WorldWideScience

Sample records for residual glass matrix

  1. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  2. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    Science.gov (United States)

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  3. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Zhong [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Tang, Yuanyuan [School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (China); Liu, Chengshuai, E-mail: csliu@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Li, Fangbai [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2017-01-05

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4} spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4}. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr{sub 2}O{sub 3} and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the

  4. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    International Nuclear Information System (INIS)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-01

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr 1.32 Fe 0.19 Al 0.49 O 4 spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that

  5. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  6. R7T7-type HLW glass alteration under irradiation. Study of the residual alteration rate regime

    International Nuclear Information System (INIS)

    Rolland, Severine

    2012-01-01

    In France, fission products and minor actinides remaining after reprocessing of spent nuclear fuel are confined in a borosilicate glass matrix, named R7T7, for disposal in a geological repository. However, in these conditions, after several thousand years, water could arrive in contact with glass and be radio-lysed. In this work, we investigated the irradiation influence and especially the influence of the energy deposition on the residual glass alteration rate regime in pure water. Two types of leaching tests have been carried out. The first were performed on radioactive glass and the second on a SON68 glass (nonradioactive surrogate of R7T7 glass) under external irradiation γ. (author) [fr

  7. Celsian Glass-Ceramic Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  8. Measurement of edge residual stresses in glass by the phase-shifting method

    Science.gov (United States)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  9. Evaluation of the glow curves of a new glass matrix

    International Nuclear Information System (INIS)

    Oliveira, Nathália S.; Souza, Samara P.; Ferreira, Pâmela Z.; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P.; Carrera, Betzabel N.S.; Watanabe, Shigueo

    2017-01-01

    Thermoluminescence is a dosimetric technique with may be used to personal, clinical, environmental and high doses. In this work a new glass matrix, with nominal composition of 20Li 2 CO 3 .10Al 2 O 3 .25BaO.45B 2 O 3 (mol%), was studied by the thermoluminescence technique. The glow curves was be analyzed, after the irradiation of this glass matrix with high doses. The results showed that this new glass matrix has a temperature peak in 260°C, which is ideal for dosimetry applications. (author)

  10. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); Guo, J.W.; Wang, X.S; Zhang, S.F. [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi’an 710032 (China); He, L., E-mail: helin@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China)

    2016-07-04

    Crystal size of lithium disilicate (LD) phase in a LD glass-ceramic was changed by thermally controlled crystallization of a precursory LD glass at different temperatures. Effects of the crystal size on the mechanical properties of the glass-ceramic were investigated. It was found that the flexural strength presented a hump-like variation trend with increasing the crystal size, the hardness monotonously decreased at the same time. It was further confirmed that micro residual compressive stresses existed inside the LD crystals due to the thermal expansion mismatch between the glass matrix and the crystalline phase. The levels of the residual stresses increased with increasing the crystal size. The crystal size performed dual effects on the flexural strength of the glass-ceramic: an “interlocking effect” caused by larger-sized LD crystals and a “micro residual stress effect” related to the balancing tensile stresses in the glass matrix. Higher residual tensile stresses in the glass matrix induced by larger-sized LD crystals would counteract the “interlocking effect” of the crystals, causing the strength degradation. The hardness of the glass-ceramic was mainly controlled by the “micro residual stress effect”.

  11. Chemical durability of lead borosilicate glass matrix under simulated geological conditions

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2002-03-01

    The lead borosilicate glass has been developed for vitrification of High Level Waste (HLW) stored at Trombay. This waste is contains especially high contents of sodium, uranium sulphate and iron. The glasses containing HLW are to be ultimately disposed into deep geological repositories. Long term leach rates under simulated geological conditions need to be evaluated for glass matrix. Studies were taken up to estimate the lead borosilicate glass WTR-62 matrix for chemical durability in presence of synthetic ground water. The leachant selected was based on composition of ground water sample near proposed repository site. In the first phase of these tests, the experiments were conducted for short duration of one and half month. The leaching experiments were conducted in presence of a) distilled water b) synthetic ground water c) synthetic ground water containing granite, bentonite and ferric oxide and d) synthetic ground water containing humic acid at 100 0 C. The leachate samples were analysed by pHmetry , ion chromatography and UV -VIS spectrophotometry. The normalised leach rates for lead borosilicate WTR- 62 glass matrix based on silica, boron and sulphate analyses of leachates were of the order of 10 -3 to 10 -5 gms/cm 2 /day for 45 days test period in presence of synthetic ground water as well as in presence of other materials likely to be present along with synthetic ground water. These rates are comparable to those of sodium borsilicate glass matrices reported in literature. It is known that the leach rates of glass matrix decrease with longer test durations due to formation of leached layer on its surface. The observed leach rates of lead borosilicate WTR- 62 glass matrix for 45 day tests under simulated geological conditions were found to be sufficiently encouraging to take up long term tests for evaluating its performances under repository conditions. (author)

  12. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  13. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  14. Simulation of Residual Stresses at Holes in Tempered Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Poulsen, Peter Noe

    2010-01-01

    This work presents a full 3D numerical study of the residual stresses in tempered (toughened) glass near holes using Narayanaswamy’s model for the tempering process. It is the objective of the paper to elucidate the influence on the minimal residual compressive stresses at holes from variations in...

  15. Diffraction measurements of residual stress in titanium matrix composites

    International Nuclear Information System (INIS)

    James, M.R.; Bourke, M.A.; Goldstone, J.A.; Lawson, A.C.

    1993-01-01

    Metal matrix composites develop residual strains after consolidation due to the thermal expansion mismatch between the reinforcement fiber and the matrix. X-ray and neutron diffraction measured values for the longitudinal residual stress in the matrix of four titanium MMCs are reported. For thick composites (> 6 plies) the surface stress measured by x-ray diffraction matches that determined by neutron diffraction and therefore represents the stress in the bulk region consisting of the fibers and matrix. For thin sheet composites, the surface values are lower than in the interior and increase as the outer rows of fibers are approached. While a rationale for the behavior in the thin sheet has yet to be developed, accounting for composite thickness is important when using x-ray measured values to validate analytic and finite element calculations of the residual stress state

  16. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  17. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Grimm, Volker; Hochbruck, Marlis

    2013-01-01

    A well-known problem in computing some matrix functions iteratively is the lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Suppose the matrix exponential of a given matrix times a given vector has to be computed.

  18. Residual, restarting and Richardson iteration for the matrix exponential

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2010-01-01

    A well-known problem in computing some matrix functions iteratively is a lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Assume, the matrix exponential of a given matrix times a given vector has to be computed. We

  19. Study of a new glass matrix by the thermoluminescence technique

    International Nuclear Information System (INIS)

    Ferreira, Pamela Z.; Vedovato, Uly P.; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P.; Carrera, Betzabel N.S.; Watanabe, Shigueo

    2015-01-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li 2 CO 3 .10Al 2 O 3 .20BaO.50B 2 O 3 (mol%), irradiated with different doses in a 60 Co source. The glow curves and the dose-response curve were obtained for radiation doses between 50 Gy and 900 Gy. The results showed that this new glass matrix presents potential use in high-dose dosimetry. (author)

  20. Preparation of SnO_2-Glass Composite Containing Cu Particles Reduced from Copper Ions in Glass Matrix : Effect of Glass Particle Size on Microstructure and Electrical Property

    OpenAIRE

    Haruhisa, SHIOMI; Kaori, UMEHARA; Faculty of Engineering and Design, Kyoto Institute of Technology; Faculty of Engineering and Design, Kyoto Institute of Technology

    2000-01-01

    An attempt was made to improve the electrical properties of SnO_2-glass composites by dispersing Cu particles with low resistivity and positive temperature coefficient of resistance(TCR)in the glass matrix. Cu metal particles were precipitated by reducing Cu_2O previously dissolved into the matrix glass by adding LaB_6 as a reducing agent. The effect of the glass particle size, which influences the homogeneity of LaB_6 dispersion in the powder mixture before firing, on the Cu precipitation in...

  1. Borosilicate glass as a matrix for the immobilization of Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-01-01

    The reference waste form for immobilization of Savannah River Plant (SRP) waste is borosilicate glass. In the reference process, waste is mixed with glass-forming chemicals and melted in a Joule-heated ceramic melter at 1150 0 C. Waste glass made with actual or simulated waste on a small scale and glass made with simulated waste on a large scale confirm that the current reference process and glass-former composition are able to accommodate all SRP waste compositions and can produce a glass with: high waste loading; low leach rates; good thermal stability; high resistance to radiation effects; and good impact resistance. Borosilicate glass has been studied as a matrix for the immobilization of SRP waste since 1974. This paper reviews the results of extensive characterization and performance testing of the glass product. These results show that borosilicate glass is a very suitable matrix for the immobilization of SRP waste. 18 references, 3 figures, 10 tables

  2. Residual stresses and mechanical properties of metal matrix composites

    International Nuclear Information System (INIS)

    Persson, Christer.

    1993-01-01

    The large difference in coefficient of thermal expansion of the matrix and particles in a metal matrix composite will introduce residual stresses during cooling from process temperature. These stresses are locally very high, and are known to influence the mechanical behaviour of the material. Changes in the stress state will occur during heat treatments and when the material is loaded due to different elastic, plastic, and creep properties of the constituents. The change of residual stresses in an Al-SiC particulate composite after different degree of plastic straining has been studied. The effect of plastic straining was modelled by an Eshelby model. The model and the measurements both show that the stress in the loading direction decreases for a tensile plastic strain and increases for a compressive plastic strain. By x-ray diffraction the stress response in the matrix and particles can be measured independently. This has been used to determine the stress state under and after heat treatments and under mechanical loading in two Al 15% SiC metal matrix composites. By analysing the line width from x-ray experiment the changes in the microstrains in the material were studied. A finite element model was used to model the generation of thermal residual stresses, stress relaxation during heat treatments, and load sharing during the first load cycle. Calculated stresses and microstrains were found to be in good agreement with the measured values. The elastic behaviour of the composite can be understood largely in terms of elastic load transfer between matrix and particles. However, at higher loads when the matrix becomes plastic residual stresses also become important. 21 refs

  3. Matrix-Matching as an Improvement Strategy for the Detection of Pesticide Residues.

    Science.gov (United States)

    Giacinti, Géraldine; Raynaud, Christine; Capblancq, Sophie; Simon, Valérie

    2016-05-01

    More than 90% of the pesticides residues in apples are located in the peel. We developed a gas chromatography/ion trap tandem mass spectrometry method for investigating all detectable residues in the peel of 3 apple varieties. Sample preparation is based on the use of the Quick Easy Cheap Effective Rugged and Safe method on the whole fruit, the flesh, and the peel. Pesticide residues were quantified with solvent-matched and matrix-matched standards, by spiking apple sample extracts. Matrix effects dependent on the type of extract (fruit, flesh, or peel) and the apple variety were detected. The best data processing methods involved normalizing matrix effect rates by matrix-matched internal/external calibration. Boscalid, captan, chlorpyrifos, fludioxonil, and pyraclostrobin were the most frequently detected pesticides. However, their concentrations in the whole fruit were below European maximum residue levels. Despite negative matrix effects, the residues in peel were detected at concentrations up to 10 times higher than those in whole fruits. Consequently, other pesticide residues present at concentrations below the limit of quantification in the whole fruit were detected in the peel. © 2016 Institute of Food Technologists®

  4. Conversion of plutonium scrap and residue to boroilicate glass using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Rudolph, J.; Elam, K.R.; Ferrada, J.J.

    1995-01-01

    Plutonium scrap and residue represent major national and international concerns because (1) significant environmental, safety, and health (ES ampersand H) problems have been identified with their storage; (2) all plutonium recovered from the black market in Europe has been from this category; (3) storage costs are high; and (4) safeguards are difficult. It is proposed to address these problems by conversion of plutonium scrap and residue to a CRACHIP (CRiticality, Aerosol, and CHemically Inert Plutonium) glass using the Glass Material Oxidation and Dissolution System (GMODS). CRACHIP refers to a set of requirements for plutonium storage forms that minimize ES ampersand H concerns. The concept is several decades old. Conversion of plutonium from complex chemical mixtures and variable geometries into a certified, qualified, homogeneous CRACHIP glass creates a stable chemical form that minimizes ES ampersand H risks, simplifies safeguards and security, provides an easy-to-store form, decreases storage costs, and allows for future disposition options. GMODS is a new process to directly convert metals, ceramics, and amorphous solids to glass; oxidize organics with the residue converted to glass; and convert chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, and other materials to glass. GMODS is an enabling technology that creates new options. Conventional glassmaking processes require conversion of feeds to oxide-like forms before final conversion to glass. Such chemical conversion and separation processes are often complex and expensive

  5. Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix.

    Science.gov (United States)

    Zhang, Haicang; Gao, Yujuan; Deng, Minghua; Wang, Chao; Zhu, Jianwei; Li, Shuai Cheng; Zheng, Wei-Mou; Bu, Dongbo

    2016-03-25

    Strategies for correlation analysis in protein contact prediction often encounter two challenges, namely, the indirect coupling among residues, and the background correlations mainly caused by phylogenetic biases. While various studies have been conducted on how to disentangle indirect coupling, the removal of background correlations still remains unresolved. Here, we present an approach for removing background correlations via low-rank and sparse decomposition (LRS) of a residue correlation matrix. The correlation matrix can be constructed using either local inference strategies (e.g., mutual information, or MI) or global inference strategies (e.g., direct coupling analysis, or DCA). In our approach, a correlation matrix was decomposed into two components, i.e., a low-rank component representing background correlations, and a sparse component representing true correlations. Finally the residue contacts were inferred from the sparse component of correlation matrix. We trained our LRS-based method on the PSICOV dataset, and tested it on both GREMLIN and CASP11 datasets. Our experimental results suggested that LRS significantly improves the contact prediction precision. For example, when equipped with the LRS technique, the prediction precision of MI and mfDCA increased from 0.25 to 0.67 and from 0.58 to 0.70, respectively (Top L/10 predicted contacts, sequence separation: 5 AA, dataset: GREMLIN). In addition, our LRS technique also consistently outperforms the popular denoising technique APC (average product correction), on both local (MI_LRS: 0.67 vs MI_APC: 0.34) and global measures (mfDCA_LRS: 0.70 vs mfDCA_APC: 0.67). Interestingly, we found out that when equipped with our LRS technique, local inference strategies performed in a comparable manner to that of global inference strategies, implying that the application of LRS technique narrowed down the performance gap between local and global inference strategies. Overall, our LRS technique greatly facilitates

  6. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  7. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues

    International Nuclear Information System (INIS)

    Roether, J.A.; Daniel, D.J.; Amutha Rani, D.; Deegan, D.E.; Cheeseman, C.R.; Boccaccini, A.R.

    2010-01-01

    Air pollution control (APC) residues, obtained from a major UK energy from waste (EfW) plant, processing municipal solid waste, have been blended with silica and alumina and melted using DC plasma arc technology. The glass produced was crushed, milled, uni-axially pressed and sintered at temperatures between 750 and 1150 deg. C, and the glass-ceramics formed were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties assessed included Vickers's hardness, flexural strength, Young's modulus and thermal shock resistance. The optimum sintering temperature was found to be 950 deg. C. This produced a glass-ceramic with high density (∼2.58 g/cm 3 ), minimum water absorption (∼2%) and relatively high mechanical strength (∼81 ± 4 MPa). Thermal shock testing showed that 950 deg. C sintered samples could withstand a 700 deg. C quench in water without micro-cracking. The research demonstrates that glass-ceramics can be readily formed from DC plasma treated APC residues and that these have comparable properties to marble and porcelain. This novel approach represents a technically and commercially viable treatment option for APC residues that allow the beneficial reuse of this problematic waste.

  8. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

    Science.gov (United States)

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing

    2018-01-01

    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  9. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  10. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues

    Energy Technology Data Exchange (ETDEWEB)

    Roether, J.A.; Daniel, D.J. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Amutha Rani, D. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Deegan, D.E. [Tetronics Ltd., Swindon, Wiltshire SN3 4DE (United Kingdom); Cheeseman, C.R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Boccaccini, A.R., E-mail: a.boccaccini@imperial.ac.uk [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-01-15

    Air pollution control (APC) residues, obtained from a major UK energy from waste (EfW) plant, processing municipal solid waste, have been blended with silica and alumina and melted using DC plasma arc technology. The glass produced was crushed, milled, uni-axially pressed and sintered at temperatures between 750 and 1150 deg. C, and the glass-ceramics formed were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties assessed included Vickers's hardness, flexural strength, Young's modulus and thermal shock resistance. The optimum sintering temperature was found to be 950 deg. C. This produced a glass-ceramic with high density ({approx}2.58 g/cm{sup 3}), minimum water absorption ({approx}2%) and relatively high mechanical strength ({approx}81 {+-} 4 MPa). Thermal shock testing showed that 950 deg. C sintered samples could withstand a 700 deg. C quench in water without micro-cracking. The research demonstrates that glass-ceramics can be readily formed from DC plasma treated APC residues and that these have comparable properties to marble and porcelain. This novel approach represents a technically and commercially viable treatment option for APC residues that allow the beneficial reuse of this problematic waste.

  11. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  12. Numerical analysis of residual stresses reconstruction for axisymmetric glass components

    Science.gov (United States)

    Tao, Bo; Xu, Shuang; Yao, Honghui

    2018-01-01

    A non-destructive measurement method for 3D stress state in a glass cylinder using photoelasticity has been analyzed by simulation in this research. Based on simulated stresses in a glass cylinder, intensity of the cylinder in a circular polariscope can be calculated by Jones calculus. Therefore, the isoclinic angle and optical retardation can be obtained by six steps phase shifting technique. Through the isoclinic angle and optical retardation, the magnitude and distribution of residual stresses inside the glass cylinder in cylindrical coordinate system can be reconstructed. Comparing the reconstructed stresses with numerical simulated stresses, the results verify this non-destructive method can be used to reconstruct the 3D stresses. However, there are some mismatches in axial stress, radial stress and circumferential stress.

  13. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2005-01-01

    Roč. 482, - (2005), s. 115-122 ISSN 0255-5476. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composites * fracture toughness * toughening effects Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.399, year: 2005

  14. Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Z.M. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Y.S.; Wang, Z. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Z.H.; Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-11-20

    Quasi-static and dynamic compressive properties of in-situ Ti{sub 60}Zr{sub 14}V{sub 12}Cu{sub 4}Be{sub 10} bulk metallic glass matrix composites containing ductile dendrites were investigated. Upon quasi-static compressive loading, the composite exhibits a high fracture strength of ~2,600 MPa, combined with a considerable plasticity of ~40% at room temperature. However, upon dynamic loading, an excellent plasticity of ~16% can be obtained due to the abundant dislocations and severe lattice distortions within dendrites and multiplication of shear bands within the glass matrix analyzed by transmission-electron microscopy. A constitutive relationship is obtained by Johnson-Cook plasticity model, which is employed to model the dynamic flow stress behavior. In addition, under dynamic compression, the adiabatic temperature rise increases with increasing strain rates, resulting in that the softening effect within the glass matrix is obviously enhanced during deformation.

  15. Porous glass matrix method for encapsulating high-level nuclear wastes

    International Nuclear Information System (INIS)

    Macedo, P.B.; Tran, D.C.; Simmons, J.H.; Saleh, M.; Barkatt, A.; Simmons, C.J.; Lagakos, N.; DeWitt, E.

    1979-01-01

    A novel process which uses solidified porous high-silica glass powder to fixate radioactive high-level wastes is described. The process yields cylinders consisting of a core of high-silica glass containing the waste elements in its structure and a protective layer also of high-silica glass completely free of waste elements. The process can be applied to waste streams containing 0 to 100% solids. The core region exhibits a higher coefficient of thermal expansion and a lower glass transition temperature than the outer protective layer. This leads to mechanical strengthening of the glass and good resistance to stress corrosion by the development of a high residual compressive stress on the surface of the sample. Both the core and the protective layer exhibit extremely high chemical durability and offer an effective fixation of the radioactive waste elements, including 239 Pu and 99 Tc which have long half-lives, for calculated periods of more than 1 million years, when temperatures are not allowed to rise above 100 0 C

  16. Optoelectronic switch matrix as a look-up table for residue arithmetic.

    Science.gov (United States)

    Macdonald, R I

    1987-10-01

    The use of optoelectronic matrix switches to perform look-up table functions in residue arithmetic processors is proposed. In this application, switchable detector arrays give the advantage of a greatly reduced requirement for optical sources by comparison with previous optoelectronic residue processors.

  17. Residual stresses and critical diameter in vitreous matrix materials

    International Nuclear Information System (INIS)

    Mastelaro, Valmor R.; Zanotto, Edgar D.

    1995-01-01

    The present study was undertaken to test the validity of existing models for: i) the residual internal stresses which arise due to thermal and elastic mismatch in duplex systems, and ii) the critical particle diameter for spontaneous cracking. Partially crystallized 1,07 Na 2 O-2 Ca O-3 Si O 2 - 6% P 2 O 5 glasses were studied. The experimental residual stress was in excellent agreement with the calculated value, however, the critical particle diameter, estimated by an energy balance approach, was more than ten times smaller than the experimental value. This discrepancy indicates that the energy model is not applicable in this case. (author)

  18. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  19. Molecular dynamics study of a nuclear waste glass matrix with plutonium

    International Nuclear Information System (INIS)

    Meis, C.; Delaye, J.M.; Ghaleb, D.

    1999-01-01

    Molecular dynamics simulation techniques were applied to model the incorporation of plutonium in the French nuclear waste glass matrix. Born-Mayer-Huggins analytical potentials were established to characterize short-range interactions between Pu-O and Pu-Pu pairs; the potentials were fitted to the structural properties of plutonium dioxide in the light of a recent experimental study showing that plutonium is found as Pu(IV) in the glass. The transferability of the established potentials to the glass structure is discussed, and the potential parameters are further refined by molecular dynamics simulations in an aluminoborosilicate glass to obtain mean Pu-O interatomic distances and first-neighbor coordination numbers matching the experimental values as closely as possible. Previously published Born-Mayer-Huggins potentials supplemented by Stillinger-Weber three-body terms were used for oxygen-cation and cation-cation interactions. The difficulties encountered in establishing a Pu-O potential that provides satisfactory results in both oxides and glasses are also discussed

  20. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  1. Barium borosilicate glass - a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Mishra, R.K.; Sengupta, P.; Kumar, Amar; Das, D.; Kale, G.B.; Raj, Kanwar

    2006-01-01

    Borosilicate glass formulations adopted worldwide for immobilization of high-level radioactive liquid waste (HLW) is not suitable for sulphate bearing HLW, because of its low solubility in such glass. A suitable glass matrix based on barium borosilicate has been developed for immobilization of sulphate bearing HLW. Various compositions based on different glass formulations were made to examine compatibility with waste oxide with around 10 wt% sulfate content. The vitrified waste product obtained from barium borosilicate glass matrix was extensively evaluated for its characteristic properties like homogeneity, chemical durability, glass transition temperature, thermal conductivity, impact strength, etc. using appropriate techniques. Process parameters like melt viscosity and pour temperature were also determined. It is found that SB-44 glass composition (SiO 2 : 30.5 wt%, B 2 O 3 : 20.0 wt%, Na 2 O: 9.5 wt% and BaO: 19.0 wt%) can be safely loaded with 21 wt% waste oxide without any phase separation. The other product qualities of SB-44 waste glass are also found to be on a par with internationally adopted waste glass matrices. This formulation has been successfully implemented in plant scale

  2. Study of a new glass matrix by thermoluminescent technique for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pamela Z.; Carvalho, Gabriel S. Marchiori de; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica; Linda, V.E. Caldas [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carrera, Betzabel N.S.; Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-07-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.30BaO.40B{sub 2}O{sub 3} (mol%), irradiated with different doses in a {sup 60}Co source. The glow curves and the dose-response curve were obtained for radiation doses of 10, 50, 100, 200 e 700 Gy. The results showed that this new glass matrix has potential use in high-dose dosimetry. (author)

  3. Glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass

    International Nuclear Information System (INIS)

    Soliman, A.A.

    2005-01-01

    The glass transition behavior and crystallization kinetics of Cu 0.3 (SSe 20 ) 0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe 20 and Cu 2 Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (E g ), the activation energy of crystallization (E c ), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe 20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu 2 Se compound with a two-dimensional crystal growth

  4. Iron phosphate glass: a promising matrix for the immobilization of Cs and Mo

    International Nuclear Information System (INIS)

    Hemadevi, V.; Joseph, Kitheri

    2015-01-01

    Presently, borosilicate glass (BSG) is the acceptable vitrification matrix for the immobilization of high level waste. The solubility of Mo in BSG is limited in the presence of Cs. As per the literature, solubility of Mo in BSG is about 2.5 wt. % in the presence of Cs. Hence it is difficult to immobilize nuclear waste rich in Cs and Mo in borosilicate glass. It is observed that the composition of Cs and Mo expressed as oxides are 10.4 and 14.7 wt. % respectively in simulated fast reactor waste. Iron phosphate glass containing 20 wt. % simulated fast reactor waste (referred as IP20FRW) was synthesized and characterized. IP20FRW contains ~ 3 wt. % of molybdenum oxide along with 2 wt. % cesium oxide. IPG is a suitable matrix for the immobilization of Cs and Mo separately. Hence it is essential to understand the glass characteristics of IPG containing both Cs and Mo. This paper explores systematic loading of both Cs and Mo such that the final composition corresponds to 10.5 wt. % Cs 2 O-15 wt. % MoO 3 -31.9 wt. % Fe 2 O 3 -42.6 wt. % P 2 O 5 . In addition to synthesis, the present study also includes understanding the change in glass characteristics of IPG containing both Cs and Mo. The possibility of higher percent loading of both Cs and Mo in IPG demonstrates the better glass forming characteristics of IPG. The synthesis and characterization of Cs-Mo loaded glasses will be discussed in this paper. (author)

  5. Residual strain dependence on the matrix structure in RHQ-Nb3Al wires by neutron diffraction measurement

    International Nuclear Information System (INIS)

    Jin Xinzhe; Nakamoto, Tatsushi; Tsuchiya, Kiyosumi; Ogitsu, Toru; Yamamoto, Akira; Ito, Takayoshi; Harjo, Stefanus; Kikuchi, Akihiro; Takeuchi, Takao; Hemmi, Tsutomu

    2012-01-01

    We prepared three types of non-Cu RHQ-Nb 3 Al wire sample with different matrix structures: an all-Ta matrix, a composite matrix of Nb and Ta with a Ta inter-filament, and an all-Nb matrix. Neutron diffraction patterns of the wire samples were measured at room temperature in the J-PARC ‘TAKUMI’. To obtain the residual strains of the materials, we estimated the lattice constant a by multi-peak analysis in the wires. A powder sample of each wire was measured, where the powder was considered to be strain free. The grain size of all the powder samples was below 0.02 mm. For the wire sample with the all-Nb matrix, we also obtained the lattice spacing d by a single-peak analysis. The residual strains of the Nb 3 Al filament were estimated from the two analysis results and were compared. The resulting residual strains obtained from the multi-peak analysis showed a good accuracy with small standard deviation. The multi-peak analysis results for the residual strains of the Nb 3 Al filaments in the three samples (without Cu plating) were all tensile residual strain in the axial direction, of 0.12%, 0.12%, and 0.05% for the all-Ta matrix, the composite matrix, and the all-Nb matrix, respectively. The difference in the residual strain of the Nb 3 Al filament between the composite and all-Nb matrix samples indicates that the type of inter-filament material shows a great effect on the residual strain. In this paper, we report the method of measurement, method of analysis, and results for the residual strain in the three types of non-Cu RHQ-Nb 3 Al wires. (paper)

  6. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Directory of Open Access Journals (Sweden)

    Wołkowycki Grzegorz

    2016-03-01

    Full Text Available The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  7. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  8. Characterization of residues of effluent treatment plant from lapping process of soda-lime glass and its application in the production of concrete

    International Nuclear Information System (INIS)

    Antonio, Aline Pignaton; Calmon, Joao Luiz; Tristao, Fernando Avancini

    2012-01-01

    This study enunciates the physical, chemical and mineralogical composition of the residue from the process of ETE cutting of soda-lime glasses and its application in concrete as a replacement to the weight of CPV ARI RS cement, at levels of 0, 5, 10, 15 and 20%. Tests were performed on fresh and hardened (ages 3, 7, 28 and 300 days). The results were compared and statistically analyzed. In the fresh state, reductions in the amount of exuding water and consistency were observed. The results of compressive strength were statistically different, while the results for the tensile strength by diametrical compression and modulus of elasticity results were belonging to homogeneous groups. Beneficial effects the levels of residue on the cementitious matrix and the transition zone of concrete were identified by SEM, particularly concrete in S15

  9. Development of a glass matrix for vitrification of sulphate bearing high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Mishra, R.K.; Thorat, Vidya; Ramchandran, M.; Amar Kumar; Ozarde, P.D.; Raj, Kanwar; Das, D.

    2004-07-01

    High level radioactive liquid waste (HLW) is generated during reprocessing of spent nuclear fuel. In the earlier reprocessing flow sheet ferrous sulphamate has been used for valancy adjustment of Pu from IV to III for effective separation. This has resulted in generation of HLW containing significance amount of sulphate. Internationally borosilicate glass matrix has been adopted for vitrification of HLW. The first Indian vitrification facility at Waste Immobilislition Plant (WIP), Tarapur a five component borosilicate matrix (SiO 2 :B 2 O 3 :Na 2 O : MnO : TiO 2 ) has been used for vitrification of waste. However at Trombay HLW contain significant amount of sulphate which is not compatible with standard borosilicate formulation. Extensive R and D efforts were made to develop a glass formulation which can accommodate sulphate and other constituents of HLW e.g., U, Al, Ca, etc. This report deals with development work of a glass formulations for immobilization of sulphate bearing waste. Different glass formulations were studied to evaluate the compatibility with respect to sulphate and other constituents as mentioned above. This includes sodium, lead and barium borosilicate glass matrices. Problems encountered in different glass matrices for containment of sulphate have also been addressed. A glass formulation based on barium borosilicate was found to be effective and compatible for sulphate bearing high level waste. (author)

  10. Mechanical properties of molybdenum-sealing glass-ceramics

    International Nuclear Information System (INIS)

    Swearengen, J.C.; Eagan, R.J.

    1975-07-01

    Elastic constants, thermal expansion, strength, and fracture toughness were determined for a molybdenum-sealing glass-ceramic containing approximately 31 volume percent Zn 2 SiO 4 crystals in a glass matrix. The microstructure was studied for two different crystallization treatments and moderate changes in composition. Mechanical properties of the composite were compared with the properties of the constituent phases through application of mixture theory and by fractographic observations. The reinforcing effects of the crystal phase at room temperature are evident in comparison with the properties of the residual glass but not necessarily in comparison with the parent glass. Fracture toughness of the composite depends primarily upon additive properties of the separate phases instead of by interactive effects such as microcracks. (U.S.)

  11. Neodymium partitioning in zirconolite-based glass-ceramics designed for minor actinides immobilization

    International Nuclear Information System (INIS)

    Loiseau, P.; Caurant, D.; Baffier, N.; Fillet, C.

    2000-01-01

    This study deals with glass-ceramic matrices designed for the conditioning of minor actinides, in which zirconolite crystals (CaZrTi 2 O 7 ) are homogeneously dispersed in a residual glassy matrix. Good immobilization performances require a high enrichment of actinides in the crystalline phase (double containment principle). Glass-ceramics are obtained by controlled devitrification of an aluminosilicate parent glass containing large amounts of TiO 2 and ZrO 2 . Neodymium was selected to simulate the trivalent minor actinides. Crystallization was performed at 1200 deg. C for various Nd 2 O 3 contents (0 - 10 wt. %). In all cases, zirconolite crystallization is obtained in the bulk of glass-ceramics. The evolution of Nd 3+ location between the crystals and the residual glass was followed by electron spin resonance and optical absorption. Both techniques demonstrate that neodymium is partly incorporated in zirconolite crystals. Moreover, total Nd 2 O 3 content in parent glass has a strong effect on Nd 3+ ions distribution. (authors)

  12. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    International Nuclear Information System (INIS)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-01-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  13. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching

    Science.gov (United States)

    Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.

    2017-04-01

    In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.

  14. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  15. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  16. Effects of β-irradiation in multicomponent glasses simulating the matrix of the French nuclear waste glass (R7T7)

    International Nuclear Information System (INIS)

    Boizot, B.; Ghaleb, D.; Petite, G.

    2001-01-01

    4-, 5- and 6-oxide components alumino-borosilicate glasses, with compositions closed to the matrix of the french nuclear glass 'R7T7' have been irradiated with electrons (β) at 2.5 MeV with a Van de Graff accelerator. These glasses have been studied after irradiation with different spectroscopic methods: Electron Paramagnetic Resonance for the study of defects, Raman Micro-spectroscopy for the study of amorphous network evolution under irradiation, and by 11 B MAS NMR. The results of these studies are presented here. It shows in particular a great sensibility to the irradiation conditions like dose rate and irradiation temperature, who are therefore important parameters for the representativeness of such experiments. (authors)

  17. Matrix Characterization of Plutonium Residues by Alpha-Particle Self-Interrogation

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Foster, L.A.; Staples, P.

    1998-01-01

    Legacy plutonium residues often have inadequate item descriptions. Nondestructive characterization can help segregate these items for reprocessing or provide information needed for disposal or storage. Alpha particle-induced gamma-ray spectra contain a wealth of information that can be used for matrix characterization. We demonstrate how this information can be used for item identification. Gamma-ray spectra were recorded at the Los Alamos Plutonium Facility from a variety of legacy, plutonium-processing residues and product materials. The comparison and analysis of these spectra are presented

  18. Shielding of electromagnetic fields by metallic glasses with Fe and Co matrix

    International Nuclear Information System (INIS)

    Nowosielski, R.; Griner, S.

    1997-01-01

    The influence of chemical composition and magnetic and electric properties for shielding of electromagnetic fields with frequency 10-1000 kHz, by metallic glasses has been analysed. For investigation were selected two groups of metallic glasses with matrix of Fe and Co. Particularly, in there were selected metallic glasses as follows; Fe 78 Si 9 B 13 , Co 68 Fe 4 Mo 1.5 Si 13.5 B 13 , Co 69 Mo 2 Fe 4 Si 14 B 11 , Co 70.5 Fe 2.5 Mn 4 Mo 1 Si 9 B 15 . The experiments were realised for casting metallic glasses by the CMBS method in the form of strips with width 10 mm. Obtained results of shielding indicate clear for very good shielding effectiveness of one layer shields both electric and magnetic components of electromagnetic fields, although shielding of magnetic component is smaller than electric. (author). 17 refs, 5 figs, 9 tabs

  19. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  20. Augite-anorthite glass-ceramics from residues of basalt quarry and ceramic wastes

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2015-06-01

    Full Text Available Dark brown glasses were prepared from residues of basalt quarries and wastes of ceramic factories. Addition of CaF2, Cr2O3 and their mixture CaF2-Cr2O3 were used as nucleation catalysts. Generally, structures with augite and anorthite as major phases and small amount of magnetite and olivine phases were developed through the crystallization process. In the samples heat treated at 900 °C the dominant phase is augite, whereas the content of anorthite usually overcomes the augite at higher temperature (1100 °C. Fine to medium homogenous microstructures were detected in the prepared glass-ceramic samples. The coefficient of thermal expansion and microhardness measurements of the glass-ceramic samples were from 6.16×10-6 to 8.96×10-6 °C-1 (in the 20–500 °C and 5.58 to 7.16 GP, respectively.

  1. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  2. Residual stresses in a bulk metallic glass-stainless steel composite

    Energy Technology Data Exchange (ETDEWEB)

    Aydiner, C.C. [Department of Materials and Science Engineering, Iowa State University, Ames, IA 50011 (United States); Uestuendag, E. [Department of Materials and Science Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hanan, J.C. [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 (United States); Winholtz, R.A. [Department of Mechanical and Aerospace Engineering and Research Reactor Center, University of Missouri, Columbia, MO 65211 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Peker, A. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) are new structural materials with impressive mechanical properties. They can now be cast into large dimensions, which can lead to significant residual stress generation due to thermal tempering. In this process, a surface compression develops balanced with tension in the interior. To evaluate this phenomenon non-destructively, a model cylindrical stainless steel (SS)-BMG composite was prepared and studied using neutron diffraction and finite element (FE) modeling. The residual strain data from the SS obtained by diffraction were used in modeling calculations to show that significant tempering could be achieved in the composite (about -200 MPa surface compression in the SS). The strong bond between the SS and BMG allowed efficient load transfer and facilitated stress generation. The final values of the residual stresses were seen to be relatively insensitive to the high temperature constitutive behavior of the SS due to the physics of the thermal tempering in BMGs. The approach presented here constitutes an effective means to study non-destructively thermal tempering in BMGs.

  3. Residual stresses in a bulk metallic glass-stainless steel composite

    International Nuclear Information System (INIS)

    Aydiner, C.C.; Uestuendag, E.; Clausen, B.; Hanan, J.C.; Winholtz, R.A.; Bourke, M.A.M.; Peker, A.

    2005-01-01

    Bulk metallic glasses (BMGs) are new structural materials with impressive mechanical properties. They can now be cast into large dimensions, which can lead to significant residual stress generation due to thermal tempering. In this process, a surface compression develops balanced with tension in the interior. To evaluate this phenomenon non-destructively, a model cylindrical stainless steel (SS)-BMG composite was prepared and studied using neutron diffraction and finite element (FE) modeling. The residual strain data from the SS obtained by diffraction were used in modeling calculations to show that significant tempering could be achieved in the composite (about -200 MPa surface compression in the SS). The strong bond between the SS and BMG allowed efficient load transfer and facilitated stress generation. The final values of the residual stresses were seen to be relatively insensitive to the high temperature constitutive behavior of the SS due to the physics of the thermal tempering in BMGs. The approach presented here constitutes an effective means to study non-destructively thermal tempering in BMGs

  4. Effect of fiber content on the properties of glass fiber-phenolic matrix composite

    International Nuclear Information System (INIS)

    Zaki, M.Y.; Shahid, M.R.; Subhani, T.; Sharif, M.N.

    2003-01-01

    Glass fiber-Phenolic matrix composite is used for the manufacturing of parts /components related to electronic and aerospace industry due to its high strength, dimensional stability and excellent electrical insulation properties. The evaluation of this composite material is necessary prior to make parts/components of new designs. In the present research, thermosetting phenolic plastic was reinforced with E-glass fiber in different fiber-to-resin ratios to produce composites of different compositions. Mechanical and electrical properties of these composite materials were evaluated with reference to the effect of fiber content variation in phenolic resin. (author)

  5. Reduction of Residual Stresses in Sapphire Cover Glass Induced by Mechanical Polishing and Laser Chamfering Through Etching

    Directory of Open Access Journals (Sweden)

    Shih-Jeh Wu

    2016-10-01

    Full Text Available Sapphire is a hard and anti-scratch material commonly used as cover glass of mobile devices such as watches and mobile phones. A mechanical polishing using diamond slurry is usually necessary to create mirror surface. Additional chamfering at the edge is sometimes needed by mechanical grinding. These processes induce residual stresses and the mechanical strength of the sapphire work piece is impaired. In this study wet etching by phosphate acid process is applied to relief the induced stress in a 1” diameter sapphire cover glass. The sapphire is polished before the edge is chamfered by a picosecond laser. Residual stresses are measured by laser curvature method at different stages of machining. The results show that the wet etching process effectively relief the stress and the laser machining does not incur serious residual stress.

  6. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  7. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  8. Singlet and doublet states UV-vis spectrum and electronic properties of 3-methylchrysene and 4-methylchrysene in glass matrix.

    Science.gov (United States)

    Husain, Mudassir M; Tandon, H C; Varadwaj, Pradeep R

    2008-03-01

    The ultraviolet-visual spectrum of 3-methylchrysene, 4-methylchrysene and their radical cations formed by ultraviolet radiations, were measured in glass matrix at the room temperature. In the measured singlet state spectrum we were able to identify the alpha, p, beta, beta' (Clar's) or (1)L(b), (1)L(a)(1)B(b), (1)B(a) (Platt's notation) bands. The presence of alpha, beta or (1)L(b), (1)B(b) was confirmed by calculating their wavelength ratio lambda(alpha)/lambda(beta). Since matrix induces perturbation in the measured spectrum; it becomes necessary to take into account the perturbation while computing the spectrum. An effort has been made in this work to simulate the electronic spectrum in the same environment as is measured. This study presents the first calculated spectrum of these systems and their cations in glass matrix by semi empirical methods. To observe the magnitude of perturbation and hence to see the spectral shift in glass matrix, the spectrum was calculated in the free state as well. Spectral properties such as frontier orbitals gap, dipole moment, mean polarizabilities and its tensors were also computed both in glass matrix and free state using semiemperical method. The measured bands of 3-methylchrysene cation at wavelength 416.50 and 473.85 nm closely match with the available diffuse intersteallar bands (DIBs) at 417.55 and 472.64 nm, respectively. Also the observed 474.85 nm band of 4-methylchrysene cation matches the DIB at 476.00 nm.

  9. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    Science.gov (United States)

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  10. Application of the atomic absorption technical to available the concentration of silver ions incorporated in glass matrix by ionic exchange process

    International Nuclear Information System (INIS)

    Mendes, E.; Silva, K.F.; Teixeira, A.; Silva, L.; Paula, M.M.S.; Angioletto, E.; Riella, H.G.; Fiori, M. A.

    2009-01-01

    Ion specimens can be incorporated in glasses or natural clays by ionic exchange process with different concentrations dependent of matrix's type and of the ionic exchange parameters. In particular, the incorporation of silver ions presents high interest by its biocidal properties. A compound contending ion silver specimens presents bactericidal and fungicidal properties with effect proportional to ion concentration. This work presents results about application of the atomic absorption technical to determine the silver ion concentration incorporated in a glass matrix by ionic exchange process. The ionic exchange experiments were realized with different AgNO 3 concentration and constant temperature. After ionic exchange process, the glass samples were submitted to characterization by Energy Dispersive X-Ray Spectroscopy and Atomic Absorption Techniques. The comparative results between different techniques showed that atomic absorption technical is adequate to determine ion silver concentration incorporated in the glass matrix after ionic exchange process. (author)

  11. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix.

    Science.gov (United States)

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew J; Rudd, Chris D; Walker, Gavin S; Scotchford, Colin A

    2013-09-01

    Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites.

  12. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    Science.gov (United States)

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  13. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  14. Determination of residual boron in thermally treated controlled-porosity glasses, by colorimetry, spectrography and isotachophoresis

    International Nuclear Information System (INIS)

    Dawidowicz, A.L.; Matusewicz, J.; Wysocka-Lisek, J.

    1989-01-01

    Controlled-porosity glasses (CPGs) are often applied as sorbents in chromatography. Besides having high thermal, chemical and mechanical resistance they are characterized by a very narrow pore-size distribution and the choice of mean pore diameter and porosity covers a wide range. In spite of these advantages, their range of use in chromatography is restricted because of their strong adsorption properties, which are connected with the presence of residual boron atoms in the porous CPG skeleton. The boron concentration on the CPG surface can be increased by proper thermal treatment. When CPGs are heated in the range 400-800 0 the residual boron atoms in the network diffuse from the bulk to the surface. The paper discusses the boron content in porous glasses of different mean pore diameters and the determination of the enrichment of boron on the GPG surface, by three independent methods: colorimetry, spectrography and isotachophoresis. (author)

  15. Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study

    DEFF Research Database (Denmark)

    Pourmoghaddam, Navid; Nielsen, Jens Henrik; Schneider, Jens

    2016-01-01

    This work presents 3D results of the thermal tempering simulation by the Finite Element Method in order to calculate the residual stresses in the area of the holes near edges and corners of a tem-pered glass plate. A viscoelastic material behavior of the glass is considered for the tempering...... process. The structural relaxation is taken into account using Narayanaswamy’s model. The motiva-tion for this work is to study the effect of the reduction of the hole and edge minimum distances, which are defined according to EN 12150-1. It is the objective of the paper to demonstrate and elucidate...... the influence of the hole and edge distances on the minimal residual compressive stress-es at holes after the tempering process. The residual stresses in the area of the holes are calculat-ed varying the following parameters: the hole diameter, the plate thickness and the interaction between holes and edges...

  16. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    Science.gov (United States)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  17. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  18. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites

    DEFF Research Database (Denmark)

    Lorentzen, T.; Clarke, A.P.

    1998-01-01

    Residual lattice strains in the aluminium and SiC phases of F3S.20S extruded A359 20% SiC metal-matrix composite were measured by using neutron diffi action at room and elevated temperatures to monitor the effects of in situ uniaxial plastic deformations. The results are interpreted with referenc...

  19. Determining the fracture resistance of fibre-reinforced glass matrix composites by means of the chevron-notch flexural technique

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, A. R.; Kern, H.; Dlouhý, Ivo

    2001-01-01

    Roč. 308, 1/2 (2001), s. 111-117 ISSN 0921-5093 R&D Projects: GA ČR GV101/96/K264 Institutional research plan: CEZ:AV0Z2041904 Keywords : glass matrix composites * fracture toughness * chevron notch test Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.978, year: 2001

  20. Glass matrix armor

    International Nuclear Information System (INIS)

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  1. Studies on the accelerated chemical durability test and its impact on structural changes in borosilicate glass matrix

    International Nuclear Information System (INIS)

    Thorat, Vidya S.; Kadam, P.S.; Mishra, R.K.; Kumar, Amar; Kaushik, C.P.; Sudarsan, V.; Tyagi, A.K.

    2015-01-01

    Sodium borosilicate glass used for the immobilisation of high level nuclear waste with tentative compositions (SiO 2 ) 0.477 (B 2 O 3 ) 0.239 (Na 2 O) 0.170 (TiO 2 ) 0.02 )3 (CaO) 0.068 (Al 2 O 3 ) 0.023 was evaluated for its long term stability in the repository conditions where it may be exposed to high temperature and pressure. 29 Si MAS NMR studies have confirmed that, upon leaching, sodium borosilicate glass undergoes congruent crystallization leading to the formation of an aluminosilicate phase, Na 6 Al 6 Si 10 O 32 . Further the residual glass structure in the composite sample is identical with that of the un-leached glass. Boron structural units are unaffected in the glass compositions upon leaching

  2. Recovery of plutonium from insulation, scrap glass, and sand-slag residues

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Garnett, J.E.; Fraser, J.K.

    1979-01-01

    Laboratory experiments were performed to evaluate methods for removing plutonium from insulation, glass leach heel, and sand and slag heel. The methods evaluated included hydrochloric acid leaching, nitric acid leaching, and a treatment consisting of a fusion step followed by acid leaching. Results indicate that a nitric acid leach is effective in lowering the plutonium concentration of these solid wastes to the desired limit, if multiple contacts are used. A hydrochloric acid leach was found to be superior to a nitric acid leach for removing plutonium from the residues

  3. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    Science.gov (United States)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility. PMID:24961911

  4. A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

    Science.gov (United States)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S.

    2014-06-01

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  5. Metal particles constraint in glass matrix composites and its impact on fracture toughness enhancement

    Czech Academy of Sciences Publication Activity Database

    Kotoul, M.; Dlouhý, Ivo

    387-389 (2004), s. 404-408 ISSN 0921-5093 R&D Projects: GA ČR GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : brittle matrix composites * crack bridging * crack trapping Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.445, year: 2004

  6. The Effect of Stochastically Varying Creep Parameters on Residual Stresses in Ceramic Matrix Composites

    Science.gov (United States)

    Pineda, Evan J.; Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.

    2015-01-01

    Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted.

  7. Effect of static pre-loading on fracture toughness of Nicalon fibre glass matrix composite

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Chawla, K. K.; Kulkarmi, R.; Koopman, M.; Boccaccini, A. R.

    č. 367 (2004), s. 17-23 ISSN 0921-5093 R&D Projects: GA AV ČR IAA2041003; GA MŠk ME 491 Institutional research plan: CEZ:AV0Z2041904 Keywords : Nicalon fibre * glass matrix composite * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.445, year: 2004

  8. Residual strain evolution during the deformation of single fiber metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, J.C.; Uestuendag, E.; Clausen, B. [Dept. of Materials Science, California Inst. of Tech., Pasadena, CA (United States); Sivasambu, M.; Beyerlein, I.J. [Theoretical Div., Los Alamos National Lab., Los Alamos, NM (United States); Brown, D.W.; Bourke, M.A.M. [Materials Science and Technology Div., Los Alamos National Lab., Los Alamos, NM (United States)

    2002-07-01

    Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each phase. Yet, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. An approach is presented that quantifies the deformation parameters of each phase using neutron diffraction measurements before, during, and after failure under tensile loading in model composites consisting of a single alumina fiber embedded in an aluminum matrix. The evolution of residual strains after loading was examined including the effects of fiber failure. (orig.)

  9. arXiv On Matrix Factorizations, Residue Pairings and Homological Mirror Symmetry

    CERN Document Server

    Lerche, Wolfgang

    We argue how boundary B-type Landau-Ginzburg models based on matrix factorizations can be used to compute exact superpotentials for intersecting D-brane configurations on compact Calabi-Yau spaces. In this paper, we consider the dependence of open-string, boundary changing correlators on bulk moduli. This determines, via mirror symmetry, non-trivial disk instanton corrections in the A-model. As crucial ingredient we propose a differential equation that involves matrix analogs of Saito's higher residue pairings. As example, we compute from this for the elliptic curve certain quantum products m_2 and m_3, which reproduce genuine boundary changing, open Gromov-Witten invariants.

  10. Effects of glass composition on the residual rate of alteration and modelling parameters

    International Nuclear Information System (INIS)

    Fleury, Benjamin

    2013-01-01

    This PhD thesis deals with the long-term behavior of the French nuclear glasses R7T7. An experiment plan (based on 27 glass compositions) is developed for studying the effect of glass composition on the residual rate of alteration. The impact of Mg-phase precipitation on glass alteration is also studied and several modelling exercises are performed. There is one order of magnitude between the different measurements (rate or pH...) associated with the different glass compositions. The statistical treatment of these measurements results in predictive equations and several observable trends are valid for all materials with a composition complying with the experiment plan conditions. The effect of Si, Na, B and Al on alteration (.i.e, gel and secondary phase's formation, pH) is confirmed, the influence of Zn, Zr and Ni-Co is evidenced. The role of Cr has to be clarified. Experiments show that glass alteration rate in underground water, which contains high level of Ca and Mg, is one order of magnitude higher than in the case of pure water. The glass composition plays the same role for the alteration in the two types of solution. During alteration, the late addition of Mg introduces a time lag in the resumption response because silicon is first provided from partial dissolution of the previously-formed alteration gel. The nucleation process does not limit Mg-silicate precipitation whereas a pH above 8-8.5 is necessary for Mg-silicate precipitation. The glass alteration rate can be a limiting factor if the quantity of Mg supplied to the reaction is enough. The Mg silicate phase seems to have systematically a molar ratio Mg/Si between 0.2 and 0.4. It is also shown that the air tightness of the reactor influences the rate of dissolution of CO 2 in the solution leading to a decrease of pH. Finally, modelling exercises with GRAAL show promising results. Such modelling is required in order to extend the prediction of the long-term alteration behavior to different glass

  11. Effect of irradiation on the evolution of alteration layer formed during nuclear glass leaching

    International Nuclear Information System (INIS)

    Mougnaud, Sarah

    2016-01-01

    High-level radioactive waste (HLW) remaining after spent nuclear fuel reprocessing is immobilized within a glass matrix, eventually destined for geological disposal. Water intrusion into the repository is expected after several thousand years. The alteration of a non-radioactive surrogate for nuclear glass has been extensively studied and it has been determined that successive leaching mechanisms lead to the formation of a 'passivating' alteration layer and to the establishment of a residual rate regime in the long term. However, glass packages are submitted to the radioactivity of confined radioelements. This work focuses on the influence of irradiation on the alteration layer formed during the residual rate regime, in a structural and mechanistic point of view. Three focal areas have been selected. Non-radioactive simple glasses have been leached and externally irradiated in order to determine modifications induced by electronic effects (irradiations with electrons and alpha particles). The same type of glass samples have been previously irradiated with heavy ions and their leaching behavior have been studied in order to assess the impact of ballistic dose cumulated by the glass before water intrusion. Leaching behavior of a complex radioactive glass, doped with an alpha-emitter, has been studied to consider a more realistic situation. (author) [fr

  12. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  13. Physical matrix correction for RFA of mass and special glasses

    International Nuclear Information System (INIS)

    Medicus, G.; Ritter, R.

    1984-01-01

    A theoretical matrix correction model with relatively complex mass absorption coefficients is reported, which takes into account the adsorption of the stimulating radiation and the radiation in the specimen to be measured, as well as the geometry of the spectrometer. With the realized concept of an effective primary wave length, good correction results were obtained over large regions of concentrations and elements. The computer program renders possible besides of the usual reference measurement at uniform reference wave length - the reference of several elements in the specimen to one special element of the reference specimen. The correction method was tested with 42 test glasses, which were previously analyzed. (author)

  14. Borosilicate glass as a matrix for immobilization of SRP high-level waste

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Approximately 22 million gallons of high-level radioactive defense waste are currently being stored in large underground tanks located on the Savannah River Plant (SRP) site in Aiken, South Carolina. One option now being considered for long-term management of this waste involves removing the waste from the tanks, chemically processing the waste, and immobilizing the potentially harmful radionuclides in the waste into a borosilicate glass matrix. The technology for producing waste glass forms is well developed and has been demonstrated on various scales using simulated as well as radioactive SRP waste. Recently, full-scale prototypical equipment has been made operational at SRP. This includes both a joule-heated ceramic melter and an in-can melter. These melters are a part of an integrated vitrification system which is under evaluation and includes a spray calciner, direct liquid feed apparatus, and various elements of an off-gas system. Two of the most important properties of the waste glass are mechanical integrity and leachability. Programs are in progress at SRL aimed at minimizing thermally induced cracking by carefully controlling cooling cycles and using ceramic liners or coatings. The leachability of SRP waste glass has been studied under many different conditions and consistently found to be low. For example, the leachability of actual SRP waste glass was found to be 10 -6 to 10 -5 g/(cm 2 )(day) initially and decreasing to 10 -9 to 10 -8 g/(cm 2 )(day) after 100 days. Waste glass is also being studied under anticipated storage conditions. In brine at 90 0 C, the leachability is about 5 x 10 -8 g/(cm 2 )(day) after 60 days. The effects of other geological media including granite, basalt, shale, and tuff are also being studied as part of the multibarrier isolation system

  15. Study of a new glass matrix by the thermoluminescence technique; Estudo de uma nova matriz vitrea pela tecnica de termoluminescencia

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pamela Z.; Vedovato, Uly P.; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (INFIS/UFU), MG (Brazil). Instituto de Fisica; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carrera, Betzabel N.S.; Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-07-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.20BaO.50B{sub 2}O{sub 3} (mol%), irradiated with different doses in a {sup 60}Co source. The glow curves and the dose-response curve were obtained for radiation doses between 50 Gy and 900 Gy. The results showed that this new glass matrix presents potential use in high-dose dosimetry. (author)

  16. Mechanical Characterization of Thermomechanical Matrix Residual Stresses Incurred During MMC Processing

    Science.gov (United States)

    Castelli, Michael G.

    1998-01-01

    In recent years, much effort has been spent examining the residual stress-strain states of advanced composites. Such examinations are motivated by a number of significant concerns that affect composite development, processing, and analysis. The room-temperature residual stress states incurred in many advanced composite systems are often quite large and can introduce damage even prior to the first external mechanical loading of the material. These stresses, which are induced during the cooldown following high-temperature consolidation, result from the coefficient of thermal expansion mismatch between the fiber and matrix. Experimental techniques commonly used to evaluate composite internal residual stress states are non-mechanical in nature and generally include forms of x-ray and neutron diffraction. Such approaches are usually complex, involving a number of assumptions and limitations associated with a wide range of issues, including the depth of penetration, the volume of material being assessed, and erroneous effects associated with oriented grains. Furthermore, and more important to the present research, these techniques can assess only "single time" stress in the composite. That is, little, if any, information is obtained that addresses the time-dependent point at which internal stresses begin to accumulate, the manner in which the accumulation occurs, and the presiding relationships between thermoelastic, thermoplastic, and thermoviscous behaviors. To address these critical issues, researchers at the NASA Lewis Research Center developed and implemented an innovative mechanical test technique to examine in real time, the time-dependent thermomechanical stress behavior of a matrix alloy as it went through a consolidation cycle.

  17. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    Science.gov (United States)

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  18. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  19. Immobilization of acid digestion residue

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Allen, C.R.

    1983-01-01

    Acid digestion treatment of nuclear waste is similar to incineration processes and results in the bulk of the waste being reduced in volume and weight to some residual solids termed residue. The residue is composed of various dispersible solid materials and typically contains the resultant radioactivity from the waste. This report describes the immobilization of the residue in portland cement, borosilicate glass, and some other waste forms. Diagrams showing the cement and glass virtification parameters are included in the report as well as process steps and candidate waste product forms. Cement immobilization is simplest and probably least expensive; glass vitrification exhibits the best overall volume reduction ratio

  20. Quantitative micro-Raman analysis of volcanic glasses: influence and correction of matrix effects

    Science.gov (United States)

    Di Muro, Andrea

    2014-05-01

    Micro-Raman spectroscopy, even though a very promising micro-analytical technique, is still not used to routinely quantify volatile elements dissolved in glasses. Following an original idea of Galeener and Mikkelsen (1981) for the quantification of hydroxyl (OH) in silica glass, several quantitative procedures have been recently proposed for the analysis of water, sulphur and carbon in natural glasses (obsidians, pumices, melt inclusions). The quantification of a single analyte requires the calibration of the correlation between the intensity I (height or area) of the related Raman band, normalized or not to a reference band RB, and the analyte concentration. For the analysis of alumino-silicate glasses, RB corresponds to one of the two main envelopes (LF and HF) related to the vibration of the glass network. Calibrations are linear, provided the increase in the analyte concentration does not dramatically affect RB intensity. Much attention has been paid to identify the most appropriate spectral treatment (spectra reduction; baseline subtraction; etc) to achieve accurate measurement of band intensities. I here show that the accuracy of Raman procedures for volatile quantification critically depends on the capability in predicting and in taking into account the influence of multiple matrix effects, which are often correlated with the average polymerization degree of the glass network. A general model has been developed to predict matrix effects affecting micro-Raman analysis of natural glasses. The specific and critical influence of iron redox state and pressure are discussed. The approach has been extensively validated for the study of melt inclusions and matrices spanning a broad range of compositions and dissolved volatile contents. References Analytical procedures Mercier, M, Di Muro, A., Métrich, N., Giordano, D., Belhadj, O., Mandeville, C.W. (2010) Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions

  1. Evaluation of the glow curves of a new glass matrix; Avaliação das curvas de emissão termoluminescente de uma nova matriz vítrea

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Nathália S.; Souza, Samara P.; Ferreira, Pâmela Z.; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlândia (INFIS/UFU), Uberlândia, MG (Brazil). Instituto de Física; Caldas, Linda V.E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Carrera, Betzabel N.S.; Watanabe, Shigueo [Universidade de São Paulo (IF/USP), São Paulo, SP (Brazil). Instituto de Física

    2017-07-01

    Thermoluminescence is a dosimetric technique with may be used to personal, clinical, environmental and high doses. In this work a new glass matrix, with nominal composition of 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.25BaO.45B{sub 2}O{sub 3} (mol%), was studied by the thermoluminescence technique. The glow curves was be analyzed, after the irradiation of this glass matrix with high doses. The results showed that this new glass matrix has a temperature peak in 260°C, which is ideal for dosimetry applications. (author)

  2. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC.

    Science.gov (United States)

    Passerini, N; Craig, D Q

    2001-05-18

    The objective of the study was to ascertain residual water levels in polylactide and polylactide-co-glycolide microspheres prepared using the solvent evaporation technique and to investigate the effects of that water on the glass transitional behaviour of the microspheres. Microspheres were prepared from polylactic acid (PLA) and polylactide-co-glycolide (PLGA) 50:50 and 75:25 using a standard solvent evaporation technique. The glass transition was measured as a function of drying conditions using modulated temperature DSC. The microspheres were found to contain very low levels of dichloromethane, while residual water levels of up to circa 3% w/w were noted after freeze or oven drying, these levels being higher for microspheres containing higher glycolic acid levels. The residual water was found to lower the T(g) following the Gordon-Taylor relationship. The data indicate that the microparticles may retain significant water levels following standard preparation and drying protocols and that this drying may markedly lower the T(g) of the spheres.

  3. Conditioning of high activity solid waste: fuel claddings and dissolution residues

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This chapter reports on experimental studies of embedding into matrix material, the melting and conversion of zircaloy, and waste properties and characterization. Methods are developed for embedding the waste scrap into a solid and resistant matrix material in order to confine the radioactivity and to prevent it from dispersion. The matrix materials investigated are lead alloys, ceramics and compacted graphite or aluminium powder. The treatment of fuel hulls by melting or chemical conversion is described. Cemented hulls are characterized and the pyrophoricity of zircaloy fines is investigated. Topics considered include the embedding of hulls into graphite and aluminium, the embedding of hulls and dissolution residues into alumino-ceramics, the solidification of alpha-bearing wastes into a ceramic matrix, and the conditioning of cladding waste by eutectoidic melting and by embedding in glass

  4. Phase boundary effects in metal matrix embedded glasses

    International Nuclear Information System (INIS)

    Schiewer, E.

    1979-01-01

    An investigation was performed to study reactions at the phase boundaries of glass-lead composites at temperatures up to the softening point of the glass. Some metal was oxidized at the boundary and penetrated into the glass. Solid-state diffusion was rate controlling. In the case of a phosphate glass, fission products were depleted in the boundary area. Molybdenum migrated into the lead, and cesium migrated into the glass core. 2 figures, 3 tables

  5. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  6. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  7. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix

    Science.gov (United States)

    Clements, L. L.; Moore, R. L.

    1979-01-01

    The authors have measured thermal and mechanical properties of several composites of S-2 glass fiber in a room-temperature-curable epoxy matrix. The filament-wound composites ranged from 50 to 70 vol% fiber. The composites had generally good to excellent mechanical properties, particularly in view of the moderate cost of the material. However, the composites showed rapid increases in transverse thermal expansion above 50 C, and this property must be carefully considered if any use above that temperature is contemplated.

  8. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  9. Development of Fe-B Based Bulk Metallic Glasses: Morphology of Residual Phases in Fe50Ni16Mo6B18Zr10 Glass

    Directory of Open Access Journals (Sweden)

    Tiburce A. Aboki

    2013-04-01

    Full Text Available Iron-boron based bulk metallic glasses (BMG development has been initiated using Fe40Ni38Mo4B18 as precursor. Addition of zirconium up to 10 atomic % along with the reduction of Ni proportion improves the glass forming ability (GFA, which is optimum when Ni is suppressed in the alloy. However melting instability occurred during the materials fabrication resulting in the formation of residual crystalline phases closely related to the amorphous phase. Microstructure study shows an evolution from amorphous structure to peculiar acicular structure, particularly for Fe50Ni16Mo6B18Zr10, suggesting the amorphous structure as interconnected atomic sheets like “atomic mille feuilles” whose growth affects the alloys’ GFA.

  10. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    Science.gov (United States)

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  11. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    Science.gov (United States)

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  12. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  13. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  14. Oxidation behaviour of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, Bin

    2011-01-01

    The Zr-based bulk metallic glasses, developed since the late 1980's, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO 2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T ≥ Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T ≤ Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses

  15. Basaltic glass alteration in confined media: analogy with nuclear glass in geological disposal conditions

    International Nuclear Information System (INIS)

    Parruzot, Benjamin

    2014-01-01

    This dissertation concerns basaltic glass alteration mechanisms and rates. Through a better understanding of the processes controlling the basaltic glass durability, this thesis attempts to establish a link between laboratory studies and volcanic glass alteration in natural environment. The methodology used here is similar to the one used for nuclear glasses. Thus, we measured for the first time the residual alteration rate of basaltic glasses. Protective effect of the alteration film is clearly established. Moreover, synthetic glass representativeness is evaluated through a study focused on the effect of iron oxidation degree on the glass structure and leaching properties. A minor effect of Fe II on the forward rate and a negligible effect on the residual rate are shown. The residual rate is extrapolated at 5 C and compared to the mean alteration rate of natural samples of ages ranging from 1900 to 10 7 years. Non-zeolitized natural glasses follow this linear tendency, suggesting a control of the long-term rate by clayey secondary phase precipitation. Natural environments are open environments: a parametric study was performed in order to quantify the water flow rate effect on chemical composition of the alteration layer. When applied to two natural samples, the obtained laws provide coherent results. It seems possible to unify the descriptive approach from the study of natural environments to the mechanistic approach developed at the laboratory. The next step will consist in developing a model to transpose these results to nuclear glasses. (author) [fr

  16. A study on thermal residual stresses in the matrix and fiber of a misoriented short fiber composite

    International Nuclear Information System (INIS)

    Son, Bong Jin; Lee, Joon Hyun

    1994-01-01

    An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extream cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volume fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distrubution type for both in-plane and axisymmetric misorientation.

  17. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  18. Investigation of matrix effects in 193 nm laser ablation-inductively coupled plasma-mass spectrometry analysis using reference glasses of different transparencies

    International Nuclear Information System (INIS)

    Czas, J.; Jochum, K.P.; Stoll, B.; Weis, U.; Yang, Q.-C.; Jacob, D.E.; Andreae, M.O.

    2012-01-01

    The degree of transparency of glasses, which depends on the Fe content, may influence the ablation behavior during laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis. To test possible matrix effects when using a 193 nm Nd:YAG laser, we have analyzed transparent and opaque NIST, BAM and USGS reference glasses. These reference materials are ideal for such investigations, because they are well characterized, most elements are homogeneously distributed at the micrometer scale, and their Fe content varies over a very large range, from 16 to 130,000 μg g −1 . Our measurements show that the fractionation factors of refractory and volatile lithophile elements, such as Sr, Ba, and Rb, are 1.00 ± 0.03 and independent of the degree of transparency. However, for volatile chalcophile/siderophile elements (e.g., Zn and Pb) the fractionation factors vary significantly between 0.7 and 1, depending on the spot sizes and the transparency of the material. Mass-load-induced matrix effects may also influence the accuracy of LA-ICP-MS analysis. They are less than 2% for the lithophile and up to 10% for volatile chalcophile/siderophile elements when the mass load varies by a factor 2.4. Relative sensitivity factors used for calibration of lithophile elements agree within uncertainty limits for transparent and opaque glasses when using a 193 nm laser. Even for volatile/chalcophile elements they differ only by 5–10%. The reliability of the LA-ICP-MS analyses is demonstrated by presenting concentration data of 27 trace elements in the NIST, BAM and USGS reference glasses using NIST SRM 612 for calibration, where highly accurate reference values are available. For trace element concentrations in the range between 1 and 500 μg g −1 , the reproducibility and the uncertainties at the 95% confidence level of the measurements vary between 1–4%, and 7–10%, respectively. - Highlights: ► Matrix effects are low for lithophile elements using a 193 nm laser

  19. Implementation of a digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic

    Science.gov (United States)

    Habiby, Sarry F.

    1987-01-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.

  20. Optical residual stress measurement in TFT-LCD panels

    Science.gov (United States)

    Wang, Wei-Chung; Sung, Po-Chi

    2017-06-01

    The residual stress of the glass substrate might be one of causes to produce the non-uniform light distribution defect, i.e. Mura, in thin film transistor-liquid crystal display (TFT-LCD) panels. Glass is a birefringent material with very low birefringence. Furthermore, the thinner and thinner thickness request from the market makes the traditional photoelasticity almost impossible to measure the residual stresses produced in thin glass plates. Recently, a low-level stress measurement method called transmissivity extremities theory of photoelasticity (TEToP) was successfully developed to measure the residual stress in glass plate. Besides, to measure the stress of the glass plate in the TFT-LCD panel whose rear surface may has different kinds of coatings, an advanced reflection photoelasticity was also developed. In this paper, three commercially available glass plates with 0.33mm nominal thickness and three glass circular disks with different coatings were inspected to verify the feasibility of the TEToP and the advanced reflection photoelasticity, respectively.

  1. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  2. Insight on agglomerates of gold nanoparticles in glass based on surface plasmon resonance spectrum: study by multi-spheres T-matrix method

    Science.gov (United States)

    Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.

    2018-01-01

    The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various

  3. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  4. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  5. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Ferrada, J.J.

    1996-01-01

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials

  6. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  7. Development of soda-lime glasses from ornamental rock wastes

    International Nuclear Information System (INIS)

    Babisk, Michelle Pereira

    2009-01-01

    During the ornamental rocks production, among other steps, one saw the rock blocks in order to transform them into semi-finished plates. In this step, expressive amounts of residues are generated, which are not properly discharged in nature, without any programmed utilization. The residues of silicide rocks present, in their compositions, oxides which are raw materials employed to fabricate soda-lime type glasses (containing SiO_2, Al_2O_3, CaO, Na_2O and K_2O). On the other hand the residues of carbonatic rocks are constituted of glass net modifier oxides, like CaO and MgO. In this work it was developed four types of soda-lime glasses using ornamental rock residues, where the glasses compositions were adjusted by adding sand, as silica source, as well as sodium and calcium carbonates as sources of Na_2O and CaO, respectively. The obtained glasses were characterized by means of Archimed's method for densities measurements, microstructure by using optical and electronic microscopy, phases by means of X-ray diffraction (XRD), hardness by Vickers indentation, spectroscopy (UV/VIS), and hydrolytic resistance according to ISO 719. The XRD analyses confirmed the compositions total vitrification, where the greened aspect of the samples was due to the presence of the iron oxides. The produced glasses properties were compared with those of commercial glasses aiming their industrial employment. The main difference between the produced glasses and those commercials varied primarily regarding the amount of carbonates incorporated. The results showed that the ornamental rocks residues may be used as raw materials for glasses fabrication, and they found a useful economic destination rather than discharge which promotes undesirable environmental impact. (author)

  8. Thin films prepared from tungstate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, B.; Ribeiro, S.J.L.; Messaddeq, Y. [Departamento de Quimica Geral e Inorganica, Instituto de Quimica, Sao Paulo State University-UNESP, CP 355, CEP 14800-900, Araraquara, SP (Brazil); Li, M.S. [Instituto de Fisica, USP, CP 369, CEP 13560-970, Sao Carlos, SP (Brazil); Poirier, G. [Departamento de Ciencias Exatas, UNIFAL-MG, CEP 37130-000, Alfenas-MG (Brazil)], E-mail: gael@unifal-mg.edu.br

    2008-01-30

    Vitreous samples containing high concentrations of WO{sub 3} (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO{sub 3}. These amorphous thin films of about 4 {mu}m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO{sub 3} microcrystals in the amorphous phase.

  9. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  10. Preparation of fullerene/glass composites

    Science.gov (United States)

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  11. Characterization and Morphological Properties of Glass Fiber ...

    African Journals Online (AJOL)

    PROF HORSFALL

    used as the matrix for the glass fibre-epoxy resin formation. E- Glass fibre ... reinforcement of composites, coatings of materials, and other ..... composite for the manufacture of glass-ceramic materials ... reinforced epoxy composites with carbon.

  12. PALS investigations of matrix Vycor glass doped with molecules of luminescent dye and silver nanoparticles. Discrepancies from the ETE model

    Directory of Open Access Journals (Sweden)

    Gorgol Marek

    2015-12-01

    Full Text Available A thermal stability of three materials: undoped reference Vycor glass, glass filled with ROT-305 red dye, and silver nanoparticles was investigated by positron annihilation lifetime spectroscopy (PALS in a broad temperature range (from 93 to 473 K. The attempt of pore size calculations from the ortho-positronium lifetime data was performed using the extended Tao-Eldrup (ETE model. Below room temperature, a significant decrease in lifetime values of the longest-lived component was found for all the samples. This effect could not be explained by thermal shrinkage of the material and is probably caused by interaction of o-Ps with a Vycor glass matrix. The greatest discrepancy from the ETE model predictions was observed for the reference glass. Doping the base material with dye molecules and silver nanoparticles resulted in similar small decrease in this discrepancy. After reheating the samples to the room temperature, the PALS components returned to the initial values. In the temperature range of 293–473 K, quite good agreement between PALS results and the ETE model predictions was observed for the reference glass and the glass incorporated with dye molecules. The observed small discrepancy in this range could possibly be partly explained by thermal expansion of the material. For the glass doped with silver nanoparticles, a significant change in PALS parameters was observed in the temperature range from 403 to 473 K.

  13. Impact of crystallization on the structure and chemical durability of borosilicate glass

    International Nuclear Information System (INIS)

    Nicoleau, Elodie

    2016-01-01

    This work describes a new approach to help understand the chemical durability of partially crystallized nuclear waste conditioning matrices. Among the studies carried out on nuclear waste deep geological disposal, long term behavior studies have so far been conducted on homogeneous glassy matrices. However, as the crystalline phases may generate modifications in the chemical composition and properties of such matrices, the description and a better understanding of their effects on the chemical durability of waste packages are of primary importance. A protocol to study the durability of heterogeneous model matrices of nuclear interest containing different types of crystalline phases was developed. It is based on a detailed description of the morphology, microstructure and structure of the glassy matrix and crystalline phases, and on the study of various alteration regimes. Three crystal phases that may form when higher concentrations of waste are immobilized in Uranium Oxide type conditioning glasses were studied: alkali and alkaline earth molybdates, rare earth silicates and ruthenium oxide. The results highlight the roles of the composition and the structure of the surrounding glassy matrix as the parameters piloting the alteration kinetics of the partially crystallized glassy matrices. This behavior is identical whatever the nature of the crystalline phases, as long as these phases do not lead to a composition gradient and do not percolate within the glassy matrix. Given these results, a methodology to study partially crystallized matrices with no composition gradient is then suggested. Its key development lies firstly in the evaluation of the behavior of partially crystallized matrices through the experimental study of the residual glassy matrix in various alteration regimes. This methodology may be adapted to the case of new glass formulations with more complex compositions (e.g. highly waste-loaded glass), which may contain crystals formed during cooling

  14. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  15. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    Science.gov (United States)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  16. Glasses obtained from industrial wastes

    International Nuclear Information System (INIS)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO 3 (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  17. Preparation and characterization of an improved borosilicate glass matrix for the incorporation of high level radioactive waste (HAW). Pt. 1

    International Nuclear Information System (INIS)

    Guber, W.; Hussain, M.; Kahl, L.; Ondracek, G.; Saidl, J.; Dippel, T.

    1979-08-01

    On the basis of laboratory and technical experience with the preparation and the characterization of borosilicate glasses as solidification matrix for high level radioactive waste solution (HAW), a borosilicate glass composition with optimum properties has been developed. Keeping in view the technical and final storage requirements, a number of glass compositions with varying proportions of influential components as Al, Mg, Na were prepared and thoroughly investigated for certain parameters as specific gravity, thermal conductivity, impact resistance, thermal expansion, viscosity, characteristic temperature points, specific heat, evaporation losses from the melt, electrical conductivity, leach resistance, tendency toward recrystallization and second phase formation. All the compositions (some with different amounts of Gd 2 O 3 , an expected neutron poision) contained 15 wt. % simulated HAW oxides. Samples for investigation were fabricated very close to the actual process conditions of vitrification. Two glass products GP12 and GP26 (3.7% Gd 2 O 3 ) have been selected out of 25 glasses as the optimised products for further thorough investigations. Leach resistance, viscosity at 1420 K, tendency towards recrystallization and second phase formation were the most important deciding factors. (orig.) [de

  18. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Directory of Open Access Journals (Sweden)

    Yongsheng Wang

    2014-04-01

    Full Text Available The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC were investigated by using an in-situ tensile test under transmission electron microscopy (TEM. It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  19. Leaching TC-99 from DWPF glass in simulated geologic repository groundwaters

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jurgensen, A.R.

    1986-01-01

    The purpose was to determine if DWPF glass in geologic groundwaters would immobilize Tc-99 as well as it does other elements. A previous study (using a borosilicate glass of a very different composition from DWPF glass) indicated that Tc-99 leached rapidly from the glass suggesting that glass may not be a good matrix for immobilizing Tc-99. It was suggested that the Tc-99 had migrated to vesicles in the glass while the glass was still molten. To determine if borosilicate glass was a good immobilizing matrix for Tc-99, this study was performed using DWPF glass. The leaching of Tc-99 was compared to other elements in the glass. It was shown that rapid leaching will not occur with SRP glass. The leach rate for Tc-99 was nearly identical to that for B, a matrix element in the glass. Another objective was to compare the release of Tc-99 under oxidizing and reducing conditions with other elements in the glass. In the tests described here, even though the glass was dissolving more under reducing conditions as a result of abnormally high pH values, less Tc-99 appeared in solution

  20. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  1. Interfacial bonding and friction in silicon carbide (filament)-reinforced ceramic- and glass-matrix composites

    International Nuclear Information System (INIS)

    Bright, J.D.; Shetty, D.K.

    1989-01-01

    This paper reports interfacial shear strength and interfacial sliding friction stress assessed in unidirectional SiC-filament-reinforced reaction-bonded silicon nitride (RBSN) and borosilicate glass composites and 0/90 cross-ply reinforced borosilicate glass composite using a fiber pushout test technique. The interface debonding load and the maximum sliding friction load were measured for varying lengths of the embedded fibers by continuously monitoring the load during debonding and pushout of single fibers in finite-thickness specimens. The dependences of the debonding load and the maximum sliding friction load on the initial embedded lengths of the fibers were in agreement with nonlinear shear-lag models. An iterative regression procedure was used to evaluate the interfacial properties, shear debond strength (τ d ), and sliding friction stress (τ f ), from the embedded fiber length dependences of the debonding load and the maximum frictional sliding load, respectively. The shear-lag model and the analysis of sliding friction permit explicit evaluation of a coefficient of sliding friction (μ) and a residual compressive stress on the interface (σ 0 ). The cross-ply composite showed a significantly higher coefficient of interfacial friction as compared to the unidirectional composites

  2. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  3. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    International Nuclear Information System (INIS)

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  4. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    International Nuclear Information System (INIS)

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm 2 -h

  5. Residual stresses and critical diameter in vitreous matrix materials; Tensoes residuais e diametro critico em materiais com matrizes vitreas

    Energy Technology Data Exchange (ETDEWEB)

    Mastelaro, Valmor R.; Zanotto, Edgar D. [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais

    1995-12-31

    The present study was undertaken to test the validity of existing models for: i) the residual internal stresses which arise due to thermal and elastic mismatch in duplex systems, and ii) the critical particle diameter for spontaneous cracking. Partially crystallized 1,07 Na{sub 2} O-2 Ca O-3 Si O{sub 2} - 6% P{sub 2} O{sub 5} glasses were studied. The experimental residual stress was in excellent agreement with the calculated value, however, the critical particle diameter, estimated by an energy balance approach, was more than ten times smaller than the experimental value. This discrepancy indicates that the energy model is not applicable in this case. (author) 1 figs., 3 tabs.

  6. Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes

    International Nuclear Information System (INIS)

    Lokken, R.O.; Chick, L.A.; Thomas, L.E.

    1982-09-01

    Basalt-based waste forms were developed for the immobilization of transuranic (TRU) contaminated wastes. The specific waste studied is a 3:1 blend of process sludge and incinerator ash. Various amounts of TRU blended waste were melted with Pomona basalt powder. The vitreous products were subjected to a variety of heat treatment conditions to form glass ceramics. The total crystallinity of the glass ceramic, ranging from 20 to 45 wt %, was moderately dependent on composition and heat treatment conditions. Three parent glasses and four glass ceramics with varied composition and heat treatment were produced for detailed phase characterization and leaching. Both parent glasses and glass ceramics were mainly composed of a continuous, glassy matrix phase. This glass matrix entered into solution during leaching in both types of materials. The Fe-Ti rich dispersed glass phase was not significantly degraded by leaching. The glass ceramics, however, exhibited four to ten times less elemental releases during leaching than the parent glasses. The glass ceramic matrix probably contains higher Fe and Na and lower Ca and Mg relative to the parent glass matrix. The crystallization of augite in the glass ceramics is believed to contribute to the improved leach rates. Leach rates of the basalt glass ceramic are compared to those of other TRU nuclear waste forms containing 239 Pu

  7. Matrix effect in analysis of pesticide residues in fruits and vegetables by high performance liquid chromatography with quadrupole-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Andoralov A.M.

    2017-03-01

    Full Text Available For modern food safety control are using techniques that allow to determinate a large number of components. So for determination of pesticide residues in fruits and vegetables commonly used methods of gas and liquid chromatography with time-of-flight mass-spectrometric detection. This system allows to carry out quantitative determination several hundreds of pesticides and their identification by the characteristic fragments of the mass spectrum. The main problem when using mass spectrometric detection is a matrix effect, which is caused by the influence of matrix components extracted with pesticides from the sample. In this work, attempts have been made to reduce the influence of the matrix in the analysis of pesticide residues by high performance liquid chromatography with time of flight mass spectrometry (HPLC / TOFMS.

  8. Influence of friction on the residual morphology, the penetration load and the residual stress distribution of a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2013-04-01

    Full Text Available In this paper, friction between the Cube-Corner indenter and the sample surface of a Zr-based bulk metallic glass (BMG was analyzed and discussed by the experimental method, the theoretical method and the finite element simulation. Linear residua are observed on the surface of the indenter for the first time, which gives the direct evidence that strong interaction processes exist between the indenter surface and the sample surface because of strong friction and local high contact press. A simplified model was developed to correct the penetration load with the consideration of friction. Effects of friction on the penetration load-depth curves, plastic flow, surface deformation and residual stress distribution of the sample with different friction coefficients were investigated by the finite element simulation.

  9. Glass Transition, Crystallization of Glass-Forming Melts, and Entropy

    Directory of Open Access Journals (Sweden)

    Jürn W. P. Schmelzer

    2018-02-01

    Full Text Available A critical analysis of possible (including some newly proposed definitions of the vitreous state and the glass transition is performed and an overview of kinetic criteria of vitrification is presented. On the basis of these results, recent controversial discussions on the possible values of the residual entropy of glasses are reviewed. Our conclusion is that the treatment of vitrification as a process of continuously breaking ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero absolute temperature is in disagreement with the absolute majority of experimental and theoretical investigations of this process and the nature of the vitreous state. This conclusion is illustrated by model computations. In addition to the main conclusion derived from these computations, they are employed as a test for several suggestions concerning the behavior of thermodynamic coefficients in the glass transition range. Further, a brief review is given on possible ways of resolving the Kauzmann paradox and its implications with respect to the validity of the third law of thermodynamics. It is shown that neither in its primary formulations nor in its consequences does the Kauzmann paradox result in contradictions with any basic laws of nature. Such contradictions are excluded by either crystallization (not associated with a pseudospinodal as suggested by Kauzmann or a conventional (and not an ideal glass transition. Some further so far widely unexplored directions of research on the interplay between crystallization and glass transition are anticipated, in which entropy may play—beyond the topics widely discussed and reviewed here—a major role.

  10. PVC/carbon nanotubes nanocomposites: evaluation of electrical resistivity and the residual solvent effect over the thermal properties of nanocomposites

    International Nuclear Information System (INIS)

    Araujo, Rogerio Gomes; Pires, Alfredo T.N.

    2013-01-01

    The procedure for obtaining nanocomposite by dispersing the nanoparticles in matrix polymer in solution with subsequent elimination of the solvent has been widely used, considering better efficiency in obtaining homogeneity of the final product. However, the presence of residual solvent may affect the nanocomposites in micro-and macroscopic properties of the product. The aim of this study was to evaluate the thermal properties of nanocomposites of poly(vinylchloride)/multi-walled carbon nanotube obtained from the polymer solution and dispersion of carbon nanotubes in tetrahydrofuran (THF), as well as the electrical resistivity of nanocomposites and the influence of residual solvent. The presence of residual tetrahydrofuran reduces the glass transition temperature (Tg) up to 26 °C, being independent of the amount of carbon nanotubes. The total elimination of the solvent is an important factor that does not induce changes in the properties of the polymeric matrix. The graft-COOH groups in the structure of the nanotubes leads to a considerable reduction of the electrical resistivity in ten orders of magnitude, from 0.4 %wt of nanotubes in the nanocomposite composition. (author)

  11. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  12. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    Science.gov (United States)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  13. Thermo-mechanical behaviour during encapsulation of glass in a steel vessel

    International Nuclear Information System (INIS)

    Nakhodchi, S.; Smith, D.J.; Thomas, B.G.

    2016-01-01

    Quantitative numerical simulations and qualitative evaluations are conducted to elucidate thermo-mechanical behaviour during pouring and solidification of molten glass into a stainless-steel cylindrical container. Residual stress and structural integrity in this casting/vitrification process is important because it can be used for long-term storage of high-level nuclear wastes. The predicted temperature and stress distributions in the glass and container agree well with previous measurements of the temperature histories and residual stresses. Three different thermal-stress models are developed using the finite-element method and compared. Two simple slice models were developed based on the generalized plane strain assumption as well as a detailed two-dimensional axi-symmetric model that adds elements according to the stages of pouring glass into the stainless steel container. The results reveal that mechanical interaction between the glass and the wall of the stainless steel container generates residual tensile stresses that approach the yield strength of the steel. Together, these results reveal important insights into the mechanism of stress generation in the process, the structural integrity of the product, and accuracy of the modelling-tool predictions. - Highlights: • Source of residual stresses in glass and stainless steel containers (canisters) is discussed. • Final residual stresses in both glass and container is quantified. • Simple models presented for simulation of complicated casting process. • Comparison between detailed and simple FE modeling.

  14. Direct conversion of plutonium metal, scrap, residue, and transuranic waste to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Malling, J.F.; Rudolph, J.

    1995-01-01

    A method for the direct conversion of metals, ceramics, organics, and amorphous solids to borosilicate glass has been invented. The process is called the Glass Material Oxidation and Dissolution System (GMODS). Traditional glass-making processes can convert only oxide materials to glass. However, many wastes contain complex mixtures of metals, ceramics, organics, and amorphous solids. Conversion of such mixtures to oxides followed by their conversion to glass is often impractical. GMODS may create a practical method to convert such mixtures to glass. Plutonium-containing materials (PCMS) exist in many forms, including metals, ceramics, organics, amorphous solids, and mixtures thereof. These PCMs vary from plutonium metal to filters made of metal, organic binders, and glass fibers. For storage and/or disposal of PCMS, it is desirable to convert PCMs to borosilicate glass. Borosilicate glass is the preferred repository waste form for high-level waste (HLW) because of its properties. PCMs converted to a transuranic borosilicate homogeneous glass would easily pass all waste acceptance and storage criteria. Conversion of PCMs to a glass would also simplify safeguards by conversion of heterogeneous PCMs to homogeneous glass. Thermodynamic calculations and proof-of-principle experiments on the GMODS process with cerium (plutonium surrogate), uranium, stainless steel, aluminum, Zircaloy-2, and carbon were successfully conducted. Initial analysis has identified potential flowsheets and equipment. Major unknowns remain, but the preliminary data suggests that GMODS may be a major new treatment option for PCMs

  15. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    International Nuclear Information System (INIS)

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  16. Antimicrobial thin films based on ayurvedic plants extracts embedded in a bioactive glass matrix

    Science.gov (United States)

    Floroian, L.; Ristoscu, C.; Candiani, G.; Pastori, N.; Moscatelli, M.; Mihailescu, N.; Negut, I.; Badea, M.; Gilca, M.; Chiesa, R.; Mihailescu, I. N.

    2017-09-01

    Ayurvedic medicine is one of the oldest medical systems. It is an example of a coherent traditional system which has a time-tested and precise algorithm for medicinal plant selection, based on several ethnopharmacophore descriptors which knowledge endows the user to adequately choose the optimal plant for the treatment of certain pathology. This work aims for linking traditional knowledge with biomedical science by using traditional ayurvedic plants extracts with antimicrobial effect in form of thin films for implant protection. We report on the transfer of novel composites from bioactive glass mixed with antimicrobial plants extracts and polymer by matrix-assisted pulsed laser evaporation into uniform thin layers onto stainless steel implant-like surfaces. The comprehensive characterization of the deposited films was performed by complementary analyses: Fourier transformed infrared spectroscopy, glow discharge optical emission spectroscopy, scanning electron microscopy, atomic force microscopy, electrochemical impedance spectroscopy, UV-VIS absorption spectroscopy and antimicrobial tests. The results emphasize upon the multifunctionality of these coatings which allow to halt the leakage of metal and metal oxides into the biological fluids and eventually to inner organs (by polymer use), to speed up the osseointegration (due to the bioactive glass use), to exert antimicrobial effects (by ayurvedic plants extracts use) and to decrease the implant price (by cheaper stainless steel use).

  17. Effect of Ba in the glass characteristics of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Vasudeva Rao, P.R.

    2015-01-01

    Radioactive 137 Cs extracted from high level nuclear waste, when immobilized in a suitable matrix can be used as a γsource in medical industry. Iron phosphate glass (IPG) is one of a suitable matrix for the immobilization of 137 Cs prior to the immobilization of 137 Cs in IPG, it is essential to optimize the immobilization conditions using natural (inactive) cesium. Glass characteristics of inactive Cs loaded iron phosphate glasses were already explored in our earlier studies. However, the change in glass characteristics of 137 Cs loaded iron phosphate glass to 137 Ba loaded iron phosphate glass need to be studied before the immobilization of 137 Cs in iron phosphate glass as 137 Cs transforms to 137 Ba due to nuclear transmutation ( 137 Cs(β,γ) 137 Ba). This paper reports the studies on such a behaviour by incorporating inactive Ba in cesium loaded iron phosphate glasses. Cs and Ba loaded iron phosphate glasses were prepared by melt quench technique in air using appropriate amounts of Fe 2 O 3 , NH 4 H 2 PO 4 , Ba(OH) 2.8 H 2 O and Cs 2 CO 3 . The chemicals were added such that the glass formed possesses the batch composition of (a) 21.4 wt. % Fe 2 O 3 -45 wt. % Cs 2 O-5 wt % BaO-P 2 O 5 (henceforth referred as IP50Cs45Ba5); (b) 21.4 wt. % Fe 2 O 3 -25 wt. % Cs 2 O-25 wt % BaO-P 2 O5 (henceforth referred as IP50Cs25Ba25). The thermal expansion measurements were also carried out using a home-built quartz push-rod dilatometer. The data related to change in thermal expansion behaviour, glass forming ability, glass stability and structural changes in phosphate network due to the partial replacement of Cs with Ba will also be discussed. (author)

  18. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  19. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component & Systems Analysis; Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electronic, Optical and Nano; Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Organic Materials Science; Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Transportation System Analysis

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  20. Radiation-induced transmission spectral variations of Ce3+-doped heavy germanate glasses

    International Nuclear Information System (INIS)

    Yang Yunxia; Baccaro, S.; Cecilia, A.; Rao Jinhua; Zhang Junbiao; Xia Fang; Chen Guorong

    2005-01-01

    Radiation-induced transmission spectral variations of Ce 3+ -doped heavy germanate glasses used as scintillating materials are presented. Glass matrix contains mainly GeO 2 , BaO and Gd 2 O 3 with a density higher than 5 g/cm 3 . Glasses are melted in the different atmosphere. The transmission spectra of glasses before and after radiation treatments are measured and compared. Unlike exhibiting the monotonous deterioration effect on the glass matrix, radiation plays the radiation protection role, even making enhanced transmission of Ce 3+ -doped glasses, depending upon glass melting atmosphere and radiation dose. Radiation-induced reducing and oxidizing mechanism is proposed to explain phenomena

  1. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Science.gov (United States)

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Characterization of residues of effluent treatment plant from lapping process of soda-lime glass and its application in the production of concrete; Caracterizacao de residuo de estacao de tratamento de efluentes de processo de lapidacao de vidro sodo-calcico e sua aplicacao na producao de concreto

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Aline Pignaton; Calmon, Joao Luiz; Tristao, Fernando Avancini, E-mail: apignaton@hotmail.com, E-mail: calmonbarcelona@gmail.com, E-mail: fernandoavancini@ct.ufes.br [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Programa de Pos-Graduacao em Engenharia Civil

    2012-07-01

    This study enunciates the physical, chemical and mineralogical composition of the residue from the process of ETE cutting of soda-lime glasses and its application in concrete as a replacement to the weight of CPV ARI RS cement, at levels of 0, 5, 10, 15 and 20%. Tests were performed on fresh and hardened (ages 3, 7, 28 and 300 days). The results were compared and statistically analyzed. In the fresh state, reductions in the amount of exuding water and consistency were observed. The results of compressive strength were statistically different, while the results for the tensile strength by diametrical compression and modulus of elasticity results were belonging to homogeneous groups. Beneficial effects the levels of residue on the cementitious matrix and the transition zone of concrete were identified by SEM, particularly concrete in S15.

  3. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  4. Thermoset composite recycling: Properties of recovered glass fiber

    DEFF Research Database (Denmark)

    Beauson, Justine; Fraisse, Anthony; Toncelli, C.

    2015-01-01

    Recycling of glass fiber thermoset polymer composite is a challenging topic and a process able to recover the glass fibers original properties in a limited cost is still under investigation. This paper focuses on the recycling technique separating the glass fiber from the matrix material. Four...

  5. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...... the Kissinger method. Results indicate that this glass crystallizes by a three-stage reaction: (1) phase separation and primary crystallization of glass, (2) formation of intermetallic compounds, and (3) decomposition of intermetallic compounds and crystallization of residual amorphous phase. The pressure...

  6. Implementation of a fast digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic

    Science.gov (United States)

    Habiby, Sarry F.; Collins, Stuart A., Jr.

    1987-01-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.

  7. Synthesis of diluted magnetic semiconductor Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals in a host glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.S. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Mikhail, H.D., E-mail: ricardosilva@fisica.uftm.edu.br [Instituto de Ciências Tecnológicas e Exatas (ICTE), Departamento de Engenharia Mecânica, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, Minas Gerais (Brazil); Pavani, R. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Cano, N.F. [Departamento de Ciências do Mar, Universidade Federal de São Paulo, 11030-400 Santos, São Paulo (Brazil); Silva, A.C.A.; Dantas, N.O. [Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Universidade Federal de Uberlândia, 38400-902 Uberlândia, Minas Gerais (Brazil)

    2015-11-05

    Diluted magnetic semiconductors of manganese doped in bismuth-telluride nanocrystals (Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs) were grown in a glass matrix and investigated by Transmission Electron Microscopy, X-Ray Diffraction, Atomic Force Microscopy/Magnetic Force Microscopy, and Electron Paramagnetic Resonance. TEM images showed that the nanocrystals formed within the glass matrix were nearly spherical, with average sizes between 4 and 5 nm, and d{sub 015}-spacing of approximately 0.322 nm, which corresponds to the (015) interplanar distance in Bi{sub 2}Te{sub 3} bulk. The diffraction patterns showed that the diffraction peak associated with the (015) plane of the Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals shifts to larger diffraction angles as manganese (Mn) concentration increases, suggesting that the Mn{sup 2+} ions are substitutional defects occupying Bi sites (Mn{sub Bi}). AFM and MFM measurements showed magnetic phase contrast patterns, providing further evidence of Mn{sup 2+} ion incorporation in the nanocrystal structure. EPR signal of manganese ion incorporation and valence states in the crystalline structure of the Bi{sub 2}Te{sub 3} nanocrystals confirmed the presence of the Mn{sup 2+} state. - Highlights: • Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs were synthesized in a glass matrix by fusion method. • Transmission Electronic Microscopy shows the formation of Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs. • The sp-d exchange interaction in DMS NCs can be evidenced by X Ray-Diffraction and Magnetic Force Microscopy. • Electron Paramagnetic Resonance spectra confirmed that Mn{sup 2+} ions are located in two distinct Bi{sub 2}Te{sub 3} NCs sites.

  8. Thermal recycling and re-manufacturing of glass fibre thermosetting composites

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Beauson, Justine; Brøndsted, Povl

    2016-01-01

    The impact of using thermally recycled glass fibre in re-manufactured composites was investigated. A unidirectional glass fibre thermosetting composite laminate was manufactured. The matrix in one part of the laminate was burnt off to recover the glass fibres. These recycled glass fibres were used...

  9. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  10. Study of powellite-rich glass-ceramics for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Taurines, T.

    2012-01-01

    MoO 3 is poorly soluble in borosilicate glasses which can lead to the crystallization of undesired phases when its concentration or the charge load (minor actinides and fission products concentration) is too high. Crystallization control is needed to guarantee good immobilization properties. We studied powellite-rich glass-ceramics obtained from a simplified nuclear glass in the system SiO 2 - B 2 O 3 - Na 2 O - CaO - Al 2 O 3 - MoO 3 - RE 2 O 3 (RE = Gd, Eu, Nd) by various heat treatments. Rare earth elements (REE) were added as minor actinides surrogates and as spectroscopic probes. The influence of MoO 3 and RE 2 O 3 content on powellite (CaMoO 4 ) crystallization was investigated. Various glass-ceramics (similar residual glass + powellite) were obtained with large crystal size distributions. Phase separation due to molybdenum occurs during quenching when [MoO 3 ] ≥ 2.5 mol%. We showed that increasing the rare earth content can suppress the phase separation due to molybdenum but it leads to spinodal decomposition of the residual glass. Furthermore, we studied the effects of parent glass complexifying and the insertion of Gd 3+ ions into the powellite structure. In order to understand the influence of microstructure on evolutions under β-irradiation, we studied point defects creation and structural changes. We showed that the damage induced by electronic excitations in the glass-ceramics is driven by the damage in the residual glass. (author) [fr

  11. Modelling glass alteration in an altered argillaceous environment

    International Nuclear Information System (INIS)

    Bildstein, O.; Trotignon, L.; Pozo, C.; Jullien, M.

    2007-01-01

    The long term behaviour of materials such as glass, steel and clay has been investigated in the context of deep geological disposal of radioactive wastes. The interactions between vitrified wastes, canister corrosion products (CPs) and clay are studied using a modified version of the reaction-transport code Crunch, especially looking at pH changes and possible cementation at the interface with the clayey materials. These perturbations may indeed affect the lifetime of glass matrix in deep repositories, e.g., high pH enhances the rate of glass alteration. This work focuses on the argillite of Bure. The calculations were performed at 323 K with a glass alteration rate switching from a high initial rate to a residual rate according to the sorption capacity of CPs. The time at which this sorption capacity is saturated is crucial to the system in terms of wastes package lifetime. The results show that the glass alteration imposes a high pH value at the interface with CPs and clay: up to a value of 9.2, compared to 7.3 which is the initial pH value in the argillite. Experimental data show that the rate of glass alteration is much higher in such pH conditions. For a R7T7-type glass, the rate is about five times higher at pH 9 than at pH 7. This pH perturbation migrates through the clayey domain as a result of the migration of mobile elements such as boron and sodium, and despite the existence of strong pH buffers in the argillite. The cementation of porosity at the interface between glass and clay is predicted by the model due to the massive precipitation of iron corrosion products and glass alteration products. At this point of the evolution of the system, the pH starts to decrease and the alteration rate of the glass could be significantly reduced. This porosity clogging effect is difficult to confirm by experiments especially since existing data on short term experiments tend to show a pervasive precipitation of silica in the domain instead of a localized precipitation

  12. Glass as a matrix for SRP high-level defense waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; Bibler, N.E.; Dukes, M.D.; Plodinec, M.J.

    1980-01-01

    Work done at Savannah River Laboratory and elsewhere that has led to development of glass as a candidate for solidifying Savannah River Plant waste is summarized. Areas of development described are glass formulation and fabrication, and leaching and radiation effects

  13. Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Liang Wen; Zhan Lei; Piao Longhua; Ruessel, Christian

    2011-01-01

    Graphical abstract: . Adsorption of Pb 2+ increases with the increase in NaCl volume percentage (1:0%, 2:30%, 3:40%, 4:40%) of the Glass Derived Hydroxyapatite and reaches equilibrium after 24 h. Highlights: → Novel porous glass derived hydroxyapatite matrix is prepared. → Glass derived hydroxyapatite matrix adsorbs lead and copper ions in solutions effectively. → Two adsorption mechanisms including ion exchange theory and the dissolution and precipitation theory are involved in removal of the heavy metal ions from the solutions. - Abstract: A porous glass was prepared by sintering Na 2 O-CaO-B 2 O 3 glass powder with powdered sodium chloride. Subsequently, the sodium chloride was dissolved in water resulting in a highly porous material. A sample was prepared consisting of 60 vol% glass and 40 vol% salt which both had particle sizes 2 HPO 4 solutions at room temperature for 1 day. The porous glass derived hydroxyapatite matrix was then processed for removing lead and copper ions from aqueous solutions. The results showed that the glass derived calcium hydroxyapatite matrix effectively immobilizes lead and copper ions in solution. The adsorption mechanism was investigated by the X-ray Diffraction (XRD) and Scanning Electron Microscopy including Energy Dispersive X-Ray Spectrometry (SEM-EDX).

  14. From glass structure to its chemical durability

    International Nuclear Information System (INIS)

    Angeli, F.

    2009-01-01

    The author gives an overview of his research activities. He more precisely reports studies related to glass structure based on nuclei observed by NMR and present in glasses of interest for nuclear activities. He discusses the influence of chemical composition on structure, and discusses information which can be extracted from network formers (Al, B) and modifiers (Na, Ca), and from oxygen present in the network linkages of oxide glasses. He discusses the different experimental and modelling approaches which enable structural and morphological information to be obtained at a mesoscopic scale. The last part deals with the investigation of the long term behaviour of confinement matrices (glassy matrix for medium-activity wastes, ceramic matrix)

  15. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonavane, M S; Mishra, P.K., E-mail: maheshss@barc.gov.in [Nuclear Recycle Board, Bhabha Atomic Research Centre, Mumbai (India); Mandal, S; Barik, S; Roy Chowdhury, A; Sen, R [Central Glass and Ceramic Institute, Kolkata (India)

    2012-10-15

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  16. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    International Nuclear Information System (INIS)

    Sonavane, M.S.; Mishra, P.K.; Mandal, S.; Barik, S.; Roy Chowdhury, A.; Sen, R.

    2012-01-01

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  17. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  18. Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Alexandre Cestari

    2009-06-01

    Full Text Available Glass ionomer cements are widely employed in dentistry due to their physical, biological and mainly anti-caries properties. Glass ionomers consist of an aluminosilicate glass matrix modified with other elements, and they contain large quantities of fluorine. In this study, we report on the preparation of calcium-fluoroaluminosilicate glasses by a nonhydrolytic sol-gel route as an alternative approach to obtaining alumina-silica matrices. The glass powders were prepared via the non-hydrolytic sol-gel method, by mixing AlCl3, SiCl4, CaF2, AlF3, NaF, and AlPO4. The powders were studied by thermal analysis (TG/DTA/DSC, photoluminescence (PL, nuclear magnetic resonance (NMR27Al-29Si, and X ray diffraction (XRD. TG/DTA/DSC analyses revealed a constant mass loss due to structural changes during the heating process, which was confirmed by NMR and PL. A stable aluminosilicate matrix with potential future application as a glass ionomer base was obtained.

  19. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic

    International Nuclear Information System (INIS)

    Chave, T.

    2007-10-01

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  20. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects of interfac......Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects...... of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...

  1. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  3. DATA SUMMARY REPORT SMALL SCALE MELTER TESTING OF HLW ALGORITHM GLASSES MATRIX1 TESTS VSL-07S1220-1 REV 0 7/25/07

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; PEGG IL

    2011-12-29

    Eight tests using different HLW feeds were conducted on the DM100-BL to determine the effect of variations in glass properties and feed composition on processing rates and melter conditions (off-gas characteristics, glass processing, foaming, cold cap, etc.) at constant bubbling rate. In over seven hundred hours of testing, the property extremes of glass viscosity, electrical conductivity, and T{sub 1%}, as well as minimum and maximum concentrations of several major and minor glass components were evaluated using glass compositions that have been tested previously at the crucible scale. Other parameters evaluated with respect to glass processing properties were +/-15% batching errors in the addition of glass forming chemicals (GFCs) to the feed, and variation in the sources of boron and sodium used in the GFCs. Tests evaluating batching errors and GFC source employed variations on the HLW98-86 formulation (a glass composition formulated for HLW C-106/AY-102 waste and processed in several previous melter tests) in order to best isolate the effect of each test variable. These tests are outlined in a Test Plan that was prepared in response to the Test Specification for this work. The present report provides summary level data for all of the tests in the first test matrix (Matrix 1) in the Test Plan. Summary results from the remaining tests, investigating minimum and maximum concentrations of major and minor glass components employing variations on the HLW98-86 formulation and glasses generated by the HLW glass formulation algorithm, will be reported separately after those tests are completed. The test data summarized herein include glass production rates, the type and amount of feed used, a variety of measured melter parameters including temperatures and electrode power, feed sample analysis, measured glass properties, and gaseous emissions rates. More detailed information and analysis from the melter tests with complete emission chemistry, glass durability, and

  4. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses

    Science.gov (United States)

    Thieme, Katrin; Avramov, Isak; Rüssel, Christian

    2016-01-01

    The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects. PMID:27150844

  5. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  6. Behaviour of E-glass fibre reinforced vinylester resin composites ...

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. ... Impact fatigue; static fatigue; residual stress; E-glass fibre; vinylester resin. 1. ... The present work ..... American Society for Testing and Materials) 497 p. 311.

  7. Simulation of an Aspheric Glass Lens Forming Behavior in Progressive GMP Process

    International Nuclear Information System (INIS)

    Chang, Sung Ho; Lee, Young Min; Kang, Jeong Jin; Hong, Seok Kwan; Shin, Gwang Ho; Heo, Young Moo; Jung, Tae Sung

    2007-01-01

    Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Tg (Transformation Temperature) for forming the glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. In this study, as a fundamental study to develop the mold for progressive GMP process, we conducted a aspheric glass lens forming simulation. Prior to a aspheric glass lens forming simulation, compression and thermal conductivity tests were carried out to obtain mechanical and thermal properties of K-PBK40 which is newly developed material for precision molding, and flow characteristics of K-PBK40 were obtained at high temperature. Then, using the flow characteristics obtained, compression simulation was carried out and compared with the experimental result for the purpose of verifying the obtained flow characteristics. Finally, a glass lens press simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming

  8. Heavy atom induced room temperature fluorescence quenching of PAH from a glucose glass

    Energy Technology Data Exchange (ETDEWEB)

    Marlow, Matt, E-mail: matthew.marlow@nicholls.edu

    2017-06-15

    Sugar glasses are a relatively new matrix for solid-matrix luminescence. Molecular interactions within the sugar glass are not well understood. Fluorescence quenching was used to investigate molecular interactions within the sugar glass matrix. The room temperature fluorescence quenching of pyrene and naphthalene was observed from a glucose glass. The heavy atom salt NaI was the quencher. Two solvent compositions 50/50 and 60/40 MeOH/water, used for glass preparation, were examined for their effect on glass rigidity and molecular interactions. A complex static mechanism was observed for glasses prepared with 50/50 MeOH/water. This data was fit to the sphere of action model and associations constants determined. A Stern-Volmer static mechanism of quenching was observed for glasses prepared with 60/40 MeOH/water. This data fit the Stern-Volmer equation and association constants were determined. A larger association constant was observed for pyrene compared to naphthalene for both solvent systems used. Pyrene had a larger association constant with a sugar glass prepared with 60/40 MeOH/water compared to 50/50 MeOH/water implying a greater association between pyrene and iodide. The greater association is a reflection of a more rigid internal environment for the sugar glass prepared with 60/40 MeOH/water.

  9. Effect of fatigue testing on the properties of Glass-Epoxy composites using the acoustic tool

    Directory of Open Access Journals (Sweden)

    Menail Younès

    2017-01-01

    Full Text Available This study presents the experimental results of the influence of mechanical fatigue on composite material. The plates of Glass fiber with SR 1500 epoxy resin with SD 2505 composite were realized by vacuum molding. Experimental tests were carried out on a standard hydraulic machine INSTRON 8516. The machine is interfaced with a dedicated computer for controlling and data acquisition. The fatigue tests were performed using sinusoidal type of waveform at a displacement control with frequency of 10 Hz. The evolution of Young’s modulus and strain based on fatigue gives us an idea about the resistance of the material. Degradation of mechanical properties was observed, and the results have showed that the Young’s modulus of plates undergo only minor changes. In fact, the residual stiffness and residual strength decrease when the cycle number of fatigue increase (100 to 50000 cycles, indicating that the studied composites have experienced some forms of mechanical damage.The mechanical tests were backed by Acoustic Emission Monitoring (AEM during the load cycle, in order to understand the nature of the failure process in the composites such as fiber breakage, matrix crazing, matrix debonding and delamination etc.

  10. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program

    International Nuclear Information System (INIS)

    Marra, J.C.; Harbour, J.R.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize high-level radioactive waste currently stored in underground tanks at the Savannah River Site by incorporating the waste into a glass matrix. The molten waste glass will be poured into stainless steel canisters which will be welded shut to produce the final waste form. One specification requires that any volatiles produced as a result of accidentally heating the waste glass to the glass transition temperature be identified. Glass samples from five melter campaigns, run as part of the DWPF Startup Test Program, were analyzed to determine glass transition temperatures and to examine the volatilization (by weight loss). Glass transition temperatures (T g ) for the glasses, determined by differential scanning calorimetry (DSC), ranged between 445 C and 474 C. Thermogravimetric analysis (TGA) scans showed that no overall weight loss occurred in any of the glass samples when heated to 500 C. Therefore, no volatility will occur in the final glass product when heated up to 500 C

  11. Size-dependent penetrant diffusion in polymer glasses.

    Science.gov (United States)

    Meng, Dong; Zhang, Kai; Kumar, Sanat K

    2018-05-18

    Molecular Dynamics simulations are used to understand the underpinning basis of the transport of gas-like solutes in deeply quenched polymeric glasses. As found in previous work, small solutes, with sizes smaller than 0.15 times the chain monomer size, move as might be expected in a medium with large pores. In contrast, the motion of larger solutes is activated and is strongly facilitated by matrix motion. In particular, solute motion is coupled to the local elastic fluctuations of the matrix as characterized by the Debye-Waller factor. While similar ideas have been previously proposed for the viscosity of supercooled liquids above their glass transition, to our knowledge, this is the first illustration of this concept in the context of solute mass transport in deeply quenched polymer glasses.

  12. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  13. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  14. Investigation of hydrophobic substrates for solution residue analysis utilizing an ambient desorption liquid sampling-atmospheric pressure glow discharge microplasma.

    Science.gov (United States)

    Paing, Htoo W; Marcus, R Kenneth

    2018-03-12

    A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.

  15. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses ...

    Indian Academy of Sciences (India)

    2017-08-16

    Aug 16, 2017 ... glass matrix with different RE ions for optical properties is of importance. ... Figure 1. XRD pattern of the tellurite glasses studied. Table 1. Composition and glass transition ... convoluted using Gaussian line shape. Parameters like .... On the other hand, in Er3+ ion, the ground state 4I15/2 itself has manifold.

  16. Drilling in tempered glass – modelling and experiments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    The present paper reports experimentally and numerically obtained results for the process of drilling in tempered glass. The experimental results are drilling depths on the edge in 19mm tempered glass with a known residual stress state measured by a scattered light polariscope. The experiments have...... been modelled using a state-of-the-art model and compared with satisfying result to the performed experiments. The numerical model has been used for a parametric study, investigating the redistribution of residual stresses during the process of drilling. This is done for investigating the possibility...... of applying forces in such holes and thereby being able to mechanically assemble tempered glass without the need of drilling holes before the tempering process. The paper is the result of currently ongoing research and the results should be treated as so....

  17. Sulfur Solubility Testing and Characterization of LAW Phase 1 Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-24

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analysis results for a series of simulated low-activity waste (LAW) glass compositions. These data will be used in the development of improved sulfur solubility models for LAW glass. A procedure developed at Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study.

  18. Immobilization of radioactive waste in glass matrices

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1978-01-01

    A promising process for long-term management of high-level radioactive waste is to immobilize the waste in a borosilicate glass matrix. Among the most important criteria characterizing the integrity of the large-scale glass-waste forms are that they possess good chemical stability (including low leachability), thermal stability, mechanical integrity, and high radiation stability. Fulfillment of these criteria ensures the maximum margin of safety of glass-waste products, following solidification, handling, transportation, and long-term storage

  19. Acoustic study of nano-crystal embedded PbO–P2O5 glass

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Glasses; acoustical properties; nanostructured materials; glass ceramic. 1. Introduction. During the last two decades, studies of different physical properties of nano-crystal embedded glass matrix have attracted attention of technologists as well as scientists for fabrication of glass ceramic through controlled crysta-.

  20. Chemical reactivity of precursor materials during synthesis of glasses used for conditioning high-level radioactive waste: Experiments and models

    International Nuclear Information System (INIS)

    Monteiro, A.

    2012-01-01

    The glass used to store high-level radioactive waste is produced by reaction of a solid waste residue and a glassy precursor (glass frit). The waste residue is first dried and calcined (to lose water and nitrogen respectively), then mixed with the glass frit to enable vitrification at high temperature. In order to obtain a good quality glass of constant composition upon cooling, the chemical reactions between the solid precursors must be complete while in the liquid state, to enable incorporation of the radioactive elements into the glassy matrix. The physical and chemical conditions during glass synthesis (e.g. temperature, relative proportions of frit and calcine, amount of radioactive charge) are typically empirically adjusted to obtain a satisfactory final product. The aim of this work is to provide new insights into the chemical and physical interactions that take place during vitrification and to provide data for a mathematical model that has been developed to simulate the chemical reactions. The consequences of the different chemical reactions that involve solid, liquid and gaseous phases are described (thermal effects, changes in crystal morphology and composition, variations in melt properties and structure). In a first series of experiments, a simplified analogue of the calcine (NaNO 3 -Al 2 O 3 ± MoO 3 /Nd 2 O 3 ) has been studied. In a second series of experiments, the simplified calcines have been reacted with a simplified glass frit (SiO 2 -Na 2 O-B 2 O 3 -Al 2 O 3 ) at high temperature. The results show that crystallization of the calcine may take place before interaction with the glass frit, but that the reactivity with the glass at high temperature is a function of the nature and stoichiometry of the crystalline phases which form at low temperature. The results also highlight how the mixing of the starting materials, the physical properties of the frit (viscosity, glass transition temperature) and the Na 2 O/Al 2 O 3 of the calcine but also its

  1. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  2. Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions

    Science.gov (United States)

    Ramteke, D. D.; Gedam, R. S.; Swart, H. C.

    2018-04-01

    The borosilicate glasses with Dy3+ ions were prepared by the melt quench technique with varying concentration of Dy2O3. The glasses were characterized by the density calculation, absorbance and photoluminescence (PL) spectroscopy measurements. Density and molar volume of the glasses increases with increase in Dy3+ ions in the glass matrix. This behavior is correlated with the higher molecular weight and larger ionic radius of Dy3+ ion compared to the other constituents of glass matrix. Emission of Dy3+ doped glasses showed three bands at 482, 573 and at 665 nm which correspond to 6H15/2 (blue), 6H13/2 (yellow) and 6H11/2 (red) transitions. The emission spectra of glasses with different concentration of Dy3+ ions shows that, glasses with 0.5 mol% of Dy2O3 shows highest emission and decreases with further doping. CIE 1931 chromaticity diagram showed that the emission of these glasses was in the white region. Photographs of these glasses under 349 nm Light emitting diode excitation also confirmed the white light emission from these glasses.

  3. Glass as a gamma ray dosemeter

    International Nuclear Information System (INIS)

    Sutrisno Puspodikoro.

    1978-01-01

    The advantages of glass as a γ-rays dosemeter are studied. Experiments have shown that ordinary microscope object glass can be used as a dosemeter, which dose range for linear response extends from about 10 4 -10 6 rads. Heat treatment of the irradiated samples accelerates the initial fading of coloration and stabilizes the residual optical density. On the other side cooling of them retards the initial fading. (author)

  4. Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation

    Science.gov (United States)

    Yuksel, Onur; Baran, Ismet; Ersoy, Nuri; Akkerman, Remko

    2018-05-01

    Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the composite materials, process models are developed to predict the residual stress formation. The accuracy of the process models is dependent on the geometrical (micro to macro), material and process parameters as well as the numerical implementation. Therefore, in order to have reliable process modelling framework, there is a need for validation and if necessary calibration of the developed models. This study focuses on measurement of the transverse residual stresses in a relatively thick pultruded profile (20×20 mm) made of glass/polyester. Process-induced residual stresses in the middle of the profile are examined with different techniques which have never been applied for transverse residual stresses in thick unidirectional composites. Hole drilling method with strain gage and digital image correlation are employed. Strain values measured from measurements are used in a finite element model (FEM) to simulate the hole drilling process and predict the residual stress level. The measured released strain is found to be approximately 180 μm/m from the strain gage. The tensile residual stress at the core of the profile is estimated approximately as 7-10 MPa. Proposed methods and measured values in this study will enable validation and calibration of the process models based on the residual stresses.

  5. Characteristic of improved fatigue performance for Zr-based bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Qiao, J.W.; Huang, E.W.; Wang, G.Y.; Yang, H.J.; Liang, W.; Zhang, Y.; Liaw, P.K.

    2013-01-01

    Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 bulk metallic glass matrix composites exhibit improved four-point-bending fatigue endurance with a fatigue limit of 567 MPa, compared to that under the tension–tension fatigue, due to the high-volume-fractioned dendrites, which can effectively blunt the fatigue-induced cracks. Illuminated by high-energy synchrotron X-ray at 200 and 100 K, the corresponding diffraction peaks, such as (110), (200), and (211) shift rightward to small lattice spacings, compared to those at 298 K. However, the peak widths at 100 K and 200 K are almost identical to that of room temperature. Since an identical fatigue specimen was measured under room temperature, 200 K, and 100 K, the invariant of the peak widths reveal the fact of the irreversible microstructure developments induced by fatigue. Even if the fatigue fracture stress is distinguishingly lower than the yielding strength, the deformation of dendrites locally prevails, evidenced by the occurrence of dislocations

  6. Effect of the type of radiation on the degradation behavior of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1992-01-01

    Four kinds of polymer matrix composites (filler: E-glass or carbon fiber cloth; matrix; epoxy or polyimide resin) were irradiated with neutrons and 60 Co γ-rays at room temperature or at 5 K. Three-point bend tests were then carried out at 77 K. Comparison of the neutron and γ-ray irradiation effects shows that the radiation sensitivity of the glass/epoxy and glass/polyimide composites is 1.8-2.6 times higher to neutrons than to γ-rays, indicating a higher sensitivity of the epoxy and polyimide matrix resins to recoil protons than to γ-rays. Absorbed dose calculations, on the other hand, show that the spatial distribution of the microscopic energy deposition in polymer matrix composites is inhomogeneous for neutrons, although almost homogeneous for γ-rays. In addition, the neutron irradiation of boron-containing E-glass fiber composites produces additional radiation damage due to a 10 B(n,α) 7 Li reaction in the glass fibers, thus significantly enhancing a decrease in the composite strength. These facts indicate that as far as polymer matrix composites are concerned, the irradiation effects of neutrons will be rather difficult to simulate with different types of radiation such as protons and carbon ions from an ion accelerator. Thus, it may be prudent that such simulation irradiation be carried out mainly for pure resins to be used as matrix in polymer matrix composites. (author)

  7. Microstructure of gross chill-mark defect in a glass-ceramic preform

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    The microstructure of a vacuum tube glass-ceramic preform containing gross chill-marks on the top and bottom surfaces as well as on the sides was analyzed. The preform was ceramed in a graphite mold and examined using SEM. The glass-ceramic had an extremely dense and fine crystalline structure except where the chill-marks were located. In those areas of matrix glass following the chill-mark plane were evident. It is concluded that gross chill-marks will affect the microstructure by disrupting the chemistry or nucleating characteristics in such a way that a chill-mark regon would appear to be depleted of crystallites. Although the crystallites in this region are larger, the quantity is lower than in the base glass-ceramic. The affected area caused by the chill-mark left a band of matrix glass approximately 100 μ wide. It is believed that planar defects of this size will degrade the mechanical and permeation properties of the glass-ceramic

  8. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  9. Defining the Glass Composition Limits for SRS Contaminated Soils

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Crews, W.O.

    1995-01-01

    Contaminated soil resulting from the excavation, repair, and decommissioning of facilities located at the Savannah River Site (SRS) is currently being disposed of by shallow land burial or is being stored when considered only hazardous. Vitrification of this waste is being investigated, since it will bind the hazardous and radioactive species in a stable and durable glass matrix, which will reduce the risk of ground water contamination. However, the composition limits for producing durable glass have to be determined before the technology can be applied. Glass compositions, consisting of SRS soil and glass forming additives, were tested on a crucible-scale in three ternary phase systems. Nine different glass compositions were produced, with waste loadings ranging from 43 to 58 weight percent. These were characterized using varoius chemical methods and tested for durability in both alkaline and acidic environments. All nine performed well in alkaline environments, but only three met the strictest criteria for the acidic environment tests. Although the glasses did not meet all of the limits for the acidic tests, the test was performed on very conservative size samples, so the results were also conservative. Therefore, enough evidence was found to provide proof that SRS soil can be vitrified in a durable glass matrix

  10. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions

    Science.gov (United States)

    Xu, K. K.; Lan, A. D.; Yang, H. J.; Han, P. D.; Qiao, J. W.

    2017-11-01

    The Ti62Zr12V13Cu4Be9, Ti58Zr16V10Cu4Be12, Ti46Zr20V12Cu5Be17, and Ti40Zr24V12Cu5Be19 metallic glass matrix composites (MGMCs) were prepared by copper mould casting. The corrosion resistance and the pitting susceptibility of Ti-based MGMCs were tested on their cross-sectional areas in 3.5 wt.% NaCl solutions by potentiodynamic polarization measurements. The composites with lower Ti contents (Ti40Zr24V12Cu5Be19 and Ti46Zr20V12Cu5Be17) exhibit a low resistance to the chloride induced pitting and local corrosion. The preferential dissolution of amorphous matrix is explained by the high chemical reactivity of beryllium element compared to that of stable dendrites and by the detected lower Ti and V contents. However, fairly good passivity was found in the composite with higher Ti contents (Ti62Zr12V13Cu4Be9). XPS measurements revealed that protective Ti-enriched oxide film was formed on the composite surface, additionally, lower content of beryllium element in amorphous matrix hinder the selective corrosion of amorphous matrix. The assessment of experimental observation leads to a proposed corrosion mechanism involving selective dissolution of amorphous matrix and chloride induced pitting process.

  11. Liquidus Temperature Data for DWPF Glass

    International Nuclear Information System (INIS)

    Piepel, G.F.; Vienna, J.D.; Crum, J.V.; Mika, M.; Hrma, P.

    1999-01-01

    This report provides new liquidus temperature (T L ) versus composition data that can be used to reduce uncertainty in T L calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured T L for 53 glasses within and just outside of the current DWPF processing composition window. The T L database generated under this task will directly support developing and enhancing the current T L process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the life-cycle tank cleanup costs by decreasing process time and the volume of waste glass produced

  12. Thermokinetic model of borosilicate glass dissolution: contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1989-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100 0 C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Helgeson. It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. We prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites. 19 refs

  13. Residual Stress Induced Mechanical Property Enhancement in Steel Encapsulated Light Metal Matrix Composites

    Science.gov (United States)

    Fudger, Sean James

    Macro hybridized systems consisting of steel encapsulated light metal matrix composites (MMCs) were produced with the goal of creating a low cost/light weight composite system with enhanced mechanical properties. MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient ductility for many structural applications. The macro hybridized systems take advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Furthermore, a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress method is utilized as a means of improving the ductility of the MMCs and overall efficiency of the macro hybridized systems. Systems consisting of an A36, 304 stainless steel, or NitronicRTM 50 stainless steel shell filled with an Al-SiC, Al-Al2O3, or Mg-B4C MMC are evaluated in this work. Upon cooling from processing temperatures, residual strains are generated due to a CTE mismatch between each of the phases. The resulting systems offer higher specific properties and a more structurally efficient system can be attained. Mechanical testing was performed and improvements in yield stress, ultimate tensile stress, and ductility were observed. However, the combination of these dissimilar materials often results in the formation of intermetallic compounds. In certain loading situations, these typically brittle intermetallic layers can result in degraded performance. X-ray Diffraction (XRD), X-ray Energy Dispersive Spectroscopy (EDS), and Electron Backscatter Diffraction (EBSD) are utilized to characterize the intermetallic layer formation at the interface between the steel and MMC. As the residual stress condition in each phase has a large impact on the mechanical property improvement, accurate quantification of these strains/stresses is

  14. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  15. Visualization of residual organic liquid trapped in aquifers

    International Nuclear Information System (INIS)

    Conrad, S.H.; Wilson, J.L.; Mason, W.R.; Peplinski, W.J.

    1992-01-01

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons and solvents. The flow visualization experiments described in this study examined the migration of organic liquids through the saturated zone of aquifers, with a primary focus on the behavior of the residual organic liquid saturation, referring to that portion of the organic liquid that is trapped by capillary forces. Etched glass micromodels were used to visually observe dynamic multiphase displacement processes in pore networks. The resulting fluid distributions were photographed. Pore and blob casts were produced by a technique in which an organic liquid was solidified in place within a sand column at the conclusion of a displacement. The columns were sectioned and examined under optical and scanning electron microscopes. Photomicrographs of these sections show the morphology of the organic phase and its location within the sand matrix. The photographs from both experimental techniques reveal that in the saturated zone large amounts of residual organic liquid are trapped as isolated blobs of microscopic size. The size, shape, and spatial distribution of these blobs of residual organic liquid affect the dissolution of organic liquid into the water phase and the biotransformation of organic components. These processes are of concern for the prediction of pollution migration and the design of aquifer remediation schemes

  16. Comparison of the layer structure of vapor phase and leached SRL glass by use of AEM [analytical electron microscopy

    International Nuclear Information System (INIS)

    Biwer, B.M.; Bates, J.K.; Abrajano, T.A. Jr.; Bradley, J.P.

    1989-01-01

    Test samples of 131 type glass that have been reacted for extended time periods in water vapor atmospheres of different relative humidities and in static leaching solution have been examined to characterize the reaction products. Analytical electron microscopy (AEM) was used to characterize the leached samples, and a complicated layer structure was revealed, consisting of phases that precipitate from solution and also form within the residual glass layer. The precipitated phases include birnes-site, saponite, and an iron species, while the intralayer phases include the U-Ti containing phase brannerite distributed within a matrix consisting of bands of an Fe rich montmorillonite clay. Comparison is made between samples leached at 40 degrees C for 4 years with those leached at 90 degrees C for 3-1/2 years. The samples reacted in water vapor were examined with scanning electron microscopy and show increasing reaction as both the relative humidity and time of reaction increases. These samples also contain a layered structure with reaction products on the glass surface. 15 refs., 5 figs

  17. Compensation of matrix effects in gas chromatography-mass spectrometry analysis of pesticides using a combination of matrix matching and multiple isotopically labeled internal standards.

    Science.gov (United States)

    Tsuchiyama, Tomoyuki; Katsuhara, Miki; Nakajima, Masahiro

    2017-11-17

    In the multi-residue analysis of pesticides using GC-MS, the quantitative results are adversely affected by a phenomenon known as the matrix effect. Although the use of matrix-matched standards is considered to be one of the most practical solutions to this problem, complete removal of the matrix effect is difficult in complex food matrices owing to their inconsistency. As a result, residual matrix effects can introduce analytical errors. To compensate for residual matrix effects, we have developed a novel method that employs multiple isotopically labeled internal standards (ILIS). The matrix effects of ILIS and pesticides were evaluated in spiked matrix extracts of various agricultural commodities, and the obtained data were subjected to simple statistical analysis. Based on the similarities between the patterns of variation in the analytical response, a total of 32 isotopically labeled compounds were assigned to 338 pesticides as internal standards. It was found that by utilizing multiple ILIS, residual matrix effects could be effectively compensated. The developed method exhibited superior quantitative performance compared with the common single-internal-standard method. The proposed method is more feasible for regulatory purposes than that using only predetermined correction factors and is considered to be promising for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Michael Gerard; Ince, Rabia; Yukselici, Mehmet Hikmet; Allahverdi, Cagdas

    2011-07-01

    The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nanoparticles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He-Ne laser source at a wavelength of 632.8 nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He-Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

  19. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  20. Effect of alumina on the dissolution rate of glasses

    International Nuclear Information System (INIS)

    Palavit, G.; Montagne, L.

    1997-01-01

    Small alumina addition to silicate glasses improves their chemical durability, but a large amount of alumina can also be beneficial to obtain a high dissolution rate. This paper describes the effect of Al 3+ on the early stage of glass alteration, in relation with its coordination in the glass and also with the reactions involved (hydrolysis and ionic exchange). We describe briefly nuclear magnetic resonance tools available to characterize the aluminum environments in the glasses. The rote of alumina on the dissolution rate of phosphate glasses is also discussed in order to show that the effect of Al 3+ is dependant upon the nature of the glass matrix. (author)

  1. Conversion of plutonium-containing materials into borosilicate glass using the glass material oxidation and dissolution system

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1996-01-01

    The end of the cold war has resulted in excess plutonium-containing materials (PCMs) in multiple chemical forms. Major problems are associated with the long-term management of these materials: safeguards and nonproliferation issues; health, environment, and safety concerns; waste management requirements; and high storage costs. These issues can be addressed by conversion of the PCMs to glass: however, conventional glass processes require oxide-like feed materials. Conversion of PCMs to oxide-like materials followed by vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS) to allow direct conversion of PCMs to glass. GMODS directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, multiple oxides, and other materials to glass. Equipment options have been identified for processing rates between 1 and 100,000 t/y. Significant work, including a pilot plant, is required to develop GMODS for applications at an industrial scale

  2. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  3. Physical, thermal, infrared and optical properties of Nd3+ doped lithium–lead-germanate glasses

    International Nuclear Information System (INIS)

    Veeranna Gowda, V.C.

    2015-01-01

    The structure–property relationships of neodymium doped lithium–lead-germanate glasses were investigated. The density was found to increase with the increase of Nd 2 O 3 concentration and its variation is explained in terms of its molecular mass, structural transformation and packing density. Addition of modifier oxide to lead-germanate glass suggests a decreased free space within the glass matrix, resulting in the formation of stiff network. The increase in glass transition temperature specifies strengthening of glass by forming bridging oxygens. The optical properties of glass were measured employing UV–visible spectroscopy. The refractive index values varied nonlinearly with Nd 2 O 3 concentration and were speculated to depend on the electronic polarizability of oxide glasses. The frequencies of the infrared absorption bands were affected marginally and the absorption peaks revealed that the glass matrix consists of [GeO 4/2 ], [GeO 6/2 ] and [PbO 4/2 ] structural units

  4. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry.

    Science.gov (United States)

    Wang, Y-Y; Chatzistavrou, X; Faulk, D; Badylak, S; Zheng, L; Papagerakis, S; Ge, L; Liu, H; Papagerakis, P

    2015-06-20

    The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bladder with an antibacterial bioactive glass. Our study combines in vitro approaches and ectopic implantation in scid mice. The novel material was fabricated by incorporating a sol-gel derived silver (Ag)-doped bioactive glass (BG) in a natural extracellular matrix (ECM) hydrogel in ratio 1:1 in weight % (Ag-BG/ECM). The biological properties of the Ag-BG/ECM were evaluated in culture with dental pulp stem cells (DPSCs). In particular, cell proliferation, cell apoptosis, stem cells markers profile, and cell differentiation potential were studied. Furthermore, the antibacterial activity against Streptococcus mutans and Lactobacillus casei was measured. Moreover, the capability of the material to enhance pulp/dentin regeneration in vivo was also evaluated. Our data show that Ag-BG/ECM significantly enhances DPSCs' proliferation, it does not affect cell morphology and stem cells markers profile, protects cells from apoptosis, and enhances in vitro cell differentiation and mineralisation potential as well as in vivo dentin formation. Furthermore, Ag-BG/ECM strongly inhibits S. mutans and L. casei growth suggesting that the new material has also anti-bacterial properties. This study provides foundation for future clinical applications in dentistry. It could potentially advance the currently available options of dental regenerative materials.

  5. Photo-induced changes of silicate glasses optical parameters at multi-photon laser radiation absorption

    International Nuclear Information System (INIS)

    Efimov, O.M.; Glebov, L.B.; Mekryukov, A.M.

    1995-01-01

    In this paper the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to the intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center open-quotes S. I. Vavilov State Optical Instituteclose quotes during last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three- or more photon matrix ionization of these glasses, but they were failed. However it was established that in the lead silicate glasses the long-wave carriers mobility boundary (> 5.6 eV) is placed considerably higher the fundamental absorption edge (∼ 3.5 eV) of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed

  6. Radiological analysis of plutonium glass batches with natural/enriched boron

    International Nuclear Information System (INIS)

    Rainisch, R.

    2000-01-01

    The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use of enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B 2 O 3 . Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling

  7. Thermokinetic model of borosilicate glass dissolution: Contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1990-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Hegelson: v = k + · S · a( H + ) -n · (1 - e -(A/RT) ). It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. The authors prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites

  8. A device for uranium series leaching from glass fiber in HEPA filter

    International Nuclear Information System (INIS)

    Gye-Nam Kim; Hye-Min Park; Wang-Kyu Choi; Jei-Kwon Moon

    2012-01-01

    For the disposal of a high efficiency particulate air (HEPA) glass filter into the environment, the glass fiber should be leached to lower its radioactive concentration to the clearance level. To derive an optimum method for the removal of uranium series from a HEPA glass fiber, five methods were applied in this study. That is, chemical leaching by a 4.0 M HNO 3 -0.1 M Ce(IV) solution, chemical leaching by a 5 wt% NaOH solution, chemical leaching by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution, chemical consecutive chemical leaching by a 4.0 M HNO 3 solution, and repeated chemical leaching by a 4.0 M HNO 3 solution were used to remove the uranium series. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 5 h by the 4.0 M HNO 3 -0.1 M Ce(IV) solution were 2.1, 0.3, 1.1, and 1.2 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 36 h by 4.0 M HNO 3 -0.1 M Ce(IV) solution were 76.9, 3.4, 63.7, and 71.9 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 8 h by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution were 8.9, 0.0, 1.91, and 6.4 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after consecutive leaching for 8 h by the 4.0 M HNO 3 solution were 2.08, 0.12, 1.55, and 2.0 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after three repetitions of leaching for 3 h by the 4.0 M HNO 3 solution were 0.02, 0.02, 0.29, and 0.26 Bq/g. Meanwhile, the removal efficiencies of 238 U, 235 U, 226 Ra, and 234 Th from the waste solution after its precipitation-filtration treatment with NaOH and alum for reuse of the 4.0 M HNO 3 waste solution were 100, 100, 93.3, and 100%. (author)

  9. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  10. Expected behavior of HLW glass in storage

    International Nuclear Information System (INIS)

    McElroy, J.L.

    1975-01-01

    Glass produced by solidification of high-level radioactive liquid waste is studied. Conditions to which the waste form will be exposed in a typical handling sequence representative of current U. S. planning are tabulated. The reference matrix for waste form characterization is discussed, and some of the properties of high-level waste glass are described: physical properties, leachability, fracturing, vaporization, and containment in canister. 12 fig, 5 tables

  11. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  12. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  13. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  14. Glass composition and solution speciation effects on stage III dissolution

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    2017-01-01

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  15. Glass composition and solution speciation effects on stage III dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Pennsylvania State Univ., University Park, PA (United States); Rice, Jarret A. [Pennsylvania State Univ., University Park, PA (United States); Pantano, Carlo G. [Pennsylvania State Univ., University Park, PA (United States)

    2017-10-03

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  16. A study of the local structure around Eu3+ ions in oxide glasses using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Todoroki, S.; Hirao, K.; Soga, N.

    1993-01-01

    The local structure around Eu 3+ ions in several oxide glasses (silicate, germanate and borophosphate glasses) was investigated by using 151 Eu Moessbauer spectroscopy. It was found that the isomer shift (IS) of silicate and borophosphate glasses was independent of the sodium content, but that of germanate glasses was not. This means the first coordination sphere around Eu 3+ ions in silicate glasses is insensitive to the composition of the glass matrix. It is assumed that, regardless of the sodium content, Eu 3+ ions in silicate glasses attract a certain amount of nonbridging oxygen (NBO, Si-O direct difference ) when incorporated stably into silicate glass matrix, because NBO is the only species donating negative charge. For germanate glasses, the behavior of IS is considered to be related to the resence of GeO 6/2 octahedra. On the basis of experimental results, the coordination models of Eu 3+ in these systems are proposed. (orig.)

  17. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component...... of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper...... the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the vis- coplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain...

  18. P-matrix description of charged particles interaction

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1992-01-01

    The paper deals with formalism of the P-matrix description of two charged particles interaction. Separation in the explicit form of the background part corresponding to the purely Coulomb interaction in the P-matrix is proposed. Expressions for the purely Coulomb P-matrix, its poles, residues and purely Coulomb P-matrix approach eigenfunctions are obtained. (author). 12 refs

  19. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  20. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  1. Glasses obtained from industrial wastes; Vidros obtidos a partir de residuos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Curso de Engenharia de Materiais; Bernardin, A.M., E-mail: amb@unesc.ne [Servico Nacional de Aprendizagem Industrial (SENAI), Tijucas, SC (Brazil). Tecnologia em Ceramica

    2009-07-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO{sub 3} (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  2. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO 2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  3. Variability of matrix effects in liquid and gas chromatography - mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops

    Science.gov (United States)

    Gas and liquid chromatography (GC and LC) coupled to sophisticated mass spectrometry (MS) instruments are among the most powerful analytical tools currently available to monitor pesticide residues in food, among other applications. However, both GC-MS and LC-MS are susceptible to matrix effects whi...

  4. Ceramics and glasses for radioactive waste storage

    International Nuclear Information System (INIS)

    Baudin, G.

    1984-06-01

    Borosilicate glasses are mainly choosen for the confinement of fission products; industrial plants are either in operation (AVM) or in construction. Studies of ceramics as a matrix haven't received real application [fr

  5. Simultaneous multielement analysis of zirconium alloys by chlorination separation of matrix/ICP-AES

    International Nuclear Information System (INIS)

    Kato, Kaneharu

    1990-01-01

    An analytical method combined chlorination separation of matrix with ICP-AES has been developed for reactor grade Zr alloys (Zircaloy-2). A sample (1 g) is taken into a Pt boat and chlorinated with HCl gas of 100 ml/min in a glass reaction tube at ca. 330degC. Matrix Zr of the sample is volatilized and separated as ZrCl 4 . The analytic elements remaining quantitatively as chlorination residue are dissolved in a mixture of mineral acids (6 M HCl 3 ml+conc. HNO 3 0.5 ml+conc. H 2 SO 4 0.2 ml) and diluted to 20 ml with distilled water after filtration. ICP-AES was used for simultaneous multielement determination using a calibration curve method. The present method has the following advantages: simple sample preparation procedure; applicability to any form of samples to determine multielements; simple ICP-AES calibration procedure. This method was successfully applied to the determination of Fe, Ni, Cu, Co, Mn and Pb in the Zr alloys of JAERI CRM's and NBS SRM's. (author)

  6. Crystal growth in zinc borosilicate glasses

    Science.gov (United States)

    Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.

    2017-01-01

    Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.

  7. CdS/CdSSe quantum dots in glass matrix

    Indian Academy of Sciences (India)

    CdSSe and melted at 1200–1300°C. The glass samples were transparent and pale yellow in colour due to presence of CdS/CdSSe tiny nano crystal (Q-dots). in situ growth of CdS/CdSSe nano crystals imparts the yellow/orange/red colour to ...

  8. Simulating the physicochemical properties of borosilicate and lanthanum borosilicate glasses using a polarizable force field

    International Nuclear Information System (INIS)

    Pacaud, Fabien

    2016-01-01

    as result of the nuclear waste vitrification, the knowledge and understanding of the dynamic and structural properties of glasses, including the behavior of radionuclides, is important (in liquid and solid phases). It can influence the glass waste properties, the lifetime of the vitrification process and the amount of radionuclides introduced in the glass matrix. Molecular dynamic simulations have been done to study the influence of the glass matrix composition into the structural and dynamic properties of the glass. a simplified glass, with 3 major oxides of the R7T7 glass such as SiO_2, B_2O_3 and Na_2O, have been used to simulate the R7T7 industrial nuclear glass (a 30 oxides glass). The inclusion of La_2O_3 allows us to simulate the impact of fission products and minor actinides into the properties of the glass matrix. Both systems, the SiO_2-B_2O_3-Na_2O and SiO_2-B_2O_3-Na_2O-La_2O_3, allow us to study the sodium and lanthanum effect on the properties of the glass. During this work, a polarizable force field has been developed to do these simulations. The results obtained at room temperature let us reproduce the experimental results of the structure, the distribution of BIII/BIV and the density. a study has been done on the viscosity and electrical conductivity of the liquid. The distribution BIV/BIII and the influence of the structural changes on the density along with the temperature have also been observed with thermal quenching. The current limits of this approach are also described. (author) [fr

  9. Alpha self irradiation effects in nuclear borosilicate glass

    International Nuclear Information System (INIS)

    Peuget, S.; Roudil, D.; Deschanels, X.; Jegou, C.; Broudic, V.; Bart, J.M.

    2004-01-01

    The properties of actinide glasses are studied in the context of high-level waste management programs. Reprocessing high burnup fuels in particular will increase the minor actinide content in the glass package, resulting in higher cumulative alpha decay doses in the glass, and raising the question of the glass matrix behavior and especially its containment properties. The effect of alpha self-irradiation on the glass behavior is evaluated by doping the glass with a short-lived actinide ( 244 Cm) to reach in several years the alpha dose received by the future glass packages over several thousand years. 'R7T7' borosilicate glasses were doped with 3 different curium contents (0.04, 0.4 and 1.2 wt% 244 CmO 2 ). The density and mechanical properties of the curium-doped glasses were characterized up to 2. 10 18 α/g, revealing only a slight evolution of the macroscopic behavior of R7T7 glass in this range. The leaching behavior of curium-doped glass was also studied by Soxhlet tests. The results do not show any significant evolution of the initial alteration rate with the alpha dose. (authors)

  10. Chemical durability and resistance to irradiation of LnYSiAlO (Ln=La or Ce) glasses, potential immobilization matrix of minor actinides

    International Nuclear Information System (INIS)

    Gavarini, St.

    2002-11-01

    Rare earth aluminosilicate glasses are known for their interesting mechanical and optical properties. Recent studies have shown that their chemical durability was very good too, such they have the potential to be used in the nuclear industry for the specific immobilization of trivalent actinides. Initial dissolution rates of LaYSiAlO and CeYSiAlO were determined using a Soxhlet device (dynamic leaching). The differences linked to the nature of the rare earth element were studied by synthesizing analogous glasses that only differed in their rare earth element composition (%at.): Y-5%, La-5 %, Si-15%, Al-10% O-65%. The influence of pH on the dissolution mechanisms and kinetics was also studied by static leaching tests performed in dilute solutions of NaOH or HNO 3 . Electronic defects and collision cascades, induced by a-disintegration of radioelements confined in storage matrix, can cause important modifications in the glass structure and, thus, influence its chemical durability. To simulate these effects, glass samples were irradiated with β particles and heavy ions accelerated to 2,5 MeV and 200 keV, respectively. Monoliths were then leached in static bi-distilled water (pH≥≥ 5.5) for one month in an autoclave heated to 90 degrees C. Initially, the structural changes caused by irradiation were determined using Raman, NMR and EPR spectroscopies. Ion μ-beams, SEM-EDS and XPS analysis were also performed to evaluate the potential modifications of the superficial composition. Finally, the leaching behavior was studied, for both irradiated and unirradiated samples, through solution and solid elementary characterization. (author)

  11. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    Science.gov (United States)

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.

  12. Flexible Xxx–Asp/Asn and Gly–Xxx Residues of Equine Cytochrome c in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    Science.gov (United States)

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908

  13. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  14. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein.

    Science.gov (United States)

    Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim

    2009-09-15

    The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.

  15. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  16. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  17. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved.......The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...

  18. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  19. A Ba-free sealing glass with a high CTE and excellent interface stability optimized for SOFC/SOEC stack applications

    DEFF Research Database (Denmark)

    Ritucci, Ilaria; Agersted, Karsten; Zielke, Philipp

    2017-01-01

    -mechanical properties and compositional variations are reviewed and discussed by thermal analyses and in situ XRD, in order to design and optimize the sealing profile and reduce the residual porosity. The glass after heat treatment partially devitrifies into augite and nepheline with residual glass phase of around 64...

  20. Structure and properties of calcium iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Bin [School of Science, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: xfliangswust@gmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Cuiling; Yang, Shiyuan [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2013-11-15

    The structural properties of xCaO–(100 − x) (0.4Fe{sub 2}O{sub 3}–0.6P{sub 2}O{sub 5}) (x = 0, 10, 20, 30, 40, 50 mol%) glasses have been investigated by XRD, DTA, IR and Raman spectroscopy. XRD analysis has confirmed that the majority of samples are X-ray amorphous, and EDS analysis indicates that the glass matrix can accommodate ≈30 mol% CaO. IR and Raman spectra show that the glass structure consists predominantly of pyrophosphate (Q{sup 1}) units. IR spectra indicate that the phosphate network is depolymerized with the addition of CaO content. The density and glass transition temperature (T{sub g}) increase with increasing CaO content for the glasses. This behavior indicates that the addition of CaO improves the strength of the cross-links between the phosphate chains of the glass.

  1. Metallic glasses of the type Fe80B17X3

    International Nuclear Information System (INIS)

    Riedel, M.; Gnaser, H.; Ruedenauer, F.G.

    1981-08-01

    Absolute and relative practical sensitivities for Osub2sup+ - bombardement of 14 elements, present as a 3% admixture in a Fe80B17X3 metallic glass matrix, were determined by SIMS. The variation of sensitivity data between elements is similar to that found for pure element samples. The 3% admixture causes a small but statistically significant matrix effect on the matrix elements Fe and B. Comparison with yield data of the same minor impurity elements in other matrices (stainless steel, silicon) shows, that sensitivities in different matrices are within 30% for most elements, indicating the possibility of transferring relative sensitivity factor data determined on metallic glasses to other Fe-based alloys and thereby obtaining a semi- quantitative analysis. (author)

  2. Tribo-mechanical behaviour of SiC filled glass-epoxy composites at ...

    African Journals Online (AJOL)

    While glass fibers enhance the toughness of the matrix, silicon carbide shows high hardness, thermal stability and low chemical reactivity, leading to superior friction properties. In this work an attempt was made to evaluate the mechanical properties and tribological behaviour of glass fabric reinforced- epoxy (G-E) ...

  3. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90 degrees C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials

  4. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.co [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt); Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S. [Physics Department, Faculty of Education, Suez Canal University, El-Arish (Egypt)

    2009-11-15

    The structural and electrical conductivity (sigma) of annealed SrTiO{sub 3}-PbO{sub 2}-V{sub 2}O{sub 5} glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T{sub c} exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V{sup 4+}-V{sup 5+} pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above theta{sub D}/2 (theta{sub D}, the Debye temperature). The electrical conduction at T >theta{sub D}/2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  5. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization

    International Nuclear Information System (INIS)

    El-Desoky, M.M.; Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S.

    2009-01-01

    The structural and electrical conductivity (σ) of annealed SrTiO 3 -PbO 2 -V 2 O 5 glasses were studied. The annealing of initially glass samples leads to formation of nanocrystalline grains embedded in the glassy matrix. XRD patterns of the glass-ceramic samples show that nanocrystals were embedded in the glassy matrix with an average grain size of 32 nm. The glass-ceramic nanocrystals obtained by annealing at temperatures close to the crystallization temperature T c exhibit enhancement of electrical conductivity up to four orders of magnitude than initially glasses. The enhancement of the electrical conductivity due to annealing was attributed to two interdependent factors: (i) an increase of concentration of V 4+ -V 5+ pairs; and (ii) formation of defective, well-conducting regions along the glass-crystallites interfaces. From the conductivity temperature relation, it was found that small polaron hopping model was applicable at temperature above θ D /2 (θ D , the Debye temperature). The electrical conduction at T >θ D /2 was due to non-adiabatic small polaron hopping (SPH) of electrons between vanadium ions. The parameters obtained from the fits of the experimental data to this model appear reasonable and are consistent with glass composition.

  6. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  7. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  8. Remaining stress-state and strain-energy in tempered glass fragments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2016-01-01

    to the fragmentation process and some authors e.g. Barsom (J Am Ceram Soc 51(2):75, 1968), Gulati (Glass processing days, Tamglass Engineering Oy, Tampere, 1997), Warren (Fractography of glasses and ceramics IV, Alfred University, Alfred, 2001) and Tandon and Glass (Fracture mechanics of ceramics—active materials......When tempered glass breaks, it shatters into relatively small pieces depending on the residual stress state in the glass. This has been known for centuries and is currently used in standards for classifying whether a piece of glass is tempered or not. However, the process of fragmentation...... is complex and only a few, relatively simple, models have been suggested for predicting the fragment size. The full theoretical explanation is still to be found and this work aims at providing another brick to the puzzle. The strain-energy present in tempered glass is obviously contributing...

  9. Role of residual water hydrogen bonding in sugar/water/biomolecule systems: a possible explanation for trehalose peculiarity

    Energy Technology Data Exchange (ETDEWEB)

    Cordone, L; Cottone, G; Giuffrida, S [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo and CNISM (Italy)

    2007-05-23

    We report on the set of experimental and simulative evidences which enabled us to suggest how biological structures embedded in a non-liquid water-saccharide solvent are anchored to the surrounding matrix via a hydrogen bond network. Such a network, whose rigidity increases by decreasing the sample water content, couples the degrees of freedom of the biostructure to those of the matrix and gives place to protein-saccharide-water structures (protein-solvent conformational substates). In particular, the whole set of data evidences that, while the protein-sugar interaction is well described in terms of a water entrapment hypothesis, the water replacement hypothesis better describes the sugar-membrane interaction; furthermore, it gives a hint towards the understanding of the origin of the trehalose peculiarity since the biomolecule-matrix coupling, specific to each particular sugar, always results in being the tightest for trehalose. In line with the heterogeneous dynamics in supercooled fluids and in carbohydrate glasses of different residual water contents, recent results confirm, at the single molecule level, the existence of protein-solvent conformational substates, spatially heterogeneous and interconverting, whose rigidity increases by lowering the sample hydration.

  10. Corrosion behaviors of a glass-bonded sodalite ceramic waste form and its constituents

    International Nuclear Information System (INIS)

    Lewis, M. A.; Ebert, W. L.; Morss, L.

    1999-01-01

    A ceramic waste form (CWF) of glass bonded sodalite is being developed as a waste form for the long-term immobilization of fission products and transuranic elements from the U.S. Department of Energy's activities on spent nuclear fuel conditioning. A durable waste form was prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. During HIP the zeolite is converted to sodalite, and the resultant CWF is been completed for durations of up to 182 days. Four dissolution modes were identified: dissolution of free salt, dissolution of the aluminosilicate matrix of sodalite and the accompanying dissolution of occluded salt, dissolution of the boroaluminosilicate matrix of the glass, and ion exchange. Synergies inherent to the CWF were identified by comparing the results of the tests with pure glass and sodalite with those of the composite CWF

  11. Fabrication and characterization of MCC approved testing material: ATM-9 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1986-06-01

    The Materials Characterization Center ATM-9 glass is designed to be representative of glass to be produced by the Defense Waste Processing Facility at the Savannah River Plant, Aiken, South Carolina. ATM-9 glass contains all of the major components of the DWPF glass and corresponds to a waste loading of 29 wt %. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 Black Frit to which was added Ba, Cs, Md, Nd, Zr, as well as 99 Tc, depleted U, 237 Np, 239+240 Pu, and 243 Am. The glass was produced under reducing conditions by the addition of 0.7 wt % graphite during the final melting process. Three kilograms of the glass were produced from April to May of 1984. On final melting, the glass was formed into stress-annealed rectangular bars of two sizes: 1.9 x 1.9 x 10 cm and 1.3 x 1.3 x 10 cm. Seventeen bars of each size were made. The analyzed composition of ATM-9 glass is listed. Examination by optical microscopy of a single transverse section from one bar showed random porosity estimated at 0.36 vol % with nominal pore diameters ranging from approx. 5 μm to 200 μm. Only one distinct second phase was observed and it was at a low concentraction level in the glass matrix. The phase appeared as spherical metallic particles. X-ray diffraction analysis of this same sample did not show any diffraction peaks from crystalline components, indicating that the glass contained less than 5 wt % of crystalline devitrification products. The even shading on the radiograph exposure indicated a generally uniform distribution of radioactivity throughout the glass matrix, with no distinct high-concentration regions

  12. Role of MnO in manganese–borate binary glass systems

    Indian Academy of Sciences (India)

    Structural and thermal properties of x MnO−( 100 − x )B 2 O 3 (where x = 40 , 50 and 60 mol%) glass samples have been investigated with the employment of various techniques. Fourier transform infrared spectroscopy results revealed the influence of MnO on glass matrix. Decrease of B–O bond-related band intensities has ...

  13. Study of the influence of chemical composition on the pozzolanicity of soda-lime glass microparticles

    International Nuclear Information System (INIS)

    Sales, R.B.C.; Mohallem, N.D.S.; Aguilar, M.T.P.

    2014-01-01

    The use of residues presents interesting possibilities for obtaining eco-efficient concretes. Research has investigated the use of glass residue in Portland cement composite, whether as an aggregate or a supplementary material. However, there is still no consensus on the influence of the chemical composition of glass on the behaviour of the composites in which it is used. This paper aims to analyse the influence of this composition on the performance of cement composites produced with microparticles of colourless and amber glass. Pozzolanicity was assessed by means of direct tests (modified Chapelle and electrical conductivity) and indirect tests (chemical characterization, X-ray diffraction, thermo analysis and pozzolanic activity index). Most of the results show that microparticles of both types of glass display pozzolanic activity, with no significant differences between them. This indicates the potential for the use of glass microparticles as a supplementary material in cement composites. (author)

  14. A relationship between leach rate of nuclear waste glass and residual amount of sodium on the glass surface

    International Nuclear Information System (INIS)

    Kamizono, Hiroshi; Banba, Tsunetaka

    1984-12-01

    Leach tests of simulated high-level waste glass were carried out in order to examine the quantitative relationship between the amount of elements on the sample surface and that in the leachate. An experimental equation was obtained expressing the relationship between the amount of Na on the sample surface and that in the leachate. This shows that it is possible in some cases to estimate the amount of Na in the leachate by measuring the amount of Na on the sample surface. One example of such an estimation was observed with the simulated high-level waste glass leached at 100 0 C in the presence of a backfill material. (author)

  15. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2018-04-05

    The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.

  16. Ongoing Model Development Analyzing Glass Fracture

    DEFF Research Database (Denmark)

    Molnar, G.; Bojtar, I.; Nielsen, Jens Henrik

    2013-01-01

    Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements of the ...... an overview of the structure of the research and a summary of current status archived so far.......Present subject deals with an ongoing experimental and numerical analysis of inplane loaded glass plates. The main goal of the investigation is to develop a hybrid – discrete and finite element – model which could follow the fracture process in annealed and in tempered glass. Measurements...... of the residual stress state before failure and high-speed camera recordings of the failure are being performed in order to verify the numerical model. The primary goal of this research is to follow the overall fracture of a structural element – e.g. beam – loaded inplane. Present paper would like to give...

  17. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Litovitz, T.A.; Simmons, C.J.; Simmons, J.H.; Macedo, P.B.

    1981-01-01

    A process for disposing of toxic materials such as radioactive waste comprises reacting a porous silicate glass or silica gel, having interconnected pores and alkali metal cations. Group 1b metal cations and/or ammonium cation bonded to silicon through divalent oxygen linkages on the internal surfaces of said pores, with a toxic material containing toxic cations as well as non-cationic portions. The toxic cations are capable of displacing the alkali metal cations, Group 1b metal cations and/or ammonium cations to provide a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. (author)

  18. Preparation and properties of yttrium iron garnet microcrystal in $P_{2}O_{5}-MgO$ glass

    CERN Document Server

    Chen, G J; Chang, Y S; Lee, H M; Lin, Y J; 10.1016/j.jallcom.2004.07.041

    2005-01-01

    The fabrication of phosphorus-based glasses containing Y/sub 3/Fe/sub 5/O/sub 12/ crystals by the incorporation method was studied. From transmission electron microscopy observation, there is only one rod- like crystalline phase identified as Y/sub 3/Fe/sub 5/O/sub 12/ existing in the glass matrix. When the content of YIG is 30wt.%, the as-cast sample shows a Faraday rotation of 85 degrees /cm and a magnetization of 0.4emu/g in a field of 14kOe. After heat treatment, the magnetic and optical properties of the glass ceramic changed owing to the thermal diffusion of iron ions into the glass matrix.

  19. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → A recycling/treatment process to remove lead on funnel glass surface is described. → Utilizing recycled funnel glass in mortar can reduce hazardous CRT glass wastes. → Effects of CRT glass content on the properties of cement mortar are studied. → Fly ash can effectively mitigate ASR expansion of mortar even at 100% glass content. → Alkaline medium in cement matrix successfully prevented the leaching of lead. - Abstract: Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  20. Investigations on vanadium doped glasses

    International Nuclear Information System (INIS)

    Madhusudana Rao, P.

    2013-01-01

    The glass samples studied in the present work have been prepared by melt quenching technique. They were prepared by mixing and grinding together by appropriate amounts of Li 2 O - Na 2 O - B 2 O 3 doped with V 2 O 5 in an agate motor before transferring into crucible. The mixtures were heated in an electric furnace at 1225K for 20 mm. The melt was then quenched to room temperature by pouring it on plane brass plate and pressing it with another brass plate. White and yellow coloured glasses have been obtained with good optical quality and high transparency. Finally the vitreous sample were annealed for 3 hrs at 423K to relieve residual internal stress and slowly cooled to room temperature. The polished glasses have been used for XRD, FTIR analysis and for DSC report. The DSC thermo grams for all the glasses were recorded on in the temperature range 50-550℃ with a heating rate of 10℃/min. Electron spin resonance and optical absorption of 20Li 2 O - 10 Na 2 O - (70-X)B 2 O 3 doped with XV 2 O 5 glass system are studied. ESR spectra of V 4+ ions doped in the glass exhibit peak at g =1.98. Spin Hamiltonian parameters are calculated. It was found that these parameters are dependent upon alkali ion concentration in the glass and the VO +2 ion in an octahedral coordination with a tetragonal compression. The physical parameters of all glasses were also evaluated with respect to the composition

  1. Fission products in glasses. Pt. 2

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Malow, G.; Schiewer, E.

    1977-09-01

    Glass ceramics of different composition with high leach and impact resistance can be produced for fission product solidification. In contrast to commercial glass products, they consist of a number of crystalline phases and a residual glass phase. The major crystalline phase allows a classification into celsian, diopside, encryptite, and perovskite ceramics. They all are of special importance as host phases for long-lived fission products. The paper reports on relations between product composition and melting properties, viscosity, crystallization properties, and fixation capability for fission products. Further investigations deal with dimensional stability, impact resistance, thermal expansion, and thermal conductivity. The properties of the ceramics are compared with those of the basic products. The problems still to be solved with regard to further improvement and application of these products are discussed. (RB) [de

  2. PVC/carbon nanotubes nanocomposites: evaluation of electrical resistivity and the residual solvent effect over the thermal properties of nanocomposites; Nanocompositos PVC/nanotubos de carbono: avaliacao da resistividade eletrica e efeito do solvente utilizado na obtencao dos nanocompositos nas propriedades termicas

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rogerio Gomes [Instituto Superior Tupy (UNISOCIESC), Joinville, SC (Brazil); Pires, Alfredo T.N., E-mail: araujo@sociesc.org.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2013-07-01

    The procedure for obtaining nanocomposite by dispersing the nanoparticles in matrix polymer in solution with subsequent elimination of the solvent has been widely used, considering better efficiency in obtaining homogeneity of the final product. However, the presence of residual solvent may affect the nanocomposites in micro-and macroscopic properties of the product. The aim of this study was to evaluate the thermal properties of nanocomposites of poly(vinylchloride)/multi-walled carbon nanotube obtained from the polymer solution and dispersion of carbon nanotubes in tetrahydrofuran (THF), as well as the electrical resistivity of nanocomposites and the influence of residual solvent. The presence of residual tetrahydrofuran reduces the glass transition temperature (Tg) up to 26 °C, being independent of the amount of carbon nanotubes. The total elimination of the solvent is an important factor that does not induce changes in the properties of the polymeric matrix. The graft-COOH groups in the structure of the nanotubes leads to a considerable reduction of the electrical resistivity in ten orders of magnitude, from 0.4 %wt of nanotubes in the nanocomposite composition. (author)

  3. Development of 10×10 Matrix-anode MCP-PMT

    Science.gov (United States)

    Yang, Jie; Li, Yongbin; Xu, Pengxiao; Zhao, Wenjin

    2018-02-01

    10×10 matrix-anode is developed by high-temperature co-fired ceramics (HTCC) technology. Based on the new matrix-anode, a new kind of photon counting imaging detector - 10×10 matrix-anode MCP-PMT is developed, and its performance parameters are tested. HTCC technology is suitable for the MCP-PMT's air impermeability and its baking process. Its response uniformity is better than the metal-ceramic or metal-glass sealing anode, and it is also a promising method to realize a higher density matrix-anode.

  4. Autostereoscopic image creation by hyperview matrix controlled single pixel rendering

    Science.gov (United States)

    Grasnick, Armin

    2017-06-01

    Just as the increasing awareness level of the stereoscopic cinema, so the perception of limitations while watching movies with 3D glasses has been emerged as well. It is not only that the additional glasses are uncomfortable and annoying; there are some tangible arguments for avoiding 3D glasses. These "stereoscopic deficits" are caused by the 3D glasses itself. In contrast to natural viewing with naked eyes, the artificial 3D viewing with 3D glasses introduces specific "unnatural" side effects. The most of the moviegoers has experienced unspecific discomfort in 3D cinema, which they may have associated with insufficient image quality. Obviously, quality problems with 3D glasses can be solved by technical improvement. But this simple answer can -and already has- mislead some decision makers to relax on the existing 3D glasses solution. It needs to be underlined, that there are inherent difficulties with the glasses, which can never be solved with modest advancement; as the 3D glasses initiate them. To overcome the limitations of stereoscopy in display applications, several technologies has been proposed to create a 3D impression without the need of 3D glasses, known as autostereoscopy. But even todays autostereoscopic displays cannot solve all viewing problems and still show limitations. A hyperview display could be a suitable candidate, if it would be possible to create an affordable device and generate the necessary content in an acceptable time frame. All autostereoscopic displays, based on the idea of lightfield, integral photography or super-multiview could be unified within the concept of hyperview. It is essential for functionality that every of these display technologies uses numerous of different perspective images to create the 3D impression. Such a calculation of a very high number of views will require much more computing time as for the formation of a simple stereoscopic image pair. The hyperview concept allows to describe the screen image of any 3D

  5. Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form

    International Nuclear Information System (INIS)

    Lewis, M. A.; Lexa, D.; Morss, L. R.; Richmann, M. K.

    1999-01-01

    Glass-bonded sodalite is being developed as a ceramic waste form (CWF) to immobilize radioactive fission products, actinides, and salt residues from electrometallurgical treatment of spent nuclear reactor fuel. The CWF consists of about 75 mass % sodalite, 25 mass % glass, and small amounts of other phases. This paper presents some results and interpretation of physical measurements to characterize the CWF structure, and dissolution tests to measure the release of matrix components and radionuclides from the waste form. Tests have been carried out with specimens of the CWF that contain rare earths at concentrations similar to those expected in the waste form. Parallel tests have been carried out on specimens that have uranium or plutonium as well as the rare earths at concentrations similar to those expected in the waste forms; in these specimens UCl 3 forms UO 2 and PuCl 3 forms PuO 2 . The normalized releases of rare earths in dissolution tests were found to be much lower than those of matrix elements (B, Si, Al, Na). When there is no uranium in the CWF, the release of cerium is two to ten times lower than the release of the other rare earths. The low release of cerium may be due to its tetravalent state in uranium-free CWF. However, when there is uranium in the CWF, the release of cerium is similar to that of the other rare earths. This trivalent behavior of cerium is attributed to charge transfer or covalent interactions among cerium, uranium, and oxygen in (U,Ce)O 2

  6. Glass-ceramic from mixtures of bottom ash and fly ash.

    Science.gov (United States)

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  8. New compositions of fluoroindate glasses with higher chemical resistance

    Directory of Open Access Journals (Sweden)

    B. J. Costa

    1998-06-01

    Full Text Available In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.

  9. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    International Nuclear Information System (INIS)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  10. Evaluation of bioactive glass incorporated poly(caprolactone)-poly(vinyl alcohol) matrix and the effect of BMP-2 modification

    Energy Technology Data Exchange (ETDEWEB)

    Keothongkham, Khamsone [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170 (Thailand); Thongbunchoo, Jirawan; Suntornsaratoon, Panan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10900 (Thailand); Tang, I-Ming [Department of Materials Science Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2017-05-01

    Composite materials having mechanical and biological properties similar to those of human bones are needed for bone regeneration and repair. In the present study, composites were made by incorporating bioactive glass (BG) into polycaprolactone (PCL)-polyvinyl alcohol (PVA) (PCLPVA) matrix. Composites with different BG contents of 10, 25 and 50 wt% were fabricated by an in-situ blending method. Physicochemical properties measurements found that the composite with 50 wt% BG in the PCLPVA organic matrix exhibited the best mechanical properties (compressive strength and compressive young's modulus up to 32.26 MPa and 530.91 MPa, respectively). We investigated the effects of the BG content on cell adhesion, proliferation and osteogenic activity of UMR-106 cells grown on the scaffolds using in vitro cell culture assay. The composite scaffolds having 25 wt% BG showed a significant increase in their cell adhesion capability and a faster cell proliferation. They also exhibited cell adhesion and spreading morphology after only 5 days of culturing. For these reasons, we chose to attach the bone morphogenetic protein (BMP)-2 to this composite. The resulting composite (labeled BMP-2-loaded PCLPVABG25) showed significant improvement in the UMR-106 cells adhesion, in the enhancement in osteogenic differentiation and osteoinductivity of this composite. - Highlights: • Preparation of PCLPVABGx composite scaffolds and their physical properties. • Mechanical properties could be adjusted by controlling BG contents in PCLPVA matrix. • In vitro cell availability tests confirmed the osteoblast grow on the PCLPVABGx composite scaffolds surface. • Upon the BMP-2-loaded PCLPVABG25 scaffolds can enhance cell attachment and significantly improved osteogenicity.

  11. Rational decisions, random matrices and spin glasses

    Science.gov (United States)

    Galluccio, Stefano; Bouchaud, Jean-Philippe; Potters, Marc

    We consider the problem of rational decision making in the presence of nonlinear constraints. By using tools borrowed from spin glass and random matrix theory, we focus on the portfolio optimisation problem. We show that the number of optimal solutions is generally exponentially large, and each of them is fragile: rationality is in this case of limited use. In addition, this problem is related to spin glasses with Lévy-like (long-ranged) couplings, for which we show that the ground state is not exponentially degenerate.

  12. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Simmons, C.J.; Simmons, J.H.; Macedo, P.B.; Litovitz, T.A.

    1982-01-01

    A process is reported for reacting a porous silicate or borosilicate glass or silica gel with alkali metal cations, Group lb cations and/or ammonium cations bonded to the silicon through divalent oxygen linkages on the internal surfaces of the pores. Ion exchange of the cations with toxic or radioactive cations was possible resulting in a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. The ion exchange reaction may be done successfully with acidic, neutral or alkaline pH solutions. The aim of the immobilization is for permanent storage of hazardous materials such as Hg 2+ , Hg + , Cd 2+ , Tl + , Pb 2+ and radioactive cations

  13. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system

    NARCIS (Netherlands)

    Zhang, S.; Keulen, A.; Arbi, K.; Ye, G.

    2017-01-01

    The feasibility of a waste glass powder residue (GP) from glass recycling as partial mineral precursor to produce alkali-activated materials is investigated. GP served as powder coal fly ash (PCFA) replacement within a reference system composed of 50% PCFA and 50% ground granulated blast furnace

  14. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity.

    Science.gov (United States)

    Rohanová, Dana; Boccaccini, Aldo Roberto; Yunos, Darmawati Mohamad; Horkavcová, Diana; Březovská, Iva; Helebrant, Aleš

    2011-06-01

    The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Glass interface effect on high-strain-rate tensile response of a soft polyurethane elastomeric polymer material

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The glass interface effect on dynamic tensile response of a soft polyurethane elastomeric polymer material has been investigated by subjecting a glass-polymer system of this polymer material matrix embedded a single 3 mm-diameter glass particle to impact loading in a split Hopkinson tension bar

  16. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  17. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  18. Introduction to the crystallization phenomenon in nuclear glass

    International Nuclear Information System (INIS)

    Jacquet Francillon, N.

    1997-01-01

    Crystallization is a subject for concern because of its potentially detrimental effects on the technological feasibility of high-temperature melting, and on the chemical durability of the material at intermediate and low temperatures during interim storage or after disposal. The tendency of glass to crystallize depends to a large extent on the composition of the frit and/or of the waste to be solidified. It depends too of the thermal history of the glass generally, the knowledge is mainly upon determination of the time-temperature-transition (TTT) curves, crystal identification and quantification techniques, and their effects on the durability of the glass matrix. French experience is presented. Only a few authors addressed the long-term development of crystalline phases, notably at temperatures below the vitreous transition temperature Tg. Some recommendations for glass crystallization studies are made but glass crystallization after disposal is acceptable provided some conditions are met. (author)

  19. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  20. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  1. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  2. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    International Nuclear Information System (INIS)

    Day, Delbert E.; Ray, Chandra S.; Cheol-Woon Kim

    2004-01-01

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost

  3. Fabrication and characterization of novel polymer-matrix nanocomposites and their constituents

    Science.gov (United States)

    Ding, Rui

    Two main issues for the wide application of polymer-matrix nanocomposites need to be addressed: cost-effective processing of high-performance nanomaterials, and fundamental understanding of the nanofiller-polymer interaction related to property changes of nanocomposites. To fabricate inexpensive and robust carbon nanofibers (CNFs) by the electrospinning technique, an organosolv lignin for replacing polyacrylonitrile (PAN) precursor was investigated in this work. Modification of lignin to its butyl ester alters the electrospinnability and the thermal mobility of the lignin/PAN blend precursor fibers, which further affect the thermostabilization and carbonization processes of CNFs. The micromorphology, carbon structure, and mechanical properties of resultant CNFs were evaluated in detail. Lignin butyration reveals a new approach to controlling inter-fiber bonding of CNFs which efficiently increases the tensile strength and modulus of nonwoven mats. A commercial vapor-grown CNF reinforcing of room-temperature-vulcanized (RTV) polysiloxane foam has potential impact on the residual tin catalyst in composites and consequently the aging and the long-term performance of the materials. Elemental spectra and mapping were employed to analyze the distribution and the composition of tin catalyst residues in the CNF/polysiloxane composites. Thermal analysis revealed a significant increase of thermal stability for CNF-filled composites. Further, the glass transition properties of polysiloxane are not evidently influenced by the physical interaction between CNF filler and polysiloxane matrix. Nanocomposites consisting of anthracene, a model polycyclic aromatic hydrocarbon (PAH) compound, and a thermosetting epoxy was matrix was studied to interpret the reinforcing effect on the glass transition temperature ( Tg) by different routes: physical dispersion and/or covalent modification. The molecular dynamics of the relaxation processes were analyzed by broadband dielectric

  4. Doxycycline-containing glass ionomer cement for arresting residual caries: an in vitro study and a pilot trial

    Science.gov (United States)

    Duque, Cristiane; Kreling, Paula Fernanda; Pereira, Jesse Augusto; de Paula, Andreia Bolzan; Sinhoreti, Mario Alexandre Coelho; Puppin-Rontani, Regina Maria

    2018-01-01

    Abstract In a previous study, we demonstrated that the incorporation of doxycycline hyclate (DOX) into resin-modified glass ionomer cement (RMGIC) inhibited important cariogenic microorganisms, without modifying its biological and mechanical characteristics. In this study, we keep focused on the effect of that experimental material as a potential therapy for arresting residual caries by analyzing other in vitro properties and conducting a pilot clinical trial assessing the in vivo effect of DOX-containing RMGIC on residual mutans streptococci after partial carious removal in primary molars. Specimens of the groups RMGIC (control); RMGIC + 1.5% DOX; RMGIC + 3% DOX; and RMGIC + 4.5% DOX were made to evaluate the effect of DOX incorporation on surface microhardness and fluoride release of RMGIC and against biofilm of Streptococcus mutans. Clinical intervention consisted of partial caries removal comparing RMGIC and RMGIC + 4.5% DOX as lining materials. After 3 months, clinical and microbiologic evaluations were performed. Data were submitted to ANOVA/Tukey or Wilcoxon/Mann-Whitney set as α=0.05. Fluoride release and surface microhardness was not influenced by the incorporation of DOX (p>0.05). There was a significant reduction of S. mutans biofilm over the material surface with the increase of DOX concentration. After clinical trial, the remaining dentin was hard and dry. Additionally, mutans streptococci were completely eliminated after 3 months of treatment with RMGIC + 4.5% DOX. The incorporation of DOX provided better antibiofilm effect, without jeopardizing fluoride release and surface microhardness of RMGIC. This combination also improved the in vivo shortterm microbiological effect of RMGIC after partial caries removal. PMID:29742263

  5. Doxycycline-containing glass ionomer cement for arresting residual caries: an in vitro study and a pilot trial.

    Science.gov (United States)

    Castilho, Aline Rogéria Freire de; Duque, Cristiane; Kreling, Paula Fernanda; Pereira, Jesse Augusto; Paula, Andreia Bolzan de; Sinhoreti, Mario Alexandre Coelho; Puppin-Rontani, Regina Maria

    2018-01-01

    In a previous study, we demonstrated that the incorporation of doxycycline hyclate (DOX) into resin-modified glass ionomer cement (RMGIC) inhibited important cariogenic microorganisms, without modifying its biological and mechanical characteristics. In this study, we keep focused on the effect of that experimental material as a potential therapy for arresting residual caries by analyzing other in vitro properties and conducting a pilot clinical trial assessing the in vivo effect of DOX-containing RMGIC on residual mutans streptococci after partial carious removal in primary molars. Specimens of the groups RMGIC (control); RMGIC + 1.5% DOX; RMGIC + 3% DOX; and RMGIC + 4.5% DOX were made to evaluate the effect of DOX incorporation on surface microhardness and fluoride release of RMGIC and against biofilm of Streptococcus mutans. Clinical intervention consisted of partial caries removal comparing RMGIC and RMGIC + 4.5% DOX as lining materials. After 3 months, clinical and microbiologic evaluations were performed. Data were submitted to ANOVA/Tukey or Wilcoxon/Mann-Whitney set as α=0.05. Fluoride release and surface microhardness was not influenced by the incorporation of DOX (p>0.05). There was a significant reduction of S. mutans biofilm over the material surface with the increase of DOX concentration. After clinical trial, the remaining dentin was hard and dry. Additionally, mutans streptococci were completely eliminated after 3 months of treatment with RMGIC + 4.5% DOX. The incorporation of DOX provided better antibiofilm effect, without jeopardizing fluoride release and surface microhardness of RMGIC. This combination also improved the in vivo shortterm microbiological effect of RMGIC after partial caries removal.

  6. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  7. [Nuclear matrix organization of the chromocenters in cultured murine fibroblasts].

    Science.gov (United States)

    Sheval', E V; Poliakov, V Iu

    2010-01-01

    In the current work, the structural organization of nuclear matrix of pericentromeric heterochromatin blocks (chromocenters) inside cultured murine fibroblasts was investigated. After 2 M NaCl extraction without DNase I treatment, chromocenters were extremely swelled, and it was impossible to detect them using conventional electron microscopy. Using immunogolding with anti-topoisomerase IIalpha antibody, we demonstrated that residual chromocenters were subdivided into numerous discrete aggregates. After 2 M NaCl extraction with DNase I treatment, the residual chromocenters appeared as a dense meshwork of thin fibers, and using this feature, the residual chromocenters were easily distinguished from the rest of nuclear matrix. After extraction with dextran sulfate and heparin, the chromocenters were decondensed, and chromatin complexes having rosette organization (central core from which numerous DNA fibers radiated) were seen. Probably, the appearance of these rosettes was a consequence of incomplete chromatin extraction. Thus, the nuclear matrix of pericentromeric chromosome regions in cultured murine fibroblasts differs morphologically from the rest of nuclear matrix.

  8. Heterogeneities in nuclear waste glass

    International Nuclear Information System (INIS)

    Ladirat, Ch.

    1997-01-01

    The industrial vitrification of high level radioactive wastes is a 2 stage process. During the first stage, the concentrated solution is heated in a spinning resistance oven at the temperature of 400 Celsius degrees till evaporation and calcination. The second stage begins when the dry residue falls into a melting pot that is maintained at a temperature of 1100-1150 Celsius degrees. Glass fretting is added and the glass is elaborated through the fusion of the different elements present in the melting pot. Heterogeneities in the glass may be associated to: - the presence in the solution to vitrify of insoluble elements from the dissolution of the fuel (RuO 2 , Rh, Pd), - the presence of minuscule metal scraps (Zr) that have been produced during the cutting of the fuel element, - the failures to conform to the technical specifications of the vitrification process, for instance, temperatures or flow rates when introducing the different elements in the melting pot. (A.C.)

  9. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  10. Diffusion in glass

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, A S

    1991-12-31

    Rutherford backscattering spectromertry technique (RBS) was used to characterize and investigate the depth distribution profiles of Ca-impurities of Ca-doped soda-time glass. The purposely added Ca-impurities were introduced inti the glass matrix by a normal ion exchange diffusion process. The measurements and analysis were performed using 2 MeV {sup 2}He{sup +} ions supplied from the University of Jordan Van de Graff acceierator (JOVAG). The normalized concetration versus depth profile distributions for the Ca-imourities were determined, both theoretically and experimentally. The theoretical treatment was carried out by setting up and soiving the diffusion equation under the conditions of the experiment. The resulting profiles are characterized by a compiementary error function. the theoretical treeatment was extended to include the various methods of enhancing the diffusion process, e.g. using an electric field. The diffusion coefficient, assumed constant, of the Ca-impurities exchanged in the soda-lime glass was determined to be 1.23 x 10{sup 13} cm{sup 2}/s. A comparison between theoretically and experimentally determined profiles is made and commented at, where several conclusions are drawn and suggestions for future work are mentioned. (author). 38 refs., 21 figs., 10 Tabs.

  11. Optical absorption and photoluminescence properties of chromium in different host glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lachheb, R., E-mail: raouialach66@gmail.com [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Herrmann, A. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Damak, K. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia); Rüssel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstraße 6, 07743 Jena (Germany); Maâlej, R. [LaboratoireGéoressources, Matériaux, Environnement et Changements Globaux, Faculty of Sciences of Sfax, Sfax University, 3018 Sfax (Tunisia)

    2017-06-15

    The optical absorption, excitation and fluorescence spectra, and emission lifetimes of chromium (III) were investigated in a wide variety of oxide glasses (aluminosilicate, aluminate and phosphate). For all glasses, weak crystal field strengths were deduced from the absorption spectra. The effect of the glass matrix and the Cr{sup 3+} concentration on the fluorescence properties of Cr{sup 3+} ions were investigated. An increased fluorescence intensity of Cr{sup 3+}was found for glasses of low optical basicity, the spectral position of the Cr{sup 3+} absorption and emission, however, was hardly influenced by the glass composition. The optical absorption spectra of the chromium doped aluminosilicate and aluminate glasses showed the presence of Cr{sup VI}, while in phosphate glasses most chromium occurred as Cr{sup 3+} ions. Furthermore, for the glass with the lowest basicity, the Cr{sup 3+}concentration was optimized in order to achieve maximum fluorescence emission intensity.

  12. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    Science.gov (United States)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  13. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Singh, I.J.; Sathi Sasidharan, N.; Deshingkar, D.S.

    2004-11-01

    Long half life and easy availability from high level wastes make 137 Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137 Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137 Cs loaded on AMP .Phosphate glasses containing Na 2 O, P 2 O 5 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 and SiO 2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10 -4 to 10 -6 gm/cm 2 /day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  14. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation.

    Science.gov (United States)

    Wong, Maelene L; Wong, Janelle L; Vapniarsky, Natalia; Griffiths, Leigh G

    2016-06-01

    The immunological potential of animal-derived tissues and organs is the critical hurdle to increasing their clinical implementation. Glutaraldehyde-fixation cross-links proteins in xenogeneic tissues (e.g., bovine pericardium) to delay immune rejection, but also compromises the regenerative potential of the resultant biomaterial. Unfixed xenogeneic biomaterials in which xenoantigenicity has been ameliorated and native extracellular matrix (ECM) architecture has been maintained have the potential to overcome limitations of current clinically utilized glutaraldehyde-fixed biomaterials. The objective of this work was to determine how residual antigenicity and ECM architecture preservation modulate recipient immune and regenerative responses towards unfixed bovine pericardium (BP) ECM scaffolds. Disruption of ECM architecture during scaffold generation, with either SDS-decellularization or glutaraldehyde-fixation, stimulated recipient foreign body response and resultant fibrotic encapsulation following leporine subpannicular implantation. Conversely, BP scaffolds subjected to stepwise removal of hydrophilic and lipophilic antigens using amidosulfobetaine-14 (ASB-14) maintained native ECM architecture and thereby avoided fibrotic encapsulation. Removal of hydrophilic and lipophilic antigens significantly decreased local and systemic graft-specific, adaptive immune responses and subsequent calcification of BP scaffolds compared to scaffolds undergoing hydrophile removal only. Critically, removal of antigenic components and preservation of ECM architecture with ASB-14 promoted full-thickness recipient non-immune cellular repopulation of the BP scaffold. Further, unlike clinically utilized fixed BP, ASB-14-treated scaffolds fostered rapid intimal and medial vessel wall regeneration in a porcine carotid patch angioplasty model. This work highlights the importance of residual antigenicity and ECM architecture preservation in modulating recipient immune and regenerative

  15. Effects of SiO 2 and TiO 2 fillers on thermal and dielectric properties ...

    Indian Academy of Sciences (India)

    The microstructures and distribution of fillers in the glass matrix have been analyzed by SEM images. It is observed that the fillers have partially dissolved in the glass at the firing temperature leaving some unreacted filler as residue which results in ceramic–glass microcomposites. In consideration of the desired properties of ...

  16. Behaviour of ruthenium dioxide particles in borosilicate glasses and melts

    Energy Technology Data Exchange (ETDEWEB)

    Pflieger, Rachel [DEN/DTCD-SCDV/CEA Valrho, Centre de Marcoule, BP17171, 30207 Bagnols-sur-Ceze (France); Institut de Chimie Separative de Marcoule, UMR5257, Centre de Marcoule, BP17171, 30207 Bagnols-sur-Ceze Cedex (France)], E-mail: rachel_pflieger@yahoo.fr; Lefebvre, Leila [DEN/DTCD-SCDV/CEA Valrho, Centre de Marcoule, BP17171, 30207 Bagnols-sur-Ceze (France); Malki, Mohammed [CNRS/CEMHTI-1D Av. de la Recherche Scientifique, 45701 Orleans cedex 2 (France); Polytech Orleans, Universite d' Orleans, 8 rue Leonard de Vinci, 45072 Orleans cedex 2 (France); Allix, Mathieu [CNRS/CEMHTI-1D Av. de la Recherche Scientifique, 45701 Orleans cedex 2 (France); Grandjean, Agnes [DEN/DTCD-SCDV/CEA Valrho, Centre de Marcoule, BP17171, 30207 Bagnols-sur-Ceze (France); Institut de Chimie Separative de Marcoule, UMR5257, Centre de Marcoule, BP17171, 30207 Bagnols-sur-Ceze Cedex (France)

    2009-06-01

    Ruthenium-glass systems are formed during the vitrification of nuclear waste. They are also widely used in micro-electronics because of their unique electrical properties. However, the interaction of this element with the glass matrix remains poorly understood. This work focuses on a RuO{sub 2} particles-nuclear alumino-borosilicate glass system in which the electrical conductivity is known to vary considerably with the RuO{sub 2} content and to become electronic above about 0.5-0.7 vol.% RuO{sub 2} [R. Pflieger, M. Malki, Y. Guari, J. Larionova, A. Grandjean, J. Am. Ceram. Soc., accepted for publication]. Some RuO{sub 2} segregation was observed in SEM/TEM investigations but no continuous chain of RuO{sub 2} particles could be seen. Electron relays between the particles are then necessary for a low-rate percolation, such as the nanoclusters suggested by Adachi et al. [K. Adachi, S. Iida, K. Hayashi, J. Mater. Res. 9 (7) (1994) 1866; K. Adachi, H. Kuno, J. Am. Ceram. Soc. 83 (10) (2000) 2441], which could consist in dissolved ruthenium. Indeed, several observations made here clearly indicate the presence of dissolved ruthenium in the glass matrix, like the modification of the glass density in presence of RuO{sub 2} particles or the diffusion-limited growth of RuO{sub 2} particles in the melt.

  17. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  18. Glass precursor approach to high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The available studies on the synthesis of high T sub c superconductors (HTS) via the glass precursor approach were reviewed. Melts of the Bi-Sr-Ca-Cu-O system as well as those doped with oxides of some other elements (Pb, Al, V, Te, Nb, etc.) could be quenched into glasses which, on further heat treatments under appropriate conditions, crystallized into the superconducting phase(s). The nature of the HTS phase(s) formed depends on the annealing temperature, time, atmosphere, and the cooling rate and also on the glass composition. Long term annealing was needed to obtain a large fraction of the 110 K phase. The high T sub c phase did not crystallize out directly from the glass matrix, but was preceded by the precipitation of other phases. The 110 K HTS was produced at high temperatures by reaction between the phases formed at lower temperatures resulting in multiphase material. The presence of a glass former such as B2O3 was necessary for the Y-Ba-Cu-O melt to form a glass on fast cooling. A discontinuous YBa2Cu3O(7-delta) HTS phase crystallized out on heat treatment of this glass. Attempts to prepare Tl-Ba-Ca-Cu-O system in the glassy state were not successful.

  19. Structural and optical study of tellurite-barium glasses

    Science.gov (United States)

    Grelowska, I.; Reben, M.; Burtan, B.; Sitarz, M.; Cisowski, J.; Yousef, El Sayed; Knapik, A.; Dudek, M.

    2016-12-01

    The goal of this work was to determine the effect of barium oxide on the structural, thermal and optical properties of the TeO2-BaO-Na2O (TBN) and TeO2-BaO-WO3 (TBW) glass systems. Raman spectra allow relating the glass structure and vibration properties (i.e. vibrational frequencies and Raman intensities) with the glass composition. Raman spectra show the presence of TeO4 and TeO3+1/TeO3 units that conform with the glass matrix. Differential thermal analysis DTA, XRD measurements have been considered in term of BaO addition. The spectral dependence of ellipsometric angles of the tellurite-barium glass has been studied. The optical measurements were conducted on Woollam M2000 spectroscopic ellipsometer in spectral range of 190-1700 nm. The reflectance and transmittance measurements have been done on spectrophotometer Perkin Elmer, Lambda 900 in the range of 200-2500 nm (UV-VIS-NIR). From the transmittance spectrum, the energy gap was determined.

  20. LSA glass-ceramic tiles made by powder pressing

    International Nuclear Information System (INIS)

    Figueira, F.C.; Bertan, F.M.; Riella, H.G.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    A low cost alternative for the production of glass-ceramic materials is the pressing of the matrix glass powders and its consolidation simultaneously with crystallization in a single stage of sintering. The main objective of this work was to obtain LSA glass ceramics with low thermal expansion, processed by pressing and sintering a ceramic frit powder. The raw materials were homogenized and melted (1480 deg C, 80min), and the melt was poured in water. The glass was chemically (XRF and AAS) and thermally (DTA, 10 deg C/min, air) characterized, and then ground (60min and 120min). The ground powders were characterized (laser diffraction) and compressed (35MPa and 45MPa), thus forming four systems. The compacts were dried (150 deg C, 24h) and sintered (1175 deg C and 1185 deg C, 10 deg C/min). Finally, the glass-ceramics were characterized by microstructural analysis (SEM and XRD), mechanical behavior (σbending) and thermal analysis (α). The best results for thermal expansion were those for the glass-ceramics processed with smaller particle size and greater compaction pressure. (author)

  1. Utilization of borosilicate glass for transuranic waste immobilization

    International Nuclear Information System (INIS)

    Ledford, J.A.; Williams, P.M.

    1979-01-01

    Incinerated transuranic waste and other low-level residues have been successfully vitrified by mixing with boric acid and sodium carbonate and heating to 1050 0 C in a bench-scale continuous melter. The resulting borosilicate glass demonstrates excellent mechanical durability and chemical stability

  2. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    Science.gov (United States)

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  3. Development of basic data for modelling the residual alteration rate in aqueous media of AVM nuclear glasses

    International Nuclear Information System (INIS)

    Thien, B.

    2010-01-01

    During their aqueous alteration, AVM French nuclear glasses exhibit a large range of behaviour, in spite of a small range of composition. AVM glasses alteration rates are controlled by two phenomena: (i) precipitation of secondary phases, mostly aluminous hectorites, and (ii) diffusion of water across a more or less protective gel. The magnesium contained in these glasses increases the precipitation of these secondary phases, leading to a partial or total dissolution of the gel layer. This dissolution increases the glass alteration rates. On the other hand, Mg also incorporates in the gel, increasing his passivation properties. The predominance of one of these two phenomena depends on the initial composition of the glass, the pH of the solution, and the alteration conditions. In presence of Bure geological disposal site water (Mg and Ca rich), AVM glasses undergo less alteration than in initially pure water, in spite of larger amounts of secondary phase precipitates. This results from incorporation of calcium in the gel instead of sodium and magnesium, improving its passivating properties. We have adapted the geochemical GRAAL model for AVM glasses. In spite of its limitations, this model allows us to describe the differences of behaviour between these glasses, in function of their composition. Moreover, GRAAL can be proposed as a basis of a future operational model for predicting the alteration of AVM glasses. (author) [fr

  4. Calorimetric signature of structural heterogeneity in a ternary silicate glass

    DEFF Research Database (Denmark)

    Zhang, Yanfei; Yang, G.; Yue, Yuanzheng

    2013-01-01

    We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two...... distinct structural domains of higher and lower potential energies, respectively. The higher energy domains in nanoscale are so unstable that they become ordered during hyperquenching. This is verified by the high-resolution transmission electron microscopy image exhibiting nanoordered domains in the glass...... matrix. The higher energy domains relax similar to a strong glass phase, whereas the lower energy domains do similar to a fragile one....

  5. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  6. Strontium chloroapatite based glass-ceramics composites for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Jena, Hrudananda; Maji, Binoy Kumar; Asuvathraman, R.; Govindan Kutty, K.V.

    2013-01-01

    Apatites are naturally occurring minerals with a general formula of M 10 (PO 4 ) 6 X 2 , (M= Ca, Sr, Ba, X= OH, Cl, F) with a hexagonal crystal structure (S.G :P6 3 /m) and can accommodate alkaline earth and various other aliovalent cations and anions into its crystal structure. Apatites are also known to have high resistance to leaching of the constituent elements under geological conditions. It may not often be possible to immobilize the whole spectrum of the radioactive waste in a single phase M 10 (PO 4 ) 6 Cl 2 , then a combination of M-chloroapatite encapsulated in borosilicate glass (BSG) can immobilize most of the radwaste elements in the composite glass-ceramic matrix (glass bonded chloroapatite), thus utilizing the immobilizing efficiency of both the ceramic phase and glass. In the present study, the synthesis, characterization and thermo-physical property measurements of the Sr-chloroapatite (SrApCI) and some glass-bonded composites based on it have been investigated. The Sr-chloroapatite glass-ceramics were prepared by solid state reactions among stoichiometric concentrations of apatite forming reagents, 20 wt. % borosilicate glass (BSG), and known concentrations (10, 13 and 16 wt. %) of a simulated waste in chloride form. The products were characterized by XRD to confirm the formation of Sr 10 (PO 4 ) 6 Cl 2 and glass bonded-chloroapatite composites. The surface morphology and qualitative chemical composition of the powders were examined by SEM and EDX. Thermal expansion and glass transition temperature of the matrices were measured by dilatometry. Glass transition temperature of the glass-bonded composites was also examined by differential scanning calorimetry and differential thermal analysis. The 10-16 wt.% waste loaded matrices showed similar thermal expansion as that of SrApCI, indicating the thermal stability of the matrix to chloride waste immobilization. The glass transition temperature of the waste loaded matrices decreases on increasing the

  7. Sulfur Solubility Testing and Characterization of Hanford LAW Phase 2, Inner Layer Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Caldwell, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-27

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated low activity waste (LAW) glass compositions. A procedure developed at the Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study. These data will be used in the development of improved sulfur solubility models for LAW glass.

  8. Spectroscopic properties of Pr{sup 3+} ions embedded in lithium borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ramteke, D.D. [Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur 440010 (India); Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Gedam, R.S., E-mail: rupesh_gedam@rediffmail.com [Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur 440010 (India)

    2016-01-01

    A series of lithium borate glasses with different Pr{sup 3+} contents were prepared by the melt quench technique to explore the new material for solid state light applications. We found that the addition of Pr{sup 3+} ions in the glass matrix has a profound effect on the properties of the glasses. The presence of Pr{sup 3+} ions in the glass matrix created various absorption bands compared to the base glass. These bands were due to the ground state ({sup 3}H{sub 4}) of the Pr{sup 3+} to the various excited states. Optical energy band gap was calculated by Tauc's method which showed a decreasing trend with an increase in the Pr{sup 3+} content. This might be due to structural changes when the glass structure became rigid due to the Pr{sup 3+} ions and this was confirmed by the density results. Rigidity of the glass structure was further confirmed by the Fourier transformed infrared results. The excitation spectra showed bands at {sup 3}H{sub 4}→{sup 3}P{sub 2}, {sup 3}P{sub 1} and {sup 3}P{sub 0} nm. The {sup 3}H{sub 4}→{sup 3}P{sub 2} band was used to study the unresolved {sup 1}D{sub 2}→{sup 3}H{sub 4} and {sup 3}P{sub 0}→{sup 3}H{sub 6} transitions of the Pr{sup 3+} ions.

  9. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  10. The testing of sanitizers efficacy to enterococci adhered on glass surfaces

    Directory of Open Access Journals (Sweden)

    Margita Čanigová

    2015-08-01

    Full Text Available The aim of this work was to test the ability of 6 strains of enterococci to adhere on glass surfaces in environment with different content of milk residues and then to evaluate efficacy of 2 commercial sanitizers (alkaline and acidic used in milk production. Tested enterococci were isolated from milk, dairy products and from rinse water after sanitation milking machine. Suspension of enterococci (8 log CFU.ml-1 was prepared in phosphate buffered saline (PBS, PBS with content 0.1% and 1% of skimmed reconstituted milk. Glass plates were immersed into bacterial suspension for 1 h at 37 °C. The number of enterococci adhered on glass surface in PBS achieved an average value 3.47 log CFU.mm-2, in PBS with 0.1% of milk 2.90 CFU.mm-2, in PBS with 1% of milk 2.63 CFU.mm-2. Differences between the tested files were not statistically significant (p >0.05. In the second part of work the glass plates with adhered enterococci were exposed to the effect of alkaline sanitizer (on basis of NaOH and NaClO, respectively acidic sanitizer (on basis of H3PO4. Sanitation solutions were prepared and tested according to manufacturer recommendations (concentration 0.25%, contact time 20 min, temperature   20 °C. Alkaline sanitation solution was 100% effective against all tested enterococci regardless to content of milk residues in environment. Acidic sanitation solution was 100% effective only against E. faecalisD (isolated from rinse water after sanitation. Average value of reduction of enterococci with acidic sanitation solution, which were on glass plates in environment PBS was 2.84 CFU.mm-2, in PBS with 0.1% of milk was 2.45 CFU.mm-2 and in PBS with 1% of milk was 2.16 CFU.mm-2. It can be concluded, that increase of milk residues in environment decrease the adhesion of enterococci on glass surface, but also effectiveness of acidic sanitation solution.

  11. Physical and chemical characterization of borosilicate glasses containing Hanford high-level wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Palmer, R.A.

    1980-10-01

    Scouting studies are being performed to develop and evaluate silicate glass forms for immobilization of Hanford high-level wastes. Detailed knowledge of the physical and chemical properties of these glasses is required to assess their suitability for long-term storage or disposal. Some key properties to be considered in selecting a glass waste form include leach resistance, resistance to radiation, microstructure (includes devitrification behavior or crystallinity), homogeneity, viscosity, electrical resistivity, mechanical ruggedness, thermal expansion, thermal conductivity, density, softening point, annealing point, strain point, glass transformation temperature, and refractive index. Other properties that are important during processing of the glass include volatilization of glass and waste components, and corrosivity of the glass on melter components. Experimental procedures used to characterize silicate waste glass forms and typical properties of selected glass compositions containing simulated Hanford sludge and residual liquid wastes are presented. A discussion of the significance and use of each measured property is also presented

  12. Air pollution control residues from waste incineration: current UK situation and assessment of alternative technologies.

    Science.gov (United States)

    Rani, D Amutha; Boccaccini, A R; Deegan, D; Cheeseman, C R

    2008-11-01

    Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.

  13. Air pollution control residues from waste incineration: Current UK situation and assessment of alternative technologies

    International Nuclear Information System (INIS)

    Amutha Rani, D.; Boccaccini, A.R.; Deegan, D.; Cheeseman, C.R.

    2008-01-01

    Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable

  14. Thermo-mechanical characterization of a thermoplastic composite and prediction of the residual stresses and lamina curvature during cooling

    Science.gov (United States)

    Péron, Mael; Jacquemin, Frédéric; Casari, Pascal; Orange, Gilles; Bailleul, Jean-Luc; Boyard, Nicolas

    2017-10-01

    The prediction of process induced stresses during the cooling of thermoplastic composites still represents a challenge for the scientific community. However, a precise determination of these stresses is necessary in order to optimize the process conditions and thus lower the stresses effects on the final part health. A model is presented here, that permits the estimation of residual stresses during cooling. It relies on the nonlinear laminate theory, which has been adapted to arbitrary layup sequences. The developed model takes into account the heat transfers through the thickness of the laminate, together with the crystallization kinetics. The development of the composite mechanical properties during cooling is addressed by an incremental linear elastic constitutive law, which also considers thermal and crystallization strains. In order to feed the aforementioned model, a glass fiber and PA6.6 matrix unidirectional (UD) composite has been characterized. This work finally focuses on the identification of the material and process related parameters that lower the residual stresses level, including the ply sequence, the fiber volume fraction and the cooling rate.

  15. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  16. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glasses; in situ composites; ductile phase; wear behaviours. 1. Introduction ... crystalline alloys [2], which led to an abnormal phenomenon that the wear ... of BMGs does not follow the empirical Archard's wear equa- tion which ...

  17. Corrosion mechanisms and behaviour of actinides in the 'R7T7' nuclear glass

    International Nuclear Information System (INIS)

    Fillet, Sylvie

    1987-01-01

    This research thesis reports the study of aqueous corrosion of the R7T7 nuclear glass and of the identified corrosion mechanisms in conditions of static lixiviation which are close to that expected during long term storage in a geological environment. More specifically, this work aims at assessing the durability of this glass which has been selected for the vitrification of solutions from pressurized water reactors. The main glass alteration phenomena have been studied. The first part addresses the study of the alteration of the glassy matrix, and aims at identifying corrosion mechanisms in various lixiviation conditions (high temperature, saturation). The second part addresses the action of different materials present in the environment on the glassy matrix by simulating as well as possible a storage case. Based on the obtained results, a mathematical model is developed to predict the glass behaviour on the long term. Finally, the glass confinement power with respect to actinides is studied [fr

  18. Nanoscale Characterization of Glass Flake Filled Vinyl Ester Anti-Corrosion Coatings

    Directory of Open Access Journals (Sweden)

    Salim Barbhuiya

    2017-08-01

    Full Text Available Vinyl ester is a thermoset matrix resin that is widely used in the coating industry. The presence of glass flakes further enhances the anti-corrosion performance of this coating. This paper reports the nanoscaled characterization of glass flake filled vinyl ester anti-corrosion coatings on mild steel. Bond strength properties of one uncoated and four coated samples with different thicknesses (300, 600, 900 and 1200 μm were studied using nanoscratch technique and ASTM Standard Test. It was found that the bond strength of coating with thickness 900 μm was the highest. The frequency distributions of elastic modulus on coating with 900 μm thickness determined using nanoindentation indicated that only 20–25% of the coating is composed of glass flakes and the balance is vinyl ester matrix. The critical depth at which the material is subject to failure due to external load and abrasion, was found to be around 100 nm.

  19. Electrochemical and Friction Characteristics of Metallic Glass Composites at the Microstructural Length-scales.

    Science.gov (United States)

    Ayyagari, Aditya; Hasannaeimi, Vahid; Arora, Harpreet; Mukherjee, Sundeep

    2018-01-17

    Metallic glass composites represent a unique alloy design strategy comprising of in situ crystalline dendrites in an amorphous matrix to achieve damage tolerance unseen in conventional structural materials. They are promising for a range of advanced applications including spacecraft gears, high-performance sporting goods and bio-implants, all of which demand high surface degradation resistance. Here, we evaluated the phase-specific electrochemical and friction characteristics of a Zr-based metallic glass composite, Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 , which comprised roughly of 40% by volume crystalline dendrites in an amorphous matrix. The amorphous matrix showed higher hardness and friction coefficient compared to the crystalline dendrites. But sliding reciprocating tests for the composite revealed inter-phase delamination rather than preferred wearing of one phase. Pitting during potentiodynamic polarization in NaCl solution was prevalent at the inter-phase boundary, confirming that galvanic coupling was the predominant corrosion mechanism. Scanning vibration electrode technique demonstrated that the amorphous matrix corroded much faster than the crystalline dendrites due to its unfavorable chemistry. Relative work function values measured using scanning kelvin probe showed the amorphous matrix to be more electropositive, which explain its preferred corrosion over the crystalline dendrites as well as its characteristic friction behavior. This study paves the way for careful partitioning of elements between the two phases in a metallic glass composite to tune its surface degradation behavior for a range of advanced applications.

  20. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  1. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  2. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    International Nuclear Information System (INIS)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-01-01

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  3. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-09-23

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  4. Evaluation of the potential of waste fondant glass in formulations of ceramic pasta

    International Nuclear Information System (INIS)

    Soares Filho, J.E.; Santos, L.L. dos; Nascimento, R.M. do; Feitosa, A.O.; Dutra, R.P.S.

    2014-01-01

    An increasing amount of waste generated and deposited on the environment, many unspecified decomposition with time, as is the case of the glass. Thinking about it, the purpose of this study is to evaluate the power of the flux residue on glass formulations porcelains, as a flux to feldspar replacement. This study was performed in comparison with a standard formulation. The raw materials were characterized in the diffraction X-ray fluorescence and X-ray thermal differential analysis, and determination of the technological properties of water absorption, linear contraction, ignition loss, apparent porosity and apparent specific gravity in the formulation standard and replacement of feldspar in different percentages of waste and processing conditions. Specimens of the formulations were subjected to assay of three points. Results indicate that the residue glass has the potential of being used as a flux material in the composition of the ceramic body reduces the apparent porosity and according to the technology of water absorption property. The ceramic mass standard was classified as semi-stoneware, the BIIa group, and after the addition of the residue in any of the three percentages evaluated was classified as sandstone, belonging to the group BIb.(author)

  5. Structure of CdTe nanoparticles in glass

    Science.gov (United States)

    Hayes, T. M.; Nagpal, Swati; Persans, P. D.

    2000-03-01

    Optical long-pass wavelength filters are generally made by growing small crystallites of appropriate semiconductors in a transparent glass matrix. Depending on the semiconductor, these systems are candidates for interesting and important nonlinear optical switching applications. The structure of these nanocrystals has been shown to be a valuable indicator of the chemical and thermodynamic processes during crystallite growth and dissolution. We have used x-ray absorption spectroscopy to study the structure of the crystallites produced during heat treatment of filter glasses containing Cd and Te and producing optical absorption edges at the band gap of bulk CdTe. The results will be discussed.

  6. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  7. Standard test method for translaminar fracture toughness of laminated and pultruded polymer matrix composite materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers the determination of translaminar fracture toughness, KTL, for laminated and pultruded polymer matrix composite materials of various ply orientations using test results from monotonically loaded notched specimens. 1.2 This test method is applicable to room temperature laboratory air environments. 1.3 Composite materials that can be tested by this test method are not limited by thickness or by type of polymer matrix or fiber, provided that the specimen sizes and the test results meet the requirements of this test method. This test method was developed primarily from test results of various carbon fiber – epoxy matrix laminates and from additional results of glass fiber – epoxy matrix, glass fiber-polyester matrix pultrusions and carbon fiber – bismaleimide matrix laminates (1-4, 6, 7). 1.4 A range of eccentrically loaded, single-edge-notch tension, ESE(T), specimen sizes with proportional planar dimensions is provided, but planar size may be variable and adjusted, with asso...

  8. Utilization of waste glass in ECO-cement: Strength properties and microstructural observations

    International Nuclear Information System (INIS)

    Sobolev, Konstantin; Tuerker, Pelin; Soboleva, Svetlana; Iscioglu, Gunsel

    2007-01-01

    Waste glass creates a serious environmental problem, mainly because of the inconsistency of the waste glass streams. The use of waste glass as a finely ground mineral additive (FGMA) in cement is a promising direction for recycling. Based on the method of mechano-chemical activation, a new group of ECO-cements was developed. In ECO-cement, relatively large amounts (up to 70%) of portland cement clinker can be replaced with waste glass. This report examines the effect of waste glass on the microstructure and strength of ECO-cement based materials. Scanning electron microscopy (SEM) investigations were used to observe the changes in the cement hydrates and interface between the cement matrix and waste glass particles. According to the research results, the developed ECO-cement with 50% of waste glass possessed compressive strength properties at a level similar to normal portland cement

  9. Applications of bauxite residue: A mini-review.

    Science.gov (United States)

    Verma, Ajay S; Suri, Narendra M; Kant, Suman

    2017-10-01

    Bauxite residue is the waste generated during alumina production by Bayer's process. The amount of bauxite residue (40-50 wt%) generated depends on the quality of bauxite ore used for the processing. High alkalinity and high caustic content in bauxite residue causes environmental risk for fertile soil and ground water contamination. The caustic (NaOH) content in bauxite residue leads to human health risks, like dermal problems and irritation to eyes. Moreover, disposal of bauxite residue requires a large area; such problems can only be minimised by utilising bauxite residue effectively. For two decades, bauxite residue has been used as a binder in cement industries and filler/reinforcement for composite materials in the automobile industry. Valuable metals and oxides, like alumina (Al 2 O 3 ), titanium oxide (TiO 2 ) and iron oxide Fe 2 O 3 , were extracted from bauxite residue to reduce waste. Bauxite residue was utilised in construction and structure industries to make geopolymers. It was also used in the making of glass-ceramics and a coating material. Recently bauxite residue has been utilised to extract rare earth elements like scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd) and dysprosium (Dy). In this review article, the mineralogical characteristics of bauxite residue are summarised and current progresses on utilisation of bauxite residue in different fields of science and engineering are presented in detail.

  10. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  11. Lipase from Aspergillus niger obtained from mangaba residue fermentation: biochemical characterization of free and immobilized enzymes on a sol-gel matrix

    Directory of Open Access Journals (Sweden)

    Elis Augusta Leite dos Santos

    2017-02-01

    Full Text Available In this study, mangaba residue (seeds was used as a substrate for Aspergillus niger lipase production by solid-state fermentation. The partially purified enzyme was efficiently immobilized in a sol-gel matrix by covalent bonding with an immobilization yield of 91.2%. The immobilized biocatalyst and free lipase had an optimum pH of 2.0 and 5.0, respectively. However, greater stability was obtained at pH 4.0 and 7.0, respectively. The biocatalysts showed stability at the optimum temperature of 55°C, where the residual activity was above 87% after 240 min., of incubation. The lower deactivation constant (kd and higher half-life of the immobilized biocatalyst indicated greater thermal stability than those obtained with the free enzyme. The Michaelis Constant (Km (77 and 115 mM for free and immobilized lipase, respectively and maximum reaction rate (Vmax (1250 and 714 U mg-1 for free and immobilized lipase, respectively indicated that the immobilization process reduced enzyme-substrate affinity. Regarding the operational stability, the biocatalyst showed relative activity above 50% until seven cycles of reuse in olive oil hydrolysis. This novel biocatalyst obtained from a tropical fruit residue showed biochemical characteristics that support its application in future biocatalysis studies.

  12. From glass structure to its chemical durability; De la structure du verre a sa durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, F.

    2009-07-01

    The author gives an overview of his research activities. He more precisely reports studies related to glass structure based on nuclei observed by NMR and present in glasses of interest for nuclear activities. He discusses the influence of chemical composition on structure, and discusses information which can be extracted from network formers (Al, B) and modifiers (Na, Ca), and from oxygen present in the network linkages of oxide glasses. He discusses the different experimental and modelling approaches which enable structural and morphological information to be obtained at a mesoscopic scale. The last part deals with the investigation of the long term behaviour of confinement matrices (glassy matrix for medium-activity wastes, ceramic matrix)

  13. Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction

    International Nuclear Information System (INIS)

    Zhou, Beiying; Luo, Wei; Liu, Sheng; Gu, Shijia; Lu, Mengchen; Zhang, Yan; Fan, Yuchi; Jiang, Wan; Wang, Lianjun

    2017-01-01

    Dispersing the Ce"3"+ doped yttrium aluminum garnet (Ce:YAG) phosphor in the glass matrix has been widely investigated to replace conventional organic resin or silicone packaging. However, the reaction layer formed between commercial phosphors and glass matrix severely degrades the optical performance of Ce:YAG phosphor in silica glass (PiSG) materials. This paper demonstrates an ultra-fast method for preparing high performance PiSG materials. Instead of traditional melting process, the highly transparent PiSG samples can be rapidly fabricated from mixtures of commercial Ce:YAG phosphor and mesoporous SiO_2 (SBA-15) powders using spark plasma sintering (SPS) at relatively low temperature (1000 °C) within short time (10 min). Owing to the inhibition of the deleterious interface reactions between Ce:YAG phosphor and silica glass matrix, the phosphor has been perfectly preserved, and the internal relative quantum yield of the PiSG sample reaches as high as 93.5% when excited at 455 nm, which is the highest efficiency in current research. Furthermore, combining the PiSG sample, we successfully fabricate a light-emitting diode (LED) module exhibiting a superior performance with luminous efficacy of 127.9 lm/W, correlated color temperature of 5877 K and color rendering index of 69 at the operating current of 120 mA. This work on the high performance LED modules provides not only a new approach to fabricate the functional glass-based materials that is sensitive to the high temperature, but also a possibility to extend the lifetime and improve the optical performances of the glass based LEDs.

  14. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  15. Er3+-Al2O3 nanoparticles doping of borosilicate glass

    International Nuclear Information System (INIS)

    Massera, Jonathan; Petit, Laeticia; Hupa, Leena; Hupa, Mikko; Koponen, Joona; Glorieux, Benoit

    2015-01-01

    Novel borosilicate glasses were developed by adding in the glass batch Er 3+ -Al 2 O 3 nanoparticles synthetized by using a soft chemical method. A similar nanoparticle doping with modified chemical vapour deposition (MCVD) process was developed to increase the efficiency of the amplifying silica fibre in comparison to using MCVD and solution doping. It was shown that with the melt quench technique, a Er 3+ -Al 2 O 3 nanoparticle doping neither leads to an increase in the Er 3+ luminescence properties nor allows one to control the rare-earth chemical environment in a borosilicate glass. The site of Er 3+ in the Er 3+ -Al 2 O 3 nanoparticle containing glass seems to be similar as in glasses with the same composition prepared using standard raw materials. We suspect the Er 3+ ions to diffuse from the nanoparticles into the glass matrix. There was no clear evidence of the presence of Al 2 O 3 nanoparticles in the glasses after melting. (author)

  16. Thermal shock behaviour of SiC-fibre-reinforced glasses

    International Nuclear Information System (INIS)

    Klug, T.; Reichert, J.; Brueckner, R.

    1992-01-01

    The preparation of two SiC-fibre-reinforced glasses with very different thermal expansion coefficients and glass transition temperatures is described and the influence of long-time temperature and thermal shock behaviour of these composites on the mechanical properties is investigated by means of bending test experiments before and after thermal treatments. It will be shown from experiments and calculations on stresses due to thermal expansion mismatch between fibre and glass matrix that not only best mechanical properties but also best thermal shock behaviour are connected with low tensile intrinsic stresses produced by thermal expansion mismatch during preparation. The thermal shock resistance of the best composite (SiC fibre/DURAN glass) does not show a significant decrease of flexural strength even after 60 shocks from 550 to 25deg C in water, while the bulk glass sample of the same dimension was destroyed by one thermal shock from 350deg C. (orig.) [de

  17. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  18. Degradation of glass-fiber reinforced plastics by low temperature irradiation

    International Nuclear Information System (INIS)

    Nishijima, S.; Nishiura, T.; Ueno, S.; Tsukazaki, Y.; Okada, T.; Okada, T.M.; Miyata, K.; Kodaka, H.

    1998-01-01

    Low-temperature irradiation effects of glass-fiber reinforced plastics (GFRP) have been investigated in terms of mechanical properties such as interlaminar shear strength and creep, in order to obtain the selection standard of insulating materials of superconducting magnets used for fusion reactor. It was revealed that the degradation of interlaminar shear strength was strongly dependent of characteristics of matrix and/or glass/epoxy interface. Especially, the research has been carried out towards the creep behaviour of epoxy which is the matrix of GFRP, by both experimental and simulation method. It was suggested that the synergistic effects was observed in creep test. From the molecular dynamics simulation it was found that the cage effects was the one of the main reason of the stress effects of creep behavior under irradiation. (author)

  19. Risk matrix model for rotating equipment

    Directory of Open Access Journals (Sweden)

    Wassan Rano Khan

    2014-07-01

    Full Text Available Different industries have various residual risk levels for their rotating equipment. Accordingly the occurrence rate of the failures and associated failure consequences categories are different. Thus, a generalized risk matrix model is developed in this study which can fit various available risk matrix standards. This generalized risk matrix will be helpful to develop new risk matrix, to fit the required risk assessment scenario for rotating equipment. Power generation system was taken as case study. It was observed that eight subsystems were under risk. Only vibration monitor system was under high risk category, while remaining seven subsystems were under serious and medium risk categories.

  20. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  1. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  2. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  3. SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model

    Energy Technology Data Exchange (ETDEWEB)

    Frugier, P. [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze cedex (France)], E-mail: pierre.frugier@cea.fr; Gin, S.; Minet, Y.; Chave, T. [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze cedex (France); Bonin, B. [CEA Saclay, DEN/DIR/DS, 91191 Gif-sur-Yvette cedex (France); Godon, N.; Lartigue, J.-E.; Jollivet, P. [CEA Marcoule, DTCD/SECM/LCLT, BP 17171, 30207 Bagnols-sur-Ceze cedex (France); Ayral, A. [IEM/CNRS-ENSCM Universite Montpellier 2, CC 047, Place Eugene Bataillon, 34095 Montpellier cedex 5 (France); De Windt, L. [ENSMP, CG, 35 rue St Honore, 77305 Fontainebleau cedex (France); Santarini, G. [CEA Saclay HC/CAB, 91191 Gif-sur-Yvette cedex (France)

    2008-10-15

    This article summarizes the present state of knowledge concerning aqueous alteration of R7T7-type nuclear containment glasses, represented mainly by the inactive reference glass designated SON68. Based on this review, we propose to describe the glass alteration kinetics up to and including the final residual rate regime by means of a new mechanistic model known as GRAAL (glassreactivitywithallowanceforthealterationlayer). Phenomenological analysis findings are reviewed for the various glass alteration regimes: interdiffusion, initial rate, rate drop, residual rate and, under very particular circumstances, resumption of alteration. These alteration regimes are associated with predominant mechanisms. Published work interpreting and modeling these mechanisms was examined in detail. There is a broad consensus on the general mechanisms of the initial rate and even the interdiffusion regime, whereas the mechanisms controlling the rate drop remain a subject of dispute not only with regard to nuclear glasses but also for the dissolution of silicate minerals. The reaction affinity responsible for the rate drop is expressed differently by different authors and depending on the underlying theories. The disagreement concerns the nature of the phase (glass or gel) or the activated complex controlling the rate drop, which in turn determines the elements that must be taken into account in the overall affinity term. Progress in recent years, especially in identifying the mechanisms responsible for the residual rate, has shed new light on these issues, allowing us to propose new theoretical foundations for modeling the different kinetic regimes of SON68 nuclear glass dissolution. The GRAAL model considers that water diffusion in the passivating reaction zone (the gel formed under saturation conditions) is a rate-limiting step in the overall glass dissolution kinetics. Moreover, this passivation zone is a soluble phase whose stability is directly dependent on the nature of the

  4. Bioactive glass-ceramic bone repair associated or not with autogenous bone: a study of organic bone matrix organization in a rabbit critical-sized calvarial model.

    Science.gov (United States)

    Biguetti, Claudia Cristina; Cavalla, Franco; Tim, Carla Roberta; Saraiva, Patrícia Pinto; Orcini, Wilson; De Andrade Holgado, Leandro; Rennó, Ana Claudia Muniz; Matsumoto, Mariza Akemi

    2018-04-26

    The aim of the study was to analyze bone matrix (BMX) organization after bone grafting and repair using a new bioactive glass-ceramic (Biosilicate ® ) associated or not with particulate autogenous bone graft. Thirty rabbits underwent surgical bilateral parietal defects and divided into groups according to the materials used: (C) control-blood clot, (BG) particulate autogenous bone, (BS) bioactive glass-ceramic, and BG + BS. After 7, 14, and 30 days post-surgery, a fragment of each specimen was fixed in - 80 °C liquid nitrogen for zymographic evaluation, while the remaining was fixed in 10% formalin for histological birefringence analysis. The results of this study demonstrated that matrix organization in experimental groups was significantly improved compared to C considering collagenous organization. Zymographic analysis revealed pro-MMP-2, pro-MMP-9, and active (a)-MMP-2 in all groups, showing gradual decrease of total gelatinolytic activity during the periods. At day 7, BG presented more prominent gelatinolytic activity for pro-MMP-2 and 9 and a-MMP-2, when compared to the other groups. In addition, at day 7, a 53% activation ratio (active form/[active form + latent form]) was evident in C group, 33% in BS group, and 31% in BG group. In general, BS allowed the production of a BMX similar to BG, with organized collagen deposition and MMP-2 and MMP-9 disponibility, permitting satisfactory bone remodeling at the late period. The evaluation of new bone substitute, with favorable biological properties, opens the possibility for its use as a viable and efficient alternative to autologous bone graft.

  5. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  6. Influence of iron ions on the structural properties of some inorganic glasses

    International Nuclear Information System (INIS)

    Music, S.; Gotic, M.; Popovic, S.; Grzeta, B.

    1987-01-01

    The effects of iron on the structural properties of Zn-borosilicate glass and Pb-metaphosphate glass were studied using x-ray diffraction, 57 Fe Moessbauer spectroscopy and IR spectroscopy. At high concentration of iron the crystallization of zinc ferrite in the glass matrix takes place. X-ray diffraction and 57 Fe Moessbauer spectroscopy showed that the amount of zinc ferrite in Zn-borosilicate glass decreases. In Pb-metaphosphate glass doped with high concentration of α-Fe 2 O 3 , the crystallization of Fe 3 (PO 4 ) 2 is pronounced. The assignments of IR band positions and the corresponding interpretation are given. The importance of this study for the technology of vitrification of high-level radioactive wastes is emphasized. (author) 31 refs.; 6 figs,.; 6 tabs

  7. Development of new radiopaque glass fiber posts

    Energy Technology Data Exchange (ETDEWEB)

    Furtos, Gabriel, E-mail: gfurtos@yahoo.co.uk [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania); Baldea, Bogdan [Dep. of Prosthodontics, Faculty of Dental Medicine, Timisoara (Romania); Silaghi-Dumitrescu, Laura [Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, Cluj-Napoca (Romania)

    2016-02-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p < 0.05) when evaluated with one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84 wt.% and 86.02 wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Future glass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler. - Highlights: • AR glass fibers for dental applications • AR glass fibers have a great potential for obtaining radiopaque glass fiber posts. • Experimental AR glass fiber posts could be an alternative to commercial glass fiber posts for clinical application.

  8. Development of new radiopaque glass fiber posts

    International Nuclear Information System (INIS)

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura

    2016-01-01

    The aim of this study was to analyze the radiopacity and filler content of three experimental glass fiber posts (EGFP) in comparison with other glass/carbon fibers and metal posts from the dental market. Three EGFP were obtained by pultrusion of glass fibers in a polymer matrix based on 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. Using intraoral sensor disks 27 posts, as well as mesiodistal sections of human molar and aluminum step wedges were radiographed for evaluation of radiopacity. The percentage compositions of fillers by weight and volume were investigated by combustion analysis. Two EGFP showed radiopacity higher than enamel. The commercial endodontic posts showed radiopacity as follows: higher than enamel, between enamel and dentin, and lower than dentin. The results showed statistically significant differences (p < 0.05) when evaluated with one-way ANOVA statistical analysis. According to combustion analyses, the filler content of the tested posts ranges between 58.84 wt.% and 86.02 wt.%. The filler content of the tested EGFP ranged between 68.91 wt.% and 79.04 wt.%. EGFP could be an alternative to commercial glass fiber posts. Future glass fiber posts are recommended to present higher radiopacity than dentin and perhaps ideally similar to or higher than that of enamel, for improved clinical detection. The posts with a lower radiopacity than dentin should be considered insufficiently radiopaque. The radiopacity of some glass fiber posts is not greatly influenced by the amount of filler. - Highlights: • AR glass fibers for dental applications • AR glass fibers have a great potential for obtaining radiopaque glass fiber posts. • Experimental AR glass fiber posts could be an alternative to commercial glass fiber posts for clinical application.

  9. Rigidity percolation in dispersions with a structured viscoelastic matrix

    NARCIS (Netherlands)

    Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle

  10. Long-term behavior of glass-ceramic zirconolite

    International Nuclear Information System (INIS)

    Martin, Ch.

    2003-01-01

    This work is a part of the investigation of new containment matrices considered for specific conditioning of radionuclides after separation. The aim was to demonstrate the long-term aqueous corrosion resistance of the glass-ceramic zirconolite considered for the conditioning of plutonium and the minor actinides. This material is composed of crystals of zirconolite (CaZrTi 2 O 7 ) dispersed in a residual vitreous phase. It appears that glass-ceramic zirconolite presents a better kinetic behavior than the nuclear glass R 7T7. This is mainly due to a more important rate decrease that occurs more rapidly, that induces a quantity of glass altered at least 10 times as small as for R 7T7 glass. This high slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have demonstrated that the rate decrease was controlled as for the R7T7 glass by the amorphous phase of the alteration film forming a diffusion barrier for reactive species. It seems that the porosity is not the single parameter that explains the protective effect of the gel. The main differences compared with R7T7 glass are that silicon does not control the alteration of the material and that the gel is composed of two distinct phases. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics. (author)

  11. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  12. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  13. The Fracture Process of Tempered Soda-Lime-Silica Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Stang, Henrik

    2009-01-01

    This work presents experimental observations of the characteristic fracture process of tempered glass. Square specimens with a side length of 300 mm, various thicknesses and a residual stress state characterized by photoelastic measurements were used. Fracture was initiated using a 2.5 mm diamond...

  14. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  15. Chain chemical reactions during matrix devitrification

    International Nuclear Information System (INIS)

    Barkalov, I.M.

    1980-01-01

    Investigation results of chain reaction mechanisms, proceeding at devitrification of glass-like matrices under the effect of γ-irradiation are summarized. Peculiarities of kinetics and mechanism of chain reactions proceeding at devitrification are considered: hydrocarbon chlorination, polymerization of vinyl monomers, copolymerization and graft polymerization. Possible application aspects of the chain reaction conducting during matrix devitrification are also considered

  16. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses

    Science.gov (United States)

    Aishwarya, K.; Vinitha, G.; Varma, G. Sreevidya; Asokan, S.; Manikandan, N.

    2017-12-01

    Glasses in the TeO2-ZnO-BaF2 system were prepared by standard melt quenching technique and were characterized for their thermal, optical and structural properties. Samples were found to show good thermal stability with values ranging above 100 °C for all the compositions. Optical bandgap and refractive index values were calculated from linear optical measurements using UV-Vis spectroscopy. Infrared spectra showed the presence of hydroxyl groups in the glasses indicating that the effect of fluorine was negligible in removing the hydroxyl impurities for the experimental conditions and compositions used. Raman measurements showed the modification occurring in the glass network due to addition of barium fluoride in terms of increase in the formation of non-bridging oxygen atoms compared to strong Te-O-Te linkages in the glass matrix.

  17. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  18. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  19. Powder addition assessment of manganese residue ceramic matrix coating

    International Nuclear Information System (INIS)

    Conceicao, A.C.R. da; Santos, O.C.; Leao, M.A.

    2016-01-01

    The use of recycled materials in the composition of new products follows the production's worldwide trending, meeting new technological requirements and environmental concerns. This work aims to utilize the residue of manganese dust on ceramic mass for the production of ceramic coating. The raw materials were characterized by both x-ray fluorescence and diffraction. The powder residue added to clay in the percentage of 0%, 5%, 10% and 15% (measured in weight) was compressed by a uniaxial pressing of 30MPa and the sintering temperatures were 900°, 1000° and 1100°. The samples were analysed in relation to flexural strength, bulk density, water absorption and linear shrinkage. The microstructural variation was also analysed by x-ray diffraction and electron microscopy. The results showed that there is a viability for the production of porcelain ceramic coating (A3 and A4 formulations) and stoneware (A2 formulation) according to the specification of technical standards. author)

  20. Magnetically sensitive nanodiamond-doped tellurite glass fibers.

    Science.gov (United States)

    Ruan, Yinlan; Simpson, David A; Jeske, Jan; Ebendorff-Heidepriem, Heike; Lau, Desmond W M; Ji, Hong; Johnson, Brett C; Ohshima, Takeshi; Afshar V, Shahraam; Hollenberg, Lloyd; Greentree, Andrew D; Monro, Tanya M; Gibson, Brant C

    2018-01-19

    Traditional optical fibers are insensitive to magnetic fields, however many applications would benefit from fiber-based magnetometry devices. In this work, we demonstrate a magnetically sensitive optical fiber by doping nanodiamonds containing nitrogen vacancy centers into tellurite glass fibers. The fabrication process provides a robust and isolated sensing platform as the magnetic sensors are fixed in the tellurite glass matrix. Using optically detected magnetic resonance from the doped nanodiamonds, we demonstrate detection of local magnetic fields via side excitation and longitudinal collection. This is a first step towards intrinsically magneto-sensitive fiber devices with future applications in medical magneto-endoscopy and remote mineral exploration sensing.

  1. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  2. Glass forming ability and mechanical properties of Zr50Cu42Al8 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L; Chan, K C; Wang, G; Liu, L

    2008-01-01

    In this work, we report that Zr 50 Cu 42 Al 8 bulk metallic glass (BMG) exhibits excellent glass forming ability and mechanical properties. Zr 50 Cu 42 Al 8 glassy rods with a diameter of 3 mm were prepared using conventional copper mould suction casting. The glassy rod exhibits a modulus of about 115 GPa and a fracture strength of about 2 GPa, and, as compared with other large-scale BMGs, it has excellent room-temperature plasticity of up to 20% under compression. The fracture mechanism of the rod was investigated by microstructural investigations, and it was found that the large plasticity of the as-cast rod is closely related to the in situ formation of nano-crystalline particles embedded in the amorphous matrix.

  3. Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses

    Science.gov (United States)

    Kummathi, Harshitha; Naveen Kumar, P.; Vedavathi T., C.; Abhiram, J.; Rajaramakrishna, R.

    2018-05-01

    The glasses of the batch xPbO: 10BaO: (90-x)B2O3: 0.2Gd2O3 (x = 40,45,50 mol %) were prepared by melt-quench technique. The work emphasizes on gamma ray shielding effect on doped lead glasses. The role of Boron is significant as it acts as better neutron attenuator as compared with any other materials, as the thermal neutron cross-sections are high for Gadolinium, 0.2 mol% is chosen as the optimum concentration for this matrix, as higher the concentration may lead to further increase as it produces secondary γ rays due to inelastic neutron scattering. Shielding effects were studied using Sodium Iodide (NaI) - Scintillation Gamma ray spectrometer. It was found that at higher concentration of lead oxide (PbO) in the matrix, higher the attenuation which can be co-related with density. Infra-red (I.R.) spectra reveals that the conversion of Lose triangles to tight tetrahedral structure results in enhancement of shielding properties. The Differential Scanning Calorimeter (D.S.C.) study also reveals that the increase in glass forming range increases the stability which in-turn results in inter-conversion of BO3 to BO4 units such that the density of glass increases with increase in PbO content, resulting in much stable and efficient gamma ray shielding glasses.

  4. Alteration of French waste glass matrix of R7T7 type in deep geological disposal conditions

    International Nuclear Information System (INIS)

    Combarieu, G. de

    2007-02-01

    The Geological disposal is a possible option for safe and long term management of long lived and highly radioactive wastes. In order to predict the release of radionuclides in the environment, the comprehensive knowledge of glass dissolution rates as well as the properties of near- and far-field in which migration will occur is necessary. This thesis is aimed to describe the alteration of SON68 glass, inactive analog of French R7T7 glass, in contact with disposal materials: metallic iron and Callovo-Oxfordian argilite. Therefore, original experiments have been carried out on a laboratory scaled system involving 'glass-iron-argilite' interactions. The transformations of chemistry and crystal-chemistry are investigated with multi-scale probing tools: SEM, TEM, XRD, XRF, EXAFS and Raman spectroscopies. In the same time, the glass alteration is modeled to obtain a source term in good agreement with the major phenomena observed in common experiments. As an end, geochemical models of iron and argilite transformations are also developed and set together in the transport-chemistry code HYTEC to simulate chemical reactions (iron corrosion, argilite evolution, and glass alteration). Simulations and comparison with experiments have improved the overall knowledge of the glass-iron-clay system. (author)

  5. Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent.

    Science.gov (United States)

    Sasai, Ryo; Kubo, Hisashi; Kamiya, Masahiro; Itoh, Hideaki

    2008-06-01

    To develop a novel nonheating method with lower energy consumption and higher efficiency for recovering both lead and SiO2 glass matrix from spent lead-glass powder, we attempted to treat the spent lead glass by the mechanochemical method using the metal chelate reagent, sodium ethylenediaminetetraacetate (Na2EDTA). As a result of the wet ball-milling treatment of spent lead-glass powder sealed in a polypropylene bottle with zirconia balls, Na2EDTA, and water at room temperature, we found that more than 99 mass % of lead contained in the spentlead-glass powder was extracted as a lead-EDTA species from the solid silica glass network matrix. This separation phenomenon was accelerated by the enlargement of the solid-liquid interface area due to ball-milling atomization and by the high stability constant of lead-EDTA. High extraction yield suggests that Pb-O-Pb bonds in lead glass are weakened or are broken down by the wet ball-milling treatment, i.e., the strong mechanical energy such as the potential and/ or friction energy provided by ball-milling may be high enough to elute lead ions from silica matrix. Moreover, we succeeded in recovering both lead ions as lead sulfate, which is the main compound of anglesite, and the EDTA as sodium-EDTA, which is reusable as the metal chelate reagent in wet chemical process using the ferric sulfate.

  6. Inverted opal luminescent Ce-doped silica glasses

    Directory of Open Access Journals (Sweden)

    R. Scotti

    2006-01-01

    Full Text Available Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2.

  7. Radiation modification of glass fiber - reinforced plastics

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  8. Particles as S-matrix poles: hadron democracy

    International Nuclear Information System (INIS)

    Chew, G.F.

    1989-01-01

    The connection between two theoretical ideas of the 1950s is traced in this article, namely that hadrons are nonfundamental, ''composite'' particles and that all physically observable particles correspond to singularities of an analytic scattering matrix. The S matrix theory developed by Werner Heisenberg in the early forties now incorporated the concepts of unitarity, invariance, analyticity and causality. The meson-exchange force meant that poles must be present in nucleon-nuclear and pion-nucleon scattering as predicted by dispersion relations. Experimental work in accessible regions determined pole residues. Pole residue became associated with force strength and pole position with particle mass. In 1959, the author discovered the so-called ''bootstrap'' theory the rho meson as a force generates a rho particle. By the end of the 1950s it was clear that all hadrons had equal status, each being bound states of other hadrons, sustained by hadron exchange forces and that hadrons are self-generated by an S-matrix bootstrap mechanism that determines all their properties. (UK)

  9. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Nowosielski, Ryszard; Pawlyta, Mirosława [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble (France); Burian, Andrzej [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice (Poland)

    2015-04-15

    New magnesium-based bulk metallic glasses Mg{sub 60}Cu{sub 30}Y{sub 10} have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample.

  10. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic; Etude des mecanismes d'alteration par l'eau du verre R7T7 en milieu confine: comprehension et modelisation de la cinetique residuelle

    Energy Technology Data Exchange (ETDEWEB)

    Chave, T

    2007-10-15

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  11. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arya, Sunil K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Singh, S.P. [Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR 00680 (United States); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-10-27

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  12. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    International Nuclear Information System (INIS)

    Saha, Shibu; Arya, Sunil K.; Singh, S.P.; Sreenivas, K.; Malhotra, B.D.; Gupta, Vinay

    2009-01-01

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  13. Laboratory testing of glasses for Lockheed Idaho Technology Co. - fiscal year 1994 report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Wolf, S.F.; Bates, J.K.

    1995-04-01

    The purpose of this project is to measure the intermediate and long-term durability of vitrified waste forms developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes at Idaho National Engineering Laboratory. Two vitreous materials referred to as Formula 127 and Formula 532, have been subjected to accelerated durability tests to measure their long-term performance. Formula 127 consists of a glass matrix containing 5-10 vol % fluorite (CaF 2 ) as a primary crystalline phase. It shows low releases of glass components to solution in 7-, 28-, 70-, and 140-day Product Consistency Tests performed at 2000 m -1 at 90 degrees C. In these tests, release rates for glass-forming components were similar to those found for durable waste glasses. The Ca and F released by the glass as it corrodes appear to reprecipitate as fluorite. Formula 532 consists of a glass matrix containing 5-10 vol % of an Al-Si-rich primary crystalline phase. The release rates for components other than aluminum are relatively low, but aluminum is released at a much higher rate than is typical for durable waste glasses. Secondary crystalline phases form relatively early during the corrosion of Formula 532 and appear to consist almost entirely of the Al-Si-rich primary phase (or a crystal with the same Al:Si ratio) and a sodium-bearing zeolite. Future test results are expected to highlight the relative importance of primary and secondary crystalline phases to the rate of corrosion of Formula 127 and Formula 532

  14. Mineralogical textural and compositional data on the alteration of basaltic glass from Kilauea, Hawaii to 300 degrees C: Insights to the corrosion of a borosilicate glass waste-form

    International Nuclear Information System (INIS)

    Smith, D.K.

    1990-01-01

    Mineralogical, textural and compositional data accompanying greenschist facies metamorphism (to 300 degrees C) of basalts of the East Rift Zone (ERZ), Kilauea, Hawaii may be evaluated relative to published and experimental results for the surface corrosion of borosilicate glass. The ERZ alteration sequence is dominated by intermittent palagonite, interlayered smectite-chlorite, chlorite, and actinolite-epidote-anhydrite. Alteration is best developed in fractures and vesicles where surface reaction layers root on the glass matrix forming rinds in excess of 100 microns thick. Fractures control fluid circulation and the alteration sequence. Proximal to the glass surface, palagonite, Fe-Ti oxides and clays replace fresh glass as the surface reaction layer migrates inwards; away from the surface, amphibole, anhydrite, quartz and calcite crystallize from hydrothermal fluids in contact with the glass. The texture and composition of basaltic glass surfaces are similar to those of a SRL-165 glass leached statically for sixty days at 150 degrees C. While the ERZ reservoir is a complex open system, conservative comparisons between the alteration of ERZ and synthetic borosilicate glass are warranted. 31 refs., 2 figs

  15. Addition of Pullulan to Trehalose Glasses Improves the Stability of β-Galactosidase at High Moisture Conditions

    NARCIS (Netherlands)

    Teekamp, Naomi; Tian, Yu; Visser, J. Carolina; Olinga, Peter; Frijlink, Henderik W.; Woerdenbag, Herman J.; Hinrichs, Wouter L. J.

    2017-01-01

    Incorporation of therapeutic proteins in a matrix of sugar glass is known to enhance protein stability, yet protection is often lost when exposed to high relative humidity (RH). We hypothesized that especially in these conditions the use of binary glasses of a polysaccharide and disaccharide might

  16. Radiation effects on lead silicate glass surfaces

    International Nuclear Information System (INIS)

    Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.

    1996-01-01

    Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)

  17. Spectroscopic Studies of the Behavior of Eu3+ on the Luminescence of Cadmium Tellurite Glasses

    Directory of Open Access Journals (Sweden)

    I. V. García-Amaya

    2015-01-01

    Full Text Available The effect of europium doping on the photoluminescence of ZnO-CdO-TeO2 glasses is analyzed. TeO2-based glasses are of high interest as hosts for laser glasses. The Eu-doped oxide glasses were prepared by the conventional melt-quenching method. Five different concentrations of europium nitrate hexahydrate that varied from 0.3 to 1.5 mol% were used. SEM observations revealed the formation of zinc aluminate spinel and disperse droplets of liquid-liquid phase separation in the glasses. X-Ray diffraction reveals the amorphous structure of the fabricated glasses. FT-IR and Raman spectra show the presence of TeO4 and TeO3+1/TeO3 units that conform with the glass matrix. Raman spectra evidenced a band located at 1556 cm−1 that can be related to interstitial molecular oxygen in the glass matrix. Photoluminescence of the glasses showed light emission due to the following europiumtransitions from its D52, D51, and D50 levels to its F7J manifolds: D52→F70 (468 nm, D52→F72 (490 nm, D52→F73 (511 nm, D51→F71 (536 nm, D51→F72 (554 nm, D50→F70 (579.5 nm, D50→F71 (592 nm, D50→F72 (613 nm, D50→F73 (652 nm, and D50→F74 (490 nm. The estimated decay time, τ, was 0.4 ms for all the glasses.

  18. Assessment of Savannah River borosilicate glass in the repository environment

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-04-01

    Since 1973, borosilicate glass has been studied as a matrix for the immobilization of high-level radioactive waste generated at the Savannah River Plant (SRP). In 1977, efforts began to develop and test the large-scale equipment necessary to convert the alkaline waste slurries at SRP into a durable borosilicate glass. A process has now been developed for the proposed Defense Waste Processing Facility (DWPF) which will annually produce approximately 500 canisters of SRP waste glass which will be stored on an interim basis on the Savannah River site. Current national policy calls for the permanent disposal of high-level waste in deep geologic repositories. In the repository environment, SRP waste glass will eventually be exposed to such stresses as lithostatic or hydrostatic pressures, radiation fields, and self-heating due to radioactive decay. In addition, producing and handling each canister of glass will also expose the glass to thermal and mechanical stresses. An important objective of the extensive glass characterization and testing programs of the Savannah River Laboratory (SRL) has been to determine how these stresses affect the performance of SRP waste glass. The results of these programs indicate that: these stresses will not significantly affect the performance of borosilicate glass containing SRP waste; and SRP waste glass will effectively immobilize hazardous radionuclides in the repository environment

  19. Rapid Determination of Ractopamine Residues in Edible Animal Products by Enzyme-Linked Immunosorbent Assay: Development and Investigation of Matrix Effects

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2009-01-01

    Full Text Available To determine ractopamine residues in animal food products (chicken muscle, pettitoes, pig muscle, and pig liver, we established a rapid direct competitive enzyme-linked immunosorbent assay (ELISA using a polyclonal antibody generated from ractopamine-linker-BSA. The antibody showed high sensitivity and specificity in phosphate buffer, with an IC50 of 0.6 ng/mL, and the limit of detection was 0.04 ng/mL. The matrix effect of the samples was easily eliminated by one-step extraction with PBS, without any organic solution or clean-up procedure such as SPE or liquid-liquid extraction, making it a much more simple and rapid method than previously reported ones. The detection limit in blank samples was 0.2 μg/kg. To validate this new RAC (ractopamine hydrochloride ELISA, a RAC-free pig liver sample spiked at three different concentrations was prepared and analyzed by HPLC and ELISA. The results showed a good correlation between the data of ELISA and HPLC (R2>0.95, which proves that the established ELISA is accurate enough to quantify the residue of RAC in the animal derived foods.

  20. Rapid determination of ractopamine residues in edible animal products by enzyme-linked immunosorbent assay: development and investigation of matrix effects.

    Science.gov (United States)

    Zhang, Yan; Wang, Fengxia; Fang, Li; Wang, Shuo; Fang, Guozhen

    2009-01-01

    To determine ractopamine residues in animal food products (chicken muscle, pettitoes, pig muscle, and pig liver), we established a rapid direct competitive enzyme-linked immunosorbent assay (ELISA) using a polyclonal antibody generated from ractopamine-linker-BSA. The antibody showed high sensitivity and specificity in phosphate buffer, with an IC(50) of 0.6 ng/mL, and the limit of detection was 0.04 ng/mL. The matrix effect of the samples was easily eliminated by one-step extraction with PBS, without any organic solution or clean-up procedure such as SPE or liquid-liquid extraction, making it a much more simple and rapid method than previously reported ones. The detection limit in blank samples was 0.2 mug/kg. To validate this new RAC (ractopamine hydrochloride) ELISA, a RAC-free pig liver sample spiked at three different concentrations was prepared and analyzed by HPLC and ELISA. The results showed a good correlation between the data of ELISA and HPLC (R(2) > 0.95), which proves that the established ELISA is accurate enough to quantify the residue of RAC in the animal derived foods.

  1. Direct conversion of plutonium-containing materials to borosilicate glass for storage or disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1995-01-01

    A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development

  2. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes.

    Science.gov (United States)

    Lehotay, Steven J; Mastovská, Katerina; Yun, Seon Jong

    2005-01-01

    Two rapid methods of sample preparation and analysis of fatty foods (e.g., milk, eggs, and avocado) were evaluated and compared for 32 pesticide residues representing a wide range of physicochemical properties. One method, dubbed the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residue analysis, entailed extraction of 15 g sample with 15 mL acetonitrile (MeCN) containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 1 mL of the buffered MeCN extract underwent a cleanup step (in a technique known as dispersive solid-phase extraction) using 50 mg each of C18 and primary secondary amine sorbents plus 150 mg MgSO4. The second method incorporated a form of matrix solid-phase dispersion (MSPD), in which 0.5 g sample plus 2 g C18 and 2 g anhydrous sodium sulfate was mixed in a mortar and pestle and added above a 2 g Florisil column on a vacuum manifold. Then, 5 x 2 mL MeCN was used to elute the pesticide analytes from the sample into a collection tube, and the extract was concentrated to 0.5 mL by evaporation. Extracts in both methods were analyzed concurrently by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. The recoveries of semi-polar and polar pesticides were typically 100% in both methods (except that basic pesticides, such as thiabendazole and imazalil, were not recovered in the MSPD method), but recovery of nonpolar pesticides decreased as fat content of the sample increased. This trend was more pronounced in the QuEChERS method, in which case the most lipophilic analyte tested, hexachlorobenzene, gave 27 +/- 1% recovery (n=6) in avocado (15% fat) with a<10 ng/g limit of quantitation.

  3. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments.

    Science.gov (United States)

    Oh, S C; Dong, J K; Lüthy, H; Schärer, P

    2000-01-01

    This investigation was designed to determine whether heat pressing and/or simulated heat treatments affect the flexure strength and microstructure of the lithium disilicate glass-ceramic of the IPS Empress 2 system. Four groups of the lithium disilicate glass-ceramic were prepared as follows: group 1 = as-received material; group 2 = heat-pressed material; group 3 = heat-pressed and stimulated initial heat-treated material; and group 4 = heat-pressed and simulated heat-treated material with full firings for a final restoration. Three-point bending tests and scanning electron microscopy (SEM) analysis were conducted. The flexure strength of group 2 was significantly higher than that of group 1. However, there were no significant differences in strength among groups 2, 3, and 4, or between groups 1 and 4. The SEM micrographs of the lithium disilicate glass-ceramic showed a closely packed, multidirectionally interlocking microstructure of numerous lithium disilicate crystals protruding from the glass matrix. The crystals in the glass matrix of the heat-pressed materials (groups 2, 3, and 4) were a little more homogeneous and about 2 times bigger than those of the as-received material (group 1). These changes of the microstructure were greatest between groups 1 and 2. However, there were no marked differences among groups 2, 3, and 4. Although there were significant increases in the strength and some changes of the microstructure after the heat-pressing operation, the combination of heat pressing and simulated subsequent heat treatments did not produce an increase of strength of IPS Empress 2 glass-ceramic.

  4. Chemistry and kinetics of waste glass corrosion

    International Nuclear Information System (INIS)

    Bates, J.K.

    1996-01-01

    Under repository disposal conditions, the reaction of glass with water comprises the source term for release of radionuclides to the near-field environment. An understanding of glass reaction and the manner by which radionuclides are released is needed to design the waste package and to evaluate the total performance of the repository. The ASTM Standard C-1174-91 provides a general methodology for obtaining information related to the behavior of glass. This paper reviews the application of this standard to glass reaction. In the first step in the ASTM approach, the researcher identifies the materials and the conditions under which the long-term behavior is to be determined. Glass compositions have undergone a genesis over the past 15 years in response to concerns about feed streams, processing, and durability. A range of borosilicate compositions has been identified, but as new applications for vitrification occur, for example, immobilization of weapons plutonium and residue from plutonium processing, different compositions must be evaluated. The repository environment depends on the spatial emplacement of waste containers (glass and spent fuel), and both open-quotes hotclose quotes and open-quotes coldclose quotes scenarios have been proposed for the Yucca Mountain site. Regardless of the exact configuration, the near-field hydrology is expected to be unsaturated: that is, the waste packages are contacted initially by water vapor, and ultimately by small amounts of dripping or standing water. The behavior of glass can be studied as a function of composition within the constraints the environmental conditions place on the physical parameters that affect glass reaction (temperature, radiation field, groundwater composition, etc.). In the second step, the researcher reviews the literature and proposes a reaction pathway by which glass reacts in an unsaturated environment

  5. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  6. Consolidation effects on tensile properties of an elemental Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, F. [Building 4515, MS 6064, Metals and Ceramics Division, Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)]. E-mail: tangf@ornl.gov; Meeks, H. [Ceracon Inc., 5150 Fairoaks Blvd. 01-330, Carmichael, CA 95628 (United States); Spowart, J.E. [UES Incorporated, AFRL/MLLM Building 655, 2230 Tenth St. Suite 1, Wright-Patterson AFB, OH 45433 (United States); Gnaeupel-Herold, T. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Prask, H. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Anderson, I.E. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States)

    2004-11-25

    In a simplified composite design, an unalloyed Al matrix was reinforced by spherical Al-Cu-Fe alloy particles (30 vol.%), using either commercial purity (99.7%) or high purity (99.99%) fine powders (diameter < 10 {mu}m). This composite material was consolidated by either vacuum hot pressing (VHP) or quasi-isostatic forging. The spatial distribution of reinforcement particles in both VHP and forged samples was shown to be almost the same by quantitative characterization with a multi-scale area fraction analysis technique. The tensile properties of all composite samples were tested and the forged materials showed significantly higher strength, while the elastic modulus values of all composite materials were close to the upper bound of theoretical predictions. Neutron diffraction measurements showed that there were high compressive residual stresses in the Al matrix of the forged samples and relatively low Al matrix residual stresses (predominantly compressive) in the VHP samples. By tensile tests and neutron diffraction measurements of the forged samples after annealing, it was shown that the high compressive residual stresses in the Al matrix were relieved and that tensile strength was also reduced to almost the same level as that of the VHP samples. Therefore, it was deduced that increased compressive residual stresses and enhanced dislocation densities in the forged composites raised the tensile strength to higher values than those of the VHP composites.

  7. Structure and properties of gadolinium loaded calcium phosphate glasses

    International Nuclear Information System (INIS)

    Wang, Cuiling; Liang, Xiaofeng; Li, Haijian; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-01-01

    The glass samples with composition xGd 2 O 3 –(50 − x)CaO–50P 2 O 5 (0 ⩽ x ⩽ 9 mol%) were prepared by the conventional melt quench method. The structure and properties of gadolinium loaded in calcium phosphate glasses were investigated using XRD, SEM, DTA, IR and Raman spectroscopy. The XRD and SEM analysis for the samples show that the majority of samples are amorphous, and crystallization occurs when the content of Gd 2 O 3 containing is up to 6 mol%. Two main crystalline phases, Ca 2 P 2 O 7 and Gd 3 (P 2 O 7 ) 3 , are embedded in an amorphous matrix. IR and Raman data indicate that glass structure consists of predominantly metaphosphate (Q 2 ) units and the depolymerization of phosphate network with the addition of Gd 2 O 3 . Both the chemical durability and the glass transition temperature (T g ) are improved with the increase of Gd 2 O 3 , which suggests that the Gd acts a role of strengthening the cross-links between the phosphate chains of the glass

  8. Fracture appraisal of large scale glass block under various realistic thermal conditions

    International Nuclear Information System (INIS)

    Laude, F.; Vernaz, E.; Saint-Gaudens, M.

    1982-06-01

    Fracturing of nuclear waste glass caused primarily by thermal and residual stresses during cooling increases the potential leaching surface area and the number of small particles. A theoretical study shows that it is possible to calculate the stresses created but it is difficult to evaluate the state of fracture. Theoretical results are completed by an experimental study with inactive industrial scale glass blocks. The critical stages of its thermal history are simulated and the total surface area of the pieces is measured by comparison of leaching rate of the fractured glass with known samples in the same conditions. Quenching due to water impact, air cooling in a storage fit and experimental reassembly of fractured glass by re-heating are examined

  9. A statistically designed matrix to evaluate solubility, impurity tolerance, and thermal stability of plutonium-bearing glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Meaker, T.F.; Edwards, T.B.; McIntyre, D.S.

    1997-01-01

    In support of the Department of Energy's (DOE) Office of Fissile Material Disposition (OFDM) Program, Westinghouse Savannah River Company (WSRC) is evaluating a unique lanthanide borosilicate glass to immobilize excess plutonium and other heavy metals. The lanthanide borosilicate (LaBS) glass system met all FY96 programmatic planning objectives. Those objectives were focused on (1) demonstrating 10 wt% Pu solubility, and (2) meeting preliminary product performance criteria. Although 10 wt% Pu solubility was demonstrated with product performance exceeding high level waste glasses based on PCT results, the LaBS system was not optimized

  10. Obtaining of graded zones in glass by diffusion from the paste

    International Nuclear Information System (INIS)

    Valov, P.M.; Goldenfant, B.G.; Polyanskiy, M.N.

    1986-01-01

    The local changing of refraction index of glass matrix by treatment of alloy of salts from solid source-paste is studied in this article. Paste was produced of mixture of binder and salts of lithium, sodium, potassium, and copper. The paste was applied on matrix surface and obtained item was thermal processed. Influence of electrical and temperature ranges on optical and geometrical properties of obtained structures is studied as well.

  11. Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241

    Science.gov (United States)

    Herzog, G. F.; Delaney, J. S.; Lindsay, F.; Alexander, C. M. O'D; Chakrabarti, R.; Jacobsen, S. B.; Whattam, S.; Korotev, R.; Zeigler, R. A.

    2012-01-01

    The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241.

  12. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  13. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    Science.gov (United States)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  14. Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels.

    Science.gov (United States)

    Claudio-Rizo, Jesús A; Rangel-Argote, Magdalena; Castellano, Laura E; Delgado, Jorge; Mata-Mata, José L; Mendoza-Novelo, Birzabith

    2017-10-01

    In this work, hydrolysates of extracellular matrix (hECM) were obtained from rat tail tendon (TR), bovine Achilles tendon (TAB), porcine small intestinal submucosa (SIS) and bovine pericardium (PB), and they were polymerized to generate ECM hydrogels. The composition of hECM was evaluated by quantifying the content of sulphated glycosaminoglycans (sGAG), fibronectin and laminin. The polymerization process, structure, physicochemical properties, in vitro degradation and biocompatibility were studied and related to their composition. The results indicated that the hECM derived from SIS and PB were significantly richer in sGAG, fibronectin and laminin, than those derived from TAB and TR. These differences in hECM composition influenced the polymerization and the structural characteristics of the fibrillar gel network. Consequently, the swelling, mechanics and degradation of the hydrogels showed a direct relationship with the remaining composition. Moreover, the cytocompatibility and the secretion of transforming growth factor beta-1 (TGF-β1) by macrophages were enhanced in hydrogels with the highest residual content of ECM biomolecules. The results of this work evidenced the role of the ECM molecules remaining after both decellularization and hydrolysis steps to produce tissue derived hydrogels with structure and properties tailored to enhance their performance in tissue engineering and regenerative medicine applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Connectivity of glass structure. Oxygen number

    Science.gov (United States)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  16. Glass Dissolution Parameters: Update for Entsorgungsnachweis

    International Nuclear Information System (INIS)

    Curti, E.

    2003-11-01

    This document provides updated long-term corrosion rates for borosilicate glasses used in Switzerland as a matrix for high-level radioactive waste. The new rates are based on long-term leaching experiments conducted at PSI and are corroborated by recent investigations. The asymptotic rates have been determined through weighted linear regressions of the normalised mass losses, directly calculated from B and Li concentrations in the leaching solutions. Special attention was given to the determination of the analytical uncertainty of the mass losses. The sensitivity of the corrosion rates to analytical uncertainties and to other criteria (e.g. the choice of data points for the regressions) was also studied. A major finding was that the uncertainty of the corrosion rate mainly depends on the uncertainty of the specific glass surface area. The reference rates proposed for safety assessment calculations are 1.5 mg m -2 d -1 for BNFL glasses and 0.2 mg m -2 d -1 for Cogema glasses. The relevance of the proposed corrosion rates for repository conditions is shown based on the analysis of processes and parameters currently known to affect the long-term kinetics of silicate glasses. Specifically, recent studies indicate that potentially detrimental effects, notably the removal of silica from solution through adsorption on clay minerals, are transitory and will not affect the long-term corrosion rate of the Swiss reference glasses. Iron corrosion products are also known to bind silica, but present data are not sufficient to quantify their influence on the long-term rate. (author)

  17. Analysis of soda-lime glasses using non-negative matrix factor deconvolution of Raman spectra

    OpenAIRE

    Woelffel , William; Claireaux , Corinne; Toplis , Michael J.; Burov , Ekaterina; Barthel , Etienne; Shukla , Abhay; Biscaras , Johan; Chopinet , Marie-Hélène; Gouillart , Emmanuelle

    2015-01-01

    International audience; Novel statistical analysis and machine learning algorithms are proposed for the deconvolution and interpretation of Raman spectra of silicate glasses in the Na 2 O-CaO-SiO 2 system. Raman spectra are acquired along diffusion profiles of three pairs of glasses centered around an average composition of 69. 9 wt. % SiO 2 , 12. 7 wt. % CaO , 16. 8 wt. % Na 2 O. The shape changes of the Raman spectra across the compositional domain are analyzed using a combination of princi...

  18. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    Science.gov (United States)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  19. Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO{sub 2}-PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Murata, Takahiro [Faculty of Education and Master' s Course in Education, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Fujino, Shigeru, E-mail: fujino@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2015-07-15

    Monolithic silica glasses doped with Cu ions were prepared by immersing a mesoporous SiO{sub 2}-polyvinyl alcohol (PVA) nanocomposite in a copper nitrate solution followed by sintering at 1100 °C for 12 h in air. The Cu ions were reduced from divalent to monovalent during the sintering process and consequently Cu{sup +} was doped into the silica glass matrix. The sintered glass possessed blue or yellow photoluminescence (PL) under UV irradiation, depending on the total concentration of Cu ions in the sintered silica glass. At a lower concentration below 30 ppm, the isolated Cu{sup +} existed in the glass matrix resulting in the blue PL. However, above 70 ppm, the Cu{sup +}–Cu{sup +} pairs were present, exhibiting the yellow PL. It was demonstrated that the PL characteristics of the sintered silica glasses doped with monovalent copper ions were affected by the total concentration of Cu ions in the glass, which can be adjusted as a function of the immersion conditions. - Highlights: • Silica glass doped with Cu{sup +} was fabricated by sintering the nanocomposite. • The Cu ions were reduced from divalent to monovalent during the sintering process. • The sintered glass possessed blue or yellow PL under UV irradiation. • The blue and yellow PL are due to isolated Cu{sup +} and Cu{sup +}–Cu{sup +} pairs, respectively. • The PL characteristics depended on the total concentration of Cu ions in the glass.

  20. Micropatterning on glass with deep UV

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Nicolas CARPI, Matthieu PIEL, Ammar Azioune & Jenny Fink ### Abstract This protocol describes a method to print micropatterns on glass with extra-cellular matrix proteins to promote cell adhesion. The non-adhesive part is made with polylysine grafted polyethyleneglycol (PLL-g-PEG). This technique is reproducible, cheap, fast and can achieve high resolution (~1 µm). ### Introduction This protocol explains how to make high resolution adhesive micropattens of protein...

  1. Lead removal from cathode ray tube glass by the action of calcium hydroxide and poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Grause, Guido; Takahashi, Kenshi; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-01-01

    Highlights: • About 99.9% of lead is removed from CRT glass by PbCl 2 volatilization. • PVC is used as chlorination agent with the aid of Ca(OH) 2 as HCl absorbing material. • The residual calcium silicate has a lead content as low as 140 mg kg −1 . • Lead leaching from the residue was below the detection limit. - Abstract: With the development of flat screen technology, the cathode ray tubes (CRTs) used in TV sets became obsolete, leaving huge amounts of lead-containing CRT glass for disposal. We developed a novel lead volatilization process in which PbCl 2 was generated in the presence of poly(vinyl chloride) (PVC) as a chlorination agent and Ca(OH) 2 as an HCl absorber. PVC was incinerated in air atmosphere and the resulting HCl was captured by Ca(OH) 2 before exiting the reactor with the air flow. CaCl 2 and Ca(OH) 2 reacted with the lead glass forming volatile PbCl 2 and crystalline Ca-silicates. Since the reactivity of lead glass with gaseous HCl is negligible, the presence of Ca(OH) 2 was essential for the success of this method. At a temperature of 1000 °C, a molar Cl/Pb ratio of 16, and a molar Ca/Si ratio of about 2, approximately 99.9% of the lead was volatilized, leaving a residue with a lead content of 140 mg kg −1 . The residual calcium silicate, with its low lead level, has the potential to be repurposed for other uses

  2. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.

    1994-01-01

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  3. Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses

    International Nuclear Information System (INIS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hotra, O.; Popov, A.I.

    2016-01-01

    Evolution of free-volume positron trapping defects caused by crystallization process in (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 15 chalcogenide-chalcohalide glasses was studied by positron annihilation lifetime technique. It is established that CsCl additives in Ge–Ga–S glassy matrix transform defect-related component spectra, indicating that the agglomeration of free-volume voids occurs in initial and crystallized (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 10 glasses. Void fragmentation in (80GeS_2–20Ga_2S_3)_8_5(CsCl)_1_5 glass can be associated with loosing of their inner structure. Full crystallization in each of these glasses corresponds to the formation of defect-related voids. These trends are confirmed by positron-positronium decomposition algorithm. It is shown, that CsCl additives result in white shift in the visible regions in transmission spectra. The γ-irradiation of 80GeS_2–20Ga_2S_3 base glass leads to slight long-wavelength shift of the fundamental optical absorption edge and decreasing of transmission speaks in favor of possible formation of additional defects in glasses and their darkening. - Highlights: • CsCl additives in Ge–Ga–S glassy matrix lead to the agglomeration of voids. • Full crystallization of Ge–Ga–S–CsCl glasses corresponds to the formation of defect voids. • Gamma-irradiation of glass stimulates the creation of additional defects and darkening.

  4. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  5. The use of maleic anhydride-modified polypropylene for performance enhancement in continuous glass fiber-reinforced polypropylene composites

    NARCIS (Netherlands)

    Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.; Miravete, A.

    1993-01-01

    The influence of maleic anhydride-modified polypropylene (m-PP) on static mech. properties of continuous glass fiber-reinforced polypropylene (PP) composites was studied. M-PP was added to the PP homopolymer to improve the adhesion between the matrix and the glass fiber. Three-point bending tests

  6. Catalyze and chemical inhibition of the R7T7 glass kinetics

    International Nuclear Information System (INIS)

    Gin, St.; Advocat, Th.

    1997-01-01

    This article highlights some phenomena likely to modify the glass alteration kinetics and/or the nature of the alteration products according to the chemical composition of the leaching water. It discusses experimental results showing that in neutral and basic media, the presence of inorganic anions or organic acid (simple carboxylic acid and humic acid) has relatively little effect on the long-term glass matrix alterability Actinide mobility appears to be more dependent on the concentration of complexing agents in the leaching solution. The behavior of phosphate ions, which may inhibit or catalyze the R7T7 glass alteration kinetics depending on the experimental conditions, is discussed; the gel microstructure can be related to the glass alteration kinetics by detailed examination of the alteration products. (authors)

  7. Liquid nitrogen enhancement of partially annealed fission tracks in glass; and reply

    International Nuclear Information System (INIS)

    Wagner, G.A.; Carpenter, B.S.; Pilione, L.J.; Gold, D.P.

    1977-01-01

    Pilione and Gold (Nature 262: 773 (1976)) stated that it was possible to reveal partially annealed fission tracks in glass by immersion in liquid N 2 , and that it was possible to increase the total number of etchable tracks by increasing the immersion time. The present authors attempted to duplicate the work of the former authors using the same glass. They found no significant change in the number of etchable tracks after immersion in liquid N 2 , and they concluded that the latter has no effect on annealed tracks in glass. Any observed enhancement of partially annealed tracks is probably a surface effect and has no effect on the interior matrix of the glass. A reply by Pilione and Gold is appended. (U.K.)

  8. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan

    2018-05-11

    This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with 30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  10. Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC/SiC composites

    International Nuclear Information System (INIS)

    Katoh, Yutai; Kotani, M.; Kohyama, A.; Montorsi, M.; Salvo, M.; Ferraris, M.

    2000-01-01

    Calcia-alumina (CA) glass-ceramic was studied as a candidate low-activation joining and sealing material for SiC/SiC components for fusion blanket and diverter structures, in terms of microstructural stability and mechanical properties. The CA glass-ceramic joining and seal coating were applied to the Hi-Nicalon TM SiC fiber-reinforced SiC matrix composites in which the matrix had been formed through chemical vapor infiltration and polymer impregnation and pyrolysis methods. Microstructural characterization was carried out for the joined and coated materials by optical and scanning electron microscopy (SEM). The mechanical property of the joint was evaluated through a shear test on sandwich joints. The average shear strength of the joined structures was 28 MPa at room temperature. Fractography revealed that the fracture occurred in the glass phase and the shear strength may be improved by reduction of the glass fraction

  11. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  12. Fabrication and characterization of MCC approved testing material: ATM-WV/205 glass

    International Nuclear Information System (INIS)

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-08-01

    The ATM-WV/205 glass was produced in accordance with PNL's QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of this work. The method and procedure to be used in the fabrication and characterization of the ATM-WV/205 glass were specified in two run plans for glass preparation and a characterization plan. The ATM-WV/205 glass meets all specifications. The elemental composition and oxidation state of the glass are within the sponsor's specifications. Visually, the ATM-WV/205 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination and x-ray diffraction revealed low (about 0.5 wt %) concentrations of 3-μm iron chrome spinel crystals and 1-μm ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 20 to 135 μm, was observed in all samples. 3 refs., 10 figs., 21 tabs

  13. Study of structure and optical properties of Fe2O3.CaO.Bi2O3 glasses

    International Nuclear Information System (INIS)

    Sanghi, Sujata; Duhan, Sarita; Agarwal, Ashish; Aghamkar, Praveen

    2009-01-01

    Glasses with compositions 0.05Fe 2 O 3 .0.95{xCaO.(100 - x)Bi 2 O 3 } (20 ≤ x ≤ 40 mol.%) have been prepared using the normal melt quench technique. The density and molar volume have been determined. Infrared (IR) spectroscopy is used to investigate the structure of the glass matrix. The optical studies in the UV-VIS-NIR region for all these glasses show a sharp cutoff and a large transmitting window. The values of both of the optical band gap (E g ) and width tails (ΔE) are determined. It is observed that E g is decreased and ΔE increased with the increase of CaO in the glass matrix. The metallization criterion (M), interaction parameter (A th ), average electronic polarizability of the oxide ion (α O 2- ) and optical basicity (Λ) of these glasses are determined from the values of optical band gap. Small value of M makes them appealing candidates for non-linear optical materials. Both α O 2- and Λ increase with increase in CaO content. The compositional dependence of the above properties are discussed and correlated to the structure of the glass.

  14. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    Science.gov (United States)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  15. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser

    International Nuclear Information System (INIS)

    Wan Hong; Hu Kaiwei; Mu Jingyang; Bai Shuxin

    2008-01-01

    In this paper, the damage modes of the carbon fiber and the glass fiber reinforced epoxy or bakelite resin matrix composites irradiated by CW laser under different power densities were analyzed, and the changes of the microstructure and the tensile strength of the composites were also researched. When the resin matrix composites were radiated at a power density more than 0.1 kW/cm 2 , the matrix would be decomposed and the tensile properties of the radiated samples were lost over 30% while the carbon fiber hardly damaged and the glass fiber melted. When the power density of the laser was raised to 1 kW/cm 2 , the matrix burned violently and the carbon fiber cloth began to split with some carbon fiber being fractured, therefore, the fracture strength of the radiated sample lost over 80%. The higher the power density of radiation was, the more serious the damage of the sample was. It was also found that the difference of the matrixes had little effect on the damage extent of the composites. The influence of the radiation density on the temperature of the radiated surface of the carbon/resin composite was numerically calculated by ANSYS finite element software and the calculation results coincided with the damage mode of the radiated composites. (authors)

  16. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  17. Development of an enzyme-linked immunosorbent assay for seven sulfonamide residues and investigation of matrix effects from different food samples.

    Science.gov (United States)

    Zhang, Hongyan; Wang, Lei; Zhang, Yan; Fang, Guozhen; Zheng, Wenjie; Wang, Shuo

    2007-03-21

    Direct competitive enzyme-linked immunosorbent assays (ELISA) were developed to detect a broad range of sulfonamides in various matrices. Screening for this class of antibiotics in pig muscle, chicken muscle, fish, and egg extracts was accomplished by simple, rapid extraction methods carried out with only phosphate-buffered saline (PBS) buffer. Twenty milliliters of extract solution was added to 4 g of sample to extract the sulfonamide residues, and sample extracts diluted with assay buffer were directly analyzed by ELISA; matrix effects could be avoided with 1:5 dilution of pig muscle, chicken muscle, and egg extracts with PBS and 1:5 dilution of fish extract with 1% bovine serum albumin (BSA)-PBS. For liver sample, the extraction method was a little more complicated; 2 g of sample was added to 20 mL of ethanol, mixed, and then centrifuged. The solvent of 10 mL of the upper liquid was removed, and the residues were dissolved in 10 mL of PBS and then filtered; the filtrate was diluted two-fold with 0.5% BSA-PBS for ELISA. These common methods were able to detect seven sulfonamide residues such as sulfisozole, sulfathiazole, sufameter, sulfamethoxypyridazine, sulfapyridine, sulfamethizole, and sulfachlorpyridazine in pig muscle, liver, chicken muscle, egg, and fish. The assay's detection limits for these compounds were less than 100 microg kg-1. Various extraction methods were tested, and the average recovery (n=3) of 100 microg kg-1 for the matrices was found to range from 77.3 to 123.7%.

  18. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  19. Determination of occluded helium and oxygen in irradiated borosilicate glass samples

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Kulkarni, A.S.; Shrivastava, K.C.; Yadav, C.S.; Saxena, M.K.; Tomar, B.S.; Ramakumar, K.L.; Shah, J.G.

    2015-01-01

    Occluded gases in irradiated borosilicate glass were determined at 573, 873 and 1273 K for understanding the radiation damage in glass matrix. Hot vacuum extraction coupled with a quadrupole mass spectrometer technique was employed for the measurements. Relative sensitivity factors of various gases in QMS system were also determined and used for gas composition calculations. At 573 K only helium was found to get released whereas at 873 and 1273 K both helium and oxygen were released with major fraction of oxygen. (author)

  20. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  1. X-ray spectrometric determination of glass content of melts incorporating radioactive waste: a feasibility study

    International Nuclear Information System (INIS)

    Slates, R.V.

    1978-09-01

    X-ray fluorescence spectrometry was evaluated for the determination of glass content and homogeneity of glass incorporating high-level radioactive waste. Accuracy and precision were determined for analyses of Al 2 O 3 , SiO 2 , CaO, TiO 2 , MnO, Fe 2 O 3 , and NiO in specimens of known composition. These specimens were prepared by fusing powdered glass with nonradioactive synthetic waste. Matrix effects of sodium on these analyses were specifically evaluated. X-ray fluorescence spectrometry was shown to be applicable to the proposed determinations by comparing the known glass contents of 14 glass waste compositions with those calculated from experimentally determined concentrations of SiO or TiO 2

  2. Fluorescence of Er3+ doped La2S3.3Ga2S3 glasses

    International Nuclear Information System (INIS)

    Reisfeld, R.; Bornstein, A.

    1978-01-01

    In this paper the authors report the preparation and fluorescence of Er 3+ in chalcogenide glasses. In the oxide glasses it has been shown that the multiphonon transition rates of the RE are independent of the coupling between a given oxide glass and rare earth ion, but dependent exponentially on the number of phonons of highest energy bridging the emitting and next-lower level. It is of interest to establish whether changing the glass matrix will affect the amount of electron phonon coupling. In addition, because of their low phonon energy and high refractive index, the RE doped chalcogenide glasses will form a new type of fluorescent material. This may be of interest in new RE lasers. (Auth.)

  3. Crystallization study of a glass used for fission product storage

    International Nuclear Information System (INIS)

    Morlevat, J.-P.; Uny, Gisele; Jacquet-Francillon, Noel.

    1981-06-01

    The vitreous matrix used in France is a borosilicate glass of low melting point allowing introduction of volatil fission products and of good chemical stability. However, like any glass, if storage temperature is higher than transformation temperature a partial crystallization can occur. Before final storage, it is important to determine of leaching by water eventually occuring on the choosen site is modified by crystalline phases. The aim of this study is the determination of the leaching rate and the identification of crystalline phases formed during thermal treatment and evaluation of its volumic fraction [fr

  4. Effects of composition on properties in an 11-component nuclear waste glass system

    International Nuclear Information System (INIS)

    Chick, L.A.; Piepel, G.F.; Mellinger, G.B.; May, R.P.; Gray, W.J.; Buckwalter, C.Q.

    1981-09-01

    Ninety simplified nuclear waste glass compositions within an 11-component oxide composition matrix were tested for crystallinity, viscosity, volatility, and chemical durability. Empirical models of property response as a function of glass composition were developed using statistical experimental design and modeling techniques. A new statistical technique was developed to calculate the effects of oxide components on each property. Independent melts were used to check the prediction accuracy of the models

  5. Electron irradiation effect on bubble formation and growth in a sodium borosilicate glass

    International Nuclear Information System (INIS)

    Chen, X.; Birtcher, R. C.; Donnelly, S. E.

    2000-01-01

    In this study, the authors studied simultaneous and intermittent electron irradiation effects on bubble growth in a simple sodium borosilicate glass during Xe ion implantation at 200 C. Simultaneous electron irradiation increases the average bubble size in the glass. This enhanced diffusion is also shown by the migration of Xe from bubbles into the matrix when the sample is irradiated by an electron beam after the Xe implantation

  6. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  7. Physical properties and thermoluminescence of glasses designed for radiation dosimetry measurements

    International Nuclear Information System (INIS)

    Laopaiboon, R.; Bootjomchai, C.

    2015-01-01

    Highlights: • TL stability of soda-lime glass was corrected by dopants. • D LDL values indicated that the glass samples have good radiation sensitivity. • Bond compression model theory was used to confirm the results from experimental. • High elastic moduli of glass samples indicated that high stability of structure. - Abstract: Soda lime glasses doped with CeO 2 , Nd 2 O 3 and MnO 2 were prepared. Thermoluminescence (TL) properties, such as glow curves and linearity of TL response on irradiation dose were investigated. Results showed that the TL properties depended on the type and concentration of the dopants. Samples were selected to calculate energy trap depth parameters. To design materials for radiation dosimetry, physical properties, ion concentration, elastic properties and effective atomic numbers are important. Theoretical bond compression models were used to determine the elastic moduli for comparison with experimental values. Results show fair agreement between theoretical and experimental measurements. The high elastic moduli of the glass samples indicated high rigidity and stability of the glass matrix structure

  8. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  9. Aqueous corrosion of borosilicate glasses. Nature and properties of alteration layers

    International Nuclear Information System (INIS)

    Trotignon, Laurent

    1990-01-01

    This research thesis addresses physical and chemical processes which occur during aqueous corrosion of silicates, and the study of the properties of their interfaces with solutions, and thus issues related to the fate of high activity nuclear wastes which are embedded in a vitreous matrix as the potential release of radionuclides towards the environment then depends on the glass parcel behaviour submitted to chemical attacks which could alter it, notably by aqueous corrosion. The objective is then to model the dissolution of nuclear glass over long periods of time, and to predict the behaviour of radionuclides. The author compared the corrosion and alteration layers of gradually more complex borosilicate glasses, from a ternary sodium borosilicate glass to a simulated nuclear glass (the French reference glass R7T7). Complexity is increased by adding oxides. After some theoretical recalls on the structure and corrosion of borosilicate glasses, the author presents the studied materials, the corrosion experiments, and analytical techniques used to study alteration layers. The mechanism of formation of altered layers is studied based on corrosion experiments performed at 90 C on the whole set of glasses. Alteration layers formed on corroded glasses are studied and compared by using various techniques: electronic microscopy, high energy ion beams, spectroscopy, infrared, photo-electron spectroscopy. Implications for underground storage of nuclear glasses are discussed

  10. Ion-Exchange Processes and Mechanisms in Glasses

    International Nuclear Information System (INIS)

    McGrail, B.P.; Icenhower, J.P.; Darab, J.G.; Shuh, D.K.; Baer, D.R.; Shutthanandan, V.; Thevuthasan, S.; Engelhard, M.H.; Steele, J.L.; Rodriguez, E.A.; Liu, P.; Ivanov, K.E.; Booth, C.H.; Nachimuthu, P.

    2001-01-01

    [14,15]. Renewed interest in alkali ion exchange reactions has come about because of interest in development of durable Na-rich silicate glasses for immobilization of low-activity waste (LAW) at Hanford, Washington [16] and high-level wastes in China [17]. In reactive transport simulations of a LAW glass disposed in a shallow subsurface facility, Chen, McGrail, and Engel [18] showed that ion-exchange reactions increased the radionuclide release rate by over two orders of magnitude when compared with simulations where ion exchange was excluded. Sheng, Luo, and Tang [17] conducted static tests in a simulated groundwater and showed that alkali ion exchange was the dominant release mechanism over a large temperature range. Although the significance of alkali ion exchange reactions in long-term disposal system performance has now been recognized, the fundamental processes and mechanisms controlling the exchange reactions are still remarkably poorly understood, especially with regard to how glass structure affects alkali ion exchange kinetics. Experimental studies of Na release from various simple silicate glasses are numerous [19-23]. However, in all previous studies of which we are aware, no attempt was made to distinguish between M + release through alkali exchange versus matrix dissolution. The release rate of alkali in all of the early work was convoluted by contributions from matrix dissolution, which dominates in dilute solutions. Also, none of the previous studies attempted to define the relationship, if any, between glass structure (composition) and the kinetics of the ion exchange reaction. The motivation behind this Environmental Management Science Project (EMSP) is to develop a better understanding of how glass structure impacts sodium ion exchange so that improved glasses can be developed. Development of low ion-exchange rate glasses may also permit engineers to use higher loadings in nuclear waste glasses, which would result in substantial savings in

  11. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  12. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    Science.gov (United States)

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  14. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Nanoporous Glasses for Nuclear Waste Containment

    OpenAIRE

    Woignier, Thierry; Primera, Juan; Reynes, Jerôme

    2016-01-01

    Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical dura...

  16. Structural analysis of xSrO–(50 − x)CaO–50P_2O_5 glasses with x = 0, 5, or 10 mol% for potential use in a local delivery system for osteomyelitis treatment

    International Nuclear Information System (INIS)

    Comeau, P.A.; Filiaggi, M.J.

    2016-01-01

    The introduction of ions into a local delivery matrix is one method of managing degradation and subsequent release of the incorporated therapeutic agents. Of interest in this study was whether we could modify the structural nature of calcium polyphosphate (CPP) glass and the subsequent therapeutic potential of this local delivery matrix with inclusion of strontium (Sr). We found that adding 10 mol% Sr significantly increased the density and chain length of the glass. There was no significant impact of Sr doping on the subsequent loading of vancomycin into the matrix, or the matrix porosity. The noted differences in structural stability, ion release, and vancomycin release between the un-doped CPP matrices and 10 mol% Sr-doped CPP matrices in vitro are likely a result of a decrease in glass disorder upon Sr addition to the glass and preferential retention of Sr over Ca during matrix degradation. This study has provided further evidence that Sr incorporation may serve to both manipulate antibiotic release from the amorphous CPP matrix and provide a potential source of therapeutic ions for enhanced bone regeneration. - Highlights: • A strontium-doped CPP glass was fabricated with a novel calcine-melt protocol. • The density and chain length of CPP glass increased upon 10 mol% Sr addition to CPP. • The phosphorous ion released in vitro was not dependent on 10 mol% Sr addition. • Doping CPP with 10 mol% Sr improved matrix short-term structural stability in vitro.

  17. The Effect of Various Silicate-glass Matrixes on Gold-nanoparticle Formation

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Vindová, P.; Staněk, S.; Vytykačová, S.; Macková, Anna; Malinský, Petr; Mikšová, Romana; Janeček, M.; Pešička, J.; Špirková, J.

    2017-01-01

    Roč. 61, č. 1 (2017), s. 52-58 ISSN 0862-5468 R&D Projects: GA ČR GB14-36566G; GA ČR GA15-01602S; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : glasses * nanoparticles * transmission electron microscopy * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties) Impact factor: 0.439, year: 2016

  18. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  19. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest

    Energy Technology Data Exchange (ETDEWEB)

    Kilymis, D. A.; Delaye, J.-M., E-mail: jean-marc.delaye@cea.fr [CEA Marcoule, DEN/DTCD, Service d’Etude et Comportement des Matériaux de Conditionnement, BP17171 30207 Bagnols-sur-Cèze Cedex (France)

    2014-07-07

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO{sub 2} content of the glass, which promotes densification due to the open structure of SiO{sub 4} tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  20. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest.

    Science.gov (United States)

    Kilymis, D A; Delaye, J-M

    2014-07-07

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO2 content of the glass, which promotes densification due to the open structure of SiO4 tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  1. Preparation and Characterization of UPR/ LNR/ Glass Fiber Composite by using Unsaturated Polyester Resin (PET) from PET Wastes

    International Nuclear Information System (INIS)

    Siti Farhana Hisham; Ishak Ahmad; Rusli Daik

    2011-01-01

    UPR/ LNR/ glass fibre composite had been prepared by using unsaturated polyester resin (UPR) based from recycled PET product. PET waste was recycled by glycolysis process and the glycides product was then reacted with maleic anhydride to produce unsaturated polyester resin. The preparation of UPR/ LNR blends were conducted by varying the amount of LNR addition to the resin ranging from 0-7.5 % (wt). The composition of UPR/LNR blend with good mechanical properties had been selected as a matrix of the glass fiber reinforced composite. Glass fibre was also treated by (3-Amino propil)triethoxysilane as a coupling agent. From the result, the addition of 2.5 % LNR in UPR had showed the optimum mechanical and morphological properties where the elastomer particle's were well dispersed in the matrix with smaller size. The silane treatment on the glass fiber increased the tensile and impact strength values of the UPR/ LNR/ GF composite compared to untreated fiber reinforcement. (author)

  2. Elaboration of optical glass-ceramic for frequency doubling

    International Nuclear Information System (INIS)

    Vigouroux, H.

    2012-01-01

    The High power laser development required the need of materials with nonlinear properties. Glass materials can be considered as ideal materials as they can be transparent and elaborated in very large dimension. Precipitation of non-centro symmetric crystalline particles in bulk glass leads to a material with bulk nonlinear properties. This glass-ceramic should be then easily integrated in such laser facilities. In this thesis, the results concerning the precipitation of the phase LiNbO 3 in the glassy-matrix 35 Li 2 O - 25 Nb 2 O 5 - 40 SiO 2 are detailed. The crystallization mechanism of this phase is studied through thermal analysis, optical and electronic microscopy as well as in-situ analyses. These studies reveal glass-ceramics are obtained through a precipitation of the lithium niobate crystalline phase in spherulite shape. The nonlinear optical properties are investigated on this materials and an original, isotropic Second Harmonic Generation Signal (SHG) is registered in the bulk glass-ceramic. A complete study using a multi-scale approach allows the correlation between the spherulite structure and the nonlinear optical properties. A mechanism at the origin of the SHG signal is proposed. This leads to a new approach for transparent inorganic materials development for isotropic SHG conversion. (author) [fr

  3. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  4. Machine vision based quality inspection of flat glass products

    Science.gov (United States)

    Zauner, G.; Schagerl, M.

    2014-03-01

    This application paper presents a machine vision solution for the quality inspection of flat glass products. A contact image sensor (CIS) is used to generate digital images of the glass surfaces. The presented machine vision based quality inspection at the end of the production line aims to classify five different glass defect types. The defect images are usually characterized by very little `image structure', i.e. homogeneous regions without distinct image texture. Additionally, these defect images usually consist of only a few pixels. At the same time the appearance of certain defect classes can be very diverse (e.g. water drops). We used simple state-of-the-art image features like histogram-based features (std. deviation, curtosis, skewness), geometric features (form factor/elongation, eccentricity, Hu-moments) and texture features (grey level run length matrix, co-occurrence matrix) to extract defect information. The main contribution of this work now lies in the systematic evaluation of various machine learning algorithms to identify appropriate classification approaches for this specific class of images. In this way, the following machine learning algorithms were compared: decision tree (J48), random forest, JRip rules, naive Bayes, Support Vector Machine (multi class), neural network (multilayer perceptron) and k-Nearest Neighbour. We used a representative image database of 2300 defect images and applied cross validation for evaluation purposes.

  5. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The role of residual cracks on alkali silica reactivity of recycled glass aggregates

    DEFF Research Database (Denmark)

    Maraghechi, Hamed; Shafaatian, Seyed-Mohammad-Hadi; Fischer, Gregor

    2012-01-01

    Despite its environmental and economical advantages, crushed recycled glass has limited application as concrete aggregates due to its deleterious alkali-silica reaction. To offer feasible mitigation strategies, the mechanism of ASR should be well understood. Recent research showed that unlike some...

  7. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    Science.gov (United States)

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  8. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  9. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  10. Removal of heavy metals from aqueous solution by Carrot residues

    International Nuclear Information System (INIS)

    Eslamzadeh, T.; Nasernejad, B.; Bonakdar Pour, B.; Zamani, A.; Esmaail-Beygi, M.

    2004-01-01

    The removal of Copper(II), Zinc(II), and Chromium (III) from wastewater by carrot residues was investigated to evaluate cation exchange capacity. The effects of solution P H and co-ions were studied in batch experiments. Adsorption equilibria were initially rapidly established, and then decreased markedly after 10 min. Column experiments were carried out in a glass column filled with carrot residues to evaluate the metal removal capacity. The influences of the feed concentration and feed rate were also studied in order to compare the dynamic capacity for metal binding in different feed concentrations

  11. Computation of a Reference Model for Robust Fault Detection and Isolation Residual Generation

    Directory of Open Access Journals (Sweden)

    Emmanuel Mazars

    2008-01-01

    Full Text Available This paper considers matrix inequality procedures to address the robust fault detection and isolation (FDI problem for linear time-invariant systems subject to disturbances, faults, and polytopic or norm-bounded uncertainties. We propose a design procedure for an FDI filter that aims to minimize a weighted combination of the sensitivity of the residual signal to disturbances and modeling errors, and the deviation of the faults to residual dynamics from a fault to residual reference model, using the ℋ∞-norm as a measure. A key step in our procedure is the design of an optimal fault reference model. We show that the optimal design requires the solution of a quadratic matrix inequality (QMI optimization problem. Since the solution of the optimal problem is intractable, we propose a linearization technique to derive a numerically tractable suboptimal design procedure that requires the solution of a linear matrix inequality (LMI optimization. A jet engine example is employed to demonstrate the effectiveness of the proposed approach.

  12. Influence of Nanoclay Dispersion Methods on the Mechanical Behavior of E-Glass/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahesh V. Hosur

    2013-08-01

    Full Text Available Common dispersion methods such as ultrasonic sonication, planetary centrifugal mixing and magnetic dispersion have been used extensively to achieve moderate exfoliation of nanoparticles in polymer matrix. In this study, the effect of adding three roll milling to these three dispersion methods for nanoclay dispersion into epoxy matrix was investigated. A combination of each of these mixing methods with three roll milling showed varying results relative to the unmodified polymer laminate. A significant exfoliation of the nanoparticles in the polymer structure was obtained by dispersing the nanoclay combining three roll milling to magnetic and planetary centrifugal mixing methods. This exfoliation promoted a stronger interfacial bond between the matrix and the fiber, which increased the final properties of the E-glass/epoxy nanocomposite. However, a combination of ultrasound sonication and three roll milling on the other hand, resulted in poor clay exfoliation; the sonication process degraded the polymer network, which adversely affected the nanocomposite final properties relative to the unmodified E-glass/epoxy polymer.

  13. Cr3+ and Cr4+ luminescence in glass ceramic silica

    International Nuclear Information System (INIS)

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  14. Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol-gel glasses

    International Nuclear Information System (INIS)

    Lenaerts, Philip; Ryckebosch, Eline; Driesen, Kris; Deun, Rik van; Nockemann, Peter; Goerller-Walrand, Christiane; Binnemans, Koen

    2005-01-01

    The solubility and uniform distribution of lanthanide complexes in sol-gel glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide β-diketonate complexes (Ln=Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(III) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured

  15. Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses.

    Science.gov (United States)

    Hunault, Myrtille O J Y; Loisel, Claudine; Bauchau, Fanny; Lemasson, Quentin; Pacheco, Claire; Pichon, Laurent; Moignard, Brice; Boulanger, Karine; Hérold, Michel; Calas, Georges; Pallot-Frossard, Isabelle

    2017-06-06

    The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission-particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from Co II , red from copper nanoparticles, and purple from Mn III . Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors.

  16. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  17. Structural analysis of xSrO–(50 − x)CaO–50P{sub 2}O{sub 5} glasses with x = 0, 5, or 10 mol% for potential use in a local delivery system for osteomyelitis treatment

    Energy Technology Data Exchange (ETDEWEB)

    Comeau, P.A. [School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Filiaggi, M.J., E-mail: mark.filiaggi@dal.ca [School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Department of Applied Oral Sciences, Dalhousie University, 5981 University Avenue, Halifax, Nova Scotia B3H 3J5 (Canada)

    2016-01-01

    The introduction of ions into a local delivery matrix is one method of managing degradation and subsequent release of the incorporated therapeutic agents. Of interest in this study was whether we could modify the structural nature of calcium polyphosphate (CPP) glass and the subsequent therapeutic potential of this local delivery matrix with inclusion of strontium (Sr). We found that adding 10 mol% Sr significantly increased the density and chain length of the glass. There was no significant impact of Sr doping on the subsequent loading of vancomycin into the matrix, or the matrix porosity. The noted differences in structural stability, ion release, and vancomycin release between the un-doped CPP matrices and 10 mol% Sr-doped CPP matrices in vitro are likely a result of a decrease in glass disorder upon Sr addition to the glass and preferential retention of Sr over Ca during matrix degradation. This study has provided further evidence that Sr incorporation may serve to both manipulate antibiotic release from the amorphous CPP matrix and provide a potential source of therapeutic ions for enhanced bone regeneration. - Highlights: • A strontium-doped CPP glass was fabricated with a novel calcine-melt protocol. • The density and chain length of CPP glass increased upon 10 mol% Sr addition to CPP. • The phosphorous ion released in vitro was not dependent on 10 mol% Sr addition. • Doping CPP with 10 mol% Sr improved matrix short-term structural stability in vitro.

  18. 1ST-ORDER NONADIABATIC COUPLING MATRIX-ELEMENTS FROM MULTICONFIGURATIONAL SELF-CONSISTENT-FIELD RESPONSE THEORY

    DEFF Research Database (Denmark)

    Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.

    1992-01-01

    A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....

  19. Simulation of Self-Irradiation of High-Sodium Content Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    Pankov, Alexey S.; Ojovan, Michael I.; Batyukhnova, Olga G.; Lee, William E.

    2007-01-01

    Alkali-borosilicate glasses are widely used in nuclear industry as a matrix for immobilisation of hazardous radioactive wastes. Durability or corrosion resistance of these glasses is one of key parameters in waste storage and disposal safety. It is influenced by many factors such as composition of glass and surrounding media, temperature, time and so on. As these glasses contain radioactive elements most of their properties including corrosion resistance are also impacted by self-irradiation. The effect of external gamma-irradiation on the short-term (up to 27 days) dissolution of waste borosilicate glasses at moderate temperatures (30 deg. to 60 deg. C) was studied. The glasses studied were Magnox Waste glass used for immobilisation of HLW in UK, and K-26 glass used in Russia for ILW immobilisation. Glass samples were irradiated under γ-source (Co-60) up to doses 1 and 11 MGy. Normalised rates of elemental release and activation energy of release were measured for Na, Li, Ca, Mg, B, Si and Mo before and after irradiation. Irradiation up to 1 MGy results in increase of leaching rate of almost all elements from both MW and K-26 with the exception of Na release from MW glass. Further irradiation up to a dose of 11 MGy leads to the decrease of elemental release rates to nearly initial value. Another effect of irradiation is increase of activation energies of elemental release. (authors)

  20. Atomic dynamics of tin nanoparticles embedded into porous glass

    Energy Technology Data Exchange (ETDEWEB)

    Parshin, P. P.; Zemlyanov, M. G., E-mail: zeml@isssph.kiae.ru; Panova, G. Kh.; Shikov, A. A. [Russian Research Centre Kurchatov Institute (Russian Federation); Kumzerov, Yu. A.; Naberezhnov, A. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Sergueev, I.; Crichton, W. [European Synchrotron Radiation Facility (France); Chumakov, A. I. [Russian Research Centre Kurchatov Institute (Russian Federation); Rueffer, R. [European Synchrotron Radiation Facility (France)

    2012-03-15

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with {sup 119}Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  1. Atomic dynamics of tin nanoparticles embedded into porous glass

    International Nuclear Information System (INIS)

    Parshin, P. P.; Zemlyanov, M. G.; Panova, G. Kh.; Shikov, A. A.; Kumzerov, Yu. A.; Naberezhnov, A. A.; Sergueev, I.; Crichton, W.; Chumakov, A. I.; Rüffer, R.

    2012-01-01

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with 119 Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  2. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis

    Directory of Open Access Journals (Sweden)

    Qin Xiaochun

    2017-11-01

    Full Text Available The main technical requirements of road pavement concrete are high flexural strength and fatigue durability. Adding glass fiber into concrete could greatly increase flexural strength and wearing resistance of concrete. However, glass fiber has the great potential of corrosion during the cement hydration, which will directly affect the long-term performance and strength stability. In this paper, accelerated corrosion experiments have been done to find out the corrosion mechanism and property of alkali-resistant glass fiber in cement mortar. The applicability and practicability of alkaline-resistant glass fiber in road concrete have been illustrated in the analysis of flexural strength changing trend of cement mortar mixed with different proportions of activated additives to protect the corrosion of glass fiber by cement mortar. The results have shown that a 30% addition of fly ash or 10% addition of silica fume to cement matrix could effectively improve the corrosion resistance of alkali-resistant glass fiber. The optimal mixing amount of alkali-resistant glass fiber should be about 1.0 kg/m3 in consideration of ensuring the compressive strength of reinforced concrete in road pavement. The closest-packing method has been adopted in the mixture ratio design of alkali-resistant glass fiber reinforced concrete, not only to reduce the alkalinity of the cement matrix through large amount addition of activated additives but also to greatly enhance the flexural performance of concrete with the split pressure ratio improvement of 12.5–16.7%. The results suggested a prosperous application prospect for alkaline-resistant glass fiber reinforced concrete in road pavement.

  3. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  4. Studies on the synthesis and characterization of cesium-containing iron phosphate glasses

    Science.gov (United States)

    Joseph, Kitheri; Govindan Kutty, K. V.; Chandramohan, P.; Vasudeva Rao, P. R.

    2009-02-01

    Isotopes of cesium and strontium can be utilized as radiation source for various industrial and medical applications after their separation from high level nuclear waste. However, these elements need to be immobilized in a suitable matrix. In the present work, a systematic approach has been made to immobilize inactive cesium into iron phosphate glass. Up to 36 mol% of Cs 2O has been loaded successfully without crystallization. The glass transition temperature of the cesium loaded glass was found to increase initially and then decrease as a function of Cs 2O content. Mössbauer studies show that the concentration of Fe 3+ ions in the cesium loaded glasses is >95%. Volatilization experiments at 1263 K show that the weight loss is >0.5% for a period of 4 h. The 36 mol% of Cs 2O loaded iron phosphate glass with high Fe 3+ content described in this paper is reported for the first time.

  5. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  6. Incorporation of tv tube glass waste in aluminous porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J.N.F.; Santos, T.F.; Paes Junior, H.R. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil)

    2016-07-01

    Full test: This work analyzes the reuse of TV tube glass waste as a method to provide alternative raw material for aluminous porcelain, through of replacement of natural sodic feldspar by up to 30 wt.%. Aluminous porcelain formulations containing TV tube glass waste were pressed and fired in air at 1300 deg C using a fast-firing cycle. Ceramic pieces were characterized by X-ray diffraction, scanning electron microscopy, linear shrinkage, apparent density, apparent porosity, water absorption, and electrical resistivity. XRD and SEM results indicated that all aluminous porcelain pieces are composed essentially of mullite, quartz, and ?-alumina embedded in a vitreous matrix. The results also showed that the aluminous porcelain pieces containing TV tube glass waste presented low water absorption values between 0.42 and 0.45 %, apparent density between 2.44 and 2.46 g/cm3, and volume electrical resistivity between 1.91 and 2.93 x 1011 ?.cm. Thus, the TV tube glass waste could be used into aluminous porcelain formulations, in the range up to 30 wt.%, as a replacement for traditional flux material (sodic feldspar). (author)

  7. Photoluminescence properties of LiF bismuth silicate glass

    Science.gov (United States)

    Krishnan, M. Laya; Kumar, V. V. Ravi Kanth

    2018-04-01

    The sample (60-X) Bi2O3-30SiO2-XLiF where X=10, 15, 25 were prepared by conventional melt quenching method. X-ray diffraction pattern conformed the amorphous nature of the prepared sample and a broad peak at 2θ=30°. The Raman spectra confirmed that the Bi can exist both network former (BiO3 pyramidal) and network modifier (BiO6 octahedral)in the glass matrix. The samples showing broad absorption at 470nm is due to the presence of Bi2+ ions, because of increasing optical basicity the absorption edge of the sample is blue shifted. The photoluminescence spectra of the glass under 350nm excitation are showing two main peaks at 430nm and 630 nm due to Bi3+ and Bi2+ respectively and 25 LBS glass showing yellow, 15LBS showing near bluish white and 10LBS showing blue luminescence. The color purity and correlated color temperature are also calculated.

  8. Quantum confinement of Bi2S3 in glass with magnetic behavior

    Directory of Open Access Journals (Sweden)

    Rajendra P. Panmand

    2013-02-01

    Full Text Available The novel Bi2S3 quantum dots (QDs glass nanosystems with unique magnetic properties have been investigated. The monodispersed QDs of size in the range of 3 to 15 nm were grown in the glass matrix. The optical study of these nanosystems clearly demonstrated the size quantization effect resulting in a pronounced band gap variation with QD size. The magnetic properties of the pristine glass and the Bi2S3 QD glass nanosystems were investigated by VSM and SQUID magnetometer. The pristine glass did not show any ferromagnetism while the Bi2S3 glass nanosystems showed significant and reproducible ferromagnetism. We also investigated the effect of the size of Bi2S3 QDs on the magnetic properties. The saturation magnetization for the 15 nm QD glass-nanosystem (124 memu/g was observed to be higher as compared to the 3nm QD glass nanosystem (58.2 memu/g. The SQUID measurement gave the excellent hysteresis up to 300K. Surprisingly, the bulk Bi2S3 powder is diamagnetic in nature but Bi2S3 quantum dots glass nanosystem showed the ferromagnetic behavior for the first time. The investigated novel QD glass-nanosystem may have a potential application in spintronic devices and most importantly, this nanosystem can be fabricated in any usable shape as per the device requirement.

  9. Insight on the glass-forming ability of Al–Y–Ni–Ce bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Fan, E-mail: sfchen@ntut.edu.tw [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Chen, Chih-Yuan, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Lin, Chia-Hung [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Adding 1 at.% cerium to Al{sub 87}Y{sub 8}Ni{sub 5} alloy causes glass transition. • A large ΔT{sub x} indicates that (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} is possibly a ductile amorphous alloy. • Ce is effective in improving the thermal stability of the Al–Y–Ni amorphous alloy. • The hardness of the crystallized cerium-bearing alloy was as high as 593 Hv. - Abstract: In the present study, the role of Ce in the thermal stability and glass forming ability (GFA) of (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbons produced by a single roller melt-spinning process has been investigated in an attempt to understand the influences of multiple RE elements in an Al–TM–RE (TM: transition metal, RE: rear earth metal) alloy system. Only the (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbon showed a glass transition temperature (T{sub g}) at 483.2 K, and its ΔT{sub x} value was 41.3 K. Crystallization occurred in the temperature range of 500–750 K in three exothermic reaction stages. The peak temperature for these reactions shifted toward higher temperatures at higher heating rates. XRD and SEM analysis of annealed samples revealed that nano-sized Al particles precipitated within the amorphous matrix during the first exothermic reaction. The maximum hardness was obtained for both non-cerium and cerium addition alloys after crystallization in the 550–660 K region due to numerous nano-sized precipitates randomly and homogeneously distributed in the amorphous matrix. Moreover, from observation of the fracture surface, it is found that the fracture mode transforms from ductile to brittle when the sample is annealed at a higher crystallization temperature, at which brittle intermetallic compounds appear.

  10. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  11. Revealing flow behaviors of metallic glass based on activation of flow units

    Energy Technology Data Exchange (ETDEWEB)

    Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-28

    Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flow mechanisms in glasses and inspiration for improving the plasticity of MGs.

  12. MULTIVARIATERESIDUES : A Mathematica package for computing multivariate residues

    Science.gov (United States)

    Larsen, Kasper J.; Rietkerk, Robbert

    2018-01-01

    Multivariate residues appear in many different contexts in theoretical physics and algebraic geometry. In theoretical physics, they for example give the proper definition of generalized-unitarity cuts, and they play a central role in the Grassmannian formulation of the S-matrix by Arkani-Hamed et al. In realistic cases their evaluation can be non-trivial. In this paper we provide a Mathematica package for efficient evaluation of multivariate residues based on methods from computational algebraic geometry.

  13. Structure and some physical properties of PbO-P2O5 glasses

    International Nuclear Information System (INIS)

    El-Egili, K.; Doweidar, H.; Moustafa, Y.M.; Abbas, I.

    2003-01-01

    Glasses in the system xPbO·(100-x)P 2 O 5 (x=25-60 mol%) have been investigated using IR spectroscopy and by means of density and electrical-resistivity measurements. The infrared spectra revealed that for PbO 50 mol% PbO also plays the role of a network former. The greater rate of density increase for PbO>50 mol% is due to the formation of PbO 4 units. The conductivity of these glasses depends mainly on the mobility of Pb 2+ ions. The variation of the electrical conductivity parameters upon changing the composition have been correlated with the structural changes in the glass matrix

  14. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-01-01

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  15. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Energy Technology Data Exchange (ETDEWEB)

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  16. Neutron detector based on Particles of {sup 6}Li glass scintillator dispersed in organic lightguide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K.D., E-mail: ianakiev@lanl.gov; Hehlen, M.P.; Swinhoe, M.T.; Favalli, A.; Iliev, M.L.; Lin, T.C.; Bennett, B.L.; Barker, M.T.

    2015-06-01

    Most {sup 3}He replacement neutron detector technologies today have overlapping neutron–gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron–gamma separation of {sup 3}He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. {sup 6}Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of {sup 6}Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium ({sup 6}Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of {sup 6}Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a

  17. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  18. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  19. Glass-ceramics frits for high mechanical resistance glazes

    International Nuclear Information System (INIS)

    Gajek, M.; Lis, J.; Partyka, J.; Wojczyk, M.

    2004-01-01

    The obtaining and application of glass-ceramics frits for glazes were discussed by many authors. This glazes are characterized by raised mechanical parameters and chemical resistance. Factors, that determines crystallization process are initial composition, heat treatment and nucleation agents. The kind of crystalline phases, crystal habit and the content of residual glass phase play the decisive role in the strengthening of the glaze. In this paper are shown results of investigation over controlled crystallization in the ternary systems; Li 2 O-Al 2 O 3 -SiO 2 , CaO-Al 2 O 3 -SiO 2 , ZnO-Al 2 O 3 -SiO 2 , MgO-Al 2 O 3 -SiO 2 , with or without nucleation agents. (author)

  20. Rediscovering ancient glass technologies through the examination of opacifier crystals

    Science.gov (United States)

    Lahlil, S.; Biron, I.; Galoisy, L.; Morin, G.

    2008-07-01

    The aim of the study is to understand how antimonate opacifying crystals were obtained throughout history. Two archaeological glass productions opacified with calcium and lead antimonates are studied in this paper, in order to rediscover ancient opaque glass technologies: Roman mosaic tesserae (1st cent. B.C. 4th cent. A.D.) and Nevers lampworking glass (18th cent. A.D.). The fine examination of crystalline phases and of the vitreous matrix is undertaken using various and complementary techniques. Results are compared with a modern reference production, for which the technological process is well known. We demonstrate that Ca-antimonate opacifiers in Roman mosaic tesserae, as well as in Nevers lampworking glass, were obtained by in situ crystallization. Nevertheless, Roman and Nevers glass would have undergone different firing processes. We propose that the addition of previously synthesized crystals or the use of “anime” could be the process used to obtain Pb-antimonate opacified glass, for both productions studied. We demonstrate that CaO, PbO and Sb2O3 concentrations in the bulk compositions and in the matrices, and their evolution with the crystallinity ratio, offer robust criteria for the distinction of the opacification process used. Also, the different crystalline structures help to provide information on the experimental conditions.