaltic oil and between 50.25%-72.97% for paraffinic oil). The laboratory tests proved that microbial degradation of hydrocarbons contained in oily sludge from Otesti oil field area varied from 16.75% to 95.85% in moving conditions (Erlenmeyers of 750 ml on rotary shaker at 200 rpm) and from 16.85% to 51.85% in static conditions (Petri dishes Oe 10 cm or vessels of 500 ml)

  18. Conversion of agricultural waste, sludges and pulp residues into nanofibers for innovative polymer composites

    OpenAIRE

    Samyn, Pieter; Carleer, Robert

    2017-01-01

    Agricultural waste fractions from seasonal crops (corn stover, bagasse, flax), sludges and paper pulp residues contain an important source of lignocellulosic materials that can be recovered and used as material fractions instead of being burnt for energy recovery. Due to the heterogeneity of named products, however, novel processing routes should be developed for the recovery of the lignocellulosic materials at nanoscale. Therefore, we will use nanotechnological routes to transform the res...

  19. Management of toxic and hazardous contents of oil sludge in Siri Island

    Directory of Open Access Journals (Sweden)

    M. Pazoki

    2017-12-01

    Full Text Available Sirri Island is one of the most important islands in Iran where contains massive amounts of crude oil reservoirs and is a crude oil exporting and storage spot. Petroleum sludge wastes produced by the refineries are deposited in outdoor 2-ha open pits. 30 sludge samples from different depot locations were conducted in 3-time intervals and mixed with each other to form one homogenized sample. The sample was treated by solvent extraction method using methyl ethyl ketone as an efficient polar solvent in order to recover the valuable hydrocarbon and oil. About 99.8% of the oil was recovered and determined to reach almost the same quality as the exportable crude oil of Sirri Island. The sediments were also tested for size distribution range and titled as fine-grained soil. Toxicity characteristics leaching procedure test was conducted on the residuals to determine whether the waste is categorized as toxic and hazardous. The industrial waste evaluation model used in the current work suggested different leachate concentrations (10%, 30%, 50%, 70% and 90% of total leachate based on toxicity characteristics leaching procedure for different probable leaching scenarios. The surface and subsurface regional conditions such as depth to underground water table, climate condition, subsurface pH, soil texture and material were defined to the model as well. Then, the model simulated 10000 possible runs considering the leaching procedure, contaminant concentrations, maximum contaminant limits and surface and sub-surface conditions. The final outcomes regarding heavy metals results showed that nickel, chromium and vanadium were protective under composite liner while cobalt and lead were not safe under such liner and need proper treatment before landfilling. As the final step, the size and details of landfill were designed. The landfill was selected as a square with side and depth of 55m and 3m respectively. The composite liner consisted of 1.5mm high density

  20. Assessing the potential of brachiaria decumbens as remediation agent for soil contaminated wit oil sludge

    International Nuclear Information System (INIS)

    Latiffah Norddin; Ahmad Nazrul Abd Wahid; Hazlina Abdullah; Abdul Razak Ruslan

    2005-01-01

    Bioremediation is a method of treatment of soil or water contaminated with toxic materials, involving the use of living organisms. Oil or petroleum sludge is a waste product of the petroleum refining industry, and is now accumulating at a fast rate at petroleum refinery sites in the country. Common components of oil sludge are mud and sand, containing toxic materials from hydrocarbons, heavy metals and radioactive elements from the seabed. In the present study, the oil sludge samples were obtained from barrels of the materials stored at the Radioactive Waste Treatment Centre, MINT. The samples were analysed of their compounds, elemental and radioactive contents. Trials on microbial degradation of the sludge materials were ongoing. This paper discusses the potential of a grass to remediate soils contaminated with petroleum sludge. Remediation of soils contaminated with organic compounds and heavy metals using plants, including grasses, including Vetiver, Lolium and Agrostis have been carried out in many countries. A greenhouse pot trial was conducted to assess the suitability of the pasture grass Brachiaria decumbens Stapf. and its mutant Brachiaria decumbens KLUANG Comel as a remediation agent for oil sludge contaminated soil. Samples of grasses and soils before planting, during growth stage and at end of experiment were analysed for the different toxicity. Although the grasses were promoted for use in pasture, and KLUANG Comel has good potential as an ornamental plant, too, their other potentials, including as phytoremediation agents need to be explored. (Author)

  1. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    Science.gov (United States)

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effect of animal feed from irradiated palm oil sludge on antibody forming of mice

    International Nuclear Information System (INIS)

    Suharni Sadi; Umar, Hasibuan; Jenny, M.; Adria, P.M.; Murni Indrawatmi

    1998-01-01

    In this experiment, 3 kinds of animal feed were, e.q. control (commercial product), non irradiated and irradiated palm oil sludge by using 6 0Co source with a 4 kGy dose. BALB-C mice of 3 months old were used, each group contains 5 animals. Before conducting the experiment the animals were injected with antibiotic to free them from Enterobacteriaceae. The animals were observed every 2 weeks by weighting them, blood were analyzed and after 10 weeks their antibody were analyzed. Animal feed were in the form of pellets and each animal was feed 5 g of pellets. The results were as follows, antibody formed by C (control), N (non irradiated sludge) and, R (irradiated sludge) were 37; 36.5; and 36.2 mg/nl, respectively. Apparently pellets which were made of palm oil sludge and commercial product produced not significantly different level of antibody. (author)

  3. Characterization of the heterotrophic biomass and the endogenous residue of activated sludge.

    Science.gov (United States)

    Ramdani, Abdellah; Dold, Peter; Gadbois, Alain; Déléris, Stéphane; Houweling, Dwight; Comeau, Yves

    2012-03-01

    The activated sludge process generates an endogenous residue (X(E)) as a result of heterotrophic biomass decay (X(H)). A literature review yielded limited information on the differences between X(E) and X(H) in terms of chemical composition and content of extracellular polymeric substances (EPS). The objective of this project was to characterize the chemical composition (x, y, z, a, b and c in C(x)H(y)O(z)N(a)P(b)S(c)) of the endogenous and the active fractions and EPS of activated sludge from well designed experiments. To isolate X(H) and X(E) in this study, activated sludge was generated in a 200L pilot-scale aerobic membrane bioreactor (MBR) fed with a soluble and completely biodegradable synthetic influent of sodium acetate as the sole carbon source. This influent, which contained no influent unbiodegradable organic or inorganic particulate matter, allowed the generation of a sludge composed essentially of two fractions: heterotrophic biomass X(H) and an endogenous residue X(E), the nitrifying biomass being negligible. The endogenous decay rate and the active biomass fraction of the MBR sludge were determined in 21-day aerobic digestion batch tests by monitoring the VSS and OUR responses. Fractions of X(H) and X(E) were respectively 68% and 32% in run 1 (MBR at 5.2 day SRT) and 59% and 41% in run 2 (MBR at 10.4 day SRT). The endogenous residue was isolated by subjecting the MBR sludge to prolonged aerobic batch digestion for 3 weeks, and was characterized in terms of (a) elemental analysis for carbon, nitrogen, phosphorus and sulphur; and (b) content of EPS. The MBR sludge was characterized using the same procedures (a and b). Knowing the proportions of X(H) and X(E) in this sludge, it was possible to characterize X(H) by back calculation. Results from this investigation showed that the endogenous residue had a chemical composition different from that of the active biomass with a lower content of inorganic matter (1:4.2), of nitrogen (1:2.9), of phosphorus (1

  4. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  5. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin

    2011-01-30

    Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Phase chemistry of tank sludge residual components. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brady, P.V.; Krumhansl, J.L.; Liu, J.; Nagy, K.L.

    1998-01-01

    'The proposed research will provide a scientific basis for predicting the long-term fate of radionuclides remaining with the sludge in decommissioned waste tanks. Nuclear activities in the United States and elsewhere produce substantial volumes of highly radioactive semi-liquid slurries that traditionally are stored in large underground tanks while final waste disposal strategies are established. Although most of this waste will eventually be reprocessed a contaminated structure will remain which must either be removed or decommissioned in place. To accrue the substantial savings associated with in-place disposal will require a performance assessment which, in turn, means predicting the leach behavior of the radionuclides associated with the residual sludges. The phase chemistry of these materials is poorly known so a credible source term cannot presently be formulated. Further, handling of actual radioactive sludges is exceedingly cumbersome and expensive. This proposal is directed at: (1) developing synthetic nonradioactive sludges that match wastes produced by the various fuel processing steps, (2) monitoring the changes in phase chemistry of these sludges as they age, and (3) relating the mobility of trace amounts of radionuclides (or surrogates) in the sludge to the phase changes in the aging wastes. This report summarizes work carried out during the first year of a three year project. A prerequisite to performing a meaningful study was to learn in considerable detail about the chemistry of waste streams produced by fuel reprocessing. At Hanford this is not a simple task since over the last five decades four different reprocessing schemes were used: the early BiPO 4 separation for just Pu, the U recovery activity to further treat wastes left by the BiPO 4 activities, the REDOX process and most recently, the PUREX processes. Savannah River fuel reprocessing started later and only PUREX wastes were generated. It is the working premise of this proposal that most

  7. Eco-Friendly Multipurpose Lubricating Greases from Vegetable Residual Oils

    Directory of Open Access Journals (Sweden)

    Ponnekanti Nagendramma

    2015-10-01

    Full Text Available Environmentally friendly multipurpose grease formulation has been synthesized by using Jatropha vegetable residual oil with lithium soap and multifunctional additive. The thus obtained formulation was evaluated for its tribological performance on a four-ball tribo-tester. The anti-friction and anti-wear performance characteristics were evaluated using standard test methods. The biodegradability and toxicity of the base oil was assessed. The results indicate that the synthesized residual oil grease formulation shows superior tribological performance when compared to the commercial grease. On the basis of physico-chemical characterization and tribological performance the vegetable residual oil was found to have good potential for use as biodegradable multipurpose lubricating grease. In addition, the base oils are biodegradable and non toxic.

  8. The reduction of oil pollutants of petroleum products storage-tanks sludge using low-cost adsorbents

    Directory of Open Access Journals (Sweden)

    Mokhtari-Hosseini Zahra Beagom

    2017-01-01

    Full Text Available Disposal of storage tank sludge in oil depots is a major environmental concern due to the high concentration of hydrocarbons involved. This paper investigates the reduction of the sludge oil pollutants with initial oil and grease concentration of about 50 mass% using low cost adsorbents. Among the examined adsorbents, sawdust indicated the maximum removal of oil and grease. The screening and optimizing of process parameters were evaluated employing Plackett-Burman design and response surface method. For the optimized conditions, more than 60 mass% of oil and grease from the sludge was removed. Moreover, it was found that sawdust adsorption of the oil and grease approximately followed the Freundlich isotherm. The results indicated that oil pollutants of sludge could be reduced using sawdust as a low-cost, available and flammable adsorbent so that thus saturated adsorbents could be used as fuel in certain industries.

  9. Irradiated Sewage Sludge for Production of Fennel (Foeniculum vulgare L.) Plants in Sandy Soil 2- Seed production, oil content, oil constituents and heavy metals in seeds

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo-El-Seoud, M. A.

    2007-01-01

    Field experiment was conducted to study the impact of irradiated and non-irradiated sewage sludge applied to sandy soil on fennel plants (Foeniculum vulgare L.) productivity. In this regards, four rates of sewage sludge application were used (20, 40, 60 and 80 ton/ha) in addition to the mineral fertilizer treatment (control). Sandy soil amended with sewage sludge showed a promising effect on fennel seed yield. A linear gradual increase in seeds yield was observed as the sludge application rate increases. Seeds production increased by 41% to 308% over the control at 80 t /ha application rate, for non-irradiated and irradiated sewage sludge treatments, respectively. Irradiated sewage sludge treatments showed higher fennel seed yield than non-irradiated sewage sludge treatments.Volatile oil percent exhibited no observable variation due to the use of sewage sludge. A few and limited fluctuations could be observed. However, total oil content (cc/plot) increased due to the increase in seeds yield. The magnitude of increase in volatile oil production in response to the sewage sludge application was parallel to the increase in seeds yield. The GLC measurements of the fennel volatile oil reveal that, the t-anethole is the predominant fraction. However, fenchone was detected in relatively moderate concentration. The applied sewage sludge treatment induced some variations in fennel volatile oil constituents. The t.anethole is relatively higher in volatile oil obtained from plants grown on sandy soil fertilized with non-irradiated sewage sludge than the one fertilized with irradiated sewage sludge or chemical fertilizer. In the meantime, the obtained increase in t.anethole was accompanied by a decline in fenchone content. Seeds heavy metals (Zn, Fe, Pb, Cd) were determined. Under all sludge application rates iron and zinc concentrations were in the normal plant concentration range whereas, Cd concentrations were traces.

  10. Enhancement of recovery of residual oil using a biosurfactant slug ...

    African Journals Online (AJOL)

    Characterization of the biosurfactant extract revealed a mixture of glycolipid and phospholipid in a ratio of 3.35:1. The irreducible water saturation (Swi) and initial residual oil saturation (Sor) of the sand-pack were 0.280 ± 0.003 and 0.373 ± 0.006, respectively. Core flooding experiment showed that an optimum oil recovery ...

  11. k0-INAA measurement of levels of toxic elements in oil sludge and their leachability

    International Nuclear Information System (INIS)

    Syazwani Mohd Fadzil; Kok Siong Khoo; Sukiman Sarmani; Majid, A.A.; Ainon Hamzah

    2011-01-01

    Development of the petroleum industry has resulted in increasing production of oil sludge, the disposal of which risks introducing hazardous elements into the environment. In the frames of these studies the presence of the toxic metals arsenic, chromium and zinc in oil sludge and the leachability of those toxins. Samples were obtained from a refinery plant in Sg Udang, Melaka and from the Miri Crude Oil Terminal, Sarawak, both in Malaysia. k 0 -Instrumental Neutron Activation Analysis was used to measure mass fractions of elements. The samples were packed and irradiated in a TRIGA Mark II reactor. Mass fraction of arsenic in the oil sludge samples were found to be higher than the EPA pollutant mass fraction limit; mass fractions of chromium and zinc were below of this limit. Samples were also tested for leachability, which was found to be contributed to by controlled diffusion. Slow leachability of arsenic was found to be higher than the EPA limit in these oil sludge samples, influenced by such factors as redox condition. It was found however, that the most leachable of these elements in all samples from both sites was zinc, followed by arsenic and chromium, indicating that zinc may present a more serious threat of environmental contamination than the other two. (author)

  12. Microbe assisted phyto remediation of oil sludge and role of amendments: a mesocosm study

    International Nuclear Information System (INIS)

    Nanekar, S; Dhote, M.; Kashyap, S.; Singh, S. K.; Juwarkar, A. A.

    2015-01-01

    A mescosom study was evaluated to the influence of amendments such as microbial consortium, plant (Vetiveria zizanioides), bulking agent (wheat husk) and nutrients on remediation of oil sludge over a period of 90 days. The experiment was conducted in a 15 m2 plot which was divided into eight units comprising of soil sludge mixture (1:1) at CSIR-NEERI premises. During the experiment, oil degradation was estimated gravimetrically and poly aromatic hydrocarbons were quantified on GC-MS. Additionally, dehydrogenase activity was also monitored. The treatment integrated with bulking agent, nutrients, consortium and plant resulted in 28-fold increased dehydrogenase activity and complete mineralization of higher poly aromatic hydrocarbons. Furthermore, 72.8 % total petroleum hydrocarbons degradation was observed in bulked treatment with plant, nutrients and consortium followed by 69.6 and 65.4 % in bioaugmented treatments with and without nutrients, respectively, as compared to control (33.4 %). A lysimeter study was also conducted simultaneously using Vetiver and consortium to monitor groundwater contamination by heavy metals in oil sludge which showed a marked decrease in the concentrations of metals such as lead and cadmium in leachates. This study validates a holistic approach for remediation of oil sludge contaminated soils/sites which is a burning issue since decades by the use of microbe assisted phyto remediation technology which not only solves the problem of oil contamination but also takes care of heavy metal contamination.

  13. The effect of sludge water treatment plant residuals on the properties of compressed brick

    Science.gov (United States)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  14. Effect of Sewage Sludge Addition on the Completion of Aerobic Composting of Thermally Hydrolyzed Kitchen Biogas Residue

    OpenAIRE

    Hong-tao Liu; Lu Cai

    2014-01-01

    The composting of thermal-hydrolyzed kitchen biogas residue, either with or without sewage sludge, was compared in this study. The addition of sewage sludge increased and prolonged the temperature to a sufficient level that met the requirements for aerobic composting. Moreover, after mixing the compost materials, oxygen, ammonia, and carbon dioxide levels reverted to those typical of aerobic composting. Finally, increased dewatering, organic matter degradation, and similar mature compost prod...

  15. Utility residual fuel oil market conditions: An update

    International Nuclear Information System (INIS)

    Mueller, H.A. Jr.

    1992-01-01

    Planning for residual fuel oil usage and management remains an important part of the generation fuel planning and management function for many utilities. EPRI's Utility Planning Methods Center has maintained its analytical overview of the fuel oil markets as part of its overall fuel planning and management research program. This overview provides an update of recent fuel oil market directions. Several key events of the past year have had important implications for residual fuel oil markets. The key events have been the changes brought about by the Persian Gulf War and its aftermath, as well as continuing environmental policy developments. The Persian Gulf conflict has created renewed interest in reducing fuel oil use by utilities as part of an overall reduction in oil imports. The policy analysis performed to date has generally failed to properly evaluate utility industry capability. The Persian Gulf conflict has also resulted in an important change in the structure of international oil markets. The result of this policy-based change is likely to be a shift in oil pricing strategy. Finally, continued change in environmental requirements is continuing to shift utility residual oil requirements, but is also changing the nature of the US resid market itself

  16. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater

    Science.gov (United States)

    Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian

    2014-06-01

    Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.

  17. Study of radionuclide leaching from the residues of K Basin sludge dissolution

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1998-01-01

    The sludges remaining in the K Basins after removal of the spent N Reactor nuclear fuel will be conditioned for disposal. After conditioning, an acid-insoluble residue will remain that may require further leaching to properly condition it for disposal. This document presents a literature study to identify and recommend one or more chemical leaching treatments for laboratory testing, based on the likely compositions of the residues. The processes identified are a nitric acid cerate leach, a silver-catalyzed persulfate leach, a nitric hydrofluoric acid leach, an oxalic citric acid reactor decontamination leach, a nitric hydrochloric acid leach, a ammonium fluoride nitrate leach, and a HEOPA formate dehydesulfoxylate leach. All processes except the last two are recommended for testing in that order

  18. Acephate and buprofezin residues in olives and olive oil.

    Science.gov (United States)

    Cabras, P; Angioni, A; Garau, V L; Pirisi, F M; Cabitza, F; Pala, M

    2000-10-01

    Field trials were carried out to study the persistence of acephate and buprofezin on olives. Two cultivars, pizz'e carroga and pendolino, with very large and small fruits respectively were used. After treatment, no difference was found between the two pesticide deposits on the olives. The disappearance rates, calculated as pseudo first order kinetics, were similar for both pesticides (on average 12 days). Methamidophos, the acephate metabolite, was always present on all olives, and in some pendolino samples it showed higher residues than the maximum residue limit (MRL). During washing, the first step of olive processing, the residue level of both pesticides on the olives did not decrease. After processing of the olives into oil, no residues of acephate or methamidophos were found in the olive oil, while the residues of buprofezin were on average four times higher than on olives.

  19. Effect of oil palm sludge on cowpea nodulation and weed control in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... weed control in the humid forest zone of Nigeria ... tropics, where rainfall is scanty and soils are sandy with ... Impact of oil palm sludge on 3 cultivars of cowpea length or roots at 6 and 8 WAP in wet and dry season. 6 WAP.

  20. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A., E-mail: mmhushari@moe.gov.qa [Radiation and Chemical Protection Department, Ministry of Environment, Doha (Qatar)

    2015-07-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H{sub ex} , D , and Ra{sub eq}), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  1. Norm in soil and sludge samples in Dukhan oil Field, Qatar state

    International Nuclear Information System (INIS)

    Al-Kinani, A.T.; Hushari, M.; Al-Sulaiti, Huda; Alsadig, I.A.

    2015-01-01

    The main objective of this work is to measure the activity concentrations of Naturally Occurring radioactive Materials (NORM) produced as a buy products in oil production. The analyses of NORM give available information for guidelines concerning radiation protection. Recently NORM subjected to restricted regulation issued by high legal authority at Qatar state. Twenty five samples of soil from Dukhan onshore oil field and 10 sludge samples collected from 2 offshore fields at Qatar state. High resolution low-level gamma-ray spectrometry used to measure gamma emitters of NORM. The activity concentrations of natural radionuclide in 22 samples from Dukhan oil field, were with average worldwide values . Only three soil samples have high activity concentration of Ra-226 which is more than 185 Bq/kg the exempted level for NORM in the Quatrain regulation. The natural radionuclide activity concentrations of 10 sludge samples from offshore oil fields was greater than 1100Bq/kg the exempted values of NORM set by Quatrain regulation so the sludge need special treatments. The average hazards indices (H ex , D , and Ra eq ), for the 22 samples were below the word permissible values .This means that the human exposure to such material not impose any radiation risk. The average hazards indices (H ex , D , and Ra eq ), for 3 soil samples and sludge samples are higher than the published maximal permissible. Thus human exposure to such material impose radiation risk. (author)

  2. Oil recovery from refinery oily sludge via ultrasound and freeze/thaw.

    Science.gov (United States)

    Zhang, Ju; Li, Jianbing; Thring, Ronald W; Hu, Xuan; Song, Xinyuan

    2012-02-15

    The effective disposal of oily sludge generated from the petroleum industry has received increasing concerns, and oil recovery from such waste was considered as one feasible option. In this study, three different approaches for oil recovery were investigated, including ultrasonic treatment alone, freeze/thaw alone and combined ultrasonic and freeze/thaw treatment. The results revealed that the combined process could achieve satisfactory performance by considering the oil recovery rate and the total petroleum hydrocarbon (TPH) concentrations in the recovered oil and wastewater. The individual impacts of five different factors on the combined process were further examined, including ultrasonic power, ultrasonic treatment duration, sludge/water ratio in the slurry, as well as bio-surfactant (rhamnolipids) and salt (NaCl) concentrations. An oil recovery rate of up to 80.0% was observed with an ultrasonic power of 66 W and an ultrasonic treatment duration of 10 min when the sludge/water ratio was 1:2 without the addition of bio-surfactant and salt. The examination of individual factors revealed that the addition of low concentration of rhamnolipids (treatment process. The experimental results also indicated that ultrasound and freeze/thaw could promote the efficiency of each other, and the main mechanism of oil recovery enhancement using ultrasound was through enhanced desorption of petroleum hydrocarbons (PHCs) from solid particles. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Alcohol biodiesel from frying oil residues; Biodiesel etilico a partir de oleo de fritura residual

    Energy Technology Data Exchange (ETDEWEB)

    Festa, Brunna Simoes; Marques, Luiz Guilherme da Costa [Universidade Federal do Rio de Janeiro (IVIG/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Inst. Virtual Internacional de Mudancas Globais], E-mail: lguilherme@ivig.coppe.ufrj.br

    2010-07-01

    This paper describes the reaction optimization and production of biodiesel through the use of frying residual oil made available by the restaurant placed at the PETROBRAS Research Center (CENPES-RJ), using ethanol, so that to permit the production of sustainable bio diesel. The environmental gains obtained by the utilization of residual oil, avoiding that this oil be released in the nature, and the economic gains coming from the generation and utilization of ethanol allowing the production of biodiesel be an viable alternative. The obtained results during laboratory tests shown that biodiesel produced from the transesterification in alkaline medium, of the frying residual oil collected presented a reaction yield of approximately 80% considering in mass.

  4. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  5. Biodiesel production from residual oils recovered from spent bleaching earth

    International Nuclear Information System (INIS)

    Huang, Yi-Pin; Chang, James I.

    2010-01-01

    This work was to study technical and economic feasibilities of converting residual oils recovered from spent bleaching earth generated at soybean oil refineries into useable biodiesel. Experimental results showed that fatty acids in the SBE residual oil were hexadecenoic acid (58.19%), stearic acid (21.49%) and oleic acid (20.32%), which were similar to those of vegetable oils. The methyl ester conversion via a transesterification process gave a yield between 85 and 90%. The biodiesel qualities were in reasonable agreement with both EN 14214 and ASTM D6751 standards. A preliminary financial analysis showed that the production cost of biodiesel from SBE oils was significantly lower than the pre-tax price of fossil diesel or those made of vegetable oils or waste cooking oils. The effects of the crude oil price and the investment on the production cost and the investment return period were also conducted. The result showed that the investment would return faster at higher crude oil price. (author)

  6. Effects of oil and oil burn residues on seabird feathers

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Linnebjerg, Jannie Fries; Sørensen, Martin X.

    2016-01-01

    It is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified...

  7. Effects of Sludge Dry Solid Content and Residual Bulking Agents on Volatile Solids Reduction Using Eisenia foetida

    Directory of Open Access Journals (Sweden)

    Mohammad ali Abdoli

    2009-06-01

    Full Text Available In the first stage of this study, the compound effects of sludge dry solid content and residual bulking agent type (paper, saw dust, straw mixed with activated sludge (10, 15, and 20% dry solids on volatile solids (V.S. reduction were investigated using Eisenia foetida in pilot scale experiments with batches of fifty earthworms in each of the 10 experimental treatments over a period of 10 weeks. The maximum V.S. reduction was attained in the mixture of sludge and paper, with a D.S. of 15% (0.42 ± 0.03 % day-1 while the minimum V.S. reduction was achieved in the mixture of sludge and straw, with a D.S. of 10% (0.26 ± 0.01 % day-1. In the second stage, the survival of Eisenia foetida in the anaerobic sewage sludge was investigated. In the unmixed raw anaerobic sludge, all the earthworms died during the first 9 weeks of the study period due to acute toxicity. From week 10, however, their survival rate improved so that by week 12 when toxicity reduced to 25.40%, they completely survived. This is while in the mixture of anaerobic sludge with paper (D.S. 15%, 100% of the earthworms survived from week 8 after the volatile solids reduced to 20.42% and 17.40%.

  8. Characterization of residual oils for biodiesel production

    Directory of Open Access Journals (Sweden)

    Edmilson Antonio Canesin

    2014-01-01

    Conclusions: The obtained results suggesting that it is possible to take advantage of these residues for biodiesel production as the obtained products were approved according to the rules established by the National Association of Petroleum (ANP; the bovine samples were the exception regarding moisture and acidity.

  9. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge

    International Nuclear Information System (INIS)

    Sanchez, M.E.; Menendez, J.A.; Dominguez, A.; Pis, J.J.; Martinez, O.; Calvo, L.F.; Bernad, P.L.

    2009-01-01

    Sewage sludge was pyrolysed in a quartz reactor at 350, 450, 550 and 950 o C. The pyrolysis oils from the sewage sludge were characterized in detail by means of gas chromatography-mass spectrometry (GC-MS). Changes in the composition of the oils related to the process conditions were assessed by normalizing the areas of the peaks. It was demonstrated that, as the temperature of pyrolysis increased from 350 to 950 o C, the concentration of mono-aromatic hydrocarbons in the oils also increased. Conversely, phenol and its alkyl derivatives showed a strong decrease in their concentration as temperature rose. Polycyclic aromatic hydrocarbons (PAHs) with two to three rings passed through a maximum at a pyrolysis temperature of 450 o C. PAHs with 4-5 rings also presented a major increase as temperature increased up to 450 o C, the concentration at 950 o C being slightly higher than that at 450 o C. Quantification of the main compounds showed that sewage sludge pyrolysis oils contain significant quantities of potentially high-value hydrocarbons such as mono-aromatic hydrocarbons and phenolic compounds. The oils also contain substantial concentrations of PAHs, even at the lowest temperature of 350 o C. The pathway to PAH formation is believed to be via the Diels-Alder reaction and also via secondary reactions of oxygenated compounds such as phenols.

  10. Irradiated Palm Oil Waste (Sludge) As Feed Supplement For Nila Gift Fish (Oreochromis niloticus)

    International Nuclear Information System (INIS)

    MU, Jenny; PM, Adria

    2002-01-01

    The objective of the experiment was to study the fish weight development after being fed with irradiated palm oil waste pellet. Irradiated Palm oil waste pellet was produced from palm oil waste (sludge) with some additional materials, i.e. rice bran, fish powder, soybean powder, tapioca powder. The mixture was then irradiated with a dose of 4 kGy to decontaminate pathogen microbe and other contaminant microbes, the experiment have been carried out in 4 treatments. Treatment A was male fish which was being fed with irradiated sludge palm oil waste pellet and commercial pelletized feed (2:1), treatment C was female with the same feed as A, treatment B was male fish feed with commercial pelletized, treatment D was female fish with the same feed as B. Each treatment was placed in a pond. The feed with the amount of 3% of total body weight was given to the fishes 2 times per day. The result of this experiment showed that the male fish weight receiving treatment A and B were 195.37 g and 175.12 g. The female fish weight at treatments C and D were 170.28 g and 160.15 g, respectively. Data obtained from this experiment showed that the treatment of irradiated sludge palm oil waste pellet and commercial pelletized (2:1) were more efficient as fish feeding compared to commercial pellets

  11. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    Fast pyrolysis may be used for sewage sludge treatment with the advantages of a significant reduction of solid waste volume and production of a bio-oil that can be used as fuel. A study of the influence of the reaction temperature on sewage sludge pyrolysis has been carried out using a pyrolysis...... of 392 g/mol, and metal concentrations lower than 0.14 wt % on a dry basis (db). Less optimal oil properties with respect to industrial applications were observed for oil samples obtained at 475 and 625 °C. Char properties of the 575 °C sample were an ash content of 81 wt % and a HHV of 6.1 MJ/kg db...

  12. Effect of Sewage-Sludge on Bioremediation of a Crude-Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Sara Sharifi Hosseini

    2010-06-01

    Full Text Available Khuzestan Province accommodates the largest oil-fields with huge petroleum production in Iran. During the Persian Gulf war in 1991, more than 6-8 million gallons of oil was spilt in the Persian Gulf, the greatest amount of which was transported into Khuzestan soil. Thus, oil removal from contaminated soil by advanced technologies such as bioremediation seems to be of vital necessity. The aim of this study was to evaluate the effect of sewage-sludge application on bioremediation of oil-contaminated soil. Soil samples (5kg were artificially contaminated with crude oil to a level of 1000 mg/kg. Sewage sludge treatments were applied at the 3 levels of 0, 100, and 200 gr/5kg soil in 3 replicates. The soils were kept in the normal moisture aerobic environment for 5 and 10 weeks. The soils were then analyzed for Hydrocarbon-degrading heterotrophic bacterial count. Oil extraction from the samples was accomplished using the oil Soxhlet extraction method and oil degradation was measured by GC chromatography. The results showed that the hydrocarbon-degrading and heterotrophic bacterial counts in all the treatments increased with time. Results indicate that heterotrophic bacterial population increased from 6×103 cfu/gr soil to  2×1010  cfu/gr soil. Also, C/N ratio decreased from 6 to 3. GC results indicated that all normal Alkanes and Isopernoids, i.e. Phytane and Pristane, decreased by 50-90 percent in all the treatments. It was also found that the application of sewage sludge at 100 gr/5kg soil to oil-contaminated soil leads to greater rates of biodegradation after 5 weeks

  13. Sludge dewatering in a decanter centrifuge aided by cationic flocculant Praestol 855BS and essential oil of waste orange peels

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-03-01

    Full Text Available In the study the comparative analysis of test results of drainage of municipal wastewater sludge was conducted with the use of flocculant Praestol 855BS and the mixture of flocculant Praestol 855BS 50% + orange essential oil 50%, as the reagents supporting this process. It was also attempted to reduce unpleasant smells exuding from the drained sludge.

  14. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge.

    Science.gov (United States)

    Liu, Wuxing; Wang, Xiaobing; Wu, Longhua; Chen, Mengfang; Tu, Chen; Luo, Yongming; Christie, Peter

    2012-06-01

    Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to treat oily sludge and the recovery efficiencies of oil from oily sludge were determined. The oil recovery efficiencies of different isolates ranged from 39% to 88%. Bacterial isolate BZ-6 was found to be the most efficient strain and the three phases (oil, water and sediment) were separated automatically after the sludge was treated with the culture medium of BZ-6. Based on morphological, physiological characteristics and molecular identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues. Copyright © 2012. Published by Elsevier Ltd.

  15. Decomposition of residual oil by large scale HSC plant

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Koichi; Ogata, Yoshitaka; Limmer, H.; Schuetter, H. (Toyo Engineering Corp., funabashi, Japan VEB Petrolchemisches Kombinat Schwedt, Schwedt (East Germany))

    1989-07-01

    Regarding large scale and high decomposition ratio visbreaker HSC, characteristic points and operation conditions of a new plant in East Germany were introduced. As for the characteristics of the process, high decomposition ratio and stable decpmposed oil, availability of high sulfur content oil or even decomposed residuum of visbreaker, stableness of produced light oil with low content of unsaturated components, low investment with low running cost, were indicated. For the realization of high decomposition ratio, designing for suppressing the decomposition in heating furnace and accelaration of it in soaking drum, high space velocity of gas phase for better agitation, were raised. As the main subject of technical development, design of soaking drum was indicated with main dimensions for the designing. Operation conditions of the process in East Germany using residual oil supplied from already working visbreaker for USSR crude oil were introduced. 6 refs., 4 figs., 2 tabs.

  16. Bioproducts for Sludge Reduction in Activated Sludge Systems Treating Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Alexandre V.M.F.

    2016-03-01

    Full Text Available The use of bioproducts that change the cellular metabolism and reduce microbial growth without affecting the organic matter removal is very promising for reducing the amount of sludge in wastewater treatment systems. In this study, two bioproducts were evaluated and compared with a well-known chemical (2,4-DiNitroPhenol – DNP in activated sludge treating petroleum refinery wastewater. In batch experiments, 10 mg/L of DNP, 0.8 mg/L of a bioproduct based on Folic Acid (FA and 10 mg/L of a bioproduct based on Stress Proteins (SP led to 30.6%, 43.2% and 29.8% lower disposal of total solids, respectively. Operating on a continuous regimen, the addition of 10 mg/L of the bioproduct based on SP led to 45.7% lower disposal for 50 days. In all cases, no loss of efficiency in the Chemical Oxygen Demand (COD removal was observed.

  17. AN ALTERNATIVE APPROACH TO THE USE OF HEAVY OIL RESIDUE

    Directory of Open Access Journals (Sweden)

    Eugene Dashut

    2013-01-01

    Full Text Available We consider an alternative approach to the existing oil refining, in which instead of a single priority that emerged in the traditional approach, we consider two: get the light component and a heavy residue used for the production of new construction materials.

  18. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    Energy Technology Data Exchange (ETDEWEB)

    Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  19. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach.

    Science.gov (United States)

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Chen, Hong

    2018-03-07

    The prevalence and persistence of antibiotic resistance genes in wastewater treatment plants (WWTPs) is of growing interest, and residual sludge is among the main sources for the release of antibiotic resistance genes (ARGs). Moreover, heavy metals concentrated in dense microbial communities of sludge could potentially favor co-selection of ARGs and metal resistance genes (MRGs). Residual sludge treatment is needed to limit the spread of resistance from WWTPs into the environment. This study aimed to explore the fate of ARGs and MRGs during thermophilic two-phase (acidogenic/methanogenic phase) anaerobic digestion by metagenomic analysis. The occurrence and abundance of mobile genetic elements were also determined based on the SEED database. Among the 27 major ARG subtypes detected in feed sludge, large reductions (> 50%) in 6 ARG subtypes were achieved by acidogenic phase (AP), while 63.0% of the ARG subtypes proliferated in the following methanogenic phase (MP). In contrast, a 2.8-fold increase in total MRG abundance was found in AP, while the total abundance during MP decreased to the same order of magnitude as in feed sludge. The distinct dynamics of ARGs and MRGs during the two-phase anaerobic digestion are noteworthy, and more specific treatments are required to limit their proliferation in the environment.

  20. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    International Nuclear Information System (INIS)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-01

    Highlights: ► GHGs emissions from sludge digestion + residue land use in China were calculated. ► The AD unit contributes more than 97% of total biogenic GHGs emissions. ► AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO 2 , biogenic CO 2 , CH 4, and avoided CO 2 as the main objects is discussed respectively. The results show that the total CO 2 -eq is about 1133 kg/t DM (including the biogenic CO 2 ), while the net CO 2 -eq is about 372 kg/t DM (excluding the biogenic CO 2 ). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO 2 -eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO 2 -eq reduction.

  1. Characteristics of oil sludge from crude oil terminal and behaviors of the naturally occurring radioactive materials and heavy metals on combustion of the sludge

    International Nuclear Information System (INIS)

    Mohamad Puad Abu

    2001-01-01

    The study on the characteristics and behaviors of Naturally Occurring Radioactive Materials (NORM) and heavy metals (HM) in the oil sludge from the crude oil terminal were performed using Gamma Spectroscopy (GM), Neutron Activation Analysis Instrumental (NAAI) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). GM and NAAI were used to analyze the concentrations of radionuclides whereas NAAI as well as ICP-MS techniques were applied for HM. The samples were then combusted at temperature ranging from 100 degree Celsius - 800 degree Celsius for a period of 30-150 minutes. The ashes produced were then analyzed again for the various elemental concentrations by the above techniques. The percentage of volatilization was then derived mathematically. The concentration of Ra-226 (123 Bq/ kg) and Ra-228 (117 Bq/ kg) in the oil sludge are higher compared with their parent U-238 (32.12 Bq/ kg) and Th-232 (35.36 Bq/ kg). The concentration of HM such as As (13.30 ppm), Cr (46 ppm) and Zn (4287 ppm) in the oil sludge are also higher compared with As (7.5 ppm), Cr (43 ppm) and Zn (36 ppm) contain in the Malaysian normal soil. The heating value for crude oil sludge is 9000 kJ/ kg which is below the value for self-sustaining combustion (11000 kJ/ kg). The percentage of volatilization varies from 2-70 % depends on the elements, temperature and period of combustion. Uranium was found to volatile more than other elements. Higher temperatures (>500 degree Celsius) and longer exposure time (>90 minutes) promoted metal and radionuclide volatilization significantly more than 20 %. Based on the first order kinetic reaction, a new global mathematical model was developed (Q e =1-e -k e t ). This model can predict the percentage of volatilization for the various elements contain in the sludge if the temperature and time of combustion are known. With this known percentage of volatilization, the concentration of various elements present in the bottom and fly ashes can be deduced. From

  2. Hydrocracking of atmospheric distillable residue of Mongolian oil

    Directory of Open Access Journals (Sweden)

    Ts Tugsuu

    2014-09-01

    Full Text Available Many catalytic processes to refine heavy part of crude oil have attracted much interest due to declining reserves of light crude oils. This study focused on hydrocracking process of atmospheric distillable residue of Mongolian crude oil in the first time compared to those of other countries. Residue samples were hydrocracked with a commercial catalyst at 450°C, 460°C, 470°C for 2 h under hydrogen pressure of 10 MPa. The amount of residual fraction (350°Cresidue from Tamsagbulag crude oil. When the ME-AR was hydrocracked, the high consumption of hydrogen was related to the lowest H/C atomic ratio of feed atmospheric residue. The amount of liquid fractions (BP<350°C including gaseous products increased from 45.4wt% to 89.2wt%, when the reaction temperature increased from 450°C to 470°C. The highest yield of the middle fraction for each sample was observed at temperature of 460°C. On the other hand, the effect of temperature on the yield of middle fraction was not so high as compared with the yields of other fractions. The contents of n-paraffins on midlle and heavy fractions of TB-AR, DQ-AR were similar, but ME-AR’s was around 2 times lower than other after hydrocracking runs.DOI: http://dx.doi.org/10.5564/mjc.v12i0.166 Mongolian Journal of Chemistry Vol.12 2011: 24-28 

  3. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  4. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  5. Analysis of petroleum oily sludge producing in petroleum field of Rio Grande do Norte, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de Souza; Lima, Regineide Oliveira; Silva, Edjane Fabiula Buriti da; Castro, Kesia Kelly Vieira de; Chiavone Filho, Osvaldo; Araujo, Antonio Souza de [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    In exploration and production of petroleum is generated solid waste different and components other. The petroleum oily sludge is a complex mix of components different (water, oil and solid). The petroleum oily sludge generally has other residues and is formed during production and operations, transport, storage and petroleum refining (atmospheric residue, vacuum residue and catalytic cracking residue). However, according to its origin, the compositions can be found quite varied for sludge. Observing the process steps production and refining is possible to locate its main sources and percentage contributions in terms of waste generation. The elemental analysis was performed with oily sludge from region and it showed different composition. For carbon element and hydrogen, small differences was observed, but for was observed greater differences for Oxygen element. The sludge has different inorganic and organic composition. The sludge from oil water separator (OWS) 2 showed a greater amount of oil (94.88%), this may indicate a residue of aggregate high for petroleum industry. In analysis of Saturates, Aromatics, Resins and Asphaltenes (SARA), the sludge from unloading showed amount high of saturates. The inorganic material separated from sludge was characterized and sludge from OWS 2 had high amount sulfur (41.57%). The sludge analyzed showed organic components high values, so it can be treated and reprocessed in process units petroleum industry. The analysis thermal degradation had a better setting for treated oily sludge. (author)

  6. Modeling of cumulative release on long term leaching behaviour of selected oil sludge from crude oil terminal and petroleum refining plant

    International Nuclear Information System (INIS)

    Mohd Fadzil, S.; Khoo, K.S.; Sarmani, S.; Majid, A.Ab.; Hamzah, A.

    2013-01-01

    Management of oil sludge containing environmentally toxic elements is a major problem in crude oil processing industry. Oil sludge samples from the petroleum refinery plant in Melaka and crude oil terminal in Sarawak were analysed. The aim of present work is to study long term leaching behaviour of arsenic (As), cobalt (Co), chromium (Cr) and zinc (Zn) from oil sludge. Tank leaching test was carried out and the samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The results were studied using LeachXS software to plot the graphs of elements concentration in order to study the leaching behaviour of toxic elements in oil sludge. The long term leaching (100 years) modeling was calculated using equations referred to National Institute of Public Health and the Environment Bilthoven (RIVM) and the results were plotted for cumulative release in different areas of oil sludge. Tank leaching test of the oil sludge samples from petroleum refinery plant in Melaka showed concentrations of As, Co, Cr and Zn ranging from 0.205 to 1.102, 0.031-0.454, 0.016-0.086 and 0.409-8.238 mg/l, respectively while the concentrations of As, Co, Cr and Zn in oil sludge samples from crude oil terminal in Sarawak were in the range of 0.002-0.089, 0.001-0.033, 0.006-1.016 and 0.100-2.744 mg/l, respectively. On the other hand, results on cumulative release from the modeling of long term leaching (100 years) showed that As, Co, Cr and Zn concentrations were proportional to the quantity of oil sludge. In conclusion, during extrapolation of release of toxic elements using the data in the laboratory, several other factors were taken into account to suit environmental conditions such as soil moisture, the negative logarithm of the effective diffusion coefficient (pD e ) and temperature, while the long-term behaviour of As, Co, Cr and Zn was proportional to the quantity of oil sludge to be disposed off. (author)

  7. Efeito residual do lodo de esgoto na produtividade do milho safrinha Residual effect of sewage sludge on off-season corn yield

    Directory of Open Access Journals (Sweden)

    Graziela Moraes de Cesare Barbosa

    2007-06-01

    Full Text Available Das opções de disposição final do lodo de esgoto, a reciclagem agrícola tem sido uma das mais utilizadas em diversos países desenvolvidos, sendo considerada a forma mais adequada em termos técnicos, econômicos e ambientais. Este trabalho teve por objetivo avaliar o efeito residual do lodo de esgoto na produtividade do milho safrinha, após dois anos de aplicação consecutiva desse resíduo em um Latossolo Vermelho eutroférrico. O experimento foi realizado em campo, em delineamento em blocos ao acaso com três repetições, e os tratamentos foram os seguintes: testemunha e adubações com lodo de esgoto nas doses de 6, 12, 24 e 36 t ha-1 (peso de matéria seca. Houve efeito residual do uso do lodo de esgoto caleado na produtividade de milho safrinha; a dose de 36 t ha-1 foi estatisticamente superior às doses de 6 e 12 t ha-1.Among the possibilities of final disposal of sewage sludge, agricultural recycling has become one of the most widely used in several developed countries, and is considered the most appropriate in technical, economical and environmental terms. This study aimed at evaluating the sewage sludge residual effect on off-season corn yield on an Eutroferric Red Latossol (Oxisol. The field experiment was in a randomized block design with three replications, with treatments consisting of increasing doses of sewage sludge (0, 6, 12, 24 and 36 t ha-1, on a dry weight basis, applied in the two previous cropping seasons.. The residual effect of the application of lime-stabilized sewage sludge increased the yield of off-season corn; the grain yield under a rate of 36 t ha-1 was statistically higher than those under 6 and 12 t ha-1.

  8. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  9. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Kamaluddeen

    2015-08-01

    Full Text Available A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to stand at 28oC for 72 h. The culture obtained was then maintained on tryticase soy agar plates at 28oC for 48 h. A combination of microscopy and biochemical tests was carried out to identify the colonies. The sewage sludge was obtained from sewage collection point located behind Jibril Aminu Hall of Usmanu Danfodiyo University Sokoto and processed i.e. dried grounded and sterilized. A portion of land obtained in a botanical garden was divided into small portions 30 X 30 cm and the soil was excavated in-situ and sterilized in the laboratory. A polythene bag was subsequently used to demarcate between the sterilized soil and the garden soil. The sterilized soil plots were artificially contaminated with equal amount of used engine oil to represent a typical farmland oil spill. The plots were amended with various amount of processed sewage sludge i.e. 200 g 300 g and 400 g respectively. A pure culture of the bacteria was maintained on trypticase soy broth and was introduced into the sterile amended soil. The plots were watered twice daily for ten days. The degree of biodegradation and heavy metal content were assessed using standard procedures and the results obtained indicate a remarkable reduction in poly aromatic hydrocarbons PAHs total petroleum hydrocarbon TPH and heavy metal content.

  10. Response of Palm Oil Sludge on Sexual Reproductive Biology and ...

    African Journals Online (AJOL)

    doris

    They also reported that in Malaysia, Palm Oil and Rubber industries are sources of ... discharged to arable land. Most of the food items being produced in Nigeria today are by ... The choice of these crops was attributed to their wide utilization ...

  11. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  12. Effect of Recycle Sludge on Anaerobic Digestion of Palm Oil Mill Effluent in A Thermophilic Continuous Digester

    Science.gov (United States)

    Irvan; Trisakti, B.; Tomiuchi, Y.; Harahap, U.; Daimon, H.

    2017-06-01

    The objective of this research is to maintain short retention time and high degradation of palm oil mill effluent (POME) to biogas by applying recycle sludge. Fresh POME from Rambutan Mill without further treatment was used as feed. Two lab-scale digesters supported from Metawater Co. Ltd. have been applied to treat POME at thermophilic (55°C) condition. Both digesters were operated under intermittent operation mode. Experiments were performed in two methods: with and without recycle sludge. Hydraulic retention time (HRT) of both methods was maintained at 6 days, while sludge retention time (SRT) was maintained at various days. The result showed that by extending SRT in return sludge process where 25% of digested slurry recycled to the digester, improvement of volatile solid (VS) decomposition was obtained around 84% at HRT of 6 days and SRT of 21 days. Then, chemical oxygen demand (COD) removal efficiency could be reached until 85% by using recycle sludge.

  13. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  14. Production of oil and coke from sludges containing organic pollutants; Gewinnung von Oel und Koks aus organisch belasteten Schlaemmen

    Energy Technology Data Exchange (ETDEWEB)

    Steger, M [Martin Steger GmbH, Eggenfelden (Germany); Meissner, W; Herold, R [Max Aicher Umwelttechnik GmbH, Freilassing (Germany)

    1998-09-01

    Since the mid-eighties, Messrs. Max Aicher Umwelttechnik GmbH at Hammerau, Germany have been investigating sewage sludge pyrolysis. Laboratory experiments and semi-industrial investigations led to the construction of a combined sludge drying and conversion plant (``Aicher sludge recycling process``), in which the organic sludge fraction is converted into recyclable or combustible oils. Carbon is obtained as a by-product in solid form as conversion coke which can be utilized. Apart from sewage sludge, also industrial sludges with high organic fractions can be processed, e.g. sludges and sewage sludges from petroleum processing. (orig.) [Deutsch] In der Bundesrepublik Deutschland beschaeftigt sich die Max Aicher Umwelttechnik GmbH in Hammerau seit Mitte der Achtzigerjahre mit der Niedertemperaturkonvertierung (Pyrolyse) von Klaerschlamm. Versuche im Labor- und im halbtechnischen Massstab fuehrten zur Realisierung einer betriebstechnischen Anlage mit den Komponenten Schlammtrocknung und Konvertierung. Ziel des Aicher-Schlamm-Recycling-Verfahrens ist die Umwandlung der organischen Schlammfraktion in stofflich und energetisch verwertbare Oele. Bei der Umwandlung entsteht fixer Kohlenstoff, der im festen Rueckstand (Konversionskoks) angereichert wird. Neben dem gewonnenen Oel ist auch der produzierte Koks verwertbar. Einsatzstoffe fuer das Verfahren sind neben Klaerschlamm aus der kommunalen Abwasserreinigung vor allem industrielle Schlaemme mit hohen organischen Anteilen z.B. Schlaemme und Klaerschlaemme aus der Erdoelverarbeitung. (orig.)

  15. Steam foam studies in the presence of residual oil

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.A.; Demiral, B.; Castanier, L.M.

    1992-05-01

    The lack of understanding regarding foam flow in porous media necessitates further research. This paper reports on going work at Stanford University aimed at increasing our understanding in the particular area of steam foams. The behavior of steam foam is investigated with a one dimensional (6 ft. {times} 2.15 in.) sandpack under residual oil conditions of approximately 12 percent. The strength of the in-situ generated foam, indicated by pressure drops, is significantly affected by injection procedure, slug size, and steam quality. The surfactant concentration effect is minor in the range studied. In the presence of residual oil the simultaneous injection of steam and surfactant fails to generate foam in the model even though the same procedure generates a strong foam in the absence of oil. Nevertheless when surfactant is injected as a slug ahead of the steam using a surfactant alternating (SAG) procedure, foam is generated. The suggested reason for the success of SAG is the increased phase mixing that results from steam continually having to reestablish a path through a slug of surfactant solution.

  16. Valorisation of used cooking oil sludge by codigestion with swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, J.; Martínez, E.J.; Morán, A.; Gómez, X., E-mail: xagomb@unileon.es

    2014-08-15

    Highlights: • Anaerobic codigestion of UCO sludge and swine manure was successful at 50 d HRT. • VFA build-up was present during the reactor start-up but were reduced after 50 d. • CH{sub 4} yield was 326 l/kg VS{sub feed}, decreasing HRT to 30 d resulted in poor performance. • Digestate at 50 d HRT was unstable although the load applied to the reactor was low. - Abstract: The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept. Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH{sub 4} yield obtained was 326 ± 46 l/kg VS{sub feed} at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VS{sub feed} when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VS{sub feed}), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops.

  17. Valorisation of used cooking oil sludge by codigestion with swine manure

    International Nuclear Information System (INIS)

    Fierro, J.; Martínez, E.J.; Morán, A.; Gómez, X.

    2014-01-01

    Highlights: • Anaerobic codigestion of UCO sludge and swine manure was successful at 50 d HRT. • VFA build-up was present during the reactor start-up but were reduced after 50 d. • CH 4 yield was 326 l/kg VS feed , decreasing HRT to 30 d resulted in poor performance. • Digestate at 50 d HRT was unstable although the load applied to the reactor was low. - Abstract: The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept. Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH 4 yield obtained was 326 ± 46 l/kg VS feed at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VS feed when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VS feed ), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops

  18. Experience in the transfer of oil sludge from Kemaman supply base (KSB) Terengganu

    International Nuclear Information System (INIS)

    Bustami Abu; Ibrahim Martibi; Mazlan Mohamad; Nik Marzukee

    2005-01-01

    EPMI and MINT had signed a contract for transferring 2400 drums containing oil sludge waste from Kemaman Supply Base (KSB), Terengganu to MINT, Bangi with a cost of RM 2.5 million. The work was done in two stages; the first stage involved 800 drums and the second stage involved 1600 drums. The preparation and implementation work involved application to obtain approval from the Atomic Energy Licensing Board (AELB) and Department of Environment (DOE) as the transportation has to comply with transport regulations for radioactive and toxic waste, appointing transport company, providing information and briefing to supervisors / workers regarding radiation as well as other safety aspects during transfer of waste. (Author)

  19. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    International Nuclear Information System (INIS)

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-01-01

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron

  20. Oil-Sludge Extended Asphalt Mastic Filled with Heavy Oil Fly Ash and Cement Waste for Waterproofing

    Directory of Open Access Journals (Sweden)

    H.I. Al-Abdul Wahhab

    2014-12-01

    Full Text Available Recycling as an economic disposal process for many hazardous waste materials has become a popular means of conserving our planet’s scarce and diminishing natural resources. This paper is a study of the influence of oil sludge (OS on the physical behavior and performance of asphalt filled with heavy oil fly ash (HOFA, cement kiln dust (CKD and limestone dust (LMD. Conventional asphalt consistency tests in addition to a new bond strength (BS test were conducted on the modified asphalt mastics. The results were statistically analyzed and assessed in accordance with American Society for Testing and Materials (ASTM D 332 and ASTM D 449 specifications. Too much OS resulted in strength deterioration of the asphalt mastic, which can be compensated for by filling the mastic with HOFA. OS interacts constructively with the fillers to improve their effectiveness in raising the softening point (SP and viscosity of the asphalt, and also in reducing its penetration and ductility. Even though sludge mastics hold promise as suitable composites for damp proofing and waterproofing, the resulting low flash point (FP and SP of some of these mastics make their suitability for roofing applications questionable.

  1. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil

    NARCIS (Netherlands)

    Blom, W.M.; Kruizinga, A.G.; Rubingh, C.M.; Remington, B.C.; Crevel, R.W.R.; Houben, G.F.

    2017-01-01

    Refined vegetable oils including refined peanut oil are widely used in foods. Due to shared production processes, refined non-peanut vegetable oils can contain residual peanut proteins. We estimated the predicted number of allergic reactions to residual peanut proteins using probabilistic risk

  2. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was

  3. Nondestructive determination of residual fuel on leached hulls and dissolver sludges from LWR fuel reprocessing

    International Nuclear Information System (INIS)

    Wuerz, H.; Wagner, K.; Becker, H.J.

    1990-01-01

    In reprocessing plants leached hulls and dissolver sludges represent rather important intermediate level α-waste streams. A control of the Pu content of these waste streams is desirable. The nondestructive assay method to be preferred would be passive neutron counting. However, before any decision on passive neutron monitoring becomes possible, a characterization of hulls and sludges in terms of Pu content and neutron emission is necessary. For the direct determination of Plutonium on hulls and in sludges, as coming from reprocessing, an active neutron measurement is required. A simple, and sufficiently sensitive active neutron method which can easily be installed uses a stationary 252 Cf neutron source. This method was used for the characterization of hulls and sludges in terms of Plutonium content and total neutron emission in the Karlsruhe reprocessing plant WAK

  4. Study of chemical composition of sludges and scales from the oil production activities and correlation with natural radioactivity - case study: Campos Basin, Brazil

    International Nuclear Information System (INIS)

    Cruz, Rosana Petinatti da

    2002-01-01

    This work intended to study general aspects related to natural radioactivity, focusing on its occurrence in the oil industry and on sludge and scales samples taken from the Oil E and P region from Campos's Basin. The physical and chemical analysis and the statistical treatment were carried out with the objective of determine the samples composition checking the differences between the sludges and the scales. Third six representative samples were obtained from the Radioprotection and Dosimetry Institute (IRD/CNEN), Brazil, taking into account factors such as activity concentration, physical and chemical aspects and origin. After the oil extraction, samples were classified by aspects as color and granulometry. Ali the studied samples were analyzed by X-rays diffraction being identified the presence of barite, calcite, quartz among others. The results supplied a base for the elaboration of a successive determination scheme which comprehended residual organic material, carbonate, sulfate, silica, chloride and metals as the alkaline, earthy alkaline, aluminum, etc. The sludges presented a highly variable chemical composition, being rich in silica and carbonates. The main components analysis showed a statistical valid relationship among the radium isotopes and the carbonates presence. On the other hand, the scales are made of barium and strontium sulfates (75%), presenting a minor variation on its chemical composition and in the existing radium content. Due to this low variability of the barium, sulfate and radium contents, it has not been possible to consider valid a relationship that could exist among them in the application of the main component analysis. (author)

  5. Effect of oil refining processes on 14 C-tetrachlorvinphos residues in soya bean oil

    International Nuclear Information System (INIS)

    Farghaly, M.; Zayed, S.M.A.D.

    1986-01-01

    Crude soya bean oil extracted from grains treated with 14 C-tetrachlorvinphos and stored for 30 weeks was subjected to different refining processes. The effect of commercial refining processes, namely: alkali treatment, bleaching, winterization and deodorization on the nature and magnitude of the originally present residues was investigated. A high percentage (52%) of the residues was eliminated during alkali neutralization. No potentially toxic materials were detected among the identified degradation products. The obtained data showed that the ultimate degradation products were dimethyl phosphate and mono methyl phosphate.2 tab.,2 scheme

  6. Study of some applications of residual sludges in agriculture using 15N, 32P, 65Zn, 109Cd and 203Hg

    International Nuclear Information System (INIS)

    Fardeau, J.C.; Guiraud, G.

    1979-01-01

    Application of residual sludges increases dry matter production. This effect is due to the low C/N of these matters. The possible risks depend on the alteration of ions mobility as PO 4 ---, Zn ++ , Hg ++ and Cd ++ , which are often very strongly absorbed by soil particules. For these investigations, use of radioactive tracers is necessary. We have shown, with 65 Zn ++ , that zinc of sludges is not available for ray-grass and, with 32 PO 4 , that phosphorus mobility declines with lime-treated sludges. The use of isotopic dilution kinetics allows to shown that Hg ++ and Cd ++ are not absorbed in too acidic soils [fr

  7. Partitioning of naturally occurring radioactive material (NORM) and heavy metal in terminal crude oil sludge when undergoing thermal treatment

    International Nuclear Information System (INIS)

    Mohd Fuad, H.A.; Muhd Noor Muhd Yunus; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    In Malaysia currently more than one hundred oil rigs in operation extracting the crude oil, offshore the state of Terengganu, Sabah and Sarawak. Crude oil sludge are generated during the extraction of crude oil from the underground oil reservoir to the oil rigs, the separation process at the oil rigs and its storage at the crude oil terminal. These sludge are considered as Scheduled Waste (contains heavy metals) by Department of Environmental (DOE) and Low Level Radioactive Waste (contain NORM) by the Atomic Energy Licensing Board (AELB), thus cannot be disposed freely without proper control. The current method of disposal, such as land farming is not recommended and will have long term impact to the environment, whereas storage practices in plastic drums does not warrant an ultimate solution. Due to its organic nature, there is a move to treat this sludge by using thermal treatment technology but prior to this, a study has to be carried out to determine the partitioning of the various elements present in the sludge. Gamma spectroscopy and Neutron Activation Analysis (NAA) were used to analyze the concentrations of radionuclides whereas NAA as well as ICP-MS techniques were applied for heavy metal analysis in the sludge samples. The samples were then heated at temperature ranging from 100 degree C - 800 degree C for a period of 30 - 150 minutes. The ash produced at that temperature and duration were then analyzed again for the various elemental concentrations using the above mentioned techniques. The percent volatilization was then derived mathematically. From this study, it was found that the percentage of volatilization varies from 2-70%, which is a function of the elements of concerned, temperature and time. Uranium seems to volatilized much more than the rest of radionuclides. Higher temperature (>500 degree C) and longer exposure time (>60 minutes) promoted metal and radionuclide volatilization significantly. Typical to incinerator operating environment i

  8. Nondestructive determination of residual fuel on leached hulls and dissolver sludges from LWR fuel reprocessing

    International Nuclear Information System (INIS)

    Wuerz, H.; Wagner, K.; Becker, H.J.

    1990-01-01

    In reprocessing plants leached hulls and dissolver sludges represent rather important intermediate level α-waste streams. A control of the Pu content of these waste streams is desirable. The nondestructive assay method to be preferred would be passive neutron counting. However, before any decision on passive neutron monitoring becomes possible a characterization of hulls and sludges in terms of Pu content and neutron emission is necessary. For the direct determination of plutonium on hulls and in sludges, as coming from reprocessing, an active neutron measurement is required. A simple, and sufficiently sensitive active neutron method which can easily be installed uses as stationary Cf-252 neutron source. This method was used for the characterization of hulls and sludges in terms of plutonium content and total neutron emission in the WAK. Meanwhile a total of 28 batches of leached hulls and 22 batches of dissolver sludges from reprocessing of PWR fuel have been assayed. The paper describes the assay method used and gives an analysis of the error sources together with a discussion of the results and the accuracies obtained in a reprocessing plant. (orig./HP)

  9. Esterification free fatty acid in sludge palm oil using ZrO2/SO42- - rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-05-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as sludge palm oil (SPO) from palm oil industries. The use of SPO can lower the cost of biodiesel production significantly, which makes SPO a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid on sludge palm oil was studied using rice husk ash as heterogeneous solid catalysts. Heterogeneous solid catalysts offer significant advantages of eliminating separation, corrosion, toxicity and environmental problems. In this paper the esterification of SPO, a by-product from palm oil industry, in the presence of modified rice husk ash catalysts was studied. The rice husk ash catalysts were synthesized by impregnating of Zirconia (Zr) on rice husk ash followed by sulfonation. The rice husk ash catalysts were characterized by using different techniques, such as FT-IR, XRD, and porous analysis. The effects of the mass ratio of catalyst to oil (1 - 10%), the molar ratio of methanol to oil (4:1 - 10:1), and the reaction temperature (40 - 60°C) were studied for the conversion of free fatty acids (FFAs) to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to oil molar ratio of 10:1, the amount of catalyst of 10%w, and reaction temperature of 60°C.

  10. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  11. Steam reforming as an alternative technique for treatment of oil sludge containing naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Muhd Noor Muhd Yunus; Mohd Khairi Muhd Said; Mohamad Azman Che Mat Isa; Mohd Puad Abu

    2004-01-01

    Steam reforming treatment system is an innovative technology that holds a potential to treat mixed waste containing radioactive material. The system is utilizing the thermal heat of the superheated steam at 500 degree C to produce combustible gases and integrates it with ash melting at 1400 degree C for final destruction. In this system, liquids are evaporated, organics are converted into a hydrogen-rich gas, chlorinated compounds are converted in hydrochloric acid, and reactive chemicals in the waste containing radionuclide and heavy metals are converted into the stable product through ash melting dioxins and furans are not formed, but instead are destroyed in the reducing environment of the system. No secondary pollutants are produced from the system that requires subsequent treatment. The system is divided into three development stages, and currently the project is progressing at development stage 1. This project is an entailment of a concentrated effort to solve oil sludge containing radioactive material treatment issue. (Author)

  12. Method and apparatus for removal of residual sludge from a nuclear steam generator

    International Nuclear Information System (INIS)

    Lahoda, E.J.; Echardt, D.A.

    1987-01-01

    This patent describes a method for removing sludge deposits from the tube sheet of a nuclear steam generator vessel to which is connected a bundle of parallel heat exchange tubes arranged in parallel rows separated by lanes and parallel columns separated by channels. The method includes the steps of: directing a cleaning stream of sequentially advancing a lance past the channels one channel at a time, fluid along a first channel for dislodging sludge deposits and moving them toward the periphery of the bundle of tubes, substantially simultaneously directing a barrier stream of fluid from the lance in substantially the same direction as the cleaning stream. Stream continues along a second channel spaced from the first channel by at least two columns of tubes with no streams directed from the lance along any other channel between the first and second channels to prevent the dislodged sludge from being moved past the barrier stream into previously cleaned channels. Each of the streams has an axis immovable with respect to the other stream in directions parallel to the tube sheet and having a width in directions perpendicular to the axis and parallel to the tube sheet less than the width of the associated channel along which the stream is directed. This removes sludge-loaded fluid from the periphery of the bundle of tubes

  13. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    RyoheiTanaka; LehCheuPeng; WanRosliWanDaud

    2004-01-01

    Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world's largest producer and exporter of the oil, so that the country's economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10-15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia. Here we would like to introduce recent situation of palm oil and oil palm lignocellulosic residues at the first part of this paper. In the second part, our recent studies on the preparation of pulps for different purposes will be summarized.

  14. The Effect of Processing on 14C- Chlofenvinphos Residues in Maize Oil and Bioavailability of its Cake Residues on Rats

    International Nuclear Information System (INIS)

    Mahdy, F.; El-Maghraby, S.

    2008-01-01

    Maize seed obtained from 14 C-chlofenvinphos treated plants contained 0.12 % of the applied dose. The insecticide residues in crude oil, methanol and coke amounted to 10 %, 6 % and 69 %, respectively of original residues inside the seeds.The 14 C activity in the crude oil could be a gradual reduced by the refining processes. The alkali treatment and bleaching steps are more effective steps in the refining processes remove about (63 %). The refined oil contained only about 17 % of the 14 C-residues originally present. The major residues in processed oil contain parent compound, in addition to five metabolites of the insecticide. When rats fed the extracted seeds (cake), the bound residues were found to be considerably bioavailable. After feeding rats for 5 days with the cake, a substantial amount of 14 C-residues was eliminated in the urine (59.5 %), while about 20 % was excreted in the feces. About 15 % of the radioactivity was distribution among various organs

  15. Efficiency of the refining processes in removing 14C-dichlorvos residues in soybean oil

    International Nuclear Information System (INIS)

    Soliman, S.M.

    2006-01-01

    Crude soybean oil extracted from grains treated with 14 C-dichlorvos at a dose 24 mg insecticide / kg seeds and stored for 30 weeks was subjected to different refining processes such as alkali treatment, bleaching, winterization and deodorization. The effect of the refining processes on the nature and magnitude of the originally present residues was investigated. The insecticide residues in crude oil and cake amounted to 9.5% and 55% , respectively, of original residues inside the seeds. Extraction of the seeds with hexane gave crude oil with 9.5 % of original residues in seeds. The l4 C-activity in the crude stored Soya beans oil could be reduced by about 82% of radioactivity originally present in crude oil eliminated by simulated commercial processes locally used for oil refining. A high percentage of the residues (50-55%) were eliminated during alkali treatment and bleaching. Refining of soybeans oil fortified with '1 4 C-dichlorovos. The final refined oil had only 13% of the radioactivity originally present, mainly in the form of dichlorvos, dimethyl and monomethyl phosphate in addition to desmethyl dichlorvos in oil with aged residues

  16. Potential of glycerol and soybean oil for bioremediation of weathered oily-sludge contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, T.C.F.; Franca, F.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: fpfranca@eq.ufrj.br; Oliveira, F.J.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-04-15

    The bioremediation of petroleum-contaminated soil was investigated on laboratory scale. This work evaluated the effect of co-substrate addition in tropical climate soil highly contaminated with oily residue. Glycerol and soybean oil were used as auxiliary co-substrates for contaminant degradation. Three different concentrations of co-substrate were tested, and the experiments were carried out over 60 days. The following parameters were monitored: humidity, pH, total heterotrophic bacteria, total fungi, total petroleum hydrocarbons (TPH), and the concentrations of benzo[a]pyrene and chrysene. The soil supplementation with renewable co-substrates improved the efficiency of the biodegradation TPH, with removals of 85% and 83% for glycerol and soybean oil, respectively, compared to a 55% removal yielded by the biodegradation process without supplementation. The use of glycerol increased Chrysene and Benzo[a]pyrene biodegradation by 50%, while soybean oil supplementation increased their removal by 36%. (author)

  17. The use of sewage sludge as additive to avoid operational problems at combustion of shredder residues

    International Nuclear Information System (INIS)

    Gyllenhammar, Marianne

    2010-01-01

    When shredder light fraction (SLF) from recovery of metal scrap is energy recovered it is usually mixed with more than 90% of other wastes. SLF is a fuel with high energy content but also with relatively high chlorine and metal content and could cause deposit and corrosion problems in incineration plants. Sewage sludge has previously been shown to reduce deposition and corrosion problems in combustion of alkali and chlorine containing biomass. In this work 20 % SLF (by energy content) has been combusted together with municipal solid waste and industrial wastes, with and without addition of 3 % (by energy content) sewage sludge. The initial fireside corrosion rate was then compared to the corrosion rate during combustion of the normal fuel mix, i.e. only municipal solid waste and industrial wastes. The tests were done at the 20 MW fluidized bed boiler of Lidkoping heat production plant. During the tests air-cooled corrosion and deposit probes were exposed for 24 hours. Deposit probes were placed at three different flue gas temperatures - in the combustion chamber, upstream and downstream the convection pass. The corrosion probes were placed upstream the convection pass and on the probes there were three different materials at three different water temperatures (280, 350 and 420 degree Celsius). The tests showed that sewage sludge could help avoiding deposition and corrosion problems when incinerating SLF. The amount of deposits was reduced and the content of the deposits was less corrosive when sewage sludge was added. The project was financed by Waste Refinery as a collaboration project between Stena Metall AB, Metso AB, High Temperature Corrosion Center at Chalmers University of Technology, SP Technical Research Institute of Sweden and Lidkopings Varmeverk. (author)

  18. Utilization of sludge palm oil as a novel substrate for biosurfactant production.

    Science.gov (United States)

    Wan Nawawi, Wan Mohd Fazli; Jamal, Parveen; Alam, Md Zahangir

    2010-12-01

    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range. 2010 Elsevier Ltd. All rights reserved.

  19. Effect of commercial processing procedures on 14C-LINDANE residues in corn oil

    International Nuclear Information System (INIS)

    Soliman, S.M.

    2006-01-01

    At blooming, maize plants were sprayed twice, 23 days apart, at a dose of 22 mg equivalent to 5 μCi/ plant. At post harvest, maize seeds had a radioactivity corresponding to 0.36% of the applied dose. The insecticide residues in crude oil, cake and methanolic extract were amounted to 8 % and 60 % 5 % , respectively, of original residues inside the seeds.The 14 C-activity in the crude oil could be reduced by commercial processes locally used for refining. The refined oil had a residue level of about 0.7 ppm mainly in the form of unchanged lindane in addition to a number of chloro phenols as main metabolites. Refining of corn oil fortified with 14 C-lindane led to a high reduction of 14 C-lindane (88%). The refined oil contained a residue consisting lindane and its chloro phenols

  20. Análise da biodegradação dos componentes do óleo cítrico por CG/EM e análise da população microbiana de um reator de lodo ativado no tratamento de água residuária de uma indústria cítrica Analysis of biodegradation of citric oil compounds by GC/MSD and analysis of the microbial population of an activated sludge reactor in the treatment of a citric wastewater

    Directory of Open Access Journals (Sweden)

    Alexandre Nunes Ponezi

    2005-12-01

    Full Text Available Água residuária da indústria cítrica foi utilizada como objeto de estudo de biodegradação através de um sistema de lodo ativado por batelada. As análises realizadas por CG/EM mostraram que os compostos provenientes do óleo de laranja como o limoneno, foram resistentes a biodegradação. A avaliação microbiológica realizada no decorrer do período mostrou que o número e tipo de colônias bacterianas variaram de acordo com o tempo, e pode ser observada uma sucessão de microrganismos durante a biodegradação do efluente cítrico. O microrganismo identificado como LAB-9 (Pseudomonas struzieri e LAB-7 (não identificado prevaleceram durante todo o processo, sugerindo que estes são organismos importantes para remoção da matéria orgânica no processo ou são melhores adaptados ao tipo de água residuária. O sistema de lodo ativado foi eficiente na redução de DBO e DQO, alcançando valores de 79 e 78% respectivamente, num período de 15 h de reação, com uma relação F/M 4:2.Wastewater from citric industry was used to biodegradation study through an activated sludge system. The analyses accomplished by CG/MSD showed that compounds of the orange oil as the limoneno, was resistant to biodegradation. The microbiological evaluation developed during the biodegradation period showed that the number and type of bacteria present in the system varied according to the time, and a succession of microorganisms can be observed. The microrganism identified as LAB-9 (Pseudomonas struzieri and LAB-7 (not identified prevailed during whole the process, suggesting that they were the main responsible for the removal of the organic matter or the better adapted to the type of wastewater. The system of activated sludge was efficient in the reduction of DBO and DQO, reaching values of 79 and 78%, respectively, in a period of 15 h, with a relationship F/M 4:2.

  1. Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products

    International Nuclear Information System (INIS)

    Reckamp, Joseph M.; Garrido, Rene A.; Satrio, Justinus A.

    2014-01-01

    Paper mill sludge (PMS) is a residual biomass that is generated at paper mills in large quantities. Currently, PMS is commonly disposed in landfills, which causes environmental issues through chemical leaching and greenhouse gas production. In this research, we are exploring the potential of fast pyrolysis process for converting PMS into useful bio-oil and biochar products. We demonstrate that by subjecting PMS to a combination of acid hydrolysis and torrefaction pre-treatment processes it is possible to alter the physicochemical properties and composition of the feedstock material. Fast pyrolysis of pretreated PMS produced bio-oil with significantly higher selectivity to levoglucosenone and significantly reduced the amount of ketone, aldehyde, and organic acid components. Pretreatment of PMS with combined 4% mass fraction phosphoric acid hydrolysis and 220 °C torrefaction processed prior to fast pyrolysis resulted in a 17 times increase of relative selectivity towards levoglucosenone in bio-oil product along with a reduction of acids, ketones, and aldehydes combined from 21 % to 11 %. Biochar, produced in higher yield, has characteristics that potentially make the solid byproduct ideal for soil amendment agent or sorbent material. This work reveals a promising process system to convert PMS waste into useful bio-based products. More in-depth research is required to gather more data information for assessing the economic and sustainability aspects of the process. - Highlights: • Acid hydrolysis and torrefaction reduce bio-oil yield, but improve quality. • Dilute acid conditions provide optimal treatment for bio-oil quality and yield. • Pyrolysis of treated PMS produces high selectivity to levoglucosenone formation. • Treated PMS produces bio-oil with reduced acid, ketone, and aldehyde content. • Pyrolysis of treated PMS produces biochar with low volatile matter in high yield

  2. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    Science.gov (United States)

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.

  3. Laboratory-scale study of possible use of residual sludge from glass sand beneficiation

    Science.gov (United States)

    Prikryl, Richard; Weishauptova, Zuzana; Zach, Jaroslav; Kozlovcev, Petr

    2016-04-01

    Beneficiation of quartz sand from sedimentary deposits for glass sands results in significant amounts of under-size fraction, a sludge rich in clay minerals. This sludge is considered as a waste and is returned in mined-out spaces for a simple rehabilitation, which is also the case of one of the largest glass sand production areas in the Czech Republic. The amount of produced waste sludge in the studied area (glass sand works in Provodín area, Bohemian Cretaceous Basin) is about 20 kt per year. In the recent study, we have focused on possible employment of this waste material for three applications: (1) a clay component in a raw material mixture for making of hydraulic lime, (2) a kaolinite absorbent, and (3) a geotechnical material. The sampled sludge was primarily analysed for mineralogical and chemical composition, mechanical and physical properties, the specific surface area, and parameters of pore space. X-ray analysis proved the presence of kaolinite, illite (both WCI and PCI), quartz, and accessory microcline. According to silicate analysis, the material is composed of SiO2 (80.52 wt. %), Al2O3 (11.36 wt. %), and K2O (2.14 wt. %). For its potential use as an artificial admixture for hydraulic lime production, the studied material was mixed with pure limestone in ratio of 10, 15, 20, and/or 25 wt. %. The experimental mixtures were burnt in the temperature range from 850 to 1,200°C. XRD was employed for the detection of newly formed phases showing formation of hydraulic phase such as C2S, C3A, C4AF starting from the 1050°C burning temperature. Peak burning temperature significantly influenced amount of individual phases in the burnt product. Second possible mode of use of the investigated waste material focused on its application as a sorbent. Pore space and specific surface area characteristics (SBET 7.4 sq. m/g) range this material to the group of low grade kaolinite-dominated adsorbents. Thermal treatment (burning of raw waste material at temperatures of

  4. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  5. Residues in cottonseed oil and cake resulting from the combined application of DDT and dimethoate

    International Nuclear Information System (INIS)

    El Zorgani, G.A.; Ahmed, M.M.

    1981-01-01

    Cotton plants were treated with a combination of DDT and dimethoate under conditions of local agricultural practice to study the fate and magnitude of both chemicals in the cottonseed and related products. GLC and nuclear (using 14 C-DDT) techniques were used. DDT residues in the crude oil averaged 0.115 mg/kg; mainly as p,p'-DDT while residues in the cake were not detected. Dimethoate and dimethoxon in the crude oil were 0.13 and 0.01 mg/kg respectively. The cake contained 0.14 mg/kg dimethoate and 0.01 mg/kg dimethoxon. By simulating commercial oil processing in the laboratory using 14 C-DDT fortified oil samples it was found that alkali treatment and bleaching removed only 7% of the total residue, while deodorization effected removal of 40-50% of the residue. (author)

  6. Rhizosphere biodegradation of xenobiotics: Microbiological study of a rice field polluted by oil refinery residues

    Energy Technology Data Exchange (ETDEWEB)

    Rasolomanana, J.L.; Balandreau, J.

    1987-07-01

    A rice field had been studied in which the disposal of oil residues from a refinery plant seemed to improve rice growth and soil N content. To check the hypothesis that nitrogen fixation by oil-adapted bacteria could explain this observation we isolated and studied dominant diazotrophic bacteria from the rhizosphere of an actively N/sub 2/-fixing rice plant growing on the polluted soil; for this purpose we used an axenic plant as an enrichment step. The rhizosphere did not contain more than 10/sup 5/ N/sub 2/-fixing bacteria per g dry soil, essentially Bacillus polymyxa; one of the isolates, strain R3 could grow and reduce C/sub 2/H/sub 2/ on oil residues only in the presence of glucose or of exudates from an axenic plant (spermosphere model); the presence of R3 diminished the inhibition of rice growth due to the oil residues; R3 nitrogenase activity in the rhizosphere of rice was increased in the presence of these residues. This cometabolism of oil residues in the presence of exudates and their stimulating effect on N/sub 2/ fixation provide a likely explanation for observed positive effects of the disposal of oil residues on arable lands, and are conducive to the hypothesis that rhizosphere cometabolism could greatly enhance soil organic matter turn over and humification rates.

  7. NMR and Chemometric Characterization of Vacuum Residues and Vacuum Gas Oils from Crude Oils of Different Origin

    Directory of Open Access Journals (Sweden)

    Jelena Parlov Vuković

    2015-03-01

    Full Text Available NMR spectroscopy in combination with statistical methods was used to study vacuum residues and vacuum gas oils from 32 crude oils of different origin. Two chemometric metodes were applied. Firstly, principal component analysis on complete spectra was used to perform classification of samples and clear distinction between vacuum residues and vacuum light and heavy gas oils were obtained. To quantitatively predict the composition of asphaltenes, principal component regression models using areas of resonance signals spaned by 11 frequency bins of the 1H NMR spectra were build. The first 5 principal components accounted for more than 94 % of variations in the input data set and coefficient of determination for correlation between measured and predicted values was R2 = 0.7421. Although this value is not significant, it shows the underlying linear dependence in the data. Pseudo two-dimensional DOSY NMR experiments were used to assess the composition and structural properties of asphaltenes in a selected crude oil and its vacuum residue on the basis of their different hydrodynamic behavior and translational diffusion coefficients. DOSY spectra showed the presence of several asphaltene aggregates differing in size and interactions they formed. The obtained results have shown that NMR techniques in combination with chemometrics are very useful to analyze vacuum residues and vacuum gas oils. Furthermore, we expect that our ongoing investigation of asphaltenes from crude oils of different origin will elucidate in more details composition, structure and properties of these complex molecular systems.

  8. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  9. Studying oily sludge treatment by thermo chemistry

    Directory of Open Access Journals (Sweden)

    Jing Guolin

    2016-09-01

    Full Text Available Nowadays surfactants were used to wash oily sludge and reclaim oil. This paper presents the optimum conditions for washing oily sludge with surfactant solutions using the single factor experiment. The agents tested are AEO-9, Peregal O, TritonX-100, sodium metasilicate and sodium dodecylbenzene sulfonate (DBS. In the experiments, four factors affecting residual oil rate are investigated which include liquid/solid mass rate, reaction temperature, reaction time and eluent mass fraction. Results obtained through experimental runs were compared and used to select a kind of agent, in order to get the best cleaning effect. The optimum parameters of these agents are different from others, and under the optimum conditions their treatment effects are better. And the washing effect of Na2SiO3·9H2O is best and its residual oil rate is only about 1.6%.

  10. Analysis of As, Cr and Hg in crude oil sludge by using instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Syazwani Mohd Fadzil; Khoo Kok Sionga, Amran Ab Majid; Sukiman Sarmani

    2009-01-01

    Environment are carrying toxic elements. The aim of this study was to determine As, Cr and Hg elements in crude oil sludge. In this study, crude oil sludge samples from a refining plant at Kerteh, Terengganu was carried out using Instrumental Neutron Activation Analysis (INAA). The samples were packed and irradiated at the Malaysian Nuclear Agency reactor TRIGA Mark II. Later, the samples were counted using a HPGe detector and were analyzed using the SAMPO 90 software. The certified reference material (CRM) namely NBS Coal Fly Ash 1633a was used as a standard to obtain the concentration average using a comparative method. A total of 11 elements (i.e. As, Co, Cr, Fe, Ga, Hg, Mn, Na, Sc, Se and Sr) were determined in all samples. The concentrations of As, Cr and Hg were found to be in the range of 0-18.8, 98.2-124 and 52.8-57.9 μg.g -1 respectively. From the concentration of these elements, the results showed that the value for total As element is low but the values for the total Cr and Hg are considerable higher than the permissible value. However, almost all the potential environmental impacts can be controlled by sludge disposal options such as well-designed, carefully, efficiently and continuously managed, by following accepted guidelines and regulations. (Author)

  11. proximate and ultimate analysis of fuel pellets from oil palm residues

    African Journals Online (AJOL)

    HOD

    Keywords: Oil Palm Residues, Fuel Pellets, Proximate Analysis, Ultimate Analysis. 1. INTRODUCTION ... Pelletizing of this biomass resources into pellets is a way of ensuring a ... demand for pellets [3], and alternative feed-stocks such as palm kernel ... agro-residues, selection of the best pellets has to be made based on ...

  12. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  13. Oxidizing oils, etc. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    Penniman, W B.D.

    1926-03-02

    The oxidation of crude petroleum and its distillates, shale oils and tars, waxes, sludges, petroleum residues, asphaltic oils, asphalt, malthas, cracked oils and residues from cracking stills, wood tar oils and wood tar, peat and lignite distillates, coal tar oils and coal tar, and oils containing powdered coal, coke or peat, sulphur in suspension, is effected by passing air or other oxygen-containig gas through a layer of the material of a depth sufficient substantially to deoxygenate the air, the pressure being at or below atmospheric pressure.

  14. Removal of emulsified oil in residual waters by means of dissolved air flotation

    International Nuclear Information System (INIS)

    Echeverri Londono, Carlos Alberto

    1996-01-01

    In this article is consigned a theoretical and experimental study on the treatment of industrial residual waters with emulsified oil, through the flotation process for dissolved air (FAD), changing some operation parameters and some importance topics, related with the process. The experimental results and the theoretical pattern, show that the removal of oil depends fundamentally on the chemical pretreatment. Efficiencies of removal of oil up of 99% they were obtained, using the dissolved air flotation with the help of coagulants

  15. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

    Science.gov (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing

    2017-04-01

    This study investigated the effects of residual H 2 O 2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H 2 O 2 (MW-H 2 O 2 ) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H 2 O 2 remained and refractory compounds were thus generated with high dosage of H 2 O 2 (0.6 g H 2 O 2 /g total solids (TS), 1.0 g H 2 O 2 /g TS) pretreatment. The residual H 2 O 2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H 2 O 2 at 0.2 g H 2 O 2 /g TS was used in MW-H 2 O 2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H 2 O 2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  16. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    Science.gov (United States)

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  17. Radiation processing studies on residual fractions of Olowi petroleum crude oil

    International Nuclear Information System (INIS)

    Sarfo, A.K.

    2011-01-01

    Residual fuel oil is an inexpensive boiler fuel that can replace diesel in some industrial boilers. The viscous waxy nature of residual fuel oil makes it very difficult to use in industries where fuel storage tanks have no heating elements to keep the fuel at temperatures at which it would easily flow. Irradiation is currently being studied as a cost effective means of cracking heavy petroleum crude oil into lighter and more valuable products. Research has shown that irradiation can replace the conventional methods of cracking petroleum with economical benefits. Gamma radiation from a cobalt-60 source was applied to the residue obtained after refining crude oil in this research study, with the intention of causing a similar cracking phenomenon. The main objective of the study was to evaluate the possibility of using gamma radiation to reduce the viscosity of residual fractions of crude oil used as residual fuel oil. This was done by exposing samples of residual fuel oil in glass jars to 9 different doses of gamma radiation, at room temperature and an elevated temperature of 60 degrees Celsius to determine and quantify the effect of radiation on residual fuel oil obtained from the Tema Oil Refinery. The pour points of the irradiated samples were not affected by radiation doses up to 200 kGy while the changes in viscosity for irradiation at room temperature were not significant. Irradiation at 60 degrees Celsius induced a small but significant increase in viscosity at 1 kGy and 200 kGy absorbed doses of irradiation. Irradiation fuels were stable in relation to viscosity, density and pour point over a period of 20 days after exposure. The flash point of irradiated samples, however, decreased by 5.26, 10.53 and 11.34% for 30, 50 and 80 kGy absorbed doses of radiation respectively. Cumulative and continuous doses gave similar results for pour point, density, viscosity and flash point measurements up to 50 kGy. Comparative cost analysis of methods used in maintaining low

  18. Isolation and Characterization of PHA-Producing Bacteria from Propylene Oxide Saponification Wastewater Residual Sludge.

    Science.gov (United States)

    Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang

    2018-03-21

    A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.

  19. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge.

    Science.gov (United States)

    Yuan, Xingzhong; Leng, Lijian; Huang, Huajun; Chen, Xiaohong; Wang, Hou; Xiao, Zhihua; Zhai, Yunbo; Chen, Hongmei; Zeng, Guangming

    2015-02-01

    Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Research on Treatment Technology and Device of Oily Sludge

    Science.gov (United States)

    Wang, J. Q.; Shui, F. S.; Li, Q. F.

    2017-12-01

    Oily sludge is a solid oily waste, which is produced during the process of oil exploitation, transportation, refining and treatment of oily sewage. It contains a great number of hazardous substance, and is difficult to handle with. To solve the problem of waste resources of oil sludge with high oil content and usually not easy to aggregate during the preparation of profile control agent, a new oily sludge treatment device was developed. This device consists of heat supply unit, flush and filter unit, oil removal unit and dehydration unit. It can effectively clean and filter out the waste from oily sludge, recycle the oil resources and reduce the water content of the residue. In the process of operation, the water and chemical agent are recycled in the device, eventually producing little sewage. The device is small, easy to move and has high degree of automation control. The experimental application shows that the oil removal rate of the oily sludge is up to 70%, and the higher the oil content rate the better the treatment.

  2. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Ryohei Tanaka; Leh Cheu Peng; Wan Rosli Wan Daud

    2004-01-01

    @@ INTRODUCTION Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world′s largest producer and exporter of the oil, so that the country′s economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10~15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia.

  3. Improvement of Dune Sands by Residual Oil in Order to Use in Construction of Lagoons

    Directory of Open Access Journals (Sweden)

    Alborz Hajian nia

    2011-10-01

    Full Text Available This research which is based on experimental work, devoted to study the improvement and stabilization of dune sands in order to create strong layer and stabilize slope and floor construction of sewage Lagoons. Materials used stabilizing these soils are residual oil from the refinery. To confirm the effectiveness of the use of residual oil to improve the mechanical properties of the sand, various samples with different percentages were tested. In besides, the geotechnical and environmental tests were done. Results demonstrate that samples made with 5% oil have highest shear and unconfined compaction strength. It revealed that in compare with natural samples, cohesion and loading capacity highly increased and permeability decrease well. Percentage of fine aggregate, minerals and durability of oil in soil material were also investigated. Finally, effects of sewage on the samples were analyzed, and performance the oils were evaluated in order to use in lagoons.

  4. Production of bio diesel from sludge palm oil by esterification using p-toluenesulfonic acid

    International Nuclear Information System (INIS)

    Adeeb Hayyan; Mohd Zahangir Alam; Mirghani, M.E.S.; Kabbashi, N.A.

    2009-01-01

    Full text: Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for bio diesel production. The use of SPO as feedstock for bio diesel production requires additional pretreatment step to transesterification process, which is an esterification process. The most commonly preferred catalysts used in this process are sulfuric, sulphonic, hydrochloric and P-toluenesulfonic acid (PTSA). In this study bio diesel fuel was produced from SPO using PTSA as acid catalyst in different dosages in presence of alcohol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME). Batch esterification process of SPO was carried out to study the influence of PTSA dosage (0.25-10 % wt/wt), molar ratio of methanol to SPO (6:1-20:1), temperature (40-80 degree Celsius), reaction time (30-120 min). The effects of those parameters on FFA content, yield of treated SPO and conversion of FFA to FAME were monitored. The study showed that the FFA content of SPO reduced from 22 % to less than 0.15 % using ratio of 0.5, 0.75, 1, 1.5, and 2 % wt/wt PTSA to SPO. After esterification process dosage of PTSA at 0.75 % wt/wt shows the highest conversion of FFA to FAME as well as yield of treated SPO. The optimum condition for batch esterification process was 10:1 molar ratio, temperature 60 degree Celsius and 60 minutes reaction time. The highest yield of bio diesel after transesterification process was 76.62 % with 0.06 % FFA and 93 % ester content. (author)

  5. Process and catalysis for hydrocracking of heavy oil and residues

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F.; Kressmann, S. [Centre d' Etudes et de developpement Indutriel ' Rene Navarre' , Vernaison (France); Harle, V.; Kasztelan, S. [Division Cinetique et Catalyse, Rueil-Malmaison (France)

    1997-07-01

    Atmospheric or vacuum residue can be converted into valuable distillates using reaction temperature, high hydrogen pressure and low contact time hydroprocessing units. Various residue hydrocracking processes are now commercially employed using fixed bed, moving bed or ebullated bed reactors. The choice of process type depends mainly on the amount of metals and asphaltenes in the feed and on the level of conversion required. Various improvements have been introduced in the last decade to increase run length, conversion level, products qualities and stability of the residual fuel. These improvements include on stream catalysts replacement systems, swing reactors, improved feed distribution, guard bed materials limiting pressure drop, coke resistant catalysts, complex association of catalysts using particle size, activity and pore size grading. Further improvement of the resistance of catalysts to deactivation by coke and metal deposits and of the hydrodenitrogenation activity are two major challenges for the development of new residue hydrocracking catalysts and processes. 29 refs.

  6. Depuration of olive oil mill wastewater by an activated sludge system; Depuracion de alpechin mediante us sistema de fangos activados

    Energy Technology Data Exchange (ETDEWEB)

    Beltran de Heredia, J.; Torregrosa Anton, J.; Ramos Viscas, M. P.; Garcia Rodriguez, J.; Dominguez Vargas, R. [Universidad de Extremadura. Badajoz (Spain)

    1999-07-01

    In the present work, the degradation of alpechin (olive oil mill wastewaters) have been studied by an activated sludge treatment. The substrate evolution (based on COD and BOD{sub 5}), nitrogen Kjeldahl, phosphorus, biomass, aromaticity and total polyphenolic contents was followed during each experiment. A kinetic study is performed by using the Contois model, which applied to the experimental data, provides the specific kinetic parameters of this model. Moreover, others interesting biological parameters like the cellular yield and the kinetics of endogenous metabolism were determined. (Author) 17 refs.

  7. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge.

    Science.gov (United States)

    Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Shirai, Yoshihito; Tashiro, Kosuke; Sakai, Kenji; Tashiro, Yukihiro

    2017-06-01

    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.

  8. Compositional changes of aromatic steroid hydrocarbons in naturally weathered oil residues in the Egyptian western desert

    International Nuclear Information System (INIS)

    Barakat, A.O.; Qian, Y.; Kim, M.; Kennicutt, M.C. II

    2002-01-01

    Aromatic steranes are geochemical markers that can be used to study the maturation of organic matter of sediments and to correlate crude oils and source rocks. In this study, naturally weathered oil residues from an arid waste disposal site in Al-Alamein, Egypt, were analyzed for monoaromatic and triaromatic steranes to show the usefulness of biomarker compounds in assessing changes in chemical composition during the degradation of oil residues that have been released onto terrestrial environments. Gas chromatography and mass spectrometry were used to characterize the individual aromatic compounds. Results indicate that triaromatic sterane distributions are similar in oil residues with varying extents of weathering. The distribution correlated with a fresh crude oil sample from Western Desert-sourced oil. Molecular ratios of triaromatic sterane compounds were found to be suitable for source identification. The major changes in chemical compositions resulting from the weathering of the oil included the depletion of short chain mono- and tri-aromatic steranes in extremely weathered samples. The results of the triaromatic sterane distribution correspond with weathering classifications based on the analyses of saturated and aromatic hydrocarbons and the ratios of n-alkanes, polycyclic aromatic hydrocarbons, and saturate biomarker compounds. 15 refs., 3 tabs., 3 figs

  9. Radiological Impact Assessment in Disposal of Treated Sludge

    International Nuclear Information System (INIS)

    Khairuddin Mohamad Kontol; Ismail Sulaiman; Faizal Azrin Abdul Razalim

    2015-01-01

    Sludge and scales produced during oil and gas production contain enhanced naturally occurring radioactive material (NORM). Sludge and scales are under the jurisdiction of Department of Environment (DOE) and also Atomic Energy Licensing Board (AELB). AELB has issued a guideline regarding the disposal of sludge and scales as in its guideline (LEM/TEK/30 SEM.2, 1996). In this guideline, Radiological Impact Assessment (RIA) should be carried out on all proposed disposals and has to demonstrate that no member of public will be exposed to more than 1 mSv/y. This paper presented RIA analysis using RESRAD computer code for the disposal of treated sludge. RESRAD (RESidual RADioactive) developed by Argonne National Laboratory is to estimate radiation doses and risks from residual radioactive materials. The dose received by the member of public is found to be well below the stipulated limit. (author)

  10. Effect of Refining Processes on Magnitude and Nature of Malathion and Carbofuran Residues in Cotton Seed Oil

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Farghaly, M.; Mahdy, F.

    2005-01-01

    Cotton seeds obtained from 14 C-carbofuran or 14 C-malathion-treated plants contained 0.25% and 0.11% of the originally applied radioactivity, respectively. The concentration of malathion residues in oil, methanol soluble and in the seed cake amounted to 0.94, 2.6 and 1.7 ppm, respectively. Commercial processing procedures led to a gradual decrease in the total amount of 14 C-residues in oils with aged residues as well as in oil fortified with the radiolabelled insecticides. The refined oil contained only about 20% of the 14 C-residues originally present. The major residue in processed oil contained malathion, malathion monocarboxylic acid and alpha-(O,O-dimethyl phosphorodithio)-propionic acid. The concentration of 14 C-carbofuran residues in cotton seed oil, methanol extract and cake was 1.7, 12.3 and 2.4 ppm, respectively. The main residues in the oil were carbofuran and its phenol. The methanol solubles contained conjugated metabolites, which upon hydrolysis gave 3-hydroxy-carbofuran as a major product. Refinement reduced the residue in oil to 0.26 ppm. The residue in refined oil contained carbofuran and carbofuran phenol as main constituents together with smaller amounts of 3-hydroxy- and 3-keto carbofuran

  11. MODEL FOR THE CORRECTION OF THE SPECIFIC GRAVITY OF BIODIESEL FROM RESIDUAL OIL

    Directory of Open Access Journals (Sweden)

    Tatiana Aparecida Rosa da Silva

    2013-06-01

    Full Text Available Biodiesel is a important fuel with economic benefits, social and environmental. The production cost of the biodiesel can be significantly lowered if the raw material is replaced by a alternative material as residual oil. In this study, the variation of specific gravity with temperature increase for diesel and biodiesel from residual oil obtained by homogeneous basic catalysis. All properties analyzed for biodiesel are within specification Brazil. The determination of the correction algorithm for the specific gravity function of temperature is also presented, and the slope of the line to diesel fuel, methylic biodiesel (BMR and ethylic biodiesel (BER from residual oil were respectively the values -0.7089, -0.7290 and -0.7277. This demonstrates the existence of difference of the model when compared chemically different fuels, like diesel and biodiesel from different sources, indicating the importance of determining the specific algorithm for the operations of conversion of volume to the reference temperature.

  12. The deep processing of oil residues conjunction with shales

    Directory of Open Access Journals (Sweden)

    Anatoly Maloletnev

    2012-12-01

    Full Text Available The results of studies on the development of a new process of thermal cracking of tar oil as a slurry with crushed oil shale to obtain components of motor fuels. The results suggest doubtless advantages of the process before the industrial of thermo cracking, since the single-stage processing of raw materials in relatively in the mild conditions (5 MPa, 425ºC, volumetric feed rate 1.0 h-1 is achieved deep destruction of tar oil (the yield petrol fraction with a bp amounts to up to 180ºC - ~12 mass % of middle distillates with a bp 180-360ºC – 43-44 mass %, of raw material for catalytic cracking of a bp 360-520ºC – ~15-16%, based on the initial tar oil. Formed like coke products and raw materials contained in V and Ni is postponed on the mineral part of slate and removed from the reaction zone with the liquid products of the process.

  13. Energy and resource utilization of deinking sludge pyrolysis

    International Nuclear Information System (INIS)

    Lou, Rui; Wu, Shubin; Lv, Gaojin; Yang, Qing

    2012-01-01

    The thermochemical conversion technique was applied in deinking sludge from the pulp and papermaking industrial to indagate the utilization of sludge biomass to energy, and the pyrolysis characteristics and pyrolytic products of deinking sludge were studied with thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatograph–mass spectrometer (Py-GC/MS). The static tubular furnace as an applied industrial research was used to study deinking sludge pyrolysis. The solid, gas and liquid of products was characterized by electron probe microanalysis (EPMA), gas chromatograph (GC) and gas chromatograph–mass (GC/MS), respectively. The results revealed that the weight-loss process of deinking sludge was a non-isothermal reaction and composed of four stages, i.e. dewater stage, volatile releasing stage, carbon burnout stage and some calcium carbonate decomposition. Pyrolytic products from deinking sludge in the static tubular furnace were comprised of the gaseous (29.78%), condensed liquid (bio-oil, 24.41%) and solid residues (45.81%). The volatiles from deinking sludge pyrolyzing were almost aromatic hydrocarbons, i.e. styrene, toluene and benzene and few acids and the solid was calcium carbonate (CaCO 3 ) that can be reused as paper filler. Deinking sludge was converted into high-grade fuel and chemicals by means of thermochemical conversion techniques, hence, pyrolysis of paper deinking sludge had a promising development on the comprehensive utilization.

  14. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    Science.gov (United States)

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Processing and display of nuclear magnetism logging signals: application to residual oil determination

    International Nuclear Information System (INIS)

    Brown, R.J.S.; Neuman, C.H.

    1980-01-01

    A presentation is made of a series of computations and signal displays which help to show the nature of NML signals in general as well as to show the response to particular formation, hole, and tool conditions. Such processing of digitally recorded signals enables improved accuracy and bed resolution over that presented with the raw log. The treatment of drilling mud filtrate to eliminate NML signal from the brine phase in the invaded zone is described. Logs are shown as recorded before and after invasion of treated mud filtrate. This treatment causes the NML signal to correspond to residual oil only, enabling accurate and relatively inexpensive measurement of residual oil. 24 refs

  16. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis.

    Science.gov (United States)

    Tsai, Wen-Tien; Lee, Mei-Kuei; Chang, Jeng-Hung; Su, Ting-Yi; Chang, Yuan-Ming

    2009-05-01

    In this study, gas chromatography-mass spectrometry (GC-MS) was used to analyze the pyrolytic bio-oils and gas fractions derived from the pyrolysis of industrial sewage sludges using induction-heating technique. The liquid products were obtained from the cryogenic condensation of the devolatilization fraction in a nitrogen atmosphere using a heating rate of 300 degrees C/min ranging from 25 to 500 degrees C. The analytical results showed that the pyrolysis bio-oils were very complex mixtures of organic compounds and contained a lot of nitrogenated and/or oxygenated compounds such as aliphatic hydrocarbons, phenols, pyridines, pyrroles, amines, ketones, and so on. These organic hydrocarbons containing nitrogen and/or oxygen should originate from the protein and nucleic acid textures of the microbial organisms present in the sewage sludge. The non-condensable devolatilization fractions were also composed of nitrogenated and oxygenated compounds, but contained small fractions of phenols, 1H-indoles, and fatty carboxylic acids. On the other hand, the compositions in the non-condensable gas products were principally carbon dioxide, carbon monoxide and methane analyzed by gas chromatography-thermal conductivity detector (GC-TCD).

  17. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    International Nuclear Information System (INIS)

    Wan Caixia; Zhou Quancheng; Fu Guiming; Li Yebo

    2011-01-01

    Highlights: → Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). → Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. → FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. → Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS added when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH 4 and CO 2 content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  18. Time course of pulmonary burden in mice exposed to residual oil fly ash

    OpenAIRE

    Giovanna Marcella Cavalcante Carvalho; Lilian Katie Nagato; Sheila da Silva Fagundes; Flavia Brandão dos Santos; Andrea Surrage Calheiros; Olaf eMalm; Patricia Torres Bozza; Paulo Hilario Nascimento Saldiva; Debora Souza Faffe; Patricia Rieken Macedo Rocco; Walter Araujo Zin

    2014-01-01

    Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the...

  19. Catalyst systems in the production of biodiesel from residual oil; Sistemas cataliticos na producao de biodiesel por meio de oleo residual

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Carlos Alexandre de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2006-07-01

    The vegetable oils and fat animals appear like an alternative for substitution the diesel oil in ignition engines for compression. Submitting the oil on transesterification reaction, we obtain a fuel with same characteristics as diesel, called biodiesel. Generally, 85 per cent of biodiesel cost is from the oil production. Through transesterification vegetable oil can be transformed in a mixture of esters of fatty acids. The residual oil from frying has been used as a possibility of raw materials of biodiesel, due to its easy acquisition and the viability of not being discarded as waste. (author)

  20. Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge.

    Science.gov (United States)

    Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu

    2014-06-01

    This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical. © The Author(s) 2014.

  1. Stability of tetrachlorvinphos residues in faba beans and soya bean oil towards different processing procedures

    International Nuclear Information System (INIS)

    Zayed, S.M.A.D.; Farghaly, M.

    1987-01-01

    Cooking of contaminated faba beans did not degrade the originally present potentially toxic residues, namely, tetrachlorvinphos and its desmethyl derivative to any appreciable extent. Processing of contaminated soya bean oil, on the other hand, led to degradation of tetrachlorvinphos and its metabolites to give mono and dimethyl phosphates. Feeding of mice with bound residues of tetrachlorvinphos in beans for 90 days led to an apparent decrease in the rate of body weight gain. (author)

  2. Nutritive value of palm oil sludge fermented with Aspergillus niger after therma1 drying process

    Directory of Open Access Journals (Sweden)

    T Purwadaria

    1999-12-01

    Full Text Available Solid substrate fermentation by Aspergillus niger has been carried out to improve the nutritive value of palm oil sludge (POS. POS was fermented aerobically for four days in a fermentor chambers (28°C, RH 80%, with 60% moisture content Some of the product was further incubated anaerobically for 2 days at 28°C. Both products from aerobic and anaerobic fermentation processes were dried by various methods, i.e. sunlight, oven at 60°C, oven with blower at 40°C, at the moisture content less than 11%. Results of the drying methods were also compared with the fresh fermented product. Statistic analysis using factorial design (2 x 4 showed that there was no interaction between kind of fermentation processes (aerobic and anaerobic and drying methods (fresh, sunlight, oven 60°C, and blower 40°C for almost all parameters except total a-amino acid content Significant results (p<0.05 were obtained on the drying methods for parameters of crude protein, true protein, in vitro dry matter and protein digestibilities, and mannanase and cellulase activities. There were no significant results between treatments in the crude fiber analysis and soluble nitrogen content Significant results also did not occur between treatment of aerob and anaerob fermentation processes for almost all parameters except for dry matter digestibilities. Results from true protein and in vitro digestibilities show that the fresh fermented product has the best nutritive value, while product dried by sunlight was best among other drying processes. Results from in vivo of protein and energy digestibilities show that there were better metabolizable energy and protein for product with aerobic process and dried with oven and blower treatments, while sunlight drying was best for product processed in anaerobic condition. Although fresh fermented product gave better result from in vitro digestibilities and enzyme activity analyses, for some reasons (easy handling and preservation sunlight

  3. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    Science.gov (United States)

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Radiation protection and management of NORM residues in the oil and gas industry

    International Nuclear Information System (INIS)

    Haridasan, P.P.; )

    2014-01-01

    The radionuclides in oil and gas streams belong to the decay chains of 238 U and 232 Th originate from the reservoir rock that contains oil, gas and formation water. Formation water contains significant concentrations of isotopes of radium dissolved from the reservoir rock. The parent isotopes of uranium and thorium are not mobilized from the rock and hence the radium isotopes appear in the water co-produced with the oil and gas. When the ions of Group II elements are present in the produced water, drops in pressure and temperature can lead to precipitation of sulphate and carbonate scales on the inner walls of production tubulars, well heads, valves, pumps, separators, water treatment vessels, gas treatment and oil storage tanks. The mixed stream of oil, gas and water carries the radon gas generated in the reservoir rock and in the production stream it preferentially follows the dry export gases. Consequently the equipment from gas treatment and transport facilities may accumulate a thin film of 210 Pb in the inner surfaces of gas lines. The radionuclide concentrations in produced water, hard scale and sludge will be presented. Indication on typical quantities of wastes generated and best practices followed in the industry in managing such wastes will be outlined. Information on external gamma exposure and potential internal exposure as well as global emerging issues will be discussed

  5. Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement

    Directory of Open Access Journals (Sweden)

    Masoud Amirpour

    2015-12-01

    Full Text Available Introducing the novel technique for enhancing oil recovery from available petroleum reservoirs is one of the important issues in future energy demands. Among of all operative factors, wettability may be the foremost parameter affecting residual oil saturation in all stage of oil recovery. Although wettability alteration is one of the methods which enhance oil recovery from the petroleum reservoir. Recently, the studies which focused on this subject were more than the past and many contributions have been made on this area. The main objective of the current study is experimentally investigation of the two nonionic surfactants effects on altering wettability of reservoir rocks. Purpose of this work is to change the wettability to preferentially the water-wet condition. Also reducing the residual oil saturation (Sor is the other purpose of this work. The wettability alteration of reservoir rock is measured by two main quantitative methods namely contact angle and the USBM methods. Results of this study showed that surfactant flooding is more effective in oil-wet rocks to change their wettability and consequently reducing Sor to a low value. Cedar (Zizyphus Spina Christi is low priced, absolutely natural, and abundantly accessible in the Middle East and Central Asia. Based on the results, this material can be used as a chemical surfactant in field for enhancing oil recovery.

  6. Anaerobic co-digestion of cork based oil sorbent and cow manure or sludge

    NARCIS (Netherlands)

    Cavaleiro, A.J.; Neves, T.M.; Guedes, A.P.; Alves, M.M.; Pinto, P.; Silva, S.P.; Machado de Sousa, Diana

    2015-01-01

    Cork, a material with great economic, social and environmental importance in Portugal, is also a good oil sorbent that can be used in the remediation of oil spills. The oil-impregnated cork can be easily removed, but requires further treatment. In the case of vegetable oil spills, anaerobic

  7. Imperata cylindrica sp as Novel Silica-Based Heterogeneous Catalysts for Transesterification of Palm Oil Mill Sludge.

    Science.gov (United States)

    Ngaini, Zainab; Shahrom, Farra Diana; Jamil, Nurfarahen; Wahi, Rafeah; Ahmad, Zainal Abiddin

    2016-06-01

    Biodiesel from palm oil mill sludge (POMS) was prepared in the presence of novel silica-based heterogeneous catalysts derived from Imperata cylindrica sp. Imperatacid and Imperatabase are two types of heterogeneous catalysts derived from Imperata cylindrica sp and characterized using scanning electron microscopy, Energy Dispersive X-ray, Brunauer-Emmett-Teller surface area and pore size measurement. Imperatacid has particle size of 43.1-83.9 µm while Imperatabase in the range of 89-193 µm. Imperatacid was conveniently applied in esterification step to afford > 90 wt% oil in 1:3 (oil/methanol) and 10 wt% catalyst, followed by transesterification with 1 wt% Imperatabase and 1:1 (oil/methanol) for 1 h at 65°C to afford 80% biodiesel with higher percentage of methyl palmitate (48.97%) and methyl oleate (34.14%) compare to conventional homogeneous catalyst. Reusability of the catalyst up to three times afforded biodiesel ranging from 78-80% w/w. The biodiesel was demonstrated onto alternative diesel engine (Megatech(®)-Mark III) and showed proportional increased of torque (ɽ) to biodiesel loading.

  8. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    Science.gov (United States)

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of inorganic chelate of zinc and restaurant residual oil added ...

    African Journals Online (AJOL)

    Effect of inorganic chelate of zinc and restaurant residual oil added to feed mixture ... The interaction effects of RRO and ZnO did not result to a significant change in ... Therefore, the effects of RRO deteriorated the quality of meat by raising the ...

  10. Effect of inorganic chelate of zinc and restaurant residual oil added ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... residual oil added to feed mixture on the biochemical traits of thigh muscles in .... The basal diet (Soybean + corn); T2 = basal diet + 0% RRO + 50 mg/kg ZnO; T3 = basal ... fatty acids, using gas chromatography (AOAC, 1999).

  11. Production of petroleum bitumen by oxidation of heavy oil residue with sulfur

    Science.gov (United States)

    Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.

    2018-03-01

    In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).

  12. STUDY OF THE THERMAL CRACKING DURING THE VACUUM DISTILLATION OF ATMOSPHERIC RESIDUE OF CRUDE OIL

    Directory of Open Access Journals (Sweden)

    JAOUAD ELAYANE

    2017-03-01

    Full Text Available This article concerns the study of the thermal cracking as undesirable phenomenon in the vacuum distillation of atmospheric residue of crude oil. In this point, we have sought to identify and characterize the effect of the increase in the temperature of vacuum distillation on the separation and the modification of the constituents of atmospheric residue of crude oil whose origin is Arabian Light. This study has been carried out by several techniques of analysis such as the density (ASTM D4052, distillation (ASTM D1160, determination of heavy metals nickel and vanadium (IFP9422, dosing of Conradson Carbon (ASTM D189, dosing of asphaltenes (ASTM D2549 and dosage of PCI (polycyclic aromatics (ASTM D 5186. The results showed a clear idea on the decomposition of the atmospheric residue and their influence on the performance of the vacuum distillation unit.

  13. Residual effect of applying composted sewage sludge to the majority nutrients in an alive grove soil; Efecto residual de la aplicacion de un lodo de depuradora compostado sobre los nutrientes mayoritarios de un suelo de olivar

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez Fernandez, R.; Aguilar Torres, M. A.; Gonzalez Fernandez, P.

    2002-07-01

    The agricultural reuse of sewage sludge is an excellent management option because in addition to the elimination of the residue, from the environment an appreciable amount of nitrogen, phosphorus and some micronutrients are added to the soil. During two successive years 20 Mgha-1of composted sewage sludge was applied to a clay soil of the Campina de Cordoba cropped with olive trees. The concentrations of some of the main nutrients like phosphorus and potassium increased after the amendment. The phosphorus content in the surface soil horizon increased from 2.3 to 9.3 ppm whereas the potassium content increased from 239 to 320 ppm in the same horizon for the same two years period. These results are encouraging for the organic amendment use. (Author)

  14. Return of phosphorus in agricultural residues and urban sewage sludge to soil using biochar from low-temperature gasification as fertilizer product

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jensen, Lars Stoumann; Grønlund, Mette

    The return of residual products from bioenergy generation to soils is a step towards closing nutrient cycles, which is especially important for nutrients produced from non-renewable resources such as phosphorus (P). Low-temperature gasification is an innovative process efficiently generating ener...... from different biomass fuels, such as agricultural residues and waste streams, and at the same time producing a biochar product potentially valuable for soil amendment. In pot experiments, different residual products originating from low-temperature gasification were tested for their P......-fertilizing potential with spring barley as a test crop. Biochar resulting from gasification of pure wheat straw showed the best P fertilizer value, however, because of the low P content, extremely high amounts had to be applied when crop P demand should be met, which came along with an over-fertilization of potassium...... (K). Gasification of pure sewage sludge with a high Fe and Al content practically eliminated its P fertilizer value, while co-gasification of sludge lower in Fe and Al together with wheat straw resulted in a biochar product with only somewhat reduced P availability and improved P/K ratio...

  15. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level.

    Science.gov (United States)

    Motoyama, Miki; Nakagawa, Shuhei; Tanoue, Rumi; Sato, Yuri; Nomiyama, Kei; Shinohara, Ryota

    2011-07-01

    In recent years, sludge generated in sewage treatment plants (STPs) and solid waste from livestock being utilized is useful for circulation of nourishment in farmlands as recycled organic manure (ROM). In this study, we determined the residue levels and patterns of 12 pharmaceutical products generated by human activity in the ROMs produced from human waste sludge (HWS), sewage sludge (SS), cattle manure (CM), poultry manure (PM), swine manure (SM) and horse manure (HM). The kind and number of pharmaceutical products detected in ROMs were different. Fluoroquinolones (FQs) were detected at high levels in HWS and SS samples. In addition, the detection frequency and concentration levels of sulfonamides (SAs) in PM and SM were high. Moreover, high concentrations of chlortetracycline (CTC) were found in only SM. These differences reflect specific adherence adsorption of the pharmaceutical products to different livestock and humans. Moreover, it was found that the concentrations of pharmaceutical products and fermentation levels of ROMs had significant positive correlation (r=0.41, p=0.024). When the fermentation test of ROM was conducted in a rotary fermentor in a lab scale test, the residue levels of pharmaceutical products decreased effectively except carbamazepine (CBZ). The rates of decrease were in the case of tetracyclines (TCs): 85-92%, FQs: 81-100%, erythromycine: 67%, SAs: 79-95%, trimethoprim: 86% and CBZ: 37% by 30 d. Pharmaceutical products that can be decomposed by fermentation process at the lowest impact of residual antibiotic activities may therefore be considered as environmentally friendly medicines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production

    International Nuclear Information System (INIS)

    El Afifi, E.M.; Awwad, N.S.; Hilal, M.A.

    2009-01-01

    This paper is dedicated to the treatment of sludge occurring in frame of the Egyptian produced from oil and gas production. The activity levels of three radium isotopes: Ra-226 (of U-series), Ra-228 and Ra-224 (of Th-series) in the solid TENORM waste (sludge) were first evaluated and followed by a sequential treatment for all radium species (fractions) presented in TENORM. The sequential treatment was carried out based on two approaches 'A' and 'B' using different chemical solutions. The results obtained indicate that the activity levels of all radium isotopes (Ra-226, Ra-228 and Ra-224) of the environmental interest in the TENORM waste sludge were elevated with regard to exemption levels established by IAEA [International Atomic Energy Agency (IAEA), International basic safety standards for the protection against ionizing radiation and for the safety of radiation sources. GOV/2715/Vienna, 1994]. Each approach of the sequential treatment was performed through four steps using different chemical solutions to reduce the activity concentration of radium in a large extent. Most of the leached radium was found as an oxidizable Ra species. The actual removal % leached using approach B was relatively efficient compared to A. It is observed that the actual removal percentages (%) of Ra-226, Ra-228 and Ra-224 using approach A are 78 ± 2.8, 64.8 ± 4.1 and 76.4 ± 5.2%, respectively. Whereas in approach A, the overall removal % of Ra-226, Ra-228 and Ra-228 was increased to ∼91 ± 3.5, 87 ± 4.1 and 90 ± 6.2%, respectively

  17. Extra heavy oil and refinery residues upgrading through Eni Slurry Technology : first EST commercial unit

    Energy Technology Data Exchange (ETDEWEB)

    Rispoli, G.; Sanfilippo, D.; Amoroso, A [Eni S.p.A., Rome (Italy)

    2009-07-01

    The production of heavy crude oils is projected to continue to grow in the upstream oil industry given that large reserves of unconventional extra heavy crude and bitumen exist in several geographic areas including Canada and Venezuela. As reserves of conventional crude oil continue to decline, these unconventional feedstocks are becoming an opportunity to pursue, but they require effective technologies for upgrading and meeting the growing demand for light and middle distillate fuels. This paper described the proprietary technology that offers a solution to upstream and downstream oil producers for bottom-of-the-barrel upgrading. En i Slurry Technology (EST) is constructing an industrial plant in its Sannazzaro refinery in Italy. The plant is designed to convert 23,000 BPSD of vacuum residue into high quality diesel and other valuable refinery streams such as liquefied petroleum gas, naphtha and jet fuel. EST is an H-addition process characterized by the use of a special homogeneous isothermal intrinsically safe reactor, and of a nano-dispersed non-ageing catalyst. EST converts more than 98 per cent of any type of residues to about 110 per cent volume of light products and distillates or extra heavy oils to high quality bottomless SCO. In typical performance, HDS is greater than 85 per cent, HDM greater than 99 per cent and HDCCR greater than 97 per cent. EST also achieves the target of zero fuel oil - zero coke. 12 refs., 4 tabs., 5 figs.

  18. Volume of baseline data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes of the annual report 1988 'Environmental radioactivity and radiation exposure'

    International Nuclear Information System (INIS)

    Abelmann, S.; Buenger, T.; Fusban, H.U.; Ruehle, H.; Viertel, H.; Gans, I.

    1991-01-01

    This WaBoLu volume is a shortened version of the annual report by the Federal Ministry of the Environment, Nature Protection and Reactor Safety 'Environmental radioactivity and radiation exposure' and gives an overview of the data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes, compiled for the area of the Federal Republic of Germany in 1988 by the Institute of Water, Soil and Air Hygiene (WaBoLu) of the Federal Health Office. (BBR) With 22 figs., 15 tabs [de

  19. γ-Oryzanol and tocopherol contents in residues of rice bran oil refining.

    Science.gov (United States)

    Pestana-Bauer, Vanessa Ribeiro; Zambiazi, Rui C; Mendonça, Carla R B; Beneito-Cambra, Miriam; Ramis-Ramos, Guillermo

    2012-10-01

    Rice bran oil (RBO) contains significant amounts of the natural antioxidants γ-oryzanol and tocopherols, which are lost to a large degree during oil refining. This results in a number of industrial residues with high contents of these phytochemicals. With the aim of supporting the development of profitable industrial procedures for γ-oryzanol and tocopherol recovery, the contents of these phytochemicals in all the residues produced during RBO refining were evaluated. The samples included residues from the degumming, soap precipitation, bleaching earth filtering, dewaxing and deodorisation distillation steps. The highest phytochemical concentrations were found in the precipitated soap for γ-oryzanol (14.2 mg g(-1), representing 95.3% of total γ-oryzanol in crude RBO), and in the deodorisation distillate for tocopherols (576 mg 100 g(-1), representing 6.7% of total tocopherols in crude RBO). Therefore, among the residues of RBO processing, the deodorisation distillate was the best source of tocopherols. As the soap is further processed for the recovery of fatty acids, samples taken from every step of this secondary process, including hydrosoluble fraction, hydrolysed soap, distillation residue and purified fatty acid fraction, were also analyzed. The distillation residue left after fatty acid recovery from soap was found to be the best source of γ-oryzanol (43.1 mg g(-1), representing 11.5% of total γ-oryzanol in crude RBO). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Valorisation of used cooking oil sludge by codigestion with swine manure.

    Science.gov (United States)

    Fierro, J; Martínez, E J; Morán, A; Gómez, X

    2014-08-01

    The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oil is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept. Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH4 yield obtained was 326 ± 46 l/kg VSfeed at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VSfeed when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VSfeed), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Bioremediation of oil sludge using a type of nitrogen source and the consortium of bacteria with composting method

    Science.gov (United States)

    Fitri, Inayah; Ni'matuzahroh, Surtiningsih, Tini

    2017-06-01

    The purpose of this research are to know the effect of addition of different nitrogen source, consortium of bacteria, incubation time and the interaction between those variables to the total number of bacteria (CFU/g-soil) and the percentage of degradation (%) in the bioremediation of oil sludge contaminated soil; as well as degraded hydrocarbon components at the best treatment on 6th week. The experiments carried out by mixing the materials and placed them in each bath with and without adding different nitrogen source and bacterial consortium. pH and moisture were measured for every week. An increase in total number of bacteria and percent of maximum degradation recorded at treatment with the addition of NPK+Azotobacter+bacteria consortium; with the TPC value was 14.24 log CFU/g, percent degradation was 77.8%, organic C content was 10.91%, total N was 0.12% and organic matter content was 18.87%, respectively.

  2. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    Science.gov (United States)

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  3. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    International Nuclear Information System (INIS)

    Ahmad, Anwar; Ghufran, Rumana; Wahid, Zularisam Abd.

    2011-01-01

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: ► Examine the treatability of POME and effects of CaO–CKD on the granulation process in UASB reactors. ► The main objective was to determine the influent CaO–CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. ► The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. ► SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO–CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO–CKD at doses of 1.5–20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 °C for 150 days to investigate the effect of CaO–CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5–65.5 g-COD g/l at an OLR of 4.5–12.5 kg-COD/m 3 d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased

  4. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Anwar, E-mail: anwarak218@yahoo.co.uk [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia); Ghufran, Rumana; Wahid, Zularisam Abd. [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2011-12-30

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: Black-Right-Pointing-Pointer Examine the treatability of POME and effects of CaO-CKD on the granulation process in UASB reactors. Black-Right-Pointing-Pointer The main objective was to determine the influent CaO-CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. Black-Right-Pointing-Pointer The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. Black-Right-Pointing-Pointer SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 Degree-Sign C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-COD g/l at an OLR of 4.5-12.5 kg-COD/m{sup 3} d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids

  5. Asphalts tests using onshore drilling oil wells residues; Ensaios asfalticos utilizando residuos de perfuracao onshore

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, Adriano Elisio de F.L.; Rodrigues, John Kennedy G.; Ferreira, Heber Carlos; Lucena, Leda Christiane de F.L. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Lucena, Luciana de F.L. [Faculdade de Ciencias Sociais Aplicada (FACISA), Campina Grande, PB (Brazil)

    2008-07-01

    The drilling cuttings are one of the residues produced by the oils industries in large amounts during the drilling of oil wells. An alternative of final disposal of the drilling cutting residue is its utilization in asphalt mixtures. Based on this alternative, it was realized chemical and granulometric analysis and tests (Marshall and indirect tensile strength), on the asphaltic mixture using the residue from the oil drilling wells (well: 1-POTI-4-RN, located at Governador DIX-Sept Rosado - RN - Brazil). The achieved results to Marshall test indicated that for the analyzed mixture, the ideal content of residue that can be incorporated to the asphaltic composition and attend at the DNIT-ES 31 (2006) is 5%. To the indirect tensile strength test, the results showed a strength value higher than the minimum limit requested by the DNIT (0,65 MPa). The achieved results indicated the possibility of the utilization of the drilling cuttings in asphaltic pavements as fine aggregate, obeying the percentage limits, as an alternative to the final disposal. (author)

  6. 76 FR 76314 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Science.gov (United States)

    2011-12-07

    ... that addressed the source materials stored on-site. Removal activities included waste removal, water treatment, oil/water separation, and sludge stabilization. Approximately 250,000 gallons of water were... sludge and other residual material by pressure steaming the vessel holds, engines and boilers. Engines...

  7. Effect of biostimulation using sewage sludge, soybean meal and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil

    Directory of Open Access Journals (Sweden)

    Sumaiya eAl-Kindi

    2016-03-01

    Full Text Available Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS, shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities more than the addition of soybean meal. GC-MS analysis revealed that the addition of addition of sewage sludge and wheat straw resulted in 1.7 to 1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥ 90% of the C14 to C30 alkanes were measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences of acquired sequences from the original soil belonged to Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Multivariate analysis of operational taxonomic units (OTUs placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R=0.66, P=0.0001. The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences belonging to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  8. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    Science.gov (United States)

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  9. Reduction of heavy metals in refinery waste sludge using em treatment

    International Nuclear Information System (INIS)

    Ahmad, J.; Ahmad, F.; Saleemi, A.R.; Ahmad, I.

    2005-01-01

    This paper presents the efforts of National Cleaner Production Center (NCPC) and Attock Refinery Limited (ARL) Rawalpindi, to address the problem of refinery solid waste. A trial project was designed to treat and convert 1.7 m ton to oil sludge into environmental friendly residue (compost) under anaerobic conditions. The residue can be treated as bio fertilizer for agricultural purpose. The trial on bio remediation (anaerobic) of oily sludge of ARL, Rawalpindi within its premises using EM technology was successfully completed with the collaboration of effective microorganism research organization (EMRO), NCPC and ARL between 29th October to 10th December, 2002. The effective microorganisms transformed the undiluted oily sludge from ARL into bioactive sludge; which may be called as bio sludge. For heavy metal breakdown the trial data shows that Ba has been reduced by 85% in the EM. Treated oily sludge as compared to original ARL sludge, and Pb, Fe, Zn and Ni have been reduced by about 50% in the treated bio sludge. The contents of As, Cr, Cu and Mn showed no change. The residue obtained can be used as a bio fertilizer. (author)

  10. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues.

    Science.gov (United States)

    Bosco, Francesca; Chiampo, Fulvia

    2010-04-01

    The production of polyhydroxyalcanoates (PHAs), which are biodegradable plastics, was studied using milk whey and dairy wastewater activated sludge to define a suitable C/N ratio, the pre-treatments required to reduce the protein content, and the effect of pH correction. The results show good production of PHAs at a C/N=50 and without pH correction. The use of dairy wastewater activated sludge has the advantage of not requiring aseptic conditions. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Radiotracer studies of pesticide residues in edible oil seeds and related products

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers were presented in which chemical pollution due to insecticides was examined in edible oil seeds and their products. They include hexachlorocyclohexane residues in groundnut; carbaryl in groundnut; maize and cotton seed products, and in lactating goats; propoxur in cocoa beans; and leptophos residues in cotton seed and its products and in lactating goats. Eight of these papers constitute separate INIS entries. Egypt, Ghana, India, Korea, Lebanon, Pakistan, the Philippines, Poland, and the Sudan participated under the coordinated research programme. The progress of the programme is reviewed, and problems and priorities for future development of the programme are identified. A number of recommendations are addressed to the Joint FAO/IAEA Secretariat

  12. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  13. One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production

    Science.gov (United States)

    Manurung, Renita; Ramadhani, Debbie Aditia; Maisarah, Siti

    2017-06-01

    Biodiesel production by using sludge palm oil (SPO) as raw material is generally synthesized in two step reactions, namely esterification and transesterification, because the free fatty acid (FFA) content of SPO is relatively high. However, the presence of choline chloride (ChCl), glycerol based deep eutectic solvent (DES), in transesterification may produce biodiesel from SPO in just one step. In this study, DES was produced by the mixture of ChCl and glycerol at molar ratio of 1:2 at a temperature of 80°C and stirring speed of 400 rpm for 1 hour. DES was characterized by its density and viscosity. The transesterification process was performed at reaction temperature of 70 °C, ethanol to oil molar with ratio of 9:1, sodium hydroxide as catalyst concentration of 1 % wt, DES as cosolvent with concentration of 0 to 5 % wt, stirring speed of 400 rpm, and one hour reaction time. The obtained biodiesel was then assessed with density, viscosity, and ester content as the parameters. FFA content of SPO as the raw material was 7.5290 %. In this case, DES as cosolvent in one step transesterification process of low feedstock could reduce the side reaction (saponification), decrease the time reaction, decrease the surface tension between ethanol and oil, and increase the mass transfer that simultaneously simplified the purification process and obtained the highest yield. The esters properties met the international standards of ASTM D 6751, with the highest yield obtained was 83.19% with 99.55% of ester content and the ratio of ethanol:oil of 9:1, concentration of DES of 4%, catalyst amount of 1%, temperature of reaction at 70°C and stirring speed of 400 rpm.

  14. Determination of macro nickel, vanadium and iron in crude oil and residues by derivative spectrophotometry

    International Nuclear Information System (INIS)

    Liu, W.; Wang, L.; Li, X.

    1992-01-01

    In this paper, a new method with derivative spectrophotometry and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol as the chromogenic reagent in buffer solution of different pH developed for determining micro amounts of nickel. Vanadium and iron in crude oil and residues is reported. Forth-, Second- and Third-, Fourth-order derivative spectrophotometry were applied to determine nickel, nickel and vanadium, nickel and iron in crude oil and residues, respectively. The derivative maximums chosen for the measurement were at 556 nm for nickel, 540 nm and 643 nm for nickel and vanadium, 524 nm and 604 nm for nickel and iron. Beer's law is valid for the range 1.0 x 10 -6 to 2.5 x 10 -5 M

  15. Microbial Physiology of the Conversion of Residual Oil to Methane: A Protein Prospective

    Science.gov (United States)

    Morris, Brandon E. L.; Bastida-Lopez, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Suflita, Joseph M.

    2010-05-01

    Traditional petroleum recovery techniques are unable to extract the majority of oil in most petroliferous deposits. The recovery of even a fraction of residual hydrocarbon in conventional reserves could represent a substantive energy supply. To this end, the microbial conversion of residual oil to methane has gained increasing relevance in recent years [1,2]. Worldwide demand for methane is expected to increase through 2030 [3], as it is a cleaner-burning alternative to traditional fuels [4]. To investigate the microbial physiology of hydrocarbon-decomposition and ultimate methanogenesis, we initiated a two-pronged approach. First, a model alkane-degrading sulfate-reducing bacterium, Desulfoglaeba alkanexedens, was used to interrogate the predominant metabolic pathway(s) differentially expressed during growth on either n-decane or butyrate. A total of 81 proteins were differentially expressed during bacterial growth on butyrate, while 100 proteins were unique to the alkane-grown condition. Proteins related to alkylsuccinate synthase, or the homologous 1-methyl alkylsuccinate synthase, were identified only in the presence of the hydrocarbon. Secondly, we used a newly developed stable isotope probing technique [5] targeted towards proteins to monitor the flux of carbon through a residual oil-degrading bacterial consortium enriched from a gas-condensate contaminated aquifer [1]. Combined carbon and hydrogen stable isotope fractionation identified acetoclastic methanogenesis as the dominant process in this system. Such findings agree with the previous clone library characterization of the consortium. Furthermore, hydrocarbon activation was determined to be the rate-limiting process during the net conversion of residual oil to methane. References 1. Gieg, L.M., K.E. Duncan, and J.M. Suflita, Bioenegy production via microbial conversion of residual oil to natural gas. Appl Environ Micro, 2008. 74(10): p. 3022-3029. 2. Jones, D.M., et al., Crude-oil biodegradation via

  16. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  17. Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils.

    Science.gov (United States)

    Hidalgo, Dolores; Martín-Marroquín, Jesús M

    2014-09-01

    This work aims at selecting a suitable strategy to improve the performance of the anaerobic digestion of residues generated in the treatment of waste vegetable oils (WVO). Biochemical methane potential (BMP) assays were conducted at 35 °C to evaluate the effects of substrate mix ratio between a mixture of WVO residues (M) and pig manure (PM) co-digesting by using different inocula. Inoculum from an industrial digester fed with organic waste from hotels, restaurants and catering leftovers (HORECA) showed higher methanogenic activity (55.5 mLCH4 gVS(-1) d(-1)) than municipal wastewater treatment plant (mWWTP) inoculum (42.6 mL CH4 gVS(-1) d(-1)). Furthermore, the results showed that the resistance to WVO residues toxicity was higher for the HORECA sludge than for the mWWTP sludge. HORECA inoculum produced more biogas in all the assays. Moreover, the resulting biogas was of better quality, containing an average of 71.1% (SD = 1.6) methane compared to an average of 69.5% (SD = 1.2) methane for test with mWWTP sludge. The maximum degradation rate occurred at the higher PM mix ratio (M/PM:1/3), reaching 26.7 ± 4.3 mLCH4 gVS(-1) d(-1) for mWWTP inoculum, versus 42.0 ± 1,5 mLCH4 gVS(-1) d(-1) achieved for HORECA inoculum. A high reduction of volatile solids (between 70% and 81%) was obtained with both inocula at all M/PM ratios assayed (1/0, 1/3, 1/1 and 3/1 v/v) but, bearing in mind the operation of a full-scale anaerobic plant, the optimal scenario assayed corresponds to the ratio M/PM: 1/3 v/v where shorter lag periods will make it possible to operate at lower hydraulic retention times. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident, China.

    Science.gov (United States)

    Wang, Chuanyuan; Liu, Xing; Guo, Jie; Lv, Yingchun; Li, Yuanwei

    2018-09-15

    Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to deal with the petroleum pollution after an oil spill accident. The biodegradation of crude oil by microorganisms co-incubated from sediments collected from the Penglai 19-3 oil platform, Bohai Sea, China, was examined. The relative susceptibility of the isomers of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene to biodegradation was also discussed. The results showed that the relative degradation values of total petroleum hydrocarbon (TPH) are 43.56% and 51.29% for sediments with untreated microcosms (S-BR1) and surfactant-treated microcosms (S-BR2), respectively. TPH biodegradation results showed an obvious decrease in saturates (biodegradation rate: 67.85-77.29%) and a slight decrease in aromatics (biodegradation rate: 47.13-57.21%), while no significant difference of resins and asphaltenes was detected. The biodegradation efficiency of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene for S-BR1 and S-BR2 samples reaches 1.28-84.43% and 42.56-86.67%, respectively. The efficiency of crude oil degradation in sediment with surfactant-treated microcosms cultures added Tween 20, was higher than that in sediment with untreated microcosms. The biodegradation and selective depletion is not only controlled by thermodynamics but also related to the stereochemical structure of individual isomer compounds. Information on the biodegradation of oil spill residues by the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effect of Sludge Concentration and Crude Glycerol Matrix as a Substrate on the Production of Single-Cell Oil by Oleaginous Yeast Yarrowia lipolytica SKY7

    Directory of Open Access Journals (Sweden)

    Saurabh Kumar Ram

    2018-04-01

    Full Text Available The disposal of excess crude glycerol produced by the booming biodiesel industry and wastewater sludge solid waste has become a severe problem, and alternate routes of use and valorization of these waste byproducts are needed. The use of cheaply available wastewater sludge solids in fermentation media is very much desirable to reduce the cost of production. The strains of Yarrowia lipolytica can assimilate a wide array of waste substrates, such as crude glycerol, waste cooking oil, starch wastewater, and cellulosic. This study optimized the concentration of wastewater sludge solids (5–35 g/L to be used with crude glycerol in fermentation media to produce microbial oil as feedstock for biodiesel production. The results indicated that 20 g/L of sludge solids with 40 g/L of crude glycerol resulted in highest lipid content of 29.35% in 96 h. Further, assuming wet extraction of lipids, it was found that at least 11.2% or higher lipid content is required for this process to have an overall positive net solid waste reduction. Insignificant inhibition was observed by the crude glycerol used in this study as compared to pure glycerol, which proves it to be an adequate source of carbon substrate for lipid production.

  20. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches

    Science.gov (United States)

    Han, Yuling

    2018-01-01

    The Deepwater Horizon (DWH) accident, one of the largest oil spills in U.S. history, contaminated several beaches located along the Gulf of Mexico (GOM) shoreline. The residues from the spill still continue to be deposited on some of these beaches. Methods to track and monitor the fate of these residues require approaches that can differentiate the DWH residues from other types of petroleum residues. This is because, historically, the crude oil released from sources such as natural seeps and anthropogenic discharges have also deposited other types of petroleum residues on GOM beaches. Therefore, identifying the origin of these residues is critical for developing effective management strategies for monitoring the long-term environmental impacts of the DWH oil spill. Advanced fingerprinting methods that are currently used for identifying the source of oil spill residues require detailed laboratory studies, which can be cost-prohibitive. Also, most agencies typically use untrained workers or volunteers to conduct shoreline monitoring surveys and these worker will not have access to advanced laboratory facilities. Furthermore, it is impractical to routinely fingerprint large volumes of samples that are collected after a major oil spill event, such as the DWH spill. In this study, we propose a simple field testing protocol that can identify DWH oil spill residues based on their unique physical characteristics. The robustness of the method is demonstrated by testing a variety of oil spill samples, and the results are verified by characterizing the samples using advanced chemical fingerprinting methods. The verification data show that the method yields results that are consistent with the results derived from advanced fingerprinting methods. The proposed protocol is a reliable, cost-effective, practical field approach for differentiating DWH residues from other types of petroleum residues. PMID:29329313

  1. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches.

    Science.gov (United States)

    Han, Yuling; Clement, T Prabhakar

    2018-01-01

    The Deepwater Horizon (DWH) accident, one of the largest oil spills in U.S. history, contaminated several beaches located along the Gulf of Mexico (GOM) shoreline. The residues from the spill still continue to be deposited on some of these beaches. Methods to track and monitor the fate of these residues require approaches that can differentiate the DWH residues from other types of petroleum residues. This is because, historically, the crude oil released from sources such as natural seeps and anthropogenic discharges have also deposited other types of petroleum residues on GOM beaches. Therefore, identifying the origin of these residues is critical for developing effective management strategies for monitoring the long-term environmental impacts of the DWH oil spill. Advanced fingerprinting methods that are currently used for identifying the source of oil spill residues require detailed laboratory studies, which can be cost-prohibitive. Also, most agencies typically use untrained workers or volunteers to conduct shoreline monitoring surveys and these worker will not have access to advanced laboratory facilities. Furthermore, it is impractical to routinely fingerprint large volumes of samples that are collected after a major oil spill event, such as the DWH spill. In this study, we propose a simple field testing protocol that can identify DWH oil spill residues based on their unique physical characteristics. The robustness of the method is demonstrated by testing a variety of oil spill samples, and the results are verified by characterizing the samples using advanced chemical fingerprinting methods. The verification data show that the method yields results that are consistent with the results derived from advanced fingerprinting methods. The proposed protocol is a reliable, cost-effective, practical field approach for differentiating DWH residues from other types of petroleum residues.

  2. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  3. Extraction of toxic and valuable metals from wastewater sludge and ash arising from RECICLAGUA, a treatment plant for residual waters applying the leaching technique

    International Nuclear Information System (INIS)

    Guerrero D, J.J.

    2004-01-01

    Presently work, the technique is applied of having leached using coupled thermostatted columns, the X-ray diffraction for the identification of the atomic and molecular structure of the metals toxic that are present in the residual muds of a treatment plant of water located in the municipality of the Estado de Mexico, RECICLAGUA, likewise the techniques is used of Inductively Coupled Plasma Mass Spectroscopy and X-ray fluorescence analysis for the qualitative analysis. We took samples of residual sludge and incinerated ash of a treatment plant waste water from the industrial corridor Toluca-Lerma RECICLAGUA, located in Lerma, Estado de Mexico. For this study 100 g. of residual of sludge mixed with a solution to 10% of mineral acid or sodium hydroxide according to the case, to adjust the one p H at 2, 5, 7 and 10, bisulfite was added, of 0.3-1.5 g of dodecyl sulfate of sodium and 3.93 g of DTPA (triple V). Diethylene triamine penta acetate. These sludges and ashes were extracted from toxic and valuable metals by means of the leaching technique using coupled thermostated columns that which were designed by Dr. Jaime Vite Torres, it is necessary to make mention that so much the process as the apparatus with those that one worked was patented by him same. With the extraction of these metals, benefits are obtained, mainly of economic type, achieving the decrease of the volume of those wastes that have been generated; as well as the so much use of those residuals, once the metals have been eliminated, as of those residuals, once the metals have been eliminated, as of those liquors, the heavy metals were extracted. It was carried out a quantitative analysis using Icp mass spectroscopy, this way to be able to know the one content of the present metals in the samples before and after of leaching them, these results reported a great quantity of elements. Another of the techniques employees was the analysis by X-ray diffraction that provides an elementary content of the

  4. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Continues treatment of oily sludge at Colombian refineries

    International Nuclear Information System (INIS)

    Echeverria, Victor; Monsalve, Gladys; Vidales, Humberto

    2002-01-01

    The Colombian Petroleum institute - ICP, the research and development branch of Ecopetrol has developed a unique technological package used to treat oily sludge in a continuous way. The sludge comes from a refinery with 220000 barrels of crude per day load, located in the Middle Madgalena River Valley in Colombia. The technological package allows for a) the recovery of the hydrocarbon contained in oily wastes (up to 50%) b) the elimination of the oil contained in solid using a biodegradation process and, c) the availability economically and technically feasible solution to handle oily sludge generated in the refinery. The oily treated in this process come from maintenance of refinery's equipment and also from the physical chemical separation process at the industrial wastewater treatment plant. Oily sludge is a complex system where light and heavy oils, contaminated water and contaminated solids coexist in the form of direct, inverse and multiple emulsions. The comprehensive technological package allows the treatment of oily sludge in a cost effective way. ICP technological package developed includes technologies combining mechanical, thermal, chemical and electrostatic dehydration techniques and stimulated and intensive bioremediation to decontamination of solids saturated with residual oil. This technological package brings a solution to old environmental problem caused by the inappropriate final disposal of oily wastes such as storage in ponds, marshes and open pits: Nowadays wastes generated are treated in a continuous process that is environmentally friendly and economically profitable

  6. Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Fang, Le; Poon, Chi Sun

    2017-06-01

    The improper disposal of incinerated sewage sludge ash (ISSA) and air pollution control residues (APCR) from sewage sludge incinerators has become an environmental concern. The physicochemical, morphological and mineralogical characteristics of ISSA and APCR from Hong Kong, and the leachability and risk of heavy metals, are presented in this paper. The results showed that a low hydraulic and pozzolanic potential was associated with the ISSA and APCR due to the presence of low contents of SiO 2 , Al 2 O 3 and CaO and high contents of P, S and Cl (especially for APCR). Although high concentrations of Zn and Cu (especially for ISSA) followed by Ni, Pb and As, Se were detected, a low leaching rate of these metals (especially at neutral and alkaline pH) rendered them classifiable as non-hazardous according to the U.S. EPA and Chinese national regulatory limits. The leached metals concentrations from ISSA and APCR were mainly pH dependent, and metals solubilization occurred mainly at low pH. Different leaching tests should be adopted based on the simulated different environmental conditions and exposure scenarios for assessing the leachability as contrasting results could be obtained due to the differences in complexing abilities and final pH of the leaching solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of virgin walnut oils and their residual cakes produced from different varieties.

    Science.gov (United States)

    Ojeda-Amador, Rosa M; Salvador, María Desamparados; Gómez-Alonso, Sergio; Fregapane, Giuseppe

    2018-06-01

    This study addresses the composition and properties of different walnut varieties (Chandler, Hartley and Lara), in particular their virgin oils and residual cakes obtained by screw pressing employing different cultivars. Among nuts, walnut (Juglans regia L.) exhibits interesting nutritional value, mainly due to their high content in linoleic acid, phenolic and tocopherol compounds, which show antioxidant and other healthy properties. Valuable results related to fatty acid profile and minor components were observed. Virgin walnut oil is a rich source in linoleic acid (60-62%) and γ-tocopherol (517-554 mg/kg). Moreover, walnuts show a very high content in total phenolic compounds (10,045-12,474 mg/kg; as gallic acid), which contribute to a great antioxidant activity (105-170 mmol/kg for DPPH, and 260-393 mmol/kg for ORAC), being the hydrolysable tannins (2132-4204 mg/kg) and flavanols (796-2433 mg/kg) their main phenolic groups. Aldehydes account for the highest contribution to aromatic volatiles in virgin walnut oil (about 35% of total). As expected, polar phenolic compounds concentrate in the residual cake, after the separation of the oily phase, reaching a content of up to 19,869 mg/kg, leading to potential added value and applications as source of bioactive compounds to this by-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    Science.gov (United States)

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The correlation between mannanase and cellulase activities towards fibre content of palm oil sludge fermented with Aspergillus niger

    Directory of Open Access Journals (Sweden)

    T. Purwadaria

    1998-12-01

    Full Text Available Enzyme (mannanase and cellulase activities and fibre (hemicellulose, cellulose and lignin contents were determined during the fermentation course of palm oil sludge with Aspergillus niger TL (wild type and A. niger ES I (an asporogenous mutant. The analyses were carried out at the incubation time of 3 and 4 days of aerobic fennentation and at 2 days of anaerobic fermentation afterward. The correlations between mamlanase activity with hemicellulose content and cellulose activity with cellulose content were calculated by linear regression . The activities of matutanase and cellulase are increasing during the aerobic fennentation, while in the anaerobic fennentation the enzyme activities are decreasing due to instability of the enzymes. The enzyme activities of ESI are higher than the TL. The regression coefficient is highly significant for correlation between mamlanase and hemicellulose content of fermented product by ESI (r = 0.83; P0 .05 . Marutanase and cellulase activities were also detected after the fermented product dried at 60°C which indicated the enzymes are quite stable .

  10. Reusing a residue of the oil industry (FCC) in the production of building elements

    OpenAIRE

    Caicedo Casso, Eduard Andrés; Universidad del Valle; Mejía de Gutiérrez, Ruby; Universidad del Valle; Gordillo Suárez, Marisol; Universidad Autónoma de Occidente; Torres Agredo, Janneth; Universidad Nacional de Colombia, sede Palmira

    2015-01-01

    This paper analyzes the feasibility of using a residue of spent catalyst (FCC) of the cracking process, from a Colombian oil company, in the production of building elements such as locks and pavers. To define the optimal mix of portland cement/FCC, Portland cement mortars with FCC ratios between 0 and 70% as replacement of cement were prepared and its compressive strength is evaluated at ages up to 28 days of curing. Using a statistical processing, applying the methodology of response, the pr...

  11. Pro biotic as Alternative to Antibiotic for Broiler Chicken fed Food Industrial Residual Oil

    International Nuclear Information System (INIS)

    EL-Faramawy, A.A.; El-Maghraby, A.F.; El-Danasoury, M.M.; Hussien, H.A.; Hegazy, E.S.

    2016-01-01

    This study aimed to evaluate the effect of pro biotic (some lactic acid bacteria) with different levels of food industrial residual oil in broiler commercial diets on growth performance, meat yield, internal organs, economical efficiency and performance index. One hundred and eighty one day old Cobb chicks (45 ± 0.4 g) were equally and randomly divided into 6 groups namely; the antibiotic with fresh oil (FO), the antibiotic with mixed oil (MO) [FO+RO ( 1:1 w/w)], the antibiotic with food industrial residual oil (RO), the pro biotic with FO, the pro biotic with MO and the pro biotic with RO. Virginiamycin, Phibro, USA (15 ppm), was the antibiotic, while a mixture of lactic acid bacteria is chosen as pro biotic. Both were added to the water. During the experiment which lasted for 42 days, the body weight, the feed intake and the mortality rate were recorded at 2, 4 and 6 weeks of age then the body weight gain, feed conversion ratio, economical efficiency and performance index were calculated. The results revealed that the average body weight, body weight gain and feed consumption significantly (P 0.05) while liver increased significantly (P<0.05) in pro biotic FO and gizzard in all pro biotic group and antibiotic MO. The highest performance index was observed in groups of birds treated with pro biotic with MO followed by birds treated with pro biotic FO without significant difference. It could be concluded that supplementation of pro biotic in broiler diet containing different levels of RO was economically more beneficial than antibiotic

  12. Impact of recharge through residual oil upon sampling of underlying ground water

    International Nuclear Information System (INIS)

    Wise, W.R.; Chang, Chichung; Klopp, R.A.; Bedient, P.B.

    1991-01-01

    At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observed the effects of the recharge process. Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present

  13. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  14. Fast pyrolysis of lignin, macroalgae and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, N.T.

    2013-04-15

    Non-conventional biomass feedstock may also be applicable for fast pyrolysis processes. Among the forms of non-conventional biomasses, macroalgae, lignin (industrial residue) and sewage sludge may be attractive materials due to their low price, non-competitiveness with food crops and the possible utilization of solid wastes. Besides, a fast pyrolysis process can be used as a process to densify the biomass and produce bioslurry, a mixture of bio-oil and pyrolytic char. The bioslurry is found to be a possible feedstock for pressurized gasification plants. Thus, the aims of this project are to investigate fast pyrolysis properties of lignin, sewage sludge and macroalgae on a lab scale PCR and characterize their bio-oil properties. Bioslurry properties with respect to use as a feedstock for pressurized gasification is also investigated. Lignin and sewage sludge PCR pyrolysis provided bio-oil yields of 47 and 54 wt% daf, and oil energy recovery of 45 and 50 %, respectively. While the macroalgae PCR pyrolysis showed promising results with an organic oil yield of 65 wt% daf and an oil energy recovery of 76 %. The HHV of the lignin, sewage sludge and macroalgae oils were 29.7, 25.7 and 25.5 MJ/kg db respectively, and that are higher than that of typical bioiv oil from conventional biomasses (23-24 MJ/kg db). Almost all metals feedstock contents were contained in the chars at temperatures of 550 - 575 deg. C for lignin, sewage sludge and macroalgae PCR pyrolysis. Due to high feedstock nitrogen and sulfur contents, also a high level of nitrogen and sulfur of macroalgae and sewage sludge oils were observed compared to conventional bio-oil and this may limit their further industrial applications. The lignin char had a high proportion of small size particles, a HHV of 21 MJ/kg db and were almost free of chloride and sulfur, thus it is considered as a promising fuel for gasification or combustion; whereas macroalgae and sewage sludge chars containing high amounts of

  15. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    Science.gov (United States)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (determine if the accumulation of heavy metals in waters may be determinant for future pollution. References: Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils doi:10.1007/s00374-009-0365-z. Jordán MM, Pina S, García-Orenes F, Almendro-Candel MB, García-Sánchez E (2008) Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries. Environ Geol doi:10.1007/s00254-007-0991-4. Jordão CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL (2006) Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit

  16. Influence of lubricant oil residual fraction on recycled high density polyethylene properties and plastic packaging reverse logistics proposal

    Directory of Open Access Journals (Sweden)

    Harley Moraes Martins

    2015-10-01

    Full Text Available Abstract To recycle post-consumer HDPE contaminated with waste lubricating oils, companies include prior washing and drying in the process. This consumes large amounts of water and energy, generates significant effluent requiring treatment. This study assesses lubricating oil influence on HDPE properties to evaluate the feasibility of its direct mechanical recycling without washing. The current lubricating oil packaging reverse logistics in Rio de Janeiro municipality is also analyzed. HDPE bottle samples were processed with seven oil contents ranging from 1.6-29.4 (wt%. The results indicated the possibility to reprocess the polymer with oily residue not exceeding 3.2%. At higher levels, the external oil lubricating action affects the plastic matrix processing in the extruder and injection, and the recycled material has a burnt oil odor and free oil on the surface. Small residual oil amounts retain the plastic properties comparable to the washed recycled polymer and exhibited benefits associated with the oil plasticizer action. However, oil presence above 7.7% significantly changes the properties and reduces the elasticity and flexural modulus and the plastic matrix crystallinity.

  17. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    Science.gov (United States)

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  18. Dual catalyst system for the hydrocracking of heavy oils and residues

    Energy Technology Data Exchange (ETDEWEB)

    Bellussi, G. [ENI S.p.A., San Donato Milanese (Italy)

    2011-07-01

    One of the major challenges for our and for the future generations is the development of a sustainable energy supply system based mainly on renewable sources with no environmental impact. This task is necessary to limit the negative effects of green-house gas on the hearth and to allows the forecasted population growth. However, it is not yet clear the time span needed to reach the objective. The total world energy consumption in 2008 amounted to 8428 Mtoe. In a reference scenario, this amount is expected to grow to 16790 Mtoe in 2030 and the contribution expected by sources, according to the International Energy Agency, will be: oil 29.8 %, coal 29.1 %, natural gas 21,2 %, nuclear 5.7 %, hydroelectric 2.4 %, others (Renewable and waste, geothermal, solar, wind, tide,..) [1]. This picture indicates that for several decades, we must still rely on fossil fuels, avoid running out of this precious energy reserves of our planet and reducing the environmental damage arising from their use. For these reason there is a growing need for the efficient upgrading of the heavy oil streams for a better utilization of every barrel of oil produced and for bringing to production also the huge reserves of unconventional fossil sources, such as the heavy oils and the tar sands. Since several years many companies have R and D project aimed to the conversion of heavy residues through a hydrocracking slurry technology, which, with respect to other competing technologies, such as those based on fixed or ebullated bed, can convert all the feedstock to distillates, avoiding the production of fuel oil or coke. In this lecture the advancement in this area will be presented and discussed, highlighting the potentiality offered by the improvement of the catalyst system. (orig.)

  19. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12.

    Science.gov (United States)

    Kang, Du-Kyeong; Lee, Cho-Ryong; Lee, Sun Hee; Bae, Jung-Hoon; Park, Young-Kwon; Rhee, Young Ha; Sung, Bong Hyun; Sohn, Jung-Hoon

    2017-05-28

    Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of P HAs from crude s ludge p alm oil ( SPO) a s an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

  20. The effect of commercial processing procedures on 14C-carbendazim residues in soybean oil and tomato

    International Nuclear Information System (INIS)

    Peng Genyuan; Wang Huaguo; Qi Mengwen; Wang Fujun; Zhou Changjiu

    1994-01-01

    Under simulated agricultural practices, soybean plants were treated with 14 C-labelled carbendazim during the blooming stage. The residue in seeds was determined to be 0.067 ppm; corresponding to 0.076 ppm respectively. After subjecting the oil to degumming, alkali treatment, bleaching and deodorization, 53.7% of original radioactivity was removed. Deodorization was the most effect process, removing about 20% of the residue. The concentration of residues in the deodorized oil decreased about 30%. In soybean seed and cake, the residue was mainly present as carbendazim, the concentration of the other metabolites did not exceed 30% of the residue. Tomatoes grown on a field plot were treated with 14 C-carbendazim. After harvest, the tomatoes were processed into tomato juice and canned whole fruit. The magnitude and nature of residues in samples taken at several processing steps were determined to evaluate the effect of commercial processing on removing or eliminating the residues. The results showed that the surface residues on tomato would be removed efficiently by simple washing of tomato. A buffer solution of phosphate had the highest efficiency. Tomato juice contained lower residues than canned whole fruit

  1. The effect of commercial processing procedures on {sup 14}C-carbendazim residues in soybean oil and tomato

    Energy Technology Data Exchange (ETDEWEB)

    Genyuan, Peng; Huaguo, Wang; Mengwen, Qi; Fujun, Wang; Changjiu, Zhou [Laboratory for the Application of Nuclear Techniques, Beijing Agricultural University, Beijing (China)

    1994-06-01

    Under simulated agricultural practices, soybean plants were treated with {sup 14}C-labelled carbendazim during the blooming stage. The residue in seeds was determined to be 0.067 ppm; corresponding to 0.076 ppm respectively. After subjecting the oil to degumming, alkali treatment, bleaching and deodorization, 53.7% of original radioactivity was removed. Deodorization was the most effect process, removing about 20% of the residue. The concentration of residues in the deodorized oil decreased about 30%. In soybean seed and cake, the residue was mainly present as carbendazim, the concentration of the other metabolites did not exceed 30% of the residue. Tomatoes grown on a field plot were treated with {sup 14}C-carbendazim. After harvest, the tomatoes were processed into tomato juice and canned whole fruit. The magnitude and nature of residues in samples taken at several processing steps were determined to evaluate the effect of commercial processing on removing or eliminating the residues. The results showed that the surface residues on tomato would be removed efficiently by simple washing of tomato. A buffer solution of phosphate had the highest efficiency. Tomato juice contained lower residues than canned whole fruit.

  2. Characterization of enzymatically extracted sunflower seed oil as well as the protein residues

    Directory of Open Access Journals (Sweden)

    Sitohy, M. Z.

    1993-12-01

    Full Text Available Sunflower seed oil was enzymatically extracted with six different enzymes: cellulase, hemicellulase, animal proteinase, acid proteinase, pectinase and pectinex under the following conditions: substrate concentration in phosphate buffer (0.5M, pH 5 30%, enzyme concentration 2% (E/S, temperature 50°C and time 3 hours. The obtained oils were analyzed for physicochemical properties and fatty acid profiles. The protein residues were analyzed for amino acid compositions. The results showed that the enzymatic extraction with cellulase or hemicellulase could maintain good oil quality of the extracted oils as their levels of linoleic and oleic acids recorded similar values to those of the control oil extracted with organic solvents. Also the level of iodine value was in the same level of control. On the other hand, the use of proteases in the enzymatic extraction of sunflower seed oil caused some reductions in the levels of the unsaturated fatty acids as well as the iodine value. The pectinases showed a similar trend to that of the proteinase with the least recovery of linoleic acid among the different oils under study. Similarly, the use of cellulases did not change the amino acid composition of the protein residue as compared to the control, in the contrary to the extraction with the proteinases which caused reduction of some amino acids from the protein residues especially lysine, leucine, iso-leucine, alanine, arginine and aspartic. In that respect the use of pectinases behaved similar to cellulases.

    Aceite de semilla de girasol fue extraído enzimáticamente con seis enzimas diferentes: celulasa, hemicelulasa, proteinasa animal, proteinase acida, pectinasa y pectinex bajo las condiciones siguientes: concentración de sustrato en tampón fosfato (0,5M, pH 5 30%, concentración enzimática 2% (E/S, temperatura 50°C y tiempo 3 horas. Los aceites obtenidos fueron analizados por sus propiedades fisicoquímicas y perfiles de ácidos grasos

  3. CFD (Computational Fluid Dynamics) simulators and thermal cracking of heavy oil and ultraheavy residues using microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jardini, Andre L.; Bineli, Aulus R.R.; Viadana, Adriana M.; Maciel, Maria Regina Wolf; Maciel Filho, Rubens [State University of Campinas (UNICAMP), SP (Brazil). School of Chemical Engineering; Medina, Lilian C.; Gomes, Alexandre de O. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Barros, Ricardo S. [University Foundation Jose Bonifacio (FUJB), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In this paper, the design of microreactor with microfluidics channels has been carried out in Computer Aided Design Software (CAD) and constructed in rapid prototyping system to be used in chemical reaction processing of the heavy oil fractions. The flow pattern properties of microreactor (fluid dynamics, mixing behavior) have been considered through CFD (computational fluid dynamics) simulations. CFD calculations are also used to study the design and specification of new microreactor developments. The potential advantages of using a microreactor include better control of reaction conditions, improved safety and portability. A more detailed crude assay of the raw national oil, whose importance was evidenced by PETROBRAS/CENPES allows establishing the optimum strategies and processing conditions, aiming at a maximum utilization of the heavy oil fractions, towards valuable products. These residues are able to be processed in microreactor, in which conventional process like as hydrotreating, catalytic and thermal cracking may be carried out in a much more intensified fashion. The whole process development involves a prior thermal study to define the possible operating conditions for a particular task, the microreactor design through computational fluid dynamics and construction using rapid prototyping. This gives high flexibility for process development, shorter time, and costumer/task oriented process/product development. (author)

  4. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  5. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge.

    Science.gov (United States)

    Ziels, Ryan M; Karlsson, Anna; Beck, David A C; Ejlertsson, Jörgen; Yekta, Sepehr Shakeri; Bjorn, Annika; Stensel, H David; Svensson, Bo H

    2016-10-15

    Codigesting fats, oils, and greases with municipal wastewater sludge can greatly improve biomethane recovery at wastewater treatment facilities. Process loading rates of fats, oils, and greases have been previously tested with little knowledge of the digester microbial community structure, and high transient fat loadings have led to long chain fatty acid (LCFA) accumulation and digester upsets. This study utilized recently-developed quantitative PCR assays for syntrophic LCFA-degrading bacteria along with 16S amplicon sequencing to relate changes in microbial community structure to LCFA accumulation during transient loading increases to an anaerobic codigester receiving waste restaurant oil and municipal wastewater sludge. The 16S rRNA gene concentration of the syntrophic β-oxidizing genus Syntrophomonas increased to ∼15% of the Bacteria community in the codigester, but stayed below 3% in the control digester that was fed only wastewater sludge. Methanosaeta and Methanospirillum were the dominant methanogenic genera enriched in the codigester, and together comprised over 80% of the Archaea community by the end of the experimental period. Constrained ordination showed that changes in the codigester Bacteria and Archaea community structures were related to measures of digester performance. Notably, the effluent LCFA concentration in the codigester was positively correlated to the specific loading rate of waste oil normalized to the Syntrophomonas 16S rRNA concentration. Specific loading rates of 0-1.5 × 10(-12) g VS oil/16S gene copies-day resulted in LCFA concentrations below 30 mg/g TS, whereas LCFA accumulated up to 104 mg/g TS at higher transient loading rates. Based on the community-dependent loading limitations found, enhanced biomethane production from high loadings of fats, oils and greases can be achieved by promoting a higher biomass of slow-growing syntrophic consortia, such as with longer digester solids retention times. This work also

  6. Bioconversion of oil sludge into biomass of lipid metabolites for use as a source of biofuel

    Science.gov (United States)

    Shchemelinina, T. N.; Matistov, N. V.; Markarova, M. Yu; Anchugova, E. M.

    2018-01-01

    The possibilities for the generation of biofuel from the results of the accumulation of lipids in oil-contaminated environments were studied. This type of accumulation occurs in the biomass of yeast strains Rhodotorula sp. VKM Y-2993D; in bacteria like Pseudomonas libanensis B-3041D and in consortia of microalgal strains such as Acutodesmus obliquus Syko-A Ch-055-12, Chlorella sp. SYKO A Ch-011-10, Monoraphidium sp., and Anabaena sp. The most promising of these for processing petroleum hydrocarbons into biofuels was found to be the consortium of microalgal strains, the content of palmitic acid of which reached 49.0 %, thereby achieving a mid-range cetane number.

  7. Recycle of valuable products from oily cold rolling mill sludge

    Science.gov (United States)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.

    2013-10-01

    Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.

  8. Exploiting the energy potential of waste activated sludge with MicroSludge[Manure, biosolids, and organic industrial/commercial residuals in land applications programs : improving beneficial reuse and protection of water quality

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, R.; Laliberte, S. [Paradigm Environmental Technologies, Vancouver, BC (Canada); Nemeth, L. [Earth Tech Canada Inc., Burnaby, BC (Canada)

    2007-07-01

    When waste activated sludge (WAS) is efficiently converted to biogas through anaerobic digestion, the energy potential and economic value of WAS can be exploited. This paper discussed the chemical and pressure pre-treatment process using MicroSludge. MicroSludge uses alkaline pre-treatment to weaken cell membranes and a high-pressure homogenizer to liquefy the cells, enabling the anaerobic digester to work at a higher rate and more efficiently, destroying pathogens and generating less biosolids for disposal, with corresponding higher volumes of methane from which to generate added electrical power and/or produce added heat. MicroSludge was demonstrated at the Chilliwack waste water treatment plant (WWTP), located 115 km east of Vancouver. The paper provided a description of the Chilliwack WWTP and discussed the application of MicroSludge at a full-scale prototype plant. The MicroSludge plant was capable of pre-treating all of the waste secondary sludge generated at the Chilliwack WWTP prior to anaerobic digestion. The paper also discussed digester hydraulic retention time; scanning electron microscope images; temperature; pH; mass loading of primary sludge and waste activated sludge; total volatile solids concentrations; and digester gas composition. Operating and maintenance costs were also outlined along with electrical power costs, maintenance costs and chemical costs. Last, the paper presented the energy benefits for WWTPs when using MicroSludge. It was concluded that the economic benefits of MicroSludge are greater for plants with higher biosolids disposal costs and higher electrical utility costs. 6 refs., 8 tabs., 10 figs.

  9. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    Science.gov (United States)

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia.

    Science.gov (United States)

    Jasmine, Jublee; Mukherji, Suparna

    2015-02-01

    Oily sludge obtained from a refinery in India contained 10-11% oil associated with fine particulates. Along with Fe, Ca and Mg various toxic elements were associated with the sludge solids (Pb, Mn, Cu, Zn, As, Bi, Cd, Cr, Co, Ni and V). The oil contained 41-56% asphaltenes and the maltenes comprised of 49 ± 4%, 42 ± 2% and 4 ± 2%, aliphatic, aromatic and polar fractions, respectively. Biodegradation studies with the maltene fraction of oil provided as sole substrate revealed higher degradation by various 3-5 membered reconstituted consortia compared to pure bacterial strains and up to 42 ± 8% degradation could be achieved over 30 days. In contrast, over the same period up to 71.5 ± 2% oil degradation could be achieved using dried oily sludge (15% w/v) as sole substrate. Significant biodegradation observed in the un-inoculated controls indicated the presence of indigenous microorganisms in oily sludge. However, large variability in oil degradation was observed in the un-inoculated controls. Greater biodegradation of the maltene fraction led to significant enrichment of asphaltenes in residual oil associated with the sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hydrogenizing oils, asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    1925-03-14

    The hydrogenation of carbonaceous solids in presence of combined sulfur, e.g., sulfides as described in the parent specification is applied to the treatment of rock oils, shale oils, resins, ozokerite, asphalt, and the like, or fractions, residues, or acid sludge or other conversion products thereof, alone or mixed. Preferably the hydrogen or other reducing gas is in excess and under pressure, and is either circuited or led through a series of treatment vessels, hydrogen being added for that used. In an example, residues from American crude oil are passed continuously with hydrogen at 200 atmospheres and 450 to 500/sup 0/C over pressed precipitated cobalt sulfide, the issuing gases being cooled to condense the light oil produced.

  12. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus.

    Science.gov (United States)

    Zheng, Lirong; Zheng, Pu; Sun, Zhihao; Bai, Yanbing; Wang, Jun; Guo, Xinfu

    2007-03-01

    A new technology of transforming ferulic acid, which was from waste residue of rice bran oil, into vanillin was developed by a combination of fungal strains Aspergillus niger CGMCC0774 and Pycnoporus cinnabarinus CGMCC1115. Various concentrations of ferulic acid were compared, and the highest yield reached 2.2 g l(-1) of vanillic acid by A. niger CGMCC0774 in a 25 l fermenter when concentration of ferulic acid was 4 g l(-1). The filtrate of A. niger CGMCC0774 culture was concentrated and vanillic acid in the filtrate was bio-converted into vanillin by P. cinnabarinus CGMCC1115. The yield of vanillin reached 2.8 g l(-1) when 5 g l(-1) of glucose and 25 g of HZ802 resin were supplemented in the bioconversion medium. The 13C isotope analysis indicated that delta13C(PDB) of vanillin prepared was much different from chemically synthesized vanillin.

  13. Uptake of Heavy Metal Residues from Sewerage Sludge in the Milk of Goat and Cattle during Summer Season

    Directory of Open Access Journals (Sweden)

    Bilal Aslam, Ijaz Javed*, Faqir Hussain Khan and Zia-ur-Rahman

    2011-01-01

    Full Text Available Uptake of different heavy metal residues including cadmium (Cd, chromium (Cr, nickel (Ni, led (Pb, arsenic (As, and mercury (Hg were determined in goat and cattle milk collected from two areas, each consisted of three sites. Area 1 was selected in the North-East and Area 2 in the North-West of Faisalabad city along the main sewerage drains. Levels of Cd, Cr, Ni, Pb, As and Hg in the milk of goat and cattle were higher than the most reported values in the literature. The levels of heavy metal residues in the milk of cattle from Area 1 were higher than those present in cattle milk from Area 2. However, in case of goat milk the residual values from Area 1 and Area 2 were non-significantly different. It was concluded that the levels of Cd, Cr, Ni, Pb, As and Hg in the milk of goat and cattle were higher than reported values in the literature.

  14. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  15. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2011-05-01

    Full Text Available Currently, semi-refined and refined vegetable oils are used as a feedstock in biodiesel production. However, due to competition with conventional fossil fuel, economic reasons, shortage supply of food and its social impact on the global scale has somewhat slowed the development of biodiesel industry. Studies have been conducted to recover oil from mill palm oil operation especially from the spent bleaching earth. Hence, the study was to investigate the potential recovery of oil from spent bleaching earth to be used as a feedstock for biodiesel production. The effect of different types of catalysts (sodium hydroxide alkali and sulfuric acid catalysts on biodiesel yield was studied. In addition, the effect of volume addition of methanol to the weight of spent bleaching earth on the product yield was also studied. Furthermore, the effect of ratio of hexane to methanol was also carried out to determine its product yield. The studies were carried out in an in-situ biodiesel reactor system and the biodiesel product was analyzed using gas chromatography mass spectrometry. Result shows that the use of alkali catalyst produced the highest yield of biodiesel and the most optimum biodiesel yield was obtained when the methanol to spent bleaching earth ratio was 3.2:1 (gram of methanol: gram of SBE and hexane to methanol ratio of 0.6:1 (volume of hexane: volume of methanol. © 2011 BCREC UNDIP. All rights reserved(Received: 19th December 2010, Revised: 10th May 2011; Accepted: 18th May 2011[How to Cite: R. Mat, O.S. Ling, A. Johari, M. Mohamed. (2011. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 53-57. doi:10.9767/bcrec.6.1.678.53-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.678.53-57 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/678 ] | View in 

  16. STUDY OF ASPHALT BINDER OIL RESIDUE AND MUNICIPAL SOLID WASTE ASH TO BE USED IN LOW TRAFFIC PAVEMENTS

    Directory of Open Access Journals (Sweden)

    Michéle Dal Toé Casagrande

    2014-12-01

    Full Text Available The great generation of urban solid has been a concern in several countries. This work presents a study with two materials: the asphalt binder oil residue accumulated in the bottom of asphalt tanks and the municipal solid waste ash, to be used, respectively, as a substitute of conventional binder in asphalt mixtures and for soil stabilization in pavements base layers. Were evaluated properties as the mechanical behavior of the mixtures through experimental tests. The results show the potential of incorporating these residues for low traffic roads, allowing the construction of low cost roads and an environmental use of the residue.

  17. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    Directory of Open Access Journals (Sweden)

    Kanlayanee Meesap

    2012-01-01

    Full Text Available The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS and oil and grease (O&G concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD, SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae.

  18. Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks.

    Science.gov (United States)

    Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza

    2017-07-31

    In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.

  19. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria

    Directory of Open Access Journals (Sweden)

    Shu-Yuan Chiou

    2015-12-01

    Full Text Available Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM reduced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2 and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1 expression and addition of zinc protoporphyrin (ZnPP, a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

  20. Characterization of hams added with nut residual pastes from the mechanical extraction of oil

    Directory of Open Access Journals (Sweden)

    Juan José Luna Guevara

    2013-06-01

    Full Text Available Nuts contain in their composition nutrients and bioactive compounds that when consumed in sufficient amounts may provide health benefits. In this study was evaluated the influence of the addition of residual pastes (10%, obtained from the extraction of oil from walnut (Juglans regia L., pecan (Carya illinoinensis (Wangenh. K. Koch, variety Western Shley, and peanut (Arachis hypogaea, on the modification of some textural, proximate, physicochemical, microbiological and sensory characteristics of cooked hams. Hams were stored at 4 ° C for 21 days. Hams containing pastes significantly increased (P ≤ 0.05 the protein, fat, and total fiber content. Hams added with paste presented a less rigid structures (P ≤ 0.05. The color parameters (L*, a*, and b* of hams decrease slightly during the storage time, except for the ham added with walnut paste, which was darker. The nut pastes contributed significantly (P ≤ 0.05 to decrease the shelf life of hams. However, the yeast and mold counts in ham were less than 10 CFU/g at 21 days of storage. aw and pH decreased significantly (P ≤ 0.05 and syneresis increased during storage. Hams added with residual pastes were well sensory accepted regarding color, aroma, taste, appearance, and overall acceptability.

  1. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction.

    Science.gov (United States)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gómez-Muñoz, Beatriz; García-Ruiz, Roberto

    2016-12-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Recent developments in Ecuadorian policies to foster environmentally friendly agroforestry and industrial practices have led to widespread interest in reusing the waste. This study evaluated the application of four vermicomposts (VMs), which are produced from the waste of the Palo Santo fruit distillation in combination with other raw materials (kitchen leftovers, pig manure, goat manure, and King Grass), for agrochemical use and for carbon (C) and nitrogen (N) decomposition in two soils with different textures. The results showed that the vermicompost mixtures (VMM) were valuable for agricultural utilisation, because total N (min. 2.63%) was relatively high and the C/N ratio (max. 13.3), as well as the lignin (max. 3.8%) and polyphenol (max. 1.6%) contents were low. In addition, N availability increased for both soil types after the application of the VMM. In contrast, N became immobile during decomposition if the VM of the pure waste was added. This likely occurred because of the relatively low total N (1.16%) content and high C/N ratio (35.0). However, the comparatively low C decomposition of this VM type makes its application highly recommendable as a strategy to increase the levels of organic matter and C, as well as for soil reclamation. Overall, these results suggest that the residues of the Palo Santo essential oil extraction are a potential source for vermicompost production and sustainable agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound

    Science.gov (United States)

    Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.

    2017-07-01

    This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.

  3. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  4. Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in sewage sludge amended soil.

    Science.gov (United States)

    Gautam, Meenu; Agrawal, Madhoolika

    2017-05-01

    Lemongrass is a commercially important perennial herb with medicinal value and ability to tolerate high alkaline and saline conditions. Essential oil bearing plants can grow safely in soil contaminated with heavy metals without severe effects on morphology and oil yield. The present study was aimed to assess the essential oil content and composition in lemongrass in response to elevated metals in above-ground plant parts. Pot experiment was conducted for six months using sewage sludge as soil amendment (soil: sludge: 2:1 w/w) followed by red mud treatments (0, 5, 10 and 15% w/w). Garden soil without sludge and red mud was control and there were ten replicates of each treatment. Oil content in leaves was differently affected due to presence of metals in soil under different treatments. Oil content under S RM5 (5% red mud) treatment was raised by 42.9 and 11.5% compared to the control and S RM0 treatment, respectively. Among identified compounds in oil under red mud treatments, 17 compounds contributed more than 90% of total volatiles (citral contributing approximately 70%). Under S RM10 treatment, essential oil showed maximum citral content (75.3%). Contents of Fe, Zn, Cu, Cd, Ni and Pb in above-ground plant parts exceeded, whereas Mn was detected within WHO permissible limits for medicinal plants. However, metal contents in essential oil were well within FSSAI limits for food. The study suggests utilization of 5 and 10% red mud in sludge amended soil for lemongrass cultivation to have better oil yield and quality, without metal contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  6. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery context

    Directory of Open Access Journals (Sweden)

    Paloma Manzanares

    2017-12-01

    Full Text Available Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB, extracted olive pomace (EOP and olive leaves (OL that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  7. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorization proposal in a biorefinery contex

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P.; Ruiz, E.; Ballesteros, M.; Negro, M.J.; Gallego, F.J.; López-Linares, J.C.; Castro, E.

    2017-07-01

    Olive crop and olive oil industry generates several residues, i.e., olive tree pruning biomass (OTPB), extracted olive pomace (EOP) and olive leaves (OL) that could be used to produce high-added value products in an integrated biorefinery. OTPB is generated in the field as a result of pruning operation to remove old branches; EOP is the main residue of the pomace olive oil extracting industry after extraction with hexane of residual oil contained in olive pomace; and OL comes from the olive cleaning process carried out at olive mills, where small branches and leaves are separated by density. In this work, an analysis of the potential of OTPB, EOP and OL residues was addressed by estimating the production volumes at national level and the spatial distribution of these residues using geographic information system software. Information provided by public institutions and personal surveys to the industries was evaluated. Moreover, chemical analysis of the residues was undertaken and the results used to make a first assessment of valorization into biofuels such as bioethanol and bio based chemicals. Results show that close to 4.2 million tons/year of EOP, OL and OTPB derived from olive oil industry and olive tree cultivation in Spain could be available as a raw material for biorefineries in Spain. The analysis of the chemical characteristics indicates the relevant potential of these feedstocks for the production of bioethanol and other compounds such as phenols based on suitable processing and conversion routes, although techno-economic evaluations must be tackled to refine this approach.

  8. Assessment of bioavailability of weathered oil residues using caged bivalves (Crassostrea gigas and Mytilus edulis) as indicator organisms

    International Nuclear Information System (INIS)

    Bleczinski, C.F.; Costa, H.J.; Rigatti, M.J.; Wong, M.C.; Boehm, P.D.

    1993-01-01

    In April 1988, an estimated 400,000 gallons of San Joaquin Valley crude oil spilled into Peyton Slough and subsequently into Suisun Bay from an oil refinery in Martinez, California. The crude oil initially impacted a number of ecologically sensitive environments including estuarine water, marsh grasses, marsh and shoreline sediment, and intertidal sediment. A four-year oil weathering study was performed to determine the concentrations of environmentally important compounds in the stranded oil, to monitor changes in these concentrations over time, and to assess the potential long-term impact of the spilled oil in these various environments. As a result of marked differences in the rate of weathering at the different sites, a bioaccumulation component was added to the original study design in order to assess the bioavailability of crude oil residues remaining four-years post spill. Caged bivalves (Crassostrea gigas and Mytilus edulis) were deployed at the three study sites as sentinel organisms and exposed for three months. Sediments and organism tissues were analyzed using gas chromatography/mass spectrometry for polynuclear aromatic hydrocarbon (PAH) assemblages characteristics of the spilled oil. Advanced hydrocarbon fingerprinting techniques (e.g., double ratio plots of characteristic alkyl PAHs) were used to match distributions in the organisms and in the study site sediments

  9. Characterization of sludges of La Golondrina WWTP: sludges as final containers of the domestic wastewater pollution; Caracterizacion de fangos de la EDAR La Golondrina (EMACSA-Cordoba): su funcion como receptores finales de la contaminacion del agua residual urbana

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Alonso Perez de siles, L.; Rojas Moreno, F. J.

    2005-07-01

    Treatment of wastewater is to concentrate the original pollution in a by-product: the wastewater sludge or bio-solid. As example, La Golondrina WWTP (Cordoba-spain) promotes the production of 1,3 kg of sludge per m''3 of wastewater, yielding logically a treated water according to laws. Furthermore, the treatment process there applied reduces the levels of nine majority metals (Cu, Fe, Mn, Pb, Cd, Ni, Cr, Zn, Hg) from 2,72 mg/l to 1.42 mg/l in the treated water, generating almost, a sludge agrees with the spanish normative to sludge intended to agricultural use (its main fate). Summarizing, the treatment of wastewater supposes the concentration of the original biodegradable load into the sludge around 340 times, while metals exhibited a different concentration degree for each one (from 10.000 times for Fe, u pto 1-2 times for Cd and Hg). Finally, the concentration degree of a metal in the sludge is mainly led by the removed concentration of metal in the treatment process, and after, by the original concentration of metal in the influent wastewater. (Author) 24 refs.

  10. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  11. Time course of pulmonary burden in mice exposed to residual oil fly ash

    Directory of Open Access Journals (Sweden)

    Giovanna Marcella Cavalcante Carvalho

    2014-09-01

    Full Text Available Residual oil fly ash (ROFA is a common pollutant in areas where oil is burned. This particulate matter with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25±5 g were randomly divided into 7 groups and intranasally instilled with either 10 µL of sterile saline solution (0.9% NaCl, CTRL or ROFA (0.2 µg in 10 L of saline solution. Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure, neutrophils (in blood and bronchoalveolar lavage fluid were determined at 6 h in CTRL and at 6, 24, 48, 72, 96 and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons, and organochlorines. Lung resistive pressure augmented early (6 h in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for four days and disappeared spontaneously.

  12. Time course of pulmonary burden in mice exposed to residual oil fly ash.

    Science.gov (United States)

    Carvalho, Giovanna Marcella Cavalcante; Nagato, Lilian Katiê da Silva; Fagundes, Sheila da Silva; Dos Santos, Flávia Brandão; Calheiros, Andrea Surrage; Malm, Olaf; Bozza, Patricia Torres; Saldiva, Paulo Hilário N; Faffe, Débora Souza; Rocco, Patricia Rieken Macedo; Zin, Walter Araujo

    2014-01-01

    Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously.

  13. Capillary-Physics Mechanism of Elastic-Wave Mobilization of Residual Oil

    Science.gov (United States)

    Beresnev, I. A.; Pennington, W. D.; Turpening, R. M.

    2003-12-01

    Much attention has been given to the possibility of vibratory mobilization of residual oil as a method of enhanced recovery. The common features of the relevant applications have nonetheless been inconsistency in the results of field tests and the lack of understanding of a physical mechanism that would explain variable experiences. Such a mechanism can be found in the physics of capillary trapping of oil ganglia, driven through the pore channels by an external pressure gradient. Entrapping of ganglia occurs due to the capillary pressure building on the downstream meniscus entering a narrow pore throat. The resulting internal-pressure imbalance acts against the external gradient, which needs to exceed a certain threshold to carry the ganglion through. The ganglion flow thus exhibits the properties of the Bingham (yield-stress) flow, not the Darcy flow. The application of vibrations is equivalent to the addition of an oscillatory forcing to the constant gradient. When this extra forcing acts along the gradient, an instant "unplugging" occurs, while, when the vibration reverses direction, the flow is plugged. This asymmetry results in an average non-zero flow over one period of vibration, which explains the mobilization effect. The minimum-amplitude and maximum-frequency thresholds apply for the mobilization to occur. When the vibration amplitude exceeds a certain "saturation" level, the flow returns to the Darcy regime. The criterion of the mobilization of a particular ganglion involves the parameters of both the medium (pore geometry, interfacial and wetting properties, fluid viscosity) and the oscillatory field (amplitude and frequency). The medium parameters vary widely under natural conditions. It follows that an elastic wave with a given amplitude and frequency will always produce a certain mobilization effect, mobilizing some ganglia and leaving others intact. The exact macroscopic effect is hard to predict, as it will represent a response of the populations

  14. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China); Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China)

    2014-04-01

    Highlights: • Pyrolysis is a technology for recycling of the non-metal fraction of PCBs. • Liquid product constituents were analyzed for PCB pyrolysis. • Water-soluble ionic species were determined for PCB pyrolysis exhaust. - Abstract: Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200–500 °C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)–MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25–28 mg/g, iron 1.3–1.7 mg/g, tin 0.8–1.0 mg/g and magnesium 0.4–1.0 mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68–73%, hydrogen was 10–14%, nitrogen was 4–5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500 °C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust.

  15. A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, AB. Aziz Abdul; Daud, Zawawi; Ahmad, Zulkifli [Faculty of Civil and Enviromental Engineering, University Tun Hussein Onn (Malaysia)

    2011-07-01

    Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR) and hydraulic retention time (HRT) of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28{+-}2 C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37{+-}1 C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD) removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  16. Natural radioactivity in petroleum residues

    International Nuclear Information System (INIS)

    Gazineu, M.H.P.; Gazineu, M.H.P.; Hazin, C.A.; Hazin, C.A.

    2006-01-01

    The oil extraction and production industry generates several types of solid and liquid wastes. Scales, sludge and water are typical residues that can be found in such facilities and that can be contaminated with Naturally Occurring Radioactive Material (N.O.R.M.). As a result of oil processing, the natural radionuclides can be concentrated in such residues, forming the so called Technologically Enhanced Naturally Occurring Radioactive Material, or T.E.N.O.R.M.. Most of the radionuclides that appear in oil and gas streams belong to the 238 U and 232 Th natural series, besides 40 K. The present work was developed to determine the radionuclide content of scales and sludge generated during oil extraction and production operations. Emphasis was given to the quantification of 226 Ra, 228 Ra and 40 K since these radionuclides,are responsible for most of the external exposure in such facilities. Samples were taken from the P.E.T.R.O.B.R.A.S. unity in the State of Sergipe, in Northeastern Brazil. They were collected directly from the inner surface of water pipes and storage tanks, or from barrels stored in the waste storage area of the E and P unit. The activity concentrations for 226 Ra, 228 Ra and 40 K were determined by using an HP Ge gamma spectrometric system. The results showed concentrations ranging from 42.7 to 2,110.0 kBq/kg for 226 Ra, 40.5 to 1,550.0 kBq/kg for 228 Ra, and 20.6 to 186.6 kBq/kg for 40 K. The results highlight the importance of determining the activity concentration of those radionuclides in oil residues before deciding whether they should be stored or discarded to the environment. (authors)

  17. Determination of residual oil saturation from time-lapse pulsed neutron capture logs in a large sandstone reservoir

    International Nuclear Information System (INIS)

    Syed, E.V.; Salaita, G.N.; McCaffery, F.G.

    1991-01-01

    Cased hole logging with pulsed neutron tools finds extensive use for identifying zones of water breakthrough and monitoring oil-water contacts in oil reservoirs being depleted by waterflooding or natural water drive. Results of such surveys then find direct use for planning recompletions and water shutoff treatments. Pulsed neutron capture (PNC) logs are useful for estimating water saturation changes behind casing in the presence of a constant, high-salinity environment. PNC log surveys run at different times, i.e., in a time-lapse mode, are particularly amenable to quantitative analysis. The combined use of the original open hole and PNC time-lapse log information can then provide information on remaining or residual oil saturations in a reservoir. This paper reports analyses of historical pulsed neutron capture log data to assess residual oil saturation in naturally water-swept zones for selected wells from a large sandstone reservoir in the Middle East. Quantitative determination of oil saturations was aided by PNC log information obtained from a series of tests conducted in a new well in the same field

  18. Accelerated artificial aging of particleboards from residues of CCB treated Pinus sp. and castor oil resin

    Directory of Open Access Journals (Sweden)

    Marília da Silva Bertolini

    2013-04-01

    Full Text Available Tests simulating exposure to severe weather conditions have been relevant in seeking new applications for particleboard. This study aimed to produce particleboards with residues of CCB (chromium-copper-boron oxides impregnated Pinus sp. and castor oil-based polyurethane resin, and to evaluate their performance before and after artificial accelerated aging. Panels were produced with different particle mass, resin content and pressing time, resulting eight treatments. Particles moisture and size distribution were determined, beyond panel physical and mechanical properties, according to NBR14810-3: 2006. After characterization, treatments B and G (small adhesive consumption and better mechanical performance, respectively were chosen to artificial aging tests. Statistical results analysis showed best performances were achieved for waterproof aged samples, of both B and G treatments. As example, in treatment B, MOR and MOE values were 23 MPa and 2,297 MPa, samples before exposure; 26 MPa and 3,185 MPa, 32 MPa and 3,982 MPa for samples after exposure (non-sealed and sealed, respectively.

  19. Catalytic copyrolysis of cork oak and bio-oil distillation residue

    Science.gov (United States)

    Lee, Yejin; Oh, Daejun; Kim, Young-Min; Jae, Jungho; Jung, Sang-Chul; Jeon, Jong-Ki; Kim, Sang Chai; Park, Young-Kwon

    2018-01-01

    The atmospheric distillation residue (ADR) of cork oak (CO) pyrolysis oil was used as the co-feeding material for the catalytic pyrolysis of CO over HZSM-5 catalysts to improve the formation of aromatic hydrocarbons. Although the non-catalytic copyrolysis of CO and ADR did not improve the formation of aromatic hydrocarbons, the catalytic copyrolysis of CO and ADR promoted the synergistic formation of aromatic hydrocarbons. HZSM-5(30), having a lower SiO2/Al2O3(30), showed better performance for the formation of aromatic hydrocarbons than HZSM-5(80) because of its higher acidity. The catalytic copyrolysis of CO and ADR also decreased the formation of coke. The largest quantity of aromatic hydrocarbons was obtained from the catalytic copyrolysis of CO and ADR over HZSM-5 (30) at 600 °C, whereas the lowest coke yield was achieved at 700 °C. When the catalyst to sample ratio was increased from 2:1 to 5:1, the synergistic formation of aromatic hydrocarbons was limited, resulting in a lower experimental yield of aromatic hydrocarbons than the theoretical yield. A lower coke yield was also achieved at a high catalyst to sample ratio (5:1).

  20. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel

    DEFF Research Database (Denmark)

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments...... extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production...

  1. Optimization of the protein concentration process from residual peanut oil-cake

    Directory of Open Access Journals (Sweden)

    Gayol, M. F.

    2013-12-01

    Full Text Available The objective of this study was to find the best process conditions for preparing protein concentrate from residual peanut oil-cake (POC. The study was carried out on POC from industrial peanut oil extraction. Different protein extraction and precipitation conditions were used: water/ flour ratio (10:1, 20:1 and 30:1, pH (8, 9 and 10, NaCl concentration (0 and 0.5 M, extraction time (30, 60 and 120 min, temperature (25, 40 and 60 °C, extraction stages (1, 2 and 3, and precipitation pH (4, 4.5 and 5. The extraction and precipitation conditions which showed the highest protein yield were 10:1 water/flour ratio, extraction at pH 9, no NaCl, 2 extraction stages of 30 min at 40 °C and precipitation at pH 4.5. Under these conditions, the peanut protein concentrate (PC contained 86.22% protein, while the initial POC had 38.04% . POC is an alternative source of protein that can be used for human consumption or animal nutrition. Therefore, it adds value to an industry residue.El objetivo de este trabajo fue encontrar las mejores condiciones para obtener un concentrado de proteínas a partir de la torta residual de maní (POC. El estudio se llevó a cabo en POC provenientes de la extracción industrial de aceite de maní. Se utilizaron distintas condiciones para la extracción y precipitación de proteínas: relación agua / harina (10:1, 20:1 y 30:1, pH de extracción (8, 9 y 10, concentración de NaCl (0 y 0,5 M, tiempo de extracción (30, 60 y 120 min, temperatura (25, 40 y 60 °C, número de etapas de extracción (1, 2 y 3, y el pH de precipitación (4, 4,5 y 5. Las condiciones de extracción y de precipitación que mostraron mayor rendimiento de proteína fueron: relación de 10:1 en agua / harina, pH de extracción de 9, en ausencia de NaCl, 2 etapas de extracción de 30 min cada una a 40 °C y el pH de precipitación de 4,5. En estas condiciones, el concentrado de proteína de maní (PC fue de 86,22%, mientras que el porcentaje de proteínas de

  2. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    International Nuclear Information System (INIS)

    Sivasankari, R; Kumaran, P; Normanbhay, Saifuddin; Shamsuddin, Abd Halim

    2013-01-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  3. Computed Tomographic-Guided Radiofrequency Ablation of Recurrent or Residual Hepatocellular Carcinomas around Retained Iodized Oil after Transarterial Chemoembolization

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Young Hwan [Center for Liver Cancer, National Cancer Center, Goyang 410-769 (Korea, Republic of); Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang 410-769 (Korea, Republic of); Choi, Joon-Il [Center for Liver Cancer, National Cancer Center, Goyang 410-769 (Korea, Republic of); Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang 410-769 (Korea, Republic of); Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Kim, Hyun Beom [Center for Liver Cancer, National Cancer Center, Goyang 410-769 (Korea, Republic of); Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang 410-769 (Korea, Republic of); Kim, Min Ju [Department of Radiology, Research Institute and Hospital, National Cancer Center, Goyang 410-769 (Korea, Republic of)

    2013-07-01

    To assess the clinical efficacy, safety, and risk factors influencing local tumor progression, following CT-guided radiofrequency ablation (RFA) of recurrent or residual hepatocellular carcinoma (HCC), around iodized oil retention. Sixty-four patients (M : F = 51 : 13, 65.0 ± 8.2 years old) with recurrent or residual HCC (75 index tumors, size = 14.0 ± 4.6 mm) had been treated by CT-guided RFA, using retained iodized oil as markers for targeting. The technical success, technique effectiveness rate and complications of RFA were then assessed. On pre-ablative and immediate follow-up CT after RFA, we evaluated the size of enhancing index tumors and iodized oil retention, presence of abutting vessels, completeness of ablation of iodized oil retention, and the presence of ablative margins greater than 5 mm. Also, the time interval between transarterial chemoembolization and RFA was assessed. The cumulative local tumor progression rate was calculated using the Kaplan-Meier method, and the Cox proportional hazards model was adopted, to clarify the independent factors affecting local tumor progression. The technical success and technique effectiveness rate was 100% and 98.7%, respectively. Major complications were observed in 5.6%. The cumulative rates of local tumor progression at 1 and 2 years were 17.5% and 37.5%, respectively. In multivariate analyses, partial ablation of the targeted iodized oil retention was the sole independent predictor of a higher local tumor progression rate. CT-guided RFA of HCC around iodized oil retention was effective and safe. Local tumor progression can be minimized by complete ablation of not only index tumors, but targeted iodized oil deposits as well.

  4. Material balance of two sewage sludge incineration systems; Methods and results - disposal of solid residues. Stoffflussanalyse bei zwei Klaerschlammverbrennungsanlagen; Methodik und Ergebnisse - Entsorgung der festen Rueckstaende

    Energy Technology Data Exchange (ETDEWEB)

    Staeubli, B. (Abt. Abfallwirtschaft des Amtes fuer Gewaesserschutz und Wasserbau des Kantons Zuerich (Switzerland)); Keller, C. (Elektrowatt Ingenieurunternehmung AG, Zurich (Switzerland))

    1993-02-01

    Material balances were analyzed in two Swiss sewage sludge combustion plants. The methodology is described. Aspects of the standards set for waste management in Switzerland are described. The two incinerations are described. The volumes and compositions of the sewage sludges and all gaseous, liquid, and solid products are gone into. The possibilities of recycling and dumping of combustion products are reviewed in consideration of the volumes and compositions of combustion products. The text is supplemented by tables and flowsheets. (orig.)

  5. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  6. Feasibility study on energy saving and environmental improvement via utilization of residual oil at Petron Bataan Refinery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A feasibility study has been performed on reduction of global warming gas emission at Bataan Refinery of Petron Company in the Republic of the Philippines by utilizing residual oil in the refinery at high efficiency. In the project, installation will be implemented on thermal power generation equipment using a low-speed diesel engine that uses residual oil as fuel, and a waste heat recovered steam generation system having NOx removing equipment at Bataan Revinary of Petron Company, in addition to the existing boiler-turbine power generation system. As a result of the discussions, the annual energy saving effect in 8 years after the installation will correspond to crude oil of 50,409 tons, and in 20 years cumulatively, it will correspond to 1,017,224 tons. The annual reduction of the global warming gas emission in 8 years after the installation will be 131,698 t-CO2, or 2,657,599 t-CO2 for 20 years cumulatively. The total investment amount for these facilities is about 4.1 billion yen, whereas the investment and energy saving effects were 10.7 tons of crude oil equivalent/year-one million yen. In addition, the investment and global warming gas emission reducing effects were 28.1 t-CO2/year-one million yen. (NEDO)

  7. The H-Oil process: a worldwide leader in vacuum residue hydro processing

    Energy Technology Data Exchange (ETDEWEB)

    Colyar, J.J.; Wisdom, L.I.; Koskas, A.

    1996-12-31

    The h-Oil process is a catalytic hydrocracking process which is used to convert and upgrade petroleum residua and heavy oils. This paper discusses additional background information on the H-Oil process, some of the key advances made to the process and applications for the Latin America market. 5 refs., 6 tabs.., 2 figs.

  8. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    Science.gov (United States)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  9. [Pretreatment of oil palm residues by dilute alkali for cellulosic ethanol production].

    Science.gov (United States)

    Zhang, Haiyan; Zhou, Yujie; Li, Jinping; Dai, Lingmei; Liu, Dehua; Zhang, Jian'an; Choo, Yuen May; Loh, Soh Kheang

    2013-04-01

    In the study, we used oil palm residues (empty fruit bunch, EFB) as raw material to produce cellulosic ethanol by pretreatment, enzymatic hydrolysis and fermentation. Firstly, the pretreatment of EFB with alkali, alkali/hydrogen peroxide and the effects on the components and enzymatic hydrolysis of cellulose were studied. The results show that dilute alkali was the suitable pretreatment method and the conditions were first to soak the substrate with 1% sodium hydroxide with a solid-liquid ratio of 1:10 at 40 degrees C for 24 h, and then subjected to 121 degrees C for 30 min. Under the conditions, EFB solid recovery was 74.09%, and glucan, xylan and lignin content were 44.08%, 25.74% and 13.89%, respectively. After separated with alkali solution, the pretreated EFB was washed and hydrolyzed for 72 h with 5% substrate concentration and 30 FPU/g dry mass (DM) enzyme loading, and the conversion of glucan and xylan reached 84.44% and 89.28%, respectively. We further investigated the effects of substrate concentration and enzyme loading on enzymatic hydrolysis and ethanol batch simultaneous saccharification and fermentation (SSF). The results show that when enzyme loading was 30 FPU/g DM and substrate concentration was increased from 5% to 25%, ethanol concentration were 9.76 g/L and 35.25 g/L after 72 h fermentation with Saccharomyces cerevisiae (inoculum size 5%, V/V), which was 79.09% and 56.96% of ethanol theory yield.

  10. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study

    International Nuclear Information System (INIS)

    Erlich, Catharina; Fransson, Torsten H.

    2011-01-01

    The downdraft gasification technology has an increased interest among researchers worldwide due to the possibility to produce mechanical and electrical power from biomass in small-scale to an affordable price. The research is generally focused on improvement of the performance and optimizing of a certain gasifier, on testing different fuels, on increasing the user-friendliness of the gasifier and on finding other uses for the product gas than in an IC-engine, for example liquid fuel production. The main objective with the gasification tests presented here is to further contribute in the field by studying the impact of the char bed properties such as char bed porosity and pressure drop on the gasification performance as well as the impact of fuel particle size and composition on the gasification process in one and the same gasifier. In addition, there is very little gasification data available in literature of 'before disregarded' fuels such as sugar cane bagasse from sugar/alcohol production and empty fruit bunch (EFB) from the palm-oil production. By pelletizing these residues, it is possible to introduce them into downdraft gasification technology which has been done in this study. The results show that one and the same reactor can be used for a variety of fuels in pellet form, but at varying air-fuel ratios, temperature levels, gas compositions and lower heating values. Gasification of wood pellets results in a richer producer gas while EFB pellets give a poorer one with higher contents of non-combustible compounds. In this gasification study, there is almost linear relation between the air-fuel ratio and the cold-gas efficiency for the studied fuels: Higher air-fuel ratios result in better efficiency. The pressure drop in the char bed is higher for more reactive fuels, which in turn is caused by low porosity char beds.

  11. Treatment of Lignin and Waste residues by Flash Pyrolysis

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Trinh, Ngoc Trung; Dam-Johansen, Kim

    pyrolysis properties were compared with the pyrolysis properti es of wood and straw. The PCR treatment of sewage sludge provides an oil that can be used for energy pur poses and a solid residue rich in in organic nutrients that may be used as fertilizer product. By fast pyroly sis of lignin from the IBUS...... be operated at low rotational speed was constructed. The new rotor systems should make it easier to make an up-scaling of the process....

  12. Pentachlorophenol (PCP) sludge recycling unit

    International Nuclear Information System (INIS)

    1994-08-01

    The Guelph Utility Pole Company treats utility poles by immersion in pentachlorophenol (PCP) or by pressure treatment with chromated copper arsenate (CCA). The PCP treatment process involves a number of steps, each producing a certain amount of sludge and other wastes. In a plant upgrading program to improve processing and treatment of poles and to reduce and recycle waste, a PCP recovery unit was developed, first as an experimental pilot-scale unit and then as a full-scale unit. The PCP recovery unit is modular in design and can be modified to suit different requirements. In a recycling operation, the sludge is pumped through a preheat system (preheated by waste heat) and suspended solids are removed by a strainer. The sludge is then heated in a tank and at a predetermined temperature it begins to separate into its component parts: oil, steam, and solids. The steam condenses to water containing low amounts of light oil, and this water is pumped through an oil/water separator. The recovered oil is reused in the wood treatment process and the water is used in the CCA plant. The oil remaining in the tank is reused in PCP treatment and the solid waste, which includes small stones and wood particles, is removed and stored. By the third quarter of operation, the recovery unit was operating as designed, processing ca 10,000 gal of sludge. This sludge yielded 6,500 gal of water, 3,500 gal of oil, and ca 30 gal of solids. Introduction of the PCP sludge recycling system has eliminated long-term storage of PCP sludge and minimized costs of hazardous waste disposal. 4 figs

  13. Soy Sauce Residue Oil Extracted by a Novel Continuous Phase Transition Extraction under Low Temperature and Its Refining Process.

    Science.gov (United States)

    Zhao, Lichao; Zhang, Yong; He, Liping; Dai, Weijie; Lai, Yingyi; Yao, Xueyi; Cao, Yong

    2014-04-09

    On the basis of previous single-factor experiments, extraction parameters of soy sauce residue (SSR) oil extracted using a self-developed continuous phase transition extraction method at low temperature was optimized using the response surface methodology. The established optimal conditions for maximum oil yield were n-butane solvent, 0.5 MPa extraction pressure, 45 °C temperature, 62 min extraction time, and 45 mesh raw material granularity. Under these conditions, the actual yield was 28.43% ± 0.17%, which is relatively close to the predicted yield. Meanwhile, isoflavone was extracted from defatted SSR using the same method, but the parameters and solvent used were altered. The new solvent was 95% (v/v) ethanol, and extraction was performed under 1.0 MPa at 60 °C for 90 min. The extracted isoflavones, with 0.18% ± 0.012% yield, mainly comprised daidzein and genistein, two kinds of aglycones. The novel continuous phase transition extraction under low temperature could provide favorable conditions for the extraction of nonpolar or strongly polar substances. The oil physicochemical properties and fatty acids compositions were analyzed. Results showed that the main drawback of the crude oil was the excess of acid value (AV, 63.9 ± 0.1 mg KOH/g) and peroxide value (POV, 9.05 ± 0.3 mmol/kg), compared with that of normal soybean oil. However, through molecular distillation, AV and POV dropped to 1.78 ± 0.12 mg KOH/g and 5.9 ± 0.08 mmol/kg, respectively. This refined oil may be used as feedstuff oil.

  14. Impact of residual glycerides on viscosity of biodiesel (waste and rapeseed oil blends)

    OpenAIRE

    Z. Jurac; L. Pomenić

    2013-01-01

    Purpose: Biodiesel, mixture of fatty acid methyl esters is a biodegradable alternative fuel that is obtained from renewable sources as a vegetable oils or animal fats. Use of waste cooking oils reduce the cost of raw materials for biodiesel production and also reduces the environment pollution. Moreover, pure edible vegetable oils for biodiesel production have an ethical significance because food is used to produce fuel. The aim of this work is a presentation of effects that r...

  15. Properties and Beneficial Uses of (BioChars, with Special Attention to Products from Sewage Sludge Pyrolysis

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2018-03-01

    Full Text Available Residual sludge disposal costs may constitute up to, and sometimes above, 50% of the total cost of operation of a Wastewater Treatment Plant (WWTP and contribute approximately 40% of the total greenhouse gas (GHG emissions associated with its operation. Traditionally, wastewater sludges are processed for: (a reduction of total weight and volume to facilitate their transfer and subsequent treatments; (b stabilization of contained organic material and destruction of pathogenic microorganisms, elimination of noxious odors, and reduction of putrefaction potential and, at an increasing degree; (c value addition by developing economically viable recovery of energy and residual constituents. Among several other processes, pyrolysis of sludge biomass is being experimented with by some researchers. From the process, oil with composition not dissimilar to that of biodiesels, syngas, and a solid residue can be obtained. While the advantage of obtaining sludge-derived liquid and gaseous fuels is obvious to most, the solid residue from the process, or char (also indicated as biochar by many, may also have several useful, initially unexpected applications. Recently, the char fraction is getting attention from the scientific community due to its potential to improve agricultural soils’ productivity, remediate contaminated soils, and supposed, possible mitigation effects on climate change. This paper first discusses sludge-pyrolysis-derived char production fundamentals (including relationships between char, bio-oil, and syngas fractions in different process operating conditions, general char properties, and possible beneficial uses. Then, based on current authors’ experiments with microwave-assisted sludge pyrolysis aimed at maximization of liquid fuel extraction, evaluate specific produced char characteristics and production to define its properties and most appropriate beneficial use applications in this type of setting.

  16. Biodiesel Production from Residual Palm Oil Contained in Spent Bleaching Earth by In Situ Trans-Esterification

    Directory of Open Access Journals (Sweden)

    A S Fahmil QRM

    2014-06-01

    Full Text Available Spent Bleaching Earth (SBE is an industrial solid waste of vegetable oil industry that has a high residual oil to be potentialy converted to biodiesel. This study aims at developing a biodiesel production process technology by utilizing residual palm oil contained in SBE and to test the use of hexane in the trans-esterification process. Optimization process was done by using the Response Surface Method (RSM. The variables studied included catalyst concentration and reaction time. On the other hand, the deoiled SBE resulted from biodiesel production was tested as an adsorbent on biodiesel purification after being reactivated. The method used in the biodiesel production included an in situ acid catalysed esterification followed by in situ base catalysed trans-esterification. The results of RSM showed that the optimum process was obtained at NaOH concentration of 1.8% and reaction time of 104.73 minutes, with a predicted response rate of 97.18% and 95.63% for validation results. The use of hexane could also increase the yield of biodiesel which was obtained on the ratio of hexane to methanol of 0.4:1 (volume of hexane: volume of methanol. On the other hand, the reactivated bleaching earth was effective as an adsorbent in biodiesel production, which was still conform with the Indonesian National Standard.

  17. Could residual oil from the Exxon Valdez spill create a long-term population "sink" for sea otters in Alaska?

    Science.gov (United States)

    Monson, Daniel H.; Doak, Daniel F.; Ballachey, Brenda E.; Bodkin, James L.

    2011-01-01

    Over 20 years ago, the Exxon Valdez oil tanker spilled 42 million L of crude oil into the waters of Prince William Sound, Alaska, USA. At the time of the spill, the sea otter (Enhydra lutris) population inhabiting the spill area suffered substantial acute injuries and loss. Subsequent research has resulted in one of the best-studied species responses to an oil spill in history. However, the question remains: Is the spill still influencing the Prince William Sound sea otter population? Here we fit time-varying population models to data for the sea otter population of western Prince William Sound to quantify the duration and extent of mortality effects from the spill. We hypothesize that the patchy nature of residual oil left in the environment has created a source-sink population dynamic. We fit models using the age distributions of both living and dying animals and estimates of sea otter population size to predict the number of sea otters in the hypothesized sink population and the number lost to this sink due to chronic exposure to residual oil. Our results suggest that the sink population has remained at just over 900 individuals (95% CI: 606-960) between 1990 and 2009, during which time prime-age survival remained 2-6% below pre-spill levels. This reduced survival led to chronic losses of ???900 animals over the past two decades, which is similar in magnitude to the number of sea otter deaths documented in western Prince William Sound during the acute phase of the spill. However, the unaffected source population appears to be counterbalancing these losses, with the model indicating that the sea otter population increased from ???2150 individuals in 1990 to nearly 3000 in 2009. The most optimistic interpretation of our results suggests that mortality effects dissipated between 2005 and 2007. Our results suggest that residual oil can affect wildlife populations on time scales much longer than previously believed and that cumulative chronic effects can be as

  18. Research within the coordinated programme on isotopic-tracer-aided studies of chemical residues in cotton seed, oil, feed and related products

    International Nuclear Information System (INIS)

    Qureshi, M.J.

    1981-06-01

    14 C-methyl and 14 C-ring-labelled carbaryl (1-naphthyl-N-methyl carbamate) were used to study the fate and magnitude of the insecticide in the plant and cotton seed products. Under conditions of actual agricultural practice, 0.08-0.09, 0.23-0.30 and 0.05 mg/kg of 14 C-residues were found in the seed, crude oil and cake respectively. In oil, the residue was resolved into 4 compounds, 2 identified as carbaryl and 1-naphthol. Residues from the soil did not exceed 0.3 mg/kg after the first week and declined to 0.1 mg/kg after 5 weeks. Parallel experiments were conducted under field conditions using 14 C-phenyl leptophos (4-bromo-2,5-dichlorophenyl methyl phenyl phosphorothioate). Leptophos residues were determined in the cotton seed products during 1975, 1976 and 1977, with mean values for leptophos residues in the cotton seed, crude oil and cake of 0.26, 1.10 and 0.07 mg/kg, respectively. Experiments with non-labelled monocrotophos [3-(dimethoxy phosphinyloxy)-N-methyl cis-crotonamide] gave residues of 0.30, 1.56 and 0.02 mg/kg in the seed, crude oil and cake, respectively. Carbaryl residues in two local maize varieties were determined by a colorimetric method. Cooking in aqueous, oil or aqueous-oil media led to 63-83% loss of carbaryl residues, after 30 minutes. Storage of corn oil for one year had essentially no effect on the concentration of carbaryl residues under laboratory conditions (presumably similar to regular storage conditions). An overall effect of simulated commercial processing procedures (saponification, deodorization and winterization) gave a loss of 70% of the original carbaryl in the oil. Commercial cooking procedures for national popular dishes resulted in near-complete elimination of carbaryl residues (up to 98%). Frying onions and potatoes in carbaryl-spiked corn oil for 3 min. up to 210 0 C resulted in 55-60% loss of the residue

  19. Radiotracer studies on the fate and transformation of pesticide residues in the environment and food chains. Part of a coordinated programme on isotopic-tracer-aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Lee, S.R.

    1980-10-01

    The magnitude and fate of some pesticide chemicals in Korean foods were studied with particular reference to oil-bearing crops and related products. Application of the chemicals was made under conditions of actual agricultural practice. Analytical methodologies included nuclear activation, gas chromatographic, spectrophotometric and radiotracer techniques. Residues of benzene hexachloride, heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin and DDT found in refined vegetable oil samples were below or within the tolerance limits set by international organizations and as such, these are unlikely to present any toxicological hazard to the consumer. Also, residues of the herbicides nitrogen, alachlor and butachlor applied to oil-bearing crops were not detected in the seeds. Studies on 14 C-BHC residues in rice revealed that polishing and washing play an important role in removing a considerable portion of the residue. Data on the arsenic-containing neoasozine residues suggest that the products consumed by the human (grain and oil) contained residues below the tolerance limit and are unlikely to present any toxicological hazard to the consumer. On the other hand, relatively high arsenic concentrations (2.2 mg/kg) were found in the cake (serving as animal feed) and should be carefully evaluated in the light of toxicological data

  20. GKSS-workshop: contaminated sludges. Treatment and utilization fine graned residues; GKSS-Workshop: Kontaminierte Schlaemme. Behandlung und Nutzungsmoeglichkeiten feinkoerniger Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Alvermann, G.; Luther, G.; Niemeyer, B. [eds.] [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Zentralabteilung Technikum

    2000-07-01

    New regulations, such as the materials recycling act, soil protection act and unsolved problems related to the treatment of contaminated sludges, the utilisation of the gained products demand the development of innovative techniques for industrial, dredged or drilling sludges. The workshop offered a platform for intensive discussions between representatives of industry, research institutions, associations, and authorities. The main aim of the workshop was the presentation of fundamental background of sludge processing and advanced technical solutions. The available proceedings contain 21 lectures held on the workshop with the following ranges of topics of the sludge treatment: legislation, R and D-funding, technological bases, decontamination processes, dewatering and drying processes, recycling and immobilization. (orig.) [German] Neue Gesetze wie das Kreislaufwirtschafts- oder das Bundes-Bodenschutzgesetz und anstehende Probleme bei der Beseitigung belasteter Schlaemme - zum Beispiel Industrie-, Bohr- und Baggergutschlaemme - erfordern die Entwicklung innovativer Techniken zu ihrer Aufbereitung, Reinigung bzw. Verwertung. Der Workshop bot ein Formung zur intensiven Diskussion zwischen Industrie, Forschung, Verbaenden und Behoerden. Ziel war es, unterschiedliche Methoden der Schlammbehandlung zu eroertern, Loesungswege aufzuzeigen und Moeglichkeiten fuer Kooperationen zu erarbeiten. Der vorliegende Band enthaelt Beitraege der Referenten, die sich auf folgende Themenbereiche der Schlammbehandlung konzentrieren: juristische Aspekte, Foerdermoeglichkeiten, Grundlagen, Aufbereitung von Schlaemmen, Entwaesserung und Trocknung von Schlaemmen, Verwertung und Immobilisierung. (orig.)

  1. Refinery plugging by residual oil gellant chemicals in crude : understanding and preventing the problem through new oil gellant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Cheng, A.; Tamayo, C.; Funkhouser, G.P. [Halliburton, Calgary, AB (Canada); Stemler, P. [Petro-Canada Oil and Gas, Inc., Calgary, AB (Canada); Lemieux, A. [Omnicon Consultants Inc., Edmonton, AB (Canada)

    2004-07-01

    Phosphate ester oil gellants are the most prevalent oil gellant technology in use by service companies. However, in 1995, they were found to be responsible for plugging distillation trays at 3 refineries across Canada including Imperial Oil's Strathcona refinery in Edmonton, Petro-Canada's refinery in Oakville, Ontario and Chevron's refinery in Burnaby, British Columbia. Since 1998, additional fouling has occurred in Canada, and in 2002, fouling was detected at a refinery in Pennsylvania while processing Canadian sweet, light crude. Since refiners pay a high cost for unscheduled refinery shutdowns, much effort has gone into solving this problem and to maintain the value of Canadian sweet, light crude. Studies by the Canadian Crude Quality Technical Association (CCQTA) have shown that phosphate esters begin to decompose through hydrolysis of the ester linkage at approximately 240 degrees. Gases cool as they move up the tower through distillation trays. Trays in the temperature range of 230 to 290 degrees C produce most of the volatile phosphorous compounds that condense out of the gas phase and cause plugging, thereby reducing the efficiency of distillation. Phosphate esters are often used with a metal crosslinker such as ferric iron or aluminium to gel hydrocarbons for use as a fracturing fluid. This paper described the advantages of existing ferric iron-crosslinked phosphate ester oil gels over the older, alternative oil gellant chemistries. Carbon dioxide-miscible, gelled hydrocarbon fracturing fluids provide better well stimulation by avoiding capillary pressure effects associated with water-based fluids. The fluid properties of the new phosphonate ester system were compared to those of a conventional phosphate ester system. Field tests from two fracturing treatments were also presented. Plugging did not occur with the new phosphonate ester treatment. 6 refs., 1 tab., 12 figs.

  2. Radiochemical determination of 210 Pb and 226Ra in petroleum sludges and scales

    International Nuclear Information System (INIS)

    Araujo, Andressa Arruda de

    2005-01-01

    The oil extraction and production, both onshore and offshore, can generate different types of residues, such as sludge, that is deposited in the water/oil separators, valves and storage tanks and scales, which form i the inner surface of ducts and equipment. Analyses already carried out through gamma spectrometry indicated the existence of high radioisotope concentration. However, radionuclides emitting low-energy gamma-rays, such as 210 Pb, are hardly detected by that technique. Consequently, there is a need to test alternative techniques to determine this and other radionuclides from the 238 U series. This work, therefore, focuses on the radiochemical determination of the concentration of 210 Pb, and 226 Ra in samples of sludge and scale from the oil processing stations of the UN-SEAL, a PETROBRAS unit responsible for the exploration and production of petroleum in Sergipe and Alagoas. The sludge and scale samples went through a preliminary process of extraction of oil, in order to separate the solid phase, where the largest fraction of the radioactivity is concentrated. After oil removal, the samples were digested using alkaline fusion as an option for dissolution. Finally, their activity concentration was determined for the samples of sludge and scales, using and alternative radiochemical method, which is based on ionic exchange. The activity concentration found for 210 Pb varied from 1,14 to 507,3 kBq kg -1 . The values for 226 Ra were higher, varying from 4,36 to 3.445 kBq kg -1 . The results for 226 Ra were then compared with the ones found for the same samples of sludge and scales using gamma spectrometry. The results of the comparison confirm the efficiency of the methodology used int hi work, that is, radiochemical determination by means of ionic exchange. (author)

  3. A tiered analytical protocol for the characterization of heavy oil residues at petroleum-contaminated hazardous waste sites

    International Nuclear Information System (INIS)

    Pollard, S.J.T.; Kenefick, S.L.; Hrudey, S.E.; Fuhr, B.J.; Holloway, L.R.; Rawluk, M.

    1994-01-01

    The analysis of hydrocarbon-contaminated soils from abandoned refinery sites in Alberta, Canada is used to illustrate a tiered analytical approach to the characterization of complex hydrocarbon wastes. Soil extracts isolated from heavy oil- and creosote-contaminated sites were characterized by thin layer chromatography with flame ionization detection (TLC-FID), ultraviolet fluorescence, simulated distillation (GC-SIMDIS) and chemical ionization GC-MS analysis. The combined screening and detailed analytical methods provided information essential to remedial technology selection including the extent of contamination, the class composition of soil extracts, the distillation profile of component classes and the distribution of individual class components within various waste fractions. Residual contamination was characteristic of heavy, degraded oils, consistent with documented site operations and length of hydrocarbon exposure at the soil surface

  4. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation.

    Science.gov (United States)

    Guerra, Alaine B; Oliveira, Jorge S; Silva-Portela, Rita C B; Araújo, Wydemberg; Carlos, Aline C; Vasconcelos, Ana Tereza R; Freitas, Ana Teresa; Domingos, Yldeney Silva; de Farias, Mirna Ferreira; Fernandes, Glauber José Turolla; Agnez-Lima, Lucymara F

    2018-04-01

    Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Prevention of refinery tower plugging by residual oil gellant chemicals in crude : pilot plant evaluation of alternative oil gellants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Fyten, G.C.; Tamayo, C.; Funkhouser, G.P. [Haliburton, Houston, TX (United States); Lemieux, A.; Blackmore, T. [Omnicon Consultants Inc., Calgary, AB (Canada)

    2007-07-01

    Previous studies have described refinery plugging caused by volatile phosphorus components originating from phosphate ester oil gellants as well as two successful field trials of new phosphonate ester oil gellants, which were demonstrated to address this problem. Additional field testing of phosphonate ester gellants directed at optimization of cost and performance has also been previously studied. This paper presented the results of a follow-up study to these previous investigations, as new modified phosphate ester systems were expected to become commercial that would reduce volatile phosphorus. Several questions that required further investigation were discussed in this paper. These included the comparative ability of phosphonate and modified phosphate esters to control volatile phosphorus; tower fouling at higher temperatures in the presence of steam; and, organic halide formations under distillation tower conditions. The paper presented the results of full-scale pilot plant testing that was performed over several days with flowback captured after actual fracturing treatments in order to serve as a guide to the selection of oil gellant systems for reduction of refinery tower and heat exchanger fouling. The study measured fouling of a tray inserted in the pilot plant distillation tower as well as fouling of the packing material. Any changes in operating parameters such as rate, temperature, or pressure over the time of each test were also noted, as these could also be indicative of fouling. 3 refs., 2 tabs., 17 figs.

  6. PHYSICOCHEMICAL CHARACTERISTICS, PESTICIDE RESIDUE AND AFLATOXIN CONTAMINATION OF COLD PRESSED PUMPKIN SEED (Cucurbita pepo L. OILS FROM CENTRAL ANATOLIA REGION OF TURKEY

    Directory of Open Access Journals (Sweden)

    FATMA NUR ARSLAN

    2017-06-01

    Full Text Available In this study, physicochemical characteristics, pesticide residues and aflatoxin contaminations of cold pressed pumpkin seed (Cucurbita pepo L. oils cultivated in four different central Anatolia regions of Turkey, were investigated. Lab-scale screw press machine was used to produce cold pressed pumpkin seed oils and the oil contents were found between 42.8%−47.4% for naked seeds. The physicochemical characteristic (refractive index, viscosity, color value, triglyceride profile analysis, peroxide value, iodine value, free fatty acid, saponification number, unsaponified matter, specific extinction values at 232 and 270 nm of cold pressed oils were determined by using different analytical techniques. The results showed that there was a non-significant difference between cold pressed pumpkin seed oils from different regions, in terms of physicochemical characteristics. The contents of pesticide residue and aflatoxin B1, B2, G1 and G2 contamination were determined by using validated UHPLC-MS/MS method. The chlorpyrifos pesticide residue was detected under the limit value declared by official authorities for the quality assessment of edible oils. Aflatoxins weren’t detected in any of studied pumpkin seed oils. Therefore, in food industry the positive effect of screw-pressing application could be useful for preservation of bioactive compounds during edible oil production and also enhancing of their functional properties.

  7. Evaluation of PAH depletion of subsurface Exxon Valdez oil residues remaining in Prince William Sound in 2007-2008 and their likely bioremediation potential

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R. [Louisville Univ., Louisville, KY (United States); Bragg, J.R. [Creative Petroleum Solutions LLC, Houston, TX (United States)

    2009-07-01

    This study examined the extent of oil weathering at the Exxon Valdez oil spill (EVOS) sites and estimated the bioremediation potential for shoreline segments by examining the depletion of total polycyclic aromatic hydrocarbons (PAHs) relative to an estimated applicability threshold of 70 per cent. The distribution of oil was examined by location and current ratios of nitrogen and non-polar oil in order to assess if biodegradation rates were nutrient-limited. The impact of sequestration on the effectiveness of bioremediation was also studied. Results of the study showed that the EVOS residues are patchy and infrequently found on sites that were heavily oiled in 1989. Only 0.4 per cent of the oil originally stranded in 1989 remained. The remaining EVOS residues are sequestered under boulder and cobble armour in areas with limited contact with flowing water. The study also showed that concentrations of nitrogen and dissolved oxygen in pore waters within strata adjacent to the sequestered oil can support biodegradation. Most remaining EVOS residues are highly weathered and biodegraded. It was concluded that nutrients added to the shorelines are unlikely to effectively contact the sequestered oil. 31 refs., 2 tabs., 14 figs.

  8. Carbaryl and monocrotophos residues in cottonseed products. Part of a coordinated programme on isotopic tracer-aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Pablo, F.E.

    1981-03-01

    Cotton plants of Deltapine variety were treated with carbaryl (naphthyl-1- 14 C), (6.7 mg/plant) three times at two week intervals. Seeds were collected at maturity and 14 C-residues were determined in the oil and cake by standard procedures. 14 C-carbaryl and/or metabolite residues were 0.42 and 0.15 mg/kg in the crude oil and cake respectively. Parallel studies were conducted with spectrophotometric techniques using p-nitrobenzene diazonium fluoborate as chromogenic agent. Applications were made three times at a rate of 14 mg/plant. Residues in the crude oil and cake were found to be 0.83 and 0.04 mg/kg respectively. The higher residue level in the oil - compared to the radiometric technique - probably relates to higher application rates. Cotton plants of Deltapine variety were treated with (N-methyl- 14 C) monocrotophos (0.09 mg/plant) three times at two week intervals, as recommended for agricultural practice. Seeds were collected at maturity and standard procedures for extraction, clean-up and paper and thin-layer chromatography were adopted for the ultimate determination of residues in seed, oil and cake. Parallel experiments, using spectrophotometric techniques, were made for comparison. 14 C-residues of monocrotophos and/or metabolites in cottonseed, crude oil and cake were found to be 0.06, 0.12 and 0.05 mg/kg respectively. Corresponding data obtained by non-nuclear techniques were 0.18, 0.42 and 0.15 mg/kg respectively. The discrepancy between the two sets of results may be related to different rates of application: 0.3 mg and 0.09 mg/plant for non-nuclear and radiometric techniques respectively. Among the major metabolites identified in the cottonseed were dimethyl phosphate and O-desmethyl monocrotophos. N-demethylated monocrotophos and sugar conjugates were also identified

  9. Bioremediation of Contaminated Soil with Oils Residuals through Bioaugmentation and Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Maitê Carla Deon

    2012-04-01

    Full Text Available The potential for soil contamination by oil spills is growing, due to heavy industrialization and economic development of countries. Due to this fact, the bioremediation has become an alternative to remediate areas through the use of biological agents. Two microorganisms, isolated from a lipid-rich effluent, were used in the bioaugmentation of soils contaminated with diesel oil, lubricating oil and soybean oil. Natural attenuation tests were conducted as controls. The removal of diesel fuel at the time of 21 d were of 18.5%, 7.30% and 11.38%, respectively, for the bioaugmentation with isolated I1 and I2 and natural attenuation. The removal of lubricating oil were 41.6%, 14.16% and 6.91% respectively for the bioaugmentation with the isolated I1 and I2 and natural attenuation, while for soybean oil removals were of 87 8%, 73.9% and 49.4%. Considering the processes of bioaugmentatiom and natural attenuation, the bioaugmentation with the isolated I1 showed better results, possibly due to the production of compounds capable of reducing the surface tension during the preparation of bioaugmentation.

  10. Application of environmental management system for a energetic plant with oil residual biomass; Aplicacion de un sistema de gestion medio ambiental a una planta generadora de energia que utiliza la biomasa residual del olivar

    Energy Technology Data Exchange (ETDEWEB)

    Linan Veganzones, M.J.; Soca Olazabal, N.; Pizarro Camacho, D

    1998-12-01

    Being the alpechin one of the most contaminant residues by the mediterranean agrarian industry, as of today there is no integral depuration procedure. In this paper we show the innovative approach being used to eliminate the alpechin along with the oil miller residual biomass. What it more, the only agroindustrial complex which has introduced such approach is using an EMAS so that actual achievements could be realistically measured. (Author) 12 refs.

  11. Prevention of refinery tower plugging by residual oil gellant chemicals in crude-pilot plant evaluation of alternative oil gellants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Fyten, G.C.; Cheng, A. [Halliburton Energy Services, Calgary, AB (Canada); Stemler, P.S. [Petro-Canada Oil and Gas Inc., Calgary, AB (Canada); Lemieux, A. [Omnicon Consultants Inc., Calgary, AB (Canada)

    2006-07-01

    Tower fouling at petroleum refineries is related to background volatile phosphorus components originating from phosphate ester oil gellants. In an attempt to reduce the cost of unplanned refinery shut downs, the Canadian Association of Petroleum Producers (CAPP) may institute a new specification in July 2006 of 0.5 ppm maximum volatile phosphorus in crude. In concept, volatile phosphorus can be removed from phosphate esters by eliminating volatile components in the original phosphate ester gellant. However, the issue of of whether modified phosphate esters can really reduce refinery tower fouling has been questioned. For that reason, this study focused on water hydrolysis which may occur in a distillation tower, causing localized areas of acidity and causticity. Halogenation reactions could occur in the presence of acid at high temperatures if halogen ions are present. The source of halide ions could be any salts that have not been removed in the de-salters. Full-scale testing at a pilot plant facility was conducted over several days with flowback captured after actual fracturing treatments. Fouling of distillation tower trays was measured along with fouling of the packing material. The study examined how fouling was influenced by changes in operating parameters such as rate, temperature, or pressure during each test. Three full-scale pilot evaluations were conducted using actual flowback fluids from fracturing treatments conducted with 3 different oil gellants: conventional phosphate ester, modified phosphate and phosphonate ester. The comparison of actual tower fouling between these alternative gellants can be used as a guide when choosing oil gellant systems to reduce refinery tower and heat exchanger fouling. It was concluded that phosphonate gellants are hydrolytically stable at higher temperatures and should minimize volatile phosphorus created through the hydrolysis of phosphate esters. However, they are more expensive since they are more complex to create

  12. Comprehensive profiling and marker identification in non-volatile citrus oil residues by mass spectrometry and nuclear magnetic resonance.

    Science.gov (United States)

    Marti, Guillaume; Boccard, Julien; Mehl, Florence; Debrus, Benjamin; Marcourt, Laurence; Merle, Philippe; Delort, Estelle; Baroux, Lucie; Sommer, Horst; Rudaz, Serge; Wolfender, Jean-Luc

    2014-05-01

    The detailed characterization of cold-pressed lemon oils (CPLOs) is of great importance for the flavor and fragrance (F&F) industry. Since a control of authenticity by standard analytical techniques can be bypassed using elaborated adulterated oils to pretend a higher quality, a combination of advanced orthogonal methods has been developed. The present study describes a combined metabolomic approach based on UHPLC-TOF-MS profiling and (1)H NMR fingerprinting to highlight metabolite differences on a set of representative samples used in the F&F industry. A new protocol was set up and adapted to the use of CPLO residues. Multivariate analysis based on both fingerprinting methods showed significant chemical variations between Argentinian and Italian samples. Discriminating markers identified in mixtures belong to furocoumarins, flavonoids, terpenoids and fatty acids. Quantitative NMR revealed low citropten and high bergamottin content in Italian samples. The developed metabolomic approach applied to CPLO residues gives some new perspectives for authenticity assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Insecticides authorized for use on olive trees and the relationship between their registration and residues in olive oil

    Directory of Open Access Journals (Sweden)

    Lentza-Rizos, Ch.

    1996-12-01

    Full Text Available In order to eliminate losses due to insect attack, several insecticides are used on olive trees. Their residues in olive oil constitute an important parameter of its quality and must be monitored regularly and kept as low possible in order to ensure consumer protection. In this paper the insecticides authorized for use on olive trees are listed and their ADIs and Codex Alimentarius MRLs reported. The existing registrations are discussed from the point of view of their residues in oil.

    Diversos insecticidas son usados para eliminar las pérdidas debidas al ataque de insectos en olivos. Sus residuos en el aceite de oliva constituyen un parámetro importante de su calidad y deben ser controlados con regularidad y mantenidos tan bajos como sea posible en orden a asegurar la protección del consumidor. En este artículo se incluyen los distintos insecticidas autorizados para su uso en olivos así como los valores de ingesta diaria aceptable para el hombre y los límites máximos autorizados de los mismos. Los registros existentes se discuten desde el punto de vista de sus residuos en el aceite.

  14. Method of removing radioactive waste from oil

    International Nuclear Information System (INIS)

    Belanger, R.L.

    1986-01-01

    This patent describes a method of removing particulates, radioactive contaminants, and moisture from oil, which consists of: straining out the particulates by passing the oil through a coarse filter screen to a receiving vessel; forming an upper stratum of oil and a lower stratum of sludge, consisting of mud, oil, particulates, and moisture, by heating the upper two-thirds of the receiving vessel; skimming off the stratum of oil from the receiving vessel; transferring the sludge from the receiving vessel to a container; transferring additional separated oil to the receiving vessel; conveying the oil skimmed from the receiving vessel to a mixing vessel; adding an effective amount of Calcium Hypochlorite crystals containing 65% free Chlorine to the mixing vessel to initiate salt formation with the radioactive contaminants; mixing the contents of the mixing vessel for at least ten minutes; transferring the mixture from the mixing vessel to a circulating heater; outputting the mixture from the circulating heater to a second mixing vessel; removing moisture from the oil; and filtering from the oil, the solid radioactive contaminant-salts and residual particulate matter

  15. Optimization of fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket fixed film bioreactor

    Directory of Open Access Journals (Sweden)

    Parviz Mohammadi

    2017-09-01

    Full Text Available Response surface methodology with a central composite design was applied to optimize fermentative hydrogen production from palm oil mill effluent (POME in an upflow anaerobic sludge blanket fixed film reactor. In this study, the concurrent effects of up-flow velocity (Vup and feed flow rate (QF as independent operating variables on biological hydrogen production were investigated. A broad range of organic loading rate between 10 and 60 g COD L−1 d−1 was used as the operating variables. The dependent parameters as multiple responses were evaluated. Experimental results showed the highest value of yield at 0.31 L H2 g−1 COD was obtained at Vup and QF of 0.5 m h−1 and 1.7 L d−1, respectively. The optimum conditions for the fermentative hydrogen production using pre-settled POME were QF = 2.0–3.7 L d−1 and Vup = 1.5–2.3 m h−1. The experimental results agreed very well with the model prediction.

  16. Mineral oil residues in soil and apple under temperate conditions of Kashmir, India.

    Science.gov (United States)

    Ahmad, Malik Mukhtar; Wani, Ashraf Alam; Sofi, Mubashir; Ara, Ishrat

    2018-03-09

    The study was undertaken to ascertain the persistence of Orchol-13, a mineral oil used against insect pests of horticultural fruit crops in soil and apple following the dormant and summer applications of 2 and 0.75% respectively. Soil samples were collected during dormant, while as both soil and apple samples were collected during summer season. Samples were collected at 0, 1, 3, and 5 days post treatment in both the seasons. Average recoveries of paraffinic constituents (which constitute about 60% of mineral oils by composition) from soil and apple at 1 μg ml -1 spiking level were found to be 74.18 and 76.81% respectively. The final quantification of paraffinic constituents was performed on gas chromatograph equipped with flame ionization detector (GC-FID). No paraffinic constituents of mineral oil could be detected in soil and apple at 0 day post treatment in both the seasons.

  17. Anaerobic digestion of residues from production and refining of vegetable oils as an alternative to conventional solutions.

    Science.gov (United States)

    Torrijos, M; Thalla, Arun Kumar; Sousbie, P; Bosque, F; Delgenès, J P

    2008-01-01

    The purpose of this work was to study the anaerobic digestion of by-products generated during the production and refining of oil with the objective of proposing an alternative solution (methanisation) to the conventional solutions while reducing the energy consumption of fossil origin on refinery sites. The production of sunflower oil was taken as example. Glycerine from the production of biodiesel was also included in this study. The results show that glycerine has a high potential for methanisation because of its high methane potential (465 ml CH4/g VS) and high metabolization rates (0.42 g VS/g VSS.d). The use of oil cake as substrate for anaerobic digestion is not interesting because it has a low methane potential of 215 ml CH4/g VS only and because it is easily recovered in animal feed. Six residues have quite a high methane potential (465 to 850 ml CH4/g VS) indicating a good potential for anaerobic digestion. However, they contain a mixture of rapidly and slowly biodegradable organic matter and the loading rates must remain quite low (0.03 to 0.09 g VS/g VSS.d) to prevent any accumulation of slowly biodegradable solids in the digesters. IWA Publishing 2008.

  18. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.

    Science.gov (United States)

    Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong

    2017-08-24

    Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.

  19. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  20. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  1. Oxidizing oils, etc. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    Penniman, W B.D.

    1926-03-02

    The oxidation of crude petroleum and its distillates, shale oils and tars, waxes, sludges, petroleum residues, asphaltic oils, asphalt, malthas, cracked oils and residues from cracking stills, wood tar oils and wood tar, peat and lignite distillates, coal tar oils and coal tars, and oils containing powdered coal, coke, oreat, sulphur in suspension, by passing air or other oxygen-containing gas through a layer of the material of a depth sufficient substantially to deoxygenate the air and c., is carried out in stages in a series of treatment zones, the pressure in at least one of the zones being above atmospheric pressre. The products of oxidation include acetaldehyde, propionaldehyde, formic, acetic, propionic, butyric, acrylic and phthalic acids, alcohols, acetone, solvents, gums, and substances adapted for use as motor fuels or burnign oils. The oxidizing gas may be enriched with oxygen or be diluted with steam, and its point of entry into the oil and c. layer may be varied to promote or retard settlement of suspended solids.

  2. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: cbd0044@yahoo.com [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2011-08-15

    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  3. An adaptive robust optimization scheme for water-flooding optimization in oil reservoirs using residual analysis

    NARCIS (Netherlands)

    Siraj, M.M.; Van den Hof, P.M.J.; Jansen, J.D.

    2017-01-01

    Model-based dynamic optimization of the water-flooding process in oil reservoirs is a computationally complex problem and suffers from high levels of uncertainty. A traditional way of quantifying uncertainty in robust water-flooding optimization is by considering an ensemble of uncertain model

  4. Characterization of Emissions and Residues from Simulations of the Deepwater Horizon Surface Oil Burns

    Science.gov (United States)

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent...

  5. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  6. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  7. Sewage sludge and how to sell it

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, I M

    1977-10-01

    Largo, Florida dries its sludge and sells it as fertilizer for $80 to $169/T. The sludge processing plant capable of turning common sludge into a dry, pelletized soil conditioner was only slightly more expensive than the previously proposed concrete drying beds which would have required disposal of the dried residue. The city's experience in setting up the plant and marketing the finished product is discussed. The true advantage of selling heat-dried sludge is that residents of the surrounding area, knowing the value of the product to their lawns and shrubs, will provide the transportation for the product and the physical labor to spread it over an area wider than most municipalities could afford to own or operate. The current production cost of $140/T is high, but the addition of a sludge prethickener-conditioner process and expected future economies of scale as the volume of sludge treated increases should lower per ton costs.

  8. Prevention of refinery plugging by residual oil gellant chemicals in crude-optimization of phosphonate ester oil gellants

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, A.; Alick, C.; Stadnyk, S.; Funkhouser, G.; Fyten, G.; Taylor, R.S. [Halliburton Energy Services, Calgary, AB (Canada); Stemler, P. [Petro-Canada Oil and Gas Inc., Calgary, AB (Canada)

    2005-07-01

    This study examined the use of phosphonate ester oil gellants for refinery plugging. Field tests were performed to test ways to optimize cost and performance and to establish quality control specifications based on performance testing and compositional analysis determined through nuclear magnetic resonance (NMR). Additional field tests were performed to ensure both operational performance and the ability to control volatile phosphorus while continuing to meet the standards of the 2 initial field trials. The study assessed the ability of phosphonate esters to control volatile phosphorus at higher temperatures. Distillations used to evaluate volatile phosphorus to date have had a 250 degree C end point. This temperature was chosen because it represents the approximate temperature experienced at the distillation tower trays where plugging has been observed from components condensing from the gas phase. However, the actual peak temperature in the tower bottom is closer to 350 degrees C. This higher temperature is the actual temperature at which decomposition or volatilization occurs. In order to fully understand the ability to control volatile phosphorus, distillations were conducted with a 350 degree C end point. Volatile and total phosphorus to both 250 degrees C and 350 degrees C end points were reported. The study also addressed the concern regarding organic halide formation under distillation tower conditions, although no organic halides were detected in the field trials. 3 refs., 2 tabs., 7 figs.

  9. Extraction and characterization of mandarin essential oil obtained from agroindustrial residues

    International Nuclear Information System (INIS)

    Navarrete, Carolina; Gil, Jesus; Durango, Diego; Garcia, Carlos

    2010-01-01

    In recent years, citrus national agroindustries have shown a significant momentum, led by the market expansion of fruit derivatives. This activity has resulted in the generation of large amounts of waste, which could have a potential as starting material for the development of commercial products with high added value such as essential oils (EO), fixed oils, and fibres among others. The EO have a strong demand in the food industry, pharmaceuticals, and cosmetics. This paper describes the extraction and characterization of mandarin EO obtained through steam distillation, of agroindustrial waste. The effect of vapour pressure, thickness, and the number of layers of plant material, were evaluated on the yield and quality of EO. The operating conditions were adjusted in accordance to the design characteristics of the extraction plant of a local company.

  10. Pesticides residues in water treatment plant sludge: validation of analytical methodology using liquid chromatography coupled to Tandem mass spectrometry (LC-MS/MS)

    International Nuclear Information System (INIS)

    Moracci, Luiz Fernando Soares

    2008-01-01

    The evolving scenario of Brazilian agriculture brings benefits to the population and demands technological advances to this field. Constantly, new pesticides are introduced encouraging scientific studies with the aim of determine and evaluate impacts on the population and on environment. In this work, the evaluated sample was the sludge resulted from water treatment plant located in the Vale do Ribeira, Sao Paulo, Brazil. The technique used was the reversed phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Compounds were previously liquid extracted from the matrix. The development of the methodology demanded data processing in order to be transformed into reliable information. The processes involved concepts of validation of chemical analysis. The evaluated parameters were selectivity, linearity, range, sensitivity, accuracy, precision, limit of detection, limit of quantification and robustness. The obtained qualitative and quantitative results were statistically treated and presented. The developed and validated methodology is simple. As results, even exploring the sensitivity of the analytical technique, the work compounds were not detected in the sludge of the WTP. One can explain that these compounds can be present in a very low concentration, can be degraded under the conditions of the water treatment process or are not completely retained by the WTP. (author)

  11. Rejuvenation of residual oil hydrotreating catalysts by leaching of foulant metals. Modelling of the metal leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Kam, E.K.T.; Stanislaus, A.; Absi-Halabi, M. [Petroleum Technology Department, Petroleum, Petrochemicals and Materials Division, Kuwait Institute for Scientific Research, Safat (Kuwait)

    1996-11-19

    Increasing emphasis has been paid in recent years on the development of processes for the rejuvenation of spent residual oil hydroprocessing catalysts, which are deactivated by deposition of metals (e.g. vanadium) and coke. As part of a research program on this subject, we have investigated selective removal of the major metal foulant from the spent catalyst by chemical leaching. In the present paper, we report the development of a model for foulant metals leaching from the spent catalyst. The leaching process is considered to involve two consecutive operations: (1) removal of metal foulants along the main mass transfer channels connected to the narrow pores until the pore structure begins to develop and (2) removal of metal foulants from the pore structure. Both kinetic and mass transfer aspects were considered in the model development, and a good agreement was noticed between experimental and simulated results

  12. Comparison of the phytoremediation potentials of Medicago falcata L. And Medicago sativa L. in aged oil-sludge-contaminated soil.

    Science.gov (United States)

    Panchenko, Leonid; Muratova, Anna; Turkovskaya, Olga

    2017-01-01

    Thirteen-year monitoring of the vegetation growing in the industrial and adjacent areas of an oil refinery showed the prevalence of yellow medick (Medicago falcata L.) over other plant species, including alfalfa (Medicago sativa L.). A comparative field study of the two Medicago species established that yellow medick and alfalfa exhibited similar resistance to soil petroleum hydrocarbons and that the pollutant concentration in their rhizosphere was 30% lower than that in the surrounding bulk soil. In laboratory pot experiments, yellow medick reduced the contaminant content by 18% owing to the degradation of the major heavy oil fractions, such as paraffins, naphthenes, and alcohol and benzene tars; and it was more successful than alfalfa. Both species were equally effective in stimulating the total number of soil microorganisms, but the number of hydrocarbon-oxidizing microorganisms, including polycyclic aromatic hydrocarbon degraders, was larger in the root zone of alfalfa. In turn, yellow medick provided a favorable balance of available nitrogen. Both Medicago species equally stimulated the dehydrogenase and peroxidase activities of the soil, and yellow medick increased the activity of soil polyphenol oxidase but reduced the activity of catalase. The root tissue activity of catalase, ascorbate oxidase, and tyrosinase was grater in alfalfa than in yellow medick. The peroxidase activity of plant roots was similar in both species, but nondenaturing polyacrylamide gel electrophoresis showed some differences in the peroxidase profiles of the root extracts of alfalfa and yellow medick. Overall, this study suggests that the phytoremediation potentials of yellow medick and alfalfa are similar, with some differences.

  13. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  14. Integrated Assessment of Palm Oil Mill Residues to Sustainable Electricity System (POMR-SES): A Case Study from Peninsular Malaysia

    Science.gov (United States)

    Jaye, I. F. Md; Sadhukhan, J.; Murphy, R. J.

    2018-05-01

    Generating electricity from biomass are undeniably gives huge advantages to the energy security, environmental protection and the social development. Nevertheless, it always been negatively claimed as not economically competitive as compared to the conventional electricity generation system using fossil fuel. Due to the unfair subsidies given to renewable energy based fuel and the maturity of conventional electricity generation system, the commercialization of this system is rather discouraging. The uniqueness of the chemical and physical properties of the biomass and the functionality of the system are fully depending on the availability of the biomass resources, the capital expenditure of the system is relatively expensive. To remain competitive, biomass based system must be developed in their most economical form. Therefore the justification of the economies of scale of such system is become essential. This study will provide a comprehensive review of process to select an appropriate size for electricity generation plant from palm oil mill (POM) residues through the combustion of an empty fruit bunch (EFB) and biogas from the anaerobic digestion of palm oil mill effluent (POME) in Peninsular Malaysia using a mathematical model and simulation using ASPEN Plus software package. The system operated at 4 MW capacity is expected to provide a return on investment (ROI) of 20% with a payback period of 6.5 years. It is notably agreed that the correct selection of generation plant size will have a significant impact on overall economic and environmental feasibility of the system.

  15. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production.

    Science.gov (United States)

    Thushari, Indika; Babel, Sandhya

    2018-01-01

    In this study, an inexpensive, environmental benign acid catalyst is prepared using coconut meal residue (CMR) and employed for biodiesel production from waste palm oil (WPO). The total acid density of the catalyst is found to be 3.8mmolg -1 . The catalyst shows a unique amorphous structure with 1.33m 2 g -1 of surface area and 0.31cm 3 g -1 of mean pore volume. Successful activation is confirmed by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The highest biodiesel yield of 92.7% was obtained from WPO in an open reflux system using the catalyst. Results show that biodiesel yield increases with increasing methanol:oil (molar ratio) and reaction time up to an optimum value. It is found that the catalyst can be reused for at least four cycles for >80% biodiesel yield. Fuel properties of the produced biodiesel meet international biodiesel standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor for thermophilic palm oil mill effluent (POME) treatment

    International Nuclear Information System (INIS)

    Poh, P.E.; Chong, M.F.

    2014-01-01

    Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor was developed with the aim to minimize operational problems in the anaerobic treatment of Palm Oil Mill Effluent (POME) under thermophilic conditions. The performance of UASB-HCPB reactor on POME treatment was investigated at 55 °C. Subsequent to start-up, the performance of the UASB-HCPB reactor was evaluated in terms of i) effect of hydraulic retention time (HRT); ii) effect of organic loading rate (OLR); and iii) effect of mixed liquor volatile suspended solid (MLVSS) concentration on thermophilic POME treatment. Start-up up of the UASB-HCPB reactor was completed in 36 days, removing 88% COD and 90% BOD respectively at an OLR of 28.12 g L −1  d −1 , producing biogas with 52% of methane. Results from the performance study of the UASB-HCPB reactor on thermophilic POME treatment indicated that HRT of 2 days, OLR of 27.65 g L −1  d −1 and MLVSS concentration of 14.7 g L −1 was required to remove 90% of COD and BOD, 80% of suspended solid and at the same time produce 60% of methane. - Highlights: • UASB-HCPB was proposed for POME treatment under thermophilic conditions. • Start-up up of the UASB-HCPB reactor was completed in 36 days. • 88% COD and 90% BOD were removed at an OLR of 28.12 g COD/L.day during start-up. • HRT of 2 days and OLR of 27.65 g COD/L.day was required to produce 60% methane. • Methanosarcina sp. forms the majority of microbial population in the UASB section

  17. Nitrogen mineralisation and greenhouse gas emission from the soil application of sludge from reed bed mineralisation systems

    DEFF Research Database (Denmark)

    Gómez-Muñoz, B; Larsen, Julie Dam; Bekiaris, G

    2017-01-01

    A sludge treatment reed bed system (STRB) is a technology used for dewatering and stabilising sewage sludge via assisted biological mineralisation, which creates a sludge residue suitable for use as fertiliser on agricultural land. We evaluated the effect of sludge residue storage time (stabilisa......A sludge treatment reed bed system (STRB) is a technology used for dewatering and stabilising sewage sludge via assisted biological mineralisation, which creates a sludge residue suitable for use as fertiliser on agricultural land. We evaluated the effect of sludge residue storage time...... (stabilisation time) for three STRBs on soil N mineralisation and CO2 and N2O emissions in soil. The experiment revealed that the N mineralisation rate and emissions of CO2 and N2O decreased as a function of treatment time in the STRBs. Mixed sludge residue (sludge residue subjected to different treatment times......) for the three STRBs resulted in N mineralisation rates similar to the sludge residue subjected to a shorter treatment time but lower N2O emissions similar to the values of the older sludge residue. This finding reveals that combining fresh and more stabilised sludge residue ensures high N availability...

  18. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  20. Study of the gem residue (sludge) addition in bulk red ceramics; Estudo da adicao de residuo (lodo) de gemas na massa ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Bruxel, F. R.; Oliveira, E. C.; Stulp, S.; Muller, C. S.; Etchepare, H.D., E-mail: eniz@univates.br [Univates - Centro Universitario, Lajeado, RS (Brazil)

    2012-04-15

    This work aims to incorporate gems waste (sludge saw cutting of gems), produced in an amethyst and agate firm cut, in the red ceramic body used for the production of solid bricks. The raw materials were tested by X-ray fluorescence, X-ray diffraction and granulometric distribution analysis, for characterize the mineralogy and physical chemistry of materials. Samples were prepared with 0%, 5%, 9%, 13% and 17% waste added to the ceramic body by mass. The physical properties studied were compressive strength, linear shrinkage, water absorption and density in accordance with current technical standard. The results showed that it is possible to incorporate up to 5% of waste in bulk ceramics. (author)

  1. Residual Sorption and leaching of the herbicide diuron following de-oiled two-phase olive mill waste addition to soil

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pineiro, A.; Albarran, A.; Cabrera, D.; Rato, J. M.; Munoz, A.; Flores, S.

    2009-07-01

    The residual sorption, desorption, degradation, and leaching of the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) a herbicide widely used in olive groves, was studied following the addition to soils of de oiled two-phase olive mill waste (DTPOMW). Field experiments were conducted on an olive grove soil amended over seven years with DTPOMW. (Author)

  2. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study

  3. Demulsification of residual waters from refining industries of lubricant oil: case study; Desemulsificacao de aguas residuarias de industrias de refino de oleo lubrificante: estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Marcia Yumi; Morita, Dione Mari [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Hidraulica e Sanitaria]. E-mail: dmmorita@usp.br

    1997-07-01

    The present work aims to evaluate the coagulation, flocculation with iron chloride (FeCl{sub 3}.6H{sub 2}O), followed by phase separation, as alternative for treating residual waters from lubricant oil refining industries. Tests have been performed by using {sup j}ar test{sup ,} changing pH value and coagulants for various wastewater characteristics.

  4. Residual Sorption and leaching of the herbicide diuron following de-oiled two-phase olive mill waste addition to soil

    International Nuclear Information System (INIS)

    Lopez-Pineiro, A.; Albarran, A.; Cabrera, D.; Rato, J. M.; Munoz, A.; Flores, S.

    2009-01-01

    The residual sorption, desorption, degradation, and leaching of the herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) a herbicide widely used in olive groves, was studied following the addition to soils of de oiled two-phase olive mill waste (DTPOMW). Field experiments were conducted on an olive grove soil amended over seven years with DTPOMW. (Author)

  5. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  6. Characterization of oil shale residue and rejects from Irati Formation by Electron Paramagnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, S.L.; Brinatti, A.M.; Saab, S.C. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Fisica; Simoes, M.L.; Martin-Neto, L. [Embrapa Instrumentacao Agropecuaria, Sao Carlos, SP (Brazil); Rosa, J.A. [IAPAR - Unidade Regional de Pesquisa, Ponta Grossa, PR (Brazil); Mascarenhas, Y. P. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2009-03-15

    In this study, sedimentary organic matter of oil shale rejects, calschist, shale fine and the so called retorted shale from Irati formation was characterized. EPR was used to analyse the samples regarding loss of signal in g = 2:003 associated to the organic free radical with the calcined samples and washing with hydrogen peroxide. The radical signal was detected in all samples, however, for the calschist and shale fine samples another signal was identified at g = 2:000 which disappeared when the sample was heated at 400 deg C. Hydrogen peroxide washing was also performed and it was noted that after washing the signal appeared around g = 2:000 for all samples, including retorted shale, which might be due to the quartz E1 defect. (author)

  7. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  8. Cost and effectiveness comparisons of various types of sludge irradiation and sludge pasteurization treatments

    International Nuclear Information System (INIS)

    Morris, M.E.

    1976-01-01

    The radiation from 137 Cs, a major constituent of nuclear fuel reprocessing waste, can be used to sterilize sewage sludge. This paper compares the effectiveness and cost of heat pasteurization, irradiation, and thermoradiation (simultaneous heating/irradiation), three competing methods of sludge disinfection. The cost of irradiation and thermoradiation is slightly higher than heat pasteurization costs for liquid sludges, although minor changes in oil availability or prices could change this. If the viral destruction could be done easily by other means, a 500-kilorad irradiation dose would be effective and less costly. For dry sewage sludges, irradiation is as effective and much less costly than any of the liquid sludge disinfection processes. Irradiation of compost appears to be cheaper and more practical than any heat pasteurization process for the dry sludge (the insulating property of the compost makes heating difficult). 6 tables, 2 fig

  9. Effect of the inclusion of fish residue oils in diets on the fatty acid profile of muscles of males and females lambari (Astyanax altiparanae

    Directory of Open Access Journals (Sweden)

    Ligia Uribe Gonçalves

    2012-09-01

    Full Text Available This study evaluated the effects of two lipids sources of fish residue (tilapia and salmon compared with a vegetable oil source (soybean oil on the fatty acid profiles of male and female lambari. This experiment was developed in a completely randomized experimental design in a 3 × 2 factorial arrangement, totaling 6 treatments resulting from the combination of the three experimental diets for both sexes, with four replications for each treatment. This study involved 120 male (2.58±0.13 g and 72 female lambari (4.00±0.09 g, fed the experimental diets twice a day until apparent satiation for a period of 60 days. Oleic, linoleic, palmitic and stearic fatty acids were found at higher concentrations in all experimental oils and diets, as well in the muscle of male and female lambari. The low amounts of arachidonic, eicosapentaenoic and docosahexaenoic acids in the experimental diets and subsequent greater concentrations in muscle tissue, suggested that lambari are able to desaturate and elongate the chain of fatty acids with 18 carbons. The fish of both sexes that received the diet with soybean oil showed high levels of n-6 fatty acids, especially of C18: 2n-6 and low levels of eicosapentaenoic and docosahexaenoic acids. The diet with salmon residue oil promoted higher levels of fatty acids of the n-3 series and resulted in the best n-3/n-6 ratio in the muscle of male and female lambari. The oils from fish residues can be a substitute for traditional fish oil and its use in the lambari diets does not impair its growth.

  10. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    Energy Technology Data Exchange (ETDEWEB)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define

  11. Kinetic models for pyrolysis and combustion of sewage sludge[Held jointly with the 4. Canadian organic residuals and biosolids managment conference

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.; Udaquiola, S. [Univ. Nacional de San Juan, San Juan (Argentina). Lab. Tec. Amb., Inst. de Ing. Qca; Gauthier, D; Flamant, G. [PROMES-CNRS, Font-Romeu Odeillo (France); Mazza, G. [Univ. Nacional Del Comahue, Neuquen (Argentina). Dept. de Quimica; Martinez, O. [Univ. Nacional de la Plata, La Plata (Argentina). CINDECA-CONICET

    2007-07-01

    In thermochemical conversion processes that produce energy, the kinetics of waste decomposition must be considered. The rate of mass loss due to thermal decomposition determines the available fuel on the fire triangle of heat, fuel and oxygen. Heating rates in thermobalance experiments are low, and are often used to study the primary reactions in the decomposition of solids since their cracking is negligible. Thermogravimetry is an option for determining the decomposition profile of a solid in terms of its temperature versus the kinetics of its decomposition. This paper presented the thermal analysis and results of a study that used thermogravimetric analyses on dry samples of sewage sludge from San Juan, Argentina in an inert and oxidative atmosphere. Three peaks were observed in all differential thermogravimetric curves during the organic matter decomposition. In order to explain the experimental data, various reaction schemes were set up. The first two schemes considered 3 fractions decomposing in parallel during pyrolysis, with oxidative pyrolysis of all fractions during combustion or only two. The third scheme considered the decomposition of 2 fractions only but with dissymmetrical behavior during the whole pyrolysis and combustion phenomenon. It was concluded that the simulations were a good agreement with the experimental data for the first 2 schemes only, and overall, the fit was better with the second scheme. 11 refs., 4 figs.

  12. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  14. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  15. Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas.

    Science.gov (United States)

    Wang, Chao-Qiang; Lin, Xiao-Yan; He, Ming; Wang, Dan; Zhang, Si-Lan

    2017-09-15

    The overall objective of this research project is to investigate the feasibility of incorporating oil-based drilling cuttings pyrolysis residues (ODPR) and fly ash serve as replacements for fine aggregates and cementitious materials in concrete. Mechanical and physical properties, detailed environmental performances, and microstructure analysis were carried out. Meanwhile, the early hydration process and hydrated products of ODPR concrete were analyzed with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that ODPR could not be categorize into hazardous wastes. ODPR had specific pozzolanic characteristic and the use of ODPR had certain influence on slump and compressive strength of concrete. The best workability and optimal compressive strength were achieved with the help of 35% ODPR. Environmental performance tests came to conclusion that ODPR as recycled aggregates and admixture for the preparation of concrete, from the technique perspective, were the substance of mere environmental contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hydrodesulfurization and hydrodemetalation reactions of residue oils over CoMo/aluminum borate catalysts in a trickle bed reactor

    International Nuclear Information System (INIS)

    Tsai, M.C.; Chen, Y.W.; Kang, B.C.; Wu, J.C.; Leu, L.J.

    1991-01-01

    In this paper, a series of aluminum borates (AB) with various Al/B mole ratios is prepared by the precipitation method. The results indicated that the exhibited properties are dependent on the Al/B ratio of the material. The monodisperse pore size distributions of these samples simply that it is a true microcomposite structure rather than a mixture of the individual materials. Hydrodesulfurization (HDS) and hydrodemetalation (HDM) of heavy Kuwait atmospheric residuum over CoMo/AB catalysts were carried out in a bench-scale trickle bed reactor at 663 K and 7582 kPa. The weight hourly space velocity of residue oils was 1.5, and the hydrogen flow rate was kept constant at 300 mL/min (STP). The results showed that these catalysts are much more active than the conventional CoMo/Al 2 O 3 catalyst in HDS and HDM reactions. The results of desulfurization activity are mainly interpreted on the basis of difference in dispersion and the interaction of Mo species with the support. The demetalation activity was strongly influenced by the intraparticle diffusion of metal porphyrins

  17. Removal of residual palm oil-based biodiesel catalyst using membrane ultra-filtration technique: An optimization study

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2014-09-01

    Full Text Available In this research work, residual potassium hydroxide catalyst was removed from palm oil-based alkyl esters (biodiesel using membrane separative technique, with the aim of achieving high-quality biodiesel that meets international standard specifications. Further, Central Composite Design (CCD coupled with Response Surface Methodology (RSM was employed to study the effects of the system variables such as flow rate, temperature and transmembrane pressure (TMP on the retention of potassium. At the optimum conditions, the coefficient of retention (%R of the catalyst was 93.642, and the content of the potassium was reduced from 8.328 mg/L to 0.312 mg/L; a value well below the one specified by both EN 14214 and ASTM D6751 standards. In addition, the comparison between predicted and experimental values for the catalyst retention offers a reasonable percentage error of 0.081%. Therefore, this study has proven that membrane technique can be used to post treat crude biodiesel; in order to achieve high-quality biodiesel fuel that can be efficiently used on diesel engines.

  18. Implementation of co-digestion and sludge management systems in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Di Berardino, Santino [INETI/DER, Lisboa (Portugal)

    2006-07-01

    A solution based on sludge and Olive oil mill effluent (OME) co-digestion, coupled with a management plan, has been implemented, to treat and dispose safely, the mixed residues, into the natural forest and agricultural land. The mixture of up to 25% OME to the sludge improved anaerobic degradation of phenols and fats. High density fat compounds, present in OME, enhanced aggregation, settling and acetoclastic activity of anaerobic sludge. The full scale unit, obtained by modification of a cold digester, allowed to set-up a low capital cost system. The system produced large quantity of biogas and electric energy. Anaerobic degradation of the mixture improved fertilizing properties, making feasible land application of the digested mixture. Regional plan based in Geographical Information System (GIS) selected 800 ha of adequate land area for application near the WWTP. The experience is technically and economically successful. Main incomes are provided by energy use and OME charge. Sludge application in local agriculture does not generate any income, but eliminated landfill costs and reduced transportation costs.

  19. Distribution of radium in oil and gas industry wastes from Malaysia

    International Nuclear Information System (INIS)

    Omar, M.; Ali, H.M.; Abu, M.P.; Kontol, K.M.; Ahmad, Z.; Ahmad, S.H.S.S.; Sulaiman, I.; Hamzah, R.

    2004-01-01

    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226 Ra and 228 Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg

  20. Distribution of radium in oil and gas industry wastes from Malaysia.

    Science.gov (United States)

    Omar, M; Ali, H M; Abu, M P; Kontol, K M; Ahmad, Z; Ahmad, S H S S; Sulaiman, I; Hamzah, R

    2004-05-01

    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.

  1. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  2. Treatment and disposal of refinery sludges: Indian scenario.

    Science.gov (United States)

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.

  3. Characterization of oil-palm trunk residue degradation enzymes derived from the isolated fungus, Penicillium rolfsii c3-2(1) IBRL.

    Science.gov (United States)

    Lee, Kok Chang; Arai, Takamitsu; Ibrahim, Darah; Deng, Lan; Murata, Yoshinori; Mori, Yutaka; Kosugi, Akihiko

    2016-01-01

    This study characterizes crude enzymes derived from Penicillium rolfsii c3-2(1) IBRL, a mesophilic fungus isolated from the local soil of Malaysia. Prior to enzyme activity evaluation, P. rolfsii c3-2(1) IBRL was inoculated into a broth medium containing oil-palm trunk residues for the preparation of crude enzymes. Oil-palm trunk residues were optimally hydrolysed at pH5.0 and 50°C. P. rolfsii c3-2(1) IBRL-derived crude enzymes displayed higher thermal stability compared with the commercial enzymes, Celluclast 1.5 L and Acellerase 1500. Moreover, the hydrolysing activities of the P. rolfsii c3-2(1) IBRL-derived crude enzymes (xylan, arabinan, and laminarin) were superior compared to that of Celluclast 1.5 L and Acellerase 1500, and exhibit 2- to 3-fold and 3- to 4-fold higher oil-palm trunk residues-hydrolysing specific activity, respectively. This higher hydrolysis efficiency may be attributed to the weak 'lignin-binding' ability of the P. rolfsii c3-2(1) IBRL-derived enzymes compared to the commercial enzymes.

  4. PENERAPAN ELEKTROOSMOSIS UNTUK PENGERINGAN SLUDGE DARI PENGOLAHAN LIMBAH CAIR

    Directory of Open Access Journals (Sweden)

    Darmawan Darmawan

    2013-11-01

    Full Text Available APPLICATION OF ELECTROOSMOSIS FOR DEWATERING OF SLUDGE FROM WASTE WATER TREATMENT. Wastewater treatment produces semi-solid residue (sludge that must be handled carefully during dumping and discharge to avoid polluting the environment. A low cost and easy treatment of dewatering is needed. This research aimed to apply electroosmosis technique for dewatering sludge in order to seek for parameters that can efficiently reduce water content of sludge, including range of voltage, type of electrodes, and distance between electrodes; and to determine the effect of electroosmosis processes on changes of chemical characteristics of sludge. The results showed that: (1 electroosmosis dewatering occurred on the sludge taken from waste water treatment of landfill but not on sludge from water purification plant (PDAM, (2 direct current voltage of 30 volts was the optimum voltage, (3 copper rod cathode provided electroosmosis process as good as stainless steel cathode and both were better than the woven stainless steel cathode, (4 the dewatering time to reduce 1200% (w/w water content to about 400% was about 40 hours for sludge of 2500 cm3 in volume (laboratory bench scale, (5 the anode need to reinserted gradually approaching the cathode due to current lost when the water content at the anode point reached 400% and sludge at the point shrink, and (6 some chemical elements in the sludge decreased significantly after treatment. Pengolahan limbah cair menghasilkan residu berupa bahan semi padat yang dikenal sebagai sludge. Sludge tersebut juga perlu dikelola penyimpanan dan pembuangannya agar tidak mencemari lingkungan. Salah satu pengelolaan sludge yang perlu dilakukan adalah pengeringan (dewatering. Salahsatu teknik dewatering yang mungkin diterapkan ialah teknik elektroosmosis, yaitu teknik yang memanfaatkan adanya pergerakan air pada media poros di dalam medan istrik searah. Penelitian ini bertujuan untuk mencari parameter sistem dewatering secara

  5. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation.

    Science.gov (United States)

    Foo, K Y; Hameed, B H

    2013-02-01

    In this work, preparation of granular activated carbon from oil palm biodiesel solid residue, oil palm shell (PSAC) by microwave assisted KOH activation has been attempted. The physical and chemical properties of PSAC were characterized using scanning electron microscopy, volumetric adsorption analyzer and elemental analysis. The adsorption behavior was examined by performing batch adsorption experiments using methylene blue as dye model compound. Equilibrium data were simulated using the Langmuir, Freundlich and Temkin isotherm models. Kinetic modeling was fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models, while the adsorption mechanism was determined using the intraparticle diffusion and Boyd equations. The result was satisfactory fitted to the Langmuir isotherm model with a monolayer adsorption capacity of 343.94mg/g at 30°C. The findings support the potential of oil palm shell for preparation of high surface area activated carbon by microwave assisted KOH activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  7. Hippocampus lipid peroxidation induced by residual oil fly ash intranasal instillation versus habituation to the open field.

    Science.gov (United States)

    Zanchi, Ana Claudia; Saiki, Mitiko; Saldiva, Paulo Hilário Nascimento; Barros, Helena Maria Tannhauser; Rhoden, Claudia Ramos

    2010-01-01

    Epidemiological studies have demonstrated the adverse effects of particulate matter (PM) inhalation on the respiratory and cardiovascular systems. It has been reported that air pollution may affect the central nervous system and decrease cognitive function. In rats, residual oil fly ash (ROFA) instillation causes decreased motor activity and increased lipid peroxidation in the striatum and the cerebellum. Our objective was to determine whether chronic instillation of particles induces changes in learning and memory in rats and whether oxidants in the hippocampus may contribute to these adverse effects. Forty-five-day-old male Wistar rats were exposed to ROFA by intranasal instillation and were treated with N-acetylcysteine (NAC) at 150 mg/kg i.p. for 30 days. Control groups were exposed to ROFA, NAC, or neither. On days 1, 8, and 30 of the protocol, rats were submitted to the open field test to evaluate habituation. After the last open field session, the rats were killed by decapitation. The hippocampus was used to determine lipid peroxidation (LP) by the thiobarbituric acid-reactive substances test. ROFA instillation induced an increase in LP in the hippocampus compared to all treatment groups (p = .012). NAC treatment blocked these changes. All of the treatment groups presented a decrease in the frequency of peripheral walking (p = .001), rearing (p = .001), and exploration (p = .001) over time. Our study demonstrates that exposure to particles for 30 days and/or NAC treatment do not modify habituation to an open field, a simple form of learning and memory in rats, and that oxidative damage induced by ROFA does not modulate these processes.

  8. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    Energy Technology Data Exchange (ETDEWEB)

    Marchini, T.; Magnani, N.D. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Paz, M.L. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Vanasco, V. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Tasat, D. [CESyMA, Facultad de Ciencia Tecnología, Universidad Nacional de General San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires (Argentina); González Maglio, D.H. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); and others

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN

  9. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    Sludge recovery machine comprising a hollow centrifuge, a vertical pipe for feeding in a liquid containing sludge and a sliding rake pressing against the internal wall of the centrifuge to dislodge and move the sludge, a power drive for spinning the centrifuge at high speed and a rotating drying table to take the sludge and dry it [fr

  10. Evaluation of activated sludge treatment and settleability in ...

    African Journals Online (AJOL)

    Wastewater discharged from the edible oil industry contains a very concentrated amalgamation of organic and inorganic materials making it a problematic effluent to treat. The aim of this study was to evaluate the activated sludge treatment of edible oil effluent from a sunflower oil processing company in KwaZulu-Natal.

  11. Evaluation of activated sludge treatment and settleability in ...

    African Journals Online (AJOL)

    DRINIE

    2003-07-03

    Jul 3, 2003 ... separation, on-site applications of such processes (especially fat traps) are often ... edible oil effluent treatment on sludge settleability, floc structure and activity of .... Poor FOG removal was noted in the MLE system as just 7%.

  12. Coal as a supplemental heat source in sludge incineration

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, G J; Bergstedt, D C

    1979-07-01

    The use of coal as a supplemental fuel in multiple hearth sludge incineration was investigated; how sulphur lump coal was added to dewatered sludge being fed to the furnace, reducing incinerator oil requirements by 70%. With full-scale retrofit of the treatment plant total annual costs for coal supplemental feeding would be 161,000 dollars, but oil savings would be 240,000 dollars.

  13. A review on sludge dewatering indices.

    Science.gov (United States)

    To, Vu Hien Phuong; Nguyen, Tien Vinh; Vigneswaran, Saravanamuth; Ngo, Huu Hao

    2016-01-01

    Dewatering of sludge from sewage treatment plants is proving to be a significant challenge due to the large amounts of residual sludges generated annually. In recent years, research and development have focused on improving the dewatering process in order to reduce subsequent costs of sludge management and transport. To achieve this goal, it is necessary to establish reliable indices that reflect the efficiency of sludge dewatering. However, the evaluation of sludge dewaterability is not an easy task due to the highly complex nature of sewage sludge and variations in solid-liquid separation methods. Most traditional dewatering indices fail to predict the maximum cake solids content achievable during full-scale dewatering. This paper reviews the difficulties in assessing sludge dewatering performance, and the main techniques used to evaluate dewatering performance are compared and discussed in detail. Finally, the paper suggests a new dewatering index, namely the modified centrifugal index, which is demonstrated to be an appropriate indicator for estimating the final cake solids content as well as simulating the prototype dewatering process.

  14. Use of sludge as ceramic materials

    International Nuclear Information System (INIS)

    Morais, L.C.; Vianna, R.S.C.; Campos, V.; Rosa, A.H.; Buechler, P.M.

    2009-01-01

    Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves. (author)

  15. The Galeta Oil Spill. III. Chronic Reoiling, Long-term Toxicity of Hydrocarbon Residues and Effects on Epibiota in the Mangrove Fringe

    Science.gov (United States)

    Levings, Sally C.; Garrity, Stephen D.; Burns, Kathryn A.

    1994-04-01

    In April 1986, 75 000-100 000 barrels of medium-weight crude oil (˜ 10 000-13 500 metric tons) spilled into Bahía las Minas, a large mangrove-lined bay on the Caribbean coast of Panamá. Between 1986 and 1991, biological and chemical effects of this spill were studied. The epibiota of fringing mangroves ( Rhizophora mangle L.) were examined in three habitats: (1) the shoreward margins of reef flats that fronted the open sea, (2) the edges of channels and lagoons, and (3) the banks of streams and man-made cuts that drained interior mangroves or uplands into lagoons. Chemical analyses of bivalves collected from submerged prop roots (oysters and false mussels) and records of slicks and tarry deposits on artificial roots documented chronic reoiling. Each habitat was repeatedly oiled between 1986 and 1991, with petroleum residues identified as the oil spilled in 1986. There was a decline in the release of tarry oils recorded as slicks and on roots over time, but not in tissue burdens of hydrocarbons in bivalves. This suggested that the processes that released these different types of oil residues were at least partially independent and that toxic hydrocarbons were likely to be released from sediments over the long term. The submerged prop roots of fringing mangroves in each habitat had a characteristic epibiota. On the open coast, roots were covered with a diverse assemblage of sessile invertebrates and algae. In channels, the most abundant species on roots was the edible oyster Crassostrea virginica ( rhizophorae morph). In streams, the false mussel Mytilopsis sallei covered the most space on roots. Cover of sessile invertebrates was significantly reduced at oiled compared with unoiled sites on the open coast for 4 years after oiling, while oysters and false mussels were reduced in cover at oiled sites in channels and streams through at least 1991, when observations ended. False mussels transplanted from an unoiled stream to oiled and unoiled streams were

  16. Preparation of a Nanoemulsion with Carapa guianensis Aublet (Meliaceae Oil by a Low-Energy/Solvent-Free Method and Evaluation of Its Preliminary Residual Larvicidal Activity

    Directory of Open Access Journals (Sweden)

    Flávia L. M. Jesus

    2017-01-01

    Full Text Available Andiroba (Carapa guianensis seeds are the source of an oil with a wide range of biological activities and ethnopharmacological uses. However, few studies have devoted attention to innovative formulations, including nanoemulsions. The present study aimed to obtain a colloidal system with the andiroba oil using a low-energy and organic-solvent-free method. Moreover, the preliminary residual larvicidal activity of the nanoemulsion against Aedes aegypti was evaluated. Oleic and palmitic acids were the major fatty acids, in addition to the phytosterol β-sitosterol and limonoids (tetranortriterpenoids. The required hydrophile-lipophile was around 11.0 and the optimal nanoemulsion was obtained using polysorbate 85. The particle size distribution suggested the presence of small droplets (mean diameter around 150 nm and low polydispersity index (around 0.150. The effect of temperature on particle size distribution revealed that no major droplet size increase occurred. The preliminary residual larvicidal assay suggested that the mortality increased as a function of time. The present study allowed achievement of a potential bioactive oil in water nanoemulsion that may be a promising controlled release system. Moreover, the ecofriendly approach involved in the preparation associated with the great bioactive potential of C. guianensis makes this nanoemulsion very promising for valorization of this Amazon raw material.

  17. Rate of biodegradation of crude oil by microorganisms isolated from ...

    African Journals Online (AJOL)

    The rate of biodegradation of crude oil by micro-organisms isolated from crude oil sludge environment in Eket, Akwa Ibom State of Nigeria was studied. Mineral salt medium supplemented with crude oil was used and three most abundant species isolated from a crude oil sludged soil - Micrococcus varians, Bacillus subtilis ...

  18. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction

    DEFF Research Database (Denmark)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gomez Muñoz, Beatriz

    2016-01-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Rece...

  19. Synthetic fibers as an indicator of land application of sludge

    International Nuclear Information System (INIS)

    Zubris, Kimberly Ann V.; Richards, Brian K.

    2005-01-01

    Synthetic fabric fibers have been proposed as indicators of past spreading of wastewater sludge. Synthetic fiber detectability was examined in sludges (dewatered, pelletized, composted, alkaline-stabilized) and in soils from experimental columns and field sites applied with those sludge products. Fibers (isolated by water extraction and examined using polarized light microscopy) were detectable in sludge products and in soil columns over 5 years after application, retaining characteristics observed in the applied sludge. Concentrations mirrored (within a factor of 2) predictions based on soil dilution. Fibers were detectable in field site soils up to 15 years after application, again retaining the characteristics seen in sludge products. Concentrations correlated with residual sludge metal concentration gradients in a well-characterized field site. Fibers found along preferential flow paths and/or in horizons largely below the mixed layer suggest some potential for translocation. Synthetic fibers were shown to be rapid and semi-quantitative indicators of past sludge application. - Synthetic fabric fibers present in wastewater sludge are a semi-quantitative long-term indicator of past sludge application in soils

  20. On-site monitoring of Hebei Spirit oil spill by fluorometric detection of oil residues in coastal waters off Taean, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.; Yim, U.H.; Hong, S.H.; Jung, J.H.; Won, J.; An, J.; Choi, H.W.; Shim, W.J. [Korea Ocean Research and Development Inst., Geoje (Korea, Republic of)

    2009-07-01

    This paper discussed activities conducted to monitor a crude oil spill that contaminated over 70 km of the western Korean coastline. Contamination levels and temporal variations of dissolved and dispersed oils in sea and pore water at 40 beaches were monitored using a portable fluorimeter for 10 months after the spill. More than 980 samples from the heavily-impacted Mallipo Beach area were analyzed. The analysis showed that oil concentrations in the sea water were as high as 16,600 {mu}g/L directly after the spill, and decreased to below the Korean marine water quality standard of 10 {mu}g/L at most sites 10 months after the spill. However, the oil content in pore water remained high, with levels of up to 2,320 {mu}g/L for the first few months following the spill. Higher oil contamination levels were observed at some sites for up to 10 months after the spill. Results of the study suggested that oil in pore water persisted in confined areas along the coastline. Results from the fluorescence detection technique were then compared with traditional gas chromatography (GC) techniques of total petroleum hydrocarbon analysis. It was concluded that fluorescence detection was capable of generating accurate results more quickly and cost-effectively than traditional GC techniques. 22 refs., 7 figs.

  1. Evaluation of the toxicity of the weathered crude oil used at the Newfoundland Offshore Burn Experiment (NOBE) and the resultant burn residue

    International Nuclear Information System (INIS)

    Blenkinsopp, S.; Sergy, G.; Doe, K.; Wohlgeschaffen, G.; Li, K.; Fingas, M.

    1997-01-01

    Toxicity of the weathered crude oil Alberta Sweet Mixed Blend (ASMB) used at the Newfoundland Offshore Burn Experiment (NOBE), and the resultant burn residue was evaluated using the newly developed Environment Canada water-accomodated fraction (WAF) method and exposure protocol. Rainbow trout, three-spine stickleback and gametes of sea urchins were exposed to saltwater WAF prepared from both weathered ASMB and burn residue. Gas chromatography/ mass spectrometry headspace analysis of 28 analytes showed low levels of volatile hydrocarbons after 96 hours of exposure (except for sea urchins, in which case the test was only 20 minutes in duration). All samples were found to be not toxic to all species tested. 10 refs., 2 tabs

  2. Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation.

    Science.gov (United States)

    Chand, Sukhmal; Singh, Shweta; Singh, Vinay Kumar; Patra, D D

    2015-05-01

    Unlike food crops, essential oil-bearing crops in which the oil is extracted through hydro-distillation can be a suitable crop to be grown in heavy metal-polluted soils as the oil does not carry any heavy metal. In a field experiment conducted at CIMAP, Lucknow, India during 2011 and 2012, influence of six doses of tannery sludge viz 0, 10, 20, 30, 40, and 50 t ha(-1) were tested, taking sweet basil (Ocimum basilicum) as the test crop. Maximum herb yield was obtained with the application of sludge at 20 t ha(-1). While in root, accumulation of Cd and Pb increased significantly up to 20 t ha(-1), Cr accumulation increased with increasing the dose of tannery sludge reaching maximum at 50 t ha(-1). Essential oil yield of basil (Ocimum basilicum) was significantly affected due to sludge application. Quality of essential oil, in term of chemical constituents, however, was marginally influenced due to tannery sludge application.

  3. Biodegradation of total petroleum hydrocarbons from acidic sludge produced by re-refinery industries of waste oil using in-vessel composting.

    Science.gov (United States)

    Asgari, Alireza; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Dehghani, Mohammad Hadi; Nazmara, Shahrokh; Yaghmaeian, Kamyar

    2017-01-01

    In Iran, re-refinery industry has been developed many years ago based on the acid-clay treatment. Acidic sludge with high concentration of total petroleum hydrocarbon (TPH) is the final products of some facilities. In this study removal of TPH by aerated in-vessel composting was investigated. In order to microorganisms seeding and nutrient providing, urban immature compost was added as an amendment to acidic sludge. The ratios of acidic sludge (AS) to compost were, 1:0 (as control), 1:5, 1:8, 1:10, 1:15, 1:20, 1:30, 1:40, 1:50, 1:75 and 1:100 (as dry basis) at a C: N: P ratio of 100:5:1 and 45-65% moisture content for 70 days. The removal efficiency in all reactors was more than 48%. The highest and lowest TPH removal was observed in 1:5 (71.56%) and 1:100 (48.53%) mixing ratios, respectively. The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. Experimental data was fitted second order kinetic model ( R 2  > 0.8006). Degradation of TPH in 1:5 mixing ratio (k 2  = 0.0038 gmg -1 d -1 ; half-life = 3.08d) was nearly three times faster than 1:100 mixing ratio (k 2  = 0.0238; half-life = 8.96d). The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. The results of this study revealed in-vessel composting with immature urban compost as the amendment maybe recommended as an effective method for TPH remediation.

  4. Adsorção dos corantes RO16, RR2 e RR141 utilizando lodo residual da indústria têxtil Adsorption of dyes RO16, RR2 and RR141 using residual sludge of textile industry

    Directory of Open Access Journals (Sweden)

    Andressa Regina Vasques

    2011-09-01

    Full Text Available A adsorção é uma das técnicas empregadas com sucesso para remoção efetiva da cor presente em efluentes têxteis. Com o objetivo de avaliar os diferentes parâmetros adsortivos, bem como determinar a eficiência de um adsorvente alternativo desenvolvido a partir de lodo residual têxtil na remoção de corantes, foram determinadas curvas de cinética de adsorção e isotermas. Por meio dos dados cinéticos e de equilíbrio obtidos, verificou-se que a 25ºC a adsorção foi favorável para todos os corantes, sendo esta a melhor condição para os corantes RO16 e RR2 na ausência de sais. Para o corante RR141, a adição de NaCl aumentou a capacidade de adsorção do adsorvente no equilíbrio e a adição de Na2SO4 favoreceu a adsorção para o corante RO16, ao contrário do que se observou para os outros dois corantes. A quantidade máxima de corante adsorvida por unidade de massa de adsorvente (q max nas melhores condições adsortivas para os corantes RO16, RR2 e RR141 foi de 81,30, 53,48 e 78,74 mg.g-1, respectivamente.The adsorption is one of the techniques that have been successfully used for effective removal of the dyes present in textile effluents. With the objective to evaluate the different adsorptive parameters, as well as determining the efficiency of one alternative adsorbent in the removal of dyes, kinetics and equilibrium data of adsorption were determined. By the kinetic data and of equilibrium, it was verified that the adsorption was favorable for all the dyes in 25ºC, being the best condition for the dye RO16 and RR2 in the total absence of salt. For the dye RR141, the addition of NaCl increased the adsorption capacity of adsorbent in the equilibrium and the addition of Na2SO4 favored the adsorption for the dye RO16, in contrast to what was observed for the two other dyes. The maximum quantity of dye adsorbed per unit mass of adsorbent (q max in the best adsorptive conditions for the dyes RO16, RR2 and RR141 was of 81

  5. Radiochemical determination of {sup 210} Pb and {sup 226}Ra in petroleum sludges and scales; Determinacao radioquimica de {sup 210} Pb e {sup 226}Ra em borras e incrustacoes de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Andressa Arruda de

    2005-07-01

    The oil extraction and production, both onshore and offshore, can generate different types of residues, such as sludge, that is deposited in the water/oil separators, valves and storage tanks and scales, which form i the inner surface of ducts and equipment. Analyses already carried out through gamma spectrometry indicated the existence of high radioisotope concentration. However, radionuclides emitting low-energy gamma-rays, such as {sup 210} Pb, are hardly detected by that technique. Consequently, there is a need to test alternative techniques to determine this and other radionuclides from the {sup 238} U series. This work, therefore, focuses on the radiochemical determination of the concentration of {sup 210}Pb, and {sup 226} Ra in samples of sludge and scale from the oil processing stations of the UN-SEAL, a PETROBRAS unit responsible for the exploration and production of petroleum in Sergipe and Alagoas. The sludge and scale samples went through a preliminary process of extraction of oil, in order to separate the solid phase, where the largest fraction of the radioactivity is concentrated. After oil removal, the samples were digested using alkaline fusion as an option for dissolution. Finally, their activity concentration was determined for the samples of sludge and scales, using and alternative radiochemical method, which is based on ionic exchange. The activity concentration found for {sup 210}Pb varied from 1,14 to 507,3 kBq kg{sup -1}. The values for {sup 226}Ra were higher, varying from 4,36 to 3.445 kBq kg{sup -1}. The results for {sup 226}Ra were then compared with the ones found for the same samples of sludge and scales using gamma spectrometry. The results of the comparison confirm the efficiency of the methodology used int hi work, that is, radiochemical determination by means of ionic exchange. (author)

  6. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    Science.gov (United States)

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Shun; Ebitani, Kohki, E-mail: ebitani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Miyazato, Akio [Nanotechnology Center, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-02-01

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H{sub 2}O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, {sup 13}C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.

  8. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    International Nuclear Information System (INIS)

    Nishimura, Shun; Ebitani, Kohki; Miyazato, Akio

    2016-01-01

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H 2 O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, 13 C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously

  9. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  11. Sludge reduction by predatory activity of aquatic oligochaetes in wastewater treatment plants: Science or fiction? A review

    NARCIS (Netherlands)

    Ratsak, C.H.; Verkuijlen, J.

    2006-01-01

    Biological aerobic wastewater treatment plants (WWTPs) produce a lot of excess sludge. The costs for handling this residual product are increasing, so the search for alternative techniques to reduce the amount of sludge has to be continued. Activated sludge consists of inorganic and organic

  12. Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey.

    Science.gov (United States)

    Chan, Wei Ping; Wang, Jing-Yuan

    2016-08-01

    Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  14. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  15. Pyrolysis thermocatalytic of the residues generated in the process of oil refining; Pirolise termocatalitica de residuos gerados no processo de refino de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Regineide Oliveira; Castro, Kesia Kelly Vieira de; Lima, Cicero de Souza; Araujo, Aruzza Mabel de Morais; Silva, Edjane Fabiula Buriti da; Araujo, Antonio Souza de [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    The pyrolysis process is a catalytic thermal defined as the degradation of waste which occurs by the action of temperature and presence of catalysts. Thus promoting disruption of the original molecular structure of a given compound by the catalytic action in an environment with little or no oxygen. Investigations have been developed in the pyrolysis due to be a promising technique, due to the application of catalytic materials. In this work, the catalyst used Al/MCM-41 was synthesized in a ratio Si / Al = 50 by the hydrothermal method. Being in this promising oil industry because of their structural characteristics. This material was characterized by XRD analysis, which was observed three major peaks typical of mesoporous materials. The analysis of the adsorption / desorption of nitrogen this material was performed to determine the textural parameters, which are peculiar to the mesoporous materials. The residue samples were characterized with a view to meet some properties such as through elemental analysis of the compounds and saturates, aromatics, resins and asphaltenes. The pyrolysis reaction system catalytic thermal residue is mounted to test the pyrolysis of residue pure and the Al-MCM-41. For both pyrolysis liquid fractions were obtained, gaseous and solid. And only the liquid fractions were characterized by chromatography coupled to mass spectrometry. Thus, there was an increase in the range hydrocarbons (C6-C12 and C13-C17) for products obtained from the pyrolysis catalyst. (author)

  16. Tailoring diffraction technique Rietveld method on residual stress measurements of cold-can oiled 304 stainless steel plates

    International Nuclear Information System (INIS)

    Parikin; Killen, P.; Anis, M.

    2003-01-01

    Tailoring of diffraction technique-Rietveld method on residual stress measurements of cold-canailed stainless steel 304 plates assuming the material is isotopic, the residual stress measurements using X-ray powder diffraction is just performed for a plane lying in a large angle. For anisotropic materials, the real measurements will not be represented by the methods. By Utilizing of all diffraction peaks in the observation region, tailoring diffraction technique-Rietveld analysis is able to cover the limitations. The residual stress measurement using X-ray powder diffraction tailored by Rietveld method, in a series of cold-canailed stainless steel 304 plates deforming; 0, 34, 84, 152, 158, 175, and 196 % reduction in thickness, have been reported. The diffraction data were analyzed by using Rietveld structure refinement method. Also, for all cold-canailed stainless steel 304 plates cuplikans, the diffraction peaks are broader than the uncanailed one, indicating that the strains in these cuplikans are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-mean square strain, which describes the distribution of the inhomogeneous strain field, was calculated. Finally, the average residual stresses in cold-canailed stainless steel 304 plates were shown to be a combination effect of hydrostatic stresses of martensite particles and austenite matrix. The average residual stresses were evaluated from the experimentally determined average lattice strains in each phase. It was found the tensile residual stress in a cuplikan was maximum, reaching 442 MPa, for a cuplikan reducing 34% in thickness and minimum for a 196% cuplikan

  17. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    Directory of Open Access Journals (Sweden)

    Beata Janowska

    2016-12-01

    Full Text Available The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal method. Mercury has a high chemical activity and biological form compounds with different properties. The properties of the mercury present in sewage sludge or composts, its potential bioavailability depend on its physicochemical forms. Different forms of mercury, which are found in soil and sediments and sewage sludge, may be determined using various techniques sequential extraction. In order to assess the bioavailability the analysis of fractional of mercury in samples of sewage sludge and composts was made. For this purpose the analytical procedure based on a four sequential extraction process was applied. Mercury fractions were classified as exchangeable (EX, base soluble (BS, acids soluble (AS and oxidizable (OX. This article presents the research results on the mercury compounds contents in sewage sludge subjected to drying process, combustion and in composted sewage sludge. During drying and combustion process of the sewage sludge, mercury transforms into volatile forms that could be emitted into the atmosphere. The mercury fractionation in composted sewage sludge proved that mercury in compost occurs mainly in an organic fraction and in a residual fraction that are scarce in the environment.

  18. Phase chemistry and radionuclide retention from simulated tank sludges

    International Nuclear Information System (INIS)

    KRUMHANSL, JAMES L.; LIU, J.; ARTHUR, SARA E.; HUTCHERSON, SHEILA K.; QIAN, MORRIS; ANDERSON, HOWARD L.

    2000-01-01

    Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases

  19. Analysis of sludge from Hanford K East Basin canisters

    Energy Technology Data Exchange (ETDEWEB)

    Makenas, B.J. [ed.] [comp.] [DE and S Hanford, Inc., Richland, WA (United States); Welsh, T.L. [B and W Protec, Inc. (United States); Baker, R.B. [DE and S Hanford, Inc., Richland, WA (United States); Hoppe, E.W.; Schmidt, A.J.; Abrefah, J.; Tingey, J.M.; Bredt, P.R.; Golcar, G.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-09-12

    Sludge samples from the canisters in the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and to assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements. This report is a summary and review of the data provided by various laboratories. Although raw chemistry data were originally reported on various bases (compositions for as-settled, centrifuged, or dry sludge) this report places all of the data on a common comparable basis. Data were evaluated for internal consistency and consistency with respect to the governing sample analysis plan. Conclusions applicable to sludge disposition and spent fuel storage are drawn where possible.

  20. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S

    1909-11-29

    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  1. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  2. Assessment of bioethanol yield by S. cerevisiae grown on oil palm residues: Monte Carlo simulation and sensitivity analysis.

    Science.gov (United States)

    Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah

    2015-01-01

    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Extremely fast increase in the organic loading rate during the co-digestion of rapeseed oil and sewage sludge in a CSTR--characterization of granules formed due to CaO addition to maintain process stability.

    Science.gov (United States)

    Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H

    2015-01-01

    In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield.

  4. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium.

    Science.gov (United States)

    Lu, Qian; Li, Jun; Wang, Jinghan; Li, Kun; Li, Jingjing; Han, Pei; Chen, Paul; Zhou, Wenguang

    2017-11-01

    The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS.

    Science.gov (United States)

    Tarazona, José L; Guerrero, Jáder; Cabanzo, Rafael; Mejía-Ospino, E

    2012-03-01

    A predictive model to determine the concentration of nickel and vanadium in vacuum residues of Colombian crude oils using laser-induced breakdown spectroscopy (LIBS) and artificial neural networks (ANNs) with nodes distributed in multiple layers (multilayer perceptron) is presented. ANN inputs are intensity values in the vicinity of the emission lines 300.248, 301.200 and 305.081 nm of the Ni(I), and 309.310, 310.229, and 311.070 nm of the V(II). The effects of varying number of nodes and the initial weights and biases in the ANNs were systematically explored. Average relative error of calibration/prediction (REC/REP) and average relative standard deviation (RSD) metrics were used to evaluate the performance of the ANN in the prediction of concentrations of two elements studied here. © 2012 Optical Society of America

  6. An improved crude oil atmospheric distillation process for energy integration: Part II: New approach for energy saving by use of residual heat

    International Nuclear Information System (INIS)

    Benali, Tahar; Tondeur, Daniel; Jaubert, Jean Noël

    2012-01-01

    In Part I of this paper, it was shown on thermodynamic grounds that introducing a flash in the preheating train of an atmospheric oil distillation process, together with an appropriate introduction of the resulting vapour into the column, could potentially bring substantial energy savings, by reducing the duty of the preheating furnace, by doing some pre-fractionation and by reducing the column irreversibilities. Part II expands on this idea by showing how this can be done while keeping the throughput and the product characteristics unchanged. The outcome is that placing several flashes after the heat exchangers and feeding the corresponding vapour streams to the appropriate trays of the column reduces the pumparound flows and the heat brought to the preheating train. The resulting heat deficit may then be compensated in an additional heat exchanger by using low level heat recuperated from the products of the distillation and/or imported from other processes. The use of this residual heat reduces the furnace duty by approximately an equivalent amount. Thus high level energy (fuel-gas burnt in the furnace) is replaced by residual low level heat. The simulation with an example flowsheet shows that the savings on fuel could be as high as 21%. - Highlights: ► Flash installation in the preheating train of the crude oil distillation process. ► Pumparound streams and heat sent to the preheating train are reduced. ► A high level heat deficit is induced and replaced by low level heat. ► Considerable energy savings and greenhouse gas emissions are achieved.

  7. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  8. Extraction of toxic and valuable metals from wastewater sludge and ash arising from RECICLAGUA, a treatment plant for residual waters applying the leaching technique; Extraccion de metales toxicos y valiosos de los desechos de lodos y cenizas provenientes de la planta tratadora de aguas residuales RECICLAGUA aplicando la tecnica de lixiviado

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero D, J J

    2004-07-01

    Presently work, the technique is applied of having leached using coupled thermostatted columns, the X-ray diffraction for the identification of the atomic and molecular structure of the metals toxic that are present in the residual muds of a treatment plant of water located in the municipality of the Estado de Mexico, RECICLAGUA, likewise the techniques is used of Inductively Coupled Plasma Mass Spectroscopy and X-ray fluorescence analysis for the qualitative analysis. We took samples of residual sludge and incinerated ash of a treatment plant waste water from the industrial corridor Toluca-Lerma RECICLAGUA, located in Lerma, Estado de Mexico. For this study 100 g. of residual of sludge mixed with a solution to 10% of mineral acid or sodium hydroxide according to the case, to adjust the one p H at 2, 5, 7 and 10, bisulfite was added, of 0.3-1.5 g of dodecyl sulfate of sodium and 3.93 g of DTPA (triple V). Diethylene triamine penta acetate. These sludges and ashes were extracted from toxic and valuable metals by means of the leaching technique using coupled thermostated columns that which were designed by Dr. Jaime Vite Torres, it is necessary to make mention that so much the process as the apparatus with those that one worked was patented by him same. With the extraction of these metals, benefits are obtained, mainly of economic type, achieving the decrease of the volume of those wastes that have been generated; as well as the so much use of those residuals, once the metals have been eliminated, as of those residuals, once the metals have been eliminated, as of those liquors, the heavy metals were extracted. It was carried out a quantitative analysis using Icp mass spectroscopy, this way to be able to know the one content of the present metals in the samples before and after of leaching them, these results reported a great quantity of elements. Another of the techniques employees was the analysis by X-ray diffraction that provides an elementary content of the

  9. Treatment of oil refinery effluent in a continuous reactor using Powdered Activated Carbon (PAC) in the activated sludge process; Tratamento de efluente de refinaria de petroleo em um reator continuo utilizando carvao ativado em po (CAP) no sistema de lodo ativado

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Lidia; Campos, Juacyara C.; Valle, Alexandre Ornellas do; Souza, Andre Lopes de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    The process of oil refining generates effluent containing toxic substances as high molecular weight hydrocarbons which have toxicity or are recalcitrant to biological degradation. This study examined the introduction of powdered activated carbon (PAC) in the system of activated sludge used to treat of oil refinery effluent. The process was conducted in two bioreactors continued, with a capacity of 2L: one to monitoring the performance of the activated sludge system without the addition of PAC and another to monitoring the performance of biological treatment using 2,0 g/L of PAC. The degradation of organic matter through activated sludge turned to physical adsorption associated with the addition of CAP promoted the values of COD reduction of 360 to 36 mg / L, which corresponds to an average of 90% of removal. It was also observed the reduction of the values of total organic carbon (TOC) of 285 to 86mg / L, which represents an increase of TOC removal of around 10 percentage points, which, probably, can be the portion of persistent organic matter that is not degraded by the biological system without CAP. (author)

  10. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  11. Lavandula angustifolia Mill. Oil and Its Active Constituent Linalyl Acetate Alleviate Pain and Urinary Residual Sense after Colorectal Cancer Surgery: A Randomised Controlled Trial

    Directory of Open Access Journals (Sweden)

    So Hyun Yu

    2017-01-01

    Full Text Available Pain and urinary symptoms following colorectal cancer (CRC surgery are frequent and carry a poor recovery. This study tested the effects of inhalation of Lavandula angustifolia Mill. (lavender oil or linalyl acetate on pain relief and lower urinary tract symptoms (LUTS following the removal of indwelling urinary catheters from patients after CRC surgery. This randomised control study recruited 66 subjects with indwelling urinary catheters after undergoing CRC surgery who later underwent catheter removal. Patients inhaled 1% lavender, 1% linalyl acetate, or vehicle (control group for 20 minutes. Systolic and diastolic blood pressure (BP, heart rate, LUTS, and visual analog scales of pain magnitude and quality of life (QoL regarding urinary symptoms were measured before and after inhalation. Systolic BP, diastolic BP, heart rate, LUTS, and QoL satisfaction with urinary symptoms were similar in the three groups. Significant differences in pain magnitude and urinary residual sense of indwelling catheters were observed among the three groups, with inhalation of linalyl acetate being significantly more effective than inhalation of lavender or vehicle. Inhalation of linalyl acetate is an effective nursing intervention to relieve pain and urinary residual sense of indwelling urinary catheters following their removal from patients who underwent CRC surgery.

  12. Lavandula angustifolia Mill. Oil and Its Active Constituent Linalyl Acetate Alleviate Pain and Urinary Residual Sense after Colorectal Cancer Surgery: A Randomised Controlled Trial

    Science.gov (United States)

    Yu, So Hyun

    2017-01-01

    Pain and urinary symptoms following colorectal cancer (CRC) surgery are frequent and carry a poor recovery. This study tested the effects of inhalation of Lavandula angustifolia Mill. (lavender) oil or linalyl acetate on pain relief and lower urinary tract symptoms (LUTS) following the removal of indwelling urinary catheters from patients after CRC surgery. This randomised control study recruited 66 subjects with indwelling urinary catheters after undergoing CRC surgery who later underwent catheter removal. Patients inhaled 1% lavender, 1% linalyl acetate, or vehicle (control group) for 20 minutes. Systolic and diastolic blood pressure (BP), heart rate, LUTS, and visual analog scales of pain magnitude and quality of life (QoL) regarding urinary symptoms were measured before and after inhalation. Systolic BP, diastolic BP, heart rate, LUTS, and QoL satisfaction with urinary symptoms were similar in the three groups. Significant differences in pain magnitude and urinary residual sense of indwelling catheters were observed among the three groups, with inhalation of linalyl acetate being significantly more effective than inhalation of lavender or vehicle. Inhalation of linalyl acetate is an effective nursing intervention to relieve pain and urinary residual sense of indwelling urinary catheters following their removal from patients who underwent CRC surgery. PMID:28154606

  13. A study on the dewatering of industrial waste sludge by fry-drying technology

    International Nuclear Information System (INIS)

    Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-kyum; Moon, Seung-Hyun

    2009-01-01

    In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m 2 deg. C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 deg. C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 deg. C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 deg. C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum

  14. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  15. Total sulfur determination in residues of crude oil distillation using FT-IR/ATR and variable selection methods

    Science.gov (United States)

    Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; Mello, Paola de Azevedo; Ferrão, Marco Flores; dos Santos, Maria de Fátima Pereira; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes

    2012-04-01

    Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm-1). This model produced a RMSECV of 400 mg kg-1 S and RMSEP of 420 mg kg-1 S, showing a correlation coefficient of 0.990.

  16. Improving the sludge conditioning potential of moringa seed

    Science.gov (United States)

    Ademiluyi, Joel O.; Eze, Romanus M.

    1990-01-01

    In the search for a cheaper material to effectively condition sludge, oil-free moringa seed was prepared and tested. A Soxhlet apparatus was used to extract the oil from moringa seed ( Moringa oleifera). The oil-free seed (marc) has been found to have higher conditioning potential than the ordinary moringa seed. However, the traditional ferric chloride is still a better sludge conditioner than moringa seed marc. For the digested domestic sludge used, optimum conditioning dosages were found to be 0.6, 0.80, and 1.10% of the total solids for ferric chloride, marc of the moringa seed, and ordinary moringa seed, respectively. Since little or no operational material is lost in the extraction process, the moringa seed marc is a promising conditioner in place of the ordinary seed.

  17. TECHNOLOGICAL AND ENVIRONMENTAL PROBLEMS CONNECTED WITH THERMAL CONVERSION OF SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2016-02-01

    Full Text Available Overview of the most common technological and environmental problems connected with thermal conversion of sewage sludge was presented in the article. Such issues as the influence of content of moisture and mineral matter on fuel properties of sludge, problem of emission of pollutants, problem of management of solid residue, risk of corrosion, were described. Besides, consolidated characteristic of the most important methods of thermal conversion of sewage sludge, with their advantages and disadvantages, was presented in the paper.

  18. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-07-08

    Crude petroleum having a density of 850 to 900 is purified with sulfuric acid, decanted, mixed with benzine or petrol, and again treated with sulfuric acid and decanted. The remaining acid and coloring-matter are removed by washing with water, or treating with oxalic acid, zinc carbonate, lead carbonate, calcium carbonate, or oxide of zinc. The product is used as a fuel for internal-combustion engines. Specifications No. 28,104, A.D. 1906, and No. 12,606, A.D. 1907, are referred to. According to the Provisional Specification, the process is applicable to shale or schist oil.

  19. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  20. A multiple hollow fibre liquid-phase microextraction method for the determination of halogenated solvent residues in olive oil.

    Science.gov (United States)

    Manso, J; García-Barrera, T; Gómez-Ariza, J L; González, A G

    2014-02-01

    The present paper describes a method based on the extraction of analytes by multiple hollow fibre liquid-phase microextraction and detection by ion-trap mass spectrometry and electron capture detectors after gas chromatographic separation. The limits of detection are in the range of 0.13-0.67 μg kg(-1), five orders of magnitude lower than those reached with the European Commission Official method of analysis, with three orders of magnitude of linear range (from the quantification limits to 400 μg kg(-1) for all the analytes) and recoveries in fortified olive oils in the range of 78-104 %. The main advantages of the analytical method are the absence of sample carryover (due to the disposable nature of the membranes), high enrichment factors in the range of 79-488, high throughput and low cost. The repeatability of the analytical method ranged from 8 to 15 % for all the analytes, showing a good performance.

  1. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  2. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  3. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    Science.gov (United States)

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.

  4. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  5. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  6. Radionuclide concentrations in oil extraction and production processes in Northeast Brazil

    International Nuclear Information System (INIS)

    Gazineu, Maria Helena Paranhos

    2005-06-01

    Since the beginning of the twentieth century the presence of naturally occurring radioactive material (NORM) was detected in the water and oil extracted from wells both onshore and offshore. The oil is extracted together with water and sediments which contain radionuclides of the uranium and thorium series. Among the radionuclides present, especial attention should be given to 226 Ra and 228 Ra, due to its long half-life and importance, from the radiological point of view. The objective of this work was to identify the natural radionuclides in the oil industry, to determine their activity concentration, and from these results, to evaluate the risks the employees of the oil industry are exposed to. Samples of sludge, scale and produced water extracted with the oil were collected from three oil processing stations in the state of Sergipe, Brazil. The activity concentrations of the radionuclides were determined in the solid samples before and after the extraction of the oil. The chemical and mineralogical composition of the samples without oil was evaluated. Water samples, on the other hand, were analyzed for their contents of radionuclides and barium concentration. It was observed that the activity concentrations of the analyzed radionuclides ( 226 Ra, 228 Ra, 228 Th and 210 Pb) in sludge and scales were very high when compared with the literature, particularly much higher than the values for 226 Ra and 228 Ra obtained for sludge and scales from the oil platforms near the city of Campos, state of Rio de Janeiro. The maximum concentration values for 226 Ra, 228 Ra, 228 Th and 210 Pb (3,500, 2,195, 2,248.6 and 201 kBq kg -1 , respectively) were obtained for the scales after the extraction of the oil. The analysis of the samples showed that barium sulphate (barite) and strontium sulphate (celestite) are the main constituents of the scales, while carbonates and silicates, together with other compounds are the components of sludge. A correlation between barium, 226 Ra and

  7. Enhanced bioenergy recovery from oil-extracted microalgae residues via two-step H2/CH4 or H2/butanol anaerobic fermentation.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Shu-Hsien

    2016-03-01

    Algae-based biodiesel is considered a promising alternative energy; therefore, the treatment of microalgae residues would be necessary. Anaerobic processes can be used for treating oil-extracted microalgae residues (OMR) and at the same time for recovering bioenergy. In this study, anaerobic batch experiments were conducted to evaluate the potential of recovering bioenergy, in the forms of butanol, H2, or CH4, from pretreated OMR. Using pretreated OMR as the only substrate, a butanol yield of 0.086 g/g-carbohydrate was obtained at carbohydrate of 40 g/L. With supplemented butyrate, a highest butanol yield of 0.192 g/g-carbohydrate was achieved at pretreated OMR containing 25 g/L of carbohydrate with 15 g/L of butyrate addition, attaining the highest energy yield of 3.92 kJ/g-OMR and energy generation rate of 0.65 kJ/g-OMR/d. CH4 production from pretreated OMR attained an energy yield of 8.83 kJ/g-OMR, but energy generation rate required further improvement. H2 production alone from pretreated OMR might not be attractive regarding energy yield, but it attained a superb energy generation rate of 0.68 kJ/g-OMR/d by combining H2 production from pretreated OMR and butanol production from pretreated OMR with supplementary butyrate from H2 fermentation supernatant. This study demonstrated an integrated system as an option for treating OMR and recovering bioenergy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dewatering of sludges

    International Nuclear Information System (INIS)

    Bode, P.

    1984-01-01

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  9. Integrated oil sands tailings pond water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2010-07-01

    This PowerPoint presentation discussed research currently being conducted to treat oil sands tailings pond water (TPW). The treatment of TPW is challenged by the high level of naphthenic acids (NAs), the slow settling rate of fine particulate materials, and the complex chemistry of the water. The treatment process consisted of bioflocculation, sludge blanket assisted clarification, ozonation, and oil sands coke assisted hybrid biodegradation. The aggregation and adsorption process bound small particles and cells together while also ensuring the passive uptake of pollutants using microbial masses. The mixed liquor then passed through a sludge blanket to ensure enhanced particle capture. An ozonation process was used to increase the biodegradability of the TPW as well as to increase the biodegradability of the residual NAs after ozonation. The process used a hybrid bioreactor that consisted of both suspended and fixed microbial communities. The coke served as a biofilm carrier for the waste. Further studies are being conducted to investigate the efficiency and capability of the process. tabs., figs.

  10. Metal fractionation in sludge from sewage UASB treatment.

    Science.gov (United States)

    Braga, A F M; Zaiat, M; Silva, G H R; Fermoso, F G

    2017-05-15

    This study evaluates the trace metal composition and fractionation in sludge samples from anaerobic sewage treatment plants from six cities in Brazil. Ten metals were evaluated: Ni, Mn, Se, Co, Fe, Zn, K, Cu, Pb and Cr. Specific methanogenic activity of the sludge was also evaluated using acetic acid as the substrate. Among the essential trace metals for anaerobic digestion, Se, Zn, Ni and Fe were found at a high percentage in the organic matter/sulfide fraction in all sludge samples analyzed. These metals are less available for microorganisms than other metals, i.e., Co and K, which were present in significant amounts in the exchangeable and carbonate fractions. Cu is not typically reported as an essential metal but as a possible inhibitor. One of the samples showed a total Cu concentration close to the maximal amount allowed for reuse as fertilizer. Among the non-essential trace metals, Pb was present in all sludge samples at similar low concentrations and was primarily present in the residual fraction, demonstrating very low availability. Cr was found at low concentrations in all sludge samples, except for the sludge from STP5; interestingly, this sludge presented the lowest specific methanogenic activity, indicating possible Cr toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  12. Assessment of sludges and tank bottoms treatment processes

    International Nuclear Information System (INIS)

    Bhutto, A.W.; Bazmi, A.A.

    2005-01-01

    The petroleum refining industries generate considerable amounts of sludge and tank bottoms as waste. Petroleum refinery receives crude oil containing emulsified water and solids. As the crude oil storage tanks are repeatedly filled and emptied, the water and solids settle towards the bottom as sludge. For tanks that have been in service for several years, the sludge accumulation becomes several feet deep, results in a loss of ullage in refinery crude storage tanks. The accumulation of crude storage tank bottoms is a serious problem experienced by local refineries. The refinery sludge waste is categorized as hazardous waste, which is at present buried in the tankform ground. Since the no hazardous material land filling option available, the disposal of these hazardous materials has become a major problem because of the ISO-14000 certification requirements and expectation of stakeholder. To maximize the waste oil recovery from sludge and tank bottoms and to minimize the volume of the hazardous waste, a number of waste recovery and treatment processes are available. The process designs and unit operations of each process are different and each has its own merits, in terms of the technical complexity, operation friendliness, and costs and economics. A study on each of these technologies and the subsequent tide-up to the existing unit operations is conducted, and the associated technical comparisons are made. (author)

  13. Integrated project: Microbiological and physiological studies on the presence of residual concentrations in mineral-oil-contaminated soils after rehabilitation. Final report. Pt. 2; Mikrobiologische und physiologische Untersuchungen zur Frage der Restkonzentration bei der Sanierung mineraloelkontaminierter Boeden. Abschlussbericht. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Miethe, D.; Riis, V.; Stimming, M.

    1996-01-04

    It has been known for a long time that microorganisms are able to utilise mineral oils. Today various methods are practised which exploit autochthonous microorganisms` ability to utilise mineral oils. The main problem of microbial decomposition of hydrocarbons is that mineral oil residues remain. The aim of the present research project was therefore to determine the limits of the metabolisability of the substrate and find out why residues remain. Mineral oils and residual fractions differ markedly in their decomposability. Intermediate distillates are easily decomposed to a degree of 95-97% by well-adapted consorts. For high-boiling mineral oils (bp>400 C) the degree of decomposition is approx. 60%. Extracts from contaminated sites range from 40 to 60% in their degree of decomposability. The incomplete microbial decomposition of mineral oils is mainly due to their structure. There remain chemically and thermally extremely, inert hydrocarbons (mainly aliphatic and aromatic fused-ring systems) which are either hardly metabolisable or not at all. An important factor in soils or at other contaminated sites is that some of the substrate is not available because it is bound to the matrix thus increasing the proportion of residue. The next task after examining and presenting the causes of incomplete decomposition is to minimise residual mineral oil concentrations remaining after microbial decomposition. Here the use of special surfactants or of auxiliary substrates could point a way. Project applications to this end have already been submitted to the Federal Ministry for Education and Research. (orig.) [Deutsch] Dass Mikroorganismen in der Lage sind, Mineraloele zu verwerten, ist seit langem bekannt. Verfahren, die das Potential autochthoner Mikroorganismen zur Verwertung von Mineraloelen nutzen sind Praxis. Hauptproblem beim mikrobiellen Abbau der Kohlenwasserstoffe ist das Verbleiben von Mineraloelresten. Das Ziel des Forschungsvorhabens war die Ermittlung der Grenzen

  14. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    Science.gov (United States)

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia

    Science.gov (United States)

    Mardiana-Jansar, K.; Ismail, B. S.

    2014-09-01

    Levels of glyphosate and its main metabolite were determined in surface water, soil and sediment samples from an oil palm plantation area located at Tasik Chini, Pahang, Malaysia. The optimization analytical method has been developed for the determination of glyphosate herbicide and its metabolite amino-methyl-phosphonic acid (AMPA) in surface waters to a level of 0.1μg/L, while in sediments and soils to a level of 0.5μg/g with a good linearity in the calibration range of 1-100μg/L. The procedure involves a pre-columnderivatization step with 9-fluorenyl-methyl-chloroformate (FMOC-Cl) yielding highly fluorescent derivatives of the analytes which can be determined by HPLC with fluorescence detection. In the field, levels of glyphosate in surface waters ranges from not detected to 1.0mg/L, while in soils and sediments were from not detected to 6.0mg/kg. For AMPA, the residues in surface waters were between not detected to 2.0mg/L, while in soil and sediment samples were from not detected to 5mg/kg. This variation of glyphosate and AMPA levels depended directly on time of pesticide application and the season.

  16. Recent development in the treatment of oily sludge from petroleum industry: a review.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Zeng, Guangming

    2013-10-15

    Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  18. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  19. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    Science.gov (United States)

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  20. Use of sewage sludge as a fertilizer for increasing soil fertility and crop production

    International Nuclear Information System (INIS)

    Suess, A.

    1997-01-01

    The high nutrient and organic-matter contents of sewage sludge make it a useful soil amendment for farmers. In this study at four locations in Bavaria, the application of sewage sludge produced com yields that were similar to or better than those produced by an equal application (in terms of N) of chemical fertilizer. High rates of sludge (800 m 3 /ha) further improved crop yields, although such are impractical for farmers' fields. Residual beneficial effects of sewage-sludge application were seen also in terms of subsequent yields of barley. Application of sludge also improved biological and physical properties of the soils. More long-term studies are needed to better understand how sewage sludge contributes to the improvement of soil fertility and crop yields. (author)

  1. Hydraulic conductivity and soil-sewage sludge interactions

    Directory of Open Access Journals (Sweden)

    Silvio Romero de Melo Ferreira

    2011-10-01

    Full Text Available One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

  2. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  3. Chemical characterization of vermicompost of sewage sludge with different proportions of diatomaceous material

    Directory of Open Access Journals (Sweden)

    Fabíola M. Braga

    Full Text Available ABSTRACT The pursuit for waste recovery has been the best way to contribute to environmental sustainability. The mix of sewage sludge (SS from Sewage Treatment Plant with diatomaceous material containing oil (DE, used as a filter in biofuel production, can form a substrate rich in minerals and organic matter through vermicomposting. Therefore, this study aimed to produce vermicompost using worms, Eisenia foetida, from a pre-compost (PC of sewage sludge and garden pruning residues mixed with different proportions of DE in relation to PC: 0; 7.53; 15.06; 22.59; and 30.12% v/v. The design was randomized complete blocks with five treatment replicates. The chemical characteristics of the vermicompost were analyzed after a period of four months. The proportion of up to 30.12% v/v of DE met the criteria established for agriculture uses, registration and marketing of the product as organic compost in accordance with the Normative Instructions SDA 27/2006 and 25/2009 from the Ministry of Agriculture.

  4. New guidelines for oil spill identification of waterborne petroleum and petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, L.G.; Daling, P.S. [SINTEF Energy Research, Trondheim (Norway); Hansen, A.B. [National Environmental Research Inst., Roskilde (Denmark); Kienhuis, P. [RIZA, (Netherlands); Duus, R. [Norwegian Standard Association (Norway)

    2005-07-01

    Advances in interpretive and analytical methods have opened the possibility to improve the existing Nordtest methodology for oil spill identification which was developed in 1991 under the Nordic Council of Ministers. In 2002, the European Committee for Standardization (CEN) established 2 working groups to revise the Nordtest Methodology into the following 2 CEN guidelines: (1) oil spill identification which includes waterborne and petroleum products, and (2) oil spill identification which in addition to including waterborne petroleum and petroleum products, includes analytical methodology and interpretation of results. The revised methodology includes a protocol/decision chart that has 3 tiered levels of analyses and data treatment. The methodology relies on the characterization of diagnostic ratios. The CEN working group intends to use the guidelines as a basis for a national oil spill identification protocol in each European country and for further international use. The methodology can be applied to oil samples of petrogenic origin with boiling points above 200 degrees C, such as crude oils, diesel fuel oils, residual bunker oils, lubricants, and mixtures of oily bilge and sludge samples. It is not intended for automotive gasolines or other light petroleum products. The method has been implemented in most forensic laboratories in Europe and has successfully differentiated between oils from a spill and possible pollution sources. 19 refs., 4 tabs., 10 figs.

  5. New guidelines for oil spill identification of waterborne petroleum and petroleum products

    International Nuclear Information System (INIS)

    Faksness, L.G.; Daling, P.S.; Hansen, A.B.; Kienhuis, P.; Duus, R.

    2005-01-01

    Advances in interpretive and analytical methods have opened the possibility to improve the existing Nordtest methodology for oil spill identification which was developed in 1991 under the Nordic Council of Ministers. In 2002, the European Committee for Standardization (CEN) established 2 working groups to revise the Nordtest Methodology into the following 2 CEN guidelines: (1) oil spill identification which includes waterborne and petroleum products, and (2) oil spill identification which in addition to including waterborne petroleum and petroleum products, includes analytical methodology and interpretation of results. The revised methodology includes a protocol/decision chart that has 3 tiered levels of analyses and data treatment. The methodology relies on the characterization of diagnostic ratios. The CEN working group intends to use the guidelines as a basis for a national oil spill identification protocol in each European country and for further international use. The methodology can be applied to oil samples of petrogenic origin with boiling points above 200 degrees C, such as crude oils, diesel fuel oils, residual bunker oils, lubricants, and mixtures of oily bilge and sludge samples. It is not intended for automotive gasolines or other light petroleum products. The method has been implemented in most forensic laboratories in Europe and has successfully differentiated between oils from a spill and possible pollution sources. 19 refs., 4 tabs., 10 figs

  6. Test plan, sludge retrieval, sludge packaging

    International Nuclear Information System (INIS)

    Feigenbutz, L.V.

    1994-01-01

    This document provides direction for the cold testing of tools, equipment and systems which will be installed and operated in K-East (KE) Basin in support of the sludge retrieval and packaging project. The technical uncertainties related to the effectiveness of sludge retrieval procedures and equipment require that cold testing be completed before installation in KE Basin to identify and resolve existing problems, and to optimize the efficiency of all equipment and systems used. This plan establishes the responsibilities, test requirements, and documentation requirements necessary to complete cold tests of: (1) equipment with no potential for plant use; (2) prototype equipment and systems which may be upgraded for use in K-Basin; and (3) plant equipment and systems requiring cold acceptance testing prior to plant use. Some equipment and systems may have been subject to a formal design review and safety assessment; the results of which will be included as supporting documents to the operational readiness review (ORR)

  7. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil.

    Science.gov (United States)

    Stefaniuk, Magdalena; Oleszczuk, Patryk

    2016-11-01

    Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox ® ), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of C free PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of C free PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, C free PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism.

    Science.gov (United States)

    Jiang, N; Dreher, K L; Dye, J A; Li, Y; Richards, J H; Martin, L D; Adler, K B

    2000-03-15

    Inhalation of ambient air particulate matter (PM) is associated with pulmonary injury and inflammation. Using primary cultures of guinea pig tracheal epithelial (GPTE) cells as an in vitro model of airway epithelium, we examined effects of exposure to suspensions of six different emission and ambient air PM samples: residual oil fly ash (ROFA) from an electrical power plant; fly ash from a domestic oil burning furnace (DOFA); ambient air dust from St. Louis (STL), Ottawa (OT), and Washington, DC (WDC); and volcanic ash from the eruption of Mount Saint Helens (MSH) in 1980. Effects of these particulates on cell viability (assessed via LDH assay), secretion of mucin (measured by a monoclonal antibody-based ELISA), and steady-state mRNA levels of the mucin gene MUC2 were determined. ROFA was the most toxic of the dusts tested, as it significantly increased LDH release following a 24-h incubation with 50 microg/cm(2) ROFA. ROFA also enhanced MUC2 mRNA after 4-h exposure, and mucin secretion after 8 h. ROFA-induced mucin secretion and cytotoxicity were attenuated by the oxidant scavenger, dimethylthiourea (DMTU). ROFA exposure also depleted cells of glutathione (GSH). Relatedly, depletion of intracellular GSH by treatment of the cells with buthionine sulfoxamine (BSO) also provoked mucin secretion, as well as enhancing the secretory effect of ROFA when the two agents were added together. L-NMA, the nitric oxide synthase (NOS) inhibitor, did not affect ROFA-induced mucin secretion. Of the soluble transition metals in ROFA (nickel, iron, vanadium), only vanadium individually, or combinations of the metals containing vanadium, provoked secretion. The results suggest ROFA enhances mucin secretion and generates toxicity in vitro to airway epithelium via a mechanism(s) involving generation of oxidant stress, perhaps related to depletion of cellular antioxidant capacity. Deleterious effects of inhalation of ROFA in the respiratory tract in vivo may relate to these cellular

  9. Improving biogas production from anaerobic co-digestion of Thickened Waste Activated Sludge (TWAS) and fat, oil and grease (FOG) using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor.

    Science.gov (United States)

    Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert

    2018-07-01

    This paper investigates the feasibility and advantages of using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor system for the co-digestion of Thickened Waste Activated Sludge (TWAS) and Fat, Oil and Grease (FOG) to produce biogas in high quantity and quality. The performance of the dual-stage hyper-thermophilic (70°C)/thermophilic (55°C) anaerobic co-digestion system is evaluated and compared to the performance of a single-stage thermophilic (55°C) reactor that was used to co-digest the same FOG-TWAS mixtures. Both co-digestion reactors were compared to a control reactor (the control reactor was a single-stage thermophilic reactor that only digested TWAS). The effect of FOG% in the co-digestion mixture (based on total volatile solids) and the reactor hydraulic retention time (HRT) on the biogas/methane production and the reactors' performance were thoroughly investigated. The FOG% that led to the maximum methane yield with a stable reactor performance was determined for both reactors. The maximum FOG% obtained for the single-stage thermophilic reactor at 15 days HRT was found to be 65%. This 65% FOG resulted in 88.3% higher methane yield compared to the control reactor. However, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor proved to be more efficient than the single-stage thermophilic co-digestion reactor, as it was able to digest up to 70% FOG with a stable reactor performance. The 70% FOG in the co-digestion mixture resulted in 148.2% higher methane yield compared to the control at 15 days HRT. 70% FOG (based on total volatile solids) is so far the highest FOG% that has been proved to be useful and safe for semi-continuous reactor application in the open literature. Finally, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor also proved to be efficient and stable in co-digesting 40% FOG mixtures at lower HRTs (i.e., 9 and 12 days) and still produce high methane yields and Class A effluents

  10. Processing of sump sludges at the Commonwealth Edison Byron Nuclear Generating Station

    International Nuclear Information System (INIS)

    Herrmann, D.; Gardner, D.A.; Taylor, E.R. Jr.

    1990-01-01

    A basic criterion for the disposal of radioactive waste by shallow land burial is that the material must not contain free liquids. In addition burial sites' requirements regarding radioactive waste containing oils, even though solidified, are restrictive. At Commonwealth Edison Byron Nuclear Generating Station a methodology for processing treated waste sludges, originating form the turbine building's floor drains was developed and implemented. As a result of this effort, 322 drums of oil and water sludge were processed. A dry cake, i.e., no free liquids, was produced, packaged, and readied for disposal. The dry cake contained less than 2% oil. The liquid phases resulting from the processing of the treated waste sludge were oil (that was to be processed for disposal as non-radioactive) and filtrate containing less than 5 ppm total suspended solids (TSS) and oil/grease. The filtrate TSS was below the Station's National Pollution Discharge Elimination System (NPDES) permit release limits. 4 figs

  11. Changes in the Concentration of Heavy Metals (Cr, Cd, Ni During the Vermicomposting Process of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Aušra Zigmontienė

    2014-10-01

    Full Text Available Sewage sludge treatment and utilization is an important issue for a biodegradable waste management strategy. Heavy metals in sewage sludge complicate its use. Vermicomposting is one of the ways to improve the characteristics of sewage sludge and to reduce the residual concentrations of heavy metals. Study on changes in the concentration of heavy metals (Chromium, Nickel and Cadmium, when vermicomposting sewage sludge, was performed using Californian earthworms (Eisenia fetida. For that purpose, 60 kg of sewage sludge from Vilnius Waste Water Treatment Plant were taken thus inserting 1.5 kg of Californian earthworms into it. Optimal conditions for work (optimum temperature, moisture, pH for earthworms to survive were maintained in the course of the study that lasted 120 days and was conducted in June – August. The samples of sewage sludge and earthworms were taken every 10 days. The concentrations of heavy metals in sewage sludge were measured using atomic absorption spectroscopy.

  12. Emissions of CO2 and CH4 from sludge treatment reed beds depend on system management and sludge loading

    DEFF Research Database (Denmark)

    Olsson, Linda; Dam Larsen, Julie; Ye, Siyuan

    2014-01-01

    , the SD had no vegetation and a poor dewatering capacity, which resulted in anaerobic conditions favoring CH4 emission. In contrast, the well-managed STRB had more aerobic conditions in the sludge residue resulting in low CH4 emission rates. We conclude that well-designed and well-managed STRBs have a low...

  13. RELATIONSHIP BETWEEN SLUDGE DEWATERABILITY NUMBER ...

    African Journals Online (AJOL)

    A representative of a sludge sample collected from the same source was filtered under the same environmental condition and the result analysed with two different concepts. One method of analysis uses Sludge Dewaterability Number, while the second employed the Carman's Specific resistance concept in sludge ...

  14. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  15. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  16. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    Science.gov (United States)

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  17. Heavy metals availability and soil fertility after land application of sewage sludge on dystroferric Red Latosol

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Moreira

    2013-12-01

    Full Text Available Sewage sludge is the solid residue obtained from urban sewage treatment plants. It is possible to use the sludge in a sustainable way as fertilizer and as soil conditioner due to its high levels of organic matter and nutrients. Besides pathogens and volatile organic compounds, the residue may also contain heavy metals which may accumulate and contaminate crops and the food chain. The aim of this study was evaluates the changes in the fertility of dystrophic Red Latosol and in the availability of heavy metals following application of sewage sludge. It was assessed whether organic matter supplied to the soil as large amounts of sewage sludge would decrease availability of heavy metals in the soil due to of insoluble compounds formation. From this, an experiment was carried out in polyethylene pots using lettuce plant for test. Sewage sludge were applied to the soil in concentrations equivalent to 60, 120 and 180 t ha-1, and a control without sludge, in four replicates, in a completely randomized design. The results show that sewage sludge led to an increase of organic matter contents, of the cation exchange capacity (CEC and of nutrients found in the soil. It also improved plant growth up to a concentration of 120 t ha-1. Availability of heavy metals, however, was reduced in sludge concentrations starting with 120 t ha-1.

  18. Charcoal from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M

    1980-03-06

    Paper sludge containing less than or equal to 50% water is mixed with coffee shells and greater than or equal to 1 almond shells, orange skin, walnut shells, or bean jam waste, compacted, and dry distilled at 300-600 degrees to prepare charcoal. Thus, 1 ton of paper sludge was mixed with 100 kg each of coffee shells, almond shells, orange skin, and walnut shells; compacted and dry distilled 24 hours at approximately 450 degrees. The calorific value of the charcoal produced was approximately 7300 kcal/kg.

  19. Ceramsite preparation from sea sludge with sewage sludge biochar and its environmental risk assessment

    Science.gov (United States)

    Li, Jie; Yu, Guangwei; Pan, Lanjia; Li, Chunxing; Xie, Shengyu; Wang, Gang; Wang, Yin

    2018-02-01

    Ceramsite were produced from sea sludge (SS) by adding different percentage of sewage sludge biochar (SSB). The characteristics of ceramsite including micrograph and elementary composition were analyzed. In addition, the heavy metals (HMs) fractions, leaching behaviour and potential environmental risk were also investigated. The microstructure of the ceramsite was slit pores and the main elements of the ceramsite were Si, Al and O. The residual fraction (F4) of Cu, Cr and Cd in ceramsite with 100% SS (SS100) reached the maximum (100%, 99% and 100%, respectively), while F4 of Zn and Ni in ceramsite with 80% SS and 20% SSB (SS80) reached the top value of 99.5% and 98%. Moreover, the HMs of feedstock can be immobilized after sintering as ceramsite and the leached amounts of HMs in all ceramsite were much lower than that stated by GB 5085.3-2007. Furthermore, ceramsite preparation from sea sludge with sewage sludge biochar will not bring HMs contamination and potential ecological risk.

  20. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  1. Poland petroleum refinery sludge lagoon demonstration project

    International Nuclear Information System (INIS)

    Altman, D.J.

    2000-01-01

    The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant application as used to increase the biodegradation of the contaminants of concern

  2. The drying of sewage sludge by immersion frying

    Directory of Open Access Journals (Sweden)

    D. P. Silva

    2005-06-01

    Full Text Available The objective of this work was to dry sewage sludge using a fry-drying process. The frying experiments were carried out in commercial fryers modified by adding thermocouples to the setup. During frying, typical drying curves were obtained and it was verified that, in relation to the parameters: oil temperature, oil type and shape of the sample, the shape factor the most effect on the drying rate, at least within the range chosen for the variables studied. Oil uptake and calorific value were also analyzed. The calorific value of the samples increased with frying time, reaching values around 24MJ/kg after 600s of frying (comparable to biocombustibles such as wood and sugarcane bagasse. The process of immersion frying showed great potential for drying materials, especially sewage sludge, obtaining a product with a high energy content, thereby increasing its value as a combustible.

  3. Ear Mushroom (Auricularia sp.) Cultivation On Irradiated Palm Oil Empty Fruit Bunch And Saw Dust

    International Nuclear Information System (INIS)

    Endrawanto; Suwadji, E.

    2000-01-01

    The experiments were conducted under laboratory condition. Ear mushroom (Auricularia sp.) were grown on palm oil empty fruit bunch (EFB), sludge of oil residue, and saw dust as growth medium after (heating) autoclaved and irradiated by gamma rays at the dose of 30 kGy. EFB fiber as well as saw dust were mixed with sludge in composition of (1:0), (0;1), (1;1), (2;5), (1;5), (1;10) and (1;20). The mixture was then composted within 2 weeks by the addition of CaO 2%, CaSO 4 (gypsum) 2 %, rice bran 12%, P fertilizer 0,5% and urea 0,25%. A plastic bag volume 1000 ml was filled by 400 grams of composted material as mushrooms medium or bag log. Sterilized bag logs were then inoculated with mushroom spawns. After inoculation, bag logs were incubated during 1.5 months waiting for mycelium growing. Parameters of the experiments were following weight of mushrooms after harvesting, biological efficiency, rendement, and total fiber on bag log after mushrooms harvesting. Results of experiments showed that utilization of sludge as mixture with EFB produced weight mushrooms yield more than without sludge addition. Saw dust treatment produced more mushrooms weight compared to EFB treatments I.e. 90 g and 75 g. Weight of mushrooms produced and 76.6 g respectively. Rendement obtained between saw dust palm oil empty fruit bunch treatments were not significant at P<0.05 I.e. 91-92%

  4. Use of sewage sludge and organic residues in the growth of seedlings Sesbania virgata (Cav. Pers. = Uso de lodo de esgoto e resíduos orgânicos no crescimento de mudas de Sesbania virgata (Cav. Pers.

    Directory of Open Access Journals (Sweden)

    William Macedo Delarmelina

    2013-08-01

    Full Text Available During the production of seedlings, the substrate has a significant influence on plant growth, which can be used in an original or combined form. This has made necessary studies to obtain substrates able to ensure adequate growth of the seedlings grown in nurseries. With to contribute to the knowledge of the specie Sesbania virgata (Cav. Pers, this study determined the best ratio of the components for the formation of a suitable growth medium for theses seedlings. The treatments were formulated using sewage sludge (LE, organic compost (CO, coffee straw (PC in natura, and the commercial substrate (SC. Seedlings were grown in plastic pots with a capacity of 120 cm3. The experiment consisted of fourteen treatments withthree replicates of five seedlings each. After 150 days old the following variables were measured: plant height, stem diameter,ratio between plant height and stem diameter, dry mass of shoot, dry mass of root system, total dry mass, dry mass ratio of shoot/root dry mass, and Dickson quality index. The results indicated that the treatments containing sewage sludge and organic compost in its composition, especially the treatment T7 (40% LE + 60% CO provided the demonstrated the best morphological characteristics of Sesbania virgata seedlings. = Na fase de produção de mudas, o substrato exerce influência significativa no crescimento das plantas, e sua utilizaçãopode ser feita de forma original ou combinados, tornando necessário, estudos voltados para obtenção de substratos capazes de garantir adequado crescimento e qualidade das mudas produzidas em viveiro. Visando contribuir para o conhecimento da espécie Sesbania virgata (Cav. Pers, objetivou-se com este trabalho avaliar a melhor proporção entre componentes para formação de substrato para mudas. Os tratamentos foram formulados utilizando lodo de esgoto (LE, palha de café in natura (PC in natura, composto orgânico (CO e o substrato comercial (SC em diferentes propor

  5. Treatment of Lagoon sludge waste generated from Uranium Conversion Plant

    International Nuclear Information System (INIS)

    Hwang, D.S.; Oh, J.H.; Lee, K.I.; Choi, Y.D.; Hwang, S.T.; Park, J.H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the desalination process by water and the drying property of residual solid after separating nitrates in a series of processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97 % at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue. These were decomposed over 600 deg. C while calcium carbonate, which was a main compound of residual solid, was decomposed into calcium oxide over 750 deg. C. The residual solid has to be decomposed over 800 deg. C to converse uranyl nitrate of six values into the stable U 3 O 8 of four values. As a result of removing the nitrates at the adding ratio of 2.5 and drying the residue over 900 deg. C, volume of the sludge waste decreased over 80 %. (authors)

  6. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    Science.gov (United States)

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  7. Laboratory studies of the properties of in-situ burn residues: chemical composition of residues

    International Nuclear Information System (INIS)

    Trudel, B.K.; Buist, I.A.; Schatzke, D.; Aurand, D.

    1996-01-01

    The chemical composition of the residue from small-scale burns of thick oil slicks was studied. The objective was to describe the changes in chemical composition in oils burning on water and to determine how these changes were influenced by the condition of the burn. Small-scale test burns involved burning 40-cm diameter pools of oil on water. A range of eight oil types including seven crude oils and an automotive diesel were burned. For each oil, slicks of fresh oil of three different thicknesses were tested. Two of the oils were tested before and after weathering. Results showed that the composition of the residue differed greatly from the parent oil. Asphaltenes, high-boiling-point aromatics and resins remained concentrated in the burn residue. The burning of slicks appeared to remove most of the lower-molecular weight aromatic hydrocarbons which included the more toxic and more bioavailable components of the crude oils. 11 refs., 6 tabs

  8. Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Natalia D.; Marchini, Timoteo; Vanasco, Virginia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Tasat, Deborah R. [CESyMA, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Alvarez, Silvia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Evelson, Pablo, E-mail: pevelson@ffyb.uba.ar [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina)

    2013-07-01

    Reactive O{sub 2} species production triggered by particulate matter (PM) exposure is able to initiate oxidative damage mechanisms, which are postulated as responsible for increased morbidity along with the aggravation of respiratory diseases. The aim of this work was to quantitatively analyse the major sources of reactive O{sub 2} species involved in lung O{sub 2} metabolism after an acute exposure to Residual Oil Fly Ashes (ROFAs). Mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight), and lung samples were analysed 1 h after instillation. Tissue O{sub 2} consumption and NADPH oxidase (Nox) activity were evaluated in tissue homogenates. Mitochondrial respiration, respiratory chain complexes activity, H{sub 2}O{sub 2} and ATP production rates, mitochondrial membrane potential and oxidative damage markers were assessed in isolated mitochondria. ROFA exposure was found to be associated with 61% increased tissue O{sub 2} consumption, a 30% increase in Nox activity, a 33% increased state 3 mitochondrial O{sub 2} consumption and a mitochondrial complex II activity increased by 25%. During mitochondrial active respiration, mitochondrial depolarization and a 53% decreased ATP production rate were observed. Neither changes in H{sub 2}O{sub 2} production rate, nor oxidative damage in isolated mitochondria were observed after the instillation. After an acute ROFA exposure, increased tissue O{sub 2} consumption may account for an augmented Nox activity, causing an increased O{sub 2}{sup ·−} production. The mitochondrial function modifications found may prevent oxidative damage within the organelle. These findings provide new insights to the understanding of the mechanisms involving reactive O{sub 2} species production in the lung triggered by ROFA exposure. - Highlights: • Exposure to ROFA alters the oxidative metabolism in mice lung. • The augmented Nox activity contributes to the high tissue O{sub 2} consumption. • Exposure to ROFA

  9. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  10. Bacteriology of activated sludge

    NARCIS (Netherlands)

    Gils, van H.W.

    1964-01-01

    The bacteriology and biochemistry of activated sludge grown in domestic waste water or fed with synthetic media were studied. The nature of the flocs was investigated by determining morphological and physiological characteristics of many strains isolated.

    Predominant bacteria were

  11. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value