WorldWideScience

Sample records for residual municipal solid

  1. Leaching from municipal solid waste incineration residues

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.

    2008-02-15

    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  2. Metallic elements fractionation in municipal solid waste incineration residues

    Science.gov (United States)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  3. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  4. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... of a semi-dry flue-gas cleaning system and fly ashes from a plant with wet flue-gas cleaning system. The results showed a general reduction of the leaching in both residues after ED remediation. For the following elements, the leaching was found to be different after ED treatment depending on the membrane...... used, with statistical significance: • Air pollution control residues of the semi-dry flue-gas cleaning system: Cr, Cu, Ni, Pb, Zn; • Fly ashes from a plant with wet flue-gas cleaning system: Al, Ba, Cu, Ni, Zn, Cl, SO4. Final leaching values for some elements and membranes, but not the majority, were...

  5. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    Science.gov (United States)

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characteristics of residual organics in municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Lin, Yen-Ching; Yen, Jui-Hung; Lateef, Shaik Khaja; Hong, Pui-Kwan Andy; Lin, Cheng-Fang

    2010-10-15

    Although heavy metals in bottom ash have been a primary issue in resource recovery of municipal solid waste incinerator residues in past decades, less studied are potentially toxic and odorous organic fractions that exist as they have not been completely oxidized during the mass burn process. Using supercritical fluid extraction (SFE) and soxtec extraction (SE) techniques, this study investigated the characteristics of un-oxidized organic residues contained in bottom ash from three municipal solid waste incinerators in Taiwan during 2008-2009. All together 99 organics were identified in bottom ash samples using gas chromatography-mass spectrometry (GC-MS). Among the identified organics, aromatic compounds were most frequently detected. No polycyclic aromatic hydrocarbons were extracted by SFE or SE. Several phthalates (e.g., phthalic acid isobutyl tridec-2-yn-1-yl ester, dibutyl phthalate and 2-butoxyethyl butyl benzene-1,2-dicarboxylate), organic phosphates (e.g., octicizer and phosphoric acid isodecyl diphenyl ester), and aromatics and amines including pyridine, quinoline derivatives, chloro- and cyano-organics were successfully extracted. Aromatic amines (e.g., 1-nitro-9,10-dioxo-9,10-dihydro-anthracene-2-carboxylic acid diethylamide and 3-bromo-N-(4-bromo-2-chlorophenyl)-propanamide) and aromatic compounds (other than amines) (e.g., 7-chloro-4-methoxy-3-methylquinoline and 2,3-dihydro-N-hydroxy-4-methoxy-3,3-dimethyl indole-2-one) are probably the major odorous compounds in bottom ash. This work identifies organic pollutants in incinerated bottom ash that have received far less attention than their heavy metals counterpart. 2010 Elsevier B.V. All rights reserved.

  7. A review of municipal solid waste environmental standards with a focus on incinerator residues

    Directory of Open Access Journals (Sweden)

    Alec Liu

    2015-12-01

    Full Text Available Environmental issues are often neglected until a lapse in the care for environment, which leads to serious human health problem, would then put regulation gaps in the spotlight. Environmental regulations and standards are important as they maintain balance among competing resources and help protect human health and the environment. One important environmental standard is related to municipal solid waste (MSW. Proper MSW management is crucial for urban public health. Meanwhile, the sustainability of landfills is also of concern as increasing volumes of MSW consume finite landfill space. The incineration of MSW and the reuse of incinerated residues help alleviate the burden on landfill space. However, the reuse of MSW incinerator residues must be regulated because they may expose the environment to toxic heavy metal elements. The study of environmental standards from different countries applicable to MSW is not widely published, much less those for incinerated MSW residue reuse. This paper compares extant waste classification and reuse standards pertinent to MSW, and explores the unique recent history and policy evolution in some countries exhibiting high environmental regard and rapid changes, so that policy makers can propose new or revise current MSW standards in other countries.

  8. Geopolymers based on the valorization of Municipal Solid Waste Incineration residues

    Science.gov (United States)

    Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Barbieri, L.; Chimenos, J. M.; Lancellotti, I.

    2017-10-01

    The proper management of Municipal Solid Waste (MSW) has become one of the main environmental commitments for developed countries due to the uncontrolled growth of waste caused by the consumption patterns of modern societies. Nowadays, municipal solid waste incineration (MSWI) is one of the most feasible solutions and it is estimated to increase in Europe where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion, which is classified as a non-hazardous residue that can be revalorized as a secondary aggregate in road sub-base, bulk lightweight filler in construction. In this way, revalorization of weathered BA (WBA) for the production of geopolymers may be a good alternative to common reuse as secondary aggregate material; however, the chemical process to obtain these materials involves several challenges that could disturb the stability of the material, mainly from the environmental point of view. Accordingly, it is necessary that geopolymers are able to stabilize heavy metals contained in the WBA in order to be classified as non-hazardous materials. In this regard, the SiO2/Al2O3 ratio plays an important role for the encapsulation of heavy metals and other toxic elements. The aim of this research is to formulate geopolymers starting from the 0 - 2 mm particle size fraction of WBA, as a unique raw material used as aluminumsilicate precursor. Likewise, leaching tests of the geopolymers formulated were performed to assess their environmental impact. The findings show that it is possible to formulate geopolymers using 100 % WBA as precursor, although more investigations are needed to sustain that geopolymer obtained can be considered as non-hazardous materials.

  9. Leaching of Antimony (Sb)from Municipal Solid Waste Incineration (MSWI) Residues

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Inga

    2004-07-01

    The mobility of antimony (Sb) in municipal solid waste incineration (MSWI) residues often exceeds the limit values stipulated by the European Union. As an ash treatment by washing is conceivable, this work investigated the Sb release from Swedish bottom ash and fly ash when mixed with water. The leaching experiments revealed the factors significantly (a = 0.05) affecting Sb release from the ashes. The following factors were investigated: Liquid to solid ratio (L/S), time, pH, carbonation (treatment with CO{sub 2}), ultrasonics and temperature. The data were evaluated using multiple linear regression (MLR). The impact of the factors could be quantified. The maximum Sb release calculated was 13 mg/kg DM for bottom ash and 51 mg/kg DM for fly ash. The derived models explained the observed data well. Nevertheless, the calculated values were subject to a high uncertainty. For bottom ash, a lowering of the Sb total content of approximately 22% could be achieved. If this also involves a sufficient lowering of the Sb mobility to meet EU limit values could not yet be assessed. Chemical equilibrium calculations were performed to explain the empirical results. However, no solid phases controlling Sb release from the ashes could be identified.

  10. STUDY OF ASPHALT BINDER OIL RESIDUE AND MUNICIPAL SOLID WASTE ASH TO BE USED IN LOW TRAFFIC PAVEMENTS

    Directory of Open Access Journals (Sweden)

    Michéle Dal Toé Casagrande

    2014-12-01

    Full Text Available The great generation of urban solid has been a concern in several countries. This work presents a study with two materials: the asphalt binder oil residue accumulated in the bottom of asphalt tanks and the municipal solid waste ash, to be used, respectively, as a substitute of conventional binder in asphalt mixtures and for soil stabilization in pavements base layers. Were evaluated properties as the mechanical behavior of the mixtures through experimental tests. The results show the potential of incorporating these residues for low traffic roads, allowing the construction of low cost roads and an environmental use of the residue.

  11. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    Science.gov (United States)

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  13. Maximising municipal solid waste--legume trimming residue mixture degradation in composting by control parameters optimization.

    Science.gov (United States)

    Cabeza, I O; López, R; Ruiz-Montoya, M; Díaz, M J

    2013-10-15

    Composting is one of the most successful biological processes for the treatment of the residues enriched in putrescible materials. The optimization of parameters which have an influence on the stability of the products is necessary in order to maximize recycling and recovery of waste components. The influence of the composting process parameters (aeration, moisture, C/N ratio, and time) on the stability parameters (organic matter, N-losses, chemical oxygen demand, nitrate, biodegradability coefficient) of the compost was studied. The composting experiment was carried out using Municipal Solid Waste (MSW) and Legume Trimming Residues (LTR) in 200 L isolated acrylic barrels following a Box-Behnken central composite experimental design. Second-order polynomial models were found for each of the studied compost stability parameter, which accurately described the relationship between the parameters. The differences among the experimental values and those estimated by using the equations never exceeded 10% of the former. Results of the modelling showed that excluding the time, the C/N ratio is the strongest variable influencing almost all the stability parameters studied in this case, with the exception of N-losses which is strongly dependent on moisture. Moreover, an optimized ratio MSW/LTR of 1/1 (w/w), moisture content in the range of 40-55% and moderate to low aeration rate (0.05-0.175 Lair kg(-)(1) min(-1)) is recommended to maximise degradation and to obtain a stable product during co-composting of MSW and LTR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Determination of the Energy Potential of the Urban Solid Residuals in Three Municipalities of the County of Luanda, Angola

    Directory of Open Access Journals (Sweden)

    Dra.C. Yudith González-Diaz

    2015-11-01

    Full Text Available The biological conversion of the Urban Solid Residuals (USR for energy purposes she comeswinning importance every day, once the urban residuals became considered a source ofalternative energy. To foresee the generation of resulting biogas of the process of biologicaldecomposition of the solid residuals of organic origin in the sanitary fillers is fundamental toestimate the energy and economic balance of facilities of recovery of gas. For the appropriatedetermination of the potential of generation of gases you employment the calculationmethodology presented by the Agency of Environmental Protection of United States. In thiscontext, the objective of this article is to quantify the potential of electric power generationcoming from the gas methane originating of the Urban Solid Residuals of the municipalitiesBelas, Cacuaco and Viana of the County of Luanda in Angola. The available energy power wasdetermined annually of the three municipalities. The instinct demonstrates that the biogas flow e"> arrives at the maximum level and it possesses the maximum available Power in the year 2037,obtaining stops the municipalities Belas, Cacuaco and Viana 3 330· 103, 1 206,13· 103 and 2 809,23· 103m3/ year of profitable methane respectively whose calculated energy potential wasrespectively of 2 316,52, 1 358,88 and 3 165,02 kW. The carried out calculations not allowalone to evaluate the energy potential of the filler, but also to evaluate, in certain way, theenvironmental impact for the mitigation of emissions of gases of effect hothouse.

  15. Determination of the energy potential of the Urban Solid Residuals in three municipalities of the county of Luanda. Angola

    International Nuclear Information System (INIS)

    González Diaz, Yudith; Gato Clavell, Tania; Girón Guillot, Rosa L.; Pires Araújo, Luis

    2015-01-01

    The biological conversion of the Urban Solid Residuals (USR) for energy purposes comes winning importance every day, once the urban residuals became considered a source of alternative energy. To foresee the generation of resulting biogas of the process of biological decomposition of the solid residuals of organic origin in the sanitary fillers is fundamental to estimate the energy and economic balance of facilities of recovery of gas. For the appropriate determination of the potential of generation of gases you employment the calculation methodology presented by the Agency of Environmental Protection of United States. In this context, the objective of this article is to quantify the potential of electric power generation coming from the gas methane originating of the Urban Solid Residuals of the municipalities Belas, Cacuaco and Viana of the County of Luanda in Angola. The available energy power was determined annually of the three municipalities. The instinct demonstrates that the biogas flow arrives at the maximum level and it possesses the maximum available Power in the year 2037, obtaining stops the municipalities Belas, Cacuaco and Viana 3330 · 103, 1206.13 · 103 and 2809.23 · 103m 3 /year of profitable methane respectively whose calculated energy potential was respectively of 2316.52, 1358.88 and 3165,02 kW. The carried out calculations not allow alone to evaluate the energy potential of the filler, but also to evaluate, in certain way, the environmental impact for the mitigation of emissions of gases of effect hothouse. (author)

  16. Mercury Levels In Fly Ash And Apc Residue From Municipal Solid Waste Incineration Before And After Electrodialytic Remediation

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Jensen, Pernille Erland

    2016-01-01

    Fly ash (FA) and Air Pollution Control (APC) residues collected from three municipal solid waste incinerators (MSWI) in Denmark and Greenland were treated by electrodialytic remediation at pilot scale for 8 to 10 h. The original residues and the treated material were analysed for mercury (Hg......) in order to assess the influence of the electrodialytic treatment on the concentrations of this element. Mercury levels varied with the MSWI residue, ranging from 0.41 mg kg−1 in FA sample from electrostatic precipitator (ESP) to 8.38 mg kg−1 in MSWI residues from a semi-dry system with lime and activated...... carbon. Two distinct behaviours were observed for mercury as a result of the electrodialytic treatment. This element became enriched in the MSWI residues from the semi-dry system with activated carbon, whereas it decreased in ESP’s and cyclone’s FA. This work presents for the first time information about...

  17. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; Lapara, Timothy M

    2013-01-01

    Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs). In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A), tet(W), and erm(B) decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X) increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W) to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of ARGs in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch vs. continuous-flow) and the specific ARG.

  18. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    Science.gov (United States)

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Residues of organochlorine pesticides and PCBs in some Brazilian municipal solid waste compost.

    Science.gov (United States)

    Lourencetti, Carolina; Favoreto, Rodrigo; Marchi, Mary R R; Ribeiro, Maria L

    2007-08-01

    Persistent organic pollutants (POPs), organochlorine pesticides and polychlorinated biphenyls (PCBs), listed as per the Stockholm Convention (alpha -HCH, beta -HCH, gamma -HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, aldrin, endrin, dieldrin, PCBs 28, 52, 118, 138, 153, and 180), were analyzed in municipal solid waste (MSW) compost samples from three different Brazilian composting plants located in three São Paulo State cities: Araras, Araraquara and São Paulo (Vila Leopoldinha). Quantitative and qualitative analyses were carried out using gas chromatography electron capture detection (GC-ECD) and gas chromatography mass spectrometry (GC-MS) (Ion Trap, electron impact ionization), respectively. The samples were analyzed in triplicate and the target POPs were not detected by GC-ECD. Twelve pollutants were identified in two samples when qualitative analysis (GC-MS) was used (beta -HCH, gamma -HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, and p,p'-DDE, PCBs 28, 118, 138, 153 and 180). The composting process has advantages such as urban solid waste reduction and landfill life-span increase, however the MSW compost quality, which can be utilized for agricultural purposes, should be evaluated and be controlled. This kind of study is the first step in making available information to answer questions regarding MSW compost for sustainable agricultural use, such as the pollutants accumulation in soil and in groundwater, and plants uptake.

  1. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.

    Science.gov (United States)

    Luna Galiano, Y; Fernández Pereira, C; Vale, J

    2011-01-15

    The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. The potential of agro-industrial residues and municipal solid waste for production of biogas and electricity in Tanzania

    International Nuclear Information System (INIS)

    Kivaisi, A.K.

    1997-01-01

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortage of electricity. Government strategy to alleviate the problem include exploitation of the country's big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues and municipal solid wastes with large potentials for anaerobic converstion into biogas and electricity have been identified and quantified. Tanzania is estimated to generate about 615,000 organic matter from coffee, sisal, sugar and cereal residues and households in main towns are estimated to generate about 600,000 tons of organic matter annually. Laboratory scale determinations of methane yields from the residues gave 400 m 3 CH 4 /ton VS of sisal pulp; 400 m 3 CH 4 /ton VS of sisal production wastewater; 400 m 3 CH 4 /ton VS of Robusta coffee solid waste, 350 m 3 CH 4 /ton VS of sugar processing wastewater; 250 m 3 CH 4 /ton VS of sugar filter mat, 450 m 3 CH 4 /ton VS maize bran and 300 m 3 CH 4 /ton VS of mixed household waste. Based on these results the estimated total annual potential electricity production from these residues is 1.4 million MW. The total oil substitution from these residues has been estimated at 0.35 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies onthe coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site these factories is feasible. Utilization of agro-industrial residues and municipal waste for biogas production has enormous potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO 2 emission to the atmosphere of approximately 1.3 million tonnes. By treating the residues in controlled anaerobic systems it is possible to reduce the methane emission by

  3. The potential of agro-industrial residues and municipal solid waste for production of biogas and electricity in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kivaisi, A.K. [Univ. of Dar es Salaam, Botany Dept., Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This paper gives an overview of the energy demands in Tanzania, and highlights the current serious shortage of electricity. Government strategy to alleviate the problem include exploitation of the country`s big natural gas reserves for power generation, and utilization of the renewable energies such as solar, wind and biogas. Important agro-industrial residues and municipal solid wastes with large potentials for anaerobic converstion into biogas and electricity have been identified and quantified. Tanzania is estimated to generate about 615,000 organic matter from coffee, sisal, sugar and cereal residues and households in main towns are estimated to generate about 600,000 tons of organic matter annually. Laboratory scale determinations of methane yields from the residues gave 400 m{sup 3} CH{sub 4}/ton VS of sisal pulp; 400 m{sup 3} CH{sub 4}/ton VS of sisal production wastewater; 400 m{sup 3} CH{sub 4}/ton VS of Robusta coffee solid waste, 350 m{sup 3} CH{sub 4}/ton VS of sugar processing wastewater; 250 m{sup 3} CH{sub 4}/ton VS of sugar filter mat, 450 m{sup 3} CH{sub 4}/ton VS maize bran and 300 m{sup 3} CH{sub 4}/ton VS of mixed household waste. Based on these results the estimated total annual potential electricity production from these residues is 1.4 million MW. The total oil substitution from these residues has been estimated at 0.35 million tonnes crude diesel oil per annum equivalent to 2% of the total energy consumption in Tanzania. Case studies onthe coffee and sisal processing factories indicate that exploitation of the residues for the production of electricity on site these factories is feasible. Utilization of agro-industrial residues and municipal waste for biogas production has enormous potential for reduction of environmental pollution. The potential substitution of fossil fuel with biogas represents an annual reduction in the net CO{sub 2} emission to the atmosphere of approximately 1.3 million tonnes. By treating the residues in controlled

  4. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  5. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    Science.gov (United States)

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Environmental impact of APC residues from municipal solid waste incineration: reuse assessment based on soil and surface water protection criteria.

    Science.gov (United States)

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2011-01-01

    Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of "building material not allowed". The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of drying on leaching testing of treated municipal solid waste incineration APC-residues

    DEFF Research Database (Denmark)

    Hu, Y.; Hyks, Jiri; Astrup, Thomas

    2008-01-01

    Air-pollution-control (APC) residues from waste incinerators are hazardous waste according to European legislation and must be treated prior to landfilling. Batch and column leaching data determine which type of landfill can receive the treated APC-residues. CEN standards are prescribed...

  8. Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria

    International Nuclear Information System (INIS)

    Quina, Margarida J.; Bordado, Joao C.M.; Quinta-Ferreira, Rosa M.

    2011-01-01

    Highlights: → The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. → BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. → Chloride load to the environment lead to classification of building material not allowed. → At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. → The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but

  9. CO2 emission and structural characteristics of two calcareous soils amended with municipal solid waste and plant residue

    Science.gov (United States)

    Yazdanpanah, N.

    2016-01-01

    This investigation examines the effect of different amendments on selected soil physical and biological properties over a 24-month period in two cropland fields. Urban municipal solid waste (MSW) compost and alfalfa residue (AR) were used as different organic amendments at the rates of 0 (control), 10 and 30 Mg ha-1 to a clay loam soil and a loamy sand soil in a semiarid region. Results showed that the soil improvement was controlled by the application rate and decomposability of amendments and soil type. The addition of organic amendments to the soils improved aggregate stability and consequently enhanced total porosity, especially macropore fraction. The increased soil organic carbon (SOC) and total porosity values as compared to the control treatment were greater in the loamy sand soil than in the clay loam soil. Moreover, compared to the microbial respiration of control plots, the application of MSW resulted in higher values of microbial respiration in the clay loam soil than in the loamy sand soil, whereas the reverse was found for AR. Linear and power functions were provided for the relationships between microbial respiration and SOC in the loamy sand and clay loam soils, respectively. Also, CO2 emission was stimulated significantly as power functions of the total porosity and the ratio of macroporosity to microporosity. However, the soil microbial respiration and carbon storage improved aggregate stability and pore size distribution, and as a response, soil porosity, especially the macropore fraction, controlled CO2 flux.

  10. Life cycle assessment of disposal of residues from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Birgisdottir, Harpa; Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase...... layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals...

  11. Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2014-05-20

    Substantial quantities of antibiotic resistance genes (ARGs) are discharged with treated residual municipal wastewater solids and subsequently applied to soil. The objective of this work was to determine the decay rates for ARGs and class 1 integrons following simulated land application of treated wastewater solids. Treated residual solids from two full-scale treatment plants were applied to sets of triplicate soil microcosms in two independent experiments. Experiment 1 investigated loading rates of 20, 40, and 100 g kg(-1) of residual solids to a sandy soil, while experiment 2 investigated a loading rate of 40 g kg(-1) to a silty-loamy soil. Five ARGs (erm(B), sul1, tet(A), tet(W), and tet(X)), the integrase of class 1 integrons (intI1), 16S rRNA genes, 16S rRNA genes of all Bacteroides spp., and 16S rRNA genes of human-specific Bacteroides spp. were quantified using real-time polymerase chain reaction. ARGs and intI1 quantities declined in most microcosms, with statistically significant (P rates were much slower than have been previously reported for unit operations used to treat wastewater solids (e.g., anaerobic digestion). This research suggests that the design and operation of municipal wastewater treatment facilities with the explicit goal of mitigating the release of ARGs should focus on using technologies within the treatment facility, rather than depending on attenuation subsequent to land application.

  12. Alternatives and actions regarding solid residues, presented by Jimenez and Oreamuno municipalities and their relation to development and sustainability (Informative)

    OpenAIRE

    Campos-Rodríguez, Rooel; Quiros-Bustos, Noemy; Navarro-Garro, Alfonso

    2013-01-01

    Currently, the production processes are not efficient, which contributes to the generation of waste. In Costa Rica the municipalities are responsible for the integrated management of solid waste. That is why this research focuses on issues of waste management which has become a major environmental problem. So, it is necessary to confront these issues from the perspective of sustainable development, requiring a new vision and awareness of people regarding the environment and the problem of sol...

  13. Critical analysis of the integration of residual municipal solid waste incineration and selective collection in two Italian tourist areas.

    Science.gov (United States)

    Ranieri, Ezio; Rada, Elena Cristina; Ragazzi, Marco; Masi, Salvatore; Montanaro, Comasia

    2014-06-01

    Municipal solid waste management is not only a contemporary problem, but also an issue at world level. In detail, the tourist areas are more difficult to be managed. The dynamics of municipal solid waste production in tourist areas is affected by the addition of a significant amount of population equivalent during a few months. Consequences are seen in terms of the amount of municipal solid waste to be managed, but also on the quality of selective collection. In this article two case studies are analyzed in order to point out some strategies useful for a correct management of this problem, also taking into account the interactions with the sector of waste-to-energy. The case studies concern a tourist area in the north of Italy and another area in the south. Peak production is clearly visible during the year. Selective collection variations demonstrate that the tourists' behavior is not adequate to get the same results as with the resident population. © The Author(s) 2014.

  14. Electrodialytic upgrading of three different municipal solid waste incineration residue types with focus on Cr, Pb, Zn, Mn, Mo, Sb, Se, V, Cl and SO4

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Pedersen, Kristine B.

    2015-01-01

    was lower before treatment compared to residues from semidry flue-gas cleaning, both Pb and Zn leaching could be reduced to lower levels in those materials, and they therefore appear more suitable for use in construction materials. The leaching reduction of Zn and to some degree Pb decreased with longer......Handling of air pollution control (APC) residues from municipal solid waste incineration (MSWI) is a challenge due to its toxicity and high leaching of toxic elements and salts. Electrodialysis (ED) of the material has shown potential for reduction of leaching of toxic elements and salts to produce...... a material feasible for substitution of cement in mortar. In this work results of 23 pilot-scale experiments (5-8kg APC residue each) in electrodialysis stack designed to investigate the leaching properties as a function of time and current density for APC residue from semi-dry and wet flue-gas cleaning...

  15. A process for treatment of residues from dry/semidry APC systems at municipal solid waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjelmar, O. [VKI, Hoersholm (Denmark)] Holland, D. [FLS miljoe a/s, Valby (Denmark)] Poulsen, B. [KARA, Roskilde (Denmark)

    1997-08-01

    The main objective of the project has been to establish and test a process for treatment of residues from the semidry (and dry) lime injection based APC processes at MSWIs, which will ensure that the residues can be managed in an environmentally safe manner. In pursuit of this goal, the following activities have been carried out: Performance of pilot scale extractions (approximately 50 kg of residue per batch) at the KARA MSWI in Roskilde of semidry APC system residues in order to establish and optimize process conditions. The optimization includes consideration of the possibilities for subsequent treatment/stabilization of the extracted solid phase as well as the possibility of treatment and safe discharge/utilization of the extract; Performance of chemical characterization, hydrogeochemical model calculations and experimental work in order to improve the understanding of the mechanisms and factors which for several contaminants control the equilibrium between the solid and liquid phases, both in the short and the long germ, and to use this information to obtain an environmentally acceptable method for stabilization/treatment of the extracted residues while at the same time minimizing the necessary amount of additives; production of treated residues and performance of leaching tests on these to assess and demonstrate the effectiveness of the entire process (extraction + stabilization/treatment); Evaluation of the technical, economical and environmental consequences of full scale implementation of the process. (EG) EFP-94. 19 refs.

  16. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested...... of standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  17. Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension - test of a new two compartment experimental cell

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Magro, Cátia; Guedes, Paula

    2015-01-01

    Municipal solid waste incineration (MSWI) residues such as fly ash and air pollution control (APC) residues are classified as hazardous waste and disposed of, although they contain potential resources. The most problematic elements in MSWI residues are leachable heavy metals and salts. For reuse...... of MSWI residues in for instance concrete, the aim of remediation should be reduction of the heavy metal leaching, while at the same time keeping the alkaline pH, so the residue can replace cement. In this study a MSWI residues were subjected to electrodialytic remediation under various experimental...

  18. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  19. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  20. LCA Of The “Renescience” Concept: An Alternative To Incineration For The Treatment Of Residual Municipal Solid Waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    be separated for recycling. In this study the environmental assessment of a number of scenarios for the “REnescience” concept is presented. The scenarios assessed are co-combustion of solid and liquid fraction in coal-fired power plants (CC-CC), co-combustion of the liquid fraction and incineration......The “REnescience” system consists on a pretreatment of the waste based on heat and enzymes which liquefy the biogenic fraction of the waste (paper and organics). The outputs of the process are then liquid slurry and a remaining solid fraction from which metals, plastic and glass can eventually...... of the solid fraction (CC-INC), anaerobic digestion of the liquid fraction to produce biogas and co-combustion of the solid fraction (BG-CC) and anaerobic digestion of the liquid fraction to produce biogas and incineration of the solid fraction (BG-INC). The reference technology for the comparison...

  1. The effect of different treatment technologies on the fate of antibiotic resistance genes and class 1 integrons after the application of residual municipal wastewater solids to soil

    Science.gov (United States)

    Land-application of residual wastewater solids is an important environmental source of antibiotic resistance genes (ARGs). Treatment technologies exist that can reduce ARG levels in residual solids prior to land-application, but the effect of these technologies on ARG levels in soil following land-a...

  2. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.

    Science.gov (United States)

    Inanc, Bulent; Inoue, Yuzo; Yamada, Masato; Ono, Yusaku; Nagamori, Masanao

    2007-03-22

    In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate.

  3. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  4. studies on municipal solid wastes dumping on soil anions, cations

    African Journals Online (AJOL)

    Osondu

    wastes. The term residual wastes relates to waste left from household sources containing materials that have not been separated out or sent for processing. Biodegradable wastes can be commonly found in municipal solid wastes. (MSW) as green wastes, food wastes, paper wastes, biodegradable plastics and slaughter.

  5. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  6. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  7. Municipal solid waste generation in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Transfer of pollution from municipal wastewater to bio solids: their chemical characterization; Transferencia de contaminacion desde el agua residual urbana a los lodos de depuracion: caracterizacion de biosolidos

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.

    2007-07-01

    Production of bio solids depends on the amount of wastewater treated according the expression y=ax''2,5575, being y the log of TM/year of bio solids produced, and X the log then m''3/year of wastewater treated. Quality of bio solids generated by three WWTP does not seem function either of the amount of treated water and neither of the treatment process applied (active sludges or bio discs). The bio solids exhibited values of 20-25% in dehidradation, and those of organic matter, nitrogen and phosp hour being equal to 60-75%, 7% and 4%, respectively. Moreover, the total of metals there present were 11-19 g/kg over dried matter, supposing Fe, Zn, Cu and Mn the 97% of all metals, and being Hg the minority metal. Bio solids can be used in agricultural practices (they agree with the Spanish normative here applied) and they concentrated the organic matter and metals found in wastewater up to 417 and 869 times, respectively. At the same time, we have estimated that each 4841 of wastewater produced 1 kg of bio solid. (Author)

  9. Biodrying for municipal solid waste: volume and weight reduction.

    Science.gov (United States)

    Bilgin, Melayib; Tulun, Şevket

    2015-01-01

    Biodrying is a variation of aerobic decomposition used for the mechanical-biological treatment organic substances to dry and partially stabilize residual municipal waste. This study focuses on the volume and weight reduction biodegradation of the biodrying process using municipal solid waste and the appearance of a stable, final product. The materials were placed in a reactor with invariant airflow rates of 50 L/h and initial moisture contents of 48.49-50.00%. The laboratory-scale experiments were implemented using a 36-L biodrying reactor equipped with an air supply system, a biomass temperature sensor and air sensors. To determine the effect of temperature on biodrying, the process was repeated at various temperatures between 30 °C and 50 °C. The results obtained indicated that after 13 days, biodrying reduced the volume content of waste by 32% and the final product had a high calorific value (4680 kcal/kg).

  10. Municipal solid-waste management in Istanbul.

    Science.gov (United States)

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. 2010 Elsevier Ltd. All rights reserved.

  11. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  12. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Science.gov (United States)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  13. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    International Nuclear Information System (INIS)

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval

  14. Municipal solid waste disposal in Portugal

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato

    2006-01-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  15. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-04-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  16. Electric Energy production through Municipal solid wastes

    International Nuclear Information System (INIS)

    Agorio Comas, M.; Chediak Nunez, M.; Galan Prado, A.

    2010-01-01

    The main objective in this investment Project is to improve the integral management of urban solid waste in the city of Salto, Uruguay, obtaining favorable results for the environment and society, contributing moreover in Sustainable Development.First of all, it is recommended the remediation of the current Open air Municipal dumping site. Simultaneously with the Remediation process, a controlled dumping site with daily covers of the compacted solid waste has been designed, as a transition methodology with a lifetime of 3 years approximately.In addition to this, two sanitary landfills are designed wits29h a total lifetime of 7 years, for the operation after the controlled dumping site is closed. There is also a leachate treatment system to process the effluents of the landfills. In order to optimize the use of the landfills, is proposed the simultaneous implementation of a Separated Urban Solid Waste Collection System (SisRReVa). This consist in separating the Valuable Waste (VW) from wet or organic solid waste in origin (home, stores,etc)and collecting it separately.The VW are separated by type (paper, board, glass, plastic and metal) in a Valuable Waste Classification Plant. This plant is designed to process the VW generated in Salto and collected by the SisRReVa for about ten years from now on. (Author)

  17. characterization and composition analysis of municipal solid waste

    African Journals Online (AJOL)

    userpc

    Keywords: Waste Characterization, Municipal Solid Waste, Waste Composition, Kano, Nigeria. INTRODUCTION. Solid waste is broadly comprised of non- hazardous domestic, commercial and industrial refuse including household organic waste, hospital and institutional garbage, street sweepings and construction waste ( ...

  18. A mathematical model of combustion kinetics of municipal solid ...

    African Journals Online (AJOL)

    Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...

  19. Assessment of a Planned Municipal Solid Waste Management ...

    African Journals Online (AJOL)

    Systematic Municipal Solid Waste Management (MSWM) authorities of Sri Lanka contributes to exchange some productive outputs with localities; however it is still not in a successful mode due to limitations and environmental failures in their operation. Most of these local administrations are directly dumping Municipal Solid ...

  20. Municipal Household Solid Waste Compost: Effects on Carrot ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the impact of municipal household solid waste compost on N, P and K uptake and yield of carrot (Daucus carrota), using a coastal savanna Haplic Acrisol. Bulked samples of fresh solid waste from 45 households within the Cape Coast Municipality in the Central Region of Ghana ...

  1. Municipal Solid Waste Recycling an Action along with Resistive Economics

    Directory of Open Access Journals (Sweden)

    Aram Tirgar

    2016-08-01

    Full Text Available Background and Objective: In the current situation, it seems that municipal solid waste recycling despite hygienic, economic and environmental aspects is important from sociopolitical aspect. The aim of this study was to determine waste recycling condition and the knowledge of households about resistive economics, as an action along with a policy.Materials and Methods: This descriptive and cross-sectional study was conducted among 330 family of Amirkola city in Mazandaran province during 2013. The samples were collected from 33 regions using cluster sampling method. The data was collected by means of researcher-made data collection sheet and analyzed using descriptive statistical indices and Chi- square test, and p<0.05 was considered as significant.Results: The results showed that the mean (SD of age were 39.1 (10.9 years and 176 (53% female. More than half of households (56.9% were recycling municipal solid waste (plastic, paper, glass, and food residue which the share of plastic, and paper were the highest. Only 59 (29% were familiar with resistive economics, but there was not any significant relation between waste recycling and their awareness of resistive economics.Conclusion: The limitation of knowledge about resistive economics, and their weakness of practice about waste recycling imply that the authorities should have definite programs in order to increase family information and participations in social issues.

  2. An industrial ecology approach to municipal solid waste ...

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  3. Municipal solid waste in Brazil: A review.

    Science.gov (United States)

    Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli

    2017-12-01

    The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.

  4. Leaching from municipal solid waste incineration residues

    DEFF Research Database (Denmark)

    Hyks, Jiri

    I dette studie er udvaskning af farlige stoffer fra restprodukter fra affaldsforbrænding blevet undersøgt ved at kombinere udvaskningstests i laboratoriet med geokemisk modellering. Der blev lagt særlig vægt på at undersøge anvendelsen af laboratoriedata i forhold til efterfølgende modellering af...

  5. Solid residues; Os residuos solidos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This chapter gives a general overview on the general effects of the solid waste pollution, the principal pollutants emitted by the oil refineries, control actions for the solid waste emissions, the minimization actions, and the effluent treatment.

  6. Assessing total and volatile solids in municipal solid waste samples.

    Science.gov (United States)

    Peces, M; Astals, S; Mata-Alvarez, J

    2014-01-01

    Municipal solid waste is broadly generated in everyday activities and its treatment is a global challenge. Total solids (TS) and volatile solids (VS) are typical control parameters measured in biological treatments. In this study, the TS and VS were determined using the standard methods, as well as introducing some variants: (i) the drying temperature for the TS assays was 105°C, 70°C and 50°C and (ii) the VS were determined using different heating ramps from room tempature to 550°C. TS could be determined at either 105°C or 70°C, but oven residence time was tripled at 70°C, increasing from 48 to 144 h. The VS could be determined by smouldering the sample (where the sample is burnt without a flame), which avoids the release of fumes and odours in the laboratory. However, smouldering can generate undesired pyrolysis products as a consequence of carbonization, which leads to VS being underestimated. Carbonization can be avoided using slow heating ramps to prevent the oxygen limitation. Furthermore, crushing the sample cores decreased the time to reach constant weight and decreased the potential to underestimate VS.

  7. Unsaturated flow parameters of municipal solid waste.

    Science.gov (United States)

    Feng, Shi-Jin; Zheng, Qi-Teng; Chen, H X

    2017-05-01

    Leachate pollution/recirculation and landfill gas emission are the major environmental concerns in municipal solid waste (MSW) landfills. A good understanding and prediction of MSW unsaturated properties are critical for the design of piping systems and the control of these problems within landfills. This paper reviews the recent studies of unsaturated properties of MSW, including experimental methods, theoretical models and corresponding model parameters. For experimental methods, the sample size is a common and significant limitation and large test apparatuses (e.g., >80cm in diameter) are generally required and valuable. The theoretical models for MSW also have some limitations due to the changes in waste composition and particle size distribution caused by biodegradation. Thus, the available data of intrinsic permeabilities, water retention curves, relative permeabilities and anisotropy of MSW were summarized to investigate the influences of porosity, waste composition and particle size distribution. A series of estimation methods were subsequently proposed to determine the parameters of water retention curve like θ Lm , θ Lr , n v and α. The other parameters such as the pore connectivity term (l) and the degree of anisotropy (k) were significantly lacking data, thus only their relationships with porosity were proposed. The results show that it is possible to define the second order effects caused by variations in porosity, waste composition and particle size distribution. However, the estimation methods still need more experimental data for improvement, especially their dependence on waste composition and particle size distribution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Municipal solid waste management in Beijing City

    International Nuclear Information System (INIS)

    Li Zhenshan; Yang Lei; Qu XiaoYan; Sui Yumei

    2009-01-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km 2 with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  9. Energy content of municipal solid waste bales.

    Science.gov (United States)

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  10. Impact Of Municipal Solid Waste On Trace Metal Concentrations In ...

    African Journals Online (AJOL)

    The impact of municipal solid waste on the levels of cadmium, copper, nickel, lead and zinc in herbage and soil samples within Abuja municipality was studied. The flame atomic absorption spectrophotometry was used in the determination of the metals. The average concentration of Cd, Cu, Ni, Pb and Zn in the herbage ...

  11. Effect of municipal solid waste compost (MSWC) on the productivity ...

    African Journals Online (AJOL)

    Six rates and a control of municipal solid waste compost (MSWC) (0, 1, 2, 3, 4, 5 and 6 Mg/ha) were used to evaluate the effect of municipal compost on cowpea growth parameters (Plant height, leaf area, biomass and grain yields and tissue heavy metal concentrations). Plant height, leaf area and heavy metal concentration ...

  12. Municipal Solid Waste Management in Kadapa Town: A Case Study.

    Science.gov (United States)

    Sumithra, S; Sunitha, V; Nagaraju, G

    2014-01-01

    Solid waste management (SWM) is a worldwide phenomenon. It is a big challenge all over the world for human beings. The problem of municipal solid waste management (MSWM) is also prevailing in the environment of Kadapa town in India. Therefore, the present study was undertaken to find out the problems and prospects of municipal solid waste in Kadapa town. A detailed investigation was made regarding the methods of practices associated with sources, quantity generated, collection, transportation, storage, treatment and disposal of municipal solid waste in the study area. The data related to SWM in the study area was obtained through questionnaire, individual field visits, interaction with people and authentic record of municipal corporation. Status of the MSW in Kadapa town was studied. The results indicated that the major constituents of municipal solid waste were organic in nature and approximately one fourth of municipal solid waste was recyclable. Detailed data on solid waste management practices, including collection, recovery and disposal method, has been presented in this paper.

  13. Utilization of stabilized municipal waste combustion ash residues as construction material

    International Nuclear Information System (INIS)

    Shieh, C.S.

    1992-01-01

    Stabilized municipal waste combustion (MWC) ash residues were investigated for their potential as construction material that can be beneficially used in terrestrial and marine environments. End-use products, such as patio stones, brick pavers, solid blocks, and reef units, were fabricated and tested for their engineering and chemical characteristics. engineering feasibility and environmental acceptability of using stabilized ash residues as construction material are discussed in this paper. Ash samples were collected from two mass-burn facilities and one refuse derived fuel (RDF) facility in Florida

  14. Possibilities of composting disposable diapers with municipal solid wastes

    OpenAIRE

    Colón Jordà, Joan

    2011-01-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process per...

  15. Mercury emissions from municipal solid waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  16. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  17. Quality assessment of compost prepared with municipal solid waste

    Science.gov (United States)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  18. Impact of socioeconomic status on municipal solid waste generation rate.

    Science.gov (United States)

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Selective Collection Quality Index for Municipal Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Elena Cristina Rada

    2018-01-01

    Full Text Available Trentino (an Italian Province located in the northern part of the country is equipped with a management system of municipal solid waste collection at the forefront. Among the most positive aspects, there is a great ability for waste separation at the source and a consequent low production of residual municipal solid waste for disposal. Latest data show a gross efficiency of selective collection that has recently reached 80%, one of the highest values in Italy. This study analyzed the “Trentino system” to identify the main elements that have been at the base of the current efficient model. This provided an opportunity to propose a selective collection quality index (SCQI, including collection efficiency for each fraction, method of collection, quality of the collected materials, presence of the punctual tariff and tourist incidence. A period relevant for the transition of the collection system to the recent one was chosen for the demonstrative adoption of the proposed indicators in order to determine the potential of the index adoption. Results of the analysis of this case study were obtained in a quantitative form thanks to the sub-parameters that characterize the proposed index. This allowed selected collection decision makers to focus intently on a territory to find criticalities to be solved. For instance, the use of the index and its sub-indicators in the case of Trentino identified and comparatively quantified the local problems resulting from the presence of a large museum in a small town, tourism peaks in some valleys, and a delay in the punctual tariff adoption. The index has been proposed with the aim to make available an integrated tool to analyze other areas in Italy and abroad.

  20. Research challenges in municipal solid waste logistics management.

    Science.gov (United States)

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Benchmarking in municipal solid waste recycling.

    Science.gov (United States)

    Lavee, Doron; Khatib, Mahmood

    2010-11-01

    The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Partnerships for development: municipal solid waste management in Kasese, Uganda.

    Science.gov (United States)

    Christensen, David; Drysdale, David; Hansen, Kenneth; Vanhille, Josefine; Wolf, Andreas

    2014-11-01

    Municipal solid waste management systems of many developing countries are commonly constrained by factors such as limited financial resources and poor governance, making it a difficult proposition to break with complex, entrenched and unsustainable technologies and systems. This article highlights strategic partnerships as a way to affect a distributed agency among several sets of stakeholders to break so-called path dependencies, which occur when such unsustainable pathways arise, stabilize and become self-reinforcing over time. Experiences from a North-South collaborative effort provide some lessons in such partnership building: In Uganda and Denmark, respectively, the World Wildlife Fund and the network organization access2innovation have mobilized stakeholders around improving the municipal solid waste management system in Kasese District. Through a municipal solid waste management system characterization and mapping exercise, some emergent lessons and guiding principles in partnership building point to both pitfalls and opportunities for designing sustainable pathways. First, socio-technical lock-in effects in the municipal solid waste management system can stand in the way of partnerships based on introducing biogas or incineration technologies. However, opportunities in the municipal solid waste management system can exist within other areas, and synergies can be sought with interlinking systems, such as those represented with sanitation. © The Author(s) 2014.

  3. Electricity production from municipal solid waste in Brazil.

    Science.gov (United States)

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  4. Management of industrial solid residues; Gerenciamento de residuos solidos industriais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This chapter gives an overview on the management of industrial solid wastes, approaching the following subjects: classification of industrial solid residues; directives and methodologies for the management of industrial solid residues; instruments for the management of industrial solid residues; handling, packing, storage and transportation; treatment of industrial solid residues; final disposal - landfill for industrial residues; the problem of treatment and final disposer of domestic garbage in Brazil; recycling of the lubricant oils used in brazil; legislation.

  5. Optimized Metal Recovery from Fly Ash from Municipal Solid Waste Incineration

    OpenAIRE

    Weibel, Gisela

    2017-01-01

    Switzerland plays a pioneering role in sustainable waste management with a long tradition of waste incineration and the prohibition to landfill unburnt municipal solid waste since 2000. In recent years, the focus has been laid on further reduction of pollutants from incineration residues because the revised Swiss Waste Ordinance prescribes the recovery of metals from fly ash starting in 2021. Fly ash collected in the heat recovery section and the electrostatic precipitator contains high conce...

  6. Thermo-Catalytic Reforming of municipal solid waste.

    Science.gov (United States)

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas

    2017-10-01

    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content <7wt.% and water content <4wt.%. Due to the bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Municipal Solid Waste Management in Sekondi-Takoradi Metropolis, Ghana

    Directory of Open Access Journals (Sweden)

    Bernard Fei-Baffoe

    2014-01-01

    Full Text Available The rapid increase in urban population due to the influx of the citizenry in search for better conditions of life has resulted in poor environmental conditions in most urban and peri-urban settlements in the country. Municipal solid waste management (MSW for that matter has become problematic within Sekondi-Takoradi Metropolis as the city is being inundated with so much filth which has proven to be very difficult and seemingly impossible for the municipal authorities to tackle. This study investigates the nature of solid waste problem in Sekondi-Takoradi Metropolis. A mixed methodological approach including field investigation, questionnaire survey, and structured and face-to-face interviews were employed in the gathering of data for the study. The key findings established to be the factors affecting effective solid waste management in the metropolis are irregular solid waste collection, inadequate operational funding, inappropriate technologies, inadequate staffing, inadequate skip, and lack of cooperation on the part of the citizenry.

  8. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Directory of Open Access Journals (Sweden)

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  9. Obtaining fuel briquets from the solid municipal waste

    International Nuclear Information System (INIS)

    Armenski, Slave; Kachurkov, Gjorgji; Vasilevski, Goce

    1998-01-01

    Recycling systems for solid waste materials are designed to reduce the amount of solid waste materials going to land fields. Through the Trash Separation Systems, clean municipal waste are reused in production of fuel pellets. Other waste streams such as coal fines, sawdust, wood chips, coke breeze and agricultural waste can be blended with these pellets along with a high thermal value binder and/or used motor oil to form a quality clean burning alternative fuel. (Author)

  10. Pozzolanic characteristics of municipal solid waste ash | Sanewu ...

    African Journals Online (AJOL)

    Where conventional stabilizing agents like cement and lime have been used, they have considerably increased the cost of construction. It is with this backdrop that this paper describes the pozzolanic characteristics of municipal solid waste ash (MSWA) and its use as a stabilizing agent. The total elemental concentration in ...

  11. Comparative analysis of municipal solid waste (MSW) composition ...

    African Journals Online (AJOL)

    Rivers State is one of the major oil producing States in Nigeria. Its capital, Port Harcourt and sub-urban areas have witnessed an increased influx of migrants in recent time. Consequently, the consumption of goods and services has also increased leading to generation of unprecedented quantities of municipal solid waste.

  12. Enhanced stabilisation of municipal solid waste in bioreactor landfills

    NARCIS (Netherlands)

    Valencia Vázquez, R.

    2008-01-01

    The increasing development and urbanization of the society has led to an increase per-capita production of municipal solid waste (MSW) materials. These MSW materials are of organic and inorganic nature that can be of rapidly, moderately and slowly biodegradable or inert characteristics. With regard

  13. Management of solid municipal wastes. Gestion de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The book analyzes in detail the problematic that exists today with the solid municipal wastes: legislation, sanitary landfills, recycling, materials recovery, anaerobic digestion, gasification and the problem in the European Community. The book has 17 chapters corresponding to the course, imported at CIEMAT by the Institute of Energy Studies.

  14. Effect of municipal solid waste ash on comprehensive strength ...

    African Journals Online (AJOL)

    The blocks were moulded in a CINVA-Ram machine by replacing 0%, 2%, 5% and 10% of municipal solid waste ash (MSW ash) as a stabilizing agent. The compressive strengths of individual blocks were obtained after curing for 7, 14 and 28 days. The 2%MSW ash replacement gave the highest compressive strength and ...

  15. Characterization and composition analysis of municipal solid waste ...

    African Journals Online (AJOL)

    There was significant correlation between estimated population and volume of trash collected. We offered suggestion for effective management strategies and efficient policies for waste reduction, disposal and recycling practices. Keywords: Waste Characterization, Municipal Solid Waste, Waste Composition, Kano, Nigeria ...

  16. Optimizing Resource and Energy Recovery for Municipal Solid Waste Management

    Science.gov (United States)

    Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...

  17. Heavy Metal Contamination Of Soils Around Municipal Solid Wastes ...

    African Journals Online (AJOL)

    Heavy Metal Contamination Of Soils Around Municipal Solid Wastes Dump In Port Harcourt, Nigeria. ... Global Journal of Environmental Sciences ... Soils around the waste dump were also contaminated as a result of continuous dispersion of heavy metals from the waste dump by run-off water, wind and scavengers.

  18. Generation of biogas from segregates of municipal solid wastes in ...

    African Journals Online (AJOL)

    spp, Escherichia coli, Methanobacterium spp and Methanococcus spp were the most active organisms involved in the biodigestion/biogas generation process. It can be concluded from the study that municipal solid wastes are a potential energy source for biogas generation that could be optimized at industrial scales.

  19. Methane generation potential of municipal solid waste in Ibadan ...

    African Journals Online (AJOL)

    Energy potential from Municipal Solid Waste (MSW) of two landfills serving four local government areas in Ibadan metropolis was estimated in this study. The characterization of the MSW showed that approximately 74% is made up of organic materials with food wastes constituting the highest portion (35%). The energy ...

  20. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  1. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  2. generation of biogas from segregates of municipal solid wastes in ...

    African Journals Online (AJOL)

    DJFLEX

    The results show that all the substrates demonstrated potentials for biogas production with leaves .... Experimental Design. The experimental design used for the laboratory production of biogas involved the use of various segregates of municipal solid wastes and cow dung ..... Utilization of poultry, cow and kitchen wastes.

  3. evaluation of municipal solid waste management system

    African Journals Online (AJOL)

    eobe

    This paper reports the evaluation of households' usage of the current solid waste management system (SWMS) within the city of Ilorin, central Nigeria and investigates the determi within the city of Ilorin, central Nigeria and investigates the determinants of household's willingness nants of household's willingness nants of ...

  4. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  5. A legislator`s guide to municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  6. Treatment and disposal techniques of dangerous municipal solid wastes

    International Nuclear Information System (INIS)

    Beone, G.; Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes the qualitative and quantitative features of the different types of dangerous municipal solid wastes, according to Italian law. In the second part the impact on environment and man health is presented. This impact should be minimized by suitable controlled disposal techniques, which differ from other municipal waste treatments. Finally, the paper deals with the most appropriate systems for treatment and disposal of such kind of waste. Particularly, some research activities in the field of metal recovery from used batteries, sponsored by ENEA, and carrying out by private companies, are described. (author)

  7. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-02-22

    ... AGENCY Adequacy of Arizona Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... municipal solid waste landfill (MSWLF) permit program to allow the State to issue research, development, and.... Background On March 22, 2004, EPA issued a final rule amending the municipal solid waste landfill criteria at...

  8. 78 FR 20035 - Adequacy of Oregon Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-04-03

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Oregon Municipal Solid Waste Landfill Permit Program AGENCY... to the State of Oregon's approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved... regulations allowing RD&D Permits to be issued to certain municipal solid waste landfills by approved states...

  9. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2012-10-31

    ... AGENCY Adequacy of Arizona Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... determination to approve a modification to Arizona's municipal solid waste landfill (MSWLF) permit program to... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  10. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Science.gov (United States)

    2010-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity less...

  11. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... Measurement; Municipal Solid Waste (MSW), Recycling, and Source Reduction Measurement in the U.S. AGENCY... Subjects Environmental protection, municipal solid waste (MSW) characterization, MSW management, recycling... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  12. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program... modification to New Hampshire's approved municipal solid waste landfill (MSWLF) program. The approved... March 22, 2004, EPA issued a final rule amending the municipal solid waste landfill criteria in 40 CFR...

  13. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-01-25

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program... approve Massachusetts's modification of its approved Municipal Solid Waste Landfill Program. On March 22... be issued to certain municipal solid waste landfills by approved states. On December 7, 2012...

  14. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-04-03

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY... modification to the State of Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA... certain municipal solid waste landfills by approved states. On June 14, 2012, Oregon submitted an...

  15. 78 FR 5288 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-01-25

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program... modification to Massachusetts's approved municipal solid waste landfill (MSWLF) program. The approved... INFORMATION: A. Background On March 22, 2004, EPA issued a final rule amending the municipal solid waste...

  16. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ... AGENCY 40 CFR Parts 239 and 258 Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program... approve New Hampshire's modification of its approved Municipal Solid Waste Landfill Program. On March 22... be issued to certain municipal solid waste landfills by approved states. On June 28, 2010 New...

  17. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe

    In response to continuous pressure on resources, and the requirement for secure and sustainable consumption, public authorities are pushing the efficient use of resources. Among other initiatives, the prevention, reduction and recycling of solid waste have been promoted. In this context, reliable...... data for the material and resource content of waste flows are crucial to establishing baselines, setting targets and tracking progress on waste prevention, reduction and recycling goals. Waste data are also a critical basis for the planning, development and environmental assessment of technologies......, compositional analysis techniques have been introduced to analyse waste data more appropriately. Waste was sampled directly from source, in order to attribute the waste data accurately to the geographical areas and types of household generating the waste. Sampling and contamination errors were minimised...

  18. Municipal solid waste management in Malaysia: Practices and challenges

    International Nuclear Information System (INIS)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-01-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  19. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    Science.gov (United States)

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  20. Effect of biochars produced from solid organic municipal waste on soil quality parameters.

    Science.gov (United States)

    Randolph, P; Bansode, R R; Hassan, O A; Rehrah, Dj; Ravella, R; Reddy, M R; Watts, D W; Novak, J M; Ahmedna, M

    2017-05-01

    New value-added uses for solid municipal waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that soil deficiencies can be remedied by the application of municipal waste-based biochars. Select municipal organic wastes (newspaper, cardboard, woodchips and landscaping residues) individually or in a 25% blend of all four waste streams were used as feedstocks of biochars. Three sets of pyrolysis temperatures (350, 500, and 750 °C) and 3 sets of pyrolysis residence time (2, 4 and 6 h) were used for biochar preparation. The biochar yield was in the range of 21-62% across all feedstocks and pyrolysis conditions. We observed variations in key biochar properties such as pH, electrical conductivity, bulk density and surface area depending on the feedstocks and production conditions. Biochar increased soil pH and improved its electrical conductivity, aggregate stability, water retention and micronutrient contents. Similarly, leachate from the soil amended with biochar showed increased pH and electrical conductivity. Some elements such as Ca and Mg decreased while NO 3 -N increased in the leachates of soils incubated with biochars. Overall, solid waste-based biochar produced significant improvements to soil fertility parameters indicating that solid municipal wastes hold promising potential as feedstocks for manufacturing value-added biochars with varied physicochemical characteristics, allowing them to not only serve the needs for solid waste management and greenhouse gas mitigation, but also as a resource for improving the quality of depleted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Scenario Of Solid Waste Management In Hetauda Municipality, Nepal

    Directory of Open Access Journals (Sweden)

    Bigyan Neupane

    2013-12-01

    Full Text Available The paper aims to enlighten the solid waste management of Hetauda Municipality in Makwanpur district of an area of 44.5 sq. km. The total human population of the municipality is 84,671 (CBS 2011. Out of 11 wards, 5 wards (1, 2, 3, 4 and 10 were selected for the present study. In total 50 households, 10 institutions and 10 commercial sectors were selected from studied wards from which samples of different types of wastes were collected, segregated and weighed. Weight was calculated using a digital spring balance and a bag 0.043 m3 was used for the estimation of volume. Organic wastes were found to be dominant in the household (51.73% and commercial sectors (61.70% whereas in institutions, plastic (50.36% and papers (38.19% were prevailing. The findings revealed that per capita 155.4 gm/person/day household waste was generated in Hetauda Municipality. The residents are also aware of the harmful effects of the wastes, and demand an effective solid waste management services. Though they are aware about the sustainable management of wastes, due to erratic collection of wastes, some of them throw the wastes in the open lands - The local people also participate in the awareness campaigns organized by local NGOs and municipal. Solid waste management strategies are timely need for an effective management of anthropogenic wastes. Regular waste collection, improvement of dumping sites and sufficient number of composting plants are recommended in the municipality. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 105-114 DOI: http://dx.doi.org/10.3126/ije.v2i1.9214

  2. Characterization of thermal properties of municipal solid waste landfills.

    Science.gov (United States)

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Enzymatic processing of municipal solid waste.

    Science.gov (United States)

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning; Rønsch, Georg Ørnskov; Nørholm, Nanna Dreyer

    2010-12-01

    The focus of this work was to investigate an enzymatic liquefaction of MSW organics, paper and cardboard. Liquefaction trials were conducted in different trial volumes: 50 g lab-scale trials and 5 0kg vessel-tests and evaluated based on particle size and viscosity. The viscosity results showed that Celluclast 1.5L had the singular significant effect on liquefaction of model MSW. No effect of α-amylase, protease and interaction in between and with cellulases on viscosity and particle size distribution was found in this study. Degradable material with a particle size above 1mm after treatment was evaluated using SEM microscopy. These results showed that paper particles were the main obstacles needing additional treatment in order to become fully liquefied. In a pilot scale test treating authentic MSW; more than 90% of initial organic and paper dry matter (DM) was recovered as liquid slurry after sieving through a 5-mm sieve. These tests were performed at up to 35% DM, showing that this process can easily manage high DM loadings. MSW enzymatic liquefaction promotes the separation of organics and paper from solids, which facilitate the use of these degradable fractions, with minimal loss, capable to enter a biogas plant through existing pipes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Paradigm shift needed - municipal solid waste management in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Popović Florina J.

    2013-01-01

    Full Text Available The aim of this paper is to assess the current state of municipal solid waste management (MSWM in Belgrade, the capital city of Serbia, by analyzing a legal framework, quantities of generated waste, collection systems, transportation, final disposal, separate collection of recyclables, and waste minimization incentives. The analysis is mostly based on the available data of public utility company „Gradska čistoća“, the only provider of municipal solid waste (MSW services i.e. collection, transportation, and disposal. Key features, problems and goals of MSWM system in Belgrade are discussed, and the efficiency of the existing separate collection system of recyclables is reviewed. Finally, some further guidelines are given in order to assure paradigm shift in the next period.

  5. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Lebersorger, S.; Beigl, P.

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  6. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    Science.gov (United States)

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. AWARENESS LEVEL STUDY FOR IMPLEMENTING SEPARATION OF MUNICIPAL SOLID WASTE PROGRAM IN THE MUNICIPALITY OF ARANDAS, JALISCO

    Directory of Open Access Journals (Sweden)

    Norberto Santiago-Olivares

    2017-07-01

    Full Text Available The Arandas municipality government in Jalisco, has been looking for solutions to the problem of its municipal solid waste (MSW disposal for some years. Nowadays there is a “dumping site" where these residues are deposited without any established control, promoting the generation of vermin and rodents such as: flies, cockroaches, rats, mouses, etc.; adding up to the air, soil and water pollution. The solution starts with the separation of municipal solid waste from the generation sites, but it does not make any sense to separate the waste if there is not a subsequent treatment system established. The population awareness for garbage separation at home is quite necessary, because if it is not carried out correctly, it won’t be able to give an effective further treatment to the municipal solid waste MSW generated. In countries and municipalities where garbage separation is already practiced, it was because the community is forced to do so, whether their garbage is not collected if it is not properly separated, or by the implementation of economic fines. With the support of the H. Ayuntamiento de Arandas and José Mario Molina Pasquel and Henríquez Technological Institute Campus Arandas, was carried out a study to determine the level of awareness that the population of Arandas has about the necessity to separate garbage at home. For this purpose, a survey was designed and applied to parents or guardians of students from educational institutions: CONALEP Arandas, UDG Regional High School, CBTIS and José Mario Molina Pasquel and Henríquez Technological Institute Campus Arandas. The research carried out was quantitative and descriptive type, where the selection of the sample was “for convenience” (to optimize time and costs in the application of the survey. According to the results obtained in the survey analysis, it was observed that Arandas population was concerned about the preservation of environment and they are willing to do garbage

  8. Enhanced stabilisation of municipal solid waste in bioreactor landfills

    OpenAIRE

    Valencia Vázquez, R.

    2008-01-01

    The increasing development and urbanization of the society has led to an increase per-capita production of municipal solid waste (MSW) materials. These MSW materials are of organic and inorganic nature that can be of rapidly, moderately and slowly biodegradable or inert characteristics. With regard to these waste streams a wide variety of treatments exist: reuse and recycling, composting, anaerobic digestion, incineration, and land disposal are the most common ones, pyrolysis and gasification...

  9. Modern technologies of processing municipal solid waste: investing in the future

    Science.gov (United States)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  10. Green conversion of municipal solid wastes into fuels and chemicals

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2017-03-01

    Full Text Available Presently, the society is facing a serious challenge for the effective management of the increasing amount of produced municipal solid wastes. The accumulated waste has caused a series of environmental problems such as uncontrolled release of greenhouse gases. Moreover, the increasing amount of wastes has resulted in a shortage of areas available for waste disposal, resulting in a nonsustainable waste management. These problems led to serious public concerns, which in turn resulted in political actions aiming to reduce the amount of wastes reaching the environment. These actions aim to promote sustainable waste management solutions. The main objective of these policies is to promote the recycling of municipal solid waste and the conversion of waste to energy and valuable chemicals. These conversions can be performed using either biological (e.g., anaerobic digestion or thermochemical processes (e.g., pyrolysis. Research efforts during the last years have been fruitful, and many publications demonstrated the effective conversation of municipal solid waste to energy and chemicals. These processes are discussed in the current review article together with the change of the waste policy that was implemented in the EU during the last years.

  11. Sustainable recycling of municipal solid waste in developing countries

    International Nuclear Information System (INIS)

    Troschinetz, Alexis M.; Mihelcic, James R.

    2009-01-01

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors

  12. [Integrating technologies for urban communities' municipal solid waste minimization].

    Science.gov (United States)

    Zhou, Chuan-Bin; Liu, Jing-Ru; Wang, Ru-Song; Zhang, Yi-Shan

    2010-11-01

    Municipal solid waste management of urban communities has difficulties of insufficient source separation and food waste's high moisture content, an integrating technology of manual separation, simple compression of food waste, reclaim of food waste and composting leachate was studied. Manual separating rate was 36.8 kg/h, and would increase when the worker became sophisticated. Community separated food waste had high organic matter content of 44.493%, nutrients N, P, K contents of 2.586%, 0.649% and 1.274%, C/N ratio of 17.427, but 0.07-0.82 times lower heavy metals contents compared to centralized separation of mixed municipal solid waste. Moisture content of food waste was still 78.7%, high enough to have negative impacts of composting processes. Composting leachate processing with biological stabilization and dilution showed a fertilizer efficiency, and dry weight of impatiens irrigated with composting leachate was 1.46-2.49 times of tap water irrigation. Integrating technology based on community's manual separation could decrease 52.6% municipal solid waste.

  13. Municipal solid waste management in Rasht City, Iran

    International Nuclear Information System (INIS)

    Alavi Moghadam, M.R.; Mokhtarani, N.; Mokhtarani, B.

    2009-01-01

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years

  14. Manganese Fractionation in Soils after Application of Municipal Solid Wastes Compost in Two Consecutive Years

    Directory of Open Access Journals (Sweden)

    Molod Samiei

    2016-01-01

    Full Text Available In order to study the effect of Tehran municipal solid wastes compost on manganese accumulation in soil and to determine its concentration in any readily available plant forms (exchangeable and carbonates-bonded, Mn-oxides bonded fraction, organic matter bonded fraction, and residual fraction in a calcareous soil, a factorial experiment based on completely randomized block design (RCBD was conducted in research field of Shahed university at different levels of municipal solid wastes compost (0, 15, 30, and 60 ton/ha as first factor and application times (one- or two-year compost application as second factor in three replications. Results showed that, by increasing compost level, total Mn concentration, DTPA-extractable concentration, and amounts existing in all five fractions were increased, so lowest and highest amounts of Mn were observed in control and 60 ton/ha compost application. Based on results from Mn fractionation using Tessier consecutive extraction method, Mn fractions in all samples were in the following order: residual > Fe-Mn oxides > carbonates-bonded > organic matter-bonded ≫ exchangeable fractions in which residual fraction (RE at first and second year was dominant rather than other fractions by 34.28–43.04 and 34.28–49.48 percent, respectively. Mn concentration in Fe-Mn oxides-bonded fraction at both years was considerable. Mn amounts in Fe-Mn oxides- bonded, application times were decreased.

  15. Using life cycle assessment for municipal solid waste management in Tehran Municipality Region 20

    Directory of Open Access Journals (Sweden)

    Salar Omid

    2017-05-01

    Full Text Available Background: Due to the lack of a proper waste management system, Tehran Municipality Region 20 is facing economic and environmental problems such as the high costs of a disposal system and source pollution. Life cycle assessment (LCA is a method for collecting and evaluating the inputs, outputs, and potential environmental impacts of a product system throughout its life cycle. The current study purposed to provide a stable and optimized system of solid waste management in Tehran Municipality Region 20. Methods: The LCA method was used to evaluate various scenarios and compare the effects on environmental aspects of management systems. Four scenarios were defined based on existing and possible future waste management systems for this region. These scenarios were considered with different percentages for source separation, composting, recycling, and energy recovery. Results: Based on the results of this study, Scenario 4 (source separation [14%] + composting [30%] + municipal recycling facility [MRF] [20%] + energy recovery [10%] + landfilling [26%] was found to be the option with the minimum environmental impact. In the absence of government support and sufficient funds for establishing energy recovery facilities, the third scenario (source separation [14%] + composting [30%] +MRF [20%] + landfilling [36%] is recommended. Conclusion: The results acquired from this investigation will confirm the belief that LCA as an environmental device may be successfully used in an integrated solid waste management system (ISWMS as a support tool for decision-making.

  16. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: a shared input DEA-model.

    Science.gov (United States)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-01

    This paper proposed an adjusted "shared-input" version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Fate of heavy metals during municipal solid waste incineration in Shanghai.

    Science.gov (United States)

    Zhang, Hua; He, Pin-Jing; Shao, Li-Ming

    2008-08-15

    The transfer behavior of heavy metals during municipal solid waste (MSW) incineration was investigated based on 2-year field measurements in two large-scale incinerators in Shanghai. Great temporal and spatial diversification was observed. Most of Hg and Cd were evaporated and then removed by air pollution control (APC) system through condensation and adsorption processes, thus being enriched in the fine APC residues particles. Cr, Cu, and Ni were transferred into the APC residues mainly by entrainment, and distributed uniformly in the two residues flows, as well as in the ash particles with different sizes. Pb and Zn in the APC residues were from both entrainment and evaporation, resulting in the higher concentrations (two to four times) compared with the bottom ash. Arsenic was transported into the flue gas mainly by evaporation, however, its transfer coefficient was lower. Though the heavy metals contents in the APC residues were higher than that in bottom ash, more than 80% of As, Cr, Cu, and Ni, 74-94% of Zn, as well as 46-79% of Pb remained in the bottom ash, due to its high mass ratio (85-93%) in the residues. While 47-73% of Cd and 60-100% of Hg were transferred into the APC residues, respectively.

  18. A review on current status of municipal solid waste management in India.

    Science.gov (United States)

    Gupta, Neha; Yadav, Krishna Kumar; Kumar, Vinit

    2015-11-01

    Municipal solid waste management is a major environmental issue in India. Due to rapid increase in urbanization, industrialization and population, the generation rate of municipal solid waste in Indian cities and towns is also increased. Mismanagement of municipal solid waste can cause adverse environmental impacts, public health risk and other socio-economic problem. This paper presents an overview of current status of solid waste management in India which can help the competent authorities responsible for municipal solid waste management and researchers to prepare more efficient plans. Copyright © 2015. Published by Elsevier B.V.

  19. Leaching of nano-ZnO in municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sakallioglu, T.; Bakirdoven, M.; Temizel, I. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Demirel, B., E-mail: burak.demirel@boun.edu.tr [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Copty, N.K.; Onay, T.T.; Uyguner Demirel, C.S. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Karanfil, T. [Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29634 (United States)

    2016-11-05

    Highlights: • Leaching potential of 3 different types of nano-ZnO in real fresh MSW was investigated. • Batch tests were conducted at different pH, ionic strength and ZnO concentrations. • Most of the added nano-ZnO mass was retained within the solid waste matrix. • The pH and IS conditions did not significantly influence the leaching behavior of ZnO. • A kinetic particle deposition/detachment model was developed to analyze ZnO behavior. - Abstract: Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix.

  20. Municipal Solid Waste Management in China: Analysis and Recommendation

    OpenAIRE

    Li, Ruofei; Liu, Sibei

    2010-01-01

    As the fast development of the urbanization and the growth of GDP in China, there is and will be more and more demands for energy consumption. In the meantime, it also creates a growing number of municipal solid waste (MSW), especially in the recent years, MSW has experienced a dramatic increase. However, the MSW management system is poor and cause many pollution problems in the cities of China, especially in the middle and small cities, at the aspects of waste collection, waste sorting, recy...

  1. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  2. A LABORATORY STUDY TO INVESTIGATE GASEOUS EMISSIONS AND SOLIDS DECOMPOSITION DURING COMPOSTING OF MUNICIPAL SOLID WASTE

    Science.gov (United States)

    The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...

  3. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Science.gov (United States)

    2010-07-01

    ... waste landfill units. 258.16 Section 258.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the...

  4. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Science.gov (United States)

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  5. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program... modification to Alaska's approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved... 40 CFR 258.4. III. Statutory and Executive Order Reviews This action approves State solid waste...

  6. Searching quality data for municipal solid waste planning.

    Science.gov (United States)

    Chowdhury, Moe

    2009-08-01

    Effective waste reduction and recycling is predicated upon credible data on refuse generation and disposal. Despite improvements in the quality of data for municipal solid wastes (MSW) disposal, dependable generation and recycling statistics to support planning, regulation and administration are lacking. The available aggregates on national waste production from two sources do not conform to each other and fail to serve the requirements of local solid waste planning. As recycling estimates will be difficult to discern, the collection of generation data based on weighing waste samples at generator sites has been portrayed as the key for developing sustainable local databases. The coefficients developed from the databases for the various categories of residential, commercial, industrial and institutional wastes can be used as variables for waste generation models.

  7. Municipal household waste used as complement material for composting chicken manure and crop residues

    Directory of Open Access Journals (Sweden)

    Guillaume L. Amadji

    2013-06-01

    Full Text Available There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW was added to cotton-seed residue (CSR and to the association of CSR with chicken manure (M in different weight/weight (MW/added materials ratios of 5:1 and 2:1. Aerobic composting was processed and compost yield was determined, as well as compost particle size and pH. Also, the compost bulk density and its water holding capacity were determined as well as contents of total nitrogen, carbon, phosphorus, calcium (Ca, magnesium and heavy metals. According to its pH and carbon/nitrogen ratio values, the municipal waste of Cotonou was judged to be a good raw material for composting in order to improve availability of the organic source of nutrients. The composts produced with MW+M+CSR had the highest potential for amending Ferralsols, especially with a mixture of 2:1 (200 kg MW+100 kg M+100 kg CSR that could be applied at 10 t ha–1. However, further improvement in composting methods was suggested to increase Ca++ and reduce mercury contents, respectively. Moreover, potassium balance should be improved in the produced compost.

  8. Toxicological assessment of closed municipal solid-waste landfill impact to the environment

    OpenAIRE

    Jūratė Žaltauskaitė; Iveta Vaitonyte

    2017-01-01

    The large number of municipal solid waste landfills in Lithuania poses a serious environmental threat to the quality of soil, surface and ground water. The physicochemical characteristics and toxicity of closed Panevėžys municipal solid-waste landfill leachate and its impact to soil and surface water were assessed. Landfill leachate is complex mixture of various inorganic and organic compounds. The toxicity of municipal solid waste landfill leachate and surface water was evaluated using bioas...

  9. Possibilities of composting disposable diapers with municipal solid wastes.

    Science.gov (United States)

    Colón, Joan; Ruggieri, Luz; Sánchez, Antoni; González, Aina; Puig, Ignasi

    2011-03-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process performance and the characteristics of the compost obtained when compared with that of composting OFMSW without diapers. The experiments demonstrated that the composting process presented similar trends in terms of evolution of routine parameters (temperature, oxygen content, moisture and organic matter content) and biological activity (measured as respiration index). In relation to the quality of both composts, it can be concluded that both materials were identical in terms of stability, maturity and phytotoxicity and showed no presence of pathogenic micro-organisms. However, compost coming from OFMSW with a 3% of disposable diapers presented a slightly higher level of zinc, which can prevent the use of large amounts of diapers mixed with OFMSW.

  10. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bio-charcoal production from municipal organic solid wastes

    Science.gov (United States)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  12. Planning of municipal solid waste management under dual uncertainties.

    Science.gov (United States)

    Zhang, Xiaodong; Huang, Guo H; Nie, Xianghui; Chen, Yumin; Lin, Qianguo

    2010-08-01

    Municipal solid waste management is a complex and multidisciplinary problem, involving a number of impact factors associated with various uncertainties. In this study, a hybrid interval-parameter possibilistic programming (IPP) approach was developed and applied for planning municipal solid waste management under dual uncertainties. The IPP improves upon the existing management approaches by allowing possibility distributions of the lower and upper bounds of some interval parameters in the objective function and interval information in the modelling coefficients to be effectively incorporated within its optimization. By introducing the concept of possibilistic interval numbers, the dual uncertainties can be communicated into the optimization process and the resulting solutions, such that the generated decision schemes can effectively reflect the highly complex system features under uncertainty. The results of the case study indicate that useful information can be obtained for providing feasible decision schemes for waste flow allocation. Different decision schemes can be generated by adjusting waste flow allocation patterns within the solution intervals. Lower decision variable values should be used to obtain lower system cost of waste treatment and disposal under advantageous conditions, and higher decision variable values should be used under demanding conditions (worst case conditions). A strong desire to acquire the lower system cost will lead to the decreased probability of meeting the treatment and disposal requirements (i.e. the increased risk of unforeseen conditions); willingness to accept the upper limit of the system cost will guarantee that waste treatment and disposal requirements are met.

  13. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette

    1998-01-01

    This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product in differ......This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product...... (PVC), copper and chloride). Since waste products from different processes in the product system may be disposed at different landfills where they are mixed with waste originating outside the product system, the estimated emissions from specific waste products cannot be compared with measured emissions...... from true landfills. Hence, the computer tool is verified in terms of mass balances and sensitivity analyses. The mass balances agree exactly and the sensitivity analyses show that different types of waste product components behave differently in different types of landfills. Emission of e.g. toluene...

  14. Optimization of municipal solid waste collection and transportation routes

    International Nuclear Information System (INIS)

    Das, Swapan; Bhattacharyya, Bidyut Kr.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length

  15. Challenges for municipal solid waste management practices in Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Luong

    2013-11-01

    Full Text Available Municipal solid waste (MSW management is currently one of the major environmental problems facing by Vietnam. Improper management of MSW has caused adverse impacts on the environment, community health, and social-economic development. This study attempts to provide a review of the generation and characterization, disposal and treatment technologies of MSW to evaluate the current status and identify the problems of MSW management practices in Vietnam. Finally, this study is concluded with fruitful recommendations which may be useful in encouraging the responsible agencies to work towards the further improvement of the existing MSW management system.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21Citation:  Luong, N.D., Giang, H.M., Thanh, B.X. and Hung, N.T.  2013. Challenges for municipal solid waste management practices in Vietnam. Waste Technology 1(1:6-9.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21

  16. An Industrial Ecology Approach to Municipal Solid Waste ...

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  17. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    International Nuclear Information System (INIS)

    Edjabou, Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2015-01-01

    Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single

  18. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Evaluation of mixing systems for biogasification of municipal solid waste

    Science.gov (United States)

    1981-06-01

    Two mixing systems were tested for the efficiencies prevention of the formation of fibrous mats and stringers during the anaerobic digestion of a slurried mixture of preprocessed municipal solid waste and sewage sludge in the production of methane gas. The first system was a mechanical agitation, a vessel centered rotary shaft with four blades at each of two levels to drive the slurry downward. The second system included three equidistantly placed gas gun assemblies that each produced bubbles at a constant rate to draw the slurry upward. The microbial culture was healthy in most tests, however, the mixing systems were not effective in preventing excessive fibrous mat and stringer formations. The energy recovered was only 50% of the energy available in the solid waste, and only four times greater than the mixing energy expended for that test. The solids accumulations were generally the same for the two mixing systems when they had common test conditions. In all tests, the percent solids for the top level were higher than those for the middle and bottom levels.

  20. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  1. Different systems and approaches to treat municipal solid waste. A state-of the art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, A.; Euler, H.; Klopotek, F.; Kellner, C. [TBW GmbH, Sustainable Techno-logies Building and Business Consultants, Frankfurt/Main (Germany)

    1997-08-01

    Anaerobic digestion is still a fairly new technology in the area of utilisation of organic residues, in particular as far as treatment of household wastes and integration of agricultural production is concerned. In the last few years, a number of different processes and concepts, with a variety of different intentions, have been developed and established on the European market, in particular in Germany. Actual categories and parameters, used to analyse, structure and compare available treatment systems, are not yet fully satisfying. The presentation will consist of the following elements: 1. Factors influencing the market of the technology in the recent past. 2. Brief comparison of features of anaerobic solid waste digestion with land filling, composting and incineration. 3. Brief comparison between some European and Non-European countries, concerning municipal solid waste digestion. 4. Main topics in the actual German Anaerobic Municipal Solid Waste Treatment (AMSWT) debate. 5. Comparison of some existing AMSWT systems and concepts. 6. Presentation of a comprehensive structure, covering the main technical elements of any of the different technologies available. 7. Outlook. (au)

  2. State of municipal solid waste management in Delhi, the capital of India

    International Nuclear Information System (INIS)

    Talyan, Vikash; Dahiya, R.P.; Sreekrishnan, T.R.

    2008-01-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000 tonnes/day of MSW, which is projected to rise to 17,000-25,000 tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW is collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system

  3. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    OpenAIRE

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the ...

  4. An Economic Analysis of Municipal Solid Waste Management of Toyohashi City, Japan: Evidences from Environmental Kuznets Curve

    OpenAIRE

    Miyata, Yuzuru; Shibusawa, Hiroyuki; Hossain, Nahid

    2013-01-01

    The study of Toyohashi cityfs economic growth and resultant growth in municipal solid waste management were empirically examined by the relation between city economic growth, city expenditure for solid waste management and municipal solid waste. The growth in the economy and the population has increased discharge of municipal solid waste in Toyohashi city. The economic size of the city is identified as a strong explanatory variable. Various kinds of municipal solid waste were generated with ...

  5. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  6. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette

    1998-01-01

    This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product...... in different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride...... (PVC), copper and chloride). Since waste products from different processes in the product system may be disposed at different landfills where they are mixed with waste originating outside the product system, the estimated emissions from specific waste products cannot be compared with measured emissions...

  7. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  8. Vitrification of bottom ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Xiao, Y; Oorsprong, M; Yang, Y; Voncken, J H L

    2008-01-01

    During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.

  9. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  10. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...

  11. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    % of the organic and degradable material. Source sorting is another way of collecting the household waste in its respective fractions. However, this separation technique is hard to enforce and expensive. Future waste management calls for novel and efficient technologies for the separation of unsorted MSW in order......The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather...

  12. To study the municipal solid waste as an energy source

    International Nuclear Information System (INIS)

    Ahmed, Z.; Khan, M.M.

    2005-01-01

    The solid waste management is a very complicated specially when it must be environmental friendly. In the present life, power energy is being more expensive than ever before and human off spring is struggling td acquire cheap ways of getting energy. At the same time, he is facing another problem of waste disposal pollution in the environment, which is a by-product of his industries and population, and when it would be hazardous to life, it will be a more serious problem. In this study, an idea is made to use garbage as an alternate fuel and the analysis of ingredients is done to compare it with the usual fuel i.e. coal. On the other hand, municipal waste (garbage) disposal will be automatically solved. (author)

  13. Possible applications for municipal solid waste fly ash.

    Science.gov (United States)

    Ferreira, C; Ribeiro, A; Ottosen, L

    2003-01-31

    The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.

  14. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    % of the organic and degradable material. Source sorting is another way of collecting the household waste in its respective fractions. However, this separation technique is hard to enforce and expensive. Future waste management calls for novel and efficient technologies for the separation of unsorted MSW in order...... generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather...... simulating Danish household waste in composition and weight, 2) evaluating the performance of best enzyme candidates on original waste with and without additional additives, 3) measuring the biogas potential of liquefied waste and comparing the results with the biogas potential of untreated waste...

  15. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  16. Municipal solid waste development phases: Evidence from EU27.

    Science.gov (United States)

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.

  17. Optimal planning for the sustainable utilization of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Santibañez-Aguilar, José Ezequiel [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Ponce-Ortega, José María, E-mail: jmponce@umich.mx [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Betzabe González-Campos, J. [Institute of Chemical and Biological Researches, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Serna-González, Medardo [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); El-Halwagi, Mahmoud M. [Chemical Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Adjunct Faculty at the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589 (Saudi Arabia)

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  18. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Optimal planning for the sustainable utilization of municipal solid waste

    International Nuclear Information System (INIS)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-01-01

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits

  20. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... waste landfill emissions. 60.33c Section 60.33c Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW...

  1. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... landfill emissions. 62.14353 Section 62.14353 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  2. The impact of municipal solid waste disposal in Ado- Ekiti metropolis ...

    African Journals Online (AJOL)

    hope&shola

    material are often referred to as Municipal Solid Waste. (MSW). Municipal Solid Waste is useless ... Ekiti is not an exemption. The environmental impact assessments of heavy metals. *Corresponding author. E-mail: ... All data generated were analyzed statistically by calculating mean, coefficient of correlation, alienation and ...

  3. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit... proposes to approve Alaska's modification of its approved Municipal Solid Waste Landfill (MSWLF) permit... Domenic Calabro, Office of Air, Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900...

  4. Cytotoxicity of municipal solid waste incinerator ash wastes toward mammalian kidney cell lines.

    Science.gov (United States)

    Huang, Wu-Jang; Tsai, Jia-Lin; Liao, Ming-Huei

    2008-05-01

    In this study, three municipal solid waste incinerator (MSWI) ash wastes-bottom ash, scrubber residue, and baghouse ash-were extracted using a toxicity characteristic leaching procedure (TCLP) extractant. These so-called final TCLP extracts were applied to African green monkey kidney cells (Vero), baby hamster kidney cells (BHK-21), and pig kidney cells (PK-15), multi-well absorption reader analysis was performed to test how the cytotoxicity of the incineration ashes would affect the digestive systems of animals. Ion-coupled plasma analyses indicated that the baghouse ash extract possessed the highest pH and heavy metal concentration, its cytotoxicity was also the highest. In contrast, the bottom ash and the scrubber residue exhibited very low cytotoxicities. The cytotoxicities of mixtures of baghouse ash and scrubber residue toward the three tested cell lines increased as the relative ratio of the baghouse ash increased, especially for the Vero cells. The slight cytotoxicity of the scrubber residue arose mainly from the presence of Cr species, whereas the high cytotoxicity of the baghouse ash resulted from its high content of heavy metals and alkali ions. In addition, it appears that the dissolved total organic carbon content of these ash wastes can reduce the cytotoxicity of ash wastes that collect in animal cells.

  5. Municipal solid waste management in China: status, problems and challenges.

    Science.gov (United States)

    Zhang, Dong Qing; Tan, Soon Keat; Gersberg, Richard M

    2010-08-01

    This paper presents an examination of MSW generation and composition in China, providing an overview of the current state of MSW management, an analysis of existing problems in MSW collection, separation, recycling and disposal, and some suggestions for improving MSW systems in the future. In China, along with urbanization, population growth and industrialization, the quantity of municipal solid waste (MSW) generation has been increasing rapidly. The total MSW amount increased from 31.3 million tonnes in 1980 to 212 million tonnes in 2006, and the waste generation rate increased from 0.50 kg/capita/day in 1980 to 0.98 kg/capita/year in 2006. Currently, waste composition in China is dominated by a high organic and moisture content, since the concentration of kitchen waste in urban solid waste makes up the highest proportion (at approximately 60%) of the waste stream. The total amount of MSW collected and transported was 148 million tonnes in 2006, of which 91.4% was landfilled, 6.4% was incinerated and 2.2% was composted. The overall MSW treatment rate in China was approximately 62% in 2007. In 2007, there were 460 facilities, including 366 landfill sites, 17 composing plants, and 66 incineration plants. This paper also considers the challenges faced and opportunities for MSW management in China, and a number of recommendations are made aimed at improving the MSW management system. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  7. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  8. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A review of dioxin-related substances during municipal solid waste incineration.

    Science.gov (United States)

    Zhou, Hui; Meng, Aihong; Long, Yanqiu; Li, Qinghai; Zhang, Yanguo

    2015-02-01

    Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are among the most toxic chemicals and the main restriction on municipal solid waste incineration. To exert more effective control over the formation of dioxin homologues during municipal solid waste incineration, it is significant to investigate dioxin-related compounds. Despite the numerous studies about PCDD/Fs, a unified understanding regarding many problems has yet to be reached because the homologues of PCDD/Fs are excessive, the measurement of PCDD/Fs is difficult, and the formation mechanisms of PCDD/Fs are complicated. Firstly, this paper briefly introduces the different formation mechanisms of PCDD/Fs, including high temperature homogeneous reaction PCDD/Fs formation and low temperature heterogeneous reaction PCDD/Fs formation. Then the sources of PCDD/Fs including precursors (chlorophenols and polycyclic aromatic hydrocarbons) and residual carbon are summarized. In particular, this paper analyzes the substances that influence PCDD/Fs formation and their impact mechanisms, including different categories of chlorine (Cl2, HCl and chloride in fly ash), O2, copper, sulfur, water, and nitrogen compounds (ammonia and urea). Due to the high cost and complexity of PCDD/Fs measurement, PCDD/Fs indicators, especially chlorobenzenes and polycyclic aromatic hydrocarbons, are summarized, to find an effective surrogate for quick, convenient and real-time monitoring of PCDD/Fs. Finally, according to the results of the current study, recommendations for further research and industrial applications prospects are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation.

    Directory of Open Access Journals (Sweden)

    Nadia Prays

    Full Text Available Soil application of biogas residues (BGRs is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha and plots fertilized with liquid fraction (59-62 dt/ha indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered.

  11. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation

    Science.gov (United States)

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59–62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered. PMID:27116355

  12. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation.

    Science.gov (United States)

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59-62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered.

  13. SOLID WASTE OPTIONS FOR MUNICIPAL PLANNERS - VERSION 3.1 - A SOFTWARE TOOL FOR PRELIMINARY PLANNING - USER DOCUMENTATION

    Science.gov (United States)

    Municipalities face many challenges in managing nonhazardous solid waste. For instance, landfills are reaching capacity throughout the country, tipping fees are increasing, and regulations affecting the disposal and recycling of municipal solid waste (MSW) are being promulgated ...

  14. Considerations for Net Zero Waste Installations: Treatment of Municipal Solid Waste

    Science.gov (United States)

    2015-09-01

    solid waste start with reducing the amount of waste generated, re-purposing waste , maximizing recycling ...Occupational Health Network and Information Exchange (DENIX). 2012. SWARWeb – Solid waste annual reporting. Solid Waste Recycling . Web page. Washington...USEPA, http://epa.gov/climatechange/wycd/ waste /SWMGHGreport.html#documentation ------------. 2011. Municipal Solid Waste Generation, Recycling

  15. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    Directory of Open Access Journals (Sweden)

    Oakey John

    2011-02-01

    Full Text Available Abstract Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling. It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  16. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste.

    Science.gov (United States)

    Laryea-Goldsmith, René; Oakey, John; Simms, Nigel J

    2011-02-01

    Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  17. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    Science.gov (United States)

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  18. Municipal solid wastes incineration with combined cycle: a case study from Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Cerda Balcazar, Juan Galvarino; Dias, Rubens Alves; Balestieri, Jose Antonio Perrella [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil)], E-mails: pos09007@feg.unesp.br, rubdias@feg.unesp.br

    2010-07-01

    Large urban centers have a huge demand for electricity, for the needs of its residents, and a growing problem of management of solid waste generated by it, that becomes an public administrative and great social problem. The correct disposal of solid waste generated by large urban centers is now one of the most complex engineering problems involving logistics, safety, environment, energy spent among other tools for sound management of municipal solid waste (MSW). This study was carried out a study of the use of incinerators and residue derived fuel and MSW with combined cycles, with the aim of producing thermal and mechanical energy (this later becomes electrical energy) and solid waste treatment in Sao Paulo. We used existing models and real plants in the European Union in this case, with the aim of making it the most viable and compatible with the current context of energy planning and resource today. A technical and economic feasibility study for a plant of this nature, using the scheme, is presented. It is expected a good attractiveness of using incinerators combined-cycle, due to its high efficiency and its ability to thermoelectric generation. (author)

  19. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.

    Science.gov (United States)

    Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the

  20. Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions.

    Science.gov (United States)

    Van Gerven, T; Cooreman, H; Imbrechts, K; Hindrix, K; Vandecasteele, C

    2007-02-09

    Municipal solid waste incinerator (MSWI) bottom ash often cannot be recycled as construction material in Flanders, because leaching of Cu exceeds the limit value of 0.5mg/kg. Leaching of other components such as Mo and Sb is critical as well, but limit values for these elements are to date only informal. A treatment technique was investigated to lower pollutant leaching: extraction with solutions of organic complexants to remove Cu. Six different solutions were used, of which washing with citric acid and ammonium citrate decreases Cu leaching to below the limit value. Extraction was then performed with different concentrations of ammonium citrate. Subsequent washing of the extracted material with distilled water appears to be vital to remove all residual ammonium citrate. Extraction with a 0.2M solution of ammonium citrate followed by three washing steps decreases metal leaching to below the limit values.

  1. Behavior of cesium in municipal solid waste incineration

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-01-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily 134 Cs and 137 Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added 133 Cs (stable nuclide) or 134 Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, 133 Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. 134 Cs behaved in a similar fashion as 133 Cs. We found through TG–DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. - Highlights: • Behaviors of Cs on the incineration of the model waste were investigated. • More Cs was moved to fly ash with increasing of equivalence ratio and temperature. • Chemical forms of Cs in the fly ash

  2. Unburned carbon in combustion residues from mainly solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem H; Lind B; Lagerkvist A

    2012-02-15

    Unburned carbon in 21 combustion residues from solid biofuels is investigated using several methods of analysis (a.o. LOI and TOC), as well as micro-Raman spectroscopy. The results are used to discuss the distribution of unburned carbon in the residues from the different combustion plants and its nature (organic or elemental). The consequences of the elemental nature of carbon for environmental properties of the residue are noted

  3. A mathematical model for the municipal solid waste location-routing problem with intermediate transfer stations

    Directory of Open Access Journals (Sweden)

    Hossein Asefi

    2015-09-01

    Full Text Available Municipal solid waste management is one of the challenging issues in mega cities due to various interrelated factors such as operational costs and environmental concerns. Cost as one of the most significant constraints of municipal solid waste management can be effectively economized by efficient planning approaches. Considering diverse waste types in an integrated municipal solid waste system, a mathematical model of the location-routing problem is formulated and solved in this study in order to minimize the total cost of transportation and facility establishment.

  4. Post-closure care of engineered municipal solid waste landfills.

    Science.gov (United States)

    Bagchi, Amalendu; Bhattacharya, Abhik

    2015-03-01

    Post-closure care is divided into perpetual care (PPC) and long-term care (LTC). Guidelines for post-closure care and associated costs are important for engineered municipal solid waste (MSW) landfills. In many states in the USA, landfill owners are required to set aside funds for 30-40 years of LTC. Currently there are no guidelines for PPC, which is also required. We undertook a pilot study, using two landfills (note: average landfill capacity 2.5 million MT MSW waste) in Wisconsin, to establish an approach for estimating the LTC period using field data and PPC funding need. Statistical analysis of time versus concentration data of selected leachate parameters showed that the concentration of most parameters is expected to be at or below the preventive action limit of groundwater and leachate volume will be very low, within 40 years of the LTC period. The gas extraction system may need to be continued for more than 100 years. Due to lack of data no conclusion could be made regarding adequacy of the LTC period for the groundwater monitoring system. The final cover must be maintained for perpetuity. The pilot study shows that although technology is available, the financial liability of maintaining a 'Dry Tomb' design for landfills is significantly higher than commonly perceived. The paper will help landfill professionals to estimate realistic post-closure funding and to develop field-based policies for LTC and PPC of engineered MSW landfills. © The Author(s) 2015.

  5. LCA comparison of container systems in municipal solid waste management

    International Nuclear Information System (INIS)

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-01-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  6. Solid Waste In Municipalities of Agreste Pernambucano: Environmental Education Issue

    Directory of Open Access Journals (Sweden)

    Iana B. Lima

    2017-07-01

    Full Text Available The homo sapiens that dominates occupying actions on earth should be a citizen with socio-environmental responsibility; their omission and neglect reverberate throughout the ecosystem. To achieve the balance between different ecological systems there is a global consensus for sustainable development, it is strongly anchored in environmental education with government support. The objective of this research was to evaluate the knowledge and actions about the A3P and the significance of the 5Rs of sustainability, together with 20 public managers from two municipalities in the Agreste region of Pernambuco, using questionnaires with closed questions. From a total of respondents 100% (n20, they reported that they did not know information about the A3P Environmental Agenda. 70% (n14 reported that cities are not adequately prepared for solid waste to dispose. These information obtained in the research demonstrates that although there is a figure of the environmental manager, it is often not able to fulfill the goals in the governmental sphere..

  7. Municipal Solid Waste Management in Ulaanbaatar, Mongolia: Systems Analysis

    Directory of Open Access Journals (Sweden)

    Bolorchimeg Byamba

    2017-05-01

    Full Text Available Research was conducted in Ulaanbaatar (UB, Mongolia with a view of finding ways of making its municipal solid waste management (MSWM more efficient by minimizing the negative impact of waste on the environment and public health whilst increasing its resource efficiency in a manner that is economically and financially viable. In this study, “Wasteaware” benchmark indicators were applied to assess the current system for MSWM in UB according to its physical and governance features. Data were obtained from site visits, interviews with the key stakeholders, and consulting of official documents and reports. The results of benchmark indicators showed that, in terms of Public Health, Environmental Control and Institutional Aspects, UB had surpassed the levels of low- and lower-middle-income countries and sufficed the prerequisites for modernizing its waste management system. However, there are still some major steps ahead to fully transition to a modern system. Our study brought significant contributions by filling the existing literature gaps for UB and identified its key strengths and areas for improvement. We conclude that an improvement in data collection and reporting, and widespread consultation with all stakeholders would impact positively on the improvement of the efficiency of the MSWM in UB and other developing countries.

  8. LCA comparison of container systems in municipal solid waste management.

    Science.gov (United States)

    Rives, Jesús; Rieradevall, Joan; Gabarrell, Xavier

    2010-06-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80l to containers of 2400l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60l or 80l) had most impact while systems using big steel containers (2400l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Thermodynamic Analysis of the Gasification of Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Pengcheng Xu

    2017-06-01

    Full Text Available This work aims to understand the gasification performance of municipal solid waste (MSW by means of thermodynamic analysis. Thermodynamic analysis is based on the assumption that the gasification reactions take place at the thermodynamic equilibrium condition, without regard to the reactor and process characteristics. First, model components of MSW including food, green wastes, paper, textiles, rubber, chlorine-free plastic, and polyvinyl chloride were chosen as the feedstock of a steam gasification process, with the steam temperature ranging from 973 K to 2273 K and the steam-to-MSW ratio (STMR ranging from 1 to 5. It was found that the effect of the STMR on the gasification performance was almost the same as that of the steam temperature. All the differences among the seven types of MSW were caused by the variation of their compositions. Next, the gasification of actual MSW was analyzed using this thermodynamic equilibrium model. It was possible to count the inorganic components of actual MSW as silicon dioxide or aluminum oxide for the purpose of simplification, due to the fact that the inorganic components mainly affected the reactor temperature. A detailed comparison was made of the composition of the gaseous products obtained using steam, hydrogen, and air gasifying agents to provide basic knowledge regarding the appropriate choice of gasifying agent in MSW treatment upon demand.

  10. Optimization of municipal solid waste collection and transportation routes.

    Science.gov (United States)

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Full-scale biodrying process of municipal solid waste

    Directory of Open Access Journals (Sweden)

    Dębicka Marlena

    2017-01-01

    Full Text Available The paper presents the results obtained in the full-scale waste biodrying reactor. The studied facility includes in the biological stage a rectangular-shaped, galvanized steel reactor equipped with a module for active aeration connected with a stove and a bio-filter for removing odours. The undersize fraction (Ø <80 mm of the municipal solid waste (MSW that undergoes mechanical pretreatment is treated by 14th days in the 150 m3 capasity reactor. Initial moisture content of the untreated waste was 54.65%. Moisture content was declined gradually during biodrying process. Temperature changes during 14th days of biodrying process were monitored with the maximum temperature 70°C. To assess the degree of stabilization of the biodried waste, the determination of the O2 uptake was measured. The oxygen demand of untreated waste was 53.16 mg O2/g d.m. and after 14th days for biodried waste oxygen consumption was 19.78 mg O2/g d.m. The results obtained in studies by respirometric dynamic method of oxygen uptake (expressed as O2/96h parameter had been compared to the results performed using the static method, where AT4 is the applied indicator.

  12. Pyrolysis technologies for municipal solid waste: a review.

    Science.gov (United States)

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2014-12-01

    Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  14. Optimal planning for the sustainable utilization of municipal solid waste.

    Science.gov (United States)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. FORMATION OF DIOXINS AND FURANS DURING MUNICIPAL SOLID WASTE GASIFICATION

    Directory of Open Access Journals (Sweden)

    E. J. Lopes

    2015-03-01

    Full Text Available Abstract Thermal treatment is an interesting strategy to dispose of municipal solid waste: it reduces the volume and weight of the material dumped in landfills and generates alternative energy. However, the process emits pollutants, such as dioxins and furans. The present study evaluated MSW gasification-combustion integrated technologies in terms of dioxin and furan emission; and compared the obtained data with literature results on incineration, to point out which operational features differentiate the release of pollutants by these two processes. The results show that the process of integrated gasification and combustion emitted 0.28 ng N-1 m-3, expressed in TEQ (Total Equivalent Toxicity, of PCDD/F, less than the maximum limits allowed by local and international laws, whereas incineration normally affords values above these limits and requires a gas treatment system. The distinct operational conditions of the two thermal processes, especially those related to temperature and the presence of oxygen and fixed carbon, led to a lower PCDD/F emission in gasification.

  16. Mechanical properties of Municipal Solid Waste by SDMT

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Francesco, E-mail: francesco.castelli@unikore.it [Geotechnical Engineering, Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna (Italy); Maugeri, Michele [Geotechnical Engineering, Department of Civil and Environmental Engineering, University of Catania, 95125 Catania (Italy)

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  17. Mechanical properties of Municipal Solid Waste by SDMT.

    Science.gov (United States)

    Castelli, Francesco; Maugeri, Michele

    2014-02-01

    In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the "Cozzo Vuturo" landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for "fresh" and "degraded waste" have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Engineering properties for high kitchen waste content municipal solid waste

    Directory of Open Access Journals (Sweden)

    Wu Gao

    2015-12-01

    Full Text Available Engineering properties of municipal solid waste (MSW depend largely on the waste's initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW. After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW, the following findings were obtained: (1 HKWC MSW has a higher initial water content (IWC than LKWC MSW, but the field capacities of decomposed HKWC and LKWC MSWs are similar; (2 the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3 compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG generation rate but a shorter duration and a lower potential capacity; (4 the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5 the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  19. Reprint of: Pyrolysis technologies for municipal solid waste: a review.

    Science.gov (United States)

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2015-03-01

    Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of bottom ash in municipal solid waste incinerators for its use in road base.

    Science.gov (United States)

    Forteza, R; Far, M; Seguí, C; Cerdá, V

    2004-01-01

    Incineration of municipal solid wastes (MSWs) produces by-products which can be broadly classified as bottom and fly ashes. Since MSW incineration started, possibilities other than landfilling the incineration residues have been sought; most initiatives in this sense tend to use these residues as aggregate substitute in pavements and other road construction elements. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. The study includes not only the specific aspects regarding its role as pavement element, but also the assessment of the environmental effects. Therefore, together with the determination of physical (moisture content, apparent and bulk densities, crystallinity, etc.) and engineering properties (particle size distribution, abrasion and impact resistance, etc.), full chemical characterization of the bottom ash and the study of leaching as a function of aging time have been undertaken. The results obtained indicate that the metal content of both the raw bottom ash and its leachates fulfill the environmental regulations provided that the bottom ash is stored for at least one month. Engineering properties of the bottom ash are close to those of natural aggregates and, thus, road-construction use of these residues seems to be feasible.

  1. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... it reacts with air and produces electricity. The exhausted gases out of the SOFC enter a burner for further fuel combusting and finally the off-gases are sent to a gas turbine to produce additional electricity. Different plant configurations have been studied and the best one found to be a regenerative gas...

  2. Evaluation of environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark (EASEWASTE).

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael

    2006-02-01

    A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.

  3. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  4. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Municipal Solid Waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by th eir use it is possible to reduce the waste......, waste is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called “Syngas” which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification...

  5. Municipal Solid Waste Management in a Low Income Economy Through Biogas and Bioethanol Production

    DEFF Research Database (Denmark)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia

    2017-01-01

    The biodegradable fraction of municipal solid wastes generated from households in Ghana has favourable characteristics worth considering for bioenergy production. The suitability of this biodegradable portion for biogas and bioethanol production was assessed in this study. The assessment was perf...

  6. Notice of Approval of the Renewable Fuel Standard Program Municipal Solid Waste Separation Plan

    Science.gov (United States)

    EPA's response documents and federal register notices on Fiberight's plan to separate recyclables from municipal solid waste intended for use as feedstock for renewable fuel production at its biorefinery in Blairstown, Iowa.

  7. Municipal Solid Waste Landfills: New Source Performance Standards (NSPS), Emission Guidelines (EG) and Compliance Times

    Science.gov (United States)

    learn about the NSPS for municipal solid waste landfills by reading the rule summary, rule history, code of federal regulations text, fact sheets, background information documents, related rules and compliance information.

  8. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    Science.gov (United States)

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  9. Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

    OpenAIRE

    Bakare Babatunde Femi

    2011-01-01

    Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This p...

  10. Geotechnical properties of municipal solid waste at Laogang Landfill, China.

    Science.gov (United States)

    Feng, Shi-Jin; Gao, Ke-Wei; Chen, Yi-Xin; Li, Yao; Zhang, L M; Chen, H X

    2017-05-01

    Landfills have been widely constructed all around the world in order to properly dispose municipal solid waste (MSW). Understanding geotechnical properties of MSW is essential for the design and operation of landfills. A comprehensive investigation of geotechnical properties of MSW at the largest landfill in China was conducted, including waste composition, unit weight, void ratio, water content, hydraulic conductivity, and shear behavior. A large-scale rigid-wall permeameter and a direct-shear apparatus were adopted to test the hydraulic conductivity and shear behavior of the MSW, respectively. The composition of the MSW varied with age. With the depth increasing from 0 to 16m, the unit weight increased from 7.2 to 12.5kN/m 3 , while the void ratio decreased from 2.5 to 1.76. The water content ranged between 30.0% and 68.9% but did not show a trend with depth. The hydraulic conductivity of the MSW ranged between 4.6×10 -4 and 6.7×10 -3 cm/s. It decreased as the dry unit weight increased and was sensitive to changes in dry unit weight in deeper layers. Displacement-hardening was observed during the whole shearing process and the shear strength increased with the normal stress, the displacement rate, and the unit weight. The friction angle and cohesion varied from (15.7°, 29.1kPa) to (21.9°, 18.3kPa) with depth increasing from 4 to 16m. The shear strength of the MSW obtained in this study was lower than the reported values in other countries, which was caused by the less fibrous materials in the specimens in this study. The results in this study will provide guidance in the design and operation of the landfills in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biofiltration treatment of odors from municipal solid waste treatment plants.

    Science.gov (United States)

    Liu, Qiang; Li, Mi; Chen, Rong; Li, Zhengyue; Qian, Guangren; An, Taicheng; Fu, Jiamo; Sheng, Guoying

    2009-07-01

    An in situ compost biofilter was established for the treatment of odors from biostabilization processing of municipal solid waste. The concentrations of total volatile organic compounds (VOCs) in odors and their components were measured. Biofilter media was characterized in terms of total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic matter (OM), pH value and determination of bacterial colony structure. Gas chromatography-mass spectrometry (GC-MS) analysis showed that the main components of the produced gas were benzene, toluene, ethylbenzene and xylene (BTEX) along with other alkanes, alkenes, terpenes, and sulphur compounds. The compost biofilter had remarkable removal ability for alkylated benzenes (>80%), but poor removal for terpenes ( approximately 30%). Total VOC concentrations in odors during the biostabilization process period ranged from 0.7 to 87 ppmv, and the VOC removal efficiency of the biofilter varied from 20% to 95%. After about 140 days operation, TN, TC, TP and OM in compost were kept almost stable, but the dissolved N, NH(4)-N and NO(3)-N experienced an increase of 44.5%, 56.2% and 76.3%, respectively. Dissolved P decreased by 27.3%. The pH value experienced an increase in the early period and finally varied from 7.38 to 8.08. Results of bacterial colony in packing material indicated that bacteria and mold colony counts increased, but yeasts and actinomyces decreased along with biofilter operation, which were respectively, 3.7, 3.4, 0.04 and 0.07 times of their initial values.

  12. Ranking criteria for assessment of municipal solid waste dumping sites

    Directory of Open Access Journals (Sweden)

    Mahmood Khalid

    2017-03-01

    Full Text Available Priority wise channelization of resources is the key to successful environmental management, especially when funds are limited. The study in hand has successfully developed an algorithmic criterion to compare hazardous effects of Municipal Solid Waste (MSW dumping sites quantitatively. It is a Multi Criteria Analysis (MCA that has made use of the scaling function to normalize the data values, Analytical Hierarchy Process (AHP for assigning weights to input parameters showing their relevant importance, and Weighted Linear Combination (WLC for aggregating the normalized scores. Input parameters have been divided into three classes namely Resident’s Concerns, Groundwater Vulnerability and Surface Facilities. Remote Sensing data and GIS analysis were used to prepare most of the input data. To elaborate the idea, four dumpsites have been chosen as case study, namely Old-FSD, New-FSD, Saggian and Mahmood Booti. The comparison has been made first at class levels and then class scores have been aggregated into environmental normalized index for environmental impact ranking. The hierarchy of goodness found for the selected sites is New-FSD > Old-FSD > Mahmood Booti > Saggian with comparative scores of goodness to environment as 36.67, 28.43, 21.26 and 13.63 respectively. Flexibility of proposed model to adjust any number of classes and parameters in one class will be very helpful for developing world where availability of data is the biggest hurdle in research based environmental sustainability planning. The model can be run even without purchasing satellite data and GIS software, with little inaccuracy, using imagery and measurement tools provided by Google Earth.

  13. Pyrolysis technologies for municipal solid waste: A review

    International Nuclear Information System (INIS)

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2014-01-01

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO 2 and NH 3 , contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested

  14. Mineral CO2 sequestration in alkaline solid residues

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2004-12-01

    Mineral carbonation is a promising sequestration route for the permanent and safe storage of carbon dioxide. In addition to calcium- or magnesium-containing primary minerals, suitable alkaline solid residues can be used as feedstock. The use of alkaline residues has several advantages, such as their availability close to CO2 sources and their higher reactivity for carbonation than primary minerals. In addition, the environmental quality of residues can potentially be improved by carbonation. In this study, key factors of the mineral CO2 sequestration process are identified, their influence on the carbonation process is examined, and environmental properties of the reaction products with regard to their possible beneficial utilization are investigated. The use of alkaline solid residues forms a potentially attractive alternative for the first mineral sequestration plants

  15. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    International Nuclear Information System (INIS)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-01-01

    co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  16. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A GIS BASED ROUTE OPTIMIZATION FOR SOLID WASTE MANAGEMENT: A CASE STUDY ON INDAPUR MUNICIPALITY.

    OpenAIRE

    M. S. Lawand; S. S. Bansode; Dr. P. D. Nemade

    2017-01-01

    This paper emphasizes on existing solid waste management practices in Indapur municipal area of Pune district of Maharashtra state, India. Exponential growth of population and in round development of society and industries are responsible for increased solid waste generation in city. Whereas uncontrollable and mismanaged solid waste cause adverse environmental impacts on public health and are basis of other socio-economic problems too. For reducing the expenditure on Solid Waste Management (S...

  18. Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment.

    Science.gov (United States)

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi

    2014-02-28

    Municipal solid waste incineration (MSWI) is widely used in Japan, through which large amount of incineration residues are produced. The recycle/reuse of the incineration residues is troubled by many factors. This paper studied the MSWI bottom ash with the principal focus on Cl. Both bulk analysis and microanalysis methods have been carried out. The bulk analysis disclosed a particle-size dependent pattern of the Cl content in the bottom ash and the insoluble Cl is essentially in the form of Friedel's salt (3CaO·Al(2)O(3)·CaCl(2)·10H(2)O). The microanalysis revealed that Cl preferentially exists in the quench phase of the individual bottom ash particle. Since Friedel's salt and the other quench products are thermally unstable, a series of thermal treatments were carried out to decompose such Cl-bearing phases. The experimental results showed the total Cl content in the MSWI bottom ash was reduced by 55.46% after a 4-h heating process at 1000°C. The removal of the soluble Cl (originally as alkali salts) by the thermal process was found to be more effective. However, the insoluble Cl content in the heated sample was barely lowered owing to the formation of calcium chlorocalumite (11CaO·7Al(2)O(3)·CaCl(2)) in the course of heating. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    Science.gov (United States)

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  20. Beneficial Use and Recycling of Municipal Waste Combustion Residues - A Comprehensive Resource Document

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, C.; Shepherd, P.

    1999-04-26

    This document summarizes information from worldwide sources on the beneficial use of residues from the combustion of municipal. The information presented, including results of numerous research projects, field demonstrations, and actual full-scale projects, demonstrates that the ash can be safely used. It includes data on ash characteristics, environmental considerations, guidance on selected ash use applications, and information on federal and state regulations and policies affecting ash use.

  1. Process control in municipal solid waste incinerators: survey and assessment.

    Science.gov (United States)

    El Asri, R; Baxter, D

    2004-06-01

    As there is only rare and scattered published information about the process control in industrial incineration facilities for municipal solid waste (MSW), a survey of the literature has been supplemented by a number of waste incineration site visits in Belgium and The Netherlands, in order to make a realistic assessment of the current status of technology in the area. Owing to the commercial character, and therefore, the confidentiality restrictions imposed by plant builders and many of the operators, much of the information collected has either to be presented in a generalized manner, and in any case anonymously. The survey was focused on four major issues: process control strategy, process control systems, monitors used for process control and finally the correlation between the 850 degrees C/2 s rule in the European waste incineration directive and integrated process control. The process control strategies range from reaching good and stable emissions at the stack to stabilizing and maximizing the energy output from the process. The main indicator to be monitored, in cases in which the focus is controlling emissions, is the oxygen content in the stack. Keeping the oxygen concentration in a determined range (usually between 8 and 12 vol.%) ensures stable and tolerated concentrations of the gaseous emissions. In the case for which stabilization of energy production is the principal aim, the main controlled parameter is the steam temperature and flow-rate, which is usually related to the fuel energetic input. A lot of other parameters are used as alarm criteria, the most common of which is the carbon monoxide concentration. The process control systems used most commonly feature partially automated classical proportional integral derivative (PID) controllers. New and innovative process control systems, such as fuzzy-logic control systems, are still unknown to most plant managers while their performance is reported to be unsatisfactory in plants in which such systems

  2. Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste.

    Science.gov (United States)

    Schievano, Andrea; D'Imporzano, Giuliana; Malagutti, Luca; Fragali, Emilio; Ruboni, Gabriella; Adani, Fabrizio

    2010-07-01

    High-solids anaerobic digestion (HSAD) processes, when applied to different types of organic fractions of municipal solid waste (OFMSW), may easily be subjected to inhibition due to organic overloading. In this study, a new approach for predicting these phenomena was proposed based on the estimation of the putrescibility (oxygen consumption in 20 h biodegradation, OD(20)) of the organic mixtures undergoing the HSAD process. Different wastes exhibiting different putrescibility were subjected to lab-scale batch-HSAD. Measuring the organic loading (OL) as volatile solids (VS) was found unsuitable for predicting overload inhibition, because similar VS contents corresponded to both inhibited and successful trials. Instead, the OL calculated as OD(20) was a very good indicator of the inhibiting conditions (inhibition started for OD(20)>17-18 g O(2)kg(-1)). This new method of predicting inhibition in the HSAD process of diverse OFMSW may be useful for developing a correct approach to the technology in very different contexts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge

    DEFF Research Database (Denmark)

    Aghdam, Ehsan Fathi; Kinnunen, V.; Rintala, Jukka A.

    2015-01-01

    This paper presents mesophilic anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW), biowaste (BW), sewage sludge (SS), and co-digestion of BW and SS. Average methane yields of 386 ± 54, 385 ± 82, 198 ± 14, and 318 ± 59 L CH4/kg volatile solids (VS) were obtained for OFMS...

  4. Dry anaerobic digestion of the organic fraction of municipal solid waste

    NARCIS (Netherlands)

    Brummeler, ten E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so-

  5. Sampling, characterisation and processing of solid recovered fuel production from municipal solid waste: An Italian plant case study.

    Science.gov (United States)

    Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo

    2017-08-01

    This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).

  6. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    International Nuclear Information System (INIS)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J.

    2015-01-01

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  7. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  8. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  9. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    International Nuclear Information System (INIS)

    Rentizelas, Athanasios A.; Tolis, Athanasios I.; Tatsiopoulos, Ilias P.

    2014-01-01

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  10. Municipal solid waste management in Tehran: Changes during the last 5 years.

    Science.gov (United States)

    Malmir, Tahereh; Tojo, Yasumasa

    2016-05-01

    The situation of waste management in Tehran was a typical example of it in developing countries. The amount of municipal solid waste has been increasing and the city has depended on landfill for municipal solid waste management. However, in recent years, various measures have been taken by the city, such as collecting recyclables at the source and increasing the capacity of waste-processing facilities. As a result, significant changes in the waste stream are starting to occur. This study investigated the nature of, and reasons for, the marked changes in the waste stream from 2008 to 2012 by analysing the municipal solid waste statistics published by the Tehran Waste Management Organization in 2013 and survey data on the physical composition of the municipal solid waste. The following trends were identified: Although the generation of municipal solid waste increased by 10% during the 5-year period, the amount of waste directly disposed of to landfill halved and resource recovery almost doubled. An increase in the capacity of a waste-processing facility contributed significantly to these changes. The biodegradable fraction going to landfill was estimated by using the quantity and the composition of each input to the landfill. The estimated result in 2012 decreased to 49% of its value in 2008. © The Author(s) 2016.

  11. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-11-01

    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  13. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  14. Research challenges in municipal solid waste logistics management

    NARCIS (Netherlands)

    Bing, Xiaoyun; Bloemhof-Ruwaard, Jacqueline; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; Vorst, van der J.G.A.J.

    2016-01-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems,

  15. Global warming factor of municipal solid waste management in Europe

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Clavreul, Julie; Christensen, Thomas Højlund

    2009-01-01

    The global warming factor (GWF; CO2-eq. tonne—1 waste) performance of municipal waste management has been investigated for six representative European Member States: Denmark, France, Germany, Greece, Poland and the United Kingdom. The study integrated European waste statistical data for 2007...

  16. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  17. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    Science.gov (United States)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  18. ANALYTICAL APPROACH FOR PREDICTING BIOGAS GENERATION IN A MUNICIPAL SOLID WASTE ANAEROBIC DIGESTER

    Directory of Open Access Journals (Sweden)

    S. J. Ojolo, A. I. Bamgboye, B. S. Ogunsina, S. A. Oke

    2008-07-01

    Full Text Available There is an increasing worldwide interest in the effective utilisation of municipal solid wastes as an avenue of reducing its high cost of clearing. Municipal solid wastes are usefully converted into a medium grade fuel (biogas to reduce its nuisance value to the environment. In this paper, the potential of vegetable (putriscible component of municipal solid wastes was examined in terms of biogas production. The vegetable component of the waste was used as substrate in a batch-fed 200 dm3 capacity anaerobic digester, which was consecutively loaded with a 10-20 kg ranged weight of vegetable. The total solid (TS of substrate was 8-10% over a retention period of 40 days. The temperature of the substrate during bio-digestion was maintained within 29ºC and 33ºC. The average biogas yield varied from 5.15 dm3/kgTS to 5.83 dm3/kgTS. From the digestion experiments, a regression equation, called the municipal solid wastes energy value model, was derived. This model estimates the biogas production from municipal solid wastes. For the predictive model formulation, a relationship between retention time and the daily/total biogas yield was explored. The polynomial function significantly represents the models formulated for the different quantity of substrate loaded. This strongly suggests that the polynomial series is best suited to predict the relationship between retention time and the quantity of substrate loaded for the experiment. This tool is useful in optimising biogas production from energy materials, and requires further validation and refinement. Hopefully, this study advances this increasingly growing area of municipal solid wastes research.

  19. methane generation potentia generation potential of municipal solid

    African Journals Online (AJOL)

    User

    2014-01-01

    Jan 1, 2014 ... the globe and the attendant social a environmental effect of its consumption made many developed and developing nations explore other energy source renewable energy resources like wind and so have gained global attention due to th sustainability. Materials such as crop residu wood residues, biomass ...

  20. Citizens' attitude to reuse of municipal solid waste. A practical application

    Energy Technology Data Exchange (ETDEWEB)

    Junquera, B. [Universidad de Oviedo, Facultad de Ciencias Economicas y Empresariales, Avda. del Cristo, s/n 33071 , Asturias Oviedo (Spain); Del Brio, J.A. [Universidad de Oviedo, Escuela Universitaria de Ingenieria Tecnica Industrial, Avda. Manuel Llaneza, 75 33208, Asturias Gijon (Spain); Muniz, M. [Ingeniero Tecnico Industrial, C/ Aguado, 277A, Asturias Gijon (Spain)

    2001-08-01

    The aim of this article is to analyze the opinion of the citizens of Gijon who use the services of a cleaning firm (EMULSA) about the possible implementation of a more complex management of municipal solid waste in this city. We will study the citizens' views about environmental problems caused by municipal solid waste. We analyze different matters related to the functions of EMULSA and the citizens' attitudes to a separate collection of paper, cardboard, glass and batteries. A main goal of this article is to study if the knowledge about damage caused on the natural environment by municipal solid waste and the availability of special containers influences citizen's attitudes.

  1. Municipal solid waste incineration in China and the issue of acidification: A review.

    Science.gov (United States)

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  2. Bio-methanation of municipal solid wastes for ecological balance and sustainable development

    International Nuclear Information System (INIS)

    Sadangi, Subhash Ch.

    2000-01-01

    The importance of bio-methanation of municipal solid wastes for over all improvement of environment and for converting wastes into wealth, the national planners should make all out efforts to implement the concept on a large scale to meet the challenges of future demands of energy, ecology and sustainable development. The huge quantity of methane generated from MSW (Municipal Solid Wastes) after treatment and desulfuration is utilised to generate electric power. Hence, development of methane resource as an alternative to energy source has attracted attention in recent years in many parts of the world. Methane is a much more powerful green house gas as its adverse impacts are felt more intensely due to its higher residence and higher potency in the atmosphere. The article highlights the process of bio-methanation of municipal solid wastes and planning for ecological balance and sustainable development

  3. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    Science.gov (United States)

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  4. Utilization of ash from municipal solid waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  5. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.

    Science.gov (United States)

    Sharma, Bhupendra K; Chandel, Munish K

    2017-01-01

    Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO 2 eq t -1 of municipal solid waste, 0.124 kg SO 2 eq t -1 , 0.46 kg PO 4 -3 eq t -1 , 0.44 kg 1,4-DB eq t -1 to 892.34 kg CO 2 eq t -1 , 0.121 kg SO 2 eq t -1 , 0.36 kg PO 4 -3 eq t -1 , 0.40 kg 1,4-DB eq t -1 , respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.

  6. Evaluation of municipal solid waste management in egyptian rural areas.

    Science.gov (United States)

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  7. Fiscal Instruments for the Municipal Solid Waste Management (MSW in the Mexican Municipality

    Directory of Open Access Journals (Sweden)

    Violeta Mendezcarlo Silva

    2013-10-01

    Full Text Available Waste generation (municipal waste in the cities is, as we all know, one of the main current environmental issues. Responsibility for this kind of pollution is not only the companies’ but also the homeowners’ and the general public’s, who must redirect their behavior towards a responsible consumption, not only regarding the choices of environmentally friendly products and services but should also strive to influence the reduction of environmental damage caused by the waste itself.  The goal of this research work is to make clear that the local government (in Mexico’s case, the municipalities has the unavoidable duty of raising awareness of this issue by using tools to encourage responsible waste management, such as fiscal instruments, which in addition results in the extra benefit of raising public funds to neutralize the problem. 

  8. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Marta García-Albacete

    2014-01-01

    Full Text Available New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste’s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.

  10. Risk of congenital anomalies in the vicinity of municipal solid waste incinerators.

    Science.gov (United States)

    Cordier, S; Chevrier, C; Robert-Gnansia, E; Lorente, C; Brula, P; Hours, M

    2004-01-01

    Although municipal solid waste incineration (MSWI) has contributed to increase the overall environmental load of particulate matter containing dioxins and metals, evidence of health consequences to populations is sparse. To assess at a regional level (in southeast France) the impact of these emissions on birth defect rates. Communities with fewer than 50 000 inhabitants surrounding the 70 incinerators that operated at least one year from 1988 to 1997 were studied. Each exposed community (n = 194) was assigned an exposure index estimated from a Gaussian plume model. Poisson models and a reference population of the 2678 unexposed communities in the region were used to calculate relative risks for congenital malformations, adjusted for year of birth, maternal age, department of birth, population density, average family income, and when available, local road traffic. The rate of congenital anomalies was not significantly higher in exposed compared with unexposed communities. Some subgroups of major anomalies, specifically facial clefts and renal dysplasia, were more frequent in the exposed communities. Among exposed communities, a dose-response trend of risk with increasing exposure was observed for obstructive uropathies. Risks of cardiac anomalies, obstructive uropathies, and skin anomalies increased linearly with road traffic density. Although both incinerator emissions and road traffic may plausibly explain some of the excess risks observed, several alternative explanations, including exposure misclassification, ascertainment bias, and residual confounding cannot be excluded. Some of the effects observed, if real, might be attributable to old-technology MSWIs and the persistent pollution they have generated.

  11. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.

    Science.gov (United States)

    Holm, Olaf; Simon, Franz-Georg

    2017-01-01

    The industrial sector of bottom ash (BA) treatment from municipal solid waste incineration (MSWI) in Germany is currently changing. In order to increase the recovery rates of metals or to achieve a higher quality of mineral aggregates derived from BA, new procedures have been either implemented to existing plants or completely new treatment plants have been built recently. Three treatment trains, which are designated as entire sequences of selected processing techniques of BA, are introduced and compared. One treatment train is mainly characterized by usage of a high speed rotation accelerator whereas another is operating completely without crushing. In the third treatment train the BA is processed wet directly after incineration. The consequences for recovered metal fractions and the constitution of remaining mineral aggregates are discussed in the context of legislative and economical frameworks. Today the recycling or disposal options of mineral residues still have a high influence on the configuration and the operation mode of the treatment trains of BA despite of the high value of recovered metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Science.gov (United States)

    Tarquis, Ana M.; Cartagena, M. Carmen

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems. PMID:25003139

  13. Biochar Preparation from Simulated Municipal Solid Waste Employing Low Temperature Carbonization Process

    Science.gov (United States)

    Areeprasert, C.; Leelachaikul, P.; Jangkobpattana, G.; Phumprasop, K.; Kiattiwat, T.

    2018-02-01

    This paper presents an investigation on carbonization process of simulated municipal solid waste (MSW). Simulated MSW consists of a representative of food residue (68%), plastic waste (20%), paper (8%), and textile (4%). Laboratory-scale carbonization was performed in this study using a vertical-type pyrolyzer varying carbonization temperature (300, 350, 400, and 450 °C) and heating rate (5, 10, 15, and 20 °C/min). Appearance of the biochar product was in black and the volume was significantly reduced. Low carbonization temperature (300 °C) might not completely decompose plastic materials in MSW. Results showed that the carbonization at the temperature of 400 °C with the heating rate of 5 °C/min was the optimal condition. The yield of biochar from the optimal process was 50.6% with the heating value of 26.85 MJ/kg. Energy input of the process was attributed to water evaporation and the decomposition of plastics and paper. Energy output of the process was highest at the optimal condition. Energy output and input ratio was around 1.3-1.7 showing the feasibility of the carbonization process in all heating rate condition.

  14. Cylindrical Electrolyser Enhanced Electrokinetic Remediation of Municipal Solid Waste Incineration Fly Ashes

    Science.gov (United States)

    Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei

    2018-01-01

    The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.

  15. Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion.

    Science.gov (United States)

    Lopes, Evandro José; Queiroz, Neide; Yamamoto, Carlos Itsuo; da Costa Neto, Pedro Ramos

    2018-03-01

    In this study, we evaluated the emissions of pollutants generated from the combustion of syngas in the gasification of Municipal Solid Waste (MSW) in Brazil using a mobile grille gasifier fed with domestic waste without any previous separation or grinding. The basic syngas composition (H 2 , CH 4 and CO) was analyzed by gas chromatography and the Lower Calorific Value was calculated, which ranged from 1.9 to 10.2 MJ/kg. In the monitoring of combustion gases (CO 2 , CO, NO , NO 2 , SO 2 and Total Hydrocarbon Content), values were found for these pollutants that were lower than the values established by the Brazilian legislation, except for SO 2 . Regarding the determination of the emission of metals, values lower than those permissible in the legislation were found for the most toxic metals grouped as class I (Cd, Hg, Tl). Therefore, it was evident that gasification followed by the combustion of syngas from MSW without prior segregation at source has the advantages of having fewer process steps, allowing the low emission of pollutants into the environment and it avoids that the residues are deposited in landfills, which are generators of leachate and greenhouse gas (methane). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment.

    Science.gov (United States)

    Byun, Youngchul; Namkung, Won; Cho, Moohyun; Chung, Jae Woo; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2010-09-01

    Thermal plasma treatment has been regarded as a viable alternative for the treatment of highly toxic wastes, such as incinerator residues, radioactive wastes, and medical wastes. Therefore, a gasification/vitrification unit for the direct treatment of municipal solid waste (MSW), with a capacity of 10 tons/day, was developed using an integrated furnace equipped with two nontransferred thermal plasma torches. The overall process, as well as the analysis of byproducts and energy balance, has been presented in this paper to assess the performance of this technology. It was successfully demonstrated that the thermal plasma process converted MSW into innocuous slag, with much lower levels of environmental air pollutant emissions and the syngas having a utility value as energy sources (287 Nm3/MSW-ton for H2 and 395 Nm3/MSW-ton for CO), using 1.14 MWh/MSW-ton of electricity (thermal plasma torch (0.817 MWh/MSW-ton)+utilities (0.322 MWh/MSW-ton)) and 7.37 Nm3/MSW-ton of liquefied petroleum gas.

  17. Bioreactor treatment of municipal solid waste landfill leachates: characterization of organic fractions.

    Science.gov (United States)

    Pelaez, Ana Isabel; Sanchez, Jesus; Almendros, Gonzalo

    2009-01-01

    Quantitative and qualitative changes in organic matter were studied at different stages of treatment in a bioreactor designed to process leachates from a municipal solid waste landfill. The particulate matter (PM) and macromolecular fractions of the dissolved organic matter with solubility properties comparable to humic (acid-insoluble) and fulvic (acid-soluble) acid fractions (AI, AS, respectively) from the incoming black liquid, the bioreactor content, and the final processed effluent were isolated, quantified, and characterized by visible and infrared (IR) spectroscopies. The macromolecular signature either aliphatic (glycopeptides, carbohydrates) or aromatic (coinciding with infrared patterns of lignin, tannins etc.) enabled us to characterize the different organic fractions during the course of microbial transformation. The results reveal significant changes in the nitrogen speciation patterns within the different organic fractions isolated from the wastewater. The final increase in the relative proportions of nitrogen in the least aromatic AS fraction during microbial transformation could be related to protein formation inside the bioreactor. After biological treatment and ultrafiltration, the amount of organic matter was reduced by approximately 70%, whereas aromaticity increased in all fractions, indicating preferential elimination of aliphatic wastewater compounds. Most of the remaining fractions at the end of the process consisted of a yellow residue rich in low molecular weight AS fractions.

  18. Physical and chemical characterization of ashes from a municipal solid waste incinerator in China.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Xiang, Jun; Jin, Limei; Hu, Song; Su, Sheng; Qiu, Jianrong

    2013-07-01

    In this study we analyzed the characteristics of bottom and fly ashes from a municipal solid waste incinerator in China. The physical properties of particle size distribution and morphology were evaluated. At the chemical level, the chemical composition, heavy metal leaching behavior and BCR sequential extraction procedure (the Community Bureau of Reference, now the European Union 'Measurement and Testing Programme') were determined. The main mineralogical crystalline phases in raw and leached bottom and fly ashes were also identified. For the bottom ashes, the concentration of heavy metals showed a slight decrease with an increase in particle size, and most of the heavy metal concentrations in fly ashes were higher than those in bottom ashes. The results of the toxicity characteristic leaching procedure indicated that, among the metals, the concentrations of lead (Pb) and copper (Cu) in fly ash leachate exceeded thresholds, while the concentrations of studied heavy metals in bottom ash leachate were all below the regulatory limit. The BCR results indicated that more easily mobilized forms (acid exchangeable) were predominant for cadmium and zinc; in contrast, the largest amount of Pb, Cu and manganese were associated with iron/manganese oxide, organic matter/sulfide fractions, or were residual.

  19. Flow analysis of metals in a municipal solid waste management system.

    Science.gov (United States)

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  20. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  1. Alternatives for the treatment of the organic fraction of the urban solid residuals

    International Nuclear Information System (INIS)

    Benitez Fonseca, Mabelin; Fernandez Mena, Dalia; Abalos Rodriguez, Arelis; Rodriguez Perez, Suyen

    2011-01-01

    The decomposition of municipal solid waste outdoors, or in some cases burning under the same conditions, is action now and final disposition of these wastes without measuring their consequences. In the student's residence 'Antonio Maceo' Orient University is hosting up to 2250 students belonging to a total of 22 university, generating at full capacity, 3375 kg / day of MSW. This research aims to analyze the solid waste generated in the student's residence, where improperly evaluated the final disposition thereof. It was found that discharges are not separated at the source observed at the landfill, food waste, sweeping waste, paper and cardboard, plastics, glass, metal, textile waste, wood, etc. Samplings were carried out directly in 12 rooms of the residence for a total of 48 people, along with students, as part of the educational activities implemented within this work. The average weight of degradable waste generated was 2.5 kg / day during the sampling, revealing the presence of traces of cooked food (cereals, legumes, carbohydrates), fruit and vegetable remains, remains of shells of different origins ( meats, eggs), remnants of tea, etc. The average content of total solids in the waste sampled was 36.3 ± 5.4% and volatile solids content on dry weight was 81.3 ± 2.5% to an average density of 0.68 g / cm3. This residue is characterized to be treated in an anaerobic batch reactor where it is recirculated leachate and studied the competing microorganisms in the anaerobic degradation of organic fraction of municipal solid waste. (author)

  2. EMISSIONS FROM CO-COMBUSTION OF COAL AND MUNICIPAL SOLID WASTE IN DOMESTIC CENTRAL HEATING BOILER

    OpenAIRE

    Ewelina Maria Cieślik; Tomasz Konieczny

    2017-01-01

    Co-combustion of coal and solid municipal waste is a social phenomenon. It constitutes an important emission source of harmful air pollutants. The comparative research was conducted. It concerned co-combustion of coal and different types of municipal solid waste (including wastepaper, PE, PVC) in the domestic CH (central heating) boiler (18-kW power) equipped with an automatic fuel feeder. The aim of this research was to compare the parameters of flue gas, content of dust (fly ash) and gas...

  3. Investigation of Municipal Solid Waste to Alcohol Conversion for Army Use

    Science.gov (United States)

    1992-03-01

    T.J. Laughlin, M.V. Kilgore, Jr., C.L Lishawa, W.E. Meyers, and M.H. Eley, *1The Bioconversion of Municipal Solid Waste and Sewage Sludge to Ethanol...Meyers. and M.H. Eley, ’Mhe Bioconversion of Municipal Solid Waste mad Sewage Sludge to Ethanol," Biotuchnol. Advan. Process. Munic. Wastes Fueis Chen...FL from 1978 to 198V.3 The RefCoM facility used a continuously mixed digester and accepted up to 1000 tons per day of MSW and sewage sludge . The

  4. Composting of Municipal Solid Wastes in the United States.

    Science.gov (United States)

    Breidenbach, Andrew W.

    To gain more comprehensive knowledge about composting as a solid waste management tool and to better assess the limited information available, the Federal solid waste management program, within the U. S. Public Health Service, entered into a joint experimental windrow composting project in 1966 with the Tennessee Valley Authority and the City of…

  5. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    Directory of Open Access Journals (Sweden)

    MA Abduli

    2015-07-01

    Methods: The study was a descriptive cross-sectional one conducted from 2010 to 2014. Relevant officials of the waste recovery in 22 regions of Tehran were approached in order to collect data about municipal solid waste generation through interviewing, filling out questionnaires, conducting field visits from Aradkooh Disposal and Processing Complex and collecting information on disposal and destiny of wastes. Then the data were compiled and analyzed. Results: Total solid waste generation in Tehran from 2010 to 2014 amounted to respectively 3389662, 3399344, 3449338 and 3245157 Metric Tons, categorized into three groups of municipal, companies and townships and hospital wastes. Most of the generated waste produced in Tehran was that of households and commercial (known as municipal waste from 22 Regions of Tehran. Based on the surveys conducted, per capita solid waste generation of 11 regions of Tehran ranged from 550 to 1000 grams and in other 11 ones from 1000 to 1521 grams per capita per day. The lowest and highest waste generation rate belonged respectively to region 13 with 556 grams and region 12 with 1521 grams per capita per day in 2011. Conclusion: Comparing per capita generation of municipal solid waste in different municipal regions in Tehran with maximum acceptable capacity of waste generation indicates the deviation of waste generation of all Tehran regions from the standard acceptable amount. Therefore, not only is it necessary to plan and take strategic measures to reduce Tehran waste generation but also these programs and measures should be specific to each region considering its specifications and solid waste quality and quantity.

  6. Distribution and availability of trace elements in municipal solid waste composts.

    Science.gov (United States)

    Paradelo, Remigio; Villada, Antía; Devesa-Rey, Rosa; Moldes, Ana Belén; Domínguez, Marta; Patiño, Jacobo; Barral, María Teresa

    2011-01-01

    Trace element contamination is one of the main problems linked to the quality of compost, especially when it is produced from urban wastes, which can lead to high levels of some potentially toxic elements such as Cu, Pb or Zn. In this work, the distribution and bioavailability of five elements (Cu, Zn, Pb, Cr and Ni) were studied in five Spanish composts obtained from different feedstocks (municipal solid waste, garden trimmings, sewage sludge and mixed manure). The five composts showed high total concentrations of these elements, which in some cases limited their commercialization due to legal imperatives. First, a physical fractionation of the composts was performed, and the five elements were determined in each size fraction. Their availability was assessed by several methods of extraction (water, CaCl(2)-DTPA, the PBET extract, the TCLP extract, and sodium pyrophosphate), and their chemical distribution was assessed using the BCR sequential extraction procedure. The results showed that the finer fractions were enriched with the elements studied, and that Cu, Pb and Zn were the most potentially problematic ones, due to both their high total concentrations and availability. The partition into the BCR fractions was different for each element, but the differences between composts were scarce. Pb was evenly distributed among the four fractions defined in the BCR (soluble, oxidizable, reducible and residual); Cu was mainly found in the oxidizable fraction, linked to organic matter, and Zn was mainly associated to the reducible fraction (iron oxides), while Ni and Cr were mainly present almost exclusively in the residual fraction. It was not possible to establish a univocal relation between trace elements availability and their BCR fractionation. Given the differences existing for the availability and distribution of these elements, which not always were related to their total concentrations, we think that legal limits should consider availability, in order to achieve

  7. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Van Zomeren, André; Comans, Rob N J

    2004-07-15

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC) was investigated with specific attention for the nature of the organic ligands. A competitive ligand exchange-solvent extraction (CLE-SE) method was used to measure Cu binding to DOC. Two types of binding sites for Cu were identified and geochemical modeling showed that the organically bound fraction varied from 82% to 100% between pH 6.6 and 10.6. Model calculations showed that complexation by previously identified aliphatic and aromatic acids was unable to explain the enhanced Cu leaching from the MSWI residues. High-performance size-exclusion chromatography (HPSEC) and the standard extraction procedure to isolate and purify natural organic matter revealed that about 0.5% of DOC consists of humic acids and 14.3-25.6% consists of fulvic acids. Calculated Cu binding isotherms based on these natural organic compounds, and the nonideal competitive adsorption-Donnan (NICA-Donnan) model, provide an adequate description of the organic Cu complexation in the bottom ash leachates. The results show that fulvic acid-type components exist in MSWI bottom ash leachates and are likely responsible for the generally observed enhanced Cu leaching from these residues. These findings enable the use of geochemical speciation programs, which include models and intrinsic parameters for metal binding to natural organic matter, to predict Cu leaching from this widely produced waste material under variable environmental conditions (e.g., pH, ionic strength, and concentrations of competing metals). The identified role of fulvic acids in the leaching of Cu and possibly other heavy metals can also be used in the development of techniques to improve the environmental quality of MSWI bottom ash.

  8. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand

    Science.gov (United States)

    Yukalang, Nachalida; Clarke, Beverley

    2017-01-01

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas. PMID:28869572

  9. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand

    Directory of Open Access Journals (Sweden)

    Nachalida Yukalang

    2017-09-01

    Full Text Available This study focused on determining the barriers to effective municipal solid waste management (MSWM in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.

  10. Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Kulshreshtha, K.; Mohanty, C.S.; Pushpangadan, P.; Singh, A.

    2005-01-01

    The present investigation is a case study of Lucknow, the main metropolis in Northern India, which succumbs to a major problem of municipal solid waste and its management. A qualitative investigation using strengths, weaknesses, opportunities and threats analysis (SWOT) has been successfully implemented through this community participation study. This qualitative investigation emphasizes the limited capabilities of the municipal corporation's resources to provide proper facilitation of the municipal solid waste management (MSWM) services without community participation in Lucknow city. The SWOT analysis was performed to formulate strategic action plans for MSWM in order to mobilize and utilize the community resources on the one hand and municipal corporation's resources on the other. It has allowed the introduction of a participatory approach for better collaboration between the community and municipal corporation in Lucknow (India). With this stakeholder-based SWOT analysis, efforts were made to explore the ways and means of converting the possible 'threats' into 'opportunities' and changing the 'weaknesses' into 'strengths' regarding a community-based MSWM programme. By this investigation, concrete strategic action plans were developed for both the community and municipal corporation to improve MSWM in Lucknow

  11. Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India.

    Science.gov (United States)

    Srivastava, P K; Kulshreshtha, K; Mohanty, C S; Pushpangadan, P; Singh, A

    2005-01-01

    The present investigation is a case study of Lucknow, the main metropolis in Northern India, which succumbs to a major problem of municipal solid waste and its management. A qualitative investigation using strengths, weaknesses, opportunities and threats analysis (SWOT) has been successfully implemented through this community participation study. This qualitative investigation emphasizes the limited capabilities of the municipal corporation's resources to provide proper facilitation of the municipal solid waste management (MSWM) services without community participation in Lucknow city. The SWOT analysis was performed to formulate strategic action plans for MSWM in order to mobilize and utilize the community resources on the one hand and municipal corporation's resources on the other. It has allowed the introduction of a participatory approach for better collaboration between the community and municipal corporation in Lucknow (India). With this stakeholder-based SWOT analysis, efforts were made to explore the ways and means of converting the possible "threats" into "opportunities" and changing the "weaknesses" into "strengths" regarding a community-based MSWM programme. By this investigation, concrete strategic action plans were developed for both the community and municipal corporation to improve MSWM in Lucknow.

  12. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand.

    Science.gov (United States)

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2017-09-04

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.

  13. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  14. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  15. Estimating Residual Solids Volume In Underground Storage Tanks

    International Nuclear Information System (INIS)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-01

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  16. Estimating Residual Solids Volume In Underground Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  17. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2006-01-01

    Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics...... biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS(.)m(-3) d(-1). High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS(.)m(-3) d(-1) are applied. Multi...

  18. Survey of minipower plant for municipal solid waste firing

    International Nuclear Information System (INIS)

    Merkkiniemi, R.; Hyoety, P.; Saiha, E.

    1999-01-01

    Dumping of municipal waste to disposal areas has caused environmental problems, and this has led to more sophisticated disposal systems and high prices. That and a general demand to reduce the quantity of waste require new solutions, and a question has been arisen whether combustion could be used to treat waste. This project is concentrating to bum waste in a small-scale power plant. The background is one 10-MW pilot in Tampere city based on smelting furnace and a 0.3-MW pyrolyse furnace. The results of these from the viewpoint of operation and effluent were satisfactory and the burning process used is in line with the latest regulations. The second aspect is the economy of waste handling. The minipower plant is designed for reasonable small municipalities, abt 20 000 inhabitants or 1 - 20 MW heat input. According to several feasibility studies this method is the cheapest way to handle waste. A local heat demand is used to support the economy. The prices of products, heat and power, and cost are of the same level as the market prices. Thus, we expect a economical and environmentally safe operation with the minipower plant and it will also give a hint to solve a higher capacity demand of one unit. (orig.)

  19. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  20. A service network design model for multimodal municipal solid waste transport

    NARCIS (Netherlands)

    Inghels, D.A.M.; Dullaert, W.E.H.; Vigo, D.

    2016-01-01

    A modal shift from road transport towards inland water or rail transport could reduce the total Green House Gas emissions and societal impact associated with Municipal Solid Waste management. However, this shift will take place only if demonstrated to be at least cost-neutral for the decision

  1. Municipal solid waste recycling and the significance of informal sector in urban China.

    Science.gov (United States)

    Linzner, Roland; Salhofer, Stefan

    2014-09-01

    The informal sector is active in the collection, processing and trading of recyclable materials in urban China. Formal waste management organisations have established pilot schemes for source separation of recyclables, but this strategy is still in its infancy. The amounts of recyclables informally picked out of the municipal solid waste stream are unknown as informal waste workers do not record their activities. This article estimates the size and significance of the current informal recycling system with a focus on the collection of recyclables. A majority of the reviewed literature detects that official data is displaying mainly 'municipal solid waste collected and transported', whereas less information is available on 'real' waste generation rates at the source. Based on a literature review the variables, the 'number of informal waste workers involved in collection activities', the 'amounts collected daily per informal collector' and the 'number of working days' are used to estimate yearly recyclable amounts that are informally diverted from municipal solid waste. The results show an interval of approximately 0.56%-0.93% of the urban population or 3.3-5.6 million people involved in informal waste collection and recycling activities in urban China. This is the equivalent to estimated informal recycling rates of approximately 17-38 w/w% of the municipal solid waste generated. Despite some uncertainties in these assessments, it can be concluded that a significant share of recyclables is collected and processed by informal waste workers. © The Author(s) 2014.

  2. A multi-objective model for sustainable recycling of municipal solid waste.

    Science.gov (United States)

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  3. Exergy analysis of biogas production from a municipal solid waste landfill

    DEFF Research Database (Denmark)

    Xydis, George; Nanaki, E.; Koroneos, C.

    2013-01-01

    In the energy area, intensive efforts are being made over the last years to bridge the supply area with renewable energy sources and the demand side with energy conservation. Energy recovery from municipal solid waste landfills can play a contributing role in the solution of problems of both waste...

  4. Effect of municipal solid waste ash on the strength of earthen bricks ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the effect of different amounts of Municipal Solid Waste Ash (MSWA) on the strength characteristics of the walls subjected to compressive loads. The soil used for making the bricks was stabilized using MSWA applied at the rate of 0%, 2%, 5% and 10% of the weight of soil.

  5. Modernising solid waste management at municipal level : institutional arrangements in urban centres of East Africa

    NARCIS (Netherlands)

    Majale, C.

    2011-01-01

    The task of municipal problem solving has become a team sport that has spilled beyond the borders of government agencies and now engages a far more extensive network of social actors - public as well as private, non-profit and profit. Solid waste management is one of the key tasks associated

  6. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  7. Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report

    Science.gov (United States)

    Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...

  8. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2009-01-01

    The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of

  9. An industrial ecology approach to municipal solid waste management: I. Methodology

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  10. RCRA SUBTITLE D (258): SEISMIC DESIGN GUIDANCE FOR MUNICIPAL SOLID WASTE LANDFILL FACILITIES

    Science.gov (United States)

    On October 9, 1993, the new RCRA Subtitle D regulations (40 CFR Part 258) went into effect. These regulations are applicable to landfills receiving municipal solid waste (MSW) and establish minimum Federal criteria for the siting, design, operation, and closure of MSW landfills....

  11. Properties of municipal solid waste incineration ashes with respect to their separation temperature

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Pavlík, Z.; Tydlitát, V.; Volfová, P.; Švarcová, Silvie; Šyc, Michal; Černý, R.

    2012-01-01

    Roč. 30, č. 10 (2012), s. 1041-1048 ISSN 0734-242X Institutional support: RVO:61388980 ; RVO:67985858 Keywords : bottom ash * fly ash * municipal solid waste incinerator * pozzolanic activity * hydration heat * separation temperature * building industry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  12. Municipal Solid Waste Landfills and Wood Pallets - What's Happening in the United States

    Science.gov (United States)

    Philip A. Araman; Robert J. Bush; Vijay S. Reddy

    1997-01-01

    This article on pallet disposal and Municipal Solid Waste sites includes material presented by Dr. Bush at the recent NWPCA Recycling Meeting. This is the first in a two-part series; the second discusses pallet disposal in construction and demolition sites.

  13. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2004-01-01

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC)

  14. Long term effect of municipal solid waste amendment on soil heavy ...

    African Journals Online (AJOL)

    An assessment of the impact of amendment using untreated municipal solid wastes on the trace element contents of periurban areas soils was carried out in Ngaoundere. Waste samples were collected in November and soil samples were collected in November, January, April and July. Heavy metal total concentrations in ...

  15. Energy recovery from organic fractions of municipal solid waste: A case study of Hyderabad city, Pakistan.

    Science.gov (United States)

    Safar, Korai M; Bux, Mahar R; Aslam, Uqaili M; Ahmed, Memon S; Ahmed, Lashari I

    2016-04-01

    Non-renewable energy sources have remained the choice of the world for centuries. Rapid growth in population and industrialisation have caused their shortage and environmental degradation by using them. Thus, at the present rate of consumption, they will not last very long. In this prospective, this study has been conducted. The estimation of energy in terms of biogas and heat from various organic fractions of municipal solid waste is presented and discussed. The results show that organic fractions of municipal solid waste possess methane potential in the range of 3%-22% and their heat capacity ranges from 3007 to 20,099 kJ kg(-1) Also, theoretical biogas potential of different individual fruit as well as vegetable components and mixed food waste are analysed and estimated in the range of 608-1244 m(3) t(-1) Further, the share of bioenergy from municipal solid waste in the total primary energy supply in Pakistan has been estimated to be 1.82%. About 8.43% of present energy demand of the country could be met from municipal solid waste. The study leads us to the conclusion that the share of imported energy (i.e. 0.1% of total energy supply) and reduction in the amount of energy from fossil fuels can be achieved by adopting a waste-to-energy system in the country. © The Author(s) 2016.

  16. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, B.

    2014-01-01

    Chain elongation is an anaerobic fermentation that produces medium chain fatty acids (MCFAs) from volatile fatty acids and ethanol. These MCFAs can be used as biochemical building blocks for fuel production and other chemical processes. Producing MCFAs from the organic fraction of municipal solid

  17. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  18. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  19. Valorisation of Phosphorus Extracted from Dairy Cattle Slurry and Municipal Solid Wastes Digestates as a Fertilizer

    DEFF Research Database (Denmark)

    Oliveira, V.; Ottosen, Lisbeth M.; Labrincha, J.

    2016-01-01

    Phosphorus is a vital cell component and an essential and irreplaceable element. Yet at the current rate of exploitation, the phosphate’s reserves will be fast depleted. Dairy cattle slurry and digestates from anaerobic digestion of municipal solid wastes (MSW) are organic wastes containing phosp...

  20. An evaluation of the phytotoxicity of municipal solid waste during co ...

    African Journals Online (AJOL)

    Composting is a bioxidative process carried out under controlled conditions which utilizes naturally occurring microorganisms for organic waste recycling. In this study, a 60 days cocomposting experiment of different treatment consisting of municipal solid wastes and plant wastes with cow dung, poultry dropping and swine ...

  1. Characterization of municipal solid waste incineration fly ash before and after electrodialytic treatment

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    Municipal solid waste incineration (MSWI) fly ash, which has been treated electrodialytically for the removal of heavy metals, may have changed characteristics compared to untreated fly ash. In this study, MSWI fly ash was characterized with respect to leaching properties (pH static leaching...

  2. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    Science.gov (United States)

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  3. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  4. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  5. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.

    Science.gov (United States)

    ThiKimOanh, Le; Bloemhof-Ruwaard, Jacqueline M; van Buuren, Joost Cl; van der Vorst, Jack Gaj; Rulkens, Wim H

    2015-04-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional municipal solid waste treatment technologies are needed. The objective of this article is to support decision-making towards more sustainable and cost-effective municipal solid waste strategies in developing countries, in particular Vietnam. A quantitative decision support model is developed to optimise the distribution of municipal solid waste from population areas to treatment plants, the treatment technologies and their capacities for the near future given available infrastructure and cost factors. © The Author(s) 2015.

  6. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Municipal solid waste combustion: Fuel testing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  8. Evaluation of Municipal Solid Waste Management System and ...

    African Journals Online (AJOL)

    This paper reports the evaluation of households' usage of the current solid waste management system (SWMS) within the city of Ilorin, central Nigeria and investigates the determinants of household's willingness-to-Pay (WTP) for its improvement. Data was collected with the aid of a structured questionnaire administered to ...

  9. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  10. Study on the law of heavy metal leaching in municipal solid waste landfill.

    Science.gov (United States)

    Liu, Hui-Hu; Sang, Shu-Xun

    2010-06-01

    Comparative leaching experiments were carried out using leaching medium with different pH to municipal solid waste in the landfill columns in order to investigate the mobility of heavy metals. The leachate pH and oxidation-reduction potential were measured by oxidation-reduction potential analyzer; the contents of heavy metals were measured by inductively coupled plasma mass spectrometry. It is very different in leaching concentrations of heavy metals; the dynamic leaching of heavy metals decreased with the rise of the leaching amount on the whole. Acid leaching medium had definite influence on the leaching of heavy metals in the early landfill, but it had the obvious inhibition effect on the leaching in the middle and late period of landfill; the neutral and alkaline leaching medium are more beneficial to the leaching of heavy metals. Due to the influence of the environment of landfill, the differences of the results in cumulative leaching amount, leaching rate, and leaching intensity of heavy metals are very big. The calculation results of the release rates of heavy metals prove that the orders of the release rates are not identical under different leaching conditions. Acid rain made heavy metals migrate from municipal solid waste to soil and detain in soil more easily; approached neutral and alkaline leaching mediums are more beneficial to leaching of heavy metals in the municipal solid waste and soil with leachate. The field verification of experimental data showed that the law of heavy metal leaching in municipal solid waste revealed by the experiment has a good consistency with the data obtained by municipal solid waste landfill.

  11. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    Science.gov (United States)

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  12. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.

    Science.gov (United States)

    Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E

    2016-12-01

    A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are

  13. Comparative study of municipal solid waste generation and composition in Shiraz city (2014

    Directory of Open Access Journals (Sweden)

    A. Norouzian Baghani

    2017-06-01

    Full Text Available Background: Exponential growths of population and urbanization, and the development of social economy have resulted in an increase in the amount of MSW generation throughout the world. Objective: The present study aimed to survey qualitative and quantitative analysis of solid waste in Shiraz city and comparative these results with the world scenario of solid wastes generation for improving the sustainable management of solid waste. Methods: This cross-sectional study was conducted in 2014 in nine municipality regions Shiraz with a total population of approximately 1,549,354 people. Basic data was gathered through Shiraz waste management organization. Then generation (per capita and constituent percent of the solid waste were evaluated based on the sampling and field analyzing from reliable guidelines. Data were analyzed with Stata-13 and Excel statistical software. Kolmogorov-Smirnov test used for the normality of variables. Means were compared by Student T test and Mann-Whitney test. Findings: The rate of solid waste generated in the Shiraz city was 222.65 kg per person per year in 2014. Statistical analysis showed that the variables of organic materials, paper and cardboard, glass and metal between developed and developing countries were a significant difference (P0.05. Conclusion: Solid waste per capita in Shiraz city (about 600 g/day was near to the average amount of solid waste generation in Iran and other developing countries. Due to the high content of organic material in municipal solid waste of Shiraz, minimization of these material and separation of dry and wet solid wastes must be noted from the people and municipalities.

  14. [Urban solid residues, garbage collectors and public health].

    Science.gov (United States)

    Siqueira, Mônica Maria; Moraes, Maria Silvia de

    2009-01-01

    The article approaches the issues of environmental production and the generation of urban solid residues, in particular the environment and health concept while social representation. From a bibliographical revision it argues the incorporation of the themes of health and environment in the practical field of knowledge and of interconnection with the Public Health. In this context it associates the question of the social exclusion generated by the form of production and consumption of the after-modern society, introducing the garbage collectors as a vulnerable population group.

  15. Production of gaseous fuel by pyrolysis of municipal solid waste

    Science.gov (United States)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  16. Preliminary analysis of the bio-mechanical characteristics for High-kitchen Municipal Solid Waste

    Science.gov (United States)

    Li, He; Zhang, Jian Guo; Lan, Ji Wu; He, Haijie

    2017-11-01

    Degradation of Municipal Solid Wastes (MSW) results in a change in solid skeleton, particle size and pore structure, inducing an alteration of compressibility and liquid/gas conductivity of the wastes. To investigate the complicated biological, hydraulic and mechanical coupled processes of the MSWs, a pilot-scale experimental device which is consist of waste column container, environment regulation system, vertical loading system and measuring system for liquid/gas conductivity is built. With the experimental systems, long-term tests were set up to investigate the biological, hydraulic and mechanical behaviour of the High-kitchen Municipal solid waste with high organic content and high water content. Different values of vertical stress and different degradation conditions (micro-aerobic and anaerobic) were simulated. Throughout the experiments, the changes in total volume, degree of saturation, leachate quantity and chemistry, LFG generation and composition, liquid and gas conductivity were measured. The experimental results will provide solid data for a development of the Bio-Hydro-Mechanical coupled characteristics for High-kitchen Municipal solid waste.

  17. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  18. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S. [Cornell Univ., Ithaca, NY (United States)

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  19. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2006-01-01

    Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics......-stage systems show in some investigations a higher reduction of recalcitrant organic matter compared to single-stage systems, but they are seldom applied in full-scale. An extended cost benefit calculation shows that the highest overall benefit of the process is achieved at an OLR that is lower and a hydraulic...

  20. Process and design considerations for the anaerobic digestion of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, S.R.; Bastuk, B. [Larsen Engineers, Rochester, NY (United States)

    1993-12-31

    Full scale experience exists and justifies implementing anaerobic digestion for pretreatment of high strength industrial waste water and side streams. Anaerobic treatment of sludge and manure have demonstrated cost effective, environmentally sound treatment of these wastes. Recent attention has focused on the potential for anaerobically treating high solids municipal solid wastes to assist in meeting state waste reduction goals and provide a new renewable source of energy. This paper focuses on the fundamental facility design and process protocol considerations necessary for a high solids anaerobic digesting facility. The primary design and equipment considerations are being applied to a 5 to 10 ton per day demonstration anaerobic digestion facility in Bergen, New York.

  1. Recovery Potential of Bottom Ash from Municipal Solid Waste Incineration

    OpenAIRE

    Kameníková, Petra

    2015-01-01

    This paper will present the composition of bottom ash determined in samples obtained from MSWI plant in Prague. The samples were first screened into fractions of grain sizes 0–2 mm, 2–4 mm, 4–6 mm, 6–8 mm, 8–10 mm, 10–15 mm, 15–20 mm and >20 mm. Each fraction, with the exception of fines bellow 2 mm, is manually sorted into glass, ceramics, magnetic particles, non-ferrous metals, unburned organics and the residual mineral fraction. It was found that the bottom ash contains in average 15–20 % ...

  2. Role of NGO’s in Solid Waste Management: A Study in Different Municipalities of Manipur, India

    OpenAIRE

    Ch. Raghumani Singh; Mithra Dey

    2015-01-01

    The quantity of solid waste produced in city depends on the type of the city, its population, living standards of the residents and degree of commercialization and various activities prevailing in the city. The generation of waste mainly depends on the increase in population and the type of activity. Improper municipal solid waste management (MSWM) causes various health hazards and leads to environmental degradation. The present paper highlights the existing status of the municipal solid wast...

  3. Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes.

    Science.gov (United States)

    Gattullo, Concetta Eliana; D'Alessandro, Caterina; Allegretta, Ignazio; Porfido, Carlo; Spagnuolo, Matteo; Terzano, Roberto

    2018-02-15

    Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing. Copyright © 2017. Published by Elsevier B.V.

  4. Circular processes for a new urban metabolysm: the role of municipal solid waste in the sustainable requalification

    Directory of Open Access Journals (Sweden)

    Antonella Mamì

    2014-10-01

    Full Text Available Through this paper we present the first results of a research combining the management problem of Municipal Solid Waste to the requalification of built environment. The goal of this research is to mitigate the vulnerability of territory and urban heritage and to transform a problem into opportunities. Above all, we have paid attention to several exemplifying cases of Italian territory: suburbs of large towns, historical centres, small centres (and, in particular, those with a strong historical connotation. Their features are, at the same time, restrictions and challenges for designing new compatible systems that can contribute to the requalification of urban landscape recovering spaces with demolition products and residual materials and comparing with managerial needs.

  5. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    Science.gov (United States)

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-11-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  6. Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-09-01

    U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

  7. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Directory of Open Access Journals (Sweden)

    Qingna Kong

    2016-01-01

    Full Text Available Municipal solid waste incinerator (MSWI bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  8. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    Science.gov (United States)

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  9. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Science.gov (United States)

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  10. Predicting the calorific value of refuse derived fuel from the characteristics of municipal solid waste

    International Nuclear Information System (INIS)

    Sivapalan Kathiravale; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Mohamad Azman Che Mat Isa; Mohd Fairus Abdul Farid; Norasalwa Zakaria; Khaironie Mohd Takip; Rohyiza Ba'an

    2006-01-01

    The Imposing need to manage the municipal solid waste generated by society in a proper manner has urged municipalities to look into new management methods, which are not only environmentally friendly but also economically profitable. One such way is by converting this waste material into fuel. Currently, Kajang in the State of Selangor, Malaysia, generates about 700 tons of Municipal Solid Waste (MSW) a day. Due to rapid development, lack of land area for new landfill and the environmental impact of raw landfills, the local municipal council has collaborated with a local company in the management of this waste. The company has proposed to convert the MSW to Refuse Derived Fuel (RDF). In view of this, a pilot plant to convert MSW to RDF was erected by the company and begun operation in January 2002. This pilot plant has the capability of converting 15 tons of MSW to 5 tons of RDF. At the same time studies, have been carried out to assess the plant performance, the flue gas analysis, and also the MSW and RDF characteristic. This paper will highlight the findings of the MSW and RDF characterization work carried out over the past year. Sampling and analysis was carried in accordance with ASTM standards. Results of the waste analysis showed that the calorific value of the resulting RDF could be predicted from the physical characteristics as well as the moisture content. Regression analysis on the available data has been used to create equations relating the proximate composition and moisture content of the incoming municipal solid waste to the calorific value of the RDF

  11. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Directory of Open Access Journals (Sweden)

    Aneeta Mary Joseph

    2018-01-01

    Full Text Available Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow.

  12. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View.

    Science.gov (United States)

    Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn; De Belie, Nele

    2018-01-16

    Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow.

  13. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Science.gov (United States)

    Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn

    2018-01-01

    Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow. PMID:29337887

  14. Methane production as from the mixture of the urban solid waste lixiviate and municipal wastewater

    International Nuclear Information System (INIS)

    Monroy-Hermosillo, Oscar; Ramírez-Vives, Florina; Rodríguez-Pimentel, Reyna I.; Rodríguez-Pérez, Suyén

    2015-01-01

    The generation of solid wastes and wastewater in Mexico , as other countries, has increased considerably of late years, so its treatment is very important to reduce the pollution. In this work are presented the results on the anaerobic digestion of lixiviate generated with the hydrolysis and acidogenesis of the organic fraction of municipal solid waste recollected in the Universidad Autónoma Metropolitana-Unidad Iztapalapa coffee shop. Theses lixiviated were diluted with municipal wastewater to different organic loads (2,3-20 gCOD/L.d) and after treated anaerobically in UASB reactor. Biogas's average production in the last load of the UASB reactor was up to 12 L/L.d with an efficiency to remove COD on top of 90 % and a production of methane of 0,38 LCH4. gSSV-1. (author)

  15. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    Science.gov (United States)

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  17. Alternativas y acciones en el tema de residuos sólidos planteadas por las municipalidades de Jiménez y Oreamuno y su relación con el desarrollo y la sostenibilidad (Artículo informativo Alternatives and actions regarding solid residues, presented by Jimenez and Oreamuno municipalities and their relation to development and sustainability (Informative

    Directory of Open Access Journals (Sweden)

    Rooel Campos-Rodríguez

    2013-06-01

    the integrated management of solid waste. That is why this research focuses on issues of waste management which has become a major environmental problem. So, it is necessary to confront these issues from the perspective of sustainable development, requiring a new vision and awareness of people regarding the environment and the problem of solid waste. An example of dealing with environmental problems is the work that is being developed in the towns of Jiménez and Oreamuno. These municipalities have worked on environmental education, development and sustainability, and the results have been favorable for treatment and proper disposal of solid waste. In Oreamuno, there is a management plan for organic and inorganic solid waste. There is a storage center and the town is expected to implement in the future bioreactors that enable the production of biofertilizers, methane gas collection, removal of metals in the leachate, and the recovery, processing and marketing of recyclable and reusable waste. Meanwhile, the town of Jiménez has a waste management system, recyclable inorganic wastes are utilized in the collection center and organic waste is transformed into organic fertilizer, which is used on farms in the locality. Therefore, the aim of this paper is to analyze these approaches and their relationship to development and sustainability.

  18. The current municipal solid waste management situation in Tibet

    International Nuclear Information System (INIS)

    Jiang Jianguo; Lou Zhiying; Ng Silo; Luobu Ciren; Ji Duo

    2009-01-01

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km 2 , which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa city and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper

  19. The current municipal solid waste management situation in Tibet.

    Science.gov (United States)

    Jiang, Jianguo; Lou, Zhiying; Ng, Silo; Luobu, Ciren; Ji, Duo

    2009-03-01

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km2, which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa city and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper.

  20. Mathematical modeling of municipal solid waste plasma gasification in a fixed-bed melting reactor

    OpenAIRE

    Zhang, Qinglin

    2011-01-01

    The increasing yield of municipal solid waste (MSW) is one of the main by-products of modern society. Among various MSW treatment methods, plasma gasification in a fixed-bed melting reactor (PGM) is a new technology, which may provide an efficient and environmental friendly solution for problems related to MSW disposals. General objectives of this work are to develop mathematical models for the PGM process, and using these models to analyze the characteristics of this new technology. In this ...

  1. Influence of temperature on the electrical conductivity of leachate from municipal solid waste

    OpenAIRE

    Grellier, S.; Robain, Henri; Bellier, Gérard; Skhiri, N.

    2006-01-01

    A bioreactor landfill is designed to manage municipal solid waste, through accelerated waste biodegradation, and stabilisation of the process by means of the controlled addition of liquid, i.e. leachate recirculation. The measurement of electrical resistivity by Electrical Resistivity Tomography (ERT) allows to monitor water content present in the bioreactors. Variations in electrical resistivity are linked to variations in moisture content and temperature. In order to overcome this ambiguity...

  2. Developing a Sustainability Assessment Model to Analyze China’s Municipal Solid Waste Management Enhancement Strategy

    OpenAIRE

    Hua Li; Vilas Nitivattananon; Peng Li

    2015-01-01

    This study develops a sustainability assessment model for analysis and decision-making of the impact of China’s municipal solid waste management enhancement strategy options based on three waste treatment scenarios: landfill disposal, waste-to-energy incineration, and a combination of a material recovery facility and composting. The model employs life cycle assessment, health risk assessment, and full cost accounting to evaluate the treatment scenarios regarding safeguarding public health, p...

  3. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE)

    OpenAIRE

    Zhao, Y.; Wang, H.-T.; Lu, W.-J.; Damgaard, Anders; Christensen, Thomas Højlund

    2009-01-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH4 released from landfilling was the primary pollutant contributing to...

  4. Examinations of content of heavy metals in municipal solid waste and produced compost

    International Nuclear Information System (INIS)

    Golimowski, J.; Tykarska, A.; Orzechowska, K.

    1993-01-01

    The basic methods of utilization of municipal solid waste are biothermic and aerobic methods to compost. The content of heavy metals in composts depends on the initial their content in wastes as well as on the compost process. The voltammetric method has been applied for measurement of concentration of Zn, Cd, Pb, Cu, Cr, Ni and Hg in the waste and composts samples. (author). 24 refs, 2 figs, 3 tabs

  5. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  6. Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in road construction

    OpenAIRE

    Todorovic, Jelena

    2006-01-01

    Municipal solid waste incineration (MSWI) bottom ash has the potential for utilisation in construction, e.g. as a road base material. Such an utilisation would decrease the amount of bottom ash to be landfilled. However, leachates generated from bottom ash could be concentrated with respect to salts and metals, causing environmental problems. The use of carbonation of as a method to decrease the leaching of inorganic pollutants from MSWI bottom ash has been studied. Field investigations and l...

  7. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  8. Individual Attitude toward Recycling of Municipal Solid Waste in Lagos, Nigeria.

    OpenAIRE

    Tunmise A. Otitoju

    2014-01-01

    Attitudes of the waste generators in the community appears to be critical as their points of understanding in waste recycling eventually play a significant role in providing answers to municipal solid waste management problems in Lagos State. Individual involvement has a direct bearing on an effective recycling practice. This study investigates factors influencing individual waste recycling performance and their likelihood to participation in Lagos State. This paper presents the results of th...

  9. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  10. Performance of mechanical biological treatment of residual municipal waste in Poland

    Science.gov (United States)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  11. Artificial Neural Network Modelling of the Energy Content of Municipal Solid Wastes in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2017-12-01

    Full Text Available The study presents an application of the artificial neural network model using the back propagation learning algorithm to predict the actual calorific value of the municipal solid waste in major cities of the northern part of Nigeria, with high population densities and intense industrial activities. These cities are: Kano, Damaturu, Dutse, Bauchi, Birnin Kebbi, Gusau, Maiduguri, Katsina and Sokoto. Experimental data of the energy content and the physical characterization of the municipal solid waste serve as the input parameter in nature of wood, grass, metal, plastic, food remnants, leaves, glass and paper. Comparative studies were made by using the developed model, the experimental results and a correlation which was earlier developed by the authors to predict the energy content. While predicting the actual calorific value, the maximum error was 0.94% for the artificial neural network model and 5.20% by the statistical correlation. The network with eight neurons and an R2 = 0.96881 in the hidden layer results in a stable and optimum network. This study showed that the artificial neural network approach could successfully be used for energy content predictions from the municipal solid wastes in Northern Nigeria and other areas of similar waste stream and composition.

  12. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    Science.gov (United States)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  13. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    -combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste...... for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co...

  14. Assessment of municipal solid waste management scenarios in Irkutsk (Russia) using a life cycle assessment-integrated waste management model.

    Science.gov (United States)

    Tulokhonova, Alisa; Ulanova, Olga

    2013-05-01

    Continuous growth in the quantity of municipal solid waste (MSW) and increasing demands for their environmentally-friendly treatment are one of the main consequences of the growing social and economic development rate in modern society. Despite ecologically sustainable trends in waste management systems around the world, open dumps are still the main waste treatment option in Russia. This study aims to help the local municipality administration in Irkutsk (Russia) identify the most appropriate direction for current waste management and its optimization. Within this study four developed MSW management scenarios were assessed and compared with respect to their ecological, economic and social aspects using a life cycle-based integrated waste management model. The evaluation results of these scenarios show that the development of environmental sustainability and the reduction of social effects lead to an increase in handling of costs of waste. The best scenario, regarding both environmental and social aspects, is scenario four, which includes the separate collection and reprocessing of recyclables in combination with an aerobic mechanical-biological pre-treatment of the residual waste before landfilling. However, this scenario is 3.6 times more expensive than the existing system. The results of all assessed scenarios were further analyzed and recommendations were made to design integrated waste management solutions that are optimal not only from the ecological and social points of view, but which are also realistic within the given economic situation.

  15. Design of municipal solid waste incinerator for use in semi-arid regions

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2012-08-01

    Full Text Available The paper treats the design of a municipal solid waste incinerator suited to the semiarid regions with northern Nigeria and Niger Republic in West Africa as the study area. Proximate and ultimate analyses results from the solid waste were used as basis for calculations, using standard formulas and correlations. The calorific value of the solid waste samples in the study area is not high enough to sustain an incineration process and it ranges from 5.024 MJ/kg to 5.867 MJ/kg. For these types of low calorific value fuels, the parallel flow concept was found to be the appropriate type of incinerator. The solid waste to be fed in the incinerator needs to be mixed with 50% of supplementary fuel in the form of readily available bagasse to make it up to the required lower calorific value. Major characteristics of the designed municipal solid waste incinerator were: total volume of incinerator chamber: 82.5 m3, length of the incinerator bed: 11m; width of the incinerator bed: 3m and height of the incinerator chamber: 2.5 m, while the suitable adiabatic flame temperature was found to be 1,587 K.

  16. Effect of Municipal Solid Waste Compost and Sewage Sludge on yield and Yield Components of Black Cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F Akbarnejad

    2011-02-01

    Full Text Available Abstract In order to investigate the effect of municipal solid waste compost (MSWC and sewage sludge (SS on yield and yield components of black cumin (Nigella sativa L. an experiment was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad. Municipal solid waste compost at 0, 15, 30 ton/ha (C0, C15 and C30 and sewage sludge at 0, 15, 30 ton/ha (S0, S15 and S30 were used in a factorial experiment based on completely randomized design with three replications. Results showed that municipal solid waste compost and sewage sludge and their interaction effects had significant effects on plant height, number of capsule per plant, number of seeds per capsule, number of seeds per plant, seed yield, biomass and 1000 seed weight. Increasing of sewage sludge amount from 15 to 30 ton/ha increased all measured parameters. But with increasing of municipal solid waste compost from 15 to 30 ton/ha, plant height, number of capsule per plant, number of seeds per capsule, number of seeds per plant, seed yield, biomass and 1000 seed weight were decreased. Interaction effects of municipal solid waste compost and sewage sludge showed that yield and yield components in all treatments were increased with the exception of treatment that contained 30 ton/ha municipal solid waste and 0 ton/ha sewage sludge (C30S0. Use of high amounts of municipal solid waste compost (>15 ton/ha had a detrimental effect on yield and yield components of black cumin. Keywords: Nigella sativa, Municipal solid waste compost, Sewage sludge, Yield and yield components

  17. Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant.

    Science.gov (United States)

    Morf, Leo S; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Di Lorenzo, Fabian; Böni, Daniel

    2013-03-01

    In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, P

    1994-07-01

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

  19. Municipal Solid Waste Management using Geographical Information System aided methods: a mini review.

    Science.gov (United States)

    Khan, Debishree; Samadder, Sukha Ranjan

    2014-11-01

    Municipal Solid Waste Management (MSWM) is one of the major environmental challenges in developing countries. Many efforts to reduce and recover the wastes have been made, but still land disposal of solid wastes is the most popular one. Finding an environmentally sound landfill site is a challenging task. This paper addresses a mini review on various aspects of MSWM (suitable landfill site selection, route optimization and public acceptance) using the Geographical Information System (GIS) coupled with other tools. The salient features of each of the integrated tools with GIS are discussed in this paper. It is also addressed how GIS can help in optimizing routes for collection of solid wastes from transfer stations to disposal sites to reduce the overall cost of solid waste management. A detailed approach on performing a public acceptance study of a proposed landfill site is presented in this study. The study will help municipal authorities to identify the most effective method of MSWM. © The Author(s) 2014.

  20. Effect of air-flow on biodrying method of municipal solid waste in Indonesia

    Science.gov (United States)

    Kristanto, Gabriel Andari; Hanany, Ismi

    2017-11-01

    The process of bio-drying could be an interesting solution for municipal solid waste management and energy demand in Indonesia. By using the heat from bio-degradation process consists in bio-drying, moisture content in a solid waste can be reduced. Solid wastes with a low moisture content, could be used as a fuel with a good energy content. In this study, 85% of garden wastes and 15% of food waste from Indonesia's municipal solid waste were bio-dried in aerobic condition using 3 variations of air flow-rates, which were 8 L/min.kg; 10 L/min.kg; and 12 L/min.kg. The experiment performs with three different reactors with known volume 75cm × 50cm × 40cm and using Styrofoam as an insulation. The process of bio-drying lasted 21 days. In the end, the experiment with 10 L/min.kg aeration, has the lowest moisture contents about 23% with high temperature and NHV about 3595.29 kcal/kg.

  1. Municipal solid waste management through vermicomposting employing exotic species of earthworm Eudrilus eugeniae.

    Science.gov (United States)

    Chaudhari, R D; Datar, M T; Babookani, M Rabiei

    2011-01-01

    Majority of municipal (urban) solid waste (MSW) is disposed of in landfills (anaerobic composting). However, this disposal system is reported to produce hazardous environmental impacts and new policies are initiated to protect the environment from such impacts by discouraging the practice of disposal of solid waste in landfills. Eco-friendly disposal alternatives to landfills need to be explored. One of the technological options for treatment and disposal of organic solid wastes is vermicomposting. Commercial vermicomposting is reported to be practicable for treatment and disposal of many organic solids and byproducts in agricultural production and processing industries. However, this alternative has not been tried for MSW on large scale. This paper highlights the application of vermicomposting for treatment of organic solid waste, generated at urban residential area at Pune [organic component of this urban solid waste (MSW)]. Vermicomposting was tried on this segregated solid waste using exotic species of earthworm--Eudrilus eugeniae--commonly called 'African Night Crawler'. Bench scale reactor studies were carried out on organic solid waste under controlled optimum environmental conditions (moisture content: 48-52 percent, pH: 7.0-7.2, temperature: ambient), with variable vermi-loading [40-80 g of worms/kg of urban solid waste (MSW)]. Characteristics of solid waste were monitored through conventional parameters and additional environmental parameters like BOD5 and COD. The results of investigative studies are encouraging and indicate that organic solid waste can be treated in a reasonable period of 32-34 days through vermicomposting with around 60 percent reduction in the volume.

  2. Life-cycle assessment of municipal solid wastes: Development of the WASTED model

    International Nuclear Information System (INIS)

    Diaz, R.; Warith, M.

    2006-01-01

    This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models

  3. Studying municipal solid waste generation and composition in the urban areas of Bhutan.

    Science.gov (United States)

    Phuntsho, Sherub; Dulal, Ichharam; Yangden, Dechen; Tenzin, Ugyen M; Herat, Sunil; Shon, Hokyong; Vigneswaran, Saravanamuthu

    2010-06-01

    Bhutan lacks the solid waste data which are essential parameters for planning and scheduling of municipal solid waste management (MSWM) systems. The first ever large-scale research survey on solid waste generation and characterization in the urban areas of Bhutan was conducted between November 2007 and January 2008 using the method of waste sampling at source. The MSW generation rates in the urban centres were 0.53 kg capita(-1) day(- 1), which consists predominantly of organic waste materials of up to 58% indicating a great opportunity for composting. Domestic waste from the households contributed the maximum (47%) component of the total MSW generated from the urban centres followed by wastes from the commercial establishments. Attempt to study the correlation between household monthly income and the waste per capita generation rates did not yield any conclusive result.

  4. EVALUATION OF THE FINAL DISPOSAL OF MUNICIPAL SOLID WASTE IN CIANORTE CITY – PARANA STATE

    Directory of Open Access Journals (Sweden)

    Ricardo Massulo Albertin

    2011-08-01

    Full Text Available In environmental management urban systems, one main problems being faced by municipalities is final disposal of municipal solid waste. Some them managed to find solutions to these problems and implemented for MSW landfills that meet the environmental and health criteria and are considered examples. In this context, this paper presents an evaluation the landfill of Cianorte City, Paraná administered by Companhia de Saneamento do Parana (SANEPAR. For this evaluation was applied the Index of Quality of Waste Landfill (IQW which is used by the Companhia Ambiental of São Paulo (CETESB. The results showed that landfill Cianorte City presents adequate conditions to get index 9.4. However, some problems were observed regarding the site characteristics, infrastructure and operational conditions, for which some proposals in order to adapt the current system final disposal of Cianorte City.

  5. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona

    2015-01-01

    municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical......Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both......-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10-50 waste fractions, organised according to a three-level (tiered approach) facilitating,comparison of the waste data between individual sub-areas with different fractionation (waste...

  6. Development and application of the decision support system for municipal solid waste management in central Taiwan.

    Science.gov (United States)

    Chang, Yao-Jen; Lin, Min-Der

    2013-05-01

    Municipal solid waste management (MSWM) is an important, practical and challenging environmental subject. The processes of a MSWM system include household collection, transportation, treatment, material recycling, compost and disposal. A regional program of MSWM is more complicated owing to the involvement of multi-municipality and multi-facility issues. Therefore, an effective decision support system capable of solving regional MSWM problems is necessary for decision-makers. This article employs linear programming techniques to establish a MSWM decision support system (MSWM-DSS) that is able to determine the least costs of regional MSWM strategies. The results of investigating a real-world case in central Taiwan indicate that a regional program is more economical and efficient. For the redeployment of MSW streams, the relatively least cost of operation for the MSWM system can still be achieved through the re-estimation of the MSWM-DSS. This tool and results are useful for MSWM policy-making in central Taiwan.

  7. Fluidized bed gasification of the fuel fraction of municipal solid wastes; Gasificacion en lecho fluidizado de la fraccion combustible de los residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.; Baldasano, J. M.; Gasso, S. [Universidad Politecnica de Cataluna. Barcelona (Spain)

    1998-12-31

    In this paper, the results obtained in the application of the fluidized-bed gasification to the treatment of solid waste with high heating value. These wastes could be valuable materials in thermo conversion processes such as gasification. The combustible fraction of municipal solid waste (MSW) composed of paper, cardboard, plastics (PET,PVC), referred as refuse derived fuel (RDF), has been considered in this work. The experimental facility consists of an air-blown gasifier operating at atmospheric pressure with a capacity of 50 kg/h. The results obtained show that the gasification of RDF allows to produce a gas with a high heating value (HHV) of 7.8 Mj/Mn3 and recovering more than 80% of the initial HHV of the waste in the cold gas. Solid residue produced in the gasification process is lower than 10% of the initial waste. (Author)

  8. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    Science.gov (United States)

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids.

    Science.gov (United States)

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2015-10-19

    This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern.

  10. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Life cycle assessment of municipal solid waste management methods: Ankara case study.

    Science.gov (United States)

    Ozeler, D; Yetiş, U; Demirer, G N

    2006-04-01

    Different solid waste management system scenarios were developed and compared for the Municipal Solid Waste Management System of Ankara by using the life cycle assessment (LCA) methodology. The solid waste management methods considered in the scenarios were collection and transportation of wastes, source reduction, Material Recovery Facility (MRF)/Transfer Stations (TS), incineration, anaerobic digestion and landfilling. The goal of the study was to determine the most environmentally friendly option of MSWM system for Ankara. The functional unit of the study was the amount of solid waste generated in the system area of concern, which are the districts of Ankara. The life cycle inventory analysis was carried out by IWM Model-1. The inputs and outputs of each management stage were defined and the inventory emissions calculated by the model were classified in to impact categories; non-renewable energy sources exhausting potential, final solid waste as hazardous and non-hazardous, global warming, acidification, eutrophication and human toxicity. The impacts were quantified with the weighing factors of each category to develop the environmental profiles of each scenario. In most of the categories, Source Reduction Scenario was found to be the most feasible management method, except the global warming category. The lowest contribution to GWP was calculated for the anaerobic digestion process. In the interpretation and improvement assessment stage, the results were further evaluated and recommendations were made to improve the current solid waste management system of Ankara.

  12. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.

    Science.gov (United States)

    Kuboňová, L; Langová, Š; Nowak, B; Winter, F

    2013-11-01

    Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050°C and in a muffle oven at temperatures from 500 to 1200°C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Developing a Sustainability Assessment Model to Analyze China’s Municipal Solid Waste Management Enhancement Strategy

    Directory of Open Access Journals (Sweden)

    Hua Li

    2015-01-01

    Full Text Available This study develops a sustainability assessment model for analysis and decision-making of the impact of China’s municipal solid waste management enhancement strategy options based on three waste treatment scenarios: landfill disposal, waste-to-energy incineration, and a combination of a material recovery facility and composting. The model employs life cycle assessment, health risk assessment, and full cost accounting to evaluate the treatment scenarios regarding safeguarding public health, protecting the environment and conserving resources, and economic feasibility. The model then uses an analytic hierarchy process for an overall appraisal of sustainability. Results suggest that a combination of material recovery and composting is the most efficient option. The study results clarify sustainable attributes, suitable predications, evaluation modeling, and stakeholder involvement issues in solid waste management. The demonstration of the use of sustainability assessment model (SAM provides flexibility by allowing assessment for a municipal solid waste management (MSWM strategy on a case-by-case basis, taking into account site-specific factors, therefore it has the potential for flexible applications in different communities/regions.

  14. Start-up of anaerobic digestion of source-sorted organic municipal solid waste

    International Nuclear Information System (INIS)

    Maroun, Rania

    2004-01-01

    Municipal solid waste (MSW) disposal is a major environmental concern worldwide. Among the environmentally sound technologies for the treatment of MSW, composting in the form of anaerobic digestion (AD) appears as a suitable alternative that offers the advantage of rapid stabilization of organic matter, reduction in waste volume, production of methane, and minimal environmental impacts in comparison to land filling and incineration. Yet, although outstanding advances in anaerobic digestion of solid substrate have been made in the last 10 years, some development areas are lagging, including the fast and reliable process start-up in terms of type of inocula and overall start-up strategies. The present study investigates the start-up and operation of bench-scale anaerobic digesters treating the source-sorted organic fraction of municipal solid waste. The experimental program consisted of starting up two digesters in parallel. Three consecutive interventions in the start-up program were implemented to achieve steady state. Start-up was relatively slow indicating the seed obtained from an operating anaerobic wastewater treatment plant was not suitable. The use of cattle manure together with effluent dilution reduced the acclimation period (Author.)

  15. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  16. Mineral mixtures from solid salt residues for lambs

    Directory of Open Access Journals (Sweden)

    Daniel Bomfim Manera

    2014-09-01

    Full Text Available The objective of this study was to evaluate water, mineral, feed and nutrient voluntary intakes, in addition to dry matter and nutrient digestibility and the nitrogen balance of lambs fed three mineral supplements. The first treatment consisted of solid salt residue (SSR from an aquaculture tank; the second contained SSR from desalination waste; and the third treatment was control, which corresponded to the supplementation of a commercial mineral supplement. The study lasted 20 days, the first 15 of which were used for animals to adapt to the pens and diets, and the last five days were used for data collection. Twenty-four castrated male lambs with a body weight of 19.72±2.52 kg were utilized in the experiment. The mineral supplements evaluated did not affect the intake and digestibility of the dry matter and nutrients, the water and mineral-salt intake or nitrogen balance. Mineral supplements produced from the SSR from aquaculture tanks and from the desalination waste did not reduce feed, nutrient and water intakes or nutrient digestibility, which suggests that these raw materials can be used in the elaboration of mineral mixtures for lambs.

  17. Environmental Accounting Evidence in Organic Solid Residue Treatment Companies

    Directory of Open Access Journals (Sweden)

    Bruna Batista Padilha

    2014-06-01

    Full Text Available The growing concern with natural resources and the environment brings out the true dimension of these issues. The awareness of society causes companies to adopt environmentally correct policies and attitudes, so as to contribute with the preservation of the environment. Accounting, as a social science which studies the patrimony and its affectations, has adapted to the need of its users and has started to care about proper presentation and measurement of environmental items, for effective publication to society. With this premise, this study aims to identify and describe the contributions of Environmental Accounting to the process of environmental accounting disclosure of a company, which deals with organic solid residues from agriculture. Using a case study, it has been intended to analyze the production process and to list the environmental items and events that could benefit the company through their disclosure. It was intended, with this study, to highlight the contribution that the environmental accounting may add to the company, with proper measurement and presentation proposals. We have been able to verify that, indeed, there are events of an environmental nature resulting from the production process and also of the investment that it carries out periodically to preserve nature; however, there re faults in the accounting records from an environmental point of view. The application of environmental accounting in the organization allows for a broad view of environmental management and sustainable development adopted by the entity, registering all events that may generate economic and financial changes.

  18. Kinetics of accelerated solid-state fermentation of organic-rich municipal solid waste.

    Science.gov (United States)

    Viéitez, E R; Mosquera, J; Ghosh, S

    2000-01-01

    Biotransformation of landfill solid wastes is a slow process requiring decades for completion. Accelerated anaerobic fermentation in modulated landfill environments may alleviate or eliminate pollution of land, water and air. This research was undertaken to demonstrate the application of biphasic fermentation to a simulated laboratory-scale landfill to effect rapid biomethanation of biodegradable solids. The biphasic process consisted of solid-state, acidogenic fermentation of the organic fraction of MSW followed by biomethanation of acidic hydrolysates in a separate methane fermenter. Solid-state fermentation of the MSW with effluent recirculation resulted in rapid hydrolysis, acidification and denitrification, with soluble COD and VFA concentrations accumulating to inhibitory levels of 60,000 mg/l and 13,000 mg/l, respectively, at a pH of 4.5. The landfill gas methane concentration reached a maximum of 55 mol.%. By comparison, the methanogenic reactor produced high methane-content (70-85 mol.%) gases. The biphasic process effected carbohydrate, lipid, and protein conversion efficiencies of 90%, 49%, and 37%, respectively. Development of a Monod-type product-formation model was undertaken to predict methane formation and to determine kinetic parameters for the methanogenic processes in the simulated landfill and separate methane reactors. A first-order solids hydrolysis rate constant of 0.017 day-1 was evaluated to show that landfill solids hydrolysis was slower than the inhibited methanogenesis rate.

  19. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    International Nuclear Information System (INIS)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-01-01

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m 3 to 10.3 kN/m 3 at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43

  20. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    International Nuclear Information System (INIS)

    Funari, Valerio; Meisel, Thomas; Braga, Roberto

    2016-01-01

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and 187 Os/ 188 Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of 187 Os/ 188 Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m 2 /a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m 2 /a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  1. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  2. Office of Health and Environmental Research. Quarterly report, April 1, 1979-June 30, 1979. [Ames Municipal Solid Waste Recovery System

    Energy Technology Data Exchange (ETDEWEB)

    Fassel, V.A.

    1979-10-01

    Progress in the following areas of research reported: characterization of organic pollutants emitted by fossil fuel processing and energy generating plants; environmental effects of using municipal solid wastes as a supplementary fuel; microbiological air quality at the Ames Municipal Solid Waste Recovery System; solid waste to methane environmental study; x-ray and ultraviolet excited optical luminescence (SEOL, UVEOL) of carcinogens - analytical possibilities; laser pumped luminescence (LPL) spectroscopy; and multielement characterization of air particulates. New laser-based methods for the determination of organic pollutants via fluorescence are discussed. (JGB)

  3. Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško

    OpenAIRE

    Kortnik, Jože; Leskovar, Jože

    2015-01-01

    Review paper Received: October 25, 2013 Accepted: November 7, 2013 Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško Ravnanje z mešanimi komunalnimi odpadki v Zbirnem centru Spodnji Stari Grad, Krško Jože Kortnik1'*, Jože Leskovar2 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Mining and Geotechnology, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Kostak, d. d., Leskovška cesta 2a, 8270 Krško, Slovenia Correspo...

  4. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... it reacts with air and produces electricity. The exhausted gases out of the SOFC enter a burner for further fuel combusting and finally the off-gases are sent to a gas turbine to produce additional electricity. Different plant configurations have been studied and the best one found to be a regenerative gas...

  5. Developments in, and environmental impacts of, electricity generation from municipal solid waste and landfill gas combustion

    International Nuclear Information System (INIS)

    Porteous, A.

    1993-01-01

    The 1991 NFFO allocations for renewable energy generation are reviewed with emphasis on electricity from municipal solid waste (MSW) and landfill gas (LFG) combustion tranches. The implications of materials recovery on the calorific value of MSW are considered, as are the environmental impacts of both MSW and LFG combustion with special reference to air pollutant emissions. The performance and economics of state of the art incineration and LFG power generating plants are examined. It is shown that energy recovery from these wastes can be both cost effective and environmentally desirable. (Author)

  6. Thermal treatment of municipal solid waste. Assessment of the 42 French facilities funded by ADEME

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Between 1993 and 2000, Ademe provided a financial assistance to the construction of 42 municipal solid waste incinerators, covering an average of 5,7 % of the required investments. This note outlines the lessons to be drawn from the assessment of the operation of these units, which was produced within the framework of a study steered by Ademe and carried out by Trivalor. It contents details on the in-depth modification of french facilities, a complete mastery of operations, the economic conditions in the sector, the analysis of Ademe subsidies and evaluates the market over the next ten years. (A.L.B.)

  7. Assessment of municipal solid waste for energy production in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  8. Composting and anaerobic digestion of MSW (Municipal Solid Waste) organic fraction. Energy and CO2 balances

    International Nuclear Information System (INIS)

    De Benedetti, B.

    2001-01-01

    The aim of this study is the comparison between different technologies for the treatment of the organic fraction of Municipal Solid Waste. The Life Cycle Assessment (LCA) methodology constitutes the basic approach of the work, as reference international method of analysis, and allows to compare the energy and CO 2 balances taking into account the fractions deriving from renewable resources or from fossils resources. Results obtained show a significant advantage of the anaerobic treatment of MSW if compared with composting technology: obviously this conclusion refers only to an environmental point of view [it

  9. Domestic Separation and Collection of Municipal Solid Waste: Opinion and Awareness of Citizens and Workers

    Directory of Open Access Journals (Sweden)

    Giovanni De Feo

    2010-05-01

    Full Text Available The state of the art on Municipal Solid Waste (MSW management is based on the domestic separation of materials produced. After domestic separation, the resident has to transfer the separated materials to the MSW manager through the hands of collection workers. It is exactly at this stage that an end-use product changes its status and property becomes waste. This paper analyzes and compares the opinions and awareness of citizens and kerbside collection workers on this subject by means of two structured questionnaires in the city of Mercato San Severino (about 22,000 people, in Southern Italy.

  10. Management of Municipal Solid Waste in One of the Galapagos Islands

    Directory of Open Access Journals (Sweden)

    Marco Ragazzi

    2014-12-01

    Full Text Available This paper analyses some aspects of the management of municipal solid waste in one of the islands of the Galapagos archipelago. The aim is to point out a few aspects of an interesting experience that could help decision managers faced with the organization of the waste sector in similar realities. The relevance of this case study consists in the presence of a very famous National Park surrounding the inhabited area. The role of tourism in the generation of waste is analyzed too.

  11. Energy recovery from municipal solid waste, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.L.

    1976-06-01

    The environmental and safety aspects of processing municipal solid wastes to recover energy and materials are reviewed in some detail. The state of the art in energy recovery, energy potential for the near and long-term, and constraints to commercialization are discussed. Under the environmental and safety aspects the state of the art, need for research and development, and need for coordination among federal agencies and private industry are considered. Eleven principal types of refuse-to-energy processes are described and a projected energy balance is derived for each process. (JSR)

  12. Vehicle-Routing Optimization for Municipal Solid Waste Collection Using Genetic Algorithm: The Case of Southern Nablus City

    Directory of Open Access Journals (Sweden)

    Assaf Ramiz

    2017-09-01

    Full Text Available Municipalities are responsible for solid waste collectiont for environmental, social and economic purposes. Practices of municipalities should be effective and efficient, with the objectives of reducing the total incurred costs in the solid waste collection network concurrently achieving the highest service level. This study aims at finding the best routes of solid waste collection network in Nablus city-Palestine. More specifically, the study seeks the optimal route that minimizes the total travelled distance by the trucks and hence the resulted costs. The current situation is evaluated and the problem is modelled as a Vehicle Routing Problem (VRP. The VRP is then optimized via a genetic algorithm. Specifically, compared to the current situation, the trucks total travelled distance was reduced by 66%, whereas the collection time was reduced from 7 hours per truck-trip to 2.3 hours. The findings of this study is useful for all municipality policy makers that are responsible for solid waste collection.

  13. Vehicle-Routing Optimization for Municipal Solid Waste Collection Using Genetic Algorithm: The Case of Southern Nablus City

    Science.gov (United States)

    Assaf, Ramiz; Saleh, Yahya

    2017-09-01

    Municipalities are responsible for solid waste collectiont for environmental, social and economic purposes. Practices of municipalities should be effective and efficient, with the objectives of reducing the total incurred costs in the solid waste collection network concurrently achieving the highest service level. This study aims at finding the best routes of solid waste collection network in Nablus city-Palestine. More specifically, the study seeks the optimal route that minimizes the total travelled distance by the trucks and hence the resulted costs. The current situation is evaluated and the problem is modelled as a Vehicle Routing Problem (VRP). The VRP is then optimized via a genetic algorithm. Specifically, compared to the current situation, the trucks total travelled distance was reduced by 66%, whereas the collection time was reduced from 7 hours per truck-trip to 2.3 hours. The findings of this study is useful for all municipality policy makers that are responsible for solid waste collection.

  14. The Management of Capital Allocation for Sustainable Municipal Solid Waste Management System: A Case Study of Bang Saen, Thailand

    Directory of Open Access Journals (Sweden)

    Daichi Iwase

    2013-01-01

    Full Text Available This paper attempted to analyze and understand the management of capital allocation for sustainable municipal solid waste management system at Bang Saen, Thailand. Financial, manufactured, human, social and natural capital was the focus of this study. Capital allocation to five capitals, activities of the stakeholders related to municipal solid waste management, and the output of these activities were analyzed. The investigation was carried out by reviewing documents, conducting in-depth interviews with various stakeholders including the Saensuk municipality officials, locals and tourists, and carrying out field observations. Results showed that total output from five capitals is influenced by activity performance of stakeholders, which is dependent on input to five capitals. However, input was made without assessments of output produced by the activities of the stakeholders, which stemmed from the absence of a policy goal on municipal solid waste management and action plans to achieve its goal. Capital was mostly allocated to financial and manufactured capitals in terms of support of municipal solid waste collection, transportation and disposal. Findings suggest that capital should be allocated to activities related to human, social and natural capitals that can help improve activity performance of the stakeholders, and therefore improve total output and sustainability of the system. Well-designed activities could generate improved output, which is made by readjusting input based on assessments of output and by reflecting feedback in decision making on capital allocation. For this reason, the municipality has to set a clear policy goal of municipal solid waste management, short-term, and long-term action plans. Finally, recommendation is given to municipality.

  15. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel.

    Science.gov (United States)

    Wang, Ting; Li, Yuening; Zhang, Jing; Zhao, Jingbo; Liu, Yan; Sun, Luna; Liu, Boyang; Mao, Hongjun; Lin, Yingchao; Li, Weizun; Ju, Meiting; Zhu, Fudong

    2018-04-01

    Four different municipal solid wastes (dog manure, horse manure, apple pomace waste and tea waste) and an industrial by-product (NovoGro) were used to produce solid fuel pellets. The mixtures followed a raw material to NovoGro ratio of 50:1. The pellets diameters varied between 4 and 5 mm, and the average length was 20 mm. The dog manure, horse manure, apple pomace waste and tea waste pellets were denoted as DN, HN, AN and TN, respectively. The combustion characteristics of the pelletized fuels were investigated, such as total moisture, ash content, calorific value and ash fusion point, etc. The physicochemical properties were analyzed by using a number of analytical techniques including X-ray fluorescence spectrometry (XRF), X-ray diffraction spectrometry (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results of the mechanical, thermal and morphological properties show that the raw materials were effectively combined with the NovoGro binder; furthermore, the DN, HN and TN pellets exhibited excellent mechanical and thermal properties, including high calorific values (>16.30 MJ/kg), high resistance to mechanical shock (>99%), high volatile matter contents, optimal softening temperatures and optimal ash contents. However, the high K, Ca, and Si contents of the AN can form low-melting-point eutectics, which can cause slagging. Moreover, the AN materials had large particle sizes, and high cellulose and hemicellulose contents led to high total moistures, low softening temperatures and low calorific values. The AN was not suitable for use as a fuel. The results suggested that NG is an effective binder for pelletization of biomass and showed the feasibility of using municipal solid wastes for energy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Techno-economic and environmental analysis of a thermal treatment technology for the generation of electrical energy by municipal solid waste from the zone of Los Santos

    International Nuclear Information System (INIS)

    Carranza Campos, Kevin; Monge Leiva, Matias

    2014-01-01

    A technical, economic and environmental assessment is realized of a thermal treatment technology. The energetic valorization from municipal solid waste and electric power generation in the zone of Los Santos, Costa Rica, are made by the multicriteria hierarchical analysis methodology. The national and cantonal situation is examined in the integral management of municipal solid waste (GIRS), with emphasis on the cantons from the zone of Los Santos. A comparative analysis is developed among some cantons of Costa Rica that have had GIRS studies, and the zone of Los Santos to know the fraction of municipal solid waste that can be valued energetically and calorific power that present. The similarity in the characterization, composition and physico-chemical properties is determined in the study of residues between the cantons analyzed and the zone of Los Santos. The legislation relating the waste processing is analyzed, according Law 8839 for integral management of waste and laws similar to the implementation of a power generation plant. An analysis is developed for the environmental compliance of thermal treatment technologies, including aspects for control of contaminants. The main technologies of energy valorization from waste are investigated and some real cases of Latin America and the world are exposed. A thermal treatment technology of municipal solid waste is selected through a decision-making methodology to evaluate technical, environmental and economic aspects. Operation requirements and functioning of the devices that conform a power generation plant are described by municipal solid waste of the technology selected. The economic viability of the selected proposal has determined by an economic analysis, to extend on the most influential aspects developing alternative scenarios. The diagnosis of the situation of solid waste in the zone of Los Santos has specified that the cardboard, paper and plastics have been the most adequate for the thermal utilization

  17. Assessment of antimicrobial usage and residues in commercial chicken eggs from smallholder poultry keepers in Morogoro municipality, Tanzania.

    Science.gov (United States)

    Nonga, H E; Simon, C; Karimuribo, E D; Mdegela, R H

    2010-08-01

    Occurrence of antimicrobial residues in commercial chicken eggs was determined in Morogoro municipality between January and February 2007. Twenty smallholder farmers were interviewed on the types of antimicrobials, reasons of use and their awareness on antimicrobial withdrawal period. Seventy egg samples were collected for qualitative antimicrobial drug residues analysis by use of agar well diffusion and Delvotest SP assays. It was found that farmers use antimicrobial drugs as prophylaxis and treatment of common chicken diseases namely fowl typhoid (85%), infectious bursa disease (Gumboro) (65%) infectious coryza (65%), collibacilosis (55%), coccidiosis (54%), Newcastle disease (50%), helminthosis (20%) and fowl pox (15%). Antimicrobials accounted for 85% of the drugs commonly used. It was also found that 65% of the farmers treat their chicken themselves. The common drugs were oxytetracycline (75%), egg booster (50%), amprolium (35%), sulphamethoxypyridazine (35%), sulphanilamide (25%), chlortetracyclines (10%), chloramphenicol (10%), sulphadiazine-trimethoprim (20%), duoxycycline (20%), sulphadiazine (25%) and flumequine (10%). Eighty per cent of the farmers had knowledge on antimicrobial withdrawal period sold eggs before withdrawal period and almost 85% were unaware of possible effects of antimicrobial residues in humans. All 70 eggs were positive to antimicrobial residues by Delvotest kit, but 21.4% positive with agar well diffusion test. It was concluded that the presence of antimicrobial residues in table eggs could be of public health significance to the egg consumers in Morogoro municipality.

  18. Toxicity of solid residues resulting from wastewater treatment with nanomaterials.

    Science.gov (United States)

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Gonçalves, Fernando; Pereira, Ruth

    2015-08-01

    Nanomaterials (NMs) are widely recommended for wastewater treatments due to their unique properties. Several studies report the different advantages of nanotechnology in the remediation of wastewaters, but limited research has been directed toward the fate and potential impacts of the solid residues (SRs) produced after the application of such technologies. The present work aimed at investigating the ecotoxicity of SRs resulting from the treatment of three effluents (OOMW, kraft pulp mill, and mining drainage) with two NMs (TiO2 and Fe2O3). The invertebrate Chironomus riparius was selected as test organism and exposed to the residues. The effect on percentage of survival and growth was assessed. Results showed that the SRs from the treatments nano-TiO2(1.0gL(-1))/H2O2(0.5M) and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) from OOMW and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) from kraft pulp mill effluent exhibited lethal toxicity to C. riparius. Only the exposure to SRs resulting from the treatment with nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) applied to the kraft pulp mill effluent significantly affected the growth rate based on the head capsule width. In terms of growth rate, based on the body length, it decreased significantly after exposure to the SRs from the treatments nano-TiO2 (1.0gL(-1)) and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) of kraft paper mill effluent and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) of OOMW. According to our study the SRs can promote negative effects on C. riparius. However, the effects are dependent on the type of effluent treated as well as on the organic and inorganic compounds attached to the NMs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Use of solid residue from the olive industry

    Directory of Open Access Journals (Sweden)

    Guinda, Ángeles

    2006-03-01

    Full Text Available Research into finding new uses for olive products, particularly by-products of olive oil production, is of great relevance not only to the economy, but also to the environment, in the towns where olives are grown. A large number of research articles has been published dealing with the chemical composition of olives and olive oil; however, only a few studies have centered on isolating and identifying compounds in the olive leaf. In this article an overview of the present body of knowledge on the chemical composition of the olive leaf will be presented. Also to be discussed is the use of solid residue, namely, the olive leaf and the olive stone. Both of these types of residue result from olive oil and table olive production, and can be used as a renewable energy source, as well as to obtain high added-value compounds. The latter, bioactive compounds are directed towards the cosmetic, pharmaceutical, and natural food supplements markets, all of which are currently highly receptive to products of natural origin.La investigación de nuevos aprovechamientos del olivar y en particular de lo subproductos del proceso de producción del aceite, tiene gran relevancia tanto en la economía como en el medio ambiente de los pueblos donde se desarrolla este cultivo. Son numerosos los trabajos publicados sobre la composición química de la aceituna y el aceite de oliva, en cambio sólo existen algunos estudios sobre el aislamiento e identificación de los compuestos de la hoja de olivo, en esta contribución se revisan los conocimientos sobre la composición química de la hoja de olivo, así como, las utilizaciones de los residuos sólidos -hoja de olivo y hueso de aceituna- que se originan en la producción del aceite de oliva y de aceitunas de mesa, como energía renovable y para la obtención de compuestos de alto valor añadido. Estos últimos, compuestos bioactivos dirigidos a los mercados de los aditivos alimentarios naturales, farmacéutico y cosm

  20. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Møller, H.B.; Ahring, Birgitte Kiær

    2004-01-01

    This report is based on several years of co-operation between our research groups and Danish biogas plants. Throughout the years, there has been a fruitful exchange of know-how and experiences in laboratory scale on the one hand and large scale on the other, leading to a better understanding of t...... in paper bags is preferable to collection in plastic bags and successive separation of plastics in a waste processing treatment plant...... of the principles of the anaerobic digestion process and to an optimization of its large-scale implementation. In order to get an overview of the current situation concerning the treatment of the organic fraction of municipal solid waste (OFMSW) in Denmark, interviews were carried out with operators of the biogas...... plants where OFMSW is treated and the municipality staff responsible for waste management. With the aim of fulfilling the governmental goal to treat 150 000 tons of OFMSW by the year 2004 mainly by anaerobic digestion, the different municipalities are investigating different concepts of waste collection...

  1. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    Science.gov (United States)

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO 2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO 2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg -1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min -1 kg -1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO 2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl - ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO 2 and Ag nanoparticles at concentrations of 100 mg kg -1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  2. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  3. METHODOLOGY FOR REDUCTION OF GHG EMISSIONS FROM MUNICIPAL SOLID WASTE COLLECTION AND TRANSPORT

    Directory of Open Access Journals (Sweden)

    Goran Boskovic

    2013-12-01

    Full Text Available Collection and transport of municipal solid waste (MSW, as a part of solid waste management, have a great environmental impact due to exhaust emissions from fuel combustion. Distance traveled appears as one of the most influencing parameter in total fuel consumed. This paper presents a general methodology for route optimization using Geographic Information System (GIS. The necessary databases were created and established methodology was applied to waste collection and transport system in the city of Kragujevac. Using GIS software one typical route was optimized. Furthermore, fuel consumption and associated exhaust emissions vary in different waste collection and transport stages. Waste collection and transport circuit was divided into four different stages. The estimation of Greenhouse Gas (GHG emissions for optimized route was made and compared to estimated emissions of current route. Calculations, which also include vehicle speed as very important parameter, indicated great savings in GHG emissions.

  4. Municipal solid wastes composting: Estrela (Brasil); Compostaje de residuos solidos municipales: el ejemplo de Estrela, brasil

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, O.; Bezama, A.; Navia, R.; Lorber, K. E.

    2002-07-01

    In Estrela, Rio Grande do Sul, Brazil, an improved separation system for the municipal solid wastes was implemented. The objective is to enhance the performance of the composting process of the solid wastes. In the original separation system, the fractions corresponding to organic matter, recyclable materials and the light-weight fraction (destined to sanitary landfill) were obtained, where the organic fraction reached a 70%. This fraction was destined to a composting process which after 80 days of processing was still in the thermophilic stage and had to be later stabilized through a worm composting process. In order to improve this situation, a modified system was proposed and implemented. In this way, four fractions were obtained during the separation process: a light fraction destined to sanitary land filling, a recyclable materials fraction and two organic fractions. (Author) 8 refs.

  5. Parametric Analysis of Leachate and Water Resources around Municipal Solid Waste Landfill area in Solan

    Directory of Open Access Journals (Sweden)

    Sharma Deepika

    2016-01-01

    Full Text Available Leachate is defined as the liquid that drains from the landfill. The paper presents the physico-chemical, bacteriological and heavy metal testing results carried out for leachate, surface and sub-surface water samples collected from municipal solid waste landfill and different water sources in Solan to find out the effect of leachate percolation on groundwater quality. Physico-chemical parameters analysed were, pH, Total Dissolve Solid (TDS, sulphate, turbidity, Electrical Conductivity (EC while biological parameters tested were Biological Oxygen Demand (BOD, Chemical Oxygen Demand (COD, Most Probable Number (MPN test and ammonical nitrogen. Testing for heavy metals (Pb, Zn, Cr, Ni, Fe were carried out and have been reported. The results reveal that the leachate from the unlined landfill may have a significant impact on the groundwater resource (often used as drinking source particularly because of the toxic nature of the leachate coupled with the soil characteristics which is permeable in nature.

  6. Estimation of product specific emissions from municipal solid waste landfills for the inventory phase in LCA

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    is frequently given as a quantity of solid wasteand possibly some recovered energy from waste incineration.Since product specific emissions can not be calculated or measured directly at the landfills, they must be estimated by modeling oflandfill processes. This paper presents a landfill model based on a large...... number of assumptions and approximations concerninglandfill properties, waste product properties and characteristics of various kinds of environmental protection systems (e.g. landfill gascombustion units and leachate treatment units). The model is useful for estimation of emissions from waste products......), and inorganic non-metals (e.g. chlorine,) which are considered individually. The computer toolLCA-LAND is useful for estimation of emissions from specific waste products disposed in municipal solid waste landfills in Europeancountries (for the present Denmark, Germany and The Netherlands). Input data...

  7. Coagulation-flocculation and ammoniacal stripping of leachates from municipal solid waste landfill.

    Science.gov (United States)

    Andrés, Paz; Díaz, Arturo; Cortijo, Manuel

    2007-11-01

    The elimination of contamination in leachates from municipal solid waste landfill was studied by sedimentation. The purpose of this study was to evaluate the removal efficiency of turbidity, chemical oxygen demand (COD), suspended solids (SS) and ammonia nitrogen (NH(3)). First, by coagulation with aluminium sulphate like inorganic coagulant, and secondly by flocculation with anionic polyacrylamides in quick succession. The use of polyacrylamides after coagulation with Al(3+) showed a lower SS removal and slow filtration. Turbidity removal efficacy was over 60% if Al(3+) concentration was 190 mg/L. COD elimination by flocculation was 10 to 20% regardless of adding polyacrylamides. Finally, ammoniacal stripping is made in order to reduce the ammoniacal nitrogen concentration in the supernatant liquid obtained after coagulation with Al(3+). The most influential variable in ammoniacal stripping was the agitation time.

  8. Municipal solid waste energy conversion study on Guam and American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-31

    In the Pacific Islands of Guam and Tutuila in American Samoa, conversion of municipal solid waste to useable energy forms - principally electricity but possibly steam - may hold promise for reducing economic dependence on imported petroleum. A secondary benefit may be derived from reduction of solid waste landfill requirements. At the preliminary planning stage, waste-to-energy facilities producing electricity appear technically and environmentally feasible. Economically, the projects appear marginal but could be viable under specific conditions related to capital costs, revenue from garbage collection and revenue from the sale of the energy generated. Grant funding for the projects would considerably enhance the economic viability of the proposed facilities. The projects appear sufficiently viable to proceed to the detailed planning stage. Such projects are not viable for the islands now emerging from the US Trust Territory of the Pacific Islands.

  9. A survey of pathogen survival during municipal solid waste and manure treatment processes. Final report

    International Nuclear Information System (INIS)

    Ware, S.A.

    1980-08-01

    Municipal solid waste (MSW) and animal manures may contain microorganisms that can cause disease in man and animals. These pathogenic microorganisms include enteric bacteria, fungi, viruses, and human and animal parasites. This report summarizes and discusses various research findings documenting the extent of pathogen survival during MSW treatment. The technologies discussed are composting, incineration, landfill, and anaerobic digestion. There is also a limited examination of the use of the oxidation ditch as a means of animal manure stabilization. High gradient magnetic separation (HGMS), and gamma radiation sterilization are mentioned as future options, especially for animal waste management. Several standard methods for the sampling, concentration, and isolation of microorganisms from raw and treated solid waste are also summarized

  10. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    Science.gov (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  11. Heavy Metals Removal from Sewage Sludge and Municipal Solid Waste (MSW by Co-Composting Process

    Directory of Open Access Journals (Sweden)

    Vahid Babaee Darzi

    2017-07-01

    Full Text Available Background & Aims of the Study: One of the most important pollutants in drinking water, air and soils is heavy metals. It is very harmful for humans and other live organisms. The purpose of this study was the usage of a co-composting process for removal of heavy metals from municipal solid waste and sewage sludge. Materials and Methods: This experimental study was a conducted sewage sludge and municipal solid waste. For collection of samples from urban solid waste composting and wastewater treatment plant, a 200 mL polyethylene bottles was used, samples after acidification were stored in a dark place at 4°C temperature until the metals analysis the heavy metals values remaining in the samples was measured by graphite furnace absorption spectrometer method (Varian, SpectrAA 240, Australia. In this study, we used SPSS version 16 for data processing; and they were also analyzed by descriptive statistics. Results: Result of this study showed that values of C/N in the first, second and third stage compost were 31.7, 27.3 and 41.8, respectively. Based on the result of this study the value of removal of Cd with 9.8 mg kg-1 in first stage and Cr, Cu and Zn with 89, 21 and 87.6 mg kg-1 in third stage were highest treatment. Conclusion: Our results show that co-composting process between many treatment processes having to be cost effective for heavy metal removal from solid waste and wastewater treatment.

  12. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  13. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  14. Statistical Modelling of the Energy Content of Municipal Solid Wastes in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2016-08-01

    Full Text Available The ability to predict the quantity of energy to be produced is of paramount importance in every country. It would assist in setting up a waste management plan which will lead to a sustainable energy policy. This paper presents the development of a statistical linear regression mathematical model to predict the amount of energy contained in municipal solid wastes from the knowledge of such characteristics of the wastes as physical composition and/or moisture content. Major cities of Kano, Katsina, Dutse, Damaturu, Maiduguri, Bauchi, Birnin Kebbi, Gusau and Sokoto in Northern Nigeria, with high population densities and intense industrial activities constituted the area of study. Ten kilogram each, of the municipal solid waste was collected from the government designated refuse dumping sites in both highly dense populated low income areas and government residential areas, during the hottest months of February, March and April and during the rainy season in the month of August for three years. The waste material was prepared for the determination of its physical characteristics by sifting through. Proximate, ultimate analyses and calorific values were determined using ASTM analytical techniques and formulas from the literature. An empirical linear regression based mathematical model was developed using statistical methods and experimental data. Comparison between experimental and predicted values of the calorific values showed an agreement of about 70% with an average deviation of 5.03% while the standard deviation was found to be 5.29%.

  15. Development of performance indicators for municipal solid waste management (PIMS): A review.

    Science.gov (United States)

    Sanjeevi, V; Shahabudeen, P

    2015-12-01

    The aim of this paper is to review papers on municipal solid waste management (SWM) systems, especially on performance indicators (PIs), and suggest practical methods to manage the same by administrators. Worldwide, about 4 billion metric tons of solid waste (SW) is generated annually; the management of SW across cities is increasingly getting more complex and the funds available for providing service to citizens are shrinking. Analysis of the non-technical research papers shows that focus areas on SW can be grouped into 18 types, one being PIs. Historically, PIs for municipal SWM (PIMS) commenced with the publication of guidelines by various government agencies, starting in 1969. This was followed by a few benchmarking studies, commencing in 1998, by various international institutions. Many published comparative studies also disseminated good practices across the cities. From the 1990s onwards, research work started defining PIMS. These initiatives by various researchers took multiple dimensions and are reviewed in this paper. In almost all studies, the PIMS is measured in terms of investment decisions, public acceptance levels, social participation and environmental needs. The multiple indicators are complex, however, and managers of cities need simple tools to use. To make it simple, five-factor PIs are arrived at, considering simplicity and covering all the factors. A research agenda is outlined for future directions in the areas of cost reduction, citizens' services, citizen involvement and environmental impact. © The Author(s) 2015.

  16. Municipal solid waste management challenges in developing countries--Kenyan case study.

    Science.gov (United States)

    Henry, Rotich K; Yongsheng, Zhao; Jun, Dong

    2006-01-01

    This paper provides an overview of the state of municipal solid waste management (MSWM) by local authorities in Kenya as a case study of a low-income developing country. Approaches of possible solutions that can be undertaken to improve municipal solid waste (MSW) services are discussed. Poor economic growth (1.1% in 1993) has resulted in an increase in the poverty level which presently stands at 56%. Migration from the rural areas to the urban areas has resulted in unplanned settlements in suburban areas accommodating about 60% of the urban population on only 5% urban land area. Political interference also hampers smooth running of local authorities. Vulnerability of pollution of surface and groundwater is high because local authorities rarely considered environmental impact in siting MSW disposal sites. Illegal dumping of MSW on the river banks or on the roadside poses environmental and economic threats on nearby properties. Poor servicing of MSW collection vehicles, poor state of infrastructure and the lack of adequate funding militate against optimization of MSW disposal service. The rural economy needs to be improved if rural-urban migration is to be managed. Involvement of stakeholders is important to achieve any meaningful and sustainable MSWM. The role of the informal sector through community-based organizations (CBOs), Non-Governmental Organizations (NGOs) and the private sector in offering solutions towards improvement of MSWM also is explored.

  17. New fired bricks based on municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Taurino, R; Karamanova, E; Barbieri, L; Atanasova-Vladimirova, S; Andreola, F; Karamanov, A

    2017-10-01

    The main objective of this work was to study the sintering process and technological properties of new fired bricks based on high amount of post-treated municipal solid waste incinerator bottom ash and refractory clay. In addition, the effect of the minor addition of flux (Na 2 CO 3 ) or reinforce (corundum) was also highlighted. Several methods were used to study the effect of compositions variations on the sintering process, structure and the mechanical characteristics of the test briquettes. Differential thermal analysis (TG/DTA) and dilatometry techniques were applied to study the thermal behaviour while scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and high-temperature X-ray diffraction were used to elucidate the structure and the phase composition. The mechanical characteristics were estimated by micro-indentation, strength and various physical tests (porosity, linear shrinkage and water absorption, etc). The results highlight the possibility to use very high amount of municipal solid waste incinerator bottom ashes in the production of new fired bricks with good performances at all levels. It is also shown that the addition of additives managed the final properties, affecting the crystal phase formation, porosity and greatly the strength of the samples.

  18. An inexact reverse logistics model for municipal solid waste management systems.

    Science.gov (United States)

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of co...... political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.......The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits...

  20. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    Science.gov (United States)

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  1. Municipal solid waste management challenges in developing countries - Kenyan case study

    International Nuclear Information System (INIS)

    Henry, Rotich K.; Zhao Yongsheng; Dong Jun

    2006-01-01

    This paper provides an overview of the state of municipal solid waste management (MSWM) by local authorities in Kenya as a case study of a low-income developing country. Approaches of possible solutions that can be undertaken to improve municipal solid waste (MSW) services are discussed. Poor economic growth (1.1% in 1993) has resulted in an increase in the poverty level which presently stands at 56%. Migration from the rural areas to the urban areas has resulted in unplanned settlements in suburban areas accommodating about 60% of the urban population on only 5% urban land area. Political interference also hampers smooth running of local authorities. Vulnerability of pollution of surface and groundwater is high because local authorities rarely considered environmental impact in siting MSW disposal sites. Illegal dumping of MSW on the river banks or on the roadside poses environmental and economic threats on nearby properties. Poor servicing of MSW collection vehicles, poor state of infrastructure and the lack of adequate funding militate against optimization of MSW disposal service. The rural economy needs to be improved if rural-urban migration is to be managed. Involvement of stakeholders is important to achieve any meaningful and sustainable MSWM. The role of the informal sector through community-based organizations (CBOs), Non-Governmental Organizations (NGOs) and the private sector in offering solutions towards improvement of MSWM also is explored

  2. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    Directory of Open Access Journals (Sweden)

    S. P. Gautam

    2012-01-01

    Full Text Available Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days.

  3. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation. © The Author(s) 2015.

  4. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    Science.gov (United States)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  5. Municipal solid waste source-separated collection in China: A comparative analysis

    International Nuclear Information System (INIS)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-01-01

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  6. Towards a zero waste : assessing solid waste management in the Ledzokuku Krowor Municipal Assembly in the Greater-Accra Region, Ghana

    OpenAIRE

    Acquah, Raymond

    2015-01-01

    This study sought to explore solid waste management in the Ledzokuku Krowor Municipal Assembly in the Greater-Accra Region of Ghana. The various actors in solid waste management are identified as well as the roles they play. The study also explores Public Private Partnership as a tool in managing solid waste and the outcome of strategies used in managing solid waste in the Municipality. This is followed by a discussion on the challenges faced in solid waste management that prevents the strate...

  7. Musculoskeletal disorders among municipal solid waste workers in India: A cross-sectional risk assessment

    Science.gov (United States)

    Reddy, Endreddy Manikanta; Yasobant, Sandul

    2015-01-01

    Background: Waste management is a necessary activity around the world, but involves a variety of health hazards. In a developing country like India, municipal solid waste is collected manually requiring heavy physical activity. Among all occupational health issues, musculoskeletal problems are common among waste collectors in the form of nonfatal injuries because of the presence of such risk factors (lifting, carrying, pulling, and pushing). We have thus conducted this study to evaluate musculoskeletal disorders (MSDs) among municipal solid waste (MSW) workers. Methodology: A cross-sectional study using probability proportionate to size sampling, recruited 220 MSW workers from the Chennai Municipal Corporation, India for this study. A pretested validated questionnaire has been used to collect data on demographic and occupational history and information on musculoskeletal pain. Data analysis was performed using R software (3.0.1 version). Results: 70% of the participants reported that they had been troubled with musculoskeletal pain in one or more of the 9 defined body regions during the last 12 months, whereas 91.8% had pain during the last 7 days. Higher prevalence of symptoms in knees, shoulders, and lower back was found to be 84.5%, 74.5%, and 50.9% respectively. Female illiterate workers with lower socioeconomic status were found to have higher odds for MSDs. Similarly, higher body mass index having no physical activity increases the chance of odds having MSDs. Conclusion: The higher percentage of musculoskeletal symptoms among MSW workers could be attributed to the long duration of employment, the low job control, and the nature of their job, which is physically demanding. A workplace of health promotion model integration can minimize the reported high prevalence, and a prospective cohort study could be recommended further. PMID:26985409

  8. Musculoskeletal disorders among municipal solid waste workers in India: A cross-sectional risk assessment

    Directory of Open Access Journals (Sweden)

    Endreddy Manikanta Reddy

    2015-01-01

    Full Text Available Background: Waste management is a necessary activity around the world, but involves a variety of health hazards. In a developing country like India, municipal solid waste is collected manually requiring heavy physical activity. Among all occupational health issues, musculoskeletal problems are common among waste collectors in the form of nonfatal injuries because of the presence of such risk factors (lifting, carrying, pulling, and pushing. We have thus conducted this study to evaluate musculoskeletal disorders (MSDs among municipal solid waste (MSW workers. Methodology: A cross-sectional study using probability proportionate to size sampling, recruited 220 MSW workers from the Chennai Municipal Corporation, India for this study. A pretested validated questionnaire has been used to collect data on demographic and occupational history and information on musculoskeletal pain. Data analysis was performed using R software (3.0.1 version. Results: 70% of the participants reported that they had been troubled with musculoskeletal pain in one or more of the 9 defined body regions during the last 12 months, whereas 91.8% had pain during the last 7 days. Higher prevalence of symptoms in knees, shoulders, and lower back was found to be 84.5%, 74.5%, and 50.9% respectively. Female illiterate workers with lower socioeconomic status were found to have higher odds for MSDs. Similarly, higher body mass index having no physical activity increases the chance of odds having MSDs. Conclusion: The higher percentage of musculoskeletal symptoms among MSW workers could be attributed to the long duration of employment, the low job control, and the nature of their job, which is physically demanding. A workplace of health promotion model integration can minimize the reported high prevalence, and a prospective cohort study could be recommended further.

  9. Alternative approaches for better municipal solid waste management in Mumbai, India

    International Nuclear Information System (INIS)

    Rathi, Sarika

    2006-01-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management

  10. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    International Nuclear Information System (INIS)

    Dyson, Brian; Chang, N.-B.

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues

  11. Municipal solid waste management in Lebanon: the need for an integrated approach

    International Nuclear Information System (INIS)

    Khoury, R.; El-Fadel, M.

    2000-01-01

    Full text.This study focuses on the management of municipal solid waste (MSW) in Lebanon. It addresses the current status of MSW management in Lebanon in terms of collection, transport and disposal, infers the associated impacts of such practices and discusses mitigation measures and finally proposes basic guidelines for a national strategy for solid waste management in the country. The study is based on available previous investigations and on a field survey of 113 villages in four different countries. The study revealed the absence of an effective environmental policy and poor collection and disposal methods throughout the country, except for the Greater Beirut Area (G A), where better solid waste management practices are employed. Although collection of MSW outside GBA was found to be acceptable by local authorities, resources (labor and equipment) were not used efficiently. Furthermore, treatment of collected waste is almost not available. Waste collected is invariably open dumped and /or open burned outside GBA. The poor quality of the services were reflected by the low budgets available in the solid waste sanitation departments of most surveyed villages. Unlike the situation outside the GBA a solid waste management component can be identified in the GBA. However, until recently, nearly 90 percent of the total waste generated in the GBA is being ultimately disposed of at the landfill. This raises into question the purpose of the sorting-processing-composting facilities as well as the recycling program. Apparently, the current waste management activities, particularly source reduction and recycling have not measured up favorably with the steps outlined in an integrated solid waste management system. The study concludes with a series of policy measures that can constitute the framework for a long-term strategy in order to implement an effective solid waste master plan in Lebanon

  12. Environmental performance of the Kvaerner BFB boilers for MSW combustion -- Analysis of gaseous emissions and solid residues

    International Nuclear Information System (INIS)

    Lundberg, M.; Hagman, U.; Andersson, B.A.; Olofsson, J.

    1997-01-01

    Kvaerner Pulping AB (formerly Kvaerner EnviroPower AB) has, due to the stringent demands on emissions performance, developed a state-of-the-art bubbling fluidized bed boiler (BFB) designed for waste fuel firing with very low emissions to the air. A complete evaluation of the environmental performance of the Kvaerner BFB technique for MSW combustion is now possible thanks to a thorough characterization study of the solid residues from the Lidkoeping plant. This paper gives an overall mapping of the emissions performance. Data from the operating plants on solid residue characteristics and leachability, heavy metal and dioxin emissions, nitrogen oxides, carbon monoxide, acid gases, and other emissions to air are presented. Comparisons are made with legislative limits and data from the mass burning technique. It is concluded that the emissions are low compared both with data from traditional mass burn incinerators and with legislative limits in the USA and Europe. Furthermore, the bottom and cyclone ash characteristics are shown not to cause any particular problem from an environmental point of view, and that the leachability is well below the existing legislative limits in Europe and the USA. The results show that fluidized bed combustion of municipal solid waste is a very competitive alternative to the traditional mass burning technique in every respect

  13. Solid waste integrated management proposal in Churuguara and Maparari population axis, Federacion municipality Falcon State, Venezuela

    International Nuclear Information System (INIS)

    Reyes Torres, Magly; Melendez, Angelica; Sanchez, Angel

    2009-01-01

    This research shows a solid waste integrated management proposal in Churuguara and Maparari axis population, Federation municipality Falcon State. The inadequate arrangement of solid waste in these populations lacks of any type of control. It has caused environmental pollution problems that affect public health. For this reason, a diagnosis of the situation was made to classify the solid waste, an optimal way of processing and storing them was shown; the fleet that will offer the service, the routes of collection, the frequency and timetable of them, the waste to recycle and the design of a semi-mechanized landfill site were measured as a technical and economical alternative for the government. In this proposal, there are established strategies to increase the quality of life of the inhabitants of this region that allow to reform, improve and transform the solid waste management within a valid legal frame. Since, this is one of the most important services and it has direct consequences in people's health. It is necessary the community and governmental entities participation in the managerial process of these kinds of waste. (author)

  14. Microbial diversity and dynamics during methane production from municipal solid waste.

    Science.gov (United States)

    Bareither, Christopher A; Wolfe, Georgia L; McMahon, Katherine D; Benson, Craig H

    2013-10-01

    The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria

    International Nuclear Information System (INIS)

    Kofoworola, O.F.

    2007-01-01

    The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods clean have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested

  16. Occupational health problems of municipal solid waste management workers in India

    Directory of Open Access Journals (Sweden)

    Thayyil Jayakrishnan

    2013-01-01

    Full Text Available Aims: The present study aimed to assess the occupational health problems of municipal solid waste management workers. Material and Methods: Cross-sectional descriptive study was conducted among solid waste management workers of Kerala, India. All workers (408 were included the study of which 313 (77% participated. Data were collected by direct interview and clinical examination using a structured questionnaire. The observed morbidity like respiratory diseases, eye diseases, dermatological problems and nail infections were elicited by clinical examination. The point prevalence of other occupational related health events present either during the study time or during 1 month recall period and that occurred ever after entry in present occupation was collected by self-reported complaints and doctors diagnoses. Results: The mean age was 42.5 ± 7.2 years. The observed morbidity like respiratory diseases, eye diseases, dermatological problems, nail infections were high ranged from 21% to 47%. The reported prevalence of occupation related morbidities like falls (63.6%, accidents (22%, injuries (73.2%, and water-vector borne disease (7.1% were high. The current prevalence of musculoskeletal morbidities showing that all major joints are involved (17-39%. Conclusions: The work related health-problems were reported to be high. The prevalence of Respiratory, dermatological, eye problems and injury, musculoskeletal problems were reported to be high among municipal solid work handlers. Measures are needed to improve the work environment of waste handlers by ensuring availability protective gears based on ergonomic principles, clean drinking water and washing and sanitation facilities during working hours.

  17. Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data.

    Science.gov (United States)

    Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H

    2016-10-01

    Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl.

    Science.gov (United States)

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi; Kakuta, Yoshitada

    2016-10-01

    Municipal solid waste incineration (MSWI) bottom-ash products possess qualifications to be utilized in cement production. However, the instant use of bottom ash is inhibited by a number of factors, among which the chlorine (Cl) content is always strictly restricted. In this paper, the unquenched MSWI bottom ash was used as the experimental substance, and the influences of thermal treatment and cooling methods on the content and existence of Cl in the ash residues were investigated. The characterization of the MSWI bottom-ash samples examined by utilizing X-ray diffraction, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy. The experimental results show that as a function of thermal treatment, the reduction rate of Cl is slight below 15.0%, which is relatively low compared with water washing process. Different cooling methods had impacts on the existing forms of Cl. It was understood that most of Cl existed in the glass phase if the bottom ash was air cooled. Contrarily in case of water-quenched bottom ash, Cl could also be accumulated in the newly-formed quench products as chloride salts or hydrate substances such as Friedel's salt.

  19. Heavy metal enrichment characteristics in ash of municipal solid waste combustion in CO2/O2 atmosphere.

    Science.gov (United States)

    Tang, YuTing; Ma, XiaoQian; Yu, QuanHeng; Zhang, Can; Lai, Zhiyi; Zhang, Xiaoshen

    2015-09-01

    This paper investigated the behavior of six heavy metals (Cd, Pb, Cu, Cr, Ni and Zn) in the bottom ashes of recycled polyvinyl chloride pellets (PVC), wood sawdust (WS) and paper mixture (PM), representing the common components of municipal solid waste (MSW), obtained during combustion in CO2/O2 atmosphere in a lab-scale electrically heated tube furnace. Replacement of N2 by CO2 did not obviously change the shape of relative enrichment factor (RE) curves and subsequent order of heavy metals, but increased enrichment of these heavy metals in bottom ashes of WS, PM and PVC. The increment of O2 concentration in CO2/O2 atmosphere further increased RE values. It was only when the temperature was higher than or equal to 700°C that the increment of the combustion temperature reduced the RE values of heavy metals. The effect of temperature on heavy metals evaporation was the most pronounced for the medium volatile metal Pb, and the least for the low volatiles Cr and Ni. The effect of temperature was more pronounced for PVC ash than for WS and PM ashes. This paper contributes to the control of heavy metals during MSW incineration and management of MSW oxy-fuel residues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Aluminium dynamics from soil to tea plant (Camellia sinensis L.): is it enhanced by municipal solid waste compost application?

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Frankowski, Marcin; Boruah, Romesh K; Dutta, Amrit K; Das, Dilip K

    2015-01-01

    Application of municipal solid waste compost (MSWC) in tea (Camellia sinensis L.) cultivation can increase the fertility status of soils and thus enhance the plant growth. The present study attempts at application of MSWC in tea (TV1 and TV23 clones) cultivation to assess the effect of different doses of MSWC on growth and translocation potential of Al on this plant as well as fate of Al in soil, through the calculation of a risk assessment code (RAC). The sequential extraction of Al in MSWC amended soils showed that the fractionation of Al in soil changed after compost application, with an overall increase of the fractions associated to with Fe-Mn oxides, organic and of the residual fraction. The accumulation of Al in different parts ofC. sinensisL., grown on MSWC amended soil effected an overall increased growth of the plant with increasing doses of MSWC. According to RAC, Al falls in medium to high risk, though no adverse effect on plant health was observed. Tea plants were found to adapt well to MSWC amended soils. However, long term field trials are necessary to completely assess the risk of Al accumulation in soils upon MSWC application. Hierarchical cluster analysis was applied aiming to check for the presence of homogenous groups among different treatments. It was found that in both TV1 and TV23, treatments formed two different groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. EFFECT ON COMPRESSIVE STRENGTH OF CONCRETE WITH PARTIAL REPLACEMENT OF CEMENT BY MUNICIPAL SOLID WASTE INCINERATION ASH

    OpenAIRE

    V. Alivelu Mangamma

    2016-01-01

    The municipal solid waste incineration ash reduces are worldwide studied topic over the last decades, so that utilize the municipal solid waste is the one of the possibilities is to use MSWI in concrete production as it is done the bottom ash features the most convenient composition in concrete and it is a available in highest amounts among the MSWI ashes the bottom ash was used as partial replacement of cement of cement in concrete strength has to find ,if the prepared concrete will get suff...

  2. Composition of municipal solid wastes in Vigo (Spain). La composicion de los residuos solidos urbanos de Vigo

    Energy Technology Data Exchange (ETDEWEB)

    Otero Couto, D. (Departamento de Medio Ambiente, Universidad de Vigo, Vigo (Spain))

    1994-01-01

    Fermentable and Paper are the main components in municipal solid waste from Vigo. Paper is the main components when results are reported on dry weigh and Fermentables when are on wet weigh. The composition of plastic, paper and metal in municipal solid waste have a clear scarification in the city of Vigo. City center is characterized mainly by plastic films and paper coming from grafic applications and packaging. In rural and suburban areas plastic from bottles and paper coming from hygienic applications dominate. Metal composition is homogeneous along the city. (Author)

  3. Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate

    Science.gov (United States)

    Giro-Paloma, J.; Ribas-Manero, V.; Maldonado-Alameda, A.; Formosa, J.; Chimenos, J. M.

    2017-10-01

    Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2 - 3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0 - 5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested

  4. Energy efficient refuse derived fuel (RDF from municipal solid waste rejects: a case for Coimbatore

    Directory of Open Access Journals (Sweden)

    Offor N Kimambo

    2014-05-01

    Full Text Available In this paper production of energy efficient Refuse Derived Fuel (RDF from municipal solid waste rejects was carried out during August 2012 – April 2013 in Coimbatore City India. Municipal Solid wastes rejects (paper, plastics with exception of polyvinyl chloride, textiles were collected from waste dump yard of Coimbatore City. Sawdust, coir dust, water hyacinth and rice husk were mixed with the collected wastes at a fixed amount of 20 percent. After grinding, cassava starch was used as a binder to produce RDF briquettes with the help of uniaxial piston briquettes making machine. Physical, chemical and thermal characteristics of the RDF were studied to assess their potential use as energy efficient material. The analyses were divided into three categories namely, physical, proximate and ultimate analyses. Results indicated that, under physical and proximate analyses; impact resistance index (IRI for all the RDF samples were 200, density were less than 1 kg cm-3, moisture were less than 10 % wt, ash content varied from 2.8 to 9.2 % wt, whilst volatile mater had mean value of 83.1 % wt and fixed carbon which is by subtraction ranged from 1.4 to 9.2 % wt. With respect to Ultimate analysis, Oxygen, carbon, hydrogen varied from 27.01 to 39.78 % wt, 44.8 to59.7 % wt, 5.9 to 8.1 % wt respectively. On the other hand nitrogen, sulfur and chlorine ranged from 0.18 to 0.87 % wt, 0.27 to 0.71 % wt and 0.339 to0.521 % wt respectively. Calorific values (high heating values ranged from 5085 to 6474.9 kcal kg-1. The results were compared with Energy research Centre for the Netherland database and noted that with exception to moisture, fixed carbon and hydrogen other parameters had a significant lower or higher differences. From the study, RDF from municipal solid wastes rejects along with the additives produced high energy efficient materials. DOI: http://dx.doi.org/10.3126/ije.v3i2.10530 International Journal of the Environment Vol.3(2 2014: 205-215

  5. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and {sup 187}Os/{sup 188}Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of {sup 187}Os/{sup 188}Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m{sup 2}/a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m{sup 2}/a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  6. Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.

    Science.gov (United States)

    Nithiya, Arumugam; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2018-03-01

    In the present research, municipal solid waste incineration (MSWI) bottom ash (BA) residues from three incinerators (N, K, and R) in Japan were collected for hydrogen gas generation purpose. The samples were split into four particle size fractions: (1) d≤0.6, (2) 0.6≤d≤1.0, (3) 1.0≤d≤2.0, and (4) 2.0≤d≤4.75mm for the characterization of metal aluminum, the relationship between the present metal aluminum and hydrogen gas production, and the influence of external metal aluminum on the enhancement of hydrogen gas. The batch experiments were performed for each BA fraction under agitated (200rpm) and non-agitated conditions at 40°C for 20days. The highest amount of hydrogen gas (cumulative) was collected under agitation condition that was 39.4, 10.0, and 8.4 L/kg of dry ash for N2, R2, and K2 (all fraction 2), respectively. To take the benefit of the BA high alkalinity (with initial pH over 12), 0.1 and 1g of household aluminum foil were added to the fractions 2 and 3. A Significantly larger amount of hydrogen gas was collected from each test. For 0.1g of aluminum foil, the cumulative amount of gas was in the range of 62 to 78 L/kg of dry ash and for 1g of aluminum foil the cumulative amount of hydrogen was in the range of 119-126 L/kg of dry ash. This indicated that the hydrogen gas yield was significantly a function of supplementary aluminum and the intrinsic alkaline environment of the BA residues rather than ash source or particle size. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki

    2012-12-01

    The weathering of municipal solid waste incineration (MSWI) residues consists of complicated phenomena. This makes it difficult to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash, which was relevant interactively to pH neutralization and formation of secondary minerals. In this study, mineralogical weathering indices for natural rock profiles were applied to fresh/landfilled MSWI bottom ash to investigate the relation of these weathering indices to landfill time and leaching concentrations of component elements. Tested mineralogical weathering indices were Weathering Potential Index (WPI), Ruxton ratio (R), Weathering Index of Parker (WIP), Vogt's Residual Index (V), Chemical Index of Alternation (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alternation (PIA), Silica-Titania Index (STI), Weathering Index of Miura (Wm), and Weatherability index of Hodder (Ks). Welch's t-test accepted at 0.2% of significance level that all weathering indices could distinguish fresh and landfilled MSWI bottom ash. However, R and STI showed contrasted results for landfilled bottom ash to theoretical expectation. WPI, WIP, Wm, and Ks had good linearity with reclamation time of landfilled MSWI bottom ash. Therefore, these four indices might be applicable as an indicator to identify fresh/weathered MSWI bottom ash and to estimate weathering time. Although WPI had weak correlation with leachate pH, other weathering indices had no significant correlation. In addition, all weathering indices could not explain leaching concentration of Al, Ca, Cu, and Zn quantitatively. Large difficulty to modify weathering indices correctly suggests that geochemical simulation including surface sorption, complexation with DOM, and other mechanisms seems to be the only way to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  9. Drivers in current and future municipal solid waste management systems: cases in Yokohama and Boston.

    Science.gov (United States)

    Contreras, Francisco; Ishii, Satoshi; Aramaki, Toshiya; Hanaki, Keisuke; Connors, Stephen

    2010-01-01

    Despite some progress, municipal solid waste (MSW) still poses pressure on cities and remains one of the major challenges in environmental management. There is no single solution to the problem since the drivers behind MSW systems may vary significantly from city to city. In this context, the development of a common strategy to attain a sustainable management has been increasingly difficult. This paper presents an issue-driven analytical framework to evaluate the past, present and future MSW management strategy for the cities of Yokohama and Boston considering four driver categories while evaluating if the relevance of these drivers has changed over time. These categories represent: (i) legal drivers (e.g. laws and regulations); (ii) technology development and institutional drivers (e.g. available technologies); (iii) regional and international drivers (e.g. solid waste flow as recyclable resources); and (iv) socio-economic drivers (e.g. population trends and public awareness). The analysis indicated that solid waste management capacity for both cases was under stress due to different reasons. In the case of Boston, the moratorium for disposal facilities played an important role while increasing population was a key driver for the city of Yokohama. The future management scenario suggests that various waste-to-energy alternatives and strong solid waste reduction policies will play a key role for Boston. In Yokohama, a shift on waste composition and generation triggered by a demographic change may open the path for new technologies while also considering the international demand of solid waste as a recyclable resource.

  10. Solid fuel residues inventory of fixtures and perspectives. Extended abstract

    International Nuclear Information System (INIS)

    Bicocchi, S.; Tenza, A.

    2008-01-01

    The solid fuel residues, so called CSR, represent a fraction with high Lower Calorific value, with physicochemical characteristics conferring them the capacity to replace usual fuels. These last years, industrial applications seem to develop all over Europe. The present study thus sticks to draw up a panorama of the European situation in 2007. It develops the global regulation and normative context in which this waste processing channel must fit, while waiting for the presentation of the new Framework Directive of Waste during 2008, and the initiatives of certain precursory countries like Italy, Germany and the Netherlands. A scientific and technical inventory is presented being based on concrete cases identified within the Community territory. The study examines in particular a representative sample of 11 countries observed (Germany, Austria, Belgium, Spain, France, Italy, Netherlands, Finland, Denmark, Sweden and United Kingdom) and points out the local context, the layer and the practices developed in the use of this fraction. Finally, the study tries to position the French case in the European overview and highlights certain conditions (success factors, obstacles) allowing the development of CSR channel. Until few time, the CSR channel has increased without established regulation and normative framework. The diversity of the trade names listed through Europe testifies to the absence of common framework. To date, term CSR doesn't exist in European legislation. Only nomenclature NAPFUE (support for the declaration of the emissions in atmosphere) identifies fuels including the CSR. The working group CEN TC 343 (M325 Mandate) indicates that it only acts of solid waste, non made up of biomass, resulting from waste non dangerous and intended to be used in incineration or co-incineration. Regarding to existing European directives, a global tendency for the development of the channel is identified (management of waste, energy, environment). Thus, the objectives of

  11. PRELIMINARY STUDY ON BIOGAS PRODUCTION OF BIOGAS FROM MUNICIPAL SOLID WASTE (MSW LEACHATE

    Directory of Open Access Journals (Sweden)

    WAN AZLINA WAN AB KARIM GHANI

    2009-12-01

    Full Text Available Laboratory-scale digesters were operated to study the effect of leachate chemical oxygen demand strength on biogas (methane production. Three sets of experiment were performed using municipal solid waste leachate slurry with two different chemical oxygen demand strength strengths namely 3000 and 21000 mg/L (referred as low and high strength, respectively. The experiments were conducted at a controlled temperature of 35°C and pH ranging from 6.8 to 7.3 over 20 days period. The process performance was evaluated based on the biogas production and pollutants removal efficiencies. Results showed that the high and low strength samples performed quite similarly but with different biogas production rate observed. The biochemical oxygen demand in the effluent removed up to 80%, but the performance of other parameters such as chemical oxygen demand, total suspended solid and volatile suspended solid was slightly decreased which contributes 33 to 46%, 21 to 37% and 20 to 35%, respectively. From this study, it can be concluded that this method not only contributed to renewable biogas production but also improved the effluent quality.

  12. PERCEPTION OF DIAGNOSIS ON MUNICIPAL SOLID WASTE OF IPAMERI-GO POPULATION

    Directory of Open Access Journals (Sweden)

    M. C. Vieira

    2017-10-01

    Full Text Available The issue of disposal of municipal solid waste (MSW generated in households in the cities, has sparked debates and demanded research papers in order to promote and disseminate the handling and packaging suitable for the trash. The way of handling these wastes and their disposal in the city of Ipameri-GO and destination that provides this population has caused serious inconvenience to the community. Therefore, this work aimed, through interviews with residents of different neighborhoods of Ipameri, identify problems related to the management of household waste and diagnose the level of perception of the subject population. It was observed in this study that the handling of the solid waste in Ipameri has proved inefficient further by a lack of public education policy and hence the environment, in which the lack of activity of the population. The population in theoretical and scientific knowledge is lacking, regardless of social and economic class, although empirically this same population, presents itself willing to perform the selective collection and recycling of solid waste. This fact raises larger government incentives and investments in educational policy so that we can develop a policy for Environmental Education (EE, to be fruitful and lasting.

  13. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul

    2009-07-01

    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  14. Evaluation of a buried vertical well leachate recirculation system for municipal solid waste landfills.

    Science.gov (United States)

    Kadambala, Ravi; Powell, Jon; Singh, Karamjit; Townsend, Timothy G

    2016-12-01

    Vertical liquids addition systems have been used at municipal landfills as a leachate management method and to enhance biostabilization of waste. Drawbacks of these systems include a limitation on pressurized injection and the occurrence of seepage. A novel vertical well system that employed buried wells constructed below a lift of compacted waste was operated for 153 days at a landfill in Florida, USA. The system included 54 wells installed in six clusters of nine wells connected with a horizontally-oriented manifold system. A cumulative volume of 8430 m 3 of leachate was added intermittently into the well clusters over the duration of the project with no incidence of surface seeps. Achievable average flow rates ranged from 9.3 × 10 -4 m 3 s -1 to 14.2 × 10 -4 m 3 s -1 , which was similar to or greater than flow rates achieved in a previous study using traditional vertical wells at the same landfill site. The results demonstrated that pressurized liquids addition in vertical wells at municipal solid waste landfills can be achieved while avoiding typical operational and maintenance issues associated with seeps. © The Author(s) 2016.

  15. A historical perspective of Global Warming Potential from Municipal Solid Waste Management.

    Science.gov (United States)

    Habib, Komal; Schmidt, Jannick H; Christensen, Per

    2013-09-01

    The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP(100)), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO(2)-eq.tonne(-1) to net saving of 670 kg CO(2)-eq.tonne(-1) of MSWM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  17. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    International Nuclear Information System (INIS)

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-01-01

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP 100 ), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO 2 -eq. tonne −1 to net saving of 670 kg CO 2 -eq. tonne −1 of MSWM

  18. Geospatial strategy for sustainable management of municipal solid waste for growing urban environment.

    Science.gov (United States)

    Pandey, Prem Chandra; Sharma, Laxmi Kant; Nathawat, Mahendra Singh

    2012-04-01

    This paper presents the implementation of a Geospatial approach for improving the Municipal Solid Waste (MSW) disposal suitability site assessment in growing urban environment. The increasing trend of population growth and the absolute amounts of waste disposed of worldwide have increased substantially reflecting changes in consumption patterns, consequently worldwide. MSW is now a bigger problem than ever. Despite an increase in alternative techniques for disposing of waste, land-filling remains the primary means. In this context, the pressures and requirements placed on decision makers dealing with land-filling by government and society have increased, as they now have to make decisions taking into considerations environmental safety and economic practicality. The waste disposed by the municipal corporation in the Bhagalpur City (India) is thought to be different from the landfill waste where clearly scientific criterion for locating suitable disposal sites does not seem to exist. The location of disposal sites of Bhagalpur City represents the unconsciousness about the environmental and public health hazards arising from disposing of waste in improper location. Concerning about urban environment and health aspects of people, a good method of waste management and appropriate technologies needed for urban area of Bhagalpur city to improve this trend using Multi Criteria Geographical Information System and Remote Sensing for selection of suitable disposal sites. The purpose of GIS was to perform process to part restricted to highly suitable land followed by using chosen criteria. GIS modeling with overlay operation has been used to find the suitability site for MSW.

  19. Municipal solid waste transportation optimisation with vehicle routing approach: case study of Pontianak City, West Kalimantan

    Science.gov (United States)

    Kamal, M. A.; Youlla, D.

    2018-03-01

    Municipal solid waste (MSW) transportation in Pontianak City becomes an issue that need to be tackled by the relevant agencies. The MSW transportation service in Pontianak City currently requires very high resources especially in vehicle usage. Increasing the number of fleets has not been able to increase service levels while garbage volume is growing every year along with population growth. In this research, vehicle routing optimization approach was used to find optimal and efficient routes of vehicle cost in transporting garbage from several Temporary Garbage Dump (TGD) to Final Garbage Dump (FGD). One of the problems of MSW transportation is that there is a TGD which exceed the the vehicle capacity and must be visited more than once. The optimal computation results suggest that the municipal authorities only use 3 vehicles from 5 vehicles provided with the total minimum cost of IDR. 778,870. The computation time to search optimal route and minimal cost is very time consuming. This problem is influenced by the number of constraints and decision variables that have are integer value.

  20. Evaluation of Physical Composition and Municipal Solid Waste Generation Rate of Hamadan (June 1999 May 2000

    Directory of Open Access Journals (Sweden)

    M.T. Samadi

    2003-10-01

    Full Text Available Although municipal solid waste (MSW is generated every day , but with comparison to other municipal Environmental aspects such as Air pollution and Sewage, is not well considered. MSW management includes refuse production, storage, collection, transportation and disposal. Without adequate and reliable in formation and data about MSW generation rate and it’s physical components, optimun planning and management is not obtainable. In this research the physical composition of Hamadan MSW was studied . Samples were takan by Truck–Load sampling and portional random method from June 1999 untile May 2000 and analyzed for physical components and moisture percent age. The results showed that the average generation rate, density of wastes and its moisture percent were 252.33 Tons and 204.83 kg/m3 and 22.46% respectively. Average percents of physical componets were 77.72% , 5.75% , 5.42% , 3.15%, 2.11% , 1.04% and 4.92% for Biodegriable materials (garbage, papers, plastics, textiles, metals, glass and other materials respectively. Also maximum generation rate was 328 tons in March and minimum generation rate was 196 tons in December. In general, with planning of enforceable reuse and recycling programmes, could be avoid of 183, 14, 13 and 5 tons of biodegriable materials , paper, plastics and metals burial respectively everyday.

  1. Advantages and disadvantages of a municipal solid waste collection service for citizens of Hanoi City, Vietnam.

    Science.gov (United States)

    Kawai, Kosuke; Osako, Masahiro

    2013-03-01

    Governments of municipalities in Vietnam experiencing dynamic economic growth and dramatic population increases have been struggling to manage increased amounts of municipal solid waste (MSW). This study aimed to clarify the advantages and disadvantages of the current MSW collection service for citizens of the four central districts of Hanoi city, Vietnam, by conducting interviews with 200 households and 200 business entities regarding their satisfaction with the service. The survey results showed that Hanoi city provides an economical collection service with sufficient frequency and at appropriate times for citizens. However, a number of citizens complained about unsanitary conditions in the area surrounding their residence. Business entities had sufficient motivation to sell recyclable waste (RW) to the informal sector, not only to derive revenue from selling RW, but also to reduce the amount of MSW generated, thus reducing the MSW collection fee. Households were not motivated to reduce MSW by selling RW to the informal sector because they paid a fixed collection fee. As a result, an improvement in living standards in the near future is expected to contribute to increasing the amount of MSW generated from households.

  2. Data summary of municipal solid waste management alternatives. Volume 1, Report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  3. Data summary of municipal solid waste management alternatives. Volume I: report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  4. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Komal, E-mail: koh@kbm.sdu.dk [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohr’s Alle 1, 5230 Odense M (Denmark); Schmidt, Jannick H.; Christensen, Per [Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK-9220 Aalborg OE (Denmark)

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  5. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste - A review.

    Science.gov (United States)

    Pearse, Lauretta Feyisetan; Hettiaratchi, Joseph Patrick; Kumar, Sunil

    2018-04-01

    The applicability of slurry-based (semi-liquids) BMP assay in determining biodegradation kinetic parameters of landfilled waste is critically reviewed. Factors affecting the amount and rate of methane (CH 4 ) production during anaerobic degradation of municipal solid waste (MSW) and optimal values of these factors specific to landfill conditions are presented. The history of conventional BMP, and some existing procedures are reviewed. A landfill BMP (LBMP) assay is proposed that manipulates some of the key factors, such as moisture content, particle and sample size, that affects the rate of CH 4 production and the CH 4 generation potential of landfilled MSW (LMSW). By selecting proper conditions for these factors, a representative BMP assay could be conducted to ensure accurate determinations of CH 4 potential and the kinetic parameters k; first order rate coefficient and L o ; methane generation potential. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  6. Study on detecting leachate leakage of municipal solid waste landfill site.

    Science.gov (United States)

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  7. Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy).

    Science.gov (United States)

    Paoli, Luca; Grassi, Alice; Vannini, Andrea; Maslaňáková, Ivana; Bil'ová, Ivana; Bačkor, Martin; Corsini, Adelmo; Loppi, Stefano

    2015-08-01

    Epiphytic lichens have been used as indicators of environmental quality around a municipal solid waste landfill in C Italy. An integrated approach, using the diversity of epiphytic lichens, as well as element bioaccumulation and physiological parameters in the lichen Flavoparmelia caperata (L.) Hale was applied along a transect from the facility. The results highlighted the biological effects of air pollution around the landfill. The Index of Lichen Diversity (ILD) increased and the content of heavy metals (Cr, Cd, Cu, Fe, Ni and Zn) decreased with distance from the landfill. Clear stress signals were observed in lichens growing in front of the facility, i.e. discoloration, necrosis, membrane lipid peroxidation, lower ergosterol content, higher dehydrogenase activity. Decreased photosynthetic efficiency, altered chlorophyll integrity and production of secondary metabolites were also found. The results suggested that lichens can be profitably used as bioindicators of environmental quality around landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Impact of the Municipal Solid Waste Łubna Landfill on Environmental Pollution by Heavy Metals

    Directory of Open Access Journals (Sweden)

    Barbara Gworek

    2016-10-01

    Full Text Available Landfills have been identified as potential sources of heavy metal pollution of the environment. The municipal solid waste Łubna landfill is one of the largest landfills in Poland. Its impact on heavy metal pollution (Cd, Pb, Zn, Cu, and Cr of groundwater, soil and plants has been thoroughly evaluated. Elevated levels of contamination have not been recorded in the vicinity of the landfill. The concentrations of heavy metals in soil from the vicinity of the landfill were similar to the geochemical background levels for the forest and farming soils of central Poland. The concentrations of heavy metals in European goldenrod (Solidago virgaurea L. and grasses (Poaceae did not exceed the baseline concentrations and did not indicate environmental pollution by heavy metals. The levels of the metal concentration in groundwater did not exceed the standards established for water intended for consumption.

  9. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement

    Directory of Open Access Journals (Sweden)

    Davinder Singh

    2017-04-01

    Full Text Available The behavior of soluble salts contained in the municipal solid waste incinerator (MSWI ash significantly affects the strength development and hardening reaction when stabilized with cement. The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash. A series of indices such as unconfined compressive strength, split tensile strength, California bearing ratio (CBR and pH value was examined. Prior to this, the specimens were cured for 7 d, 14 d, and 28 d. The test results depict that the maximum dry density (MDD decreases and the optimum moisture content (OMC increases with the addition of cement. The test results also reveal that the cement increases the strength of the mixed specimens. Thus, the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.

  10. A review on automated sorting of source-separated municipal solid waste for recycling.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-02-01

    A crucial prerequisite for recycling forming an integral part of municipal solid waste (MSW) management is sorting of useful materials from source-separated MSW. Researchers have been exploring automated sorting techniques to improve the overall efficiency of recycling process. This paper reviews recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated MSW. We believe that this paper will provide a comprehensive overview of the state of the art and will help future system designers in the area. In this paper, we also present research challenges in the field of automated waste sorting and recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE)

    DEFF Research Database (Denmark)

    Zhao, Y.; Wang, H.-T.; Lu, W.-J.

    2009-01-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including......, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used...... where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection....

  13. Characteristics of the organic fraction of municipal solid waste and methane production: A review.

    Science.gov (United States)

    Campuzano, Rosalinda; González-Martínez, Simón

    2016-08-01

    Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed. Copyright © 2016. Published by Elsevier Ltd.

  14. Formation of cement mortar with incineration municipal solid waste bottom ash

    Science.gov (United States)

    Jun, Ng Hooi; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Jin, Tan Soo

    2017-04-01

    Product of incineration municipal solid waste bottom ash was substitute to Portland cement in construction industry. This study investigated the changes of bottom ash in Portland cement by chemical and mineralogical testing. Various substitution of bottom ash (10%, 20%, 30%, and 40%) to Portland cement was investigated. The main purpose was to clarify the mechanisms behind the formation of the cement mortar with bottom ash particles. The result indicated that the chemical and mineralogical of the cement mortar incorporating bottom ash was not significantly changed with the substitution of 10-40% bottom ash. However, the use of bottom ash minimizes the main composition of cement mortar. Overall, it was found that there is significant potential to increase the utilization of bottom ash.

  15. Biogas--municipal solid waste incinerator bottom ash interactions: sulphur compounds removal.

    Science.gov (United States)

    Ducom, Gaëlle; Radu-Tirnoveanu, Daniela; Pascual, Christophe; Benadda, Belkacem; Germain, Patrick

    2009-07-30

    This study focuses on a new way of reusing municipal solid waste incinerator bottom ash: landfill gas purification before energetic valorisation. A pilot plant was designed and operated on a landfill site located in France (Loire). One kilogram bottom ash is able to sequestrate more than 3.0 g of hydrogen sulphide, 44 mg of methyl mercaptan, and 86 mg of dimethyl sulphide. Hydrogen sulphide retention is probably due to acid-basic reactions conducting to sulphur mineralisation under the form of low solubility metal sulphides. The reaction medium is hydration water. The retention mechanism for methyl mercaptan is probably similar but dimethyl sulphide is most likely retained by physical adsorption. As methane is not retained by bottom ash, the landfill gas energetic content will not be lowered. There seems to be no appreciable difference in these results whether bottom ash is fresh or carbonated. These results are encouraging in the perspective of a field scale application of this biogas treatment process.

  16. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajaeifar

    2015-06-01

    Full Text Available Environmental assessment of municipal solid waste (MSW management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0, landfilling combined with composting (Sc-1, incineration (Sc-2, incineration combined with composting (Sc-3, and AD combined with incineration (Sc-4. The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6. The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4.

  17. Modelling of a combustion process for the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Rohyiza Ba'an Sivapalan Kathiravale Mohamad Puad Abu Muhd Noor Muhd Yunus

    2005-01-01

    Municipal Solid Waste (MSW) in Malaysia is increasing rapidly with increase in the population and economic growth. Landfill capacity required to accommodate the generated waste is anticipated to exceed 20,000 tons per day by year 2020. The current management system of solely depending on landfill disposal is inadequate and calls for a more environmentally friendly management system, which include the prospects of an eco park. To understand the combustion process, the development of mathematical model based on waste characteristic is required. Hence this paper will present the mathematical model developed to predict the mass and heat balance for MSW combustion process. This results of this mathematical model will be compared against the actual combustion of MSW in Thermal Oxidation Plant, so that the accuracy of the developed model can be determined accordingly. (Author)

  18. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-01-01

    Full Text Available In this study white mustard (Sinapis alba plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retarded growth or necrotic changes were not recorded. The performed phytotoxicity tests show that the analyzed composts produced in the composting plant situated on the landfill surface achieved high percentages of the germinating capacity of white mustard (Sinapis alba seeds and can be therefore used in the subsequent reclamation of the concerned landfill.

  19. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content.

    Science.gov (United States)

    Tom, Asha P; Pawels, Renu; Haridas, Ajit

    2016-03-01

    Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the

  20. Waste-to-energy, municipal solid waste treatment, and best available technology

    DEFF Research Database (Denmark)

    Wang, Zhenfeng; Ren, Jingzheng; Goodsite, Michael Evan

    2018-01-01

    The treatment of municipal solid waste (MSW) has become an urgently important task of many countries. This objective of this study is to present a novel group multi-attribute decision analysis method for prioritizing the MSW treatment alternatives based on the interval-valued fuzzy set theory....... This study allows multiple stakeholders to participate in the process of decision-making and they are also allowed to use linguistic variables to rate the alternatives and determine the weights of the evaluation criteria. The interval-valued fuzzy group decision making trail and evaluation laboratory...... (DEMATEL) method was developed to determine the weights of the evaluation criteria by considering the independent relationships among these criteria. The multi-actor interval-valued fuzzy grey relational analysis was developed to rank the waste-to-energy scenarios. Four alternative processes for MSW...