WorldWideScience

Sample records for residual chlorine concentrations

  1. Chlorination of zirconyte concentrate

    International Nuclear Information System (INIS)

    Costa, N.G.

    1988-01-01

    Chlorination experiments with zirconyte concentrate were carried out in order to study the effects of temperature, percentage of reducing agent and porosity on the gasification of ZrO 2 for 10 and 20 minutes of reaction. Factorial analysis was applied and the results indicated that temperature and percentage of reducing agent were the two only variables effecting the ZrO 2 gasification. (author) [pt

  2. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of chlorine dioxide gas residues on selected food produce.

    Science.gov (United States)

    Trinetta, Valentina; Vaidya, Nirupama; Linton, Richard; Morgan, Mark

    2011-01-01

    In recent years, the consumption of fresh fruits and vegetables has greatly increased, and so has its association with contamination of several foodborne pathogens (Listeria, Salmonella, and Escherichia coli). Hence, there is a need to investigate effective sanitizer systems for produce decontamination. Chlorine dioxide (ClO(2)), a strong oxidizing gas with broad spectrum and sanitizing properties, has previously been studied for use on selected fruits and vegetables. ClO(2) gas treatments show great potential for surface pathogen reduction; however its use from a residue safety standpoint has yet to be assessed. Thus, the objective of this study was to evaluate residues of ClO(2), chlorite, chlorate, and chloride on selected fresh produce surfaces after treatment with ClO(2) gas. A rinse procedure was used and water samples were analyzed by N, N-diethyl-p-phenylenediamine and ion chromatography method (300.0). Seven different foods--tomatoes, oranges, apples, strawberries, lettuce, alfalfa sprouts, and cantaloupe--were analyzed after ClO(2) treatment for surface residues. Very low residues were detectable for all the food products except lettuce and alfalfa sprouts, where the measured concentrations were significantly higher. Chlorine dioxide technology leaves minimal to no detectable chemical residues in several food products, thus result in no significant risks to consumers. Practical Application: Potential for chlorine dioxide gas treatments as an effective pathogen inactivation technology to produce with minimal risk for consumers.

  4. Detecting chlorinated hydrocarbon residues: Rachel Carson's villains.

    Science.gov (United States)

    Travis, Anthony S

    2012-07-01

    In 1962, Rachel Carson's Silent Spring drew the public's attention to the deleterious effects of chlorinated hydrocarbons employed as economic poisons in agriculture. However, she did not discuss how their residues could be routinely identified and quantified. In part, this was because the introduction of instruments for use in environmental analysis had only just begun, and she was probably unaware of their existence. The development of the instrumental methods began in industry, particularly at Dow and Shell, in the mid-1950s. Dow scientists, by combining mass spectrometry with gas chromatography, developed the most powerful technique, then and now, for the separation, quantitation and identification of chlorinated hydrocarbons. Shell scientists were no less innovative, particularly with the application of highly sensitive gas chromatography detectors to trace analysis. The first of these detectors, the electron capture detector, was invented by James Lovelock at the National Institute of Medical Research, North London, at the end of the 1950s. Around the same time, Dale Coulson in the USA developed his microcoulometric detector.

  5. Chloroxyanion Residue Quantification in Cantaloupes Treated with Chlorine Dioxide Gas.

    Science.gov (United States)

    Kaur, Simran; Smith, David J; Morgan, Mark T

    2015-09-01

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/liter for 10 min results in a significant reduction (P chlorine dioxide ((36)ClO2) gas was used to describe the identity and distribution of chloroxyanion residues in or on cantaloupe subsequent to fumigation with ClO2 gas at a mean concentration of 5.1 ± 0.7 mg/liter for 10 min. Each treated cantaloupe was separated into rind, flesh, and mixed (rind and flesh) sections, which were blended and centrifuged to give the corresponding sera fractions. Radioactivity detected, ratio of radioactivity to mass of chlorite in initial ClO2 gas generation reaction, and distribution of chloroxyanions in serum samples were used to calculate residue concentrations in flesh, rind, and mixed samples. Anions detected on the cantaloupe were Cl(-) (∼ 90%) and ClO3(-) (∼ 10%), located primarily in the rind (19.3 ± 8.0 μg of Cl(-)/g of rind and 4.8 ± 2.3 μg of ClO3(-)/g of rind, n = 6). Cantaloupe flesh (∼ 200 g) directly exposed to(36)ClO2 gas treatment showed the presence of only Cl(-) residues (8.1 ± 1.0 μg of Cl(-)/g of flesh, n = 3). Results indicate chloroxyanion residues Cl(-) and ClO3(-) are only present on the rind of whole cantaloupes treated with ClO2 gas. However during cutting, residues may be transferred to the fruit flesh. Because Cl(-) is not toxic, only ClO3(-) would be a toxicity concern, but the levels transferred from rind to flesh are very low. In the case of fruit flesh directly exposed to ClO2 gas, only nontoxic Cl(-) was detected. This indicates that ClO2 gas that comes into contact with edible flesh would not pose a health concern.

  6. Chlorinated pesticide residues in sediments from the Arabian Sea along the Central West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    Environmental contamination by persistent chlorinated pesticides has evoked major concern due to the presence of their residues in the environment. The quantitative distribution of chlorinated pesticides residues in the marine sediments from...

  7. Cl app: android-based application program for monitoring the residue chlorine in water

    Science.gov (United States)

    Intaravanne, Yuttana; Sumriddetchkajorn, Sarun; Porntheeraphat, Supanit; Chaitavon, Kosom; Vuttivong, Sirajit

    2015-07-01

    A farmer usually uses a cheap chemical material called chlorine to destroy the cell structure of unwanted organisms and remove some plant effluents in a baby shrimp farm. A color changing of the reaction between chlorine and chemical indicator is used to monitor the residue chlorine in water before releasing a baby shrimp into a pond. To get rid of the error in color reading, our previous works showed how a smartphone can be functioned as a color reader for estimating the chlorine concentration in water. In this paper, we show the improvement of interior configuration of our prototype and the distribution to several baby shrimp farms. In the future, we plan to make it available worldwide through the online market as well as to develop more application programs for monitoring other chemical substances.

  8. Chlorinated pesticide residues in marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    of pesticide in contaminated river water into the Bay of Bengal. Con centration ranges of all these pesticide residues detected were, aldrine: 0.02-0.53, gamma BHC: 0.01-0.21, dieldrine: 0.05-0.51, and total DDT: 0.02-0.78, all in mu g g sup(-1) (wet wt)....

  9. Effect of Groundwater Iron on Residual Chlorine in Water Treated with Sodium Dichloroisocyanurate Tablets in Rural Bangladesh.

    Science.gov (United States)

    Naser, Abu Mohd; Higgins, Eilidh M; Arman, Shaila; Ercumen, Ayse; Ashraf, Sania; Das, Kishor K; Rahman, Mahbubur; Luby, Stephen P; Unicomb, Leanne

    2018-02-12

    We assessed the ability of sodium dichloroisocyanurate (NaDCC) to provide adequate chlorine residual when used to treat groundwater with variable iron concentration. We randomly selected 654 tube wells from nine subdistricts in central Bangladesh to measure groundwater iron concentration and corresponding residual-free chlorine after treating 10 L of groundwater with a 33-mg-NaDCC tablet. We assessed geographical variations of iron concentration using the Kruskal-Wallis test and examined the relationships between the iron concentrations and chlorine residual by quantile regression. We also assessed whether user-reported iron taste in water and staining of storage vessels can capture the presence of iron greater than 3 mg/L (the World Health Organization threshold). The median iron concentration among measured wells was 0.91 (interquartile range [IQR]: 0.36-2.01) mg/L and free residual chlorine was 1.3 (IQR: 0.6-1.7) mg/L. The groundwater iron content varied even within small geographical regions. The median free residual chlorine decreased by 0.29 mg/L (95% confidence interval: 0.27, 0.33, P 3 mg/L iron in water. Similar findings were observed for user-reported iron taste in water. Our findings reconfirm that chlorination of groundwater that contains iron may result in low-level or no residual. User reports of no iron taste or no staining of storage containers can be used to identify low-iron tube wells suitable for chlorination. Furthermore, research is needed to develop a color-graded visual scale for iron staining that corresponds to different iron concentrations in water.

  10. Long-Term Effects of Residual Chlorine on Pseudomonas aeruginosa in Simulated Drinking Water Fed With Low AOC Medium

    Directory of Open Access Journals (Sweden)

    Guannan Mao

    2018-05-01

    Full Text Available Residual chlorine is often required to remain present in public drinking water supplies during distribution to ensure water quality. It is essential to understand how bacteria respond to long-term chlorine exposure, especially with the presence of assimilable organic carbon (AOC. This study aimed to investigate the effects of chlorination on Pseudomonas aeruginosa in low AOC medium by both conventional plating and culture-independent methods including flow cytometry (FCM and quantitative PCR (qPCR. In a simulated chlorinated system using a bioreactor, membrane damage and DNA damage were measured by FCM fluorescence fingerprint. The results indicated membrane permeability occurred prior to DNA damage in response to chlorination. A regrowth of P. aeruginosa was observed when the free chlorine concentration was below 0.3 mg/L. The bacterial response to long-term exposure to a constant low level of free chlorine (0.3 mg/L was subsequently studied in detail. Both FCM and qPCR data showed a substantial reduction during initial exposure (0–16 h, followed by a plateau where the cell concentration remained stable (16–76 h, until finally all bacteria were inactivated with subsequent continuous chlorine exposure (76–124 h. The results showed three-stage inactivation kinetics for P. aeruginosa at a low chlorine level with extended exposure time: an initial fast inactivation stage, a relatively stable middle stage, and a final stage with a slower rate than the initial stage. A series of antibiotic resistance tests suggested long-term exposure to low chlorine level led to the selection of antibiotic-resistant P. aeruginosa. The combined results suggest that depletion of residual chlorine in low AOC medium systems could reactivate P. aeruginosa, leading to a possible threat to drinking water safety.

  11. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation

    Science.gov (United States)

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but few data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tom...

  12. Chlorine demand and residual chlorine decay kinetics of Kali river water at Kaiga project area

    International Nuclear Information System (INIS)

    Krishna Bhat, D.; Prakash, T.R.; Thimme Gowda, B.; Sherigara, B.S.; Khader, A.M.A.

    1995-01-01

    The nuclear power plant at Kaiga would use Kali river water for condenser cooling. This necessitated studies on the chemistry of chlorination such as chlorine demand, kinetics of chlorination and other water characteristics aimed at obtaining base line data. The study revealed significant seasonal variation of chlorine demand ranging from 0.5 ppm to 1.7 ppm (3.0 ppm dose, 30 min contact time) and total consumption of 5.0 ppm (10.0 ppm dose, 48 hours contact time). The reaction follows first order kinetics in chlorine. High correlation of chlorine demand with chlorophyll a, suspended matter, turbidity, silica, nitrite, phosphate and sulphate indicated that chlorine demand is greatly influenced by water quality. (author). 3 refs., 1 tab

  13. Chloroxyanion Residues in Cantaloupe and Tomatoes after Chlorine Dioxide Gas Sanitation.

    Science.gov (United States)

    Smith, D J; Ernst, W; Herges, G R

    2015-11-04

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but little data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tomato and cantaloupe treatment with chlorine dioxide gas. Treatments delivered 50 mg of chlorine dioxide gas per kg of tomato (2-h treatment) and 100 mg of gas per kg of cantaloupe (6-h treatment) in sealed, darkened containers. Chlorate residues in tomato and cantaloupe edible flesh homogenates were less than the LC-MS/MS limit of quantitation (60 and 30 ng/g respectively), but were 1319 ± 247 ng/g in rind + edible flesh of cantaloupe. Perchlorate residues in all fractions of chlorine dioxide-treated tomatoes and cantaloupe were not different (P > 0.05) than perchlorate residues in similar fractions of untreated tomatoes and cantaloupe. Data from this study suggest that chlorine dioxide sanitation of edible vegetables and melons can be conducted without the formation of unwanted residues in edible fractions.

  14. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine

    Directory of Open Access Journals (Sweden)

    E. F. Jaguaribe

    2005-03-01

    Full Text Available The capacity of activated carbons obtained from different raw materials, such as sugarcane bagasse, babassu (Orbygnia speciosa, and coconut (Cocus nucifera shells, to remove residual chlorine is studied. The influence of particle size and time of contact between particles of activated carbon and the chlorinated solution were taken into account. The adsorptive properties of the activated carbons were measured by gas adsorption (BET method, using an ASAP 2010 porosimeter, and liquid phase adsorption, employing iodine and methylene blue adsorbates. The activated carbon from sugarcane bagasse was the only adsorbent capable of removing 100% of the residual chlorine.

  15. Chloroxyanion residue on seeds and sprouts after chlorine dioxide sanitation of alfalfa seed

    Science.gov (United States)

    The effects of a 6-h chlorine dioxide sanitation of alfalfa seed (0, 50, 100, and 200 mg/kg seed) on total coliform bacteria, seed germination, and on the presence of chlorate and perchlorate residues in seed rinse, seed soak, and in alfalfa sprouts was determined. Chlorate residues in 20000 ppm cal...

  16. Stabile Chlorine Isotope Study of Martian Shergottites and Nakhlites; Whole Rock and Acid Leachates and Residues

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2011-01-01

    We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS tech-nique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars.

  17. Monitoring Residual Chlorine Decay and Coliform Contamination in ...

    African Journals Online (AJOL)

    Michael Horsfall

    hours) full with Vim (calcium hypochlorite, home detergent) cleaned thoroughly with distilled water and allowed to dry. All chlorine measurements were by using the N, N-diethyl-p-phenylenediamine(DPD) colorimetric method with a colour comparator. Measurement time intervals were initially at 5 minute, then 10 minute and ...

  18. Trihalomethanes formation in marine environment in front of Nuweibaa desalination plant as a result of effluents loaded by chlorine residual

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hamed

    2017-03-01

    Full Text Available Trihalomethanes have been identified as the most important disinfection byproducts resulted from using chlorine in desalination plants. Nuweibaa desalination plant was chosen to study their effluents impacts on the marine environment in front of the plant in the coastal area of Gulf of Aqaba. Surface and bottom Water Samples were collected from nine locations in the outfall area of this desalination plant during spring and autumn 2014, and analyzed for water temperature, pH value, Salinity, Dissolved Oxygen, Biological oxygen demand, Oxidizible organic matter, Total, fixed and volatile suspended matter, residual chlorine (free and combined and trihalomethanes. High total chlorine dosage discharged from the desalination plant achieved high levels of trihalomethanes in the receiving seawater of the outfall area. It has been estimated that about 14524.65671 kg of BOD, 74123.4 kg of OOM, 166896.4375 kg of total suspended solids, 623.634 kg of free chlorine, 469.21 kg of combined chlorine, 206.64 kg of chloroform and 76.48 kg of bromoform are discharged annually from this plant into the Gulf of Aqaba affecting the marine ecosystems. The results of THMs showed that the two main forms of THMs formed in the receiving seawater were chloroform and bromoform and ranged between (5.09–156.59, (2.82–566.06 μg/L respectively. High pH and High combined chlorine concentrations favored the formation of high concentrations of chloroform.

  19. Artificial Neural Networks and Concentration Residual Augmented ...

    African Journals Online (AJOL)

    Artificial Neural Networks and Concentration Residual Augmented Classical Least Squares for the Simultaneous Determination of Diphenhydramine, Benzonatate, Guaifenesin and Phenylephrine in their Quaternary Mixture.

  20. Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual.

    Science.gov (United States)

    Ohkouchi, Yumiko; Ly, Bich Thuy; Ishikawa, Suguru; Kawano, Yoshihiro; Itoh, Sadahiko

    2013-02-01

    There is considerable interest in minimizing the chlorine residual in Japan because of increasing complaints about a chlorinous odor in drinking water. However, minimizing the chlorine residual causes the microbiological water quality to deteriorate, and stricter control of biodegradable organics in finished water is thus needed to maintain biological stability during water distribution. In this investigation, an acceptable level of assimilable organic carbon (AOC) for biologically stable water with minimized chlorine residual was determined based on the relationship between AOC, the chlorine residual, and bacterial regrowth. In order to prepare water samples containing lower AOC, the fractions of AOC and biodegradable organic matter (BOM) in tap water samples were reduced by converting into biomass after thermal hydrolysis of BOM at alkaline conditions. The batch-mode incubations at different conditions of AOC and chlorine residual were carried out at 20 °C, and the presence or absence of bacterial regrowth was determined. The determined curve for biologically stable water indicated that the acceptable AOC was 10.9 μg C/L at a minimized chlorine residual (0.05 mg Cl(2)/L). This result indicated that AOC removal during current water treatment processes in Japan should be significantly enhanced prior to minimization of the chlorine residual in water distribution.

  1. Protocol Development and Equivalency Testing of the FACTS Procedure for Chlorine Residual Determination in Drinking Water.

    Science.gov (United States)

    1984-03-15

    l1 no . P .3tion was for electrode Aand sample 5. the B *Oe~~.1~.,.i.1 oidO I 1000611 ll600*0*l0 6i61 salu01II l.,0000 electrode determined a value...probability ant Residuals Pro. AW1A WQTC Dihaloacetanitriles b Chlorination , lev el ! in he uset] For a 95 percent Louisville Ky iDec 1978, Natural Waters Pro...Free As aitable Chlorine and Health Effects Pacifi, (;rn,. Cat!percent signific:an:e 1e el . i = 0 01 is DPD-Coiorimetrc DPD-Sleadifa( and Oct 19811 In

  2. Sodium and chlorine concentrations in mixed saliva of healthy and cystic fibrosis children

    International Nuclear Information System (INIS)

    Jimenez-Reyes, M.; Sanchez-Aguirre, F.J.

    1996-01-01

    Sodium and chlorine concentrations in mixed saliva were simultaneously measured by neutron activation analysis in nine normal children and in nine patients with cystic fibrosis. Sodium levels showed a significant difference (P < 0.01) between patients and controls. The concentration of chlorine was similar in both the control and the cystic fibrosis groups. (author)

  3. [Chlorine concentrations in the air of indoor swimming pools and their effects on swimming pool workers].

    Science.gov (United States)

    Fernández-Luna, Álvaro; Burillo, Pablo; Felipe, José Luis; Gallardo, Leonor; Tamaral, Francisco Manuel

    2013-01-01

    To describe chlorine levels in the air of indoor swimming pools in Castilla-La Mancha (Spain) and relate them to other chemical parameters in the installation and to the health problems perceived by swimming pool workers. We analyzed 21 pools with chlorine as chemical treatment in Castilla-La Mancha. The iodometry method was applied to measure chlorine concentrations in the air. The concentrations of free and combined chlorine in water, pH and temperature were also evaluated. Health problems were surveyed in 230 swimming pool workers in these facilities. The mean chlorine level in the air of swimming pools was 4.3 ± 2.3mg/m(3). The pH values were within the legal limits. The temperature parameters did not comply with regulations in 17 of the 21 pools analyzed. In the pools where chlorine values in the air were above the legal regulations, a significantly higher percentage of swimming pool workers perceived eye irritation, dryness and irritation of skin, and ear problems. Chlorine values in the air of indoor swimming pools were higher than those reported in similar studies. Most of the facilities (85%) exceeded the concentration of 1.5mg/m(3) established as the limit for the risk of irritating effects. The concentration of chlorine in indoor swimming pool air has a direct effect on the self-perceived health problems of swimming pool workers. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.

  4. Fe-Ti/Fe (II)-loading on ceramic filter materials for residual chlorine removal from drinking water.

    Science.gov (United States)

    Man, Kexin; Zhu, Qi; Guo, Zheng; Xing, Zipeng

    2018-06-01

    Ceramic filter material was prepared with silicon dioxide (SiO 2 ), which was recovered from red mud and then modified with Fe (II) and Fe-Ti bimetal oxide. Ceramic filter material can be used to reduce the content of residual chlorine from drinking water. The results showed that after a two-step leaching process with 3 M hydrochloric acid (HCl) and 90% sulfuric acid (H 2 SO 4 ), the recovery of SiO 2 exceeded 80%. Fe (II)/Fe-Ti bimetal oxide, with a high adsorption capacity of residual chlorine, was prepared using a 3:1 M ratio of Fe/Ti and a concentration of 0.4 mol/L Fe 2+ . According to the zeta-potential, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, Fe (II) and Fe-Ti bimetal oxide altered the zeta potential and structural properties of the ceramic filter material. There was a synergistic interaction between Fe and Ti in which FeOTi bonds on the material surface and hydroxyl groups provided the active sites for adsorption. Through a redox reaction, Fe (II) transfers hypochlorite to chloride, and FeOTiCl bonds were formed after adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Comparison of residual biotoxicity of chlorine and bromine chloride to copepods. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, B.P.

    1977-10-01

    The copepod species Eurytemora affinis and Acartia tonsa showed 50 to 60% mortality in cooling water with 0.5ppm Cl2 or BrCl (applied dosage) when entrained in the cooling system. However, after 5 min contact time, the biotoxicity was reduced to insignificant levels, hence mortalities in the mixing zone, given the applied dosage, would be negligible. There were no significant differences between residual biotoxicities of chlorinated and chlorobrominated cooling waters at either the low applied dose rates or at higher rates. The LC50 values were 362 + or - 26ppb and 403 + or - 46ppb at 24 hrs for bromine chloride and chlorine, respectively. Reproduction of Eurytemora was only affected at dosage rates well above those used in practice.

  6. Leaching of copper concentrates with high arsenic content in chlorine-chloride media

    International Nuclear Information System (INIS)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-01-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs

  7. Influences of model structure and calibration data size on predicting chlorine residuals in water storage tanks.

    Science.gov (United States)

    Hua, Pei; de Oliveira, Keila Roberta Ferreira; Cheung, Peter; Gonçalves, Fábio Veríssimo; Zhang, Jin

    2018-04-09

    This study evaluated the influences of model structure and calibration data size on the modelling performance for the prediction of chlorine residuals in household drinking water storage tanks. The tank models, which consisted of two modules, i.e., hydraulic mixing and water quality modelling processes, were evaluated under identical calibration conditions. The hydraulic mixing modelling processes investigated included the continuously stirred tank reactor (CSTR) and multi-compartment (MC) methods, and the water quality modelling processes included first order (FO), single-reactant second order (SRSO), and variable reaction rate coefficients (VRRC) second order chlorine decay kinetics. Different combinations of these hydraulic mixing and water quality methods formed six tank models. Results show that by applying the same calibration datasets, the tank models that included the MC method for modelling the hydraulic mixing provided better predictions compared to the CSTR method. In terms of water quality modelling, VRRC kinetics showed better predictive abilities compared to FO and SRSO kinetics. It was also found that the overall tank model performance could be substantially improved when a proper method was chosen for the simulation of hydraulic mixing, i.e., the accuracy of the hydraulic mixing modelling plays a critical role in the accuracy of the tank model. Advances in water quality modelling improve the calibration process, i.e., the size of the datasets used for calibration could be reduced when a suitable kinetics method was applied. Although the accuracies of all six models increased with increasing calibration dataset size, the tank model that consisted of the MC and VRRC methods was the most suitable of the tank models as it could satisfactorily predict chlorine residuals in household tanks by using invariant parameters calibrated against the minimum dataset size. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Energy Technology Data Exchange (ETDEWEB)

    Avtaeva, S. V., E-mail: s_avtaeva@mail.ru [Kyrgyz-Russian Slavic University (Kyrgyzstan); Sosnin, E. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Saghi, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria); Panarin, V. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Rahmani, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)

    2013-09-15

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules

  9. Assessment of the chlorinated hydrocarbons residues contamination in edible mushrooms from the North-Eastern part of Poland.

    Science.gov (United States)

    Gałgowska, Michalina; Pietrzak-Fiećko, Renata; Felkner-Poźniakowska, Barbara

    2012-11-01

    The aim of the study was to determine the content of chlorinated hydrocarbon residues in edible mushrooms from the north-eastern part of Poland. Material consisted of two species of fungi: Xerocomus mushrooms (Xerocomus badius), Boletus mushrooms (Boletus edulis). The dried samples (cups and cut-up material) were extracted with Soxhlet method in order to obtain lipid substances. In the fat chlorinated hydrocarbons were determined by Ludwicki et al. (1996) method. The separation and quantitative determination of DDT, DDE, DDD and γ-HCH were conducted with the method of gas chromatography using an electron capture detector - ECD. In all tested samples the presence of γ-HCH, DDT and its metabolites (DDE, DDD) was detected. The higher content of γ-HCH was found in Xerocomus mushrooms (average 0.125 μg/kg of mushrooms); in the Boletus mushrooms -0.11 μg/kg of mushrooms. The content of ΣDDT in cups of Xerocomus mushrooms was more than 2-fold higher than in those of Boletus mushrooms (3.78:1.71 mg/kg of mushrooms). The opposite relationship was observed for cut-up material. The higher concentration of ΣDDT was found in Boletus mushrooms (2.26 mg/kg of mushrooms) while in Xerocomus mushrooms this content was 0.91 mg/kg of mushrooms. Despite the fact that chlorinated hydrocarbons were determined in all samples under study, their contents do not exceed acceptable levels indicating that the consumption of mushrooms does not pose a health risk to consumers from the organochlorine compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Observed chlorine concentrations during Jack Rabbit I and Lyme Bay field experiments

    Science.gov (United States)

    Hanna, Steven; Chang, Joseph; Huq, Pablo

    2016-01-01

    As part of planning for a series of field experiments where large quantities (up to 20 tons) of pressurized liquefied chlorine will be released, observations from previous chlorine field experiments are analyzed to estimate the ranges of chlorine concentrations expected at various downwind distances. In five field experiment days during the summer 2010 Jack Rabbit I (JR I) field trials, up to two tons of chlorine were released and concentrations were observed at distances, x, from 25 to 500 m. In the 1927 Lyme Bay (LB) experiments, there were four days of trials, where 3-10 tons of chlorine were released in about 15 min from the back of a ship. Concentrations were sampled at LB from four ships sailing across the cloud path at downwind distances in the range from about 350 to 3000 m. Thus, the distances from which JR I concentrations were available slightly overlapped the LB distances. One-minute arc-maximum chlorine concentrations, C (g/m3), were analyzed from four JR I trials and two LB trials. Normalized concentrations (Cu/Q) were plotted versus x (m), where u (m/s) is measured wind speed at heights of 2-10 m and Q (g/s) is continuous mass release rate. It is found that the JR I and LB Cu/Q observations smoothly merge with each other and fall along a line with approximate slope of -2 at distances beyond about 200 m (i.e., Cu/Q is proportional to x-2). At x < 200 m, where dense gas effects are more important, the slope is less (about -1.5). Most of the data points are within a factor of two of the "best-fit" line.

  11. Relationship among iodine, bromine and chlorine concentrations in cow's milk in Japan

    International Nuclear Information System (INIS)

    Ohno, Shigeru; Itoh, Takashi; Morishima, Hiroshige; Honda, Yoshihide.

    1989-01-01

    In order to know the relationship among some elements in biological materials, iodine, bromine and chlorine concentrations in cow's milk samples in Japan were determined by the thermal neutron activation analysis using a low power research reactor and a Van de Graaff accelerator. The iodine contents in cow's milk samples ranged from 0.041 to 0.316 ppm with an average of 0.096 ppm. The bromine and chlorine in these samples ranged from 2.3 to 11.1 ppm and from 475 to 1650 ppm, respectively. The average concentration of the bromine was calculated to be 5.6 ppm and that of the chlorine was 853 ppm. The relationship among iodine, bromine and chlorine concentrations in cow's milk samples in Japan was studied with a regression analysis. It was suggested that the correlation has a power function as follows; Y = K(Z) -A where, Y is elemental concentration in ppm, Z is atomic number of element, A (=7.4) is exponent and K (=14.7) is a constant. (author)

  12. Effects of Chlorinated Paraffin and ZDDP Concentrations on Boundary Lubrication Properties of Mineral and Soybean Oils

    Science.gov (United States)

    The effect of chlorinated paraffin (CP) and zinc di-ethylhexyl dithio phosphate (ZDDP) concentration in polar and non-polar base fluids on boundary lubrication properties was investigated. The non-polar fluid was a solvent refined low sulfur heavy paraffinic mineral oil (150N oil); and the polar fl...

  13. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  14. A New On-Line Detecting Apparatus of the Residual Chlorine in Disinfectant for Fresh-Cut Vegetables

    Science.gov (United States)

    Hu, Chao; Su, Shu-Qiang; Li, Bao-Guo; Liu, Meng-Fang

    With the fast development of modern food and beverage industry, fresh-cut vegetables have wider application than before. During the process of sterilization in fresh-cut vegetables, the concentration of chloric disinfectant is usually so high that the common sensor can't be used directly on the product line. In order to solve this problem, we have invented a new detecting apparatus which could detect high concentration of chloric disinfectant directly. In this paper, the working principle, main monitor indicators, application and technical creations of the on-line apparatus have been discussed, and we also carried on the experimental analysis for its performance. The actual demands in factory could be met when the detecting flux is 2L/min, the dilution ratio is 15 and input amount of the disinfectant is 200ml per time, the max of the detecting deviation achieves ±4.8ppm(mg/L). The main detecting range of residual chlorine is 0~300ppm.

  15. Bidet toilet seats with warm-water tanks: residual chlorine, microbial community, and structural analyses.

    Science.gov (United States)

    Iyo, Toru; Asakura, Keiko; Nakano, Makiko; Yamada, Mutsuko; Omae, Kazuyuki

    2016-02-01

    Despite the reported health-related advantages of the use of warm water in bidets, there are health-related disadvantages associated with the use of these toilet seats, and the bacterial research is sparse. We conducted a survey on the hygienic conditions of 127 warm-water bidet toilet seats in restrooms on a university campus. The spray water from the toilet seats had less residual chlorine than their tap water sources. However, the total viable microbial count was below the water-quality standard for tap water. In addition, the heat of the toilet seats' warm-water tanks caused heterotrophic bacteria in the source tap water to proliferate inside the nozzle pipes and the warm-water tanks. Escherichia coli was detected on the spray nozzles of about 5% of the toilet seats, indicating that the self-cleaning mechanism of the spray nozzles was largely functioning properly. However, Pseudomonas aeruginosa was detected on about 2% of the toilet seats. P. aeruginosa was found to remain for long durations in biofilms that formed inside warm-water tanks. Infection-prevention measures aimed at P. aeruginosa should receive full consideration when managing warm-water bidet toilet seats in hospitals in order to prevent opportunistic infections in intensive care units, hematology wards, and other hospital locations.

  16. Respiratory health effect of persons accidentally expose to high concentration of chlorine gas.

    Science.gov (United States)

    Chierakul, Nitipatana; Rittayamai, Nuttapol; Passaranon, Prachya; Chamchod, Charttiwut; Suntiwuth, Bralee

    2013-02-01

    To evaluate the short term and long term respiratory health effects of subjects who accidentally exposed to high concentration of chlorine gas. There was an accidental leakage of sodium hypochlorite from an industrial factory in Rayong province in June 2010. Medical records of those who developed severe symptoms after exposed to high concentration of chlorine gas were reviewed. Prospective observational study was conducted after hospital discharge by interviewing with respiratory health questionnaires, physical examination, spirometry, methacholine challenge test, and home peak expiratory flow (PEF) monitoring at 2, 5 and 8 months after the event. Among 1,434 persons exposed to chlorine gas, 92 developed severe symptoms required hospital admission and 21 participated in the follow-up study at 2 months there after. Respiratory symptoms were noted in 18 participants. Three most common symptoms were dyspnea (81%), chest tightness (71%), and cough (67%). Obstructive defect from spirometry was identified in 2 participants, one of which also had bronchial hyper responsiveness (BHR) compatible with reactive airway dysfunction syndrome (RADS). Seven participants had abnormal PEF variability. There were 10 and 5 participants left in the follow-up visit at 5 and 8 months respectively. Two participants had persistent obstructive defect with additional two subjects were noticed. Those who had BHR and abnormal PEF variability remained unchanged. Acute exposure to high concentration of chlorine gas causes both significant short and long term respiratory health effects. Most of the patients although have gradual improvement of respiratory symptoms, but some symptoms remain persistent. Few patients have lung function impairment lasting for at least 8 months.

  17. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  18. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    International Nuclear Information System (INIS)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking

  19. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy

    Science.gov (United States)

    Xiao, X.; Le Berre, S.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2017-04-01

    Chlorine can play an important role in the process of stress corrosion cracking of dry cask storage canisters for used nuclear fuel, which are frequently located in marine environments. It is of significant interest to determine the surface concentration of chlorine on the stainless steel canister surface, but measurements are often limited by difficult access and challenging conditions, such as high temperature and high radiation fields. Laser-induced breakdown spectroscopy (LIBS) could enable chlorine concentration measurements while meeting the other constraints of this application, but suffers from high excitation energy of chlorine and the interference of the atomic emission lines of iron, thus limiting the sensitivity of detection, especially when LIBS has to be delivered over an optical fiber. We demonstrate that chlorine surface concentrations in the range of 0.5-100 mg/m2 can be inferred by the detection and quantification of sodium contained in chlorine salts if the speciation and neutralization of salts are not of major concern, whereas minor components of sea salt such as magnesium and potassium are less attractive as surrogates for chlorine due to the lower sensitivity of LIBS for their detection and quantification. The limit of detection, measurement accuracy, and other features and limitations of this surrogate measurement approach are discussed.

  20. Determination of chlorine concentration using single temperature modulated semiconductor gas sensor

    Science.gov (United States)

    Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.

    2016-11-01

    A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.

  1. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda.

    Science.gov (United States)

    Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine

    2015-10-27

    There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  2. Evaluation of Membrane Ultrafiltration and Residual Chlorination as a Decentralized Water Treatment Strategy for Ten Rural Healthcare Facilities in Rwanda

    Directory of Open Access Journals (Sweden)

    Alexandra Huttinger

    2015-10-01

    Full Text Available There is a critical need for safe water in healthcare facilities (HCF in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8% and failure of the chlorination mechanism (7%. When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.

  3. The Immediate Pulmonary Disease Pattern following Exposure to High Concentrations of Chlorine Gas

    Directory of Open Access Journals (Sweden)

    Pallavi P. Balte

    2013-01-01

    Full Text Available Background. Classification of pulmonary disease into obstructive, restrictive, and mixed patterns is based on 2005 ATS/ERS guidelines and modified GOLD criteria by Mannino et al. (2003, but these guidelines are of limited use for simple spirometry in situations involving mass casualties. Aim. The purpose of this study was to apply these guidelines to patients who underwent simple spirometry following high concentration of chlorine gas inhalation after a train derailment in Graniteville, South Carolina. Methods. We retrospectively investigated lung functions in ten patients. In order to classify pulmonary disease pattern, we used 2005 ATS/ERS guidelines and modified GOLD criteria along with our own criteria developed using available simple spirometry data. Results. We found predominant restrictive pattern in our patients with both modified GOLD and our criteria, which is in contrast to other chlorine exposure studies where obstructive pattern was more common. When compared to modified GOLD and our criteria, 2005 ATS/ERS guidelines underestimated the frequency of restrictive disease. Conclusion. Diagnosis of pulmonary disease patterns is of importance after irritant gas inhalation. Acceptable criteria need to be developed to evaluate pulmonary disease through simple spirometry in events leading to mass casualty and patient surge in hospitals.

  4. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  5. Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents.

    Science.gov (United States)

    Boudjellaba, D; Dron, J; Revenko, G; Démelas, C; Boudenne, J-L

    2016-01-15

    Chlorination is one of the most widely used techniques for biofouling control in large industrial units, leading to the formation of halogenated chlorination by-products (CBPs). This study was carried out to evaluate the distribution and the dispersion of these compounds within an industrialised bay hosting multiple chlorination discharges issued from various industrial processes. The water column was sampled at the surface and at 7 m depth (or bottom) in 24 stations for the analysis of CBPs, and muscle samples from 15 conger eel (Conger conger) were also investigated. Temperature and salinity profiles supported the identification of the chlorination releases, with potentially complex patterns. Chemical analyses showed that bromoform was the most abundant CBP, ranging from 0.5 to 2.2 μg L(-1) away from outlets (up to 10 km distance), and up to 18.6 μg L(-1) in a liquefied natural gas (LNG) regasification plume. However, CBP distributions were not homogeneous, halophenols being prominent in a power station outlet and dibromoacetonitrile in more remote stations. A seasonal effect was identified as fewer stations revealed CBPs in summer, probably due to the air and water temperatures increases favouring volatilisation and reactivity. A simple risk assessment of the 11 identified CBPs showed that 7 compounds concentrations were above the potential risk levels to the local marine environment. Finally, conger eel muscles presented relatively high levels of 2,4,6-tribromophenol, traducing a generalised impregnation of the Gulf of Fos to CBPs and a global bioconcentration factor of 25 was determined for this compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preparation and Properties of Agricultural Residuals-Iron Concentrate Pellets

    OpenAIRE

    Liu, Zhulin; Bi, Xuegong; Gao, Zeping; Wang, Yayu

    2017-01-01

    In this paper, carbon-containing pellets were prepared by using crop-derived charcoal made from agricultural residuals and iron ore concentrates, and their pelletizing performance and properties were studied. Experimental results showed that the strengths of pellets were related to the particle size of concentrates and the content of moisture, bentonite, and crop-derived charcoal fines in the pelletizing mixture and the temperature of roasting and reduction. That the granularity of raw materi...

  7. Acute exhibition to high concentrations of chlorine and their effect at lung level

    International Nuclear Information System (INIS)

    Diaz J, Maria Claudia; Sanchez M, Jully Mariana; Jaramillo, Luis Fernando; Russi C, Hernando

    2004-01-01

    The bronchiolitis of occupational origin has been described as consequences of injuries by acute inhalation due to the exhibition to diverse substances; an interesting case was revised where after exhibition to chlorine and hypochlorite of calcium; lung manifestations were developed

  8. Inactivation of Airborne Bacteria and Viruses Using Extremely Low Concentrations of Chlorine Dioxide Gas.

    Science.gov (United States)

    Ogata, Norio; Sakasegawa, Miyusse; Miura, Takanori; Shibata, Takashi; Takigawa, Yasuhiro; Taura, Kouichi; Taguchi, Kazuhiko; Matsubara, Kazuki; Nakahara, Kouichi; Kato, Daisuke; Sogawa, Koushirou; Oka, Hiroshi

    2016-01-01

    Infectious airborne microbes, including many pathological microbes that cause respiratory infections, are commonly found in medical facilities and constitute a serious threat to human health. Thus, an effective method for reducing the number of microbes floating in the air will aid in the minimization of the incidence of respiratory infectious diseases. Here, we demonstrate that chlorine dioxide (ClO2) gas at extremely low concentrations, which has no detrimental effects on human health, elicits a strong effect to inactivate bacteria and viruses and significantly reduces the number of viable airborne microbes in a hospital operating room. In one set of experiments, a suspension of Staphylococcus aureus, bacteriophage MS2, and bacteriophage ΦX174 were released into an exposure chamber. When ClO2 gas at 0.01 or 0.02 parts per million (ppm, volume/volume) was present in the chamber, the numbers of surviving microbes in the air were markedly reduced after 120 min. The reductions were markedly greater than the natural reductions of the microbes in the chamber. In another experiment, the numbers of viable airborne bacteria in the operating room of a hospital collected over a 24-hour period in the presence or absence of 0.03 ppm ClO2 gas were found to be 10.9 ± 6.7 and 66.8 ± 31.2 colony-forming units/m3 (n = 9, p gas at extremely low concentrations (≤0.03 ppm) can reduce the number of viable microbes floating in the air in a room. These results strongly support the potential use of ClO2 gas at a non-toxic level to reduce infections caused by the inhalation of pathogenic microbes in nursing homes and medical facilities. © 2016 S. Karger AG, Basel.

  9. Dependence of chlorine isotope separation in ion exchange chromatography on the nature and concentration of the eluent

    International Nuclear Information System (INIS)

    Heumann, K.G.; Baier, K.

    1980-01-01

    In a heterogeneous electrolyte system of a strongly basic anion exchanger and solutions of NaBF 4 or NaClO 4 we established the influence of the nature and concentration of the eluent in chromatographic experiments on chlorine isotope separation. Results show that when the elctrolyte concentration is increased the degree of isotope separation decreases. With NaBF 4 the separation factor is greater than with NaClO 4 under conditions which are otherwise the same. For electrolyte solutions containing ClO 4 -, NO 3 - and BF 4 - there is a linear relation between the separation factor of the chlorine isotopes and the logarithm of the heat of anion hydration of the elution electrolyte. (orig.)

  10. Role of Hot Water System Design on Factors Influential to Pathogen Regrowth: Temperature, Chlorine Residual, Hydrogen Evolution, and Sediment.

    Science.gov (United States)

    Brazeau, Randi H; Edwards, Marc A

    2013-10-01

    Residential water heating is linked to growth of pathogens in premise plumbing, which is the primary source of waterborne disease in the United States. Temperature and disinfectant residual are critical factors controlling increased concentration of pathogens, but understanding of how each factor varies in different water heater configurations is lacking. A direct comparative study of electric water heater systems was conducted to evaluate temporal variations in temperature and water quality parameters including dissolved oxygen levels, hydrogen evolution, total and soluble metal concentrations, and disinfectant decay. Recirculation tanks had much greater volumes of water at temperature ranges with potential for increased pathogen growth when set at 49°C compared with standard tank systems without recirculation. In contrast, when set at the higher end of acceptable ranges (i.e., 60°C), this relationship was reversed and recirculation systems had less volume of water at risk for pathogen growth compared with conventional systems. Recirculation tanks also tended to have much lower levels of disinfectant residual (standard systems had 40-600% higher residual), 4-6 times as much hydrogen, and 3-20 times more sediment compared with standard tanks without recirculation. On demand tankless systems had very small volumes of water at risk and relatively high levels of disinfectant residual. Recirculation systems may have distinct advantages in controlling pathogens via thermal disinfection if set at 60°C, but these systems have lower levels of disinfectant residual and greater volumes at risk if set at lower temperatures.

  11. Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh.

    Science.gov (United States)

    Crider, Yoshika; Sultana, Sonia; Unicomb, Leanne; Davis, Jennifer; Luby, Stephen P; Pickering, Amy J

    2018-02-01

    Chlorination is a low-cost, effective method for drinking water treatment, but aversion to the taste or smell of chlorinated water can limit use of chlorine treatment products. Forced choice triangle tests were used to evaluate chlorine detection and acceptability thresholds for two common types of chlorine among adults in Dhaka, Bangladesh, where previous studies have found low sustained uptake of chlorine water treatment products. The median detection threshold was 0.70mg/L (n=25, SD=0.57) for water dosed with liquid sodium hypochlorite (NaOCl) and 0.73mg/L (n=25, SD=0.83) for water dosed with solid sodium dichloroisocyanurate (NaDCC). Median acceptability thresholds (based on user report) were 1.16mg/L (SD=0.70) for NaOCl and 1.26mg/L (SD=0.67) for NaDCC. There was no significant difference in detection or acceptability thresholds for dosing with NaOCl versus NaDCC. Although users are willing to accept treated water in which they can detect the taste of chlorine, their acceptability limit is well below the 2.0mg/L that chlorine water treatment products are often designed to dose. For some settings, reducing dose may increase adoption of chlorinated water while still providing effective disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater

    Directory of Open Access Journals (Sweden)

    Suhur Saeed

    2015-07-01

    Full Text Available Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs when exposed to naturally-occurring organic matter (NOM. Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC, Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS-chlorine kinetics module (CKM, a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements.

  13. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study.

    Science.gov (United States)

    Taneja, Sonali; Mishra, Neha; Malik, Shubhra

    2014-11-01

    Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration.

  14. Role of Hot Water System Design on Factors Influential to Pathogen Regrowth: Temperature, Chlorine Residual, Hydrogen Evolution, and Sediment

    OpenAIRE

    Brazeau, Randi H.; Edwards, Marc A.

    2013-01-01

    Residential water heating is linked to growth of pathogens in premise plumbing, which is the primary source of waterborne disease in the United States. Temperature and disinfectant residual are critical factors controlling increased concentration of pathogens, but understanding of how each factor varies in different water heater configurations is lacking. A direct comparative study of electric water heater systems was conducted to evaluate temporal variations in temperature and water quality ...

  15. Preparation and Properties of Agricultural Residuals-Iron Concentrate Pellets

    Directory of Open Access Journals (Sweden)

    Zhulin Liu

    2017-01-01

    Full Text Available In this paper, carbon-containing pellets were prepared by using crop-derived charcoal made from agricultural residuals and iron ore concentrates, and their pelletizing performance and properties were studied. Experimental results showed that the strengths of pellets were related to the particle size of concentrates and the content of moisture, bentonite, and crop-derived charcoal fines in the pelletizing mixture and the temperature of roasting and reduction. That the granularity of raw materials was fine and the bentonite content increased was beneficial to the improvement of pellet strengths. The suitable molar ratio of carbon to oxygen was 1.0 and the proper proportioning ratios of moisture and binder were 8.0% and 6.5%, respectively. The pellet strengths increased accordingly with increasing the reduction temperature, and when the temperature reached 1200°C, accompanied by the fast reduction of iron and the formation of crystal stock, the dropping strength of product pellets was 15 times and the compressive strength was 1650 N; this may be improved by grinding of the concentrate, leading to acceptable strength for the blast furnace.

  16. Occurrence and distribution of persistent chlorinated hydrocarbons in the seas around India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    , sediment and biota). It provides the method analysis for determination of the concentration of various chlorinated hydrocarbons. The most striking feature of this article is the delineation of a comprehensive map of the residue levels of various...

  17. The bacterial biofilms in dialysis water systems and the effect of the sub inhibitory concentrations of chlorine on them.

    Science.gov (United States)

    Suman, Ethel; Varghese, Benji; Joseph, Neethu; Nisha, Kumari; Kotian, M Shashidhar

    2013-05-01

    The presence of bacteria in the form of biofilms poses a problem in the fluid pathways of haemodialysis plants and procedures which are aimed to detach and neutralize biofilms are necessary to improve the patient safety and the quality of the healthcare. The present study was therefore aimed at isolating the organisms which colonized dialysis water systems as biofilms, as well as to study the effect of the sub inhibitory concentrations of chlorine on the biofilms which were produced by these isolates. Swabs were used to collect the biofilms which were produced on the internal surface of the dialysis tubing from the dialysis units. This study was conducted at the Department of Microbiology, Kasturba Medical College (KMC), Mangalore, India. The cultures were performed on MacConkey's agar and blood agar. The organisms which were isolated were identified and antibiotic sensitivity tests were performed. The biofilm production was done by the microtitre plate method of O'Toole and Kolter. The biofilm production was also studied in the presence of sub inhibitory concentrations of chlorine. Acinetobacter spp and Pseudomonas aeruginosa were the two predominant organisms which colonized the dialysis water systems as biofilms. The sub inhibitory concentrations of chlorine did not bring about any decrease in the biofilm production by the isolates. On the contrary, there was an increase in the biofilm production. Our study highlighted the importance of using appropriate methods to improve the quality of the water in dialysis units. This in turn, may help in reducing the biofilm formation in the water systems of dialysis units and thus, contribute to the prevention of hospital acquired infections in the patients who need haemodialysis.

  18. Leaching of copper concentrates with high arsenic content in chlorine-chloride media; Lixiviacion de concentrados de cobre con alto contenido de arsenico en medio cloro-cloruro

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-07-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs.

  19. EFFECT OF THE DECHLORINATING AGENT, ASCORBIC ACID, ON THE MUTAGENICITY OF CHLORINATED WATER SAMPLES

    Science.gov (United States)

    XAD resin adsorption has been widely used to concentrate the organic compounds present in chlorinated drinking waters prior to mutagenicity testing. Previous work has shown that mutagenic artifcats can arise due to the reaction of residual chlorine with the resins. Althrough the ...

  20. The Jack Rabbit chlorine release experiments: implications of dense gas removal from a depression and downwind concentrations.

    Science.gov (United States)

    Hanna, Steven; Britter, Rex; Argenta, Edward; Chang, Joseph

    2012-04-30

    The Jack Rabbit (JR) field experiment, involving releases of one or two tons of pressurized liquefied chlorine and ammonia into a depression, took place in 2010 at Dugway Proving Ground, Utah, USA. The releases, of duration about 30 s from a short pipe at a height of 2m, were directed towards the ground. The dense two phase cloud was initially confined in a depression of 2 m depth and 50 m diameter. With wind speedsabout 1.5 m s(-1), the initial cloud was not well-confined in the depression and moved downwind. Formulas suggested by Briggs et al. in 1990 in this journal satisfactorily predict the time durations of confinement. Sensitivity runs with the SLAB dense gas model show that the effect of a long confinement on maximum downwind concentrations is strongest near the depression. The model-predicted and observed maximum 20 s chlorine concentrations agree within a factor of two most of the time, as long as the release times based on Briggs' theory are used. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Concentrations of selected chlorinated pesticides in shrimp collected from the Calcasieu River/Lake Complex, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Murray, H.E.; Beck, J.N. (McNeese State Univ., Lake Charles, LA (USA))

    1990-05-01

    For several decades inland and coastal aquatic ecosystems have been affected by a multitude of synthetic chemical substances. This is a consequence of population growth and increased industrial and agricultural activity. Many of these chemicals, the by-products of their production, and degradation products ultimately find their way into the aquatic environment as pollutants. The extent to which these pollutants affect the environment and its inhabitants depends largely upon the quantity and nature of the particular compounds involved. Halogenated hydrocarbons, particularly polychlorinated biphenyls (PCBs), and the pesticide DDT and its degradation products have received much attention as environmental pollutants. Because of the economic importance of the shrimping industry to southwest Louisiana, the objective of this study was to analyze shrimp collected from the Calcasieu River/Lake Complex for the presence of selected chlorinated pesticides. The presence of these compounds within shrimp tissues would serve as an indicator for the extent of pollution throughout this important estuarine system.

  2. Radiolytic removal of trihalomethane in chlorinated seawater

    International Nuclear Information System (INIS)

    Rajamohan, R.; Rajesh, Puspalata; Venugopalan, V.P.; Rangarajan, S.; Natesan, Usha

    2015-01-01

    Biofouling is one of the major operational problems in seawater cooling systems. It is controlled by application of chlorine based biocides in the range of 0.5-2.0 mg L -1 . The bromide in seawater reacts with the added chlorine and forms hypobromous acid. The brominated residual biocides react with natural organic matter present in the seawater, resulting in the formation of trihalomethanes (THM) such as bromoform (CHBr 3 ), dibromochloromethane (CHBr 2 Cl) bromodichloromethane (CHBrCl 2 ). Though THMs represent a small fraction of the added chlorine, they are relatively more persistent than residual chlorine, and hence pose a potential hazard to marine life because of their reported mutagenicity. There have been few reports on removal of THMs from chlorinated seawater. In this work, the efficacy of gamma irradiation technique for the removal of THMs from chlorine-dosed seawater was investigated. Experiments were carried out using seawater collected from Kalpakkam. Irradiation study was conducted in chlorinated (1, 3, and 5 mg L -1 of Cl 2 ) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation using a 60 Co Gamma Chamber 5000. Bromoform showed a faster rate of degradation as compared to other halocarbons like bromodichloromethane and dibromochloromethane. This shows the change in total THM concentration with variation in the radiation dose and initial Cl 2 dosing. When the percentage degradation of all the three trihalomethane species was compared with applied doses, it was found that the maximum reduction occurred at a dose of 2.5 kGy. The reduction was almost similar for all the three doses (1, 3, 5 ppm of Cl 2 ) used for chlorination. With a further increase in radiation dose to 5.0 kGy, a slight increase in reduction was observed

  3. The effect of platinum precursor concentrations on chlorine sensing characteristics of platinum nanoparticles-loaded single walled carbon nanotubes

    Science.gov (United States)

    Choi, Sun-Woo; Byun, Young Tae

    2018-03-01

    The correlation between platinum (Pt) functionalization and chlorine (Cl2) sensing capability in single-walled carbon nanotubes (SWCNTs) was investigated. Utilizing a photoreduction technique via ultraviolet (UV) irradiation, the Pt nanoparticles (NPs) with various diameters of 7-80 nm, which were controlled by Pt precursor concentrations, were successfully functionalized on the sidewalls of SWCNTs. The discrete Pt NP-loaded SWCNTs exhibited significantly enhanced response value (-(ΔR/R0) × 100 = 33.8%) for 1 ppm Cl2 at room temperature (25 °C) compared with that (no response) of pure SWCNTs. On the other hand, in case of continuous Pt NP-loaded SWCNTs, Cl2 sensing capabilities were significantly degraded. The Cl2 sensing capabilities of fabricated sensors tended to correlate with geometric configurations of the catalytic Pt NPs on the sidewalls of SWCNTs, due to differences in the electron pathway.

  4. Measurement of chlorine concentration on steel surfaces via fiber-optic laser-induced breakdown spectroscopy in double-pulse configuration

    Science.gov (United States)

    Xiao, X.; Le Berre, S.; Fobar, D. G.; Burger, M.; Skrodzki, P. J.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2018-03-01

    The corrosive environment provided by chlorine ions on the welds of stainless steel dry cask storage canisters for used nuclear fuel may contribute to the occurrence of stress corrosion cracking. We demonstrate the use of fiber-optic laser-induced breakdown spectroscopy (FOLIBS) in the double-pulse (DP) configuration for high-sensitivity, remote measurement of the surface concentrations of chlorine compatible in constrained space and challenging environment characteristic for dry cask storage systems. Chlorine surface concentrations as low as 5 mg/m2 have been detected and quantified by use of a laboratory-based and a fieldable DP FOLIBS setup with the calibration curve approach. The compact final optics assembly in the fieldable setup is interfaced via two 25-m long optical fibers for high-power laser pulse delivery and plasma emission collection and can be readily integrated into a multi-sensor robotic delivery system for in-situ inspection of dry cask storage systems.

  5. Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination.

    Science.gov (United States)

    Li, Bing; Zhang, Tong

    2013-06-01

    The chlorination behaviours of 12 antibiotics belonging to six classes at environmentally relevant concentrations were systematically examined under typical conditions relevant to municipal wastewater chlorination. Cefotaxime, cefalexin, ampicillin and tetracycline were completely removed under all three initial free chlorine dosages (5 mg/L, 10 mg/L, and 15 mg/L). The removal efficiencies of sulphamethoxazole, sulphadiazine, roxithromycin, anhydro-erythromycin, ofloxacin, and trimethoprim were closely correlated to the residual free chlorine concentration, and no further significant mass removal was observed after the residual free chlorine concentration decreased to less than ≈ 0.75 mg/L. Ammonia plays a critical role during chlorination because of its competition with antibiotics for free chlorine to form combined chlorine, which reacts slowly with these antibiotics. Except for norfloxacin and ciprofloxacin, the removal behaviours of the 10 other target antibiotics under ammonia nitrogen concentrations ranging from 2 to 15 mg/L were characterised by a rapid initial removal rate upon contact with free chlorine during the first 5 s-1 min (depending on the specific antibiotic and ammonia nitrogen concentration) and then a much slower removal rate. Free chlorine was responsible for the reaction with antibiotics during the rapid stage (first 5 s-1 min), whereas combined chlorine reacted with antibiotics in the subsequent slow stage. Combined chlorine can remove norfloxacin and ciprofloxacin at a relatively faster rate. The presence of suspended solids at 30 mg/L slightly decreased the antibiotic removal rate. The kinetic rate constants decreased by 2.1-13.9%, while the half-lives increased by 2.0-15.0% compared to those of a 0 mg/L suspended solid for the target antibiotics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characterization of Microbial Processes that Degrade Chlorinated Solvents in a Constructed Wetland Using Organic Acid and Inorganic Anion Concentration Profiles

    National Research Council Canada - National Science Library

    2004-01-01

    .... Wetlands possess characteristics necessary for the complete degradation of chlorinated ethenes by microorganisms via anaerobic and aerobic regions that foster the necessary oxidation-reduction conditions...

  7. Comparison of atmosphere/aquatic environment concentration ratio of volatile chlorinated hydrocarbons between temperate regions and Antarctica.

    Science.gov (United States)

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna

    2009-09-01

    For the purpose of understanding the transport and deposition mechanisms and the air-water distribution of some volatile chlorinated hydrocarbons (VCHCs), their atmosphere/aquatic environment concentration ratio was evaluated. In addition, for the purpose of differentiating VCHC behaviour in a temperate climate from its behaviour in a polar climate, the atmosphere/aquatic environment concentration ratio evaluated in matrices from temperate zones was compared with the concentration ratio evaluated in Antarctic matrices. In order to perform air samplings also at rigid Antarctic temperatures, the sampling apparatus, consisting of a diaphragm pump and canisters, was suitably modified. Chloroform, 1,1,1-trichloroethane, tetrachloromethane, 1,1,2-trichloroethylene and tetrachloroethylene were measured in air, water and snow using specific techniques composed of a purpose-made cryofocusing-trap-injector (for air samples) and a modified purge-and-trap injector (for aqueous samples) coupled to a gas chromatograph with mass spectrometric detection operating in selected ion monitoring mode. The VCHCs were retrieved in all the investigated matrices, both Italian and Antarctic, with concentrations varying from tens to thousands of ng m(-3) in air and from digits to hundreds of ng kg(-1) in water and snow. The atmosphere/aquatic environment concentration ratios were always found to be lower than 1. In particular, the Italian air/water concentration ratios were smaller than the Antarctic ones, by reason of the higher atmospheric photochemical activity in temperate zones. On the other hand, the Antarctic air/snow concentration ratios proved to be largely in favour of snow with respect to the Italian ratios, thus corroborating the hypothesis of a more efficient VCHC deposition mechanism and accumulation on Antarctic snow.

  8. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.

    Science.gov (United States)

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka

    2013-04-15

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multivariate concentration determination using principal component regression with residual analysis.

    Science.gov (United States)

    Keithley, Richard B; Heien, Michael L; Wightman, R Mark

    2009-10-01

    Data analysis is an essential tenet of analytical chemistry, extending the possible information obtained from the measurement of chemical phenomena. Chemometric methods have grown considerably in recent years, but their wide use is hindered because some still consider them too complicated. The purpose of this review is to describe a multivariate chemometric method, principal component regression, in a simple manner from the point of view of an analytical chemist, to demonstrate the need for proper quality-control (QC) measures in multivariate analysis and to advocate the use of residuals as a proper QC method.

  10. An assessment of correlations between chlorinated VOC concentrations in tree tissue and groundwater for phytoscreening applications.

    Science.gov (United States)

    Duncan, Candice M; Brusseau, Mark L

    2018-03-01

    The majority of prior phytoscreening applications have employed the method as a tool to qualitatively determine the presence of contamination in the subsurface. Although qualitative data is quite useful, this study explores the potential for using phytoscreening quantitatively. The existence of site-specific and non-site-specific (master) correlations between VOC concentrations in tree tissue and groundwater is investigated using data collected from several phytoscreening studies. The aggregated data comprise 100 measurements collected from 12 sites that span a wide range of site conditions. Significant site-specific correlations are observed between tetrachloroethene (PCE) and trichloroethene (TCE) concentrations measured for tree tissue and those measured in groundwater for three sites. A moderately significant correlation (r 2 =0.56) exists for the entire aggregate data set. Parsing the data by groundwater depth produced a highly significant correlation (r 2 =0.88) for sites with shallow (<4m) groundwater. Such a significant correlation for data collected by different investigators from multiple sites with a wide range of tree species and subsurface conditions indicates that groundwater concentration is the predominant factor mediating tree-tissue concentrations for these sites. This may be a result of trees likely directly tapping groundwater for these shallow groundwater conditions. This master correlation may provide reasonable order-of-magnitude estimates of VOC concentrations in groundwater for such sites, thereby allowing the use of phytoscreening in a more quantitative mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biogas from Agricultural Residues as Energy Source in Hybrid Concentrated Solar Power

    NARCIS (Netherlands)

    Corré, W.J.; Conijn, J.G.

    2016-01-01

    This paper explores the possibilities of sustainable biogas use for hybridisation of Concentrated Solar Power (HCSP) in Europe. The optimal system for the use of biogas from agricultural residues (manure and crop residues) in HCSP involves anaerobic digestion with upgrading of biogas to

  12. Abundance of pathogenic bacteria and viral indicators in chlorinated ...

    African Journals Online (AJOL)

    Despite high free chlorine residual concentrations in treated effluents, the survival and occurrence of Escherichia coli, Salmonella typhimurium and Vibrio cholerae were significantly higher at Baviaanspoort (100%, 88.2% and 35.3%), Refilwe (87.5%, 59.4% and 21.9%) and Rayton (75%, 38.2% and 9.4%) compared to ...

  13. Susceptibility of Legionella pneumophila to chlorine in tap water.

    Science.gov (United States)

    Kuchta, J M; States, S J; McNamara, A M; Wadowsky, R M; Yee, R B

    1983-11-01

    A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.

  14. The Effect of Water Pressure and Chlorine Concentration on Microbiological Characteristics of Spray Washed Broiler Carcasses

    Directory of Open Access Journals (Sweden)

    Pissol AD

    2013-08-01

    Full Text Available The objective of this study was to evaluate the efficiency of water pressure and concentration of dichloromethane after the evisceration system under the fecal decontamination of chicken carcasse  surfaces with and without apparent contamination. From a total of  322 carcasses, 50% were intentionally added chicken droppings in an area of more  than 2 cm2 and the rest of carcasses were kept without fecal inoculation. Escherichia coli and Enterobacteriaceae counting was carried out in samples immediately after the inoculation (initial counting and after different treatments. Treatments consisted of water with different pressures (1.5,  3.5 and  5.5 Kgf/cm2, and the addition of a echnological adjuvant (dichloride at the concentrations of 0, 5 and 10 ppm. The results were validated using  40 chicken carcasses for each treatment by means of a  22  factorial statistical design. The results showed no significant differences (P

  15. Study on removing chlorin by conversion-aborption of chlorin resin

    International Nuclear Information System (INIS)

    Huang Yunbai; Zhao Jinfang; Tang Zhijuan; Huang Qijin; Deng Jianguo

    2012-01-01

    Theon version of chlorin resin and the reclamation of acid and uranium in converting solution were investigated. The results indicated the residual chlorin can meet the requirement after converting, acid and uranium in converting solution can be reclaimed. (authors)

  16. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  17. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study

    OpenAIRE

    Sonali Taneja; Neha Mishra; Shubhra Malik

    2014-01-01

    Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite...

  18. Distribution of chlorine in coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Fenghua; Ren Deyi; Zhang Shuangquan [China Univ. of Mining and Technology, Beijing (China). Dept. of Resource and Engineering; Zhang Wang [Antaibao Opencast Mine, Pingshuo, Shanxi (China)

    1998-12-31

    The current advance of study on chlorine in coal is reviewed. The concentrations of chlorine in 45 Chinese coal samples are determined on whole coal basis using instrumental neutron activation analysis (INAA). The sequential chemical extraction method is put forward to determine the occurrence modes of chlorine in coal. The research shows that Chinese coals are not chlorine-rich ones compared with those from other countries. In coal from Pingshuo Antaibao Opencast Mine, 46.70%--91.78% of chlorine is in a water-soluble state, 5.20%--48.38% of it is organic chlorine bonded to coal molecules, and only 4.92%--18.78% is an organic one in an ion-exchange state; the proportions of organic chlorine increase with the decrease in ash of coal.

  19. Stimulation of 2-methylisoborneol (MIB) production by actinomycetes after cyclic chlorination in drinking water distribution systems.

    Science.gov (United States)

    Abbaszadegan, Morteza; Yi, Min; Alum, Absar

    2015-01-01

    The impact of fluctuation in chlorine residual on actinomycetes and the production of 2-methylisoborneol (MIB) were studied in cast-iron and PVC model distribution systems. Actinomycetes were spiked in each system and continued operation for a 12-day non-chlorine experiment, resulting in no changes in actinomycetes and MIB concentrations. Three cyclic chlorination events were performed and chlorine residuals were maintained as follows: 1.0 mg L(-1) for 24 h, 0 mg L(-1) for 48 h, 0.5 mg L(-1) for 48 h, 0 mg L(-1) for 48 h and 2 mg L(-1) for 24 h. After each chlorination event, 2 -3 log decrease in actinomycetes was noted in both systems. However, within 48 h at 0 mg L(-1) chlorine, the actinomycetes recovered to the pre-chlorination levels. On the contrary, MIB concentration in both systems remained un-impacted after the first cycle and increased by fourfold ( 20 mg L(-1)) after the second cycle, which lasted through the third cycle despite the fact that actinomycetes numbers fluctuated 2-3 logs during this time period. For obtaining biofilm samples from field, water meters were collected from municipality drinking water distribution systems located in central Arizona. The actinomycetes concentration in asbestos cement pipe and cast iron pipe averaged 3.1 × 10(3) and 1.9 × 10(4) CFU cm(-2), respectively. The study shows that production of MIB is associated with changes in chlorine residual in the systems. This is the first report of cyclic chlorine shock as a stimulus for MIB production by actinomycetes in drinking water distribution system's ecology.

  20. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    International Nuclear Information System (INIS)

    Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.

    2015-01-01

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously

  1. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Leo H. H. [School of Biomedical Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Hoque, Enamul; Kruse, Peter [Department of Chemistry and Chemical Biology, McMaster University, Hamilton L8S 4L8 (Canada); Ravi Selvaganapathy, P. [School of Biomedical Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Department of Mechanical Engineering, McMaster University, Hamilton L8S 4L7 (Canada)

    2015-02-09

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously.

  2. Utilizing Polymer-Coated Vials to Illustrate the Fugacity and Bioavailability of Chlorinated Pesticide Residues in Contaminated Soils

    Science.gov (United States)

    Andrade, Natasha A.; McConnell, Laura L.; Torrents, Alba; Hapeman, Cathleen J.

    2013-01-01

    Fugacity and bioavailability can be used to facilitate students' understanding of potential environmental risks associated with toxic chemicals and, therefore, should be incorporated in environmental chemistry and science laboratories. Although the concept of concentration is easy to grasp, fugacity and bioavailability can be challenging…

  3. Inland Concentrations of Cl2 and ClNO2 in Southeast Texas Suggest Chlorine Chemistry Significantly Contributes to Atmospheric Reactivity

    Directory of Open Access Journals (Sweden)

    Cameron B. Faxon

    2015-10-01

    Full Text Available Measurements of molecular chlorine (Cl2, nitryl chloride (ClNO2, and dinitrogen pentoxide (N2O5 were taken as part of the DISCOVER-AQ Texas 2013 campaign with a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS using iodide (I- as a reagent ion. ClNO2 concentrations exceeding 50 ppt were regularly detected with peak concentrations typically occurring between 7:00 a.m. and 10:00 am. Hourly averaged Cl2 concentrations peaked daily between 3:00 p.m. and 4:00 p.m., with a 29-day average of 0.9 ± 0.3 (1σ ppt. A day-time Cl2 source of up to 35 ppt∙h−1 is required to explain these observations, corresponding to a maximum chlorine radical (Cl• production rate of 70 ppt∙h−1. Modeling of the Cl2 source suggests that it can enhance daily maximum O3 and RO2• concentrations by 8%–10% and 28%–50%, respectively. Modeling of observed ClNO2 assuming a well-mixed nocturnal boundary layer indicates O3 and RO2• enhancements of up to 2.1% and 38%, respectively, with a maximum impact in the early morning. These enhancements affect the formation of secondary organic aerosol and compliance with air quality standards for ozone and particulate matter.

  4. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants

    OpenAIRE

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B.; Matsushita, Taku; Shirasaki, Nobutaka

    2013-01-01

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual al...

  5. Highly chlorinated unintentionally produced persistent organic pollutants generated during the methanol-based production of chlorinated methanes: A case study in China.

    Science.gov (United States)

    Zhang, Lifei; Yang, Wenlong; Zhang, Linli; Li, Xiaoxiu

    2015-08-01

    The formation of unintentionally produced persistent organic pollutants (POPs) may occur during various chlorination processes. In this study, emissions of unintentionally produced POPs during the methanol-based production of chlorinated methanes were investigated. High concentrations of highly chlorinated compounds such as decachlorobiphenyl, octachloronaphthalene, octachlorostyrene, hexachlorobutadiene, hexachlorocyclopentadiene, hexachlorobenzene, and pentachlorobenzene were found in the carbon tetrachloride byproduct of the methanol-based production of chlorinated methanes. The total emission amounts of hexachlorocyclopentadiene, hexachlorobutadiene, polychlorinated benzenes, polychlorinated naphthalenes, octachlorostyrene, and polychlorinated biphenyls released during the production of chlorinated methanes in China in 2010 were estimated to be 10080, 7350, 5210, 427, 212, and 167 kg, respectively. Moreover, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) were formed unintentionally during chlorinated methanes production, the emission factor for PCDDs/DFs was 364 μg toxic equivalency quotient (TEQ) t(-1) product for residues, which should be added into the UNEP toolkit for updating. It was worth noting that a high overall toxic equivalency quotient from polychlorinated naphthalenes and PCDDs/DFs was generated from the chlorinated methanes production in China in 2010. The values reached 563 and 32.8 g TEQ, respectively. The results of the study indicate that more research and improved management systems are needed to ensure that the methanol-based production of chlorinated methanes can be achieved safely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Determination of residual ractopamine concentrations by enzyme immunoassay in treated pig's tissues on days after withdrawal.

    Science.gov (United States)

    Pleadin, Jelka; Perši, Nina; Vulić, Ana; Milić, Dinka; Vahčić, Nada

    2012-03-01

    The objective of this study was to measure residual ractopamine concentrations in tissues of pigs as experimental animals after treatment with dietary ractopamine for 28 consecutive days. Ractopamine was administered orally to the experimental group (n=9) in a dose of 0.1mg/kg body mass per day, whereas control animals (n=3) were left untreated. Treated pigs (60kg) were sacrificed on days 1, 3 and 8 of treatment discontinuation and residues were determined in kidney, liver, muscle, brain and heart tissues using previously validated enzyme-linked immunosorbent assay (ELISA) as a quantitative screening method. Validation showed good mean recoveries (approx. 70-90%) with acceptable inter- and intra-day relative standard deviations (RSDractopamine tissue concentrations. The highest ractopamine concentration on day 1 (24h) after the last exposure was recorded in the kidney (12.49±7.96ng/g), followed by the liver (7.21±2.73ng/g), heart (1.26±0.12ng/g) and brain (0.63±0.05ng/g); at this time of withdrawal, residues were not detected in the muscle. Ractopamine was depleted rapidly from all study tissues, with mostly no detectable residues on day 8 of withdrawal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The residual C concentration control for low temperature growth p-type GaN

    International Nuclear Information System (INIS)

    Liu Shuang-Tao; Zhao De-Gang; Yang Jing; Jiang De-Sheng; Liang Feng; Chen Ping; Zhu Jian-Jun; Liu Zong-Shun; Li Xiang; Liu Wei; Xing Yao; Zhang Li-Qun

    2017-01-01

    In this work, the influence of C concentration to the performance of low temperature growth p-GaN is studied. Through analyses, we have confirmed that the C impurity has a compensation effect to p-GaN. At the same time we have found that several growth and annealing parameters have influences on the residual C concentration: (i) the C concentration decreases with the increase of growth pressure; (ii) we have found there exists a Ga memory effect when changing the Cp 2 Mg flow which will lead the growth rate and C concentration increase along the increase of Cp 2 Mg flow; (iii) annealing outside of metal–organic chemical vapor deposition (MOCVD) could decrease the C concentration while in situ annealing in MOCVD has an immobilization role to C concentration. (paper)

  8. Uncertainty of pesticide residue concentration determined from ordinary and weighted linear regression curve.

    Science.gov (United States)

    Yolci Omeroglu, Perihan; Ambrus, Árpad; Boyacioglu, Dilek

    2018-03-28

    Determination of pesticide residues is based on calibration curves constructed for each batch of analysis. Calibration standard solutions are prepared from a known amount of reference material at different concentration levels covering the concentration range of the analyte in the analysed samples. In the scope of this study, the applicability of both ordinary linear and weighted linear regression (OLR and WLR) for pesticide residue analysis was investigated. We used 782 multipoint calibration curves obtained for 72 different analytical batches with high-pressure liquid chromatography equipped with an ultraviolet detector, and gas chromatography with electron capture, nitrogen phosphorus or mass spectrophotometer detectors. Quality criteria of the linear curves including regression coefficient, standard deviation of relative residuals and deviation of back calculated concentrations were calculated both for WLR and OLR methods. Moreover, the relative uncertainty of the predicted analyte concentration was estimated for both methods. It was concluded that calibration curve based on WLR complies with all the quality criteria set by international guidelines compared to those calculated with OLR. It means that all the data fit well with WLR for pesticide residue analysis. It was estimated that, regardless of the actual concentration range of the calibration, relative uncertainty at the lowest calibrated level ranged between 0.3% and 113.7% for OLR and between 0.2% and 22.1% for WLR. At or above 1/3 of the calibrated range, uncertainty of calibration curve ranged between 0.1% and 16.3% for OLR and 0% and 12.2% for WLR, and therefore, the two methods gave comparable results.

  9. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    Science.gov (United States)

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  10. Chlorine poisoning

    Science.gov (United States)

    ... gas) Gas released when opening a partially filled industrial container of chlorine tablets that have been sitting ... change in acid level of the blood (pH balance), which leads to damage in all of the ...

  11. Predicting the concentration of residual methanol in industrial formalin using machine learning

    OpenAIRE

    Heidkamp, William

    2016-01-01

    In this thesis, a machine learning approach was used to develop a predictive model for residual methanol concentration in industrial formalin produced at the Akzo Nobel factory in Kristinehamn, Sweden. The MATLABTM computational environment supplemented with the Statistics and Machine LearningTM toolbox from the MathWorks were used to test various machine learning algorithms on the formalin production data from Akzo Nobel. As a result, the Gaussian Process Regression algorithm was found to pr...

  12. On measurements of Effective Residual Ink Concentration (ERIC) of deinked papers using Kubelka-Munk theory

    Science.gov (United States)

    D.W. Vahey; J.Y. Zhu; C.J. Houtman

    2006-01-01

    The measurement of effective residual ink concentration (ERIC) in recycled papers depends on their opacity. For opacity less than 97.0%, the method is based on application of the Kubelka-Munk theory to diffuse reflection from papers measured once with a black backing and again with a thick backing of the same papers. At opacities above 97.0%, the two reflection values...

  13. Generation and Measurement of Chlorine Dioxide Gas at Extremely Low Concentrations in a Living Room: Implications for Preventing Airborne Microbial Infectious Diseases.

    Science.gov (United States)

    Ogata, Norio; Sogawa, Koushirou; Takigawa, Yasuhiro; Shibata, Takashi

    2017-01-01

    Preventing respiratory diseases caused by airborne microbes in enclosed spaces is still not satisfactorily controlled. At extremely low concentrations (about 30 parts per billion), chlorine dioxide (ClO2) gas can inactivate airborne microbes and prevent respiratory disease. It has no toxic effect on animals at this level. However, controversies still remain regarding how to measure concentrations of ClO2 gas at such low levels. It is therefore necessary to prove that measured gas concentrations are accurate and reproducible. ClO2 gas was released from a gas generator and its concentration was measured by a novel highly sensitive gas analyzer. We compared its data with those from ion chromatography. We demonstrate that the gas concentrations measured in a room using the gas analyzer are accurate and reproducible after comparing the results with those from ion chromatography. However, the temperature dependence of the gas analyzer was found. Therefore, data correction is required for each temperature at which gas concentration is measured. A theoretical analysis of the gas concentrations predicted by the rate of ClO2 gas released from the ClO2 generator was also performed. Our results advance progress toward using low concentration ClO2 gas to prevent airborne infectious diseases such as influenza. © 2016 S. Karger AG, Basel.

  14. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass

    DEFF Research Database (Denmark)

    Wang, Yang; Wu, Hao; Sárossy, Zsuzsa

    2017-01-01

    –850 °C), and KCl contents (0–5 wt%). The volatiles were collected and analyzed for CH3Cl concentration by GC–MS. The solid residue was analyzed by ICP-OES for the contents of total and water soluble K and Cl. Considerable amounts of CH3Cl, corresponding to 20–50% of the fuel chlorine, were formed...

  15. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-08-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  16. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  17. PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters.

    Science.gov (United States)

    Yang, Xin; Sun, Jianliang; Fu, Wenjie; Shang, Chii; Li, Yin; Chen, Yiwei; Gan, Wenhui; Fang, Jingyun

    2016-07-01

    The ultraviolet/chlorine (UV/chlorine) water purification process was evaluated for its ability to degrade the residues of pharmaceuticals and personal care products (PPCPs) commonly found in drinking water sources. The disinfection byproducts (DBPs) formed after post-chlorination were documented. The performance of the UV/chlorine process was compared with that of the UV/hydrogen peroxide (UV/H2O2) process in treating three types of sand-filtered natural water. Except caffeine and carbamazepine residues, the UV/chlorine process was found to be 59-99% effective for feed water with a high level of dissolved organic carbon and alkalinity, and 27-92% effective for water with a high ammonia content. Both chlorine radicals and hydroxyl radicals were found to contribute to the observed PPCP degradation. The removal efficiencies of chlorine- and UV-resistant PPCPs such as carbamazepine and caffeine were 2-3 times greater than in the UV/H2O2 process in waters not enriched with ammonia. UV/chlorine treatment slightly enhanced the formation chloral hydrate (CH), haloketone (HK) and trichloronitromethane (TCNM). It reduced haloacetonitrile (HAN) formation during the post-chlorination in comparison with the UV/H2O2 process. In waters with high concentrations of ammonia, the UV/chlorine process was only 5-7% more effective than the UV/H2O2 process, and it formed slightly more THMs, HKs and TCNM along with reduced formation of CH and HAN. The UV/chlorine process is thus recommended as a good alternative to UV/H2O2 treatment for its superior PPCP removal without significantly enhancing DBP formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pesticide residues in locally available cereals and vegetables

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Santos, F.L.; Bonoan, L.S.

    1976-03-01

    Vegetable samples (pechay, cabbage, lettuce, green beans and tomatoes) bought from public markets in the Metro Manila area were analyzed for pesticide residues using gas chromatography. The samples analyzed in 1968-69 contained high levels of chlorinated pesticides such as DDT, Aldrin, Endrin, and Thiodan, while in the samples analyzed in January 1976, no chlorinated and organophosphate pesticides were detected. Cereal samples (rice, corn and sorghum) were obtained from the National Grains Authority and analyzed for pesticide residues and bromine residues. Total bromine residues was determined by neutron activation analysis. In most of the samples analyzed, the concentrations of pesticide residues were below the tolerance levels set by the FAO/WHO Committee on Pesticide Residues in Foods. An exception was one rice sample from Thailand, the bromine residue content (110ppm) of which exceeds the tolerance level of 50ppm

  19. Riverine macroinvertebrate responses to chlorine and chlorinated ...

    African Journals Online (AJOL)

    Riverine macroinvertebrate responses to chlorine and chlorinated sewage effluents - acute chlorine tolerances of Baetis harrisoni (Ephemeroptera) from two rivers in KwaZulu-Natal, South Africa. ML Williams, CG Palmer, AK Gordon ...

  20. Behavior of coal chlorine in cokemaking process

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Seiji [Nippon Steel Corporation, Environment & Process Technology Center, 20-1, Shintomi, Futtsu, Chiba 293-8511, (Japan)

    2010-09-01

    The behavior of coal chlorine in metallurgical cokemaking process was investigated. Various coals were carbonized (heat-treated) in a nitrogen atmosphere and the ratio of the chlorine in the heat-treated sample to that in the coal was defined as the chlorine residue ratio. The release of chlorine from coal during carbonization is a slow process and the chlorine residue ratio decreased with increasing the heat-treatment temperature, increasing the soaking time, and decreasing the heating rate. It increased with increasing the Ca content in coal and with an addition of CaO. This is because chlorine in coal is released as HCl, which is trapped in coke again in the form of CaCl{sub 2}. The chlorine residue ratio of coke produced in an actual coke oven was higher than that of coke produced in a laboratory scale tube furnace. This is because released gas from coal has more chances to contact with calcium in the actual coke oven than in the tube furnace. Moreover, the removal of chlorine from NaCl was promoted by the co-carbonization of NaCl with coal, which implies that H{sub 2}O derived from coal decomposition may help chlorine to be released. (author)

  1. Variability of residue concentrations of ciprofloxacin in honey from treated hives.

    Science.gov (United States)

    Chan, Danny; Macarthur, Roy; Fussell, Richard J; Wilford, Jack; Budge, Giles

    2017-04-01

    Honey bees (Apis mellifera L.) were treated with a model veterinary drug compound (ciprofloxacin) in a 3-year study (2012-14) to investigate the variability of residue concentration in honey. Sucrose solution containing ciprofloxacin was administered to 45 hives (1 g of ciprofloxacin per hive) at the beginning of the honey flow in late May/mid-June 2012, 2013 and 2014. Buckfast honey bees (A. mellifera - hybrid) were used in years 2012 and 2013. Carniolan honey bees (A. mellifera carnica) were used instead of the Buckfast honey bees as a replacement due to unforeseen circumstances in the final year of the study (2014). Honey was collected over nine scheduled time points from May/June till late October each year. Up to five hives were removed and their honey analysed per time point. Honey samples were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine ciprofloxacin concentration. Statistical assessment of the data shows that the inter-hive variation of ciprofloxacin concentrations in 2012/13 is very different compared with that of 2014 with relative standard deviations (RSDs) of 138% and 61%, respectively. The average ciprofloxacin concentration for 2014 at the last time point was more than 10 times the concentration compared with samples from 2012/13 at the same time point. The difference between the 2012/13 data compared with the 2014 data is likely due to the different type of honey bees used in this study (2012/13 Buckfast versus 2014 Carniolan). Uncertainty estimates for honey with high ciprofloxacin concentration (upper 95th percentile) across all hives for 55-day withdrawal samples gave residual standard errors (RSEs) of 22%, 20% and 11% for 2012, 2013 and 2014, respectively. If the number of hives were to be reduced for future studies, RSEs were estimated to be 52% (2012), 54% (2013) and 26% (2014) for one hive per time point (nine total hives).

  2. Turbidez e cloro residual livre na monitoração de ETE tipo tanque séptico seguido de filtro anaeróbio - doi: 10.4025/actascitechnol.v33i4.9603 Turbidity and free residual chlorine for monitoring plants comprised by septic tank followed by anaerobic filter

    Directory of Open Access Journals (Sweden)

    Raimundo Oliveira de Souza

    2011-09-01

    Full Text Available A avaliação dos dados agrupados da monitoração de 16 ETEs do tipo tanque séptico (TSEP seguido por filtro anaeróbio (FAN mostrou remoção média global de 55% para DQO e SST. O desempenho alcançado foi abaixo do sugerido pela literatura, porém compatível com o de estudos recentes sobre sistemas em escala real no país. A remoção média global de bactérias do grupo coliforme, após desinfecção com solução de hipoclorito de sódio, foi de 3,0 unidades de log. Remoção mais elevada ocorreu com Escherichia coli como indicador (3,5 logs. Em geral, as maiores remoções de coliformes foram alcançadas com concentrações de cloro residual livre (CRL variando de 2,0 a 2,5 mg L-1. Os resultados mostraram a aplicabilidade da turbidez para estimar concentrações de SST e DQO no efluente tratado. Observou-se também que a concentração de CRL é útil para estimar as concentrações de bactérias do grupo coliforme.Grouped monitoring data of 16 wastewater treatment plants was investigated. The plants were comprised by septic tanks followed by anaerobic filters and effluent disinfection with sodium hypochlorite. Removal of COD and total suspended solids was about 55%. This number was below values observed by the literature. However, the results were in accordance with recent findings in Brazilian full-scale plants. Coliform removal was about 3.0 log units with better results for Escherichia coli (3.5 logs. Best results were achieved with free residual chorine concentrations ranging from 2.0 to 2.5 mg L-1. Findings showed that turbidity is a useful parameter to estimate COD and TSS concentrations in the treated effluent. Free residual chlorine may also be applied to estimate coliform numbers.

  3. Analysis of organo-chlorine pesticides residue in raw coffee with a modified "quick easy cheap effective rugged and safe" extraction/clean up procedure for reducing the impact of caffeine on the gas chromatography-mass spectrometry measurement.

    Science.gov (United States)

    Bresin, Bruno; Piol, Maria; Fabbro, Denis; Mancini, Maria Antonietta; Casetta, Bruno; Del Bianco, Clorinda

    2015-01-09

    The control of pesticide residues on raw coffee is a task of great importance due to high consumption of this beverage in Italy and in many other countries. High caffeine content can hamper extraction and measurement of any pesticide residue. A tandem extraction protocol has been devised by exploiting the quick easy cheap effective rugged and safe (QuEChERS) scheme for extraction, coupled to a dispersive liquid-liquid micro-extraction (DLLME) in order to drastically reduce caffeine content in the final extract. Gas chromatography-mass spectrometry (GC-MS) has been used for quantification of organo-chlorine pesticides in single ion monitoring (SIM) mode. Method has been validated and performances meet the criteria prescribed by European Union regulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effect of six different starter cultures on the concentration of residual nitrite in fermented sausages during in vitro human digestion.

    Science.gov (United States)

    Kim, Hyeong Sang; Hur, Sun Jin

    2018-01-15

    The objective of this study was to determine the effect of six different starter cultures of enterobacteria on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Before digestion, the concentration of residual nitrite was dependent on starter culture in fermented sausage and ranged from 25.2 to 33.2mg/kg. Among the six starter cultures of enterobacteria, Pediococcus acidilactici, Pediococcus pentosaceus, and Staphylococcus carnosus showed higher nitrite depletion ability than the other three strains in fermented sausages. The concentration of residual nitrite in fermented sausages was significantly (psausages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Serum concentrations of chlorinated dibenzo-p-dioxins, furans and PCBs, among former phenoxy herbicide production workers and firefighters in New Zealand.

    Science.gov (United States)

    't Mannetje, Andrea; Eng, Amanda; Walls, Chris; Dryson, Evan; McLean, Dave; Kogevinas, Manolis; Fowles, Jeff; Borman, Barry; O'Connor, Patrick; Cheng, Soo; Brooks, Collin; H Smith, Allan; Pearce, Neil

    2016-02-01

    To quantify serum concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like compounds in former phenoxy herbicide production plant workers and firefighters, 20 years after 2,4,5-T production ceased. Of 1025 workers employed any time during 1969-1984, 430 were randomly selected and invited to take part in a morbidity survey and provide a blood sample; 244 (57%) participated. Firefighters stationed in close proximity of the plant and/or engaged in call-outs to the plant between 1962 and 1987 also participated (39 of 70 invited). Reported here are the serum concentrations of TCDD and other chlorinated dibenzo-dioxins, dibenzofurans, and polychlorinated biphenyls (PCBs). Determinants of the serum concentrations were assessed using linear regression. The 60 men who had worked in the phenoxy/TCP production area had a mean TCDD serum concentration of 19.1 pg/g lipid, three times the mean concentration of the 141 men and 43 women employed in other parts of the plant (6.3 and 6.0 pg/g respectively), and more than 10 times the mean for the firefighters (1.6 pg/g). Duration of employment in phenoxy herbicide synthesis, maintenance work, and work as a boilerman, chemist, and packer were associated with increased serum concentrations of TCDD and 1,2,3,4,7-pentachlorodibenzo-p-dioxin (PeCDD). Employment as a boilerman was also associated with elevated serum concentrations of PCBs. Occupations in the plant associated with phenoxy herbicide synthesis had elevated levels of TCDD and PeCDD. Most other people working within the plant, and the local firefighters, had serum concentrations of dioxin-like compounds comparable to those of the general population.

  6. Fate of free chlorine in drinking water during distribution in premise plumbing.

    Science.gov (United States)

    Zheng, Muzi; He, Chunguang; He, Qiang

    2015-12-01

    Free chlorine is a potent oxidizing agent and has been used extensively as a disinfectant in processes including water treatment. The presence of free chlorine residual is essential for the prevention of microbial regrowth in water distribution systems. However, excessive levels of free chlorine can cause adverse health effects. It is a major challenge to maintain appropriate levels of free chlorine residual in premise plumbing. As the first effort to assessing the fate of chlorine in premise plumbing using actual premise plumbing pipe sections, three piping materials frequently used in premise plumbing, i.e. copper, galvanized iron, and polyvinyl chloride (PVC), were investigated for their performance in maintaining free chlorine residual. Free chlorine decay was shown to follow first-order kinetics for all three pipe materials tested. The most rapid chlorine decay was observed in copper pipes, suggesting the need for higher chlorine dosage to maintain appropriate levels of free chlorine residual if copper piping is used. PVC pipes exhibited the least reactivity with free chlorine, indicative of the advantage of PVC as a premise plumbing material for maintaining free chlorine residual. The reactivity of copper piping with free chlorine was significantly hindered by the accumulation of pipe deposits. In contrast, the impact on chlorine decay by pipe deposits was not significant in galvanized iron and PVC pipes. Findings in this study are of great importance for the development of effective strategies for the control of free chlorine residual and prevention of microbiological contamination in premise plumbing.

  7. Direct Chlorination of Zircon Sand

    International Nuclear Information System (INIS)

    Dwiretnani Sudjoko; Budi Sulistyo; Pristi Hartati; Sunardjo

    2002-01-01

    It was investigated the direct chlorination of zircon sand in a unit chlorination equipment. The process was in semi batch. The product gas was scrubbed in aqueous NaOH. It was search the influence of time, ratio of reactant and size of particle sand to the concentration of Zr and Si in the product. From these research it was found that as the times, ratio of reactant increased, the concentration of Zr increased, but the concentration of Si decreased, while as grain size of zircon sand decreased the concentration of Zr decreased, but the concentration of Si increased. (author)

  8. Effects of chlorine and temperature on yeasts isolatedfrom a soft ...

    African Journals Online (AJOL)

    Yeasts isolated from sugar and filling valves in a bottling process were exposed to different chlorine concentrations and various high temperatures. It was found that growth of yeasts decreased with increase in chlorine concentration. The maximum chlorine concentration that inhibited both types of yeasts was 60mg/l while ...

  9. Determination of chlorine in nuclear-grade uranium compounds

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan

    1988-01-01

    The determination of chlorine in nuclear-grade uranium compounds is discribed. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800 ∼ 900 deg C. Chlorine is volatilized as hydrochloric acid, absorbed in a dilute alkaline solution and measured with chlorine-selective electrode. This method covers the concentration range of 10 ∼ 500 pm chlorine in uranium oxide. Precision of at least ± 10% and recovery of 85 ∼ 108% have been reported

  10. A new one-platform flow cytometric method for residual cell counting in platelet concentrates.

    Science.gov (United States)

    Schmidt, Michael; Spengler, Hans-Peter; Lambrecht, Bernd; Hourfar, Michael K; Seifried, Erhard; Tonn, Torsten

    2009-12-01

    According to German regulations and guidelines, residual red blood cells (rRBCs) and residual white blood cells (rWBCs) must number fewer than 3 x 10(9) cells/unit and 1 x 10(6) cells/unit in platelet concentrates (PCs), respectively. Due to low levels of residual cells in final products, there is still a need for fast, reliable, and sensitive methods of automated detection of these cell types. In Part A, 21 PCs were spiked with predetermined numbers of red blood cells (RBCs) and white blood cells (WBCs). The linearity, precision, and accuracy of the BD Thrombo Count assay (BD Biosciences Europe) were tested and validated according to international guidelines. Finally in Part B, 100 PCs prepared from pooled buffy coats were tested by the BD Thrombo Count assay and compared with other methods, including Nageotte (rWBCs) and Neubauer (rRBCs) counting chambers and the flow cytometric BD LeucoCOUNT (Becton Dickinson) assay (rWBCs). The unspecific background of blank PC samples was fewer than 0.02 cells/microL for WBCs and fewer than 34 cells/microL for RBCs (mean, 21). Linear regression and precision analyses of spiked PC samples were determined for both WBCs (r(2) = 0.992; range, 0.6-6.0 WBCs/microL) and RBCs (r(2) = 0.999; 800-8000 RBCs/microL). No carryover of cells or drift in results was detected in the automated sample acquisition mode. Analysis according to statistical methods of Bland and Altman demonstrated a high correlation between BD Thrombo Count and the Neubauer manual counting chamber. This novel flow cytometric test is a quick and reliable single-tube assay that has been demonstrated as a potential alternative for the existing manual microscopic counting procedures that are both time-consuming and laborious.

  11. Evaluation of Disinfection Byproducts Formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source - Poster

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  12. Evaluation of Disinfection Byproducts formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  13. Pink shrimp (P. brasiliensis and P. paulensis) residue: influence of extraction method on carotenoid concentration.

    Science.gov (United States)

    Mezzomo, Natália; Maestri, Bianca; dos Santos, Renata Lazzaris; Maraschin, Marcelo; Ferreira, Sandra R S

    2011-09-15

    The main residue from the shrimp processing is formed by head and carapace and represents from 40 to 50% (w/w) of the integral shrimp. The recovery of the carotenoid fraction from this residue stands for an alternative to increase its aggregated value. Therefore, the objective of this study was to use the pink shrimp waste as raw material to obtain carotenoid enriched extracts, evaluating different pre-treatments and extraction methods. The shrimp waste was supplied by a local public market (Florianópolis, SC, Brazil). The investigation of the different pre-treatments applied to the raw material shows that cooking associated with milling and drying produced the extract richest in carotenoid fraction. The extraction methods considered in this work were Soxhlet, maceration and ultrasound by means of different organic solvents and also a vegetable oil as solvent. The extracts were evaluated in terms of yield, carotenoid profile, total carotenoid content (TCC), UV-Visible scanning spectrophotometry and mid-Fourier transform infrared spectroscopy (FTIR). The results indicate that shrimp waste can provide carotenoid enriched extracts, particularly astaxanthin, in concentrations up to 252 μg(astaxanthin)g(extract)(-1). The most adequate solvents were acetone and hexane: isopropanol (50:50, v/v) used in the maceration procedure. The UV-Vis results revealed the presence of carotenoids and flavonoids in the extracts while the FTIR spectroscopy indicated the existence of fatty acids, proteins, and phenolics. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Arsenic Species in Chicken Breast: Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations.

    Science.gov (United States)

    Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Zuidhof, Martin J; Li, Xing-Fang; Le, X Chris

    2016-08-01

    Chicken meat has the highest per capita consumption among all meat types in North America. The practice of feeding 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox) to chickens lasted for more than 60 years. However, the fate of Rox and arsenic metabolites remaining in chicken are poorly understood. We aimed to determine the elimination of Rox and metabolites from chickens and quantify the remaining arsenic species in chicken meat, providing necessary information for meaningful exposure assessment. We have conducted a 35-day feeding experiment involving 1,600 chickens, of which half were control and the other half were fed a Rox-supplemented diet for the first 28 days and then a Rox-free diet for the final 7 days. We quantified the concentrations of individual arsenic species in the breast meat of 229 chickens. Rox, arsenobetaine, arsenite, monomethylarsonic acid, dimethylarsinic acid, and a new arsenic metabolite, were detected in breast meat from chickens fed Rox. The concentrations of arsenic species, except arsenobetaine, were significantly higher in the Rox-fed than in the control chickens. The half-lives of elimination of these arsenic species were 0.4-1 day. Seven days after termination of Rox feeding, the concentrations of arsenite (3.1 μg/kg), Rox (0.4 μg/kg), and a new arsenic metabolite (0.8 μg/kg) were significantly higher in the Rox-fed chickens than in the control. Feeding of Rox to chickens increased the concentrations of five arsenic species in breast meat. Although most arsenic species were excreted rapidly when the feeding of Rox stopped, arsenic species remaining in the Rox-fed chickens were higher than the background levels. Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. 2016. Arsenic species in chicken breast: temporal variations of metabolites, elimination kinetics, and residual concentrations. Environ Health Perspect 124:1174-1181; http://dx.doi.org/10.1289/ehp.1510530.

  15. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei; Zhang, Leilei; Xu, Tianfeng

    2014-05-01

    Different chemicals are sprayed in fruits and vegetables before and after harvest for better yield and longer shelf-life of crops. Cases of pesticide poisoning to human health are regularly reported due to excessive application of such chemicals for greater economic benefit. Different analytical technologies exist to detect trace amount of pesticides in fruits and vegetables, but are expensive, sample destructive, and require longer processing time. This study explores the application of Raman spectroscopy for rapid and non-destructive detection of pesticide residue in agricultural products. Raman spectroscopy with laser module of 785 nm was used to collect Raman spectral information from the surface of Gala apples contaminated with different concentrations of commercially available organophosphorous (48% chlorpyrifos) pesticide. Apples within 15 days of harvest from same orchard were used in this study. The Raman spectral signal was processed by Savitzky-Golay (SG) filter for noise removal, Multiplicative Scatter Correction (MSC) for drift removal and finally polynomial fitting was used to eliminate the fluorescence background. The Raman spectral peak at 677 cm-1 was recognized as Raman fingerprint of chlorpyrifos. Presence of Raman peak at 677 cm-1 after fluorescence background removal was used to develop classification model (presence and absence of pesticide). The peak intensity was correlated with actual pesticide concentration obtained using Gas Chromatography and MLR prediction model was developed with correlation coefficient of calibration and validation of 0.86 and 0.81 respectively. Result shows that Raman spectroscopy is a promising tool for rapid, real-time and non-destructive detection of pesticide residue in agro-products.

  16. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  17. A Nitrogen-concentrated Phase in IA Iron Meteorite Acid Residue

    Science.gov (United States)

    Hashizume, K.; Sugiura, N.

    1993-07-01

    portion of nitrogen is released at 500 degrees C and 600 degrees C temperature fractions. Total nitrogen amounts and average delta^l5N values of the two acid residues are described in Table 1. Discussion and Summary: Sample "Can-1bn" is 3-4 times concentrated in nitrogen than "Call-2b," although its delta^15N value is within terrestrial range (0 < delta^15N < +20 per mil). Presently, we cannot deny the possibility that nitrogen in "Can-1bn" is dominated by terrestrial nitrogen, which may have been acquired during the acid treatment. Nevertheless, nitrogen isotope data of "Can-2b" suggests that indigenous nitrogen is indeed concentrated in the acid residue of Canyon Diablo. Bulk nitrogen isotope data of Canyon Diablo is reported to be delta^15N= -61.8 +- 10.4 per mil, N= 38.0 +- 155 ppm [2]. Therefore, delta^15N values of "Can-2b" can be resulted by a mixing of indigenous nitrogen and contaminating nitrogen. However, distinct delta^15N values of these two samples may indicate, in turn, that nitrogen isotopes in inclusions of Canyon Diablo are truly heterogeneous because carbon isotopes of graphite inclusions in IA iron meteorites seem to be heterogeneous [7]. Acknowledgments: We thank Dr. J.-I. Matsuda of Osaka University for providing samples and information on these samples. References: [1] Scott E. R. D. and Wasson J. T. (1975) Rev. Geophys. Space Sci., 13, 527-546. [2] Prombo C. A. and Clayton R. N. (1983) Meteoritics, 18, 377-379. [3] Franchi I. A. et al. (1988) Meteoritics, 22, 379-380. [4] Hashizume K. (1993) Doctor Thesis. [5] Murty S. V. S. et al. (1983) GCA, 47, 1061-1068. [6] Ogata Y. et al. (1990) In Abstract of the 1990 Annual Meeting of the Geochemical Society of Japan, 57. [7] Deines P. and Wickman F. E. (1973) GCA, 37, 1295-1319. Table 1 appears here in the hard copy.

  18. Estimation of human body concentrations of DDT from indoor residual spraying for malaria control

    International Nuclear Information System (INIS)

    Gyalpo, Tenzing; Fritsche, Lukas; Bouwman, Henk; Bornman, Riana; Scheringer, Martin; Hungerbühler, Konrad

    2012-01-01

    Inhabitants of dwellings treated with DDT for indoor residual spraying show high DDT levels in blood and breast milk. This is of concern since mothers transfer lipid-soluble contaminants such as DDT via breastfeeding to their children. Focusing on DDT use in South Africa, we employ a pharmacokinetic model to estimate DDT levels in human lipid tissue over the lifetime of an individual to determine the amount of DDT transferred to children during breastfeeding, and to identify the dominant DDT uptake routes. In particular, the effects of breastfeeding duration, parity, and mother's age on DDT concentrations of mother and infant are investigated. Model results show that primiparous mothers have greater DDT concentrations than multiparous mothers, which causes higher DDT exposure of first-born children. DDT in the body mainly originates from diet. Generally, our modeled DDT levels reproduce levels found in South African biomonitoring data within a factor of 3. - Highlights: ► Comparison of one-compartment pharmacokinetic model with biomonitoring data. ► Pre- and postnatal exposure of infants depends on breastfeeding duration and parity. ► Dietary exposure of DDT is the dominant uptake route in South Africa. ► Elimination half-lives of DDT and DDE are shorter in children than in adults. - Model predictions of a one-compartment pharmacokinetic model confirm the trends of DDT found in human samples of inhabitants living in DDT-treated dwellings.

  19. Evaluation of droplet digital PCR for quantification of residual leucocytes in red blood cell concentrates.

    Science.gov (United States)

    Doescher, A; Loges, U; Petershofen, E K; Müller, T H

    2017-11-01

    Enumeration of residual white blood cells in leucoreduced blood components is essential part of quality control. Digital PCR has substantially facilitated quantitative PCR and was thus evaluated for measurements of leucocytes. Target for quantification of leucocytes by digital droplet PCR was the blood group gene RHCE. The SPEF1 gene was added as internal control for the entire assay starting with automated DNA extraction. The sensitivity of the method was determined by serial dilutions of standard samples. Quality control samples were analysed within 24 h, 7 days and 6 months after collection. Routine samples from leucodepleted red blood cell concentrates (n = 150) were evaluated in parallel by flow-cytometry (LeucoCount) and by digital PCR. Digital PCR reliably detected at least 0·4 leucocytes per assay. The mean difference between PCR and flow-cytometric results from 150 units was -0·01 (±1·0). DNA samples were stable for up to at least six months. PCR measurement of leucocytes in samples from plasma and platelet concentrates also provided valid results in a pilot study. Droplet digital PCR to enumerate leucocytes offers an alternative for quality control of leucoreduced blood products. Sensitivity, specificity and reproducibility are comparable to flow-cytometry. The option to collect samples over an extended period of time and the automatization introduce attractive features for routine quality control. © 2017 International Society of Blood Transfusion.

  20. Behavior of chlorine in lake water

    International Nuclear Information System (INIS)

    Sriraman, A.K.

    2006-01-01

    Water from monsoon fed Sagre lake is being used as a source of raw water for Tarapur Atomic Power Station (TAPS--1 and 2). The raw water from the lake is initially pumped to Sagre water treatment plant (SWTP) operated by Maharashtra Industrial Development Corporation (MIDC) from where, the processed water is sent to cater the needs of both the units of TAPS-1 and 2, townships of TAPS and MIDC, and the nearby villages. At the SWTP the raw water is treated with alum to remove the turbidity, filtered and chlorinated using bleaching powder. All these years the raw water is chlorinated in such a way whereby a residual chlorine level of 0.5-1.0 mg/l, is maintained at the outlet of water treatment plant. The adequacy of the current chlorination practice was investigated, at the request of the NPC-500 MWe group during 1990, so that the future requirements of raw water for TAPP-3 and 4, can be met from the expanded SWTP. In this connection experiments on chlorine dose -- residual chlorine relationship and the decay pattern of chlorine with time was carried out in the lake water (with low value of total dissolved solids and total hardness 3 sample at the site. The total bacterial count in the raw water observed to be 10 7 counts/ml originally came down to 10 3 counts/ml at the end of one-hour exposure time to chlorine. It was found that the chlorine demand of the water was around 6 mg/l. In addition Jar test to evaluate the aluminum dose was also carried out. Based on these experiments a chlorine dose of 6 mg/l for one hour contact time was arrived at. The experimental findings were in agreement with the current chlorination practices. (author)

  1. Organic co-solvent effect on the estimation of the equilibrium aqueous concentrations of oil residuals in Patagonian soil.

    Science.gov (United States)

    Nudelman, N S; Rios, S M; Katusich, O

    2002-09-01

    Determination of the equilibrium aqueous concentration and the distribution coefficients, K, in soil samples containing oil residuals of different age, was carried out using an organic co-solvent (methanol). It was found that the solvophobic theory could be applied for the interpretation of results. The behavior of the residuals turned out to be dependent on the co-solvent fraction and the age of the oil spill. The values of K vary between 900 (l kg(-1)) and 2,900 (l kg(-1)) showing a general and marked increase for residues of increasing age. The determined parameters are useful for the modeling of environmental impact on polluted soils.

  2. Optimization of the protein concentration process from residual peanut oil-cake

    Directory of Open Access Journals (Sweden)

    Gayol, M. F.

    2013-12-01

    Full Text Available The objective of this study was to find the best process conditions for preparing protein concentrate from residual peanut oil-cake (POC. The study was carried out on POC from industrial peanut oil extraction. Different protein extraction and precipitation conditions were used: water/ flour ratio (10:1, 20:1 and 30:1, pH (8, 9 and 10, NaCl concentration (0 and 0.5 M, extraction time (30, 60 and 120 min, temperature (25, 40 and 60 °C, extraction stages (1, 2 and 3, and precipitation pH (4, 4.5 and 5. The extraction and precipitation conditions which showed the highest protein yield were 10:1 water/flour ratio, extraction at pH 9, no NaCl, 2 extraction stages of 30 min at 40 °C and precipitation at pH 4.5. Under these conditions, the peanut protein concentrate (PC contained 86.22% protein, while the initial POC had 38.04% . POC is an alternative source of protein that can be used for human consumption or animal nutrition. Therefore, it adds value to an industry residue.El objetivo de este trabajo fue encontrar las mejores condiciones para obtener un concentrado de proteínas a partir de la torta residual de maní (POC. El estudio se llevó a cabo en POC provenientes de la extracción industrial de aceite de maní. Se utilizaron distintas condiciones para la extracción y precipitación de proteínas: relación agua / harina (10:1, 20:1 y 30:1, pH de extracción (8, 9 y 10, concentración de NaCl (0 y 0,5 M, tiempo de extracción (30, 60 y 120 min, temperatura (25, 40 y 60 °C, número de etapas de extracción (1, 2 y 3, y el pH de precipitación (4, 4,5 y 5. Las condiciones de extracción y de precipitación que mostraron mayor rendimiento de proteína fueron: relación de 10:1 en agua / harina, pH de extracción de 9, en ausencia de NaCl, 2 etapas de extracción de 30 min cada una a 40 °C y el pH de precipitación de 4,5. En estas condiciones, el concentrado de proteína de maní (PC fue de 86,22%, mientras que el porcentaje de proteínas de

  3. Distribution, Identification, and Quantification of Residues after Treatment of Ready-To-Eat Salami with36Cl-Labeled or Nonlabeled Chlorine Dioxide Gas.

    Science.gov (United States)

    Smith, David J; Giddings, J Michael; Herges, Grant R; Ernst, William

    2016-11-09

    When ready-to-eat salami was treated in a closed system with 36 Cl-labeled ClO 2 (5.5 mg/100 g of salami), essentially all radioactivity was deposited onto the salami. Administered 36 ClO 2 was converted to 36 Cl-chloride ion (>97%), trace levels of chlorate (chlorine dioxide treated (128 ± 31.2 ng/g) salami. If sanitation occurred under conditions of illumination, detectable levels (3.7 ± 1.5 ng/g) of perchlorate were formed along with greater quantities of sodium chlorate (183.6 ± 75.4 ng/g). Collectively, these data suggest that ClO 2 is chemically reduced by salami and that slow-release formulations might be appropriate for applications involving the sanitation of ready-to-eat meat products.

  4. Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals

    NARCIS (Netherlands)

    Escher, B.I.; Ashauer, R.; Dyer, S.; Hermens, J.L.M.; van der Lee, J.H.; Leslie, H.A.; Mayer, P.; Meador, J.P.; Warne, M.S.J.

    2011-01-01

    This article reviews the mechanistic basis of the tissue residue approach for toxicity assessment (TRA). The tissue residue approach implies that whole-body or organ concentrations (residues) are a better dose metric for describing toxicity to aquatic organisms than is the aqueous concentration

  5. Chlorine disinfection of grey water for reuse: effect of organics and particles.

    Science.gov (United States)

    Winward, Gideon P; Avery, Lisa M; Stephenson, Tom; Jefferson, Bruce

    2008-01-01

    Adequate disinfection of grey water prior to reuse is important to prevent the potential transmission of disease-causing microorganisms. Chlorine is a widely utilised disinfectant and as such is a leading contender for disinfection of grey water intended for reuse. This study examined the impact of organics and particles on chlorine disinfection of grey water, measured by total coliform inactivation. The efficacy of disinfection was most closely linked with particle size. Larger particles shielded total coliforms from inactivation and disinfection efficacy decreased with increasing particle size. Blending to extract particle-associated coliforms (PACs) following chlorine disinfection revealed that up to 91% of total coliforms in chlorinated grey water were particle associated. The organic concentration of grey water affected chlorine demand but did not influence the disinfection resistance of total coliforms when a free chlorine residual was maintained. Implications for urban water reuse are discussed and it is recommended that grey water treatment systems target suspended solids removal to ensure removal of PACs prior to disinfection.

  6. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  7. Evolution of residual-Zn available concentrations of Zn-EDTA chelate in two different soils.

    Science.gov (United States)

    Almendros, P.; Gonzalez, D.; Alvarez, J. M.

    2012-04-01

    Zinc chelates, such as Zn-EDTA have been widely used to correct deficiencies in this micronutrient in different crops. Several authors have suggested applying complexed forms of Zn to soils in order to offer an effective source of Zn to plants. When inorganic Zn sources are added to soils, the availability of Zn to plants tends to decrease with time. This is due to the aging of the metal or the transformation of the Zn that is normally available to plants into various less available forms. Soil properties are believed to influence the fixation and/or precipitation of added Zn. The objective of this study was to determine the changes over time in the concentrations of available residual-Zn in two different soils to which the Zn-EDTA chelate was applied. An experiment was conducted under controlled laboratory conditions in two different soils: an acidic soil [Typic Haploxeralf; field capacity, 6.65 g H2O/100 g soil; pHw (1/2.5, w/v), 6.2; texture USDA, sandy loam, with illite as the predominant clay; oxidizable organic carbon 0.29%; extractable P, 19.9 mg/kg] and a calcareous soil [Typic Calcixerept; field capacity, 20.5 g H2O/100 g soil; pHw (1/2.5, w/v), 8.2; texture USDA, loamy sand, with smectite as the predominant clay; oxidizable organic carbon 0.75%; extractable P, 12.6 mg/kg]. These soils were treated with a synthetic chelate, Zn-ethylenediaminetetraacetate (Zn-EDTA), at different rates of application [0 (nil-Zn), 5 and 10 mg Zn kg-1 soil]. The potential available Zn concentrations were estimated at four experimental times (0, 15, 45 and 75 d) by the Mehlich-3 and DTPA-AB extraction methods. The results obtained showed the evolution of available Zn over experimental time, for each treatment. The Zn concentrations in both soils showed significant differences over experimental time. Zn-EDTA applied at both Zn rates (5 and 10 mg Zn kg-1) was associated with high variations in available Zn concentrations. However, in both soils, the decreases in available Zn

  8. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    International Nuclear Information System (INIS)

    Garrett, W.E. Jr.; Laylor, M.M.

    1995-01-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water

  9. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenhui; Gao, Lihong [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Shi, Yali; Wang, Yuan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Jiemin, E-mail: liujm@ustb.edu.cn [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Yaqi, E-mail: caiyaqi@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L{sup −1}, followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at

  10. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  11. Laboratory and pilot-scale dead-end ultrafiltration concentration of sanitizer-free and chlorinated lettuce wash water for improved detection of Escherichia coli O157:H7.

    Science.gov (United States)

    Magaña, Sonia; Schlemmer, Sarah M; Davidson, Gordon R; Ryser, Elliot T; Lim, Daniel V

    2014-08-01

    An automated dead-end (single pass, no recirculation) ultrafiltration device, the Portable Multi-use Automated Concentration System (PMACS), was evaluated as a means to concentrate Escherichia coli O157:H7 from 40 liters of simulated commercial lettuce wash water. The assessment included generating, sieving, and concentrating sanitizer-free lettuce wash water, either uninoculated or inoculated with green fluorescent protein-transformed E. coli O157:H7 at a high (1.00 log CFU/ml) or low (-1.00 log CFU/ml) concentration. Cells collected within the filters were recovered in approximately 400 ml of buffer to create lettuce wash retentates. The extent of concentration was determined by viable plate counts using a medium selective for the transformed E. coli O157:H7. The samples were qualitatively analyzed for E. coli O157:H7 according to the U. S. Food and Drug Administration Bacteriological Analytical Manual enrichment method and with an electrochemiluminescence immunoassay. This concentration method was then evaluated in a pilot-scale production line at Michigan State University using chlorinated (100, 30, and 10 ppm of available chlorine) lettuce wash water. The total PMACS processing times were 82 ± 6 and 65 ± 5 min for sanitizer-free and chlorinated washes, respectively. Overall, E. coli O157:H7 populations were approximately 2 log higher in retentates than in unconcentrated lettuce wash samples. The higher E. coli O157:H7 levels in the retentates enabled cultural and electrochemiluminescence immunoassay detection in some samples when the corresponding lettuce wash samples were negative. When combined with standard and rapid detection methods, the PMACS concentration method may provide a means to enhance pathogen monitoring of produce wash water.

  12. Rate of absorption and interfacial area of chlorine into aqueous ...

    African Journals Online (AJOL)

    aghomotsegin

    The rate of absorption predicted from developed model is compared with experimental results. They were in good agreement. ... are chlorine-water, chlorine-aqueous solution of alkaline carbonate, chlorine-aqueous alkaline ... Bulk concentration of an individual chemical species in liquid. Assuming all the reactions are at ...

  13. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  14. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  15. Mechanistic Aspects of the Formation of Adsorbable Organic Bromine during Chlorination of Bromide-containing Synthetic Waters.

    Science.gov (United States)

    Langsa, Markus; Heitz, Anna; Joll, Cynthia A; von Gunten, Urs; Allard, Sebastien

    2017-05-02

    During chlorination of bromide-containing waters, a significant formation of brominated disinfection byproducts is expected. This is of concern because Br-DBPs are generally more toxic than their chlorinated analogues. In this study, synthetic water samples containing dissolved organic matter (DOM) extracts and bromide were treated under various disinfection scenarios to elucidate the mechanisms of Br-DBP formation. The total concentration of Br-DBPs was measured as adsorbable organic bromine (AOBr). A portion of the bromine (HOBr) was found to react with DOM via electrophilic substitution (≤40%), forming AOBr, and the remaining HOBr reacted with DOM via electron transfer with a reduction of HOBr to bromide (≥60%). During chlorination, the released bromide is reoxidized (recycled) by chlorine to HOBr, leading to further electrophilic substitution of unaltered DOM sites and chlorinated DOM moieties. This leads to an almost complete bromine incorporation to DOM (≥87%). The type of DOM (3.06 ≤ SUVA 254 ≤ 4.85) is not affecting this process, as long as the bromine-reactive DOM sites are in excess and a sufficient chlorine exposure is achieved. When most reactive sites were consumed by chlorine, Cl-substituted functional groups (Cl-DOM) are reacting with HOBr by direct bromination leading to Br-Cl-DOM and by bromine substitution of chlorine leading to Br-DOM. The latter finding was supported by hexachlorobenzene as a model compound from which bromoform was formed during HOBr treatment. To better understand the experimental findings, a conceptual kinetic model allowing to assess the contribution of each AOBr pathway was developed. A simulation of distribution system conditions with a disinfectant residual of 1 mgC 2 L -1 showed complete conversion of Br - to AOBr, with about 10% of the AOBr formed through chlorine substitution by bromine.

  16. Comparing a microbial biocide and chlorine as zebra mussel control strategies in an Irish drinking water treatment plant

    Directory of Open Access Journals (Sweden)

    Sara Meehan

    2013-06-01

    Full Text Available A need exists for an environmentally friendly mussel control method to replace chlorine and other traditional control methods currentlyutilised in drinking water plants and other infested facilities. Zequanox® is a newly commercialised microbial biocide for zebra and quaggamussels comprised of killed Pseudomonas fluorescens CL145A cells. The objective of this study was to compare the efficacy of adevelopmental formulation of Zequanox (referred to as MBI 401 FDP and chlorine treatments on adult and juvenile zebra mussels byrunning a biobox trial in conjunction with chlorine treatments at an infested Irish drinking water treatment plant. Since 2009, the plantmanagement has used a residual chlorine concentration of 2 mg/L in autumn to control both adult zebra mussels and juvenile settlement intheir three concrete raw water chambers. Juvenile mussel settlement was monitored in three bioboxes as well as in three treatment chambersin the plant for three months prior to treatment. Adult mussels were seeded into the chambers and bioboxes four days before treatment. InOctober 2011, the bioboxes were treated with MBI 401 FDP at 200 mg active substance/L, while chlorine treatment took place in the waterchambers. The MBI 401 FDP treatment lasted only 8 hours while chlorine treatment lasted seven days. Juvenile numbers were reduced tozero in both the bioboxes and treated chambers within seven days. Adult mussel mortality reached 80% for both the chlorine and MBI 401FDP treatment; however, mortality was achieved faster in the chlorine treatment. These results provided important insights into zebra musselcontrol alternatives to chlorine and supported further development of the now commercial product, Zequanox.

  17. Residual antibiofilm effects of various concentrations of double antibiotic paste used during regenerative endodontics after different application times.

    Science.gov (United States)

    Jenks, Daniel B; Ehrlich, Ygal; Spolnik, Kenneth; Gregory, Richard L; Yassen, Ghaeth H

    2016-10-01

    We investigated the residual antibiofilm effects of different concentrations of double antibiotic paste (DAP) applied on radicular dentin for 1 or 4 weeks. Dentin samples were prepared (n=120), sterilized and pretreated for 1 or 4 weeks with the clinically used concentration of DAP (500mg/mL), low concentrations of DAP (1, 5 or 50mg/mL) loaded into a methylcellulose system, calcium hydroxide (Ca(OH) 2 ), or placebo paste. After the assigned treatment time, treatment pastes were rinsed off and the samples were kept independently in phosphate buffered saline for 3 weeks. Pretreated dentin samples were then inoculated with Enterococcus faecalis and bacterial biofilms were allowed to grow for an additional 3 weeks. Biofilms were then retrieved from dentin using biofilm disruption assays, diluted, spiral plated, and quantified. Fisher's Exact and Wilcoxon rank sum tests were used for statistical comparisons (α=0.05). Dentin pretreatment for 4 weeks with 5, 50 or 500mg/mL of DAP demonstrated significantly higher residual antibiofilm effects and complete eradication of E. faecalis biofilms in comparison to a 1 week pretreatment with similar concentrations. However, dentin pretreated with 1mg/mL of DAP or Ca(OH) 2 did not provide a substantial residual antibiofilm effect regardless of the application time. Dentin pretreatment with 5mg/mL of DAP or higher for 4 weeks induced significantly higher residual antibiofilm effects in comparison to a 1 week pretreatment with the same concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A survey of chlortetracycline concentration in feed and its residue in chicken egg in commercial layer farms.

    Science.gov (United States)

    Kodimalar, K; Rajini, R A; Ezhilvalavan, S; Sarathchandra, G

    2014-06-01

    The worldwide increase in the use of antibiotics as an integral part of poultry and livestock production industry has recently received increasing attention as a contributory factor in the international emergence of antibiotic-resistant bacteria in human beings. To gauge the presence of the aforementioned scenario in the Indian context, a preliminary survey was conducted to assess the use of chlortetracycline (CTC) in 12 commercial layer farms and to quantify and confirm its residue in the egg. Samples of feed and eggs were collected at day 0 (prior to CTC addition), 3rd, 5th and 7th day during treatment and on the 9th and 14th day (2nd and 7th day after withdrawal of CTC) from each of the 12 commercial poultry farms studied. Concentration of CTC in feed was significantly (P less than 0.01) high on the 3rd, 5th and 7th day. On the 9th day and 14th day CTC concentration in feed was significantly (P less than 0.01) lower compared to the earlier 3 days studied. A highly significant difference (P less than 0.01) of the antibiotic residue in egg was observed in all the 5 days with high residual levels of CTC in egg. CTC in feed and its residue in egg were detected even on the 9th and 14th day respectively.

  19. A survey of chlortetracycline concentration in feed and its residue in ...

    Indian Academy of Sciences (India)

    2014-04-04

    Apr 4, 2014 ... Food Control 15 99–105. Kan C A and Petz M 2000 Residues of veterinary drugs in eggs and their distribution between yolk and white. J. Agri. Food Chem. 48 6397–6403. Kennedy DG, McCracken RJ, Hewitt SA and McEvoy JDG 1998. Metabolism of chlortetracycline: drug accumulation and excre-.

  20. EVALUATION OF FERRIC CHLORIDE AND ALUM EFFICIENCIES IN ENHANCED COAGULATION FOR TOC REMOVAL AND RELATED RESIDUAL METAL CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    A. Mesdaghinia, M. T. Rafiee, F. Vaezi and A. H. Mahvi

    2005-07-01

    Full Text Available Although the removal of colloidal particles continues to be an important reason for using coagulation, a newer objective, the removal of natural organic matter (NOM to reduce the formation of disinfection by-products (DBPs, is growing in importance. Enhanced coagulation is thus introduced to most water utilities treating surface water. Bench-scale experiments were conducted to compare the effectiveness of alum and ferric chloride in removing DBPs precursors from eight synthetic water samples, each representing a different element of the USEPA’s 3×3 enhanced coagulation matrix. The effect of enhanced coagulation on the residual metal (aluminum/iron concentration in the treated water was assessed as well. The removal of total organic carbon (TOC was dependent on the coagulant type and was enhanced with increasing coagulant dose, but the latter had no further considerable effect in case of increasing to high levels. For all the treated samples coagulation with ferric chloride proved to be more effective than alum at similar doses and the mean values of treatment efficiencies were 51% and 32% for ferric chloride and alum, respectively. Ferric chloride was therefore considered the better chemical for enhancing the coagulation process. Besides, due to less production of sludge by this coagulant, it would be predicted that treatment plants would be confronted to fewer problems with respect to final sludge disposal. Measurements of residual metal in treated water indicated that iron and aluminum concentrations had been increased as expected but the quality of water concerning the residual metal deteriorated much more in cases of under-dosing. Despite expecting high residual Al and Fe concentrations under enhanced coagulation, metal concentrations were frequently remained low and were not increased appreciably.

  1. High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging

    Science.gov (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.

    2017-06-01

    The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.

  2. Framework for optimizing chlorine dose in small- to medium-sized ...

    African Journals Online (AJOL)

    To maintain desirable residual chlorine for a groundwater source, optimizing the chlorine dose in small- to medium-sized water distribution systems (SM-WDS) is a daunting task in developing countries. Mostly, operators add a random chlorine dose without recognizing the smaller size of their distribution network. In this ...

  3. Chlorinated pesticides in stream sediments from organic, integrated and conventional farms

    International Nuclear Information System (INIS)

    Shahpoury, Pourya; Hageman, Kimberly J.; Matthaei, Christoph D.; Magbanua, Francis S.

    2013-01-01

    To determine if current sheep/beef farming practices affect pesticide residues in streams, current-use and legacy chlorinated pesticides were quantified in 100 sediment samples from 15 streams on the South Island of New Zealand. The study involved five blocks of three neighboring farms, with each block containing farms managed by organic, integrated and conventional farming practices. Significantly higher concentrations of dieldrin, ∑ endosulfans, ∑ current-use pesticides, and ∑ chlorinated pesticides were measured in sediments from conventional farms compared to organic and integrated farms. However, streams in the latter two farming categories were not pesticide-free and sometimes contained relatively high concentrations of legacy pesticides. Comparison of measured pesticide concentrations with sediment quality guidelines showed that, regardless of farming practice, mean pesticide concentrations were below the recommended toxicity thresholds. However, up to 23% of individual samples contained chlorpyrifos, endosulfan sulfate, ∑ DDT, dieldrin, or ∑ chlordane concentrations above these thresholds. -- Highlights: •Pesticides were measured in streams in organic, integrated, and conventional farms. •Higher concentrations of some pesticides were found in conventional sites. •Streams in organic and integrated sites were not pesticide free. •Mean pesticide concentrations were below the recommended toxicity thresholds. -- Higher concentrations of several chlorinated pesticides were found in conventional farms; however, organic and integrated practices were not pesticide-free

  4. Uncertainty assessment of gamma-aminobutyric acid concentration of different brain regions in individual and group using residual bootstrap analysis.

    Science.gov (United States)

    Chen, Meng; Liao, Congyu; Chen, Song; Ding, Qiuping; Zhu, Darong; Liu, Hui; Yan, Xu; Zhong, Jianhui

    2017-06-01

    The aim of this work is to quantify individual and regional differences in the relative concentration of gamma-aminobutyric acid (GABA) in human brain with in vivo magnetic resonance spectroscopy. Spectral editing Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence and GABA analysis toolkit (Gannet) were used to detect and quantify GABA in anterior cingulate cortex (ACC) and occipital cortex (OCC) of healthy volunteers. Residual bootstrap, a model-based statistical analysis technique, was applied to resample the fitting residuals of GABA from the Gaussian fitting model (referred to as GABA + thereafter) in both individual and group data of ACC and OCC. The inter-subject coefficient of variation (CV) of GABA + in OCC (20.66 %) and ACC (12.55 %) with residual bootstrap was lower than that of a standard Gaussian model analysis (21.58 % and 16.73 % for OCC and ACC, respectively). The intra-subject uncertainty and CV of OCC were lower than that of ACC in both analyses. The residual bootstrap analysis thus provides a more robust uncertainty estimation of individual and group GABA + detection in different brain regions, which may be useful in our understanding of GABA biochemistry in brain and its use for the diagnosis of related neuropsychiatric diseases.

  5. Organochlorine pesticides residue in breast milk: a systematic review.

    Science.gov (United States)

    Pirsaheb, Meghdad; Limoee, Mojtaba; Namdari, Farideh; Khamutian, Razieh

    2015-01-01

    Chlorinated pesticides have been used in pest control for several decades in the world. These compounds are still applied in many regions, and their continuous usage has resulted in their bioaccumulation and residue in the food chain. These residues could transfer to food products and accumulate in fat tissues. Undoubtedly, the breast milk could be a significant biomarker for estimation of these residues in the human body. This study was conducted to review and compile the results of the studies undertaken in the world which surveyed the organochlorine pesticides residue in breast milk. A total of 710 national and international articles and texts related to the focused subject were extracted from the virtual databases using the following key words: Chlorinated pesticides, residue and breast milk. Thirty articles published between 1980 and 2013 were selected and reviewed. The majority of the reviewed articles indicated the presence of two or more organochlorine pesticides in the collected samples of breast milk. Based on the reviewed studies, dichlorodiphenyltrichloroethane (DDT) had the highest level of concentration in the collected samples of breast milk. Moreover, there was a statistically significant positive correlation between mother's age, her multiparty and concentration of chlorinated pesticides in breast milk. The organochlorine pesticides are still applied in some developing countries including some regions of Iran. Thus, it seems essential to inform the community about the adverse effects of this class of pesticides; and most importantly the governments should also ban the use of such compounds.

  6. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.

    Science.gov (United States)

    Szczuka, Aleksandra; Parker, Kimberly M; Harvey, Cassandra; Hayes, Erin; Vengosh, Avner; Mitch, William A

    2017-10-01

    Coastal utilities exploiting mildly saline groundwater (Groundwater from North Carolina coastal aquifers is characterized by large variations in concentrations of halides (bromide up to 10,600 μg/L) and dissolved organic carbon (up to 5.7 mg-C/L). Formation of 33 regulated and unregulated halogenated DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles, haloacetamides, and haloacetaldehydes, was measured after simulated chlorination of 24 coastal North Carolina groundwater samples under typical chlorination conditions. Results of chlorination simulation show that THM levels exceeded the Primary Maximum Contaminant Levels in half of the chlorinated samples. Addition of halides to a low salinity groundwater (110 mg/L chloride) indicated that elevated bromide triggered DBP formation, but chloride was not a critical factor for their formation. DBP speciation, but not overall molar formation, was strongly correlated with bromide variations in the groundwater. THMs and HAAs dominated the measured halogenated DBPs on a mass concentration basis. When measured concentrations were weighted by metrics of toxic potency, haloacetonitriles, and to a lesser degree, haloacetaldehydes and HAAs, were the predominant contributors to calculated DBP-associated toxicity. For some samples exhibiting elevated ammonia concentrations, the addition of chlorine to form chloramines in situ significantly reduced halogenated DBP concentrations and calculated toxicity. HAAs dominated the calculated toxicity of chloraminated waters. Reverse osmosis treatment of saline groundwater (chloride >250 mg/L) can reduce DBP formation by removing halides and organic precursors. However, we show that in a case where reverse osmosis permeate is blended with a separate raw groundwater, the residual bromide level in the permeate could still exceed that in the raw groundwater, and thereby induce DBP formation in the blend. DBP-associated calculated toxicity increased for

  7. Effect of temperature and pH on dehalogenation of total organic chlorine, bromine and iodine in drinking water.

    Science.gov (United States)

    Abusallout, Ibrahim; Rahman, Shamimur; Hua, Guanghui

    2017-11-01

    Disinfection byproduct (DBP) concentrations in drinking water distribution systems and indoor water uses depend on competitive formation and degradation reactions. This study investigated the dehalogenation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) produced by fulvic acid under different pH and temperature conditions, and total organic halogen (TOX) variations in a treated drinking water under simulated distribution system and heating scenarios. TOX dehalogenation rates were generally in the order of TOI ≅ TOCl(NH 2 Cl) > TOBr > TOCl(Cl 2 ). The half-lives of different groups of TOX compounds formed by fulvic acid varied between 27 and 139 days during incubation at 20 °C and 0.98-2.17 days during heating at 55 °C. Base-catalyzed reactions played a major role in TOX degradation as evidenced by enhanced dehalogenation under high pH conditions. The results of heating of a treated water in the presence of residuals showed that TOX concentrations of chlorinated samples increased rapidly when chlorine residuals were present and then gradually decreased after chlorine residuals were exhausted. The final TOX concentrations of chlorinated samples after heating showed moderate decreases with increasing ambient water ages. Chloraminated samples with different ambient water ages exhibited similar final TOX concentrations during simulated distribution system and heating experiments. This study reinforces the importance of understanding DBP variations in indoor water uses as wells as in distribution systems to provide more accurate DBP information for exposure assessment and regulatory determination. Published by Elsevier Ltd.

  8. Technology assessment: Chlorine chemistry

    International Nuclear Information System (INIS)

    Wolff, H.; Alwast, H.; Buttgereit, R.

    1994-01-01

    Chlorine is not just one of many chemical feedstocks which is used in a few definitely harmful products like PVC or CFC but is irrelevant in all other respects. Just the opposite is true: There is hardly any product line of the chemical industry that can do without chlorine, from herbicides and pesticides to dyes, plastics, pharmaceuticals, photographic atricles, and cosmetics. Chlorine is not only a key element of chemical production but also an ubiquitous element of everyday life in civilisation. There are even many who would agree that the volume of chlorine production is an indicator of the competitive strength and national wealth of a modern society. By now, however, it has become evident that the unreflected use of chlorine is no longer ecologically acceptable. The consequences of a chlorine phase-out as compared to the continued chlorine production at the present level were investigated scientifically by a PROGNOS team. They are presented in this book. (orig.) [de

  9. Concentrations of veterinary drug residues in milk from individual farms in Croatia

    Directory of Open Access Journals (Sweden)

    Nina Bilandžić

    2011-09-01

    Full Text Available A total of 119 raw milk samples collected at individual small milk-producing facilities and collection tanks of milk routes from five counties of east and north continental Croatia were examined for chloramphenicol, sulfonamides, tetracyclines, gentamicin, streptomycin, dihydrostreptomycin, flumequine and enrofloxacin from January to March of 2011. Immunoassay methods used for drug determination were validated according to the guidelines laid down by European Commission Decision 2002/657/EC. Data indicated that the methods are appropriate for the detection of antibiotics measured. Measured mean values (μg L-1 of antibiotics were: 0.005 for chloramphenicol, 3.67 for sulfonamides, 2.83 for tetracyclines, 1.10 for gentamicin, 2.64 for streptomycin, 7.67 for dihydrostreptomycin, 10.4 for flumequine and 4.11 for enrofloxacin. None of samples analyzed showed the presence of veterinary drug residues above the maximum residues levels (MRLs established by European Union and Croatian legislation. The calculated estimated daily intakes (EDIs for the average daily milk consumption of 300 mL for an adult in Croatia for examined antibiotics showed levels 20 to 1640 times lower than the values of acceptable daily intakes (ADIs fixed by European Medicines Agency and World Health Organization. This suggested that toxicological risk associated with the consumption of analysed milk could not be considered a public health issue with regards to these veterinary drugs.

  10. Heterogeneous nano-Fe/Ca/CaO catalytic ozonation for selective surface hydrophilization of plastics containing brominated and chlorinated flame retardants (B/CFRs): separation from automobile shredder residue by froth flotation.

    Science.gov (United States)

    Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian

    2017-02-01

    One method of weakening the inherently hydrophobic surface of plastics relevant to flotation separation is heterogeneous nano-Fe/Ca/CaO catalytic ozonation. Nano-Fe/Ca/CaO-catalyzed ozonation for 15 min efficiently decreases the surface hydrophobicity of brominated and chlorinated flame retardant (B/CFR)-containing plastics (such as acrylonitrile-butadienestyrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) in automobile shredder residue (ASR) to such an extent that their flotation ability is entirely depressed. Such a hydrophilization treatment also stimulates the ABS, HIPS, and PVC surface roughness, wetting of the surface, and the thermodynamic equilibrium conditions at the surface and ultimately changes surface polarity. SEM-EDS, AFM, and XPS analyses of the PVC and ABS surfaces demonstrated a marked decrease in [Cl/Br] and a significant increase in the number of hydrophilic groups, such as C-O, C=O, and (C=O)-O. Under froth flotation conditions at 50 rpm, about 99.5 % of ABS and 99.5 % of HIPS in ASR samples settled out, resulting in a purity of 98 and 98.5 % for ABS and HIPS in ASR samples, respectively. Furthermore, at 150 rpm, we also obtained 100 % PVC separation in the settled fraction, with 98 % purity in ASR. Total recovery of non-B/CFR-containing plastics reached nearly 100 % in the floating fraction. The amount of nano-Fe/Ca/CaO reagent employed during ozonation is very small, and additional removal of surface contaminants from the recycled ASR plastic surfaces by ozonation makes the developed process simpler, greener, and more effective.

  11. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.

    1982-01-01

    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  12. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    International Nuclear Information System (INIS)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig S.

    2003-01-01

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  13. Real-time amplification of HLA-DQA1 for counting residual white blood cells in filtered platelet concentrates.

    Science.gov (United States)

    Mohammadi, Tamimount; Reesink, Henk W; Vandenbroucke-Grauls, Christina M J E; Savelkoul, Paul H M

    2004-09-01

    BACKGROUND A real-time polymerase chain reaction (PCR) assay based on amplification of a conserved region of the HLA-DQA1 locus was developed and validated to assess its suitability in quantitating low levels of white blood cells (WBCs) in filtered platelet (PLT) concentrates (PCs). To determine the detection limit, serial dilutions of nonfiltered PCs with known quantities of WBCs were prepared. The analytical sensitivity and accuracy of the assay was tested with WBC concentrations ranging from 300 to 0.03 per microL with real-time PCR and flow cytometry. In addition, 126 random PCs were investigated to assess the capacity of the PCR method to quantify residual WBCs in clinical specimens. A sensitivity of 0.2 WBC equivalent per micro L (1.5 x 10(4) WBC equivalents/unit) was achieved. The assay was shown to be accurate and the HLA-DQA1 gene was reproducibly and consistently amplified in all tested samples (coefficient of variance of < 5%). Overall, the results of the PCR assay correlated well with those of the flow cytometry. The PCR assay detected a concentration of 3 WBCs per micro L (approximately 1 x 10(6) WBCs/unit) with 100 percent accuracy. Real-time PCR is rapid, sensitive, accurate, and reproducible. Hence this approach may prove suitable in routine monitoring of residual WBCs in PCs.

  14. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    Science.gov (United States)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  15. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    Directory of Open Access Journals (Sweden)

    Yasuaki Arakawa

    2016-08-01

    Full Text Available We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm−3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm−3 deposited by PSD showed hole mobilities of 34 and 62 cm2 V−1 s−1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  16. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    Science.gov (United States)

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    Science.gov (United States)

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Microbial based chlorinated ethene destruction

    Science.gov (United States)

    Bagwell, Christopher E [Aiken, SC; Freedman, David L [Clemson, SC; Brigmon, Robin L [North Augusta, SC; Bratt, William B [Atlanta, GA; Wood, Elizabeth A [Marietta, GA

    2009-11-10

    A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes.

  19. A survey of chlortetracycline concentration in feed and its residue in ...

    Indian Academy of Sciences (India)

    Samples of feed and eggs were collected at day 0 (prior to CTC addition), 3rd, 5th and 7th day during treatment and on the 9th and 14th day (2nd and 7th day after withdrawal of CTC) from each of the 12 commercial poultry farms studied. Concentration of CTC in feed was significantly ( < 0.01) high on the 3rd, 5th and 7th ...

  20. Zearalenone (ZEN) metabolism and residue concentrations in physiological specimens of dairy cows exposed long-term to ZEN-contaminated diets differing in concentrate feed proportions.

    Science.gov (United States)

    Dänicke, Sven; Keese, Christina; Meyer, Ulrich; Starke, Alexander; Kinoshita, Asako; Rehage, Jürgen

    2014-12-01

    A long-term feeding experiment with dairy cows was performed to investigate the effects of feeding a Fusarium toxin contaminated (FUS) and a background-contaminated control (CON) ration with a mean concentrate feed proportion of 50% during the first 11 weeks after parturition (Groups FUS-50, CON-50, Period 1), and with concentrate feed proportions of 30% or 60% during the remaining 17 weeks (Groups CON-30, CON-60, FUS-30 and FUS-60, Period 2), on zearalenone (ZEN) residue levels in blood serum, milk, urine and bile. ZEN, α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL), zearalanone (ZAL), α-zearalanol (α-ZAL) and β-zearalanol (β-ZAL) were determined by HPLC with fluorescence detection. The ZEN concentrations of the rations fed to Groups CON-50, FUS-50 (Period 1), CON-30, CON-60, FUS-30 and FUS-60 (Period 2) amounted to 53.1, 112.7, 35.0, 24.4, 73.8 and 72.5 µg/kg dry matter, respectively. The concentrations of ZEN, α-ZEL, β-ZEL, ZAN, α-ZAL and β-ZAL in serum, urine and milk were lower than 1, 1, 4, 100, 50 and 200 ng/g, respectively, while ZEN, α-ZEL and β-ZEL were detected in bile. Their levels changed with oral ZEN exposure in the course of the experiment and in a similar direction with concentrate feed proportion (Period 2 only). Thus the proportions of the individual β-ZEL, α-ZEL and ZEN concentrations of their sum varied only in narrow ranges of 68-76%, 6-13% and 12-20%, respectively. Interestingly, the bile concentrations of β-ZEL, α-ZEL and ZEN of Groups CON-60 and FUS-60 amounted to only approximately 50%, 45% and 62%, respectively, of those of Groups CON-30 and FUS-30 despite a similar or even lower ZEN exposure. The results indicate that conversion of ZEN to its detectable metabolites was not changed by different dietary concentrate feed proportions while their absolute levels were decreased. These findings might suggest concentrate feed proportion-dependent and rumen fermentation-mediated alterations in ZEN/metabolite degradation, and

  1. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates.

    Science.gov (United States)

    Gent, Malcolm; Sierra, Héctor Muñiz; Menéndez, Mario; de Cos Juez, Francisco Javier

    2018-01-01

    Viable recycled residual plastic (RP) product(s) must be of sufficient quality to be reusable as a plastic or source of hydrocarbons or fuel. The varied composition and large volumes of such wastes usually requires a low cost, high through-put recycling method(s) to eliminate contaminants. Cyclone separation of plastics by density is proposed as a potential method of achieving separations of specific types of plastics. Three ground calcite separation medias of different grain size distributions were tested in a cylindrical cyclone to evaluate density separations at 1.09, 1.18 and 1.27 g/cm 3 . The differences in separation recoveries obtained with these medias by density offsets produced due to displacement of separation media solid particles within the cyclone caused by centrifugal settling is evaluated. The separation density at which 50% of the material of that density is recovered was found to increase from 0.010 to 0.026 g/cm 3 as the separation media density increased from 1.09 to 1.27 g/cm 3 . All separation medias were found to have significantly low Ep 95 values of 0.012-0.033 g/cm 3 . It is also demonstrated that the presence of an excess content of 75%) resulted in reduced separation efficiencies. It is shown that the optimum separations were achieved when the media density offset was 0.03-0.04 g/cm 3 . It is shown that effective heavy media cyclone separations of RP denser than 1.0 g/cm 3 can produce three sets of mixed plastics containing: PS and ABS/SAN at densities of >1.0-1.09 g/cm 3 ; PC, PMMA at a density of 1.09-1.18 g/cm 3 ; and PVC and PET at a density of >1.27 g/cm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  3. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  4. Uso de cloração e ar comprimido no controle do entupimento de gotejadores ocasionado pela aplicação de água residuária Chlorination and compressed air to control the wastewater clogging in drippers

    Directory of Open Access Journals (Sweden)

    Denis C. Cararo

    2007-08-01

    Full Text Available O crescimento demográfico, o aumento da demanda por água e alimentos, a crescente geração de resíduos, a poluição de corpos de água e a escassez de água têm ocasionado a busca por soluções, das quais uma é o aproveitamento do efluente de estações de tratamento de esgoto na agricultura. Um modo seguro de efetuar a aplicação desse recurso, também fertilizante, é utilizando a irrigação por gotejamento, porém o entupimento nesse sistema consiste em fator restritivo. Assim, com o objetivo de minimizar o entupimento em quatro modelos de gotejadores por uso de águas residuárias oriundas de tratamento secundário de estação de tratamento de esgoto, testaram-se quatro tipos de manejo: (I controle (somente filtragem, (II cloração, (III ar comprimido e (IV cloração e ar comprimido. Obteve-se melhor resultado com o tratamento de 0,5 mg L-1 de cloro residual livre combinado ao gotejador autocompensante.Population, water and food demand, waste and water pollution increasing are the reasons for wastewater reuse in agriculture by drip irrigation systems. However, the clogging is a restrictive fact in these systems, so prevention techniques are necessary to avoid low water distribution coefficients. So, this work was conduct to test four techniques: (I control (filtration, (II chlorination, (III compressed air, and (IV chlorination and compressed air. The best result was obtained with 0.5 mg L-1 free chlorine residual and self-compensating dripper.

  5. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  6. Aqueous chlorination of resorcinol

    Science.gov (United States)

    Heasley, V.L.; Burns, M.D.; Kemalyan, N.A.; Mckee, T.C.; Schroeter, H.; Teegarden, B.R.; Whitney, S.E.; Wershaw, R. L.

    1989-01-01

    An investigation of the aqueous chlorination (NaOCl) of resorcinol is reported. The following intermediates were detected in moderate to high yield at different pH values and varying percentages of chlorination: 2-chloro-, 4-chloro-, 2,4-dichloro-, 4,6-dichloro- and 2,4,6-trichlororesorcinol. Only trace amounts of the intermediates were detected when the chlorination was conducted in the presence of phosphate buffer. This result has significant implications since resorcinol in phosphate buffer has been used as a model compound in several recent studies on the formation of chlorinated hydrocarbons during chlorination of drinking water. Relative rates of chlorination were determined for resorcinol and several of the chlorinated resorcinols. Resorcinol was found to chlorinate only three times faster than 2,4,6-trichlororesorcinol. The structure 2,4,6-trichlororesorcinol was established as a monohydrate even after sublimation. A tetrachloro or pentachloro intermediate was not detected, suggesting that the ring-opening step of such an intermediate must be rapid. ?? 1989.

  7. Wet high-intensity magnetic separation for the concentration of Witwatersrand gold-uranium ores and residues

    International Nuclear Information System (INIS)

    Corrans, I.J.; Levin, J.

    1979-01-01

    Wet high-intensity magnetic separation (WHIMS) for the concentration of gold and uranium was tested on many Witwatersrand cyanidation residues, and on some ores and flotation tailings. The results varied, but many indicated recoveries of over 60 per cent of the gold and uranium. The main source of loss is the inefficiency of WHIMS for material of smaller particle size than 20μm. The recoveries in the continuous tests were lower than those in the batch tests. The continuous tests indicated an operational difficulty that could be experienced in practice, namely the tendency for wood chips and ferromagnetic particles to block the matrix of the separator. It was decided that a solution to the problem lies in the modification of the separator to allow continuous removal of the matrix for cleaning. A system has been developed for this purpose and is being demonstrated on a pilot-plant scale. Promising results were obtained in tests on a process that combines a coarse grind, gravity concentration, and WHIMS. In the gravity-concentration step, considerable recoveries, generally over 50 per cent, of high-grade pyrite were obtained, together with high recoveries of gold and moderate, but possibly important, recoveries of uranium. A simple model describing the operation of the WHIMS machine in terms of the operating parameters is described. This should reduce the amount of empirical testwork required for the optimization of operating conditions and should provide a basis for scale-up calculations. The economics of the WHIMS process is discussed [af

  8. Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice.

    Science.gov (United States)

    Wang, Zhong-Min; Tang, Shen; Messi, María Laura; Yang, Jenny J; Delbono, Osvaldo

    2012-04-01

    Contrasting information suggests either almost complete depletion of sarcoplasmic reticulum (SR) Ca(2+) or significant residual Ca(2+) concentration after prolonged depolarization of the skeletal muscle fiber. The primary obstacle to resolving this controversy is the lack of genetically encoded Ca(2+) indicators targeted to the SR that exhibit low-Ca(2+) affinity, a fast biosensor: Ca(2+) off-rate reaction, and can be expressed in myofibers from adult and older adult mammalian species. This work used the recently designed low-affinity Ca(2+) sensor (Kd = 1.66 mM in the myofiber) CatchER (calcium sensor for detecting high concentrations in the ER) targeted to the SR, to investigate whether prolonged skeletal muscle fiber depolarization significantly alters residual SR Ca(2+) with aging. We found CatchER a proper tool to investigate SR Ca(2+) depletion in young adult and older adult mice, consistently tracking SR luminal Ca(2+) release in response to brief and repetitive stimulation. We evoked SR Ca(2+) release in whole-cell voltage-clamped flexor digitorum brevis muscle fibers from young and old FVB mice and tested the maximal SR Ca(2+) release by directly activating the ryanodine receptor (RyR1) with 4-chloro-m-cresol in the same myofibers. Here, we report for the first time that the Ca(2+) remaining in the SR after prolonged depolarization (2 s) in myofibers from aging (~220 μM) was larger than young (~132 μM) mice. These experiments indicate that SR Ca(2+) is far from fully depleted under physiological conditions throughout life, and support the concept of excitation-contraction uncoupling in functional senescent myofibers.

  9. Accumulation of chlorinated benzenes in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W.N. [Patuxent Wildlife Research Center, Laurel, MD (United States)

    1996-12-31

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. They probably entered the water as leachates from chemical waste dumps and as effluents from manufacturing. Hexachlorobenzene and pentachlorobenzene are commonly present in Herring gull (Larus argentatus) eggs from the Great Lakes, and some of the isomers of trichlorobenzene and tetrachlorobenzene are occasionally detected at low concentrations. Hexachlorobenzene, which was formerly used as a fungicide, has been the most thoroughly studied chlorinated benzene, and has been detected in many species. Its use as a fungicide in the United States was canceled in 1984. Since about 1975 hexachlorobenzene has been formed mainly in the production of chlorinated solvents. It is highly persistent in the environment and some species are poisoned by hexachlorobenzene at very low chronic dietary exposures. As little as 1 ppm in the diet of mink (Mustela vison) reduced the birth weights of young, and 5 ppm in the diet of Japanese quail (Coturnix coturnix japonica) caused slight liver damage. This paper describes a long-term (26 wk) experiment relating the concentrations of chlorinated benzenes in earthworms to length of exposure and three 8 wk experiments relating concentration to the concentration in soil the soil organic matter content, and the degree of chlorination. 20 refs., 3 figs., 1 tab.

  10. A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix.

    Science.gov (United States)

    Mondal, Subhadip; Ganguly, Sayan; Rahaman, Mostafizur; Aldalbahi, Ali; Chaki, Tapan K; Khastgir, Dipak; Das, Narayan Ch

    2016-09-21

    The fabrication of scalable and affordable conductive Ketjen carbon black (K-CB)-elastomer composites for adjustable electromagnetic interference (EMI) shielding remains a difficult challenge. Herein, chlorinated polyethylene (CPE)-K-CB composites have been developed by single step solution mixing to achieve high EMI shielding performance associated with absorption dominance potency by conductive dissipation as well as the reflection of electromagnetic waves. The dispersion of K-CB inside the CPE matrix has been corroborated by electron micrographs and atomic force microscopy (AFM). The K-CB filler and CPE polymer interaction has been investigated through the bound rubber content (Bdr) and the dynamic mechanical properties. The relatively low loading of K-CB with respect to other conventional carbon fillers contributes to a promising low percolation threshold (9.6 wt% K-CB) and a reasonably high EMI shielding effectiveness (EMI SE) value of 38.4 dB (at 30 wt% loading) in the X-band region (8.2 to 12.4 GHz). Classical percolation theory reveals that the electrical conduction behavior through the composite system is quasi-two dimensional in nature. Our belief lies in the promotion of scalable production of flexible and cost-effective K-CB-CPE composites of superior EMI SE to avoid electromagnetic radiation pollution.

  11. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    Directory of Open Access Journals (Sweden)

    G. Prabhakar

    2017-12-01

    Full Text Available This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3−(p concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality study at one of the most polluted cities in the United States – Fresno, CA – in the San Joaquin Valley (SJV and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3−(p concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3−(p aloft in the residual layer (RL can play in determining daytime surface-level NO3−(p concentrations. Further, they indicate that nocturnal production of NO3−(p in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3−(p, despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3−(p concentrations. Entrainment of clean free-tropospheric (FT air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3−(p and limits buildup during pollution episodes. The influence of dry deposition of HNO

  12. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    Science.gov (United States)

    Prabhakar, Gouri; Parworth, Caroline L.; Zhang, Xiaolu; Kim, Hwajin; Young, Dominique E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Nowak, John B.; Bertram, Timothy H.; Faloona, Ian C.; Zhang, Qi; Cappa, Christopher D.

    2017-12-01

    This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3-(p)) concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality) study at one of the most polluted cities in the United States - Fresno, CA - in the San Joaquin Valley (SJV) and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3-(p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3-(p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3-(p) concentrations. Further, they indicate that nocturnal production of NO3-(p) in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL) heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3-(p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3-(p) concentrations. Entrainment of clean free-tropospheric (FT) air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3-(p) and limits buildup during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on

  13. Release of chlorine from biomass at gasification conditions

    International Nuclear Information System (INIS)

    Bjoerkman, E.; Stroemberg, B.

    1997-05-01

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O 2 , H 2 O and CO 2 had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO 2 increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  14. Selective synthesis and characterization of chlorins as sensitizers for photodynamic therapy

    Science.gov (United States)

    Montforts, Franz-Peter; Kusch, Dirk; Hoper, Frank; Braun, Stefan; Gerlach, Benjamin; Brauer, Hans-Dieter; Schermann, Guido; Moser, Joerg G.

    1996-04-01

    Chlorin type sensitizers have ideal photophysical properties for an application in PDT. The basic chlorin framework of these sensitizers has to be modified by attachment of lipophilic and hydrophilic residues to achieve a good cell uptake and tumor enrichment. In the present study we describe the selective synthesis of amphiphilic chlorins starting from the readily accessible red blood pigment heme. The photophysical properties of the well defined synthetic chlorins are characterized by photophysical investigations. The kinetic of cell uptake, the localization in the cell and the photodynamic behavior of the amphiphilic sensitizers are demonstrated by incubation of A 375 cancer cell lines with structurally different chlorins.

  15. Polychlorinated biphenyl toxicity to Japanese quail as related to degree of chlorination

    Science.gov (United States)

    Hill, E.F.; Heath, R.G.; Spann, J.W.; Williams, J.D.

    1974-01-01

    To learn if the percentage of chlorine in a mixture of polychlorinated biphenyls (PCB's) alone determines toxicity, Japanese quail were fed diets containing Aroelor 1248, 1254, or 1260 at levels that added equal amounts of chlorine to the feed. The experiment comprised two consecutive 5-day periods; three sublethal concentrations of chlorine were evaluated during the first period and three lethal concentrations during the second period. Evaluations utilized comparisons of mortality, time to death, weight change, and food consumption. Sublethal concentrations produced no detectable effects. Lethal concentrations with equal Chlorine showed Aroelor 1248 to be less toxic at the highest chlorine concentrations, but at lower concentrations Aroelor 1254 was more toxic than Aroclor 1260. Although chlorine percentage of a PCB is positively correlated with its avian toxicity, PCB toxicity is apparently not simply a function of chlorination.

  16. Semiconducting iron silicide thin films on silicon (111) with large Hall mobility and low residual electron concentration

    Science.gov (United States)

    Muret, P.; Ali, I.; Brunel, M.

    1998-10-01

    Unprecedented Hall mobility, electron concentration and photoconductivity are demonstrated in semiconducting 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7 thin films prepared on Si(111) surfaces by co-sputtering of iron and silicon followed by post-anneal. Characterization of the silicide as a function of the initial temperature and post-treatment shows that annealing temperatures above 0268-1242/13/10/020/img8C are needed to obtain single phase 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7. Reactive deposition on substrates heated at 0268-1242/13/10/020/img11C leads to textured films. Majority carriers are electrons in all these unintentionally doped films. Hall concentrations between 0268-1242/13/10/020/img12 and 0268-1242/13/10/020/img13 electrons 0268-1242/13/10/020/img14 and respective Hall mobilities from 290 to 0268-1242/13/10/020/img15 are measured at room temperature, involving two different conduction band minima in these two extreme cases. Only deep centres exist in the samples having the lower carrier concentration. In such a situation, raw data must be corrected for the substrate contribution to extract values which are relevant for the 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7 film alone. Photoconductivity also takes place in these samples: at 80 K, it shows a maximum value at the direct band gap of 0268-1242/13/10/020/img6-0268-1242/13/10/020/img7 while at 296 K a step still appears at the same energy. Such results are a consequence of the important decrease of the residual impurity concentration in comparison to values previously published.

  17. Attacks of Asthma due to Chlorinized Water: Case Report

    Directory of Open Access Journals (Sweden)

    Murat Eyup Berdan

    2008-02-01

    Full Text Available The presence of a high prevalence of bronchial hyperresponsiveness and asthma-like symptoms in swimmers has been reported. But, attacks of asthma which is related to chlorinized water is rare. Chlorine, a strong oxidizing agent, is an important toxic gas that the swimmer can breath during swimming and a worker can exposed to chlorine while he or she was using water with chlorine at home. We describe a persistent increase in nonspecific bronchial hyperresponsiveness following chronic exposure to strong respiratory irritant with chlorinized water in two subjects with no past history of asthma or atopy. We conclude that airway hyperresponsiveness can develop or increase after chronic inhalation of high concentrations of irritants such as chlorinized water an indoor irritant factor and that these changes may be prolonged. [TAF Prev Med Bull 2008; 7(1.000: 87-90

  18. Imidazole catalyzes chlorination by unreactive primary chloramines

    Science.gov (United States)

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    . Time-dependent imidazole-catalyzed HPA chlorination by NH2Cl was also demonstrated by product analyses. Quantitative assessment of the data suggests that physiological levels of histidyl groups will react with primary chloramines to generate a flux of imidazole chloramine sufficient to catalyze biological chlorination via HImCl+, particularly in environments that generate high concentrations of HOCl such as the neutrophil phagosome. PMID:25660996

  19. Hydrochloric Acid and the Chlorine Budget of the Lower Stratosphere

    Science.gov (United States)

    Webster, C.; May, R.; Jaegle, L.; Hu, H.; Sander, S.; Gunson, M.; Toon, G.; Russell, J., III; Stimpfle, R.; Koplow, J.; hide

    1994-01-01

    Concentrations of hc1 measured in the lower stratosphere in 1993 by the ALIAS instrument on the ER-2 aircraft reveal that only 40% of inorganic chlorine (CL sub y, inferred from in situ measurements of organic chlorinated source gases) is present as HC1, significantly lower than model predictions.

  20. The hydrogen concentration as parameter to identify natural attenuation processes of volatile chlorinated hydrocarbons in ground water; Die Wasserstoffkonzentration als Parameter zur Identifizierung des natuerlichen Abbaus von leichtfluechtigen Chlorkohlenwasserstoffen (LCKW) im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Alter, M.D.

    2006-06-15

    In this study, the hydrogen concentration as parameter to identify natural attenuation processes of volatile chlorinated hydrocarbons was investigated. The currently accepted and recommended bubble strip method for hydrogen sampling was optimized, and a storage method for hydrogen samples was developed. Furthermore batch experiments with a dechlorinating mixed culture and pure cultures were carried out to study H{sub 2}-concentrations of competing redox processes. The extraction of hydrogen from ground water was optimized by a reduced inlet diameter of the usually applied gas sampling bulbs, allowing a maximal turbulent ow and gas transfer. With a gas volume of 10 ml and flow rates of 50 to 140 ml/min, the course of extraction almost followed the theoretical course of equilibration. At flow rates > 100 ml/min a equilibrium of 98% was achieved within 20 min. Until recently it was generally accepted that hydrogen samples can be stored only for 2 hours and therefore have to be analyzed immediately in the eld. Here, it was shown that eld samples can be stored for 1-3 days until analysis. For the dechlorination of tetrachloroethene (PCE), a hydrogen threshold concentration of 1-2 nM was found with the dechlorinating mixed culture as well as with a pure culture of Sulfurospirillum multivorans in combination with another pure culture Methanosarcina mazei. No dechlorination was detectable below this concentration. With the dechlorinating mixed culture, this finding is valid for all successive dechlorination steps until ethene. The hydrogen threshold concentration for denitrification were below the detection limit of 0,2 nM with the dechlorinating mixed culture. A threshold concentration of 3,1-3,5 nM was found for sulphate reduction and a threshold of 7-9 nM H{sub 2} for hydrogenotrophic methanogenesis. This implies that the natural dechlorination at contaminated sites is preferred to competing processes like sulphate reduction and methanogenesis. The threshold

  1. Chlorine trifluoride (1963)

    International Nuclear Information System (INIS)

    Vincent, L.M.; Gillardeau, J.

    1963-01-01

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors) [fr

  2. Organo chlorine pesticides (OCPs) contaminants in sediments from Karachi harbour, Pakistan

    International Nuclear Information System (INIS)

    Khan, N.; Khan, S.H.; Amjad, S.; Muller, J.; Nizamani, S.; Bhanger, M.I.

    2010-01-01

    Mangrove swamps, inter tidal mud flats and creeks of backwaters represent main feature of Karachi harbour area. Karachi harbour sediment is under continuous influence of untreated industrial effluents and domestic waste discharged into the Harbour area via Lyari River. Sediment samples from sixteen locations were collected to evaluate the levels of contamination of organo chlorine pesticides (OCPs) in Karachi harbour and adjoining areas. It has been observed that residual concentrations of various organo chlorine pesticides were considerably higher in the semi-enclosed area of the upper Harbour in the vicinity of the discharge point of Lyari River. The residue of DDT mainly its metabolites (DDE and DDD) were widely distributed and have been detected in most of the sediment samples in relatively higher concentrations as compared to other OCPs. The higher levels of the DDTs would attribute to low tidal flushing of the area. The high proportion of pp'-DDE in the most sediment sampled (41-95%) suggested old inputs of DDTs in the environment. Ratio of sigma DDT and DDT was in the range of 0.04 - 0.24 at all locations which also reflects that the discharges of DDT were negligible in the Harbour area. This may be due to the restrictions being implemented on the use of DDTs and Pakistan has also switched over to natural pest control or using safer formulas. The data obtained during the study showed that concentration levels of other pesticides such as HCHs, HCB and Cyclodienes in the sediment were generally lower than the threshold levels known to harm wildlife by OCPs. The results clearly indicate that elevated concentration of organo chlorine pesticides (OCPs) in the marine sediment of Karachi harbour and adjoining area was localized and much lower than the concentrations reported from neighbouring and regional countries which suggests/confirms that the present use of pesticide in Pakistan is environmentally safe. (author)

  3. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sublethal Effects of Chlorine-Free Kraft Mill Effluents on Daphnia magna.

    Science.gov (United States)

    Chamorro, Soledad; López, Daniela; Brito, Pablina; Jarpa, Mayra; Piña, Benjamin; Vidal, Gladys

    2016-12-01

    The implementation of elemental chlorine-free (ECF) bleaching methods has drastically reduced the aquatic toxicity of Kraft mill effluents during the last decade. However, the residual toxicity of Kraft mill effluents is still a potential concern for the environment, even when subjected to secondary wastewater treatment. The aim of this study is characterize potential sublethal effects of ECF Kraft mill effluents using Daphnia magna as model species. D. magna exposed towards increasing concentration of ECF Kraft mill effluent showed a significant, dose-dependent reduction in feeding. Conversely, post-feeding assay, life history, and allometric growth analyses showed stimulatory, rather than inhibitory effects in exposed animals at low concentrations, while high concentrations of ECF Kraft mill effluents reduced their reproductive output. These results suggest a hormetic effect in which moderate concentrations of the effluent had a stimulatory effect with higher concentrations causing inhibition in some variables.

  5. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    Science.gov (United States)

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  6. Accumulation of chlorinated benzenes in earthworms

    Science.gov (United States)

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  7. Chlorine transportation risk assessment

    International Nuclear Information System (INIS)

    Lautkaski, Risto; Mankamo, Tuomas.

    1977-02-01

    An assessment has been made on the toxication risk of the population due to the bulk rail transportation of liquid chlorine in Finland. Fourteen typical rail accidents were selected and their probability was estimated using the accident file of the Finnish State Railways. The probability of a chlorine leak was assessed for each type of accident separately using four leak size categories. The assessed leakage probability was dominated by station accidents, especially by collisions of a chlorine tanker and a locomotive. Toxication hazard areas were estimated for the leak categories. A simple model was constructed to describe the centring of the densely populated areas along the railway line. A comparison was made between the obtained risk and some other risks including those due to nuclear reactor accidents. (author)

  8. The Dutch secret : How to provide safe drinking water without chlorine in the Netherlands

    NARCIS (Netherlands)

    Smeets, P.W.M.H.; Medema, G.J.; Van Dijk, J.C.

    2009-01-01

    The Netherlands is one of the few countries where chlorine is not used at all, neither for primary disinfection nor to maintain a residual disinfectant in the distribution network. The Dutch approach that allows production and distribution of drinking water without the use of chlorine while not

  9. Determination of chlorine in graphite by combustion-ion chromatography

    International Nuclear Information System (INIS)

    Chen Lianzhong; Watanabe, Kazuo; Itoh, Mitsuo.

    1995-09-01

    A combustion/ion chromatographic method has been studied for the sensitive determination of chlorine in graphite. A graphite sample was burnt at 900degC in a silica reaction tube at an oxygen flow rate of 200 ml/min. Chlorine evolved was absorbed in 20 ml of a 0.1 mM sodium carbonate solution. The solution was evaporated to dryness. The residue was dissolved with a small volume of water. Chlorine in the solution was determined using ion chromatography. The method was applied to JAERI graphite certified reference materials and practical graphite materials. The detection limit was about 0.8 μgCl/g for a 2.0 g sample. The precision was about 2.5% (relative standard deviation) for samples with chlorine content of 70 μg/g level. The method is also usable for coal samples. (author)

  10. Effect of the temperature and the chlorine pressure, over the aluminium chlorides obtained by direct chlorination of the 6061 alloy

    International Nuclear Information System (INIS)

    Alvarez, Fabiola J.; Bohe, Ana E.; Pasquevich, Daniel M.

    2003-01-01

    The aluminium chloride is synthesized by direct chlorination of aluminium, in agreement with the following reaction: Al(s) + 3/2 Cl 2 AlCl 3 (s,g).The present work focuses on the preparation of aluminium chlorides by two methods: (a) Chlorination of 6061 aluminium alloy with gaseous chlorine in sealed containers, filled with different pressures of gas, from 0.8 to 74 Kpa and in the range of temperature between 200 0 and 500 0 C.(b) Chlorination of the same alloy in chlorine flow between 150 0 and 400 0 C.In the sealed systems, the hexahydrated aluminium trichloride predominated over the anhydrous form. For pressures lower than 14 Kpa and temperatures under 250 0 C, the chloride didn't appear.The residues were rich in aluminium, chlorine and magnesium.In the other systems, the anhydrous chloride was found in the areas of the reactor of temperatures above 100 0 C, for all the thermal treatments. The waste was composed by CrCl 3 and AlCl 3 .6H 2 O.The influence of the chlorine pressures and the heating temperature over the characteristics of the product, was studied.The characterization techniques were x-ray diffraction and energy dispersive spectroscopy, and the evolution of the structure was followed by scanning electron microscopy

  11. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Biochars made from agro-industrial by-products remove chlorine and lower water toxicity

    Science.gov (United States)

    Tzachristas, Andreas; Xirou, Maria; Manariotis, Ioannis D.; Dailianis, Stefanos; Karapanagioti, Hrissi K.

    2016-04-01

    Chlorination is the most common disinfection process for water and treated wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination efficiency and kinetics of the different raw and biochar materials as well as those of commercial activated carbons. As chlorine concentration increases the removal also increases linearily. After 1 and 24 hours of contact the chlorine relative removal efficiencies for the biochar made from olive seeds are 50 and 77 ± 4%, respectively. It seems that the removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0

  13. The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991-2007

    International Nuclear Information System (INIS)

    McKinney, Melissa A.; Stirling, Ian; Lunn, Nick J.; Peacock, Elizabeth; Letcher, Robert J.

    2010-01-01

    Adipose tissue was sampled from the western Hudson Bay (WHB) subpopulation of polar bears at intervals from 1991 to 2007 to examine temporal trends of PCB and OCP levels both on an individual and sum-(Σ-)contaminant basis. We also determined levels and temporal trends of emerging polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyls (PBBs) and other current-use brominated flame retardants. Over the 17-year period, Σ DDT (and p,p'-DDE, p,p'-DDD, p,p'-DDT) decreased (-8.4%/year); α-hexachlorocyclohexane (α-HCH) decreased (-11%/year); β-HCH increased (+ 8.3%/year); and Σ PCB and Σ chlordane (CHL), both contaminants at highest concentrations in all years (> 1 ppm), showed no distinct trends even when compared to previous data for this subpopulation dating back to 1968. Some of the less persistent PCB congeners decreased significantly (-1.6%/year to -6.3%/year), whereas CB153 levels tended to increase (+ 3.3%/year). Parent CHLs (c-nonachlor, t-nonachlor) declined, whereas non-monotonic trends were detected for metabolites (heptachlor epoxide, oxychlordane). Σ chlorobenzene, octachlorostyrene, Σ mirex, Σ MeSO 2 -PCB and dieldrin did not significantly change. Increasing Σ PBDE levels (+ 13%/year) matched increases in the four consistently detected congeners, BDE47, BDE99, BDE100 and BDE153. Although no trend was observed, total-(α)-HBCD was only detected post-2000. Levels of the highest concentration brominated contaminant, BB153, showed no temporal change. As long-term ecosystem changes affecting contaminant levels may also affect contaminant patterns, we examined the influence of year (i.e., aging or 'weathering' of the contaminant pattern), dietary tracers (carbon stable isotope ratios, fatty acid patterns) and biological (age/sex) group on congener/metabolite profiles. Patterns of PCBs, CHLs and PBDEs were correlated with dietary tracers and biological group, but only PCB and CHL patterns were correlated with year

  14. Increase of cytotoxicity during wastewater chlorination: Impact factors and surrogates.

    Science.gov (United States)

    Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying; Yang, Yang; Liu, Rui; Liu, Feng

    2017-02-15

    Toxic and harmful disinfection byproducts (DBPs) were formed during wastewater chlorination. It was recently suggested that cytotoxicity to mammalian cells reflects risks posed by chlorinated wastewater. Here, ATP assays were performed to evaluate the cytotoxicity to mammalian cells. Chlorination significantly increased cytotoxicity of treated wastewater. Factors affecting cytotoxicity formation during wastewater chlorination were investigated. Quenching with sodium thiosulfate and ascorbic acid decreased the formed cytotoxicity, while ammonium kept the cytotoxicity stable. The chlorine dose required for the maximum cytotoxicity increase was dramatically affected by DOC and ammonia concentrations. The maximum cytotoxicity increase, defined as the cytotoxicity formation potential (CtFP), occurred when wastewater was treated for 48h with a chlorine dose of 2·DOC+11·NH 3 N+10 (mg-Cl 2 /L). During chlorination, the amounts of AOX formation was found to be significantly correlated with cytotoxicity formation when no DBPs were destroyed. AOX formation could be used as a surrogate to estimate cytotoxicity increase during wastewater chlorination. Besides, the CtFP of 14 treated wastewater samples was assessed ranged from 5.4-20.4mg-phenol/L. The CtFP could be estimated from UV 254 of treated wastewater because CtFP and UV 254 were strongly correlated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Snapping Turtles (Chelydra serpentina) from Canadian Areas of Concern across the southern Laurentian Great Lakes: Chlorinated and brominated hydrocarbon contaminants and metabolites in relation to circulating concentrations of thyroxine and vitamin A.

    Science.gov (United States)

    Letcher, Robert J; Lu, Zhe; de Solla, Shane R; Sandau, Courtney D; Fernie, Kimberly J

    2015-11-01

    The metabolites of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as well as other halogenated phenolic contaminants (HPCs) have been shown to have endocrine-disrupting properties, and have been reported with increasing frequency in the blood of wildlife, and mainly in mammals and birds. However, little is known about the persistence, accumulation and distribution of these contaminants in long-lived freshwater reptiles. In the present study, in addition to a large suite of chlorinated and brominated contaminants, metabolites and HPCs, we assessed and compared hydroxylated (OH) PCBs and OH-PBDEs relative to PCBs and PBDEs, respectively, in the plasma of adult male common snapping turtles (Chelydra serpentina). Blood samples were collected from 62 snapping turtles (2001-2004) at 12 wetland sites between the Detroit River and the St. Lawrence River on the Canadian side of the Laurentian Great Lakes of North America. Turtles were sampled from sites designated as Areas of Concern (AOCs) and from a relatively clean reference site in southern Georgian Bay (Tiny Marsh), Lake Huron. Plasma concentrations of Σ46PCB (10-340 ng/g wet weight (ww)) and Σ28OH-PCB (3-83 ng/g ww) were significantly greater (pturtles from the Turkey Creek and Muddy Creek-Wheatley Harbour sites in Lake Erie compared with the reference site turtles. The HPC, pentachlorophenol (PCP), had a mean concentration of 9.6±1.1 ng/g ww. Of the 28 OH-CB congeners screened for, 4-OH-CB187 (42±7 ng/g ww) was the most concentrated of all HPCs measured. Of the 14 OH-BDE congeners examined, four (4'-OH-BDE17, 3-OH-BDE47, 5-OH-BDE47 and 4'-OH-BDE49) were consistently found in all plasma samples. p,p'-DDE was the most concentrated of the 18 organochlorine pesticides (OCPs) examined. The mean concentrations of circulating total thyroxine (TT4), dehydroretinol and retinol in the plasma of the male snapping turtles regardless of sampling site were 5.4±0.3, 81±4.7 and 291±13 ng

  16. Chlorine-assisted leaching of Rabbit Lake uranium ore

    International Nuclear Information System (INIS)

    Haque, K.E.

    1981-05-01

    Bench-scale chlorine-assisted leaching tests were conducted on the Rabbit Lake uranium ore. Maximum extractions of uranium (97%), and radium-226 (90%) were obtained from leach tests conducted on slurries containing 60% solids at 40 degree C for 18 hours of leaching. Chlorine requirement was found to be 25.0 kg/tonne of ore to maintain the acidity level of the leach slurry at pH 1.0. Hydrochloric acid leaches were conducted on the chlorine-assisted leach residue to reduce the radium level to 25 pCi/g from 140 pCi/g of solids, but the radium level of the second-stage leach residue was found to be 90 pCi/g of solids. Therefore multistage (3 or 4 stages) acid chloride leaching have been recommended to obtain tailings almost free of radionuclides

  17. Macrokinetic relationships between anodic processes in chlorine electrolysis on ruthenium-titanium oxide anodes

    International Nuclear Information System (INIS)

    Evdokimov, S.V.

    1999-01-01

    Effect of porosity on kinetics of the main (chlorine evolution) and side (oxygen evolution and anodic dissolution of ruthenium dioxide) reactions for chlorine electrolysis conditions has been analyzed. Making allowance for chlorine hydrolysis secondary reaction, the distribution of chlorine concentration, solution pH and current densities of the main and side processes over the porous anode depth, have been found. It is shown that solution acidification in the anode pores due to chlorine hydrolysis can bring about replacement of oxygen evolution and ruthenium dioxide dissolution side reactions toward the porous anode external sides thus affecting its selectivity and corrosion resistance [ru

  18. Determination of chlorine in nuclear-grade uranium compounds by ion-selective electrode

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan.

    1989-01-01

    The determination of microamount chlorine in nuclear-grade uranium compounds is described. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800-900 deg C. Chlorine is volatilized as hydrochloric acid, which then is absorbed in a dilute alkaline solution and measured with chlorine selective electrode. This method covers the concentration range of 10-500 ppm chlorine in uranium oxide. The relative standard diviation is better than 10% and recovery of 85-108% has been reported

  19. Chlorine Gas Inhalation

    Science.gov (United States)

    White, Carl W.; Martin, James G.

    2010-01-01

    Humans can come into contact with chlorine gas during short-term, high-level exposures due to traffic or rail accidents, spills, or other disasters. By contrast, workplace and public (swimming pools, etc.) exposures are more frequently long-term, low-level exposures, occasionally punctuated by unintentional transient increases. Acute exposures can result in symptoms of acute airway obstruction including wheezing, cough, chest tightness, and/or dyspnea. These findings are fairly nonspecific, and might be present after exposures to a number of inhaled chemical irritants. Clinical signs, including hypoxemia, wheezes, rales, and/or abnormal chest radiographs may be present. More severely affected individuals may suffer acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). Up to 1% of exposed individuals die. Humidified oxygen and inhaled β-adrenergic agents are appropriate therapies for victims with respiratory symptoms while assessments are underway. Inhaled bicarbonate and systemic or inhaled glucocorticoids also have been reported anecdotally to be beneficial. Chronic sequelae may include increased airways reactivity, which tends to diminish over time. Airways hyperreactivity may be more of a problem among those survivors that are older, have smoked, and/or have pre-existing chronic lung disease. Individuals suffering from irritant-induced asthma (IIA) due to workplace exposures to chlorine also tend to have similar characteristics, such as airways hyperresponsiveness to methacholine, and to be older and to have smoked. Other workplace studies, however, have indicated that workers exposed to chlorine dioxide/sulfur dioxide have tended to have increased risk for chronic bronchitis and/or recurrent wheezing attacks (one or more episodes) but not asthma, while those exposed to ozone have a greater incidence of asthma. Specific biomarkers for acute and chronic exposures to chlorine gas are currently lacking. Animal models for chlorine gas

  20. Chlorine and bromine contents in tobacco and tobacco smoke

    International Nuclear Information System (INIS)

    Haesaenen, E.; Manninen, P.K.G.; Himberg, K.; Vaeaetaeinen, V.

    1990-01-01

    The chlorine and bromine contents in tobacco and tobacco smoke in both the particulate and gaseous phases were studied by neutron activation analysis. Eleven popular brands of western filter cigarettes were tested. Methyl chloride and methyl bromide concentrations were measured in the gaseous phase in two leading brands in Finland. The results suggest that the mainstream smoke from one cigarette conveys into the lungs about 150 μg chlorine and about 5 μg bromine. Probably most of the chlorine and bromine is in the form of organic compounds and the main components are methyl chloride and methyl bromide. (author) 14 refs.; 1 tab

  1. Nonaqueous chlorination of uranium metal in tributyl phosphate

    International Nuclear Information System (INIS)

    Buchikhin, E.P.; Kuznetsov, A.Yu.; Shatalov, V.V.; Vidanov, V.L.; Chekmarev, A.M.

    2005-01-01

    Low-temperature (30-50 deg C) chlorination of uranium metal in the TBP-TCE-Cl 2 system (TCE = tetrachloroethylene) was studied. Dissolution of uranium in the dipolar aprotic solvent proceeds with formation of U(IV) compounds. The activation energy of this process is 31.24 kJ mol -1 , and relative reaction order with respect to Cl 2 is 2. The effect of TBP concentration on chlorination was examined. The chlorination rate sharply increases at a water content in the TBP-TCE system of 0.2- 0.6 vol % [ru

  2. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Yu Cheng Zhu

    Full Text Available Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate, Karate (λ-cyhalothrin, Vydate (oxamyl, Domark (tetraconazole, and Roundup (glyphosate at residue level had a mortality range of 1.3-13.3%, statistically similar to that of control (P>0.05. The additive/synergistic toxicity was not detected from binary mixtures of Advise with different classes of pesticides at residue levels. The feeding of the mixture of all seven pesticides increased mortality to 53%, significantly higher than Advise only but still without synergism. Enzymatic data showed that activities of invertase, glutathione S-transferase, and acetylcholinesterase activities in imidacloprid-treated survivors were mostly similar to those found in control. Esterase activity mostly increased, but was significantly suppressed by Bracket (acephate. The immunity-related phenoloxidase activity in imidacloprid-treated survivors tended to be lower, but most treatments were statistically similar to the control. Increase of cytochrome P450 activity was correlated with Advise concentrations and reached significant difference at 56 mg/L (12 ppm a.i.. Our data demonstrated that residue levels of seven pesticide in pollens/hive may not adversely affect honey bees, but long term exclusive ingestion of the maximal residue levels of imidacloprid (912 ppb and sulfoxaflor (3 ppm a.i. may induce substantial bee mortality. Rotating with other insecticides is a necessary and practical way to reduce the residue level of any given pesticide.

  3. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera).

    Science.gov (United States)

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen) induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate), Karate (λ-cyhalothrin), Vydate (oxamyl), Domark (tetraconazole), and Roundup (glyphosate) at residue level had a mortality range of 1.3-13.3%, statistically similar to that of control (P>0.05). The additive/synergistic toxicity was not detected from binary mixtures of Advise with different classes of pesticides at residue levels. The feeding of the mixture of all seven pesticides increased mortality to 53%, significantly higher than Advise only but still without synergism. Enzymatic data showed that activities of invertase, glutathione S-transferase, and acetylcholinesterase activities in imidacloprid-treated survivors were mostly similar to those found in control. Esterase activity mostly increased, but was significantly suppressed by Bracket (acephate). The immunity-related phenoloxidase activity in imidacloprid-treated survivors tended to be lower, but most treatments were statistically similar to the control. Increase of cytochrome P450 activity was correlated with Advise concentrations and reached significant difference at 56 mg/L (12 ppm a.i.). Our data demonstrated that residue levels of seven pesticide in pollens/hive may not adversely affect honey bees, but long term exclusive ingestion of the maximal residue levels of imidacloprid (912 ppb) and sulfoxaflor (3 ppm a.i.) may induce substantial bee mortality. Rotating with other insecticides is a necessary and practical way to reduce the residue level of any given pesticide.

  4. Chlorinated organic compounds in urban river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  5. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Manasfi, Tarek; Kaarsholm, Kamilla Marie Speht

    2017-01-01

    experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo...

  6. Enhanced Attenuation: Chlorinated Organics

    Science.gov (United States)

    2008-04-01

    an electron acceptor. Common substitutes for oxygen are nitrate, sulfate, iron, carbon dioxide, and other organic compounds ( fermentation ). anoxic...that not until the analysis is focused just on the extremely bioavailable VFAs (also called “metabolic acids”: acetic, propionic, butyric , iso- and...I or Type II chlorinated solvent site, Wiedemeier et al. 1998) or if the electron donor supply is enhanced by adding fermentation substrates or

  7. Selected alternatives to conventional chlorination. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garey, J.F.

    1980-10-01

    This study was jointly funded by EPRI and five electric utility companies in New England (New England Power, Northeast Utilities, United Illuminating, Vermont Yankee Nuclear, and Public Service of New Hampshire). Previous investigations had identified three major areas for further study: continuous low-level chlorination, dechlorination, and condenser biofouling control. Continuous low-level chlorination, studied at two locations, one on open coastal water and the other in an industrialized estuarine area, showed that 0.1 ppM total residual oxidant (TRO) prevented attachment of the blue mussel (Mytilus edulis) to concrete surfaces. Chronic bioassays showed that 0.075 ppM TRO reduced biofouling by indigenous organisms; 0.1 ppM TRO slightly increased mortalities of the Atlantic silversides (Menidia menidia) but had no effect on the American oyster (Crassostrea virginica). Dechlorination investigations showed that threespine sticklebacks (Gasterosteus aculeatus), Atlantic silversides (Menidia menidia), larval bay scallops (Argopecten irradians), and the copepod Acartia tonsa exposed to water chlorinated to 0.5 ppM TRO for 10, 100, and 1000 seconds, followed by dechlorination with sodium thiosulfate, all suffered significant toxic effects. Condenser tube biofouling studies showed that there was a strong correlation between condenser performance and condenser tube biofouling; biofilm induction varied inversely with ambient water temperature, but orientation of the tubes had no effect on biofilm formation; and all chemicals tested (mono-, di-, and trisodium phosphate; Polident; and TRO at 0.1 ppM) reduced but did not remove biofilms.

  8. Study of Chlorination Application in Tapioca Wastewater Cyanide Removal

    Directory of Open Access Journals (Sweden)

    Happy Mulyani

    2014-08-01

    Full Text Available Tapioca wastewater contains a high concentration of organic matter and cyanide. Chlorination has known as one of alternative cyanide removal methods. The fact that must be an attention is carcinogenic compound such as Tri Halo Methane could be produced as byproduct chlorination of organic waste. This research aimed to determine condition of chlorination application in tapioca wastewater cyanide removal especially calcium hypochlorite dosage and pH thus meeting the criteria of the quality standard of waste and Tri Halo Methane identification. Efluent of chlorination using calcium hypochlorite dosage based on stoichiometry reaction between chlor and cyanide (mole ratio chlor:cyanide = 1:1 which carried out at pH operation 8 for 60 minutes has observed for cyanide content and Tri Halo Methane identification. Other variation of calcium hypochlorite dosage applied until meet the standart quality or lower cyanide content of effluent with no Tri Halo Methane detected. pH optimum determined from comparation of quality effluent of chlorination using calcium hypochlorite optimum dosage with variation pH operation 6, 7, 8. The results showed that the optimum condition for chlorination application in tapioca wastewater removal was 5,986 mg/L for calcium hypochlorite dosage (1,75 stoichiometry reaction and 8 for pH operation. This chlorination condition able to reduce cyanide of 192 mg/L to 0,272 mg/L wuth no Tri Halo Methane detected in the effluent.

  9. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    International Nuclear Information System (INIS)

    Pipon, Y.; Bererd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrezic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-01-01

    The radiation enhanced diffusion of chlorine in UO 2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36 Cl, present as an impurity in UO 2 , 37 Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127 I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 x 10 -14 cm 2 s -1 , reflect the high mobility of chlorine in UO 2 during irradiation with fission products

  10. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Science.gov (United States)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  11. Chlorine-assisted leaching of Key Lake uranium ore

    International Nuclear Information System (INIS)

    Haque, K.E.

    1981-04-01

    Bench-scale chlorine-assisted leach tests were conducted on the Key Lake uranium ore. Leach tests conducted at 80 0 C on a slurry containing 50% solids during 10 hours of agitation gave the maximum extraction of uranium - 96% and radium-226 - 91%. Chlorine was added at 23.0 Kg Cl 2 /tonne of ore to maintain the leach slurry pH in the range of 1.5-1.0. To obtain residue almost free of radionuclides, hydrochloric acid leaches were conducted on the first stage leach residues. The second stage leach residue still was found to contain uranium - 0.0076% and radium-226 - 200 pCi/g of solids

  12. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  13. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    Directory of Open Access Journals (Sweden)

    Reyna del Carmen Lara-Severino

    2016-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ=150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes.

  14. Optimization of Chlorination Process for Mature Leachate Disinfection Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hamzeh Ali Jamali1

    2014-06-01

    Full Text Available Background: leachate from landfill contains high level of microbial pathogens which is considered as one of the most important threats for the environment. One of the common and simple methods for water and wastewater disinfection is chlorination, but it rarely has been used for leachate disinfection. The objective of this study was evaluating the efficiency of chlorine for leachate disinfection and optimization of the effect of concentration and contact time on the death of total and fecal coliforms, as a microbial contamination index. Methods: In this descriptive-analysis study, microbial indices monitoring in leachates initiated from landfill of Qazvin city were conducted for one year. After pre-tests, the range of chlorine concentration and contact time on the inactivation of microbial indices were determined. Central composite design (CCD and response surface methodology (RSM were applied to optimize chlorine concentration and contact time parameters effect on microbial inactivation. 13 runs of tests were performed on samples. Tests were included BOD, COD, total and fecal coliforms. All analytical experiments were according to the standard methods for the examination of water and wastewater. Results: Results of the study showed that microbial indices had relatively high sensitivity to inactivation by chlorination, which in the chlorine concentration of 2 mg/L and contact time of 9 min, and chlorine concentration of 0.5 mg/L and contact time of 12 min, 100% of total and fecal coliforms inactivated, respectively. The RSM method was used for analysis of bacterial inactivation. Analyses showed that in contact time of 9.4 min and chlorine concentration of 2.99 mg/L, the inactivation efficiency of total and fecal coliforms were 89.16% and 100%, respectively. Conclusions: Chlorine could be used for leachate disinfection. However, in high concentrations of organic matter in leachates, due to production potential of chlorination by-products, health

  15. Further studies on the use of enzyme profiles to monitor residue accumulation in wildlife: Plasma enzymes in starlings fed graded concentrations of morsodren, DDE, Aroclor 1254, and malathion

    Science.gov (United States)

    Dieter, M.P.

    1975-01-01

    Wild-trapped starlings (Sturnus vulgaris) were fed concentrations of Morsodren (2, 4, and 8 ppm), DDE or Aroclor 1254 (5, 25, and 100 ppm), or malathion (8, 35, and 160 ppm) that were found to be sublethal in pen-reared Coturnix quail fed these amounts for 12 weeks. Plasma enzymes had to be measured earlier than planned in starlings fed Morsodren (at three weeks) or the organochlorine compounds (at seven weeks) because of unexpected, subsequent mortality. Variations in enzyme response were greater in wild than in pen-reared birds, but not enough to mask the toxicant-induced changes in enzyme activity. Cholinesterase activities decreased in birds fed Morsodren or malathion, and increased in those fed the organochlorine compounds. Lactate dehydrogenase activities increased two-fold in starlings fed Morsodren and two- to four-fold in those fed the organochlorine compounds, but only 50% in those fed malathion. Further examination of enzyme profiles showed that creatine kinase and aspartate aminotransferase activities increased two-to four-fold in birds fed Morsodren or the organochlorine compounds but not at all in those fed malathion. Thus the classes of environmental contaminants fed to starlings could be easily distinguished by these enzymatic parameters. Evaluation of enzymatic profiles appears to be a potentially valuable technique to monitor the presence of toxicants in wild populations, especially if used to complement standard chemical residue analyses. Here the residue analyses showed, after three weeks feeding, that mercury in the carcasses reflected the concentrations fed daily, whereas accumulation in the livers was two- to four-fold greater. After seven weeks feeding, liver residues of either organochlorine compound were about three-fold higher than the concentrations fed daily. However, four times as much DDE as Aroclor 1254 had accumulated in the carcasses.

  16. Residual radionuclide concentrations and estimated radiation doses at the former French nuclear weapons test sites in Algeria.

    Science.gov (United States)

    Danesi, P R; Moreno, J; Makarewicz, M; Louvat, D

    2008-11-01

    In order to assess the level of residual radioactivity and evaluate the radiological conditions at the former French nuclear testing sites of Reggane and Taourirt Tan Afella in the south of Algeria, the International Atomic Energy Agency, at the request of the government of Algeria, conducted a field mission to the sites in 1999. At these locations, France conducted a number of nuclear tests in the early 1960s. At the ground zero locality of the ''Gerboise Blanche'' atmospheric test (Reggane) and in the vicinity of a tunnel where radioactive lava was ejected during a poorly contained explosion (Taourirt Tan Afella), non-negligible levels of radioactive material could still be measured. Using the information collected and using realistic potential exposure scenarios, radiation doses to potential occupants and visitors to the sites were estimated.

  17. Biochars made from agro-industrial by-products remove chlorine from water and wastewater

    Science.gov (United States)

    Tzachristas, Andreas; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2017-04-01

    Chlorination is the most common disinfection process for water and wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination kinetics of the different raw and biochar materials as well as those of commercial activated carbons. The removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The first-order constant k1 ranged between 0.001 and 0.014 (min-1) for the biosorbents and the biochars and it was equal to 0.017 (min-1) for the commercial

  18. Factorial analysis of the trihalomethanes formation in water disinfection using chlorine

    International Nuclear Information System (INIS)

    Rodrigues, Pedro M.S.M.; Esteves da Silva, Joaquim C.G.; Antunes, Maria Cristina G.

    2007-01-01

    The factors that affect trihalomethane (THM) (chloroform, bromodichloromethane, chlorodibromomethane and bromoform) formation from the chlorination of aqueous solutions of hydrophobic fulvic acids (FA) were investigated in a prototype laboratorial simulation using factorial analysis. This strategy involved a fractional factorial design (16 plus 5 center experiments) of five factors (fulvic acids concentration, chlorine dose, temperature, pH and bromide concentration) and a Box Behnken design (12 plus 3 center experiments) for the detailed analysis of three factors (FA concentration, chlorine dose and temperature). The concentration of THM was determined by headspace analysis by GC-ECD. The most significant factors that affect the four THM productions were the following: chloroform-FA concentration and temperature; bromodichloromethane-FA concentration and chlorine dose; chlorodibromomethane-chlorine dose; and, bromoform-chlorine dose and bromide concentration. Moreover, linear models were obtained for the four THM concentrations in the disinfection solution as function of the FA concentration, chlorine dose and temperature, and it was observed that the complexity of the models (number of significant factors and interactions) increased with increasing bromine atoms in the THM. Also, this study shows that reducing the FA concentration the relative amount of bromated THM increases

  19. Pesticide residue concentration in soil following conventional and Low-Input Crop Management in a Mediterranean agro-ecosystem, in Central Greece

    Energy Technology Data Exchange (ETDEWEB)

    Karasali, Helen, E-mail: e.karassali@bpi.gr [Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece); Marousopoulou, Anna [Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece); Machera, Kyriaki, E-mail: k.machera@bpi.gr [Laboratory of Pesticides Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece)

    2016-01-15

    The present study was focused on the comparative evaluation of pesticide residues, determined in soil samples from Kopaida region, Greece before and after the implementation of Low-Input Crop Management (LCM) protocols. LCM has been suggested as an environmental friendly plant protection approach to be applied on crops growing in vulnerable to pollution ecosystems, with special focus on the site specific problems. In the case of the specific pilot area, the vulnerability was mainly related to the pollution of water bodies from agrochemicals attributed to diffuse pollution primarily from herbicides and secondarily from insecticides. A total of sixty-six soil samples, were collected and analyzed during a three-year monitoring study and the results of the determined pesticide residues were considered for the impact evaluation of applied plant protection methodology. The LCM was developed and applied in the main crops growing in the pilot area i.e. cotton, maize and industrial tomato. Herbicides active ingredients such as ethalfluralin, trifluralin, pendimethalin, S-metolachlor and fluometuron were detected in most samples at various concentrations. Ethalfluralin, which was the active ingredient present in the majority of the samples ranged from 0.01 μg g{sup −1} to 0.26 μg g{sup −1} soil dry weight. However, the amount of herbicides measured after the implementation of LCM for two cropping periods, was reduced by more than 75% in all cases. The method of analysis was based on the simultaneous extraction of the target compounds by mechanical shaking, followed by liquid chromatography mass spectrometric and gas chromatography electron capture (LC–MS/MS and GC–ECD) analysis. - Highlights: • Effect of Low Input Crop Management (LCM) in a vulnerable to pollution ecosystem. • LCM resulted in herbicide residues reduction in the range of 75 and 100% in all cases. • Conventional practices resulted in increased herbicide residues up to 18%. • Anthropogenic

  20. Real-time amplification of HLA-DQA1 for counting residual white blood cells in filtered platelet concentrates

    NARCIS (Netherlands)

    Mohammadi, Tamimount; Reesink, Henk W.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2004-01-01

    BACKGROUND A real-time polymerase chain reaction (PCR) assay based on amplification of a conserved region of the HLA-DQA1 locus was developed and validated to assess its suitability in quantitating low levels of white blood cells (WBCs) in filtered platelet (PLT) concentrates (PCs). STUDY DESIGN AND

  1. Enhanced primary treatment of concentrated black water and kitchen residues within DESAR concept using two types of anaerobic digesters

    NARCIS (Netherlands)

    Kujawa-Roeleveld, K.; Elmitwalli, T.A.; Zeeman, G.

    2006-01-01

    Anaerobic digestion of concentrated domestic wastewater streams - black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR - decentralised sanitation and reuse). A simple anaerobic digester can be implemented

  2. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles.

    Science.gov (United States)

    Bural, Canan; Aktaş, Esin; Deniz, Günnur; Ünlüçerçi, Yeşim; Bayraktar, Gülsen

    2011-08-01

    Residual methyl methacrylate (MMA) may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r) on in vitro cytotoxicity of L-929 fibroblasts. A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1) at 74ºC for 9 h, (2) at 74ºC for 9 h and terminal boiling (at 100ºC) for 30 min, (3) at 74ºC for 9 h and terminal boiling for 3 h, (4) at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid) assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05). [MMA]r was significantly (p<0.001) higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01) lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05) for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. Due to reduction of leaching residual MMA concentrations, use of terminal boiling in the polymerization process for at least 30 min and water

  3. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    Directory of Open Access Journals (Sweden)

    Canan Bural

    2011-08-01

    Full Text Available OBJECTIVES: Residual methyl methacrylate (MMA may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r on in vitro cytotoxicity of L-929 fibroblasts. MATERIAL AND METHODS: A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1 at 74ºC for 9 h, (2 at 74ºC for 9 h and terminal boiling (at 100ºC for 30 min, (3 at 74ºC for 9 h and terminal boiling for 3 h, (4 at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl-3,4-tetrazolium]bis(4-methoxy-6-nitrobenzenesulphonic acid assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05. RESULTS: [MMA]r was significantly (p<0.001 higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01 lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05 for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. CONCLUSION: Due to reduction of leaching residual MMA concentrations, use of terminal boiling in

  4. Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS.

    Science.gov (United States)

    Tarazona, José L; Guerrero, Jáder; Cabanzo, Rafael; Mejía-Ospino, E

    2012-03-01

    A predictive model to determine the concentration of nickel and vanadium in vacuum residues of Colombian crude oils using laser-induced breakdown spectroscopy (LIBS) and artificial neural networks (ANNs) with nodes distributed in multiple layers (multilayer perceptron) is presented. ANN inputs are intensity values in the vicinity of the emission lines 300.248, 301.200 and 305.081 nm of the Ni(I), and 309.310, 310.229, and 311.070 nm of the V(II). The effects of varying number of nodes and the initial weights and biases in the ANNs were systematically explored. Average relative error of calibration/prediction (REC/REP) and average relative standard deviation (RSD) metrics were used to evaluate the performance of the ANN in the prediction of concentrations of two elements studied here. © 2012 Optical Society of America

  5. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    Science.gov (United States)

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Quantifying Short-Chain Chlorinated Paraffin Congener Groups.

    Science.gov (United States)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A; Alsberg, Tomas; de Wit, Cynthia A

    2017-09-19

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are referred to as a "congener group" C n Cl m . Recently, we resolved individual C n Cl m by mathematically deconvolving soft ionization high-resolution mass spectra of SCCP mixtures. Here we extend the method to quantifying C n Cl m by introducing C n Cl m specific response factors (RFs) that are calculated from 17 SCCP chain-length standards with a single carbon chain length and variable chlorination level. The signal pattern of each standard is measured on APCI-QTOF-MS. RFs of each C n Cl m are obtained by pairwise optimization of the normal distribution's fit to the signal patterns of the 17 chain-length standards. The method was verified by quantifying SCCP technical mixtures and spiked environmental samples with accuracies of 82-123% and 76-109%, respectively. The absolute differences between calculated and manufacturer-reported chlorination degrees were -0.9 to 1.0%Cl for SCCP mixtures of 49-71%Cl. The quantification method has been replicated with ECNI magnetic sector MS and ECNI-Q-Orbitrap-MS. C n Cl m concentrations determined with the three instruments were highly correlated (R 2 > 0.90) with each other.

  7. Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine.

    Science.gov (United States)

    Zhang, Yanyan; Hu, Zhiqiang

    2013-01-01

    Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 10(7) PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 10(7) PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre-existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre-existing biofilms. However, a combination of phages (3 × 10(7) PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one-time treatment at the concentration of 1.9 × 10(8) PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 10(5) PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Copyright © 2012 Wiley Periodicals, Inc.

  8. Fatal chlorine gas exposure at a metal recycling facility: Case report.

    Science.gov (United States)

    Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J

    2018-04-12

    At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.

  9. Chlorination separation of uranium, thorium, and radium from low-grade ores

    International Nuclear Information System (INIS)

    Sastri, V.S.; Perumareddi, J.R.

    1995-01-01

    Low-temperature chlorination of low-grade uranium ores containing uranium in the 0.02 to 0.06% range, thorium in the 0.036 to 0.12% range, and radium in the 70 to 200 pci/g range resulted in the extraction of >90% of the constituents. The residue left after chlorination was found to be innocuous and suitable for disposal as a waste acceptable to the environment. Use of sodium chloride in the charge was useful in reducing the chlorination temperature and in the formation of nonvolatile anionic chloro complexes of the metal ions in the ore

  10. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Membrane distillation as an online concentration technique: application to the determination of pharmaceutical residues in natural waters.

    Science.gov (United States)

    Gethard, Ken; Mitra, Somenath

    2011-04-01

    Membrane distillation (MD) is presented for the first time as a real-time, online concentration technique, where the aqueous matrix is removed from the sample to enhance analyte enrichment. Therefore, MD is a universal method for a wide range of compounds and is unlike conventional membrane extractions that rely on the permeation of the solute into an extractant phase. The MD process showed excellent precision with relative standard deviation between 3% and 5%, linear calibration, and the detection limits for pharmaceutical compounds in the range of 0.01 to 20 mg L(-1) by HPLC-UV analysis. The temperature and flow rate of the feed solution were found to be important variables.

  12. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  13. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  14. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    International Nuclear Information System (INIS)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-01-01

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L −1 . The transformation kinetic data for ARGs removal (log C 0 / C) followed the second-order reaction kinetic model with FC dosage (R 2 = 0.6829–0.9999) and contact time (R 2 = 0.7353–8634), respectively. Higher ammonia nitrogen (NH 3 –N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl 2 :NH 3 –N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm −2 , which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH 3 –N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs

  15. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    Science.gov (United States)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2018-02-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

  16. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Chlorination of Amino Acids: Reaction Pathways and Reaction Rates.

    Science.gov (United States)

    How, Zuo Tong; Linge, Kathryn L; Busetti, Francesco; Joll, Cynthia A

    2017-05-02

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected byproducts. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modeling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4 × 10 4 M -1 s -1 ) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9 × 10 2 M -1 s -1 ), although some N-monochlorovaline degraded into isobutyraldehyde (1.0 × 10 -4 s -1 ). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3 × 10 -4 s -1 ) and N-chloroisobutyraldimine (1.2 × 10 -4 s -1 ). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odor threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  18. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....

  19. Enhanced primary treatment of concentrated black water and kitchen residues within DESAR concept using two types of anaerobic digesters.

    Science.gov (United States)

    Kujawa-Roeleveld, K; Elmitwalli, T; Zeeman, G

    2006-01-01

    Anaerobic digestion of concentrated domestic wastewater streams--black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR--decentralised sanitation and reuse). A simple anaerobic digester can be implemented for an enhanced primary treatment or, in some situations, as a main treatment. Two reactor configurations were extensively studied; accumulation system (AC) and UASB septic tank at 15, 20 and 25 degrees C. Due to long retention times in an AC reactor, far stabilisation of treated medium can be accomplished with methanisation up to 60%. The AC systems are the most suitable to apply when the volume of waste to be treated is minimal and when a direct reuse of a treated medium in agriculture is possible. Digested effluent contains both liquid and solids. In a UASB septic tank, efficient separation of solids and liquid is accomplished. The total COD removal was above 80% at 25 degrees C. The effluent contains COD and nutrients, mainly in a soluble form. The frequency of excess sludge removal is low and sludge is well stabilised due to a long accumulation time.

  20. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  1. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-30

    This report gave a record of the composition of several samples of residues from carbonization of various hydrogenation residue from processing some type of coal or tar in the Bergius process. These included Silesian bituminous coal processed at 600 atm. with iron catalyst, in one case to produce gasoline and middle oil and in another case to produce heavy oil excess, Scholven coal processed at 250 atm. with tin oxalate and chlorine catalyst, Bruex tar processed in a 10-liter oven using iron catalyst, and a pitch mixture from Welheim processed in a 10-liter over using iron catalyst. The values gathered were compared with a few corresponding values estimated for Boehlen tar and Gelsenberg coal based on several assumptions outlined in the report. The data recorded included percentage of ash in the dry residue and percentage of carbon, hydrogen, oxygen, nitrogen, chlorine, total sulfur, and volatile sulfur. The percentage of ash varied from 21.43% in the case of Bruex tar to 53.15% in the case of one of the Silesian coals. Percentage of carbon varied from 44.0% in the case of Scholven coal to 78.03% in the case of Bruex tar. Percentage of total sulfur varied from 2.28% for Bruex tar to a recorded 5.65% for one of the Silesian coals and an estimated 6% for Boehlen tar. 1 table.

  2. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  3. The role of bicarbonate in platelet additive solution for apheresis platelet concentrates stored with low residual plasma.

    Science.gov (United States)

    Radwanski, Katherine; Min, Kyungyoon

    2013-03-01

    Complex platelet additive solutions (PASs) are required to store platelet (PLT) concentrates with plasma levels below 30%. Previously, apheresis PLTs stored with 5% plasma in acetate- and bicarbonate-containing PAS maintained stable pH and bicarbonate levels during 7-day storage. Due to this observation, the necessity of added bicarbonate in PAS was investigated and whether the concurrent increase in PAS pH after bicarbonate addition had any effect on PLT storage. Apheresis PLTs were stored in 5% plasma-95% high- or low-pH PAS, with or without bicarbonate (n=10 per arm). Bicarbonate PAS PLTs were paired and nonbicarbonate PAS PLTs were paired (split from same double-dose collection). PLTs were evaluated for in vitro variables on Days 1 and 7 and up to Day 14 if the Day 7 pH was higher than 6.2. PLT pH was maintained above 7.3 to Day 14 in bicarbonate PAS PLTs while pH failures below 6.2 were observed in 4 of 10 and 2 of 10 units on Day 7 in low- and high-pH nonbicarbonate PAS arms, respectively. Day 7 in vitro variables in nonbicarbonate PAS PLTs with pH values of higher than 6.2 were comparable to Day 7 variables in bicarbonate PAS PLTs. The pH of bicarbonate PAS did have a small effect on pH and bicarbonate levels in PLT units, but did not have an effect on functional variables and metabolism. Bicarbonate was not required to maintain in vitro PLT function in 5% plasma-95% PAS, but was required as a pH buffer and increased PAS pH did not significantly contribute to this effect. © 2012 American Association of Blood Banks.

  4. Immobilization of chlorine dioxide modified cells for uranium absorption

    International Nuclear Information System (INIS)

    He, Shengbin; Ruan, Binbiao; Zheng, Yueping; Zhou, Xiaobin; Xu, Xiaoping

    2014-01-01

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO 2 ), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose (CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO 2 2+ ions or in a low concentration system to purify UO 2 2+ contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles. - Highlights: • Chlorine dioxide was first reported to be used for microorganism surface modification. • The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. • The chlorine dioxide modified cells were further immobilized by carboxymethylcellulose to improve their reusability

  5. [Study on pipe material's influence on chlorine dioxide drinking water disinfection].

    Science.gov (United States)

    He, Tao; Yue, Yinling; Ling, Bo; Zhang, Lan

    2010-09-01

    To study the pipe material's influence on chlorine dioxide drinking water disinfection. 0.8 mg/L chlorine dioxide solution was injected into 5 kinds of pipes respectively, PPR, PVC-U, Steel with Zinc coating, copper and PE pipes. Dipped free from light for 48 hours and the concentrations of chlorine dioxide, chlorite and chlorate were tested from samples taken from each kind of pipe at 1, 2, 3, 4, 5, 6, 12, 24 and 48 hours respectively. Chlorine dioxides decay rates in the water dipping the pipes increase as the dipping time increases and the decay of chlorine dioxide mainly occurs within 6 hours after the dipping. But for different pipe, the influence of decay differs. The consumption of chlorine dioxide of the metal pipes is more than that of the plastic pipes. And with 2 hours after the dipping experiment begins, the concentrations of the chlorite of the copper pipe and of the steel with zinc coating pipe increase quickly and reach the maximum concentration. But then the chlorite concentration decreases greatly. After dipped 24 hours, the chlorite in the water in the pipe can not be detected. For other plastic piples, all the chlorite concentrations in the dipping water increase as the dipping time increase. Compared with the start of the dipping experiment, the chlorate concentration in the dipping water of each pipe has no obvious change. The material of the water transportation pipe does have influence on chlorine dioxide drinking water disinfection.

  6. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  7. Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

    1980-08-01

    As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

  8. Chlorinated hydrocarbons in a pelagic community

    International Nuclear Information System (INIS)

    Elder, D.; Fowler, S.W.

    1976-01-01

    For several years data have been accruing on the distribution of chlorinated hydrocarbon pollutants in marine ecosystems. An overall picture of ambient levels in biota, water and sediments is now emerging however, despite the vast amount of data collected to date, questions still arise as to whether certain pollutants such as chlorinated hydrocarbons are indeed magnified through the marine food web. Evidence both for and against trophic concentration of PCB and DDT compounds has been cited. The answer to this question remains unclear due to lack of adequate knowledge on the relative importance of food and water in the uptake of these compounds as well as the fact that conclusions are often confounded by comparing pollutant concentrations in successive links in the food chain sampled at different geographical locations and/or at different points in time. The situation is further complicated by complex prey-predator relationships that exist in many marine communities. In the present study we have tried to eliminate some of these problems by examining PCB and DOT concentrations in species belonging to a relatively well-defined pelagic food chain sampled at one point in space and time

  9. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  10. Comparative analysis of concentrations of lead, cadmium and mercury in cord blood, maternal blood, and breast milk, as well as persistent chlorinated hydrocarbons in maternal milk samples from Germany and Iran; Vergleichende Untersuchungen ueber die Blei-, Cadmium- und Quecksilberkonzentrationen im Nabelschnurblut, im muetterlichen Blut und in der Frauenmilch sowie ueber einige persistente Organochlorverbindungen in der Milch deutscher und iranischer Muetter

    Energy Technology Data Exchange (ETDEWEB)

    Javanmardi, F.

    2001-07-01

    The concentration of the heavy metals lead, cadmium and mercury in cord blood, maternal blood and breast milk has been studied. Lead and cadmium were analyzed by atomic absorption spectrometry. Mercury was determined using the flow-injection hydride technique. According to the concentrations of heavy metals and chlorinated hydrocarbons we ascertained for the region of Rendsburg, the toxic risk for infants relative to the consumption of contaminated maternal milk can be viewed as very slight. (orig.) [German] Ziel der Arbeit war es, die aktuelle Schwermetallbelastung des Nabelschnurblutes, des muetterlichen Blutes und der Muttermilch zu untersuchen. Die Bestimmung von Blei und Cadmium erfolgte mit Hilfe der Atomabsorptionsspektrometrie. Quecksilber wurde mittels der Fliessinjektions-Hydridtechnik bestimmt. Nach den von uns ermittelten Schwermetall- bzw. Chlorkohlenwasserstoffkonzentrationen fuer die Region Rendsburg kann das mit dem Verzehr kontaminierter Muttermilch verbundene toxische Risiko fuer den Saeugling als sehr gering eingeschaetzt werden. (orig.)

  11. Ultraviolet light: sterile water without chlorine smell and taste

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm 2 for all known bacteria. In practice a dose of 40 mWs/cm 2 and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly. (JIW)

  12. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    Science.gov (United States)

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-04-16

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018, G3: Genes, Genomes, Genetics.

  13. Pesticide residue concentration in soil following conventional and Low-Input Crop Management in a Mediterranean agro-ecosystem, in Central Greece.

    Science.gov (United States)

    Karasali, Helen; Marousopoulou, Anna; Machera, Kyriaki

    2016-01-15

    The present study was focused on the comparative evaluation of pesticide residues, determined in soil samples from Kopaida region, Greece before and after the implementation of Low-Input Crop Management (LCM) protocols. LCM has been suggested as an environmental friendly plant protection approach to be applied on crops growing in vulnerable to pollution ecosystems, with special focus on the site specific problems. In the case of the specific pilot area, the vulnerability was mainly related to the pollution of water bodies from agrochemicals attributed to diffuse pollution primarily from herbicides and secondarily from insecticides. A total of sixty-six soil samples, were collected and analyzed during a three-year monitoring study and the results of the determined pesticide residues were considered for the impact evaluation of applied plant protection methodology. The LCM was developed and applied in the main crops growing in the pilot area i.e. cotton, maize and industrial tomato. Herbicides active ingredients such as ethalfluralin, trifluralin, pendimethalin, S-metolachlor and fluometuron were detected in most samples at various concentrations. Ethalfluralin, which was the active ingredient present in the majority of the samples ranged from 0.01 μg g(-1) to 0.26 μg g(-1) soil dry weight. However, the amount of herbicides measured after the implementation of LCM for two cropping periods, was reduced by more than 75% in all cases. The method of analysis was based on the simultaneous extraction of the target compounds by mechanical shaking, followed by liquid chromatography mass spectrometric and gas chromatography electron capture (LC-MS/MS and GC-ECD) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Chlorination of humic materials: Byproduct formation and chemical interpretations

    Science.gov (United States)

    Reckhow, D.A.; Singer, P.C.; Malcolm, R.L.

    1990-01-01

    Ten aquatic humic and fulvic acids were isolated and studied with respect to their reaction with chlorine. Yields of TOX, chloroform, trichloroacetic acid, dichloroacetic acid, dichloroacetonitrile, and 1,1,1-trichloropropanone were measured at pH 7 and 12. Humic acids produced higher concentrations than their corresponding fulvic acids of all byproducts except 1,1,1-trichloropropanone. Chlorine consumption and byproduct formation were related to fundamental chemical characteristics of the humic materials. A statistical model was proposed for activated aromatic content based on 13C NMR and base titration data. The values estimated from this model were found to be well correlated with chlorine consumption. Specific byproduct formation was related to UV absorbance, nitrogen content, or the activated aromatic content. ?? 1990 American Chemical Society.

  15. Tetracycline antibiotics transfer from contaminated milk to dairy products and the effect of the skimming step and pasteurisation process on residue concentrations.

    Science.gov (United States)

    Gajda, Anna; Nowacka-Kozak, Ewelina; Gbylik-Sikorska, Malgorzata; Posyniak, Andrzej

    2018-01-01

    The presence of antibiotics in raw milk and milk derivatives poses a threat to human health and can negatively affect the dairy industry. Therefore, the main object of this study was to investigate the transfer of oxytetracycline (OTC), tetracycline (TC), chlortetracycline (CTC) and doxycycline (DC) from raw, experimental milk contaminated with tetracyclines (TCs) to different dairy products: cream, butter, buttermilk, sour milk, whey, curd and cheese. Additionally the effect of the skimming process on TCs concentrations was tested, as well as the influence of low-temperature long-time pasteurisation. The analyses of TCs in milk and dairy products were performed by an LC-MS/MS method. In order to determine TCs residues in dairy products, an analytical method was developed with the same extraction step for all matrices. TCs molecules were inhomogenously distributed between the milk derivative fractions. The highest concentrations were determined in curd and cheese in the ranges 320-482 µg/kg and 280-561 µg/kg, respectively. Low levels of TCs in butter and whey were observed (11.8-41.2 µg/kg). TCs were found in sour milk (66.0-111 µg/kg), cream (85.0-115 µg/kg) and buttermilk (196-221 µg/kg) at much higher levels than in butter and whey, but lower than in curd and cheese. During the skimming process, the highest yield of cream was obtained after the raw milk was held at 2-8°C for 24 h. The differences in concentrations of TCs between whole milk and skimmed milk, expressed as percentages of recovery, were below 19% (recoveries in excess of 81%). The highest content was observed in milk and cream skimmed at 2-8°C. The degradation percentages for TCs during the pasteurisation process (63°C for 30 min) were below 19%.

  16. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence

    Directory of Open Access Journals (Sweden)

    Paradiz Bostjan

    2015-01-01

    Full Text Available Combustion experiments conducted in domestic stove burning hard coal demonstrated a predominant influence of the coal chlorine content on the PCDD/F emissions, together with a pronounced effect of the flue gas temperature. PCDD/F concentrations of over 100 ng TEQ/m3, three orders of magnitude higher than in a modern waste incinerator, were measured in the flue gases of a domestic stove when combusting high chlorine coal (0.31 %. The PCDD/F concentrations in the flue gases dropped below 0,5 ng TEQ/m3, when low chlorine coal (0.07 % was used. When low chlorine coal was impregnated with NaCl to obtain 0.38 % chlorine content, the emission of the PCDD/Fs increased by two orders of magnitude. Pronounced nonlinearity of the PCDD/F concentrations related to chlorine content in the coal was observed. The combustion of the high chlorine coal yielded PCDD/F concentrations in flue gases one order of magnitude lower in a fan cooled chimney when compared to an insulated one, thus indicating formation in the chimney. The influence of flue gas temperature on the PCDD/F emissions was less pronounced when burning low chlorine coal. The predominant pathway of the PCDD/F emissions is via flue gases, 99 % of the TEQ in the case of the high chlorine coal for insulated chimney.

  17. Gas chromatographic/mass spectrometric identification of chlorinated and oxygenated cyclohexene artifacts formed during the analysis of chlorinated water samples.

    Science.gov (United States)

    Dietrich, A M; Christman, R F; Durell, G S

    1988-04-15

    Chlorinated and oxygenated cyclohexene derivatives detected in methylene chloride extracts of chlorinated drinking water were demonstrated to be artifacts produced during sample preparation. Commercial methylene chloride contains cyclohexene as a preservative, and this reacted during the extraction/concentration process to produce microgram amounts of chlorocyclohexene, 2-chlorocyclohexanol, trans-1,2-dichlorocyclohexane, cyclohexenone and cyclohexenol. Quantitative analysis indicated that over 90% of the initial cyclohexene was consumed during the process. Dechlorination of drinking water with sodium arsenite significantly reduced but did not eliminate cyclohexene artifact formation.

  18. Effect of handling and processing on pesticide residues in food- a review.

    Science.gov (United States)

    Bajwa, Usha; Sandhu, Kulwant Singh

    2014-02-01

    Pesticides are one of the major inputs used for increasing agricultural productivity of crops. The pesticide residues, left to variable extent in the food materials after harvesting, are beyond the control of consumer and have deleterious effect on human health. The presence of pesticide residues is a major bottleneck in the international trade of food commodities. The localization of pesticides in foods varies with the nature of pesticide molecule, type and portion of food material and environmental factors. The food crops treated with pesticides invariably contain unpredictable amount of these chemicals, therefore, it becomes imperative to find out some alternatives for decontamination of foods. The washing with water or soaking in solutions of salt and some chemicals e.g. chlorine, chlorine dioxide, hydrogen peroxide, ozone, acetic acid, hydroxy peracetic acid, iprodione and detergents are reported to be highly effective in reducing the level of pesticides. Preparatory steps like peeling, trimming etc. remove the residues from outer portions. Various thermal processing treatments like pasteurization, blanching, boiling, cooking, steaming, canning, scrambling etc. have been found valuable in degradation of various pesticides depending upon the type of pesticide and length of treatment. Preservation techniques like drying or dehydration and concentration increase the pesticide content many folds due to concentration effect. Many other techniques like refining, fermentation and curing have been reported to affect the pesticide level in foods to varied extent. Milling, baking, wine making, malting and brewing resulted in lowering of pesticide residue level in the end products. Post harvest treatments and cold storage have also been found effective. Many of the decontamination techniques bring down the concentration of pesticides below MRL. However, the diminution effect depends upon the initial concentration at the time of harvest, substrate/food and type of

  19. Determination of Chlorinated Solvent Contamination in an Upward Flow Constructed Wetland

    National Research Council Canada - National Science Library

    Opperman, Bryan

    2002-01-01

    .... Analysis will be accomplished by means of purge-and-trap gas chromatography. The contaminant concentration levels will be used to enhance the design and construction of man-made wetlands used to remove chlorinated solvents from aquifers...

  20. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    and relaxation) technique was used to evaluate the effects of the biocide on diatom dominated biofilms. The efficiency of chlorine in removing diatoms from the developed biofilms increased with an increase in concentration and exposure time. The fluorescence...

  1. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    International Nuclear Information System (INIS)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-01-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U 3 O 8 without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  2. Ecological impact of chloro-organics produced by chlorination of cooling tower waters

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R L; Cumming, R B; Pitt, W W; Taylor, F G; Thompson, J E; Hartmann, S J

    1977-01-01

    Experimental results of the initial assessment of chlorine-containing compounds in the blowdown from cooling towers and the possible mutagenic activity of these compounds are reported. High-resolution liquid chromatographic separations were made on concentrates of the blowdown from the cooling tower at the High Flux Isotope Reactor (HFIR) and from the recirculating water system for the cooling towers at the Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge, Tennessee. The chromatograms of chlorinated cooling waters contained numerous uv-absorbing and cerate-oxidizable constituents that are now being processed through a multicomponent identification procedure. Concentrates of the chlorinated waters are also being examined for mutagenic activity.

  3. A simple microfluidic chlorine gas sensor based on gas-liquid chemiluminescence of luminol-chlorine system.

    Science.gov (United States)

    Gao, Zhao-Xin; Li, Hai-Fang; Liu, Jiangjiang; Lin, Jin-Ming

    2008-08-01

    In this work, a microfluidic chlorine gas sensor based on gas-liquid interface absorption and chemiluminescence detection was described. The liquid chemiluminescence reagent-alkaline luminol solution can be stably sandwiched between two convex halves of a microchannel by surface tension. When chlorine gas was introduced into the micro device, it was dissolved into the interfacial luminol solution and transferred to ClO(-), and simultaneously luminol was excited and chemiluminescence emitted. The emitted chemiluminescence light was perpendicularly detected by a photomultiplier tube on a certain detection region. The remarkable advantage of the detection system is that both adsorption and detection were carried out at the gas-liquid interface, which avoids the appearance of bubbles. The whole analytical cycle including filling CL reagent, sample injection, CL detection and emptying the device was as short as 30 s. The linear concentration range of chlorine gas detection with direct introduction of sample method is from 0.5 to 478 ppm. The detection limit of this method is 0.2 ppm for standard chlorine gas and the relative standard deviation of five determinations of 3.19 ppm spiked chlorine sample was 5.2%.

  4. Solar light irradiation significantly reduced cytotoxicity and disinfection byproducts in chlorinated reclaimed water.

    Science.gov (United States)

    Lv, Xiao-Tong; Zhang, Xue; Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying

    2017-11-15

    Chlorinated reclaimed water is widely used for landscaping and recreational purposes, resulting in human exposure to toxic disinfection byproducts. Although the quality of chlorinated reclaimed water might be affected by sunlight during storage, the effects of solar light irradiation on the toxicity remain unknown. This study investigated the changes in cytotoxicity and total organic halogen (TOX) of chlorinated reclaimed water exposed to solar light. Irradiation with solar light for 12 h was found to significantly reduce the cytotoxicity of chlorinated reclaimed water by about 75%, with ultraviolet light being responsible for the majority of this reduction. Chlorine residual in reclaimed water tended to increase the cytotoxicity, and the synergy between solar light and free chlorine could not enhance the reduction of cytotoxicity. Adding hydroxyl radical scavengers revealed that the contribution of hydroxyl radical to cytotoxicity reduction was limited. Solar light irradiation concurrently reduced TOX. The low molecular weight (cytotoxicity and TOX in chlorinated reclaimed water. Detoxification of the low molecular weight fraction by light irradiation was mainly a result of TOX dehalogenation, while detoxification of the high molecular weight (>1 kDa) fraction was probably caused by photoconversion from high toxic TOX to low toxic TOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

    DEFF Research Database (Denmark)

    Hunkeler, D.; Abe, Y.; Broholm, Mette Martina

    2011-01-01

    The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (q......PCR) methods targeting Dehaloccocoides sp. and vcrA genes. Redox conditions were characterized as well based on concentrations of dissolved redox sensitive compounds and sulfur isotopes in SO4 2−. In the first 400 m downgradient of the source, the plume was confined to the upper 20m of the aquifer. Further...... to pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO4 2−. In the same zone, PCE and trichloroethene (TCE) disappeared and cis- 1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic...

  6. Types of pesticides and determination of their residues

    International Nuclear Information System (INIS)

    Kassem, A.R.

    2010-01-01

    The pesticide is any material or component used to protect from pests. Its toxic effect is related to the chemical structure, which can be divided into 3 types : 1- Metal pesticides : Sulphur, cupper, zinc, mercury; 2- Vegetal pesticides : advanced and less toxic to the general health; 3- Synthetic organo pesticides : organo chlorine, organophosphorous, carbamate and pyrethroids. Pesticides in the soil undergo biological dissociation according to their concentration and chemical structure. High concentration of the pesticides in the soil may lead to fertility decrease due to destruction of micro-organisms by the pesticides. Many methods are used to analyze the residues of pesticides in plant or soil : 1- Chromatographic methods : Gas chromatography, gas liquid chromatography and high performance liquid chromatography; 2- Spectroscopy methods : spectrophotometer and mass spectrometer; 3- Isotopic methods : based on tracers technique which is the most sensitive and accurate method and can estimate minor amounts of the pesticides. (author)

  7. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  8. Fate of chlorinated fatty acids in migrating sockeye salmon and their transfer to arctic grayling

    DEFF Research Database (Denmark)

    Mu, Huiling; Ewald, G.; Nilsson, E.

    2004-01-01

    organohalogen compounds in the salmon were halogenated fatty acids, predominantly chlorinated species that accounted for up to 35% of the extractable, organically bound chlorine (EOCl) in the fish tissues. The amount of chlorinated fatty acids in the salmon muscle decreased as a result of spawning migration...... to that of the unchlorinated fatty acids. Lipids of the Arctic grayling (Thymallus arcticus), a fish resident to the spawning lake of the salmon, contained higher concentrations of chlorinated fatty acids than grayling in a lake without migratory salmon. This may reflect a food-chain transfer of the chlorinated fatty acids...... originating from the salmon, demonstrating a long-range transport route for this type of pollutants to pristine areas....

  9. Polychlorobenzenes and polychlorinated biphenyls in ash and soil from several industrial areas in North Vietnam: residue concentrations, profiles and risk assessment.

    Science.gov (United States)

    Nguyen, Thi Hue; Nguyen, Thi Thu Thuy; Nguyen, Hoang Tung

    2016-04-01

    Polychlorinated benzenes (PCBzs) including penta- and hexachlorobenzene can be unintentionally formed from thermal processes in different industrial activities, and very little information is available on the contamination and emission characteristics of these new persistent organic pollutants from industries in Vietnam. In this study, contamination of PCBzs (including penta- and hexachlorobenzene, named PeCBz and HCB, respectively) and PCBs (including CB-28, 52, 101, 153, 138, 180) in fly ash, bottom ash and soil from combustion processes of waste incineration, metallurgy (steel making and zinc production) and cement production from several provinces in the Northern Vietnam, including Hai Duong, Hanoi, Bac Ninh, Hai Phong and Thai Nguyen, was preliminary investigated. The PCBzs concentrations in fly ash, bottom ash and soil ranged from 2.7 to 100 ng g(-1), from 2.7 to 159 ng g(-1) and from 0.28 to 33.9 ng g(-1), respectively. Relatively high residues of PeCBz in fly ash and bottom ash from municipal waste incinerators in some provinces from the Northern Vietnam were encountered. Total PCBs concentrations ranged from 18.0 to 8260 ng g(-1), from 1.0 to 10600 ng g(-1) and from 14.5 to 130 ng g(-1) for the fly ash, bottom ash and soil, respectively. Daily intakes of PeCBz, HCB and PCBs through soil ingestion and dermal exposure estimated for children ranged 0.33-9.93 (mean 3.14), 0.39-21.1 (mean 4.9) and 6.09-1530 ng/kg bw/day (mean 346), respectively; and these intakes were about 4.7-5.4 times higher than those estimated for adult. The intakes of PeCBz and HCB were relatively low, while those for PCBs exceeded WHO TDI for some samples.

  10. Second-generation photosensitizers based on natural chlorines and bacteriochlorines

    Science.gov (United States)

    Mironov, Andrei F.

    1996-01-01

    New sensitizers for photodynamic therapy were synthesized on the base of biologically generated chlorins and bacteriochlorins. Derivatives of chlorophyll a and bacteriochlorophyll were prepared from the biomass of blue-green algae Spirulina Platensis and purple bacteria Rhodobacter Capsulatus, generated using specially designed photobioreactor. The strategy for chemical transformation of natural chlorophylls and bacteriochlorophyll has been discussed. Purpurin 18 and its dihydroanalogue bacteriopurpurin were chosen as the key intermediates. Modifications of peripheral substituents, such as introducing the new functional groups, hydrogenation of the B-pyrrolic ring, and insertion of amino acid residues gave the series of novel sensitizers, including water soluble chlorin p6 analogues, and derivatives with graded amphiphility for the studies of tumor accumulation in the malignant tissues.

  11. Comparative Toxicity of Chlorinated Saline and Freshwater Wastewater Effluents to Marine Organisms.

    Science.gov (United States)

    Yang, Mengting; Liu, Jiaqi; Zhang, Xiangru; Richardson, Susan D

    2015-12-15

    Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms.

  12. Feasibility study of the separation of chlorinated films from plastic packaging wastes

    International Nuclear Information System (INIS)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-01-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0 g/cm 3 and floated in water even though the true density was more than 1.0 g/cm 3 . However, the apparent density of the PS and the PET films increased with agitation to more than 1.0 g/cm 3 , whereas that of chlorinated plastic films was kept less than 1.0 g/cm 3 . The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10 wt.% of the chlorinated films and real PPW films with 9 wt.% of the chlorinated films. About 76 wt.% of the artificial PPW films and 75 wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7 wt.% and 3.0 wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films.

  13. Feasibility study of the separation of chlorinated films from plastic packaging wastes.

    Science.gov (United States)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-04-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0g/cm(3) and floated in water even though the true density was more than 1.0g/cm(3). However, the apparent density of the PS and the PET films increased with agitation to more than 1.0g/cm(3), whereas that of chlorinated plastic films was kept less than 1.0g/cm(3). The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10wt.% of the chlorinated films and real PPW films with 9wt.% of the chlorinated films. About 76wt.% of the artificial PPW films and 75wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7wt.% and 3.0wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Study of the production of zirconium tetrachloride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.

    1983-01-01

    The studies carried out on the production of zirconium tetrachloride by chlorination of pure zirconium oxide with carbon tetrachloride and chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride, the chlorination efficiency increases with the rise in temperature at intervals between 450 and 750 0 C. The flow of the carbon tetrachloride vapour was 1.50l/min. Higher temperatures of 700 to 850 0 C were used for the zirconium oxide chlorination in the presence of carbon, and the flowrate of the chlorine gas used in the process was 0.50 l/min. Pure zirconium oxide chlorination as well as zirconium oxide - carbon misture chlorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constant, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  15. Detection of chlorine in water

    Czech Academy of Sciences Publication Activity Database

    Kašík, Ivan; Mrázek, Jan; Podrazký, Ondřej; Seidl, Miroslav; Aubrecht, Jan; Tobiška, Petr; Pospíšilová, Marie; Matějec, Vlastimil; Kovács, B.; Markovics, A.; Szili, M.

    2009-01-01

    Roč. 139, č. 1 (2009), s. 139-142 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GA102/05/0948 Institutional research plan: CEZ:AV0Z20670512 Keywords : optic al fiber sensor * chlorine Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.083, year: 2009

  16. Prompt gamma-ray analysis of chlorine in superpozz cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ur-Rehman, Khateeb [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-11-21

    The chlorine concentration in Superpozz (SPZ) cement concrete was analyzed using a newly designed prompt gamma-ray neutron activation (PGNAA) setup utilizing a portable neutron generator. The setup, which mainly consists of a neutron source along with its moderator placed side by side with a shielded gamma-ray detector, allows determining chloride concentration in a concrete structure from one side. The setup has been tested through chlorine detection in chloride-contaminated Superpozz (SPZ) cement concrete specimens using 6.11 and 2.86{+-}3.10 MeV chlorine prompt gamma-rays. The optimum 0.032{+-}0.012 wt% value of Minimum Detectable Concentration (MDC) of chlorine in SPZ cement concrete measured in this study shows a successful application of a portable neutron generator in chloride analysis of concrete structure for corrosion studies.

  17. Monitoring Residual Chlorine Decay and Coliform Contamination in ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2011) >. Log in or Register to get access to full text downloads.

  18. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry

    Science.gov (United States)

    Ye, Z.; Weinberg, H.S.; Meyer, M.T.

    2007-01-01

    A multirun analytical method has been developed and validated for trace determination of 24 antibiotics including 7 sulfonamides, 3 macrolides, 7 quinolones, 6 tetracyclines, and trimethoprim in chlorine-disinfected drinking water using a single solid-phase extraction method coupled to liquid chromatography with positive electrospray tandem mass spectrometry detection. The analytes were extracted by a hydrophilic-lipophilic balanced resin and eluted with acidified methanol (0.1% formic acid), resulting in analyte recoveries generally above 90%. The limits of quantitation were mostly below 10 ng/L in drinking water. Since the concentrated sample matrix typically caused ion suppression during electrospray ionization, the method of standard addition was used for quantitation. Chlorine residuals in drinking water can react with some antibiotics, but ascorbic acid was found to be an effective chlorine quenching agent without affecting the analysis and stability of the antibiotics in water. A preliminary occurrence study using this method revealed the presence of some antibiotics in drinking waters, including sulfamethoxazole (3.0-3.4 ng/L), macrolides (1.4-4.9 ng/L), and quinolones (1.2-4.0 ng/L). ?? 2007 American Chemical Society.

  19. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-27

    This report compared the composition of samples from Wesseling and Leuna. In each case the sample was a residue from carbonization of the residues from hydrogenation of the brown coal processed at the plant. The composition was given in terms of volatile components, fixed carbon, ash, water, carbon, hydrogen, oxygen, nitrogen, volatile sulfur, and total sulfur. The result of carbonization was given in terms of (ash and) coke, tar, water, gas and losses, and bitumen. The composition of the ash was given in terms of silicon dioxide, ferric oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium and sodium oxides, sulfur trioxide, phosphorus pentoxide, chlorine, and titanium oxide. The most important difference between the properties of the two samples was that the residue from Wesseling only contained 4% oil, whereas that from Leuna had about 26% oil. Taking into account the total amount of residue processed yearly, the report noted that better carbonization at Leuna could save 20,000 metric tons/year of oil. Some other comparisons of data included about 33% volatiles at Leuna vs. about 22% at Wesseling, about 5 1/2% sulfur at Leuna vs. about 6 1/2% at Leuna, but about 57% ash for both. Composition of the ash differed quite a bit between the two. 1 table.

  20. Residue analysis of organochlorine pesticides in water and ...

    African Journals Online (AJOL)

    Mr Willims

    2013-05-12

    May 12, 2013 ... residues were performed by injecting 1 µL of purified extract into the injection port of a gas chromatograph with a 63Ni electron capture .... Identification and determination of OCP residues by gas chromatography. A gas chromatograph with ..... Distribution of chlorine- ted pesticides in shellfishes from Lagos ...

  1. Evaluation of cooling water treatment programme at RAPS-3 and 4 with reference to chlorination and microbial control

    International Nuclear Information System (INIS)

    Kora, Aruna Jyothi; Rao, T.S.; Narasimhan, S.V.

    2008-01-01

    Water from Rana Pratap Sagar Lake is used in Rajasthan Atomic Power Station (RAPS) units 3 and 4 for cooling the condenser system. As the lake water is rich in nutrients and microflora, investigations were carried out on the nutrient quality, microflora distribution and chlorine decay to evaluate the cooling water treatment programme. Algal growth in emergency storage makeup water pools, weed growth on the cooling tower decks and biofilm growth on various materials (carbon steel, stainless steel, admiralty brass and cupronickel) were studied with an objective to understand the reasons for corrosion and failure of fire water pipeline. Visual examination showed that the emergency makeup water pools were infested with green algae and cyano-bacterial mats. Some algal growth was observed on induced draft cooling tower-3 structures. The bacterial counts in various water samples were low, except in emergency makeup water pool. Sulphate reducing bacteria (SRB) were present in makeup and demineralised waters. Chlorophyll pigment analysis showed that the makeup and emergency storage water pool had abundant algal growth. To prevent biofouling, chlorine is dosed at the rate of 7 kg/hr for 10 minutes; free residual oxidant (FRO) and chlorine decay were monitored at regular intervals. After 24 hrs, biofilm thickness on different materials ranged from 27-45 μm. However, the thickness was reduced by 50 % after exposure to 2 ppm of chlorine for 15 minutes. In further investigations, it was found that the anion resin beads of demineraliser plant were infested with filamentous microbes. Hence, It is recommended to treat the feed water of DM plant. Tubercles were observed inside the failed fire water carbon steel pipeline and on removing the tubercles concentric ring patterns, typical signatures of SRB corrosion were observed. For controlling the biofouling problem in the cooling water system, it is recommended to maintain a chlorine dose of 2.3 ppm (which gives 0.8 ppm FRO) for two

  2. Effect of odd hydrogen on ozone depletion by chlorine reactions

    Science.gov (United States)

    Donahue, T. M.; Cicerone, R. J.; Liu, S. C.; Chameides, W. L.

    1976-01-01

    The present paper discusses how the shape of the ozone layer changes under the influence of injected ClX for several choices of two key HOx reaction rates. The two HOx reactions are: OH + HO2 yields H2O + O2 and O + HO2 yields OH + O2. Results of calculations are presented which show that the two reaction rates determine the stratospheric concentrations of OH and HO2, and that these concentrations regulate the amount by which the stratospheric ozone column can be reduced due to injections of odd chlorine. It is concluded that the amount of ozone reduction by a given mixing ratio of ClX will remain very uncertain until the significance of several possible feedback effects involving HOx in a chlorine-polluted atmosphere are determined and measurements of the reaction rates and HOx concentrations are made at the relevant temperatures.

  3. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  4. Effects of Chlorine Ions on the Dissolution Mechanism of Cu Thin Film in Phosphoric Acid Based Solution.

    Science.gov (United States)

    Seo, Bo-Hyun; Kim, Byoung O; Seo, Jong Hyun

    2015-10-01

    The dissolution mechanisms of Cu thin film were studied with a focus on the effect of chlorine ion concentrations in mixture solutions of phosphoric and nitric acid. The dissolution behaviors of Cu thin film were investigated by using potentio-dynamic curves and impedance spectroscopy with varying chlorine ion concentrations. The copper dissolution rate decreased and as a result of this change, CuCl, salt films formed on the Cu surface in the presence of chlorine ions in the mixture solution. Such behavior was interpreted as being competitive adsorption between chlorine and nitrate ions on the copper surface. The passive oxide film on the Cu surface was further investigated in detail using X-ray photoelectron spectroscopy in both the absence and presence of differing chlorine ion concentrations.

  5. Robust Chemiresistive Sensor for Continuous Monitoring of Free Chlorine Using Graphene-like Carbon.

    Science.gov (United States)

    Aryasomayajula, Aditya; Wojnas, Caroline; Divigalpitiya, Ranjith; Selvaganapathy, Ponnambalam Ravi; Kruse, Peter

    2018-02-23

    Free chlorine is widely used in industry as a bleaching and oxidizing agent. Its concentration is tightly monitored to avoid environmental contamination and deleterious human health effects. Here, we demonstrate a solid state chemiresistive sensor using graphene like carbon (GLC) to detect free chlorine in water. A 15-20 nm thick GLC layer on a PET substrate was modified with a redox-active aniline oligomer (phenyl-capped aniline tetramer, PCAT) to increase sensitivity, improve selectivity, and impart fouling resistance. Both the bare GLC sensor and the PCAT-modified GLC sensor can detect free chlorine continuously and, unlike previous chemiresistive sensors, do not require a reset. The PCAT-modified sensor showed a linear response with a slope of 13.89 (mg/L) -1 to free chlorine concentrations between 0.2 and 0.8 mg/L which is relevant for free chlorine monitoring for drinking water and wastewater applications. The PCAT-modified GLC sensors were found to be selective and showed less than 0.5% change in current in response to species such as nitrates, phosphates and sulfates in water. They also were resistant to fouling from organic material and showed only a 2% loss in signal. Tap water samples from residential area were tested using this sensor which showed good agreement with standard colorimetric measurement methods. The GLC and PCAT-GLC sensors show high sensitivity and excellent selectivity to free chlorine and can be used for continuous automated monitoring of free chlorine.

  6. Distribution and chemical fate of chlorine dioxide gas during sanitation of tomatoes and cantaloupe

    Science.gov (United States)

    A series of studies was conducted to establish the 1) distribution and chemical fate of 36-ClO2 on tomatoes and cantaloupe; and 2) the magnitude of residues in kilogram quantities of tomatoes and cantaloupe sanitized with a slow-release chlorine dioxide formulation. Tomatoes and cantaloupe were resp...

  7. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, February 1, 1975--September 15, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.; Goldman, J. C.

    1975-10-01

    Research on the combined effects of chlorine, ammonia, and temperature on marine plankton have been carried out for 7/sup 1///sub 2/ months. Continuous-flow bioassay units have been constructed for larval species, juvenile fish, and phytoplankton. A detailed study on lobster (Homarus americanus) larvae and other studies on killifish (Fundulus heteroclitus) larvae and juveniles, and juvenile scup (Stenotomus versicolor) and winter flounder (Pseudopleuronectes americanus) have been performed. Results to date indicate that there is an apparent and, as yet undetermined, chlorine demand of seawater; there is a differential toxic effect of chlorine and chloramines--lobsters were more sensitive to chloramines, whereas the fish species were more affected by free chlorine; respiration results indicate that significant stress occurs at toxicant levels below the onset of mortality, thus raising questions regarding the applicability of standard bioassay data; temperature elevation exerts a strong synergistic effect on chlorine-chloramine toxicity; and effects of exposure to halogen toxicity appear irreversible as revealed by persistent reductions in metabolic activity. It appears that chlorine toxicity to marine biota can occur even though chlorine residuals cannot be detected by current analytical techniques. These results support the findings of others that chlorine toxicity is a serious environmental pollutant. (auth)

  8. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    Science.gov (United States)

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Stable chlorine isotope analysis of chlorinated acetic acids using gas chromatography/quadrupole mass spectrometry.

    Science.gov (United States)

    Miska, Milena E; Shouakar-Stash, Orfan; Holmstrand, Henry

    2015-12-30

    The environmental occurrence of chlorinated acetic acids (CAAs) has been extensively studied, but the sources and transport are still not yet fully understood. A promising approach for source apportionment and process studies is the isotopic characterization of target compounds. We present the first on-line stable chlorine isotope analysis of CAAs by use of gas chromatography/quadrupole mass spectrometry (GC/qMS). Following approved procedures for concentration analysis, CAAs extracted into MTBE were methylated to GC-amenable methyl esters (mCAAs). These mCAAs were then analyzed by GC/qMS for their stable chlorine isotope composition using a sample/standard-bracketing approach (CAA standards in the range δ(37) Cl -6.3 to -0.2 ‰, Standard Mean Ocean Chloride). Cross-calibration of the herein presented method with off-line reference methods (thermal ionization and continuous-flow GC isotope ratio mass spectrometry; TI-MS and CF-GC/IRMS, respectively) shows good agreement between the methods (regression slope for GC/qMS vs reference method data sets: 0.92 ± 0.29). Sample amounts as small as 10 pmol Cl can herewith be analyzed with a precision of 0.1 to 0.4 ‰. This method should be useful for environmental studies of CAAs at ambient concentrations in precipitations (<0.06 to 100 nmol L(-1) ), surface waters (<0.2 to 5 nmol L(-1) ) and soil (<0.6 to 2000 nmol kg(-1) dry soil) where conventional off-line methods cannot be applied. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk

    Directory of Open Access Journals (Sweden)

    Livia Cavaletti Corrêa da Silva

    2015-09-01

    Full Text Available Milk fraud has been a recurring problem in Brazil; thus, it is important to know the effect of most frequently used preservatives and neutralizing substances as well as the detection capability of official tests. The objective of this study was to evaluate the analytical sensitivity of legislation-described tests and nonspecific microbial inhibition tests, and to investigate the effect of such substances on microbial growth inhibition and the persistence of detectable residues after 24/48h of refrigeration. Batches of raw milk, free from any contaminant, were divided into aliquots and mixed with different concentrations of formaldehyde, hydrogen peroxide, sodium hypochlorite, chlorine, chlorinated alkaline detergent, or sodium hydroxide. The analytical sensitivity of the official tests was 0.005%, 0.003%, and 0.013% for formaldehyde, hydrogen peroxide, and hypochlorite, respectively. Chlorine and chlorinated alkaline detergent were not detected by regulatory tests. In the tests for neutralizing substances, sodium hydroxide could not be detected when acidity was accurately neutralized. The yogurt culture test gave results similar to those obtained by official tests for the detection of specific substances. Concentrations of 0.05% of formaldehyde, 0.003% of hydrogen peroxide and 0.013% of sodium hypochlorite significantly reduced (P

  11. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  12. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  13. Road risk analysis due to the transportation of chlorine in Rosario city

    Energy Technology Data Exchange (ETDEWEB)

    Scenna, N.J. [GIAIQ, Grupo de Investigacion en Informatica Aplicada a la Ingenieria Quimica, Universidad Tecnologica Nacional, Facultad Regional Rosario, Zeballos 1341, S2000 BQA Rosario, Santa Fe (Argentina) and INGAR, Instituto de Desarrollo y Diseno (Fundacion ARCIEN-CONICET), Avellaneda 3657, S3002GJC Santa Fe (Argentina)]. E-mail: nscenna@ceride.gov.ar; Santa Cruz, A.S.M. [GIAIQ, Grupo de Investigacion en Informatica Aplicada a la Ingenieria Quimica, Universidad Tecnologica Nacional, Facultad Regional Rosario, Zeballos 1341, S2000 BQA Rosario, Santa Fe (Argentina)

    2005-10-01

    A risk assessment for chlorine releases as a consequence of truck accidents along the circumvallation highway around Rosario city is presented. A methodology capable of handling uncertainties and an adapted computational system based on the DEGADIS model is developed. Wind intensity, wind direction and atmospheric stability are treated as uncertain parameters. This is critical for the vulnerability calculation. As a result, chlorine concentration distributions and the risk in the area of interest are achieved.

  14. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Chian, S.S.

    2011-01-01

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  15. Processing of Scholven coal with chlorine and iron catalysts

    Energy Technology Data Exchange (ETDEWEB)

    von Hartmann, G.

    1942-02-11

    In connection with the trials to process Scholven coal at 600 atm into petrol, middle oil and heating oil, a short, 8-day trial was conducted to process this coal at 250 atm with chlorine and iron catalysts into petrol and middle oil. The exact set-up and conditions of the oven were then described. It was demonstrated that bituminous coal could be processed at 250 atm with chlorine and iron catalysts without danger to the oven or deterioration of the residue reprocessing. The table at the end of the report compared data for this trial and earlier trials of a different Scholven coal. It was noted that although the output with the iron was slightly lower, a 10% increase in the flow rate could have counterbalanced this. Comments pointed out that while the separation of benzene with tin was 95%, with iron it was only 91%. Similarly, the asphalts related to clean coal were at 14% and 17% with tin, with the iron only at 8%. It was concluded from this that, when using chlorine and iron catalysts, a different type of coal separation took place in which, thrugh benzene, a part of the asphalt-like components was determined to be solid. Due to the shortness of the trial, this could not be pursued in more detail. 1 table.

  16. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of

  17. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    International Nuclear Information System (INIS)

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  18. Comparative Analytical Methods for the Measurment of Chlorine Dioxide

    OpenAIRE

    Desai, Unmesh Jeetendra

    2002-01-01

    Four commercially available methods used for the analysis of low-level Chlorine Dioxide (ClO2) concentrations in drinking water were evaluated for accuracy and precision and ranked according to cost, efficiency and ease of the methods under several conditions that might be encountered at water treatment plants. The different analytical methods included: 1.The DPD (N, N-diethyl-p-phenylenediamine) method 2.Lissamine Green B (LGB) wet-chemical method 3.Palintest® kit LGB 4.A...

  19. Chlorine-36 in seawater

    International Nuclear Information System (INIS)

    Argento, David C.; Stone, John O.; Keith Fifield, L.; Tims, Stephen G.

    2010-01-01

    Natural cosmogenic 36 Cl found in seawater originates from spallation of atmospheric 40 Ar, capture of secondary cosmic-ray neutrons by dissolved 35 Cl, and river runoff which contains 36 Cl produced in situ over the surface of the continents. The long residence time of chloride in the ocean and long half-life of 36 Cl compared to the oceanic mixing time should result in a homogenous 36 Cl/Cl ratio throughout the ocean. Production by neutron capture in the course of nuclear weapons testing should be insignificant averaged over the oceans as a whole, but may have led to regions of elevated 36 Cl concentration. Previous attempts to measure the 36 Cl/Cl ratio of seawater have been hindered by interferences, contamination, or insufficient analytic sensitivity. Here we report preliminary measurements on seawater samples, which demonstrate that the 36 Cl/Cl ratio is 0.5 ± 0.3 x 10 -15 , in reasonable agreement with calculated contributions from the sources listed above.

  20. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  1. Clean Chlorination of Silica Surfaces by a Single-site Substitution Approach

    KAUST Repository

    Maity, Niladri

    2018-02-12

    A chlorination method for the selective substitution of well-defined isolated silanol groups of the silica surface has been developed using the catalytic Appel reaction. Spectroscopic analysis, complemented by elemental microanalysis studies, reveals that a quantitative chlorination could be achieved with highly dehydroxylated silica materials that exclusively possess non-hydrogen bonded silanol groups. The employed method did not leave any carbon or phosphorous residue on the silica surface and can be regarded as a promising tool for the future functionalization of metal oxide surfaces.

  2. Biodegradation of chlorinated solvents in a water unsaturated topsoil

    DEFF Research Database (Denmark)

    Borch, T.; Ambus, P.; Laturnus, F.

    2003-01-01

    In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl3), 1,1,1-trichloroethane (CH3CCl3), tetrachloromethane (CCl4), trichloroethene (C2HCl3) and tetrachloroethene (C2Cl4) was studied in anoxic laboratory experi...... after 16 days. Based on the results in this study, we conclude that anaerobic topsoils are potential sinks for these contaminants, and that a natural attenuation potential exists, even in water unsaturated topsoils. (C) 2003 Elsevier Science Ltd. All rights reserved....... experiments designed to simulate denitrifying conditions in water unsanstrated by measuring the release of N-15 in N-2 to the headspace from added N-15 labeled nitrate. The degradation of chlorinated aliphatic compounds was followed by measuring their concentrations in the headspace above the soil....... The headspace concentrations of all the chlorinated solvents except CH3CCl3 were significantly (P less than or equal to 0.05) lower after 41 days in biologically active batches as compared to sterile batches. For the compounds with significantly decreasing headspace concentrations, the decline was the least...

  3. Chlorine fate and transport in drinking water distribution systems: Results from experimental and modeling studies

    Science.gov (United States)

    Clark, Robert M.

    2011-12-01

    It has become generally accepted that water quality can deteriorate in a distribution system through microbiological and chemical reactions in the bulk phase and/or at the pipe wall. The most serious aspect of water quality deterioration in a network is the loss of the disinfectant residual that can weaken the barrier against microbial contamination. Studies have suggested that one factor contributing to the loss of disinfectant residuals is the reaction between bulk phase disinfectants and pipe wall material. Free chlorine loss in corroded metal and PVC pipes, subject to changes in velocity, was assessed during an experiment conducted under controlled conditions in a specially constructed pipe loop located at the US Environmental Protection Agency's (EPA's) Test and Evaluation (T&E) Facility in Cincinnati, Ohio (USA). These studies demonstrated that in older unlined metal pipes, the loss of chlorine residual increases with velocity but that wall demand in PVC was negligible.

  4. Transformation of benzophenone-type UV filters by chlorine: Kinetics, products identification and toxicity assessments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Ma, Li-yun; Xu, Li, E-mail: xulpharm@mails.tjmu.edu.cn

    2016-07-05

    Highlights: • Chlorination kinetics of three benzophenone-type UV filters (BPs) was studied. • Chlorination of BPs followed second-order reaction. • The transformation products (TPs) of six BPs were identified. • Several transformation pathways were proposed. • Mostly enhanced toxicity of TPs after chlorination was observed. - Abstract: The present study focused on the kinetics, transformation pathways and toxicity of several benzophenone-type ultraviolet filters (BPs) during the water chlorination disinfection process. The transformation kinetics of the studied three BPs was found to be second-order reaction, which was dependent on the concentration of BPs and chlorine. The second-order rate constants increased from 86.7 to 975 M{sup −1} s{sup −1} for oxybenzone, 49.6–261.7 M{sup −1} s{sup −1} for 4-hydroxybenzophenone and 51.7–540 M{sup −1} s{sup −1} for 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid with the increasing pH value from 6 to 8 of the chlorination disinfection condition. Then the transformation products (TPs) of these BPs were identified by HPLC-QTof analysis. Several transformation pathways, including electrophilic substitution, methoxyl substitution, ketone groups oxidation, hydrolysis, decarboxylation and ring cleavage reaction, were speculated to participate in the chlorination transformation process. Finally, according to the toxicity experiment on luminescent bacteria, Photobacterium phosphoreum, enhanced toxicity was observed for almost all the TPs of the studied BPs except for 2,2′-dihydroxy-4,4′-dimethoxybenzophenone; it suggested the formation of TPs with more toxic than the parent compounds during the chlorination process. The present study provided a foundation to understand the transformation of BPs during chlorination disinfection process, and was of great significance to the drinking water safety.

  5. Improving yield and composition of protein concentrates from green tea residue in an agri-food supply chain: Effect of pre-treatment

    NARCIS (Netherlands)

    Zhang, Chen; Krimpen, Van Marinus M.; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Rather than improving crop-production yield, developing biorefinery technology for unused biomass from the agri-food supply chain may be the crucial factor to reach sustainable global food security. A successful example of food-driven biorefinery is the extraction of protein from green tea residues,

  6. In vivo chlorine and sodium MRI of rat brain at 21.1 T.

    Science.gov (United States)

    Schepkin, Victor D; Elumalai, Malathy; Kitchen, Jason A; Qian, Chunqi; Gor'kov, Peter L; Brey, William W

    2014-02-01

    MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development. MRI of (35)Cl and (23)Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method. T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of [Formula: see text] ms and [Formula: see text] ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain. The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.

  7. pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater.

    Science.gov (United States)

    Li, Bing; Zhang, Tong

    2012-07-01

    The effect of pH on chlorination behaviors of 12 antibiotics, including β-lactams, sulfonamides, fluoroquinolones, tetracyclines, macrolides, and others at environmentally relevant concentrations was systematically examined in the effluent matrix of activated sludge process. The removal of most antibiotics (except cefalexin and tetracycline) significantly depended on pH in the range of 5.5-8.5. The elimination rates of ciprofloxacin, norfloxacin, anhydro-erythromycin, and roxithromycin increased while that of sulfamethoxazole decreased significantly with the increase of pH. Sulfadiazine, ofloxacin, and trimethoprim exhibited the highest reactivity with free available chlorine under the pH of 6-7, 7, and 7.5, respectively. Not only the free available chlorine species (HOCl and OCl⁻), but also the antibiotics species (cationic, neutral and anionic) affected the overall reaction rate. Anionic antibiotic species are usually much more reactive (1-3 orders of magnitude greater) than cationic antibiotic species toward free available chlorine. Although OCl⁻ is a weaker oxidant than HOCl, chlorination of sulfadiazine, sulfamethoxazole, ciprofloxacin, norfloxacin, and trimethoprim with OCl⁻ became significant at pH > 7.5. The observed kinetics rate constants calculated from species-specific rate constants could accurately (0.91 removal in chlorination of activated sludge effluent with similar DOC and ammonia concentration to this study at a given pH value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The

  9. Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs

    Science.gov (United States)

    Agrinier, Pierre; Shilobreeva, Svetlana; Bardoux, Gerard; Michel, Agnes; Maximov, Alexandr; Kalatcheva, Elena; Ryabinin, Gennady; Bonifacie, Magali

    2015-04-01

    By using the stable isotopes of chlorine (δ 37Cl), we have shown that magmatic chlorine (δ 37Cl ≤ -0.6 ‰ [1]) is different from surface chlorine (δ 37Cl ≈ 0 ‰ [1]) in hydrothermal system of Soufrière and Montagne Pelé from the young arc volcanic system of Lesser Antilles. First measurements on condensed chlorides from volcanic gases (e.g. [2], [3]) did not permitted to get sensible δ 37Cl values on degassed chlorine likely because chlorine isotopes are fractionated during the HClgas - chloride equilibrium in the fumaroles or during sampling artifacts. Therefore we have developed an alternative strategy based on the analysis of chloride in thermal springs, streams, sout{f}lowing on the flanks of the volcanoes. Due to the highly hydrophilic behavior of Cl, we hypothesize that thermal springs incorporate chlorine without fractionation of chlorine isotopes and might reflect the chlorine isotopic composition degassed by magmas [1]. Indeed Thermal spring with low δ 37Cl chlorides (≤ -0.6 perthousand{}) are linked with magmatic volatiles characters (3He ratio at 5 Ra at and δ 13C CO2 quad ≈ -3 perthousand{}). To go further in the potentiality of using the Chlorine isotopes to reveal contribution of magmatic chlorine in volcanic systems, we have started the survey of thermal springs and wells waters in the Kamchatka-Kuril volcanic mature Arc (on sites Mutnovsky, Paratunka, Nalychevsky, Khodutkinsky, Paramushir Island, identified by Taran, 2009 [4] for concentrations of chloride). Preliminary results show δ 37Cl values ranging from 0.5 to -0.2 ‰ and generally higher chloride concentrations. The δ 37Cl values are higher than the value recorded for the young arc volcanic system of lesser Antilles. At present moment very few negative δ 37Cl have been measured in the Kamchatka-Kuril volcanic mature Arc. [1] Li et al., 2015 EPSL in press. [2] Sharp et al. 2010 GCA. [3] Rizzo et al., 2013, EPSL, 371, 134. [4] Taran, 2009, GCA, 73, 1067

  10. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Synthesis of Carbon Nanomaterials using Chlorinated ...

    African Journals Online (AJOL)

    The effect of chlorine on the morphology of carbon nanotubes (CNTs) prepared from a Fe-Co/CaCO3 catalyst was investigated using chlorobenzene (CB), dichlorobenzene (DCB), trichlorobenzene (TCB), dichloroethane (DCE), trichloroethane (TCE) and tetrachloroethane (TTCE) as chlorine sources using a catalytic ...

  12. Validation of a methodology multi-residue for the determination of pesticides residuals in strawberry (fragraria spp.) by gas chromatography

    International Nuclear Information System (INIS)

    Montano Garces, Mauricio; Guerrero Dallos, Jairo Arturo

    2001-01-01

    This study describes the validation of multi-residue analytical methodology for the simultaneous determination of 19 organ chlorine, organophosphorus and organ nitrogen pesticides in strawberry. Pesticides residues were extracted from strawberry samples with ethyl acetate, the extracts were cleaned-up by GPC, the quantitative analysis was carried out by high resolution gas chromatography (GC) with a pulsed splitless injection mode and simultaneous detection by m-ECD and NPD coupled in parallel. The methodology is specific, selective, and accurate and robust the calibration curves in matrix matched analytical standards show linearity over the concentration range of 0.04-5.00 mg/kg with limits of detection and quantitation between 0.007-0.5 mg/kg and 0.01-1.00 mg/kg respectively. The recovery experiments yielding averages between 80-110% for most of the pesticides. The distribution of analyze in the laboratory sample was evaluated and it was found its homogeneity. The methodology was applied in field samples and was mainly found Captan residues below MRL

  13. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  14. Chlorine by-products in sea water at the Penly nuclear power plant. Measurement survey in May 1993; Residus de chloration en mer a Penly. Campagne de mesures de Mai 1993

    Energy Technology Data Exchange (ETDEWEB)

    Khalanski, M.; Delesmont, R.

    1994-09-01

    The objective of the measurement survey conducted at the Penly nuclear power plant on May 27 and 28, 1993, was to determine the distribution of residual oxidants and volatile organo-halogenated compounds (THM) concentrations in the discharge plume when both units of the plants are carrying out chlorination. The data collected provide a mapping of the chemical types analyzed and will serve in calibration of a numerical model to simulate the evolution of these compounds in the discharge plume. During the two days of measurements, quantitative analyses were performed on samples taken by helicopter, once at high tide and twice at low tide with mean tidal coefficients. The chlorine injection level ranged from 0.84 to 0.92 mg/l (ppm) in unit 1 and from 0.64 to 0.70 mg/l in unit 2. Residual oxidants were measured as Total Chlorine equivalents using the colorimetric DPD method. Bromoform accounted for 97.8 % of the THM generated by chlorination. Three minutes after injection of hypochlorite, in the discharge basin, bromoform reached 60 % of its maximum concentration (29.23 {mu}g/l). The maximum reaction yield of bromoform formation is 2,9 %. Three zones were defined according to their proximity to releases. In each zone, given the lake of precision in measurements, the concentration of residual oxidants found did not reach significant levels ({<=}0.03 mg/l). The bromoform concentration, on the contrary, reached measurable levels in each of the samples. Its distribution differs significantly from one zone to another: -release zone : 1.66{+-}0.40{mu}g/l -nearby zone: 0.44{+-}0.13{mu}g/l - distant zone : 0.26{+-}0.10{mu}g/l. Our analysis, which indicates a background level of the order of 0.1 {mu}g/l for the entire studied area, raises the question of possible other sources of bromoform, independent of discharge from Penly. (authors). 15 refs., 11 figs., 5 tabs., 4 annexes.

  15. Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard

    2018-01-01

    Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component...... of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper....... First, a ma terial equivalent to the ductile cast iron matrix is manufactured and subjected to dilato- metric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between...

  16. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Aspects of reduction clorination of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Gameiro, D.H.; Brocchi, E.A.

    1985-01-01

    Reduction chlorination experiments were carried out with two different Brazilian pyrochlore concentrates in order to evaluate the effects of some variables on the extent of niobium pentoxide gaseification as well as to compare the behavior of concentrate under the same chlorination conditions. The pyrochlore concentrates from Araxa (MG) and Catalao (GO), Brazil, were submitted to X ray diffraction and X ray fluorescence analysis for determining their chemical compositions. Kinetic curves were obtained with the main variables being temperature and percentage of reducing agent. Analysis of the condensed material in terms of Nb 2 O 5 indicated that chlorination can be used to produce niobium pentoxide. (Author) [pt

  18. Chlorine

    Science.gov (United States)

    ... Marburg virus hemorrhagic fever Melioidosis ( Burkholderia pseudomallei ) Plague ( Yersinia pestis ) FAQ About Plague (as a bioweapon) Facts About ... Ebola, Marburg] and arenaviruses [e.g., Lassa, Machupo]) Yersinia pestis (plague) Fact Sheets Case Definitions Training Surveillance Preparation & ...

  19. Formation of chlorinated aromatics by reactions of Cl*, Cl2, and HCl with benzene in the cool-down zone of a combustor.

    Science.gov (United States)

    Procaccini, Carlo; Bozzelli, Joseph W; Longwell, John P; Sarofim, Adel F; Smith, Kenneth A

    2003-04-15

    Conversion of benzene to chlorobenzenes and monochlorophenols by reaction with chlorine radicals (Cl*) in the cool-down zone of a plug-flow combustor has been studied, and a mechanistic analysis of the initial steps of the oxy-chlorination process is proposed. Superequilibrium concentrations of Cl* are formed during combustion of chlorocarbon species and persist at significant concentration levels even after a substantial reduction in the flue gas temperature (T = 500-700 degrees C). At these temperatures, Cl* attack on benzene present in trace concentrations (initial benzene concentration of 300 ppmv or 1080 ppmv were used for the experiments) in the post-flame gas is shown to result in stable chlorinated products (chlorobenzenes and chlorophenols) and loss of benzene. These results suggest that Cl* attack on trace level aromatics and possibly other organic species may be the initial step in the formation of a broad class of chlorinated and oxy-chlorinated pollutants in the post combustion zone.

  20. Chlorinated Phospholipids and Fatty Acids: (Pathophysiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Jenny Schröter

    2016-01-01

    Full Text Available Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl, generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated phospholipids and plasmalogens such as lysophospholipids, (chlorinated free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.

  1. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Lucía I., E-mail: lbarbosa@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); González, Jorge A. [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Parque General San Martín, CP M5502JMA Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 17, CP 5700 San Luis (Argentina)

    2015-04-10

    Highlights: • β-Spodumene was roasted with calcium chloride to extract lithium. • The optimal conditions of the chlorination process are 900 °C and 120 min. • The products of the reaction are lithium chloride, anorthite, and silica. - Abstract: Chlorination roasting was used to extract lithium as lithium chloride from β-spodumene. The roasting was carried out in a fixed bed reactor using calcium chloride as chlorinating agent. The mineral was mixed with CaCl{sub 2} on a molar ratio of 1:2. Reaction temperature and time were investigated. The reactants and roasted materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and atomic absorption spectrophotometry (AAS). The mineral starts to react with CaCl{sub 2} at around 700 °C. The optimal conditions of lithium extraction were found to be 900 °C and 120 min of chlorination roasting, under which it is attained a conversion degree of 90.2%. The characterization results indicate that the major phases present in the chlorinating roasting residue are CaAl{sub 2}Si{sub 2}O{sub 8}, SiO{sub 2}, and CaSiO{sub 3}.

  2. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride

    International Nuclear Information System (INIS)

    Barbosa, Lucía I.; González, Jorge A.; Ruiz, María del Carmen

    2015-01-01

    Highlights: • β-Spodumene was roasted with calcium chloride to extract lithium. • The optimal conditions of the chlorination process are 900 °C and 120 min. • The products of the reaction are lithium chloride, anorthite, and silica. - Abstract: Chlorination roasting was used to extract lithium as lithium chloride from β-spodumene. The roasting was carried out in a fixed bed reactor using calcium chloride as chlorinating agent. The mineral was mixed with CaCl 2 on a molar ratio of 1:2. Reaction temperature and time were investigated. The reactants and roasted materials were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and atomic absorption spectrophotometry (AAS). The mineral starts to react with CaCl 2 at around 700 °C. The optimal conditions of lithium extraction were found to be 900 °C and 120 min of chlorination roasting, under which it is attained a conversion degree of 90.2%. The characterization results indicate that the major phases present in the chlorinating roasting residue are CaAl 2 Si 2 O 8 , SiO 2 , and CaSiO 3

  3. Formation of chlorinated lipids post-chlorine gas exposure.

    Science.gov (United States)

    Ford, David A; Honavar, Jaideep; Albert, Carolyn J; Duerr, Mark A; Oh, Joo Yeun; Doran, Stephen; Matalon, Sadis; Patel, Rakesh P

    2016-08-01

    Exposure to chlorine (Cl2) gas can occur during accidents and intentional release scenarios. However, biomarkers that specifically indicate Cl2 exposure and Cl2-derived products that mediate postexposure toxicity remain unclear. We hypothesized that chlorinated lipids (Cl-lipids) formed by direct reactions between Cl2 gas and plasmalogens serve as both biomarkers and mediators of post-Cl2 gas exposure toxicities. The 2-chloropalmitaldehyde (2-Cl-Pald), 2-chlorostearaldehyde (2-Cl-Sald), and their oxidized products, free- and esterified 2-chloropalmitic acid (2-Cl-PA) and 2-chlorostearic acid were detected in the lungs and plasma of mouse and rat models of Cl2 gas exposure. Levels of Cl-lipids were highest immediately post-Cl2 gas exposure, and then declined over 72 h with levels remaining 20- to 30-fold higher at 24 h compared with baseline. Glutathione adducts of 2-Cl-Pald and 2-Cl-Sald also increased with levels peaking at 4 h in plasma. Notably, 3-chlorotyrosine also increased after Cl2 gas exposure, but returned to baseline within 24 h. Intranasal administration of 2-Cl-PA or 2-Cl-Pald at doses similar to those formed in the lung after Cl2 gas exposure led to increased distal lung permeability and inflammation and systemic endothelial dysfunction characterized by loss of eNOS-dependent vasodilation. These data suggest that Cl-lipids could serve as biomarkers and mediators for Cl2 gas exposure and toxicity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  5. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  6. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  7. Reduction of pesticide residues on fresh vegetables with electrolyzed water treatment.

    Science.gov (United States)

    Hao, Jianxiong; Wuyundalai; Liu, Haijie; Chen, Tianpeng; Zhou, Yanxin; Su, Yi-Cheng; Li, Lite

    2011-05-01

    Degradation of the 3 pesticides (acephate, omethoate, and dimethyl dichloroviny phosphate [DDVP]) by electrolyzed water was investigated. These pesticides were commonly used as broad-spectrum insecticides in pest control and high-residual levels had been detected in vegetables. Our research showed that the electrolyzed oxidizing (EO) water (pH 2.3, available chlorine concentration:70 ppm, oxidation-reduction potential [ORP]: 1170 mV) and the electrolyzed reducing (ER) water (pH 11.6, ORP: -860 mV) can reduce the pesticide residues effectively. Pesticide residues on fresh spinach after 30 min of immersion in electrolyzed water reduced acephate by 74% (EO) and 86% (ER), omethoate by 62% (EO) and 75% (ER), DDVP by 59% (EO) and 46% (ER), respectively. The efficacy of using EO water or ER water was found to be better than that of using tap water or detergent (both were reduced by more than 25%). Besides spinach, the cabbage and leek polluted by DDVP were also investigated and the degradation efficacies were similar to the spinach. Moreover, we found that the residual level of pesticide residue decreased with prolonged immersion time. Using EO or ER water to wash the vegetables did not affect the contents of Vitamin C, which inferred that the applications of EO or ER water to wash the vegetables would not result in loss of nutrition. © 2011 Institute of Food Technologists®

  8. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera)

    OpenAIRE

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen) induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate), Karate (λ-cyhalothr...

  9. Weld Residual Stress in Corner Boxing Joints

    OpenAIRE

    Kazuyoshi, Matsuoka; Tokuharu, Yoshii; Ship Research Institute, Ministry of Transport; Ship Research Institute, Ministry of Transport

    1998-01-01

    Fatigue damage often occurs in corner boxing welded joints because of stress concentration and residual stress. The hot spot stress approach is applicable to stress concentration. However, the number of suitable methods for estimating residual stress in welded joints is limited. The purpose of this paper is to clarify the residual stress in corner boxing joints. The method of estimating residual stresses based on the inherent stress technique is presented. Residual stress measurements are per...

  10. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  11. Distribution of chloride ion in MSWI bottom ash and de-chlorination performance.

    Science.gov (United States)

    Chen, Ching-Ho; Chiou, Ing-Jia

    2007-09-05

    When recycling bottom ash from municipal solid waste incinerators (MSWIs), salts and heavy metals contents must be considered; in particular, chloride ions must be addressed because they cause serious corrosion in metals. Therefore, only limited amounts of bottom ash can be utilized as a substitution for material or the bottom ash must be treated at high temperatures prior to use. These factors markedly decrease the applications of bottom ash. In addition to the distribution characteristics of chloride ions, this study also investigates the characteristics change before and after de-chlorination using a counter-flow pipe column and three different flow fluxes for different refuse incinerators as the experiment variables. Thus, this study attempts to determine the appropriate conditions for de-chlorination and an appropriate policy for use of bottom ash as concrete aggregate. The experimental results show that a negative correlation exists between the natural logarithm of the chloride ion concentration and particle size in bottom ash. Characteristics of de-chlorinated bottom ash, such as pH value, mud content, loss on ignition, chloride ion concentration, turbidity, and species intensity, all decrease, meaning that de-chlorination decreased chloride ion content and generates a cleaning effect. The per-unit-time efficiency of de-chlorination is highest in the high flux flow. When flow flux is 80 mL/min, the de-chlorination efficiency is >0.3%/h. However, the shortest time required for bottom ash de-chlorination does not reduce in proportion to the legally prescribed concentration of chloride ion.

  12. Determination of the Minimum Inhibitory Concentration of the Barberry Extract and the Dried Residue of Red Grape and Their Effects on the Growth Inhibition of Sausage Bacteria by Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Fatemeh Riazi

    2015-09-01

    Full Text Available Background and Objectives: With regard to the hazards of nitrite, application of natural preservatives in order to reduce the microbial load of meat and meat products is increasing. Owing to their anti-bacterial properties, red barberry and the dried residue of red grape could be suitable replacers for nitrite. Materials and Methods: Agar dilution method was employed in order to determine the minimum inhibitory concentration (MIC of the barberry extract and the dried residue of red grape. The anti-microbial effects of the barberry extract (0-600 mg/kg, the dried residue of red grape (0-2% and nitrite (30-90 mg/kg were investigated on the total viable counts of Clostridium perfringens, as well as on the psychrophilic bacteria after 30 days of storage at 4°C. Finally, the effects of the three independent variables in the optimal sample were examined on the growth of the inoculated C. perfringens. Results: The MIC of the barberry extract and the dried residue of red grape on Staphylococcus aureus was 3 and 6 (mg/ml, respectively. In the case of Escherichia coli, it was 4 and 7 (mg/ml, respectively. The barberry extract and nitrite reduced the growth of the living aerobic bacteria significantly. The spores of the inoculated C. perfringens had no growth in the optimum sample during storage. Conclusions: The barberry extract and the dried residue of red grape as natural preservatives, could partially substitute for nitrite in order to reduce the microbial load of sausage.

  13. Uptake, turnover and distribution of chlorinated fatty acids in aquatic biota

    Energy Technology Data Exchange (ETDEWEB)

    Bjoern, Helena

    1999-09-01

    Chlorinated fatty acids (CIFAs) are the major contributors of extractable, organically bound chlorine in fish lipids. A known anthropogenic source of CIFAs is chlorine bleached pulp production. Additional anthropogenic sources may exist, e.g., chlorine-containing discharge from industrial and household waste and they may also occur naturally. CIFAs have a wide geographic distribution. They have, for instance, been identified in fish both from Alaskan and Scandinavian waters. In toxicological studies of CIFAs, the most pronounced effects have been found in reproductive related processes. CIFAs have also been shown to disrupt cell membrane functions. The present study was carried out to further characterise the ecotoxicological properties of CIFAs and their presence in biota. To investigate the biological stability of CIFAs, two experiments were carried out using radiolabelled chlorinated and non-chlorinated fatty acids. In both experiments, CIFAs were taken up from food by fish and assimilated to lipids. From the first experiment it was concluded that the chlorinated fatty acid investigated was turned over in the fish to a lower degree than the non-chlorinated analogue. In the second experiment, the transfer of a chlorinated fatty acid was followed over several trophic levels and the chlorinated fatty acid was transferred to the highest trophic level. In samples with differing loads of persistent organic pollutants (POPs) from both fish and marine mammals, high concentrations and diversity of CIFAs were detected. This was also observed in samples with low POP concentration. Chlorohydroxy fatty acids made up a considerable portion of the CIFAs in certain samples, both from limnic fish and marine mammals. CIFAs in fish were found to be bound in complex lipids such as triacylglycerols (storage lipids) and phospholipids, as well as in acyl sterols (membrane lipids). In the marine mammals investigated, high concentrations of CIFAs were mainly bound in phospholipids. If

  14. An electrospray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection byproducts.

    Science.gov (United States)

    Zhang, Xiangru; Minear, Roger A; Guo, Yingbo; Hwang, Cordelia J; Barrett, Sylvia E; Ikeda, Kazuhiro; Shimizu, Yoshihisa; Matsui, Saburo

    2004-11-01

    Identification of chlorinated drinking water disinfection byproducts (DBPs) was investigated by using electrospray ionization-mass spectrometry/mass spectrometry (ESI-MS/MS). Chlorine-containing compounds were found to form chloride ion fragments by MS/MS, which can be used as a 'fingerprint' for chlorinated DBPs. Instrumental parameters that affect the formation of chloride ions by ESI-MS/MS were examined, and appropriate conditions for use in finding specific structural information were evaluated. The results show that maximizing the formation of chloride ions by MS/MS required a relatively high collision energy and collision gas pressure; also, limiting the scan range to m/z 30-40 allowed improved sensitivity for detection; but obtaining structural information required the use of lower collision energies. The conditions obtained were demonstrated to be effective in identifying chlorinated DBPs in a standard sample with relatively low concentrations of each component and in a chlorinated humic substance sample. Sample pretreatment techniques including ultrafiltration and size exclusion chromatography appeared to be helpful for identifying highly polar or high molecular weight chlorine-containing DBPs by ESI-MS/MS.

  15. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water.

    Science.gov (United States)

    Shi, Peng; Jia, Shuyu; Zhang, Xu-Xiang; Zhang, Tong; Cheng, Shupei; Li, Aimin

    2013-01-01

    This study aimed to investigate the chlorination effects on microbial antibiotic resistance in a drinking water treatment plant. Biochemical identification, 16S rRNA gene cloning and metagenomic analysis consistently indicated that Proteobacteria were the main antibiotic resistant bacteria (ARB) dominating in the drinking water and chlorine disinfection greatly affected microbial community structure. After chlorination, higher proportion of the surviving bacteria was resistant to chloramphenicol, trimethoprim and cephalothin. Quantitative real-time PCRs revealed that sulI had the highest abundance among the antibiotic resistance genes (ARGs) detected in the drinking water, followed by tetA and tetG. Chlorination caused enrichment of ampC, aphA2, bla(TEM-1), tetA, tetG, ermA and ermB, but sulI was considerably removed (p water chlorination could concentrate various ARGs, as well as of plasmids, insertion sequences and integrons involved in horizontal transfer of the ARGs. Water pipeline transportation tended to reduce the abundance of most ARGs, but various ARB and ARGs were still present in the tap water, which deserves more public health concerns. The results highlighted prevalence of ARB and ARGs in chlorinated drinking water and this study might be technologically useful for detecting the ARGs in water environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    Science.gov (United States)

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  17. A COMPREHENSIVE ANALYSIS OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ENVIRONMENTAL RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Hunter, C.; Werth, D.; Chen, K.; Whiteside, M.; Mazzola, C.

    2011-05-10

    A train derailment occurred in Graniteville, South Carolina during the early morning of January 6, 2005, and resulted in the release of a large amount of cryogenic pressurized liquid chlorine to the environment in a short time period. A comprehensive evaluation of the transport and fate of the released chlorine was performed, accounting for dilution, diffusion, transport and deposition into the local environment. This involved the characterization of a three-phased chlorine release, a detailed determination of local atmospheric mechanisms acting on the released chlorine, the establishment of atmospheric-hydrological physical exchange mechanisms, and aquatic dilution and mixing. This presentation will provide an overview of the models used in determining the total air-to-water mass transfer estimated to have occurred as a result of the roughly 60 tons of chlorine released into the atmosphere from the train derailment. The assumptions used in the modeling effort will be addressed, along with a comparison with available observational data to validate the model results. Overall, model-estimated chlorine concentrations in the airborne plume compare well with human and animal exposure data collected in the days after the derailment.

  18. Surface passivation of natural graphite electrode for lithium ion battery by chlorine gas.

    Science.gov (United States)

    Suzuki, Satoshi; Mazej, Zoran; Zemva, Boris; Ohzawa, Yoshimi; Nakajima, Tsuyoshi

    2013-01-01

    Surface lattice defects would act as active sites for electrochemical reduction of propylene carbonate (PC) as a solvent for lithium ion battery. Effect of surface chlorination of natural graphite powder has been investigated to improve charge/discharge characteristics of natural graphite electrode in PC-containing electrolyte solution. Chlorination of natural graphite increases not only surface chlorine but also surface oxygen, both of which would contribute to the decrease in surface lattice defects. It has been found that surface-chlorinated natural graphite samples with surface chlorine concentrations of 0.5-2.3 at% effectively suppress the electrochemical decomposition of PC, highly reducing irreversible capacities, i.e. increasing first coulombic efficiencies by 20-30% in 1 mol L-1 LiClO4-EC/DEC/PC (1:1:1 vol.). In 1 mol L-1 LiPF6-EC/EMC/PC (1:1:1 vol.), the effect of surface chlorination is observed at a higher current density. This would be attributed to decrease in surface lattice defects of natural graphite powder by the formation of covalent C-Cl and C=O bonds.

  19. Investigation on chlorine-based sanitization under stabilized conditions in the presence of organic load.

    Science.gov (United States)

    Teng, Zi; Luo, Yaguang; Alborzi, Solmaz; Zhou, Bin; Chen, Lin; Zhang, Jinglin; Zhang, Boce; Millner, Patricia; Wang, Qin

    2018-02-02

    Chlorine, the most commonly used sanitizer for fresh produce washing, has constantly shown inferior sanitizing efficacy in the presence of organic load. Conventionally this is attributed indirectly to the rapid chlorine depletion by organics leading to fluctuating free chlorine (FC) contents. However, little is known on whether organic load affects the sanitization process directly at well-maintained FC levels. Hereby, a sustained chlorine decay approach was employed to study the inactivation of Escherichia coli O157:H7 under stabilized washing conditions. Chlorine solution was first incubated with organic load for up to 4h, modeling the chlorination in produce washing lines. The FC level was then stabilized at five targeted values for sanitization study. Our study showed decreased sanitizing efficacy as the organic load increased. At 5s residence time and pH6.5, a minimum of 0.5 and 7.5mg/L FC were needed to achieve a 5 log reduction at 0 and 900mg/L chemical oxygen demand (COD), respectively. The decrease was more pronounced at lower FC, higher COD, higher pH, and shorter residence time values. The organics-associated interference with FC measurement and disruption of chlorine/bacteria interaction, together with the chlorine demand of concentrated inoculum per se, collectively resulted in inadequate sanitization. Finally, our results were compared with existing studies conducted under dynamic conditions in the context of different experimental settings. This study provided a feasible method for studying the bacteria/sanitizer interaction while ruling out the confounding effect from fluctuating FC levels, and it indicated the direct, negative impact of organic load. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.

    Science.gov (United States)

    Vieira Salla, Ana Cláudia; Margarites, Ana Cláudia; Seibel, Fábio Ivan; Holz, Luiz Carlos; Brião, Vandré Barbosa; Bertolin, Telma Elita; Colla, Luciane Maria; Costa, Jorge Alberto Vieira

    2016-06-01

    Non-renewable sources that will end with time are the largest part of world energy consumption, which emphasizes the necessity to develop renewable sources of energy. This necessity has created opportunities for the use of microalgae as a biofuel. The use of microalgae as a feedstock source for bioethanol production requires high yields of both biomass and carbohydrates. With mixotrophic cultures, wastewater can be used to culture algae. The aim of the study was to increase the carbohydrate content in the microalgae Spirulina with the additions of residues from the ultra and nanofiltration of whey protein. The nutrient deficit in the Zarrouk medium diluted to 20% and the addition of 2.5% of both residue types led to high carbohydrate productivity (60 mg L(-1) d(-1)). With these culture conditions, the increase in carbohydrate production in Spirulina indicated that the conditions were appropriate for use with microalgae as a feedstock in the production of bioethanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.

    Science.gov (United States)

    Bond, Tom; Huang, Jin; Graham, Nigel J D; Templeton, Michael R

    2014-02-01

    During drinking water treatment aqueous chlorine and bromine compete to react with natural organic matter (NOM). Among the products of these reactions are potentially harmful halogenated disinfection by-products, notably four trihalomethanes (THM4) and nine haloacetic acids (HAAs). Previous research has concentrated on the role of bromide in chlorination reactions under conditions of a given NOM type and/or concentration. In this study different concentrations of dissolved organic carbon (DOC) from U.K. lowland water were reacted with varying amounts of bromide and chlorine in order to examine the interrelationship between the three reactants in the formation of THM4, dihaloacetic acids (DHAAs) and trihaloacetic acids (THAAs). Results showed that, in general, molar yields of THM4 increased with DOC, bromide and chlorine concentrations, although yields did fluctuate versus chlorine dose. In contrast both DHAA and THAA yields were mainly independent of changes in bromide and chlorine dose at low DOC (1 mg·L(-1)), but increased with chlorine dose at higher DOC concentrations (4 mg·L(-1)). Bromine substitution factors reached maxima of 0.80, 0.67 and 0.65 for the THM4, DHAAs and THAAs, respectively, at the highest bromide/chlorine ratio studied. These results suggest that THM4 formation kinetics depend on both oxidation and halogenation steps, whereas for DHAAs and THAAs oxidation steps are more important. Furthermore, they indicate that high bromide waters may prove more problematic for water utilities with respect to THM4 formation than for THAAs or DHAAs. While mass concentrations of all three groups increased in response to increased bromide incorporation, only the THMs also showed an increase in molar yield. Overall, the formation behaviour of DHAA and THAA was more similar than that of THM4 and THAA. © 2013.

  2. Impact of Chlorine and Heat on the Survival of Hartmannella vermiformis and Subsequent Growth of Legionella pneumophila.

    Science.gov (United States)

    Kuchta, J M; Navratil, J S; Shepherd, M E; Wadowsky, R M; Dowling, J N; States, S J; Yee, R B

    1993-12-01

    Hartmannella vermiformis, a common amoebal inhabitant of potable-water systems, supports intracellular multiplication of Legionella pneumophila and is probably important in the transportation and amplification of legionellae within these systems. To provide a practical guide for decontamination of potable-water systems, we assessed the chlorine and heat resistance of H. vermiformis. H. vermiformis cysts and trophozoites were treated independently with chlorine at concentrations of 2.0 to 10.0 ppm for 30 min and then cocultured with L. pneumophila. Both cysts and trophozoites were sensitive to concentrations between 2.0 and 4.0 ppm and above (trophozoites somewhat more so than cysts), and 10.0 ppm was lethal to both forms. Hartmannellae treated with chlorine up to a concentration of 4.0 ppm supported the growth of legionellae. To determine whether heat would be an effective addendum to chlorine treatment of amoebae, hartmannellae were subjected to temperatures of 55 and 60 degrees C for 30 min and alternatively to 50 degrees C followed by treatment with chlorine at a concentration of 2 ppm. Fewer than 0.05% of the amoebae survived treatment at 55 degrees C, and there were no survivors at 60 degrees C. Pretreatment at 50 degrees C appeared to make hartmannella cysts more susceptible to chlorine but did not further reduce the concentration of trophozoites.

  3. Constraining wintertime sources of inorganic chlorine over the northeast United States

    Science.gov (United States)

    Haskins, J.; Jaegle, L.; Shah, V.; Lopez-Hilfiker, F.; Lee, B. H.; Campuzano Jost, P.; Schroder, J. C.; Day, D. A.; Fiddler, M. N.; Holloway, J. S.; Sullivan, A.; Veres, P. R.; Weber, R. J.; Dibb, J. E.; Brown, S. S.; Jimenez, J. L.; Thornton, J. A.

    2017-12-01

    Wintertime multiphase chlorine chemistry is thought to play a significant role in the regional distribution of oxidants, the lifetime of VOCs, and the transport of NOx downwind of urban sources. However, the sources and chemistry of reactive chlorine remain highly uncertain. During the WINTER 2015 aircraft campaign, the inorganic chlorine budget was dominated by HCl (g) and total particulate chloride, accounting for greater than 85% of the total chlorine budget within the boundary layer. The total concentration of inorganic chlorine compounds found over marine regions was 1014 pptv and 609 pptv over continental regions with variability found to be driven by changes in meteorological conditions, particle liquid water content, particle pH, and proximity to large anthropogenic sources. However, displacement of particle chloride was often not a large enough source to fully explain the concentrations of gas phase Cly compounds. We use the GEOS-Chem global chemical transport model to simulate the emissions, gas-particle partitioning, and downwind transport and deposition of Cly during winter. Simulated concentrations of HCl, particle chloride, and other dominant Cly compounds are compared to measurements made during the WINTER aircraft campaign. The relative roles of Cly sources from sea-salt aerosol and anthropogenic sources such as power plants, biomass burning and road salt are explored.

  4. Ecological risk assessment of pesticide residues in coastal lagoons of Nicaragua.

    Science.gov (United States)

    Carvalho, Fernando P; Villeneuve, Jean-Pierre; Cattini, Chantal; Tolosa, Immaculada; Montenegro-Guillén, S; Lacayo, Martha; Cruz, Adela

    2002-10-01

    A detailed investigation on the contamination with chlorinated hydrocarbons and organophosphorous pesticides of the coastal lagoon system of Chinandega district, Nicaragua, allowed the identification of contaminant sources and lagoon areas currently more contaminated. The discharge of rivers into the lagoons is the main transport pathway of pesticide residues; whereas atmospheric depositions are likely to be the main pathway for the introduction of PCBs into the lagoons. Analysis of water samples indicates widespread contamination with soluble organophosphorous compounds, such as dichlorvos, up to 410 ng L(-1), diazinon, up to 150 ng L(-1), and chlorpyrifos, up to 83 ng L(-1). Analyses of suspended matter for low solubility organochlorine (OC) compounds revealed very high concentrations of toxaphene, up to 17,450 ng g(-1) dry weight (dw), total DDTs up to 478 ng g(-1), Aroclor 1254, up to 119 ng g(-1) (dw), and lower concentrations for other compounds. Lagoon sediments contain high concentrations also of toxaphene, from 7.9 to 6,900 ng g(-1) (dw), and DDTs, from 1.5 to 321 ng g(-1) (dw), and lower concentrations of chlorpyrifos, hexachlorocyclohexanes, chlordane and other residues. Concentrations of OCs in soft tissues of clams are statistically correlated with the concentrations of the same compounds in bottom sediments, indicating that sediments are a source of contaminants to biota. In some areas of the lagoon system, concentration of residues in sediments are far above recommended threshold guideline values for protection of aquatic life, and may cause acute and chronic toxic effects on more sensitive aquatic species. Despite the ban on the use of toxaphene and DDT, residues of these compounds are still entering the lagoons due to erosion of, and leaching from, agriculture soils in the region. Measures for protection of the lagoon ecosystem are discussed.

  5. Chlorination. Training Module 2.300.2.77.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with chlorine, the reasons for chlorination and safe operation and maintenance of gas chlorine, dry calcium hypochlorite and liquid sodium hypochlorite chlorination systems for water supply and wastewater treatment facilities. Included are…

  6. Chlorination of Wastewater, Manual of Practice No. 4.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This manual reviews chlorination practices in the treatment and disposal of wastes from the earliest known applications. The application of chlorination for various purposes is described but no attempt has been made to compare chlorination with other methods. Included are chapters on the development and practice of wastewater chlorination,…

  7. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas.

    Science.gov (United States)

    Kim, Hyobi; Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak; Myeong, Donghoon; Chang, Byungjoon; Choe, Nong-Hoon

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry.

  8. An apparatus to carry out chlorination reactions

    International Nuclear Information System (INIS)

    Bohnenstingl, J.; Gebhard, H.; Laser, M.; Lossmann, G.

    1975-01-01

    A hardly disturbance-liable chlorination device is suggested allowing large flows so that chlorinations of all kind (production of metals as Ti, Zr or U, Th in the reprocessing of burnt-off fuel elements etc.) are performable in an economical way. The cupola furnace as well as the casing of the cupola furnace and the joining socket connecting the cupola furnace and the condenser consist of graphite, the whole assembly is arranged within a gas-tight envelope of steel. In order that no tensions exist between the components, the joining socket is designed as cantilever beam. The embodiment shows the purification of graphite by chlorination. (UWI) [de

  9. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Studies on chlorinated bromide salt for microfouling control

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Rajmohan, R.; Rao, T.S.; Nair, K.V.K.; Mathur, P.K.

    1995-01-01

    The Fast Breeder Test reactor (FBTR) at Kalpakkam has been facing various problems in cooling water systems in spite of intermittent chlorination.Effects of chlorinated-bromide mixture was evaluated against heterotrophic bacteria (TVC) and iron oxidising bacteria (IOB) vis-a-vis chlorine. Results indicated that chlorinated-bromide mixture was far superior (2 orders of magnitude for TVC and 2 times for IOB) to chlorine in microfouling control. Results also showed that at bromide to chlorine ratio of one effectiveness of chlorinated-bromide was at its maximum. (author). 9 refs., 1 tab

  11. Kinetics and mechanism of 17β-estradiol chlorination in a pilot-scale water distribution systems.

    Science.gov (United States)

    Li, Cong; Dong, Feilong; Crittenden, John C; Luo, Feng; Chen, Xinbo; Zhao, Taotao

    2017-07-01

    The kinetics and mechanisms of 17β-estradiol (E2) chlorination in water distribution systems (WDS) were studied. We examined the impacts of different factors, including pH, temperature, humic acid concentration and type, and flow velocity. The experimental results showed that the rate constants in beaker tests and WDS were described by a pseudo-first-order model. pH had the greatest impact on E2 chlorination in the beaker tests. However, temperature had the greatest impact on E2 chlorination in WDS. Mechanistic analysis of E2 chlorination showed that chlorine attacked E2 in three stages: 1) halogenation of the aromatic ring, 2) cleavage of the benzene moiety and chlorine or bromine substitution formation, and 3) formation of trihalomethanes (THMs) and halogenated acetic acids (HAAs) from phenolic intermediates through benzene ring opening with chlorine and/or bromine substitution of hydrogen on the carbon atoms. In the third stage, the concentrations of THMs and HAAs increased rapidly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. DETECTION OF CHLORINE DECAY PATTERNS IN WATER DISTRIBUTION DEAD-END FLOW REGIME UNDER VARIOUS HYDRODYNAMIC CONDITIONS

    Science.gov (United States)

    To further understand residual chlorine decay, a pilot-scale pipe dead-end zone was designed and fabricated at the U.S. EPA Test & Evaluation (T&E) facility in Cincinnati, Ohio. Preliminary studies have been conducted to characterize the hydrodynamic characteristics of the pilot...

  13. Effect of foreign anions on the kinetics of chlorine and oxygen evolution on ruthenium-titanium oxide anodes under the conditions of chlorine electrolysis

    International Nuclear Information System (INIS)

    Bune, N.Ya.; Filatov, V.P.; Losev, V.V.; Portnova, M. Yu.

    1985-01-01

    Polarization measurements and gas chromatographic analysis of the composition of gaseous electrolysis products were used to investigate the effect of phosphate, sulfate and perchlorate on the kinetics of the evolution of chlorine and oxygen at ruthenium-titanium oxide anodes (ORTA) under the conditions of chlorine electrolysis. It was found that at i = 0.2 A/cm 2 the addition of NaH 2 PO 4 and Na 2 SO 4 to the chloride solution inhibits the evolution of chlorine, indicating the predominant adsorption of phosphate and sulfate ions on the ORTA surface. At a constant potential, the evolution rate of oxygen from solutions of NaClO 4 , NaH 2 PO 4 , Na 2 SO 4 and NaCl of equal concentration with a pH approximately 1.6 decreases in the order perchlorate greater than chloride greater than sulfate greater than phosphate

  14. Long term variations of chlorine-36 input signal to groundwater as recorded in deep unsaturated zones, south-east Australia

    International Nuclear Information System (INIS)

    Le Gal La Salle, C.; Herczeg, A.L.; Leaney, F.W.; Fifield, L.K.; Cresswell, R.G.; Kellet, J.

    1997-01-01

    The use of chlorine-36 is increasing in hydrology as its long half-life (3x10 5 a), allows useful long-term investigations into groundwater systems. Because chloride is very hydrophillic, the chlorine-36 signal should not be affected by geochemical processes in most aquatic systems. Nevertheless, over long periods of time, the chlorine-36 input to groundwater systems may vary due to factors such as: changes of production of chlorine-36 and/or changes of its distribution in the atmosphere. For instance the production of chlorine-36 might be governed by long-term terrestrial magnetic dipole strength variations as suggested for other radiogenic isotopes. Variations of the input signal of chlorine-36 should be recorded in pore waters of deep unsaturated zones. In this system, the time scale is approximated by the cumulative chloride content with depth assuming a constant input of chloride. Long-term records of chloride and chlorine-36 in two deep unsaturated-zone profiles, situated in the semi-arid Murray Basin in Australia, are presented. The two profiles record periods of approximately 20±1 to 27±2 ka and 100±5 to 220±10 ka respectively. The range of variation of the recorded time at each site is related to the estimated range of chloride deposition rate. The recharge rates are constant in both profiles with values approximating 0.4 and less than 0.1 mm.a -1 respectively. The linear relationship between chlorine-36 and stable chloride indicates that variations of chlorine-36 are governed by evapotranspiration, with a concentration factor of up to 2. Therefore the chlorine-36 is normalised to chloride to take account of the evapotranspiration process. In the soil profile at Kaniva, Western Victoria, 36 Cl/Cl'- ratio shows an increase of approximately 20% down profile. The second profile at Boree Plains, Wester, NSW, shows variations of 36 Cl/Cl'- ratio of 40% with a decreasing trend down profile. The input signal of chlorine-36/chloride is calculated by correction

  15. Separation and recovery of uranium ore by chlorinating, chelate resin and molten salt treatment

    International Nuclear Information System (INIS)

    Taki, Tomohiro

    2000-12-01

    Three fundamental researches of separation and recovery of uranium from uranium ore are reported in this paper. Three methods used the chloride pyrometallurgy, sodium containing molten salts and chelate resin. When uranium ore is mixed with activated carbon and reacted for one hour under the mixed gas of chlorine and oxygen at 950 C, more than 90% uranium volatilized and vaporization of aluminum, silicone and phosphorus were controlled. The best activated carbon was brown coal because it was able to control the large range of oxygen concentration. By blowing oxygen into the molten sodium hydroxide, the elution rate of uranium attained to about 95% and a few percent of uranium was remained in the residue. On the uranium ore of unconformity-related uranium deposits, a separation method of uranium, molybdenum, nickel and phosphorus from the sulfuric acid elusion solution with U, Ni, As, Mo, Fe and Al was developed. Methylene phosphonic acid type chelate resin (RCSP) adsorbed Mo and U, and then 100 % Mo was eluted by sodium acetate solution and about 100% U by sodium carbonate solution. Ni and As in the passing solution were recovered by imino-diacetic acid type chelate resin and iron hydroxide, respectively. (S.Y.)

  16. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP.

    Science.gov (United States)

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A; Beltrán-Hernández, Rosa I; Prieto-García, Francisco; Miranda-López, José M; Franco-Abuín, Carlos M; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-08-06

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L(-1)), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L(-1) dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L(-1) with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  17. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    Directory of Open Access Journals (Sweden)

    Claudia Coronel-Olivares

    2013-08-01

    Full Text Available The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains, Enterobacter cloacae, Kluyvera cryocrescens (three strains, Kluyvera intermedia, Citrobacter freundii (two strains, Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1, contact time (0, 15 and 30 min and water temperature (20, 25 and 30 °C. The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min. The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  18. Determination of chlorine in high purity materials by charged particle activation analysis using deuteron beam from VEC accelerator

    International Nuclear Information System (INIS)

    Dasgupta, S.; Datta, J.; Chowdhury, D.P.; Verma, R.

    2015-01-01

    The quantitative determination of chlorine by conventional methods viz., AAS, ICP-OES is difficult and erroneous at times due to gaseous nature of elemental chlorine. It is possible to determine chlorine by NAA and charged particle activation analysis (CPAA) producing activation product 38 Cl (t 1/2 = 37.2 min, 1642 (32.8 %), 2168 keV (44 %)). Fast INAA method has been applied to determine Cl in concentration ranges 10 mgkg -1 in some suitable matrices in PCF of DHRUVA reactor with a neutron flux of 10 13 cm -2 s -1 with a detection limit of Cl of ∼1 mgkg -1

  19. Purification of highly chlorinated dioxins degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Furuichi, T.; Koike, K.; Kuboshima, M. [Hokkaido Univ. (Japan). Division of Environment Resource Engineering, Graduate School of Engineering

    2004-09-15

    Soil contamination caused by dioxins in and around sites of incinerators for municipal solid waste (MSW) is a concern in Japan. For example, scattering wastewater from a wet gas scrubber at an MSW incinerator facility in Nose, Osaka caused soil and surface water contamination. The concentration of dioxins in the soil was about 8,000 pg-TEQ/g. Other contamination sites include soils on which fly ash has been placed directly or improperly stored and landfill sites that have received bottom and fly ash over a long period. Some countermeasures are required immediately at these dioxins-contaminated sites. We have previously developed bioreactor systems for dioxin-contaminated water and soil. We have shown that a fungus, Pseudallescheria boydii (P. boydii), isolated from activated sludge treating wastewater that contained dioxins, has the ability to degrade highly chlorinated dioxins. A reaction product of octachlorinated dibenzo-p-dioxin (OCDD) was identified as heptachlorinated dibenzo-p-dioxin. Therefore, one of the pathways for degradation of OCDD by this fungus was predicted to be as follows: OCDD is transformed by dechlorination and then one of the remaining aromatic rings is oxidized. To apply P. boydii to on-site technologies (e.g., bioreactor systems), as well as in situ technologies, enzyme treatment using a dioxin-degrading enzyme from P. boydii needs to be developed because P. boydii is a weak pathogenic fungus, known to cause opportunistic infection. As a result, we have studied enzyme purification of nonchlorinated dioxin, namely, dibenzo-pdioxin (DD). However, we did not try to identify enzymes capable of degrading highly chlorinated dioxins. This study has elucidated a method of enzyme assay for measuring OCDD-degrading activity, and has attempted to purify OCDD-degrading enzymes from P. boydii using enzyme assay. In addition, as first step toward purifying 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-TCDD degradation tests were carried out

  20. Ozone depletion and chlorine loading potentials

    Science.gov (United States)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  1. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  2. Behavior of chlorine during coal pyrolysis

    Science.gov (United States)

    Shao, D.; Hutchinson, E.J.; Cao, H.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of chlorine in Illinois coals during pyrolysis was evaluated by combined thermo-gravimetry-Fourier transform infrared spectroscopy-ion chromatography (TG-FTIR-IC) techniques. It was found that more than 90% of chlorine in Illinois coals (IBC-103, 105, 106, and 109) was liberated as HCl gas during pyrolysis from 300 to 600??C, with the rate reaching a maximum at 440 ??C. Similarity of the HCl and NH3 release profiles during pyrolysis of IBC-109 supports the hypothesis that the chlorine in coal may be associated with nitrogen and the chlorine is probably bonded to the basic nitrogen sites on the inner walls of coal micropores. ?? 1994 American Chemical Society.

  3. Microbial transformation of chlorinated aromatics in sediments

    NARCIS (Netherlands)

    Beurskens, J.E.M.

    1995-01-01

    Numerous contaminants like heavy metals, polycyclic aromatic hydrocarbons (PAHs), chlorinated benzenes (CBs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo- p -dioxins (PCDDs) and polychlorinated furans (PCDFs) are detected in the major rivers in the

  4. Chlorine attack in copper/cupronickel heat exchangers tubes in service water system

    International Nuclear Information System (INIS)

    Hortiguela, Ruben; Corchon, Fernando; Villesccas, Gilberto

    2012-09-01

    Santa Maria de Garona is a nuclear power plant design BWR type 3 with an open cooling circuit without cooling towers which outlets to the Ebro river. In November 2006, the presence of zebra mussels was found upstream of the plant intake. The recommended option for the service water system was to install a chlorination treatment using liquid sodium hypochlorite. This recommendation was based primarily on the need to have an effective mitigation system in place at Garona in the summer of 2007. The recommendation was to apply continuous or semi-continuous addition of chlorine to the service water system, preventing any primary attachment of zebra mussels to the service water piping. The chlorine injection system was designed to deliver approximately 0,3 to 0,5 ppm Total Residual Chlorine (TRC) to the service water on continuous basis. The chlorine injection pumps located at the start of the service water system are controlled by the output of a chlorine analyzer located at the end of the service water system just prior to discharge. After four years injecting NaClO, numerous cases of tube failures in heat exchangers made of copper and cupronickel alloys have been detected. The reactions involved are as follows: Corrosion Reactions in Cupronickel alloys Cl 2 + Ni → NiCl 2 E=1.610 V (Pitting Initiator), Cl 2 + Cu → CuCl 2 E=1.023 V. Corrosion Reactions in Copper tubes Cl 2 + Cu → CuCl 2 E=1.023 V. A close examination by optical microscope of the internal wall of the tubes has shown the typical crystals created from chorine corrosion such as: Cu (OH) 2 , CuCl 2 . (2H 2 O),NiCl 2 , [CuCl 3 ] -1 and [CuCl 4 ] -2 Conclusions: The degradation of the material is due to a combination of the following items: - Ageing of material after many years of operation; - Erosion due to poor quality of river water (silica particles, silts, sediments, etc); - Attack from chlorination to base material; The solutions that have been implemented are mainly: - Reduction of chlorine

  5. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo [EcoTopia Science Institute (Japan); Hirabayashi, Daisuke; Enokida, Youichi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  6. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  7. Comparison of Laboratory Experiments of Chemical, Biological, and Thermal Methods for Treatment of Chlorinated Solvent DNAPL at Kærgård Plantage in Denmark

    DEFF Research Database (Denmark)

    Christophersen, Mette; Christensen, Jørgen Fjeldsø; Jørgensen, Torben H.

    2010-01-01

    The Kærgård Plantage megasite on the western coast of Denmark represents one of the most difficult remediation challenges in Scandinavia. Disposal of an estimated 280,000 m3 of pharmaceutical wastes at the site from 1956 to 1973 resulted in the development of a complex mixture of contaminants...... in soil and groundwater, including sulfonamides, barbiturates, aniline, pyridine, chlorinated solvents (chloroethenes), fuel hydrocarbons, mercury, cyanide, lithium and many other compounds.  Wastes were disposed in six pits that continue to leach contaminants to groundwater. Contaminants in groundwater...... technologies for remediation of the residual wastes below the water table - first in the laboratory and then in pilot tests. Given the complex and highly concentrated mixture of contaminants, implementation of multiple or sequenced remediation technologies may be required to achieve cleanup goals.  An...

  8. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2018-02-01

    Full Text Available Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC was developed for the first time, including emissions of hydrogen chloride (HCl and molecular chlorine (Cl2 from coal combustion and prescribed waste incineration (waste incineration plant. The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl−, leading to enhanced heterogeneous reactions between Cl− and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl−, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m−3, 773 pptv, and 1.5  ×  103 molecule cm−3 in China, respectively. Meanwhile

  9. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China

    Science.gov (United States)

    Liu, Yiming; Fan, Qi; Chen, Xiaoyang; Zhao, Jun; Ling, Zhenhao; Hong, Yingying; Li, Weibiao; Chen, Xunlai; Wang, Mingjie; Wei, Xiaolin

    2018-02-01

    Chlorine radicals can enhance atmospheric oxidation, which potentially increases tropospheric ozone concentration. However, few studies have been done to quantify the impact of chlorine emissions on ozone formation in China due to the lack of a chlorine emission inventory used in air quality models with sufficient resolution. In this study, the Anthropogenic Chlorine Emissions Inventory for China (ACEIC) was developed for the first time, including emissions of hydrogen chloride (HCl) and molecular chlorine (Cl2) from coal combustion and prescribed waste incineration (waste incineration plant). The HCl and Cl2 emissions from coal combustion in China in 2012 were estimated to be 232.9 and 9.4 Gg, respectively, while HCl emission from prescribed waste incineration was estimated to be 2.9 Gg. Spatially the highest emissions of HCl and Cl2 were found in the North China Plain, the Yangtze River Delta, and the Sichuan Basin. Air quality model simulations with the Community Multiscale Air Quality (CMAQ) modeling system were performed for November 2011, and the modeling results derived with and without chlorine emissions were compared. The magnitude of the simulated HCl, Cl2 and ClNO2 agreed reasonably with the observation when anthropogenic chlorine emissions were included in the model. The inclusion of the ACEIC increased the concentration of fine particulate Cl-, leading to enhanced heterogeneous reactions between Cl- and N2O5, which resulted in the higher production of ClNO2. Photolysis of ClNO2 and Cl2 in the morning and the reaction of HCl with OH in the afternoon produced chlorine radicals which accelerated tropospheric oxidation. When anthropogenic chlorine emissions were included in the model, the monthly mean concentrations of fine particulate Cl-, daily maximum 1 h ClNO2, and Cl radicals were estimated to increase by up to about 2.0 µg m-3, 773 pptv, and 1.5 × 103 molecule cm-3 in China, respectively. Meanwhile, the monthly mean daily maximum 8 h O3

  10. A new spectrophotometric method for determination of residual ...

    African Journals Online (AJOL)

    Polydiallyldimethylammonium chloride (polyDADMAC) is a water-soluble cationic polyelectrolyte used for water treatment. Its residues in treated water are contaminants as they react with chlorine to produce a carcinogenic compound. Commonly-used techniques for quantification of the polycation, such as colloidal and ...

  11. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  12. Tests of stratospheric models - The reactions of atomic chlorine with O3 and CH4 at low temperature

    Science.gov (United States)

    Demore, W. B.

    1991-01-01

    The rate-constant ratio of the photochemical reactions of atomic chlorine with O3 and CH4 was determined using data from laboratory experiments on competitive chlorination of O3/CH4 mixtures at stratospheric temperatures (197-217 K). Two experimental approaches were used: (1) measuring the k1/k2 ratio for the reactions of atomic chlorine with ozone and methane and (2) testing for some of the ClO/CH3O2 chemistry. The chlorine and ozone concentrations were monitored by UV-Vis spectroscopy, and the CH3Cl concentration was measured by FTIR. The results on the k1/k2 ratio are in excellent agreement with the current NASA recommendation (DeMore et al., 1990), being only 12 percent higher. On the other hand, results on the ClO + CH3O2 reaction do not support the rate constant suggested by Simon et al. (1989).

  13. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  14. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor

  15. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.

    Science.gov (United States)

    Criquet, Justine; Allard, Sebastien; Salhi, Elisabeth; Joll, Cynthia A; Heitz, Anna; von Gunten, Urs

    2012-07-03

    The kinetics of iodate formation is a critical factor in mitigation of the formation of potentially toxic and off flavor causing iodoorganic compounds during chlorination. This study demonstrates that the formation of bromine through the oxidation of bromide by chlorine significantly enhances the oxidation of iodide to iodate in a bromide-catalyzed process. The pH-dependent kinetics revealed species specific rate constants of k(HOBr + IO(-)) = 1.9 × 10(6) M(-1) s(-1), k(BrO(-) + IO(-)) = 1.8 × 10(3) M(-1) s(-1), and k(HOBr + HOI) < 1 M(-1) s(-1). The kinetics and the yield of iodate formation in natural waters depend mainly on the naturally occurring bromide and the type and concentration of dissolved organic matter (DOM). The process of free chlorine exposure followed by ammonia addition revealed that the formation of iodo-trihalomethanes (I-THMs), especially iodoform, was greatly reduced by an increase of free chlorine exposure and an increase of the Br(-)/I(-) ratio. In water from the Great Southern River (with a bromide concentration of 200 μg/L), the relative I-incorporation in I-THMs decreased from 18 to 2% when the free chlorine contact time was increased from 2 to 20 min (chlorine dose of 1 mg Cl(2)/L). This observation is inversely correlated with the conversion of iodide to iodate, which increased from 10 to nearly 90%. Increasing bromide concentration also increased the conversion of iodide to iodate: from 45 to nearly 90% with a bromide concentration of 40 and 200 μg/L, respectively, and a prechlorination time of 20 min, while the I-incorporation in I-THMs decreased from 10 to 2%.

  16. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  17. A study on recovery of uranium in the anode basket residues delivered from the pyrochemical process of used nuclear fuel

    Science.gov (United States)

    Eun, H. C.; Kim, T. J.; Jang, J. H.; Kim, G. Y.; Park, S. B.; Yoon, D. S.; Kim, S. H.; Paek, S. W.; Lee, S. J.

    2018-04-01

    In this study, the chlorination of uranium oxide (UO2) using ammonium chloride and zirconium as chemical agents was conducted to recover the uranium in the anode basket residues from the pyrochemical process of used nuclear fuel. The chlorination of UO2 was predicted using thermodynamic equilibrium calculations. The experimental conditions for the chlorination were determined using a chlorination test with cerium oxide (CeO2). In the chlorination test, it was confirmed that UO2 was chlorinated into UCl3 at 320 °C, some UO2 remained without changes in the chemical form, and ZrO2, Zr2O, and ZrCl2 were generated as byproducts.

  18. Effects of chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic disease viruses.

    Science.gov (United States)

    Shirai, J; Kanno, T; Tsuchiya, Y; Mitsubayashi, S; Seki, R

    2000-01-01

    The effects of three representative disinfectants, chlorine (sodium hypochlorite), iodine (potassium tetraglicine triiodide), and quaternary ammonium compound (didecyldimethylammonium chloride), on several exotic disease viruses were examined. The viruses used were four enveloped viruses (vesicular stomatitis virus, African swine fever virus, equine viral arteritis virus, and porcine reproductive and respiratory syndrome virus) and two non-enveloped viruses (swine vesicular disease virus (SVDV) and African horse sickness virus (AHSV)). Chlorine was effective against all viruses except SVDV at concentrations of 0.03% to 0.0075%, and a dose response was observed. Iodine was very effective against all viruses at concentrations of 0.015% to 0.0075%, but a dose response was not observed. Quaternary ammonium compound was very effective in low concentration of 0.003% against four enveloped viruses and AHSV, but it was only effective against SVDV with 0.05% NaOH. Electron microscopic observation revealed the probable mechanism of each disinfectant. Chlorine caused complete degeneration of the viral particles and also destroyed the nucleic acid of the viruses. Iodine destroyed mainly the inner components including nucleic acid of the viruses. Quaternary ammonium compound induced detachment of the envelope of the enveloped viruses and formation of micelle in non-enveloped viruses. According to these results, chlorine and iodine disinfectants were quite effective against most of the viruses used at adequately high concentration. The effective concentration of quaternary ammonium compound was the lowest among the disinfectants examined.

  19. Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism.

    Science.gov (United States)

    Ofori, Isaac; Maddila, Suresh; Lin, Johnson; Jonnalagadda, Sreekantha B

    2017-06-07

    This study investigated the kinetics and mechanism of chlorine dioxide (ClO 2 ) inactivation of a Gram-negative bacteria Escherichia coli (ATCC 35218) in oxidant demand free (ODF) water in detail as a function of disinfectant concentration (0.5-5.0 mg/L), water pH (6.5-8.5), temperature variations (4-37°C) and bacterial density (10 5 -10 7 cfu/mL). The effects of ClO 2 on bacterial cell morphology, outer membrane permeability, cytoplasmic membrane disruption and intracellular enzymatic activity were also studied to elucidate the mechanism of action on the cells. Increasing temperature and disinfectant concentration were proportional to the rate of cell killing, but efficacy was found to be significantly subdued at 0.5 mg/L and less dependent on the bacterial density. The bactericidal efficiency was higher at alkaline pH of 8 or above as compared to neutral and slightly acidic pH of 7 and 6.5 respectively. The disinfection kinetic curves followed a biphasic pattern of rapid inactivation within the initial 2 min which were followed by a tailing even in the presence of residual biocide. The curves were adequately described by the C avg Hom model. Transmission Electron Microscopy images of the bacteria cells exposed to lethal concentrations of ClO 2 indicated very little observable morphological damage to the outer membranes of the cells. ClO 2 however was found to increase the permeability of the outer and cytoplasmic membranes leading to the leakage of membrane components such as 260 nm absorbing materials and inhibiting the activity of the intracellular enzyme β-D-galactosidase. It is suggested that the disruption of the cytoplasmic membrane and subsequent efflux of intracellular components result in the inactivation of the Gram-negative bacteria.

  20. Radionuclide concentration variations in the fuel and residues of oil shale-fired power plants: Estimations of the radiological characteristics over a 2-year period.

    Science.gov (United States)

    Vaasma, Taavi; Loosaar, Jüri; Kiisk, Madis; Tkaczyk, Alan Henry

    2017-07-01

    Several multi-day samplings were conducted over a 2-year period from an oil shale-fired power plant operating with pulverized fuel type of boilers that were equipped with either novel integrated desulphurization system and bag filters or with electrostatic precipitators. Oil shale, bottom ash and fly ash samples were collected and radionuclides from the 238 U and 232 Th series as well as 40 K were determined. The work aimed at determining possible variations in the concentrations of naturally occurring radionuclides within the collected samples and detect the sources of these fluctuations. During the continuous multi-day samplings, various boiler parameters were recorded as well. With couple of exceptions, no statistically significant differences were detected (significance level 0.05) between the measured radionuclide mean values in various ash samples within the same sampling. When comparing the results between multiple years and samplings, no statistically significant variations were observed between 238 U and 226 Ra values. However, there were significant differences between the values in the fly ashes when comparing 210 Pb, 40 K, 228 Ra and 232 Th values between the various samplings. In all cases the radionuclide activity concentrations in the specific fly ash remained under 100 Bq kg -1 , posing no radiological concerns when using this material as an additive in construction or building materials. Correlation analysis between the registered boiler parameters and measured radionuclide activity concentrations showed weak or no correlation. The obtained results suggest that the main sources of variations are due to the characteristics of the used fuel. The changes in the radionuclide activity concentrations between multiple years were in general rather modest. The radionuclide activity concentrations varied dominantly between 4% and 15% from the measured mean within the same sampling. The relative standard deviation was however within the same range as the

  1. Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments

    NARCIS (Netherlands)

    Bengtson, P.; Bastviken, D.; De Boer, W.; Öberg, G.

    2009-01-01

    Several studies have demonstrated that extensive formation of organically bound chlorine occurs both in soil and in decaying plant material. Previous studies suggest that enzymatic formation of reactive chlorine outside cells is a major source. However, the ecological role of microbial-induced

  2. Kinetics of Chlorination of Benzophenone-3 in the Presence of Bromide and Ammonia.

    Science.gov (United States)

    Abdallah, Pamela; Deborde, Marie; Dossier Berne, Florence; Karpel Vel Leitner, Nathalie

    2015-12-15

    The aim of this study was to assess the impact of chlorination on the degradation of one of the most commonly used UV filters (benzophenone-3 (BP-3)) and the effects of bromide and ammonia on the kinetics of BP-3 elimination. Bromide and ammonia are rapidly converted to bromine and chloramines during chlorination. At first, the rate constants of chlorine, bromine and monochloramine with BP-3 were determined at various pH levels. BP-3 was found to react rapidly with chlorine and bromine, with values of apparent second order rate constants equal to 1.25(±0.14) × 10(3) M(-1)·s(-1) and 4.04(±0.54) × 10(6) M(-1)·s(-1) at pH 8.5 for kChlorine/BP-3 and kBromine/BP-3, respectively, whereas low monochloramine reactivity was observed (kNH2Cl/BP-3 = 0.112 M(-1)·s(-1)). To assess the impact of the inorganic content of water on BP-3 degradation, chlorination experiments with different added concentrations of bromide and/or ammonia were conducted. Under these conditions, BP-3 degradation was found to be enhanced in the presence of bromide due to the formation of bromine, whereas it was inhibited in the presence of ammonia. However, the results obtained were pH dependent. Finally, a kinetic model considering 18 reactions was developed using Copasi to estimate BP-3 degradation during chlorination in the presence of bromide and ammonia.

  3. Spectrometric methods for the determination of chlorine in crude oil and petroleum derivatives — A review

    International Nuclear Information System (INIS)

    Doyle, Adriana; Saavedra, Alvaro; Tristão, Maria Luiza B.; Mendes, Luiz A.N.; Aucélio, Ricardo Q.

    2013-01-01

    Chlorine determination in crude oil is made in order to guarantee that the oil does not contain levels of this element that might cause damages in the oil processing equipment. In petroleum products, the determination of chlorine is made, for instance, to evaluate if there are proper concentrations of organochloride compounds, which are used as additives. Such determinations are currently performed following official guidelines from the ASTM International and from the United States Environmental Protection Agency as well as protocols indicated by the Universal Oil Products. X-ray fluorescence spectroscopy plays an important role in many of these official methods. In contrast, other spectrometric methods based on optical and mass detection are plagued by limitations related to both the fundamental characteristics of non-metals and to the complex sample matrices, which reflects in the small number of articles devoted to these applications. In this review, the current status of the spectrometric methods, especially the role played by X-ray fluorescence spectrometry, is evaluated in terms of the determination of chlorine in crude oil and petroleum derivatives. Comparison of the performance of the methods, limitations and potential new approaches to ensure proper spectrometric determinations of chlorine is indicated. - Highlights: • Critical evaluation of spectrometric methods for chlorine in petroleum products. • Reviews on element determination in petroleum have not address the case of chlorine. • Peculiarities of the spectrometric determination of Cl in petroleum are discussed. • The spectrometric approaches are detailed and compared to the official methods. • New trends in chlorine determination in petroleum products are indicated

  4. Spectrometric methods for the determination of chlorine in crude oil and petroleum derivatives — A review

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Adriana [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, Rio de Janeiro, RJ 22451-900 (Brazil); Saavedra, Alvaro; Tristão, Maria Luiza B.; Mendes, Luiz A.N. [Leopoldo Américo Miguez de Mello Research Center — Petrobras (CENPES), Cidade Universitária, Quadra 7, Ilha do Fundão, Rio de Janeiro 21949-900 (Brazil); Aucélio, Ricardo Q., E-mail: aucelior@puc-rio.br [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, Rio de Janeiro, RJ 22451-900 (Brazil)

    2013-08-01

    Chlorine determination in crude oil is made in order to guarantee that the oil does not contain levels of this element that might cause damages in the oil processing equipment. In petroleum products, the determination of chlorine is made, for instance, to evaluate if there are proper concentrations of organochloride compounds, which are used as additives. Such determinations are currently performed following official guidelines from the ASTM International and from the United States Environmental Protection Agency as well as protocols indicated by the Universal Oil Products. X-ray fluorescence spectroscopy plays an important role in many of these official methods. In contrast, other spectrometric methods based on optical and mass detection are plagued by limitations related to both the fundamental characteristics of non-metals and to the complex sample matrices, which reflects in the small number of articles devoted to these applications. In this review, the current status of the spectrometric methods, especially the role played by X-ray fluorescence spectrometry, is evaluated in terms of the determination of chlorine in crude oil and petroleum derivatives. Comparison of the performance of the methods, limitations and potential new approaches to ensure proper spectrometric determinations of chlorine is indicated. - Highlights: • Critical evaluation of spectrometric methods for chlorine in petroleum products. • Reviews on element determination in petroleum have not address the case of chlorine. • Peculiarities of the spectrometric determination of Cl in petroleum are discussed. • The spectrometric approaches are detailed and compared to the official methods. • New trends in chlorine determination in petroleum products are indicated.

  5. Integrated project: Microbiological and physiological studies on the presence of residual concentrations in mineral-oil-contaminated soils after rehabilitation. Final report. Pt. 2; Mikrobiologische und physiologische Untersuchungen zur Frage der Restkonzentration bei der Sanierung mineraloelkontaminierter Boeden. Abschlussbericht. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Miethe, D.; Riis, V.; Stimming, M.

    1996-01-04

    It has been known for a long time that microorganisms are able to utilise mineral oils. Today various methods are practised which exploit autochthonous microorganisms` ability to utilise mineral oils. The main problem of microbial decomposition of hydrocarbons is that mineral oil residues remain. The aim of the present research project was therefore to determine the limits of the metabolisability of the substrate and find out why residues remain. Mineral oils and residual fractions differ markedly in their decomposability. Intermediate distillates are easily decomposed to a degree of 95-97% by well-adapted consorts. For high-boiling mineral oils (bp>400 C) the degree of decomposition is approx. 60%. Extracts from contaminated sites range from 40 to 60% in their degree of decomposability. The incomplete microbial decomposition of mineral oils is mainly due to their structure. There remain chemically and thermally extremely, inert hydrocarbons (mainly aliphatic and aromatic fused-ring systems) which are either hardly metabolisable or not at all. An important factor in soils or at other contaminated sites is that some of the substrate is not available because it is bound to the matrix thus increasing the proportion of residue. The next task after examining and presenting the causes of incomplete decomposition is to minimise residual mineral oil concentrations remaining after microbial decomposition. Here the use of special surfactants or of auxiliary substrates could point a way. Project applications to this end have already been submitted to the Federal Ministry for Education and Research. (orig.) [Deutsch] Dass Mikroorganismen in der Lage sind, Mineraloele zu verwerten, ist seit langem bekannt. Verfahren, die das Potential autochthoner Mikroorganismen zur Verwertung von Mineraloelen nutzen sind Praxis. Hauptproblem beim mikrobiellen Abbau der Kohlenwasserstoffe ist das Verbleiben von Mineraloelresten. Das Ziel des Forschungsvorhabens war die Ermittlung der Grenzen

  6. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States.

    Science.gov (United States)

    Horii, Yuichi; Ohura, Takeshi; Yamashita, Nobuyoshi; Kannan, Kurunthachalam

    2009-11-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are widespread environmental pollutants in the urban environment. Nevertheless, there is little information available regarding the occurrence and profiles of ClPAHs in environmental matrices. In this study, residual concentrations and profiles of 20 individual ClPAHs and 16 US EPA-priority PAHs were determined using high- resolution gas chromatography-high-resolution mass spectrometry in sediments from water bodies near industrialized areas: Tokyo Bay, Japan; the Saginaw River watershed, Michigan, USA; a former chlor-alkali plant, Georgia, USA; and the New Bedford Harbor Superfund site, Massachusetts, USA. A sediment core from Tokyo Bay showed temporal patterns in the distribution of ClPAHs from the 1950s through 2004. The fluxes of ClPAHs and 16 priority PAHs in Tokyo Bay sediment core were 0.029-0.57 ng/cm(2)/year and 85-609 ng/cm(2)/year, respectively; fluxes were lowest in the 1950s and highest in 1989-1990. In the United States, a high mean concentration of ClPAHs was found in sediment collected near a former chlor-alkali plant [8820 pg/g dry weight (dry wt)], and lower mean concentrations were found for New Bedford Harbor (1880 pg/g dry wt) and the Saginaw River watershed (1140 pg/g dry wt). Among individual ClPAHs, 6-ClBaP and 1-ClPyr were the dominant compounds in sediments; this pattern is similar to the pattern reported in the literature for waste incineration and ambient urban air samples. Significant correlation between SigmaClPAH concentrations and Sigmaparent-PAH concentrations in Tokyo Bay sediment implies that the sources and distribution of ClPAHs are directly related to those of parent PAHs. We also analyzed ClPAHs and parent PAHs in blue mussels from New Bedford Harbor. The mean concentration of ClPAHs in mussels from New Bedford Harbor was 21 ng/g lipid weight, a concentration three orders of magnitude lower than the mean concentration of parent PAHs. Low-molecular-weight ClPAHs predominated

  7. Intracellular pH Campylobacter jejuni when treated with aqueous chlorine dioxide

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Arneborg, Nils

    2011-01-01

    The aim of this study was to investigate the response of Campylobacter jejuni at single-cell level when exposed to different concentrations of chlorine dioxide (ClO2). The parameter of choice, intracellular pH (pHi), was determined by using fluorescence ratio imaging microscopy with a p...

  8. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1980-01-01

    One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...

  9. Organohalogen products from chlorination of cooling water at nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few μg/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 μg/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables

  10. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    Science.gov (United States)

    Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Wolfe, Marlene K; Lantagne, Daniele

    2016-01-01

    In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

  11. Etch rate and surface morphology of polycrystalline beta-silicon carbide using chlorine trifluoride gas

    OpenAIRE

    Habuka, Hitoshi; Oda, S.; Fukai, Y.; Fukae, K.; Takeuchi, T.; Aihara, M.

    2006-01-01

    Etch rates of polycrystalline beta-silicon carbide (SiC) substrate in a wide range from less than one to more than 10 mu m/min are obtained using chlorine trifluoride gas in ambient nitrogen at 673-973 K and atmospheric pressure in a horizontal reactor. Over the chlorine trifluoride gas concentrations of 10-100% used in this study, the etch rate increases at the substrate temperatures between 673 and 773 K. Additionally, the etch rate at temperatures higher than 773 K is independent of the su...

  12. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    Directory of Open Access Journals (Sweden)

    Qais Iqbal

    Full Text Available In Ebola Virus Disease (EVD outbreaks, it is widely recommended to wash living things (handwashing with 0.05% (500 mg/L chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies with 0.5% (5,000 mg/L chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH, granular sodium dichloroisocyanurate (NaDCC, and liquid sodium hypochlorite (NaOCl, and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to 30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

  13. Fate of chlorinated fatty acids in migrating sockeye salmon and their transfer to arctic grayling

    DEFF Research Database (Denmark)

    Mu, Huiling; Ewald, G.; Nilsson, E.

    2004-01-01

    To investigate whether biotransport constitutes an entry route into pristine ecosystems for nonpersistent, nonvolatile xenobiotic compounds, extractable organically bound halogen in sockeye salmon (Oncorhynchus nerka) from Alaska was determined before and after spawning migration. The major organ...... originating from the salmon, demonstrating a long-range transport route for this type of pollutants to pristine areas....... to that of the unchlorinated fatty acids. Lipids of the Arctic grayling (Thymallus arcticus), a fish resident to the spawning lake of the salmon, contained higher concentrations of chlorinated fatty acids than grayling in a lake without migratory salmon. This may reflect a food-chain transfer of the chlorinated fatty acids...

  14. CHLORINE ABUNDANCES IN COOL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Z. G.; Pilachowski, C. A. [Indiana University Bloomington, Astronomy Department, Swain West 319, 727 East Third Street, Bloomington, IN 47405-7105 (United States); Hinkle, K., E-mail: zmaas@indiana.edu, E-mail: cpilacho@indiana.edu, E-mail: hinkle@noao.edu [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H{sup 35}Cl at 3.69851 μ m. The high-resolution L -band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [{sup 35}Cl/Fe] abundance in stars with −0.72 < [Fe/H] < 0.20 is [{sup 35}Cl/Fe] = (−0.10 ± 0.15) dex. The mean difference between the [{sup 35}Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [{sup 35}Cl/Ca] ratio has an offset of ∼0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H{sup 35}Cl and H{sup 37}Cl could be measured, a {sup 35}Cl/{sup 37}Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  15. Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin

    Science.gov (United States)

    Hong, Huachang; Qian, Lingya; Xiao, Zhuoqun; Zhang, Jianqing; Chen, Jianrong; Lin, Hongjun; Yu, Haiying; Shen, Liguo; Liang, Yan

    2015-12-01

    Occurrence of halonitromethanes (HNMs) in drinking water has been a public concern due to the potential risks to human health. Though quite a lot of work has been carried out to understand the formation of HNMs, the relationship between HNMs formation and the nitrite remains unclear. In this study, the effects of nitrite on the formation of HNMs during chlorination of organic matter from different origin were assessed. Organic matter (OM) derived from phoenix tree (fallen leaves: FLOM; green leaves: GLOM) and Microcystis aeruginosa (intracellular organic matter: IOM) were used to mimic the allochthonous and autochthonous organic matter in surface water, respectively. Results showed that HNMs yields were significantly enhanced with the addition of nitrite, and the highest enhancement was observed for FLOM, successively followed by GLOM and IOM, suggesting that the contribution of nitrite to HNMs formation was positively related with SUVA (an indicator for aromaticity) of OM. Therefore, the nitrite contamination should be strictly controlled for the source water dominated by allochthonous OM, which may significantly reduce the formation of HNMs during chlorination. Moreover, given a certain nitrite level, the higher pH resulted in higher stimulation of HNM formation, yet the chlorine dose (always added in excess resulting in residual reactive chlorine), reaction time and temperature did not show obvious influence.

  16. Chlorination of organophosphorus pesticides in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: jlacero@unex.es; Benitez, F. Javier; Real, Francisco J.; Gonzalez, Manuel [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 {sup o}C and pH 7 were determined to be 110.9, 0.004 and 191.6 M{sup -1} s{sup -1} for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L{sup -1} was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  17. Management of chlorine gas-related injuries from the Graniteville, South Carolina, train derailment.

    Science.gov (United States)

    Mackie, Emily; Svendsen, Erik; Grant, Stephen; Michels, Jill E; Richardson, William H

    2014-10-01

    A widely produced chemical, chlorine is used in various industries including automotive, electronics, disinfectants, metal production, and many others. Chlorine is usually produced and transported as a pressurized liquid; however, as a gas it is a significant pulmonary irritant. Thousands of people are exposed to chlorine gas every year, and while large-scale exposures are uncommon, they are not rare. Symptoms are usually related to the concentration and length of exposure, and although treatment is largely supportive, certain specific therapies have yet to be validated with randomized controlled trials. The majority of those exposed completely recover with supportive care; however, studies have shown the potential for persistent inflammation and chronic hyperreactivity. This case report describes an incident that occurred in Graniteville, South Carolina, when a train derailment exposed hundreds of people to chlorine gas. This report reviews the events of January 6, 2005, and the current treatment options for chlorine gas exposure.(Disaster Med Public Health Preparedness. 2014;0:1-6).

  18. 3-chlorotyrosine and 3,5-dichlorotyrosine as biomarkers of respiratory tract exposure to chlorine gas.

    Science.gov (United States)

    Sochaski, Mark A; Jarabek, Annie M; Murphy, John; Andersen, Melvin E

    2008-01-01

    Modification of tyrosine by reactive chlorine can produce both 3-chlorotyrosine (CY) and 3,5-dichlorotyrosine (dCY). Both of these amino acids have proven to be promising biomarkers for assessing the extent of myeloperoxidase-catalyzed chlorine stress in a number of adverse physiological conditions. To date, there has been no application of these biomarkers for determining the extent of exposure to environmentally present gaseous chlorinating chemicals. In this manuscript, we present a method using selective ion monitoring gas chromatography for the simultaneous analysis of both CY and dCY in nasal tissue excised from Fisher 344 rats exposed to varying concentrations of chlorine gas. Using this method, we were able to demonstrate the following: 1. a dose-dependent increase in the conversion of tyrosine to CY and dCY in the respiratory epithelium tissue; 2. preferential formation of CY and dCY in the respiratory and transitional epithelium versus the olfactory epithelium of the nasal cavity of the rat; and 3. similar rates of formation for CY and dCY when exposed to chlorine gas based on a strong [CY] versus [dCY] correlation (slope = 1.001, r(2) = 0.912).

  19. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration.

    Science.gov (United States)

    Li, Qinghai; Meng, Aihong; Jia, Jinyan; Zhang, Yanguo

    2010-01-01

    The impact of moisture on the partitioning of the heavy metals including Pb, Zn, Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace. A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results. Simulated waste, representative of typical MSW with and without chlorine compounds, was burned at the background temperature of 700 and 950 degrees C, respectively. In the absence of chlorine, the moisture content has no evident effect on the volatility of Pb, Zn and Cu at either 700 or 950 degrees C, however, as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700 degrees C and reduced at 950 degrees C, respectively. In the presence of chlorine, the flue gas moisture reduced the volatility of Pb, Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides, and the reduction became significant as chlorine content increase. For Cd, the chlorine promotes its volatility through the formation of more volatile CdCl2. As a result, the increased moisture content increases the Pb, Zn, Cu and Cd concentrations in the bottom ash, which limits the utilization of the bottom ash as a construction material. Therefore, in order to accumulate heavy metals into the fly ash, MSW should be dried before incineration.

  20. Study of the production of Zirconium tetracheoride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Abrao, A.

    1987-08-01

    This work describes the studies carried out on the production of zirconium tetrachloride by chlorianation of pure zirconium oxide with (a) carbon tetrachloride and (b) chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride it has been determined that efficiency increases with the rising of temperature between 450 and 750 0 C. The flow rate of the carbon tetrachloride vapour used was 1.50L/min. For the zirconium oxide chlorination in the presence of carbon, the study has been carried out at temperatures between 700 and 850 0 C and the flow rate of the chlorine gas used in the process was 0,50/Lmin. Pure zirconium oxide chlorination as well as zirconium oxide-carbon mixture chlrorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constants, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  1. Survival and virulence of copper- and chlorine-stressed Yersinia enterocolitica in Experimentally infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; McFeters, G.A.

    1987-08-01

    The effect of gastric pH on the viability and virulence of Yersinia enterocolitica 0:8 after exposure to sublethal concentrations of copper and chlorine was determined in mice. Viability and injury were assessed with a nonselective TLY agar and two selective media, TLYD agar and CIN agar. Both copper and chlorine caused injury which was manifested by the inability of the cells to grow on selective media. CIN agar was more restrictive to the growth of injured cells than TLYD agar. Injury of the exposed cells was further enhanced in the gastric environment of mice. Besides injury, the low gastric pH caused extensive loss of viability in copper-exposed cells. Lethality in the chlorine-exposed cells was less extensive, and a portion of the inoculum reached the small intestine 5 min postinoculation. No adverse effect on the injured cells was apparent in the small intestine, and a substantial revival of the injury occurred in 3 to 4 h after intraluminal inoculation. The virulence of chlorine-stressed Y. enterocolitica in orally inoculated mice was similar to that of the control culture, but copper-stressed cells showed reduced virulence. Virulence was partly restored by oral administration of sodium bicarbonate before the inoculation of copper-exposed cells. Neutralization of gastric acidity had no effect on the virulence of the control of chlorine-stressed cells.

  2. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid

    International Nuclear Information System (INIS)

    Chu Wenhai; Gao Naiyun; Deng Yang

    2010-01-01

    The stability of haloacetamides (HAcAms) such as dichloroacetamide (DCAcAm) and trichloroacetamide (TCAcAm) was studied under different experimental conditions. The yield of HAcAms during aspartic acid (Asp) chlorination was measured at different molar ratio of chlorine atom to nitrogen atom (Cl/N), pH and dissolved organic carbon (DOC) mainly consisted of humic acid (HA) mixture. Ascorbic acid showed a better capacity to prevent the decay of DCAcAm and TCAcAm than the other two dechlorinating agents, thiosulfate and sodium sulfite. Lower Cl/N favored the DCAcAm formation, implying that breakpoint chlorination might minimize its generation. The pH decrease could lower the concentration of DCAcAm but favored dichloroacetonitrile (DCAN) formation. DCAcAm yield was sensitive to the DOC due to higher chlorine consumption caused by HA mixture. Two possible pathways of DCAcAm formation during Asp chlorination were proposed. Asp was an important precursor of DCAN, DCAcAm and dichloroacetic acid (DCAA), and thus removal of Asp before disinfection may be a method to prevent the formation of DCAcAm, DCAN and DCAA.

  3. Residual risk

    African Journals Online (AJOL)

    ing the residual risk of transmission of HIV by blood transfusion. An epidemiological approach assumed that all HIV infections detected serologically in first-time donors were pre-existing or prevalent infections, and that all infections detected in repeat blood donors were new or incident infections. During 1986 - 1987,0,012%.

  4. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    Directory of Open Access Journals (Sweden)

    Rakić-Martinez Mira

    2009-01-01

    Full Text Available Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxide. In order to determine the germicidal effect of the disinfectant based on chlorine dioxide by suspension test (BSEN 1276:1997; the following test organisms were used: Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa clinical isolate. The corrosive properties of the disinfectant based on chlorine dioxide were tested by IDF 077:1977 standard. The efficacy of this disinfectant was investigated in a closed system in a dairy plant. Results indicated a 100% reduction of >108 cfu/ml L. monocytogenes, E. coli, Proteus mirabilis, Pseudomonas aeruginosa, S. aureus, viable count after 1 minute of exposure to 100 ppm of the disinfectant based on chlorine dioxide and 400 ppm for Bacillus cereus. In the presence of 2% skim milk and 4 % skim milk concentrations of 200 and 250 ppm resulted in 100% reduction in numbers of the five of six test microorganisms, respectively. The spore former, Bacillus cereus is less susceptible to the disinfectant. Therefore, the efficient concentration for 100% reduction in viable count after 1 minute exposure was 500 ppm. The corrosive properties of the disinfectant were not determined. In the case of closed system disinfection in a dairy plant, reduction in viable count after 15 minute exposure to 100 ppm of disinfectant based on chlorine dioxide ranged from 80 to 100%.

  5. Effects of aging on chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael Gustavo; Amorim, Milena Kowalczuk Manosso; Hadich, Tayan Vieira; Fernandes, Isabela Cristina; Fernandes, Gabriel Ferreira; Rossi, Diego; Rangel, Elidiane Cipriano; Durrant, Steven Frederick, E-mail: steve@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos

    2017-07-15

    Thin films deposited from propanol-chloroform-argon mixtures by plasma enhanced chemical vapor deposition at different partial pressures of chloroform in the feed, C{sub Cl}, were characterized after two years of aging and their characteristics compared with their as-deposited properties. Film thickness decreased and surface roughness increased with aging. Surface contact angles also increased with aging for the chlorinated films. For the film deposited with 40% chloroform in the feed the contact angle increased about 14°. Transmission infrared and Energy dispersive X-ray spectroscopy revealed that the films gain carbonyl and hydroxyl groups and lose chlorine and hydrogen on aging. Chlorination appears to make the films more durable. Delamination was observed for the unchlorinated films. (author)

  6. Investigation of molybdenum pentachloride interaction with chlorine

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Vovkotrub, Eh.G.; Strekalovskij, V.N.

    1993-01-01

    In Raman spectra of molybdenum pentachloride solutions in liquid chlorine lines were recorded in case of 397, 312, 410, 217 and 180 cm - 1 vibrations of ν 1 (A 1 '), ν 2 (A 1 '), ν 5 (E'), ν 6 (E') and ν 8 (E'') monomer (symmetry D 3h ) molecules of MoCl 5 . Interaction of molten molybdenum pentachloride with chlorine at increased (up to 6 MPa) pressures of Cl 2 was studied. In Raman spectra of its vapour distillation in liquid chlorine alongside with MoCl 5 lines appearance of new lines at 363 and 272 cm -1 , similar in their frequency to the ones calculated for the vibrations ν 1 (A 1g ) and ν 2 (E g ) of MoCl 6 molecules (symmetry O h ), was observed

  7. Validation of a multi-residue method for the determination of residuals pesticides in cabbage (Brassica Oleracea var. Capitata) for gases chromatography

    International Nuclear Information System (INIS)

    Moreno, Milton Leonardo; Guerrero Dallos, Jairo Arturo

    2002-01-01

    This study describes the validation of a multi-residue method for the determination of most used organo chlorine, organophosphorus and organonitrogen pesticides in cabbage in the Cundinamarca Department (Colombia). The extraction process includes blending of small sample quantity with ethyl acetate in presence of Na 2 SO 4 and NaHCO 3 , filtration and concentration. The clean up steps include GPC and mini-column chromatography using silica gel. Final determination was carried out by gas chromatography with: pulsed splitless injection, HP-5 capillary column, and a parallel detection system with micro electron capture detection (μ - ECD) and Nitrogen-Phosphorus Detection (NPD). The methodology is specific, selective, accurate and robust. Recovery values of majority of pesticides were in the range 70-120% at spiking levels ranging 0.05-10.73 mg/kg. Limits of detection were less than 0.10 mg/kg for most of the studied compounds. The distribution of the analyses in the laboratory sample was evaluated and it was found its homogeneity. The evaluation of pesticide residues was made in a specific area of municipality of Madrid-Cundinamarca, (Colombia). No residues of the studied analyses were founded

  8. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  9. Microbiological aspects of the removal of chlorinated hydrocarbons from air

    NARCIS (Netherlands)

    Dolfing, Jan; Wijngaard, Arjan J. van den; Janssen, Dick B.

    1993-01-01

    Chlorinated hydrocarbons are widely used synthetic chemicals that are frequently present in industrial emissions. Bacterial degradation has been demonstrated for several components of this class of compounds. Structural features that affect the degradability include the number of chlorine atoms and

  10. Occupational exposure to chlorinated and petroleum solvents and mycosis fungoides

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, Maria M; Olsen, Jørn; Villeneuve, Sara

    2013-01-01

    To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF).......To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF)....

  11. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    Science.gov (United States)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  12. Production of chlorine from chloride salts

    Science.gov (United States)

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  13. Chlorin derivatives for potential use in BNCT

    International Nuclear Information System (INIS)

    Osterloh, J.; Neumann, M.; Ruf, S.; Gabel, D.

    2000-01-01

    A series of BSH containing alkyl ether homologues of pytropheophorbide a has been prepared. Cellular uptake studies show that is possible to accumulate 2.2 mg of the heptyl ether after 2 h of incubation with a 0.04 mM solution. That means a boron amount of 330 μg per gram cell mass. Cytotoxicity studies allow radiobiological experiments. The patterns of subcellular localisation visualised by fluorescence microscopy and CLSM show that much of the chlorins is located close to the nucleus and in the nucleus membrane. However, no chlorin was found in the nucleus. (author)

  14. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  15. Variability of Burkholderia pseudomallei Strain Sensitivities to Chlorine Disinfection▿

    Science.gov (United States)

    O'Connell, Heather A.; Rose, Laura J.; Shams, Alicia; Bradley, Meranda; Arduino, Matthew J.; Rice, Eugene W.

    2009-01-01

    Burkholderia pseudomallei is a select agent and the causative agent of melioidosis. Variations in previously reported chlorine and monochloramine concentration time (Ct) values for disinfection of this organism make decisions regarding the appropriate levels of chlorine in water treatment systems difficult. This study identified the variation in Ct values for 2-, 3-, and 4-log10 reductions of eight environmental and clinical isolates of B. pseudomallei in phosphate-buffered water. The greatest calculated Ct values for a 4-log10 inactivation were 7.8 mg·min/liter for free available chlorine (FAC) at pH 8 and 5°C and 550 mg·min/liter for monochloramine at pH 8 and 5°C. Ionic strength of test solutions, culture hold times in water, and cell washing were ruled out as sources of the differences in prior observations. Tolerance to FAC was correlated with the relative amount of extracellular material produced by each isolate. Solid-phase cytometry analysis using an esterase-cleaved fluorochrome assay detected a 2-log10-higher level of organisms based upon metabolic activity than did culture, which in some cases increased Ct values by fivefold. Despite strain-to-strain variations in Ct values of 17-fold for FAC and 2.5-fold for monochloramine, standard FAC disinfection practices utilized in the United States should disinfect planktonic populations of these B. pseudomallei strains by 4 orders of magnitude in less than 10 min at the tested temperatures and pH levels. PMID:19542324

  16. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Majcher, Emily H.; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2014-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and

  17. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    Directory of Open Access Journals (Sweden)

    Jones, Robert MD

    2010-05-01

    Full Text Available Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. [West J Emerg Med. 2010; 11(2:151-156.

  18. Process and Kinetic Mechanism of Elimination of Chlorine ...

    African Journals Online (AJOL)

    reaction time on chlorine content. Detection method. The chlorine content of the products was tested according to Lac products-testing methods. GB/T8143-2008. Chlorine in the sample was converted to soluble chloride by sodium, and then quantitative silver nitrate and ammonium ferric sulfate were added to precipitate the.

  19. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    OpenAIRE

    Jones, Robert MD; Wills, Brandon DO; Kang, Christopher MD

    2010-01-01

    Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. [West J Emerg Med. 2010; 11(2):151-156.

  20. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  1. Mefenamic acid removal in water using activated carbon powder, red mud and oxidation with chlorine

    OpenAIRE

    Moruzzi, Rodrigo B. [UNESP; Lima, Verônica B. [UNESP; Colombo, Renata; Conceição, Fabiano T. [UNESP; Lanza, Marcos R. V.

    2014-01-01

    The use of activated carbon powder (ACP), red mud and oxidation with chlorine to remove mefenamic acid in water are described, aimed at their application as a complement to sewage treatment processes in Brazil. A study on the behavior of mefenamic acid in water was performed by evaluating its dissolution for different concentrations and times. Subsequently, the optimal conditions for removal of mefenamic acid were investigated using ACP adsorption at different pH and concentrations, and red m...

  2. THE INFLUENCE OF CALCIUM HYPOCHLORITE DOSAGE ADJUSTMENT ON TAPIOCA WASTEWATER PRE-CHLORINATION TOWARD EFFICIENCY OF ACTIVATED SLUDGE TREATMENT

    Directory of Open Access Journals (Sweden)

    Happy Mulyani

    2016-11-01

    Full Text Available The objectives of this research are to study about influence of calcium hypochlorite dosage adjustment on tapioca wastewater chlorination toward efficiency of activated sludge treatment especially at MLVSS profile and percentage of COD removal. This research mainly divided into pre-chlorination and activated sludge treatment. Pre-chlorination taken place for 60 minutes at pH 8. The variation of calcium hypochlorite dosages which used are 58, 59, and 60 mg/L. Pre-chlorination effluent with no free chlorine residual then becomes activated sludge treatment influent. Sampling has done each aeration time interval 0, 2, 4, and 6 hour for analysis of COD and MLVSS content. Research result generally shows that addition of aeration time for each variation of calcium hypochlorite dosage will increase MLVSS and decrease COD content. Smallest value of COD effluent could achieved in the activated sludge treatment with calcium hipochlorite dosage 60 mg/L addition at influent during 4 hours aeration time. Addition of 58 mg/l calcium hypochlorite results highest MLVSS and percentage of COD removal.

  3. CONCERNS OF CONTEMPORARY DISINFECTION: CHLORINE OR STABILIZED LIQUID SOLUTION OF CHLORINE DIOXIDE

    OpenAIRE

    Abdulah Gagić; Selma Selimović; Suad Jukić; Ajla Ališah; Aida Kustura

    2014-01-01

    It is common that experts use routine procedures for disinfection. Every part of the disinfection procedure is routinely done: preparation of the disinfection media, selection of the type of disinfection, protective measures, effect control and environmental issues. This article offers a new insight into the use of stabilized liquid chlorine dioxide as a qualitative alternative disinfectant for wider application by comparing it to the most frequently used chlorine and its compounds. When used...

  4. 21 CFR 173.300 - Chlorine dioxide.

    Science.gov (United States)

    2010-04-01

    ...) The additive may be used as an antimicrobial agent in water used to wash fruits and vegetables that.... Treatment of the fruits and vegetables with chlorine dioxide shall be followed by a potable water rinse or... 1 CFR part 51. You may obtain a copy from the Center for Food Safety and Applied Nutrition (HFS-200...

  5. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Science.gov (United States)

    2010-04-01

    ... obtained from the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic... this section. (a) For the purpose of this section, chlorinated polyethylene consists of basic polymers...

  6. The Synthesis of Carbon Nanomaterials using Chlorinated ...

    African Journals Online (AJOL)

    NICOLAAS

    Formation of 'bamboo-like' structures for the MWCNTs generated from TCE and TTCE was also observed, facilitated by the ... growth mechanism. KEYWORDS. Multi-walled carbon nanotubes, CVD, synthesis, chlorine, benzenes, ethanes. 1. Introduction. Nanotechnology is a topic that is attracting the interest of scientists in ...

  7. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    , not-yet sclerotized cuticle of adult femur and tibia, the amounts increased rapidly during the first 24 h after ecdysis and more slowly during the next two weeks. Control analyses using stable isotope dilution mass spectrometry have confirmed that the chlorinated tyrosines are not artifacts formed...

  8. SAM Chlorine Observations at Gale Crater

    Science.gov (United States)

    Conrad, P. G.; Farley, K. A.; Vasconcelos, P. M.; Malespin, C.; Franz, H.; McAdam, A.; Sutter, B.; Stern, J. C.; Clark, B. C.; Atreya, S. K.; Mahaffy, P. R.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Sample Analysis at Mars investigation has detected Cl-bearing phases of various oxidation states in its thermally evolved gas measurements of both a wind drift deposit of fines and three different rock samples delivered as sieved drill powders to the instrument suite. In addition to HCl (Leshin et al, 2013; Ming et al, 2013) and chlorinated hydrocarbon detections (Glavin et al, 2013; Freissinet et al, in review), oxygen releases consistent with the decomposition of perchlorate salts are also observed. We have also measured chlorine isotope ratios of the four different solid samples, which yielded variable and more negative δ37Cl than typically observed in SNC meteorite analyses. We summarize our chlorine observations in the context of other gases observed in the SAM solid sample analyses, including water, sulfur- and nitrogen-bearing compounds, and REMS observations of Relative Humidity and Temperature, and compare with knowledge of martian chlorine obtained from the SNC meteorites. Finally, we examine the implications of surface/atmosphere Cl interactions and isotopic ratios for the rise and decline of habitable surface environments on Mars. This research was supported by the National Aeronautics and Space Administration (NASA) Mars Science Laboratory mission.

  9. Chlorination Diversifies Cimicifuga racemosa Triterpene Glycosides

    Science.gov (United States)

    Chen, Shao-Nong; Lankin, David C.; Nikolic, Dejan; Fabricant, Daniel S.; Lu, Zhi-Zhen; Ramirez, Benjamin; van Breemen, Richard B.; Fong, Harry H. S.; Farnsworth, Norman R.; Pauli, Guido F.

    2008-01-01

    Extracts from roots and rhizomes of black cohosh (Cimicifuga racemosa) are widely used as dietary supplements to alleviate menopausal symptoms. State-of-the-art QC measures involve phytochemical fingerprinting of the triterpene glycosides for species identification and chemical standardization by HPLC. In the course of developing materials and methods for standardization procedures, the major C. racemosa triterpene glycoside (1) was isolated ans initially thought to be cimicifugoside (2). Detailed HR-LC-MS and 1/2D NMR analysis of 1 and 2 unambiguously revealed that 1 is its chlorine-containing derivative of 2, namely 25-chlorodeoxycimigenol-3-O-β-D-xyloside. Accordingly, HPLC profiles of black cohosh preparations require revision of the assignments of the chlorinated (1) and non-chlorinated (2) pair. Besides explaining the substantial shift in polarity (ΔtR[RP-18] ca 20 min), 25-deoxychlorination opens a new pathway of structural diversification in triterpene glycosides chemistry. As chemical conversion of 2 into 1 could be demonstrated, deoxychlorination may be interpreted as artifact formation. Simultaneously, however, it is a potentially significant pathway for the gastric in vivo conversion (“nature's pro drug”) of the relatively polar triterpene glycosides into significantly less polar chlorinated derivatives with altered pharmacological properties. PMID:17555351

  10. Thermodynamic consideration on chlorination of uraniferous phosphorite

    International Nuclear Information System (INIS)

    Itagaki, Kimio; Tozawa, Kazuteru; Taki, Tomihiro; Hirono, Shuichiro.

    1989-01-01

    The uranium ore of low grade which has apatite as a main mineral, but is different from the phosphorite used as the raw material for phosphoric acid production, exists in large amount in South America and Africa continents, and the importance of its effective utilization as future uranium resources is recognized. The Power Reactor and Nuclear Fuel Development Corp. took up the establishment of the treatment techniques to make this ore into resources as the subject of a project, and proposed the process of volatilizing the uranium in the ore as the chloride and recovering it, and at present, it attempts the experiment on the chlorination treatment. In this paper, the thermodynamic examination on the feasibility of this process, the optimum condition for leaving calcium existing in a large amount in the ore as the phosphate without chlorination and recovering only uranium by chlorination and volatilization, the phase reaction equilibrium chart and the calculation method according to thermodynamics concerning the behavior of chlorination of accompanying elements such as iron, silicon and aluminum and the effect of moisture in the ore are reported. (K.I.)

  11. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics.

    Science.gov (United States)

    Pan, Yanheng; Cheng, ShuangShuang; Yang, Xin; Ren, Jingyue; Fang, Jingyun; Shang, Chii; Song, Weihua; Lian, Lushi; Zhang, Xinran

    2017-06-01

    Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of Source Water Quality on Chlorine Inactivation of Adenovirus, Coxsackievirus, Echovirus, and Murine Norovirus ▿

    Science.gov (United States)

    Kahler, Amy M.; Cromeans, Theresa L.; Roberts, Jacquelin M.; Hill, Vincent R.

    2010-01-01

    More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15°C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration × contact time (CT) values (mg·min/liter) required to achieve 2-, 3-, and 4-log10 reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log10 CT values at 5°C ranging from ≤0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log10 CT values at 5°C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15°C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA's Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans. PMID:20562285

  13. Effects of source water quality on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus.

    Science.gov (United States)

    Kahler, Amy M; Cromeans, Theresa L; Roberts, Jacquelin M; Hill, Vincent R

    2010-08-01

    More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15 degrees C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration x contact time (CT) values (mg x min/liter) required to achieve 2-, 3-, and 4-log(10) reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log(10) CT values at 5 degrees C ranging from < or = 0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log(10) CT values at 5 degrees C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15 degrees C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA's Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans.

  14. Simultaneous Recovery of Hydrogen and Chlorine from Industrial Waste Dilute Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    N. Paidimarri

    2016-01-01

    Full Text Available Recovery of chlorine from byproduct HCl has inevitable commercial importance in industries lately because of insufficient purity or too low concentration to recycle it. Instead it is being neutralized in industries before disposing to meet stringent environmental conditions. Although recovery through catalytic oxidation processes is studied since the 19th century, their high operating conditions combined with sluggish reaction kinetics and low single pass conversions make electrolysis a better alternative. The present motive of this work is to develop a novel electrolysis process which in contrast to traditional processes effectively recovers both hydrogen and chlorine from dilute HCl. For this, an electrolytic cell with an Anionic Exchange Membrane has been designed which only allows the passage of chlorine anions from catholyte to anolyte separating the gasses in a single step. The catholyte can be as low as 3.59 wt% because of fixed anolyte concentration of 1.99 wt% which minimizes oxygen formation. Preliminary results show that the simultaneous recovery of hydrogen and chlorine is possible with high conversion up to 98%. The maximum current density value for 4.96 cm2 membrane surface area (70% active surface area is 2.54 kAm−2, which is comparable with reported commercial processes. This study is expected to be useful for process intensification of the same in a continuous process environment.

  15. Influence of Nitrogen Source on NDMA Formation during Chlorination of Diuron

    Science.gov (United States)

    Chen, Wei-Hsiang; Young, Thomas M.

    2009-01-01

    N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N′-(3,4-dichlorophenyl)-N, N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite diuron dose. Formation of dichloramine seemed to fully explain enhanced NDMA formation in the presence of ammonium. Nitrate unexpectedly enhanced nitrosation of diuron derivatives to form NDMA compared to the cases of no added nitrogen or nitrite addition. Nitrite addition is less effective because it consumes more chlorine and produces intermediates that react rapidly with diuron and its aromatic byproducts. Differences between surface and groundwater in nitrogen forms and concentrations and disinfection approaches, suggest strategies to reduce NDMA formation should vary with drinking water source. PMID:19457535

  16. Electrochemically activated water as an alternative to chlorine for decentralized disinfection

    KAUST Repository

    Ghebremichael, Kebreab A.

    2011-06-01

    Electrochemically activated (ECA) water is being extensively studied and considered as an alternative to chlorine for disinfection. Some researchers claim that ECA is by and large a chlorine solution, while others claim the presence of reactive oxygen species such as ozone and hydroxyl radicals in addition to chlorine. This study compares sodium hypochlorite (NaOCl) and ECA in terms of disinfection efficacy, trihalomethanes (THMs) formation, stability and composition. The studies were carried out under different process conditions (pH 5,7 and 9, disinfectant concentrations of 2-5 mg/L and dissolved organic carbon (DOC) concentration of 2-4 mg/L). The results indicated that in the presence of low DOC (<2 mg/L) ECA showed better disinfection efficacy for Escherichia coli inactivation, formed lower THM and had better stability compared with NaOCl at both pH 5 and 7. Stability studies of stock solutions showed that over a period of 30 days, ECA decayed by only 5% while NaOCl decayed by 37.5% at temperatures of 4 °C. In a fresh ECA of 200 mg/L chlorine, about 5.3 mg/L ozone and 36.9 mg/L ClO2 were detected. The study demonstrates that ECA could be a suitable alternative to NaOCl where decentralized production and use are required. © IWA Publishing 2011.

  17. Kinetics and mechanism of dimethoate chlorination during drinking water treatment.

    Science.gov (United States)

    Tian, Fang; Liu, Wenjun; Guo, Guang; Qiang, Zhimin; Zhang, Can

    2014-05-01

    Dimethoate (DMT), a commonly used organophosphorus pesticide, is of great concern because of its toxicity and potentially harmful effects on water sources. The elimination of DMT as well as the toxicity and persistence of the byproducts formed during DMT degradation is most important for the safety of drinking water. This study first determined the reaction kinetics of DMT with free chlorine (FC) under typical water treatment conditions. The reaction between DMT and FC proceeded rapidly, exhibiting first-order with respect to each reactant. The degradation of DMT by FC was highly pH dependent, and the pseudo-first-order rate constant decreased obviously from 0.13 to 0.02 s(-1) with an increase in pH from 7.0 to 8.3. Bromide ion accelerated the reaction by acting as a catalyst, and the accelerated reaction rate was linearly proportional to the bromide concentration. As a ubiquitous component in natural waters, humic acid also increased the reaction rate. However, the presence of ammonium inhibited the degradation of DMT due to its rapid converting FC to chloramines. Omethoate (OMT) was identified as an important byproduct of DMT chlorination, but only accounted for ca. 28% of the DMT degraded; and other two organic byproducts were also identified. The acute toxicity of DMT solution increased after treatment with FC due to the formation of more toxic byproducts (e.g. OMT). Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.

    2017-01-01

    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  19. Effect of Chlorine Exposure on the Survival and Antibiotic Gene Expression of Multidrug Resistant Acinetobacter baumannii in Water

    Directory of Open Access Journals (Sweden)

    Deepti Prasad Karumathil

    2014-02-01

    Full Text Available Acinetobacter baumannii is a multidrug resistant pathogen capable of causing a wide spectrum of clinical conditions in humans. Acinetobacter spp. is ubiquitously found in different water sources. Chlorine being the most commonly used disinfectant in water, the study investigated the effect of chlorine on the survival of A. baumannii in water and transcription of genes conferring antibiotic resistance. Eight clinical isolates of A. baumannii, including a fatal meningitis isolate (ATCC 17978 (~108 CFU/mL were separately exposed to free chlorine concentrations (0.2, 1, 2, 3 and 4 ppm with a contact time of 30, 60, 90 and 120 second. The surviving pathogen counts at each specified contact time were determined using broth dilution assay. In addition, real-time quantitative PCR (RT-qPCR analysis of the antibiotic resistance genes (efflux pump genes and those encoding resistance to specific antibiotics of three selected A. baumannii strains following exposure to chlorine was performed. Results revealed that all eight A. baumannii isolates survived the tested chlorine levels during all exposure times (p > 0.05. Additionally, there was an up-regulation of all or some of the antibiotic resistance genes in A. baumannii, indicating a chlorine-associated induction of antibiotic resistance in the pathogen.

  20. Experimental evaporation of hyperacid brines: Effects on chemical composition and chlorine isotope fractionation

    Science.gov (United States)

    Rodríguez, Alejandro; van Bergen, Manfred J.; Eggenkamp, H. G. M.

    2018-02-01

    Hyperacid brines from active volcanic lakes are some of the chemically most complex aqueous solutions on Earth. Their compositions provide valuable insights into processes of elemental transfer from a magma body to the surface and interactions with solid rocks and the atmosphere. This paper describes changes in chemical and δ37Cl signatures observed in a 1750 h isothermal evaporation experiment on hyperacid (pH 0.1) sulphate-chloride brine water from the active lake of Kawah Ijen volcano (Indonesia). Although gypsum was the only evaporite mineral identified in the evolving brine, decreasing Si concentrations may ultimately result in amorphous silica precipitation. Geochemical simulations predict the additional formation of elemental sulphur at lower water activities (aH2O ≤ 0.65) that were not reached in the experiment. Absence of other sulphates and halides despite the high load of dissolved elements (initial TDS ca. 100 g/kg) can be attributed to increased solubility of metals, promoted by extensive formation of complexes between the variety of cations and the major anions (HSO4-, Cl-, F-) present. Chlorine deviations from a conservative behaviour point to losses of gaseous hydrogen chloride (HCl(g)) and consequently an increase in Br/Cl ratios. Chlorine isotope fractionation that accompanied the escape of HCl(g) showed a marked change in sign and magnitude in the course of progressive evaporation of the brine. The calculated factor of fractionation between HCl(g) and dissolved Cl for the initial interval (before 500 h) is positive (1000lnαHCl(g)-Cldiss. = + 1.55 ± 0.49‰to + 3.37 ± 1.11‰), indicating that, at first, the escaping HCl(g) was isotopically heavier than the dissolved Cl remaining in the brine. Conversely, fractionation shifted to the opposite direction in the subsequent interval (1000lnαHCl(g)-Cldiss. = 5.67 ± 0.17‰to - 5.64 ± 0.08‰), in agreement with values reported in literature. It is proposed that Cl isotopic fractionation in

  1. Assessment of the effectiveness of downward water sprays for mitigating gaseous chlorine releases in partially confined spaces.

    Science.gov (United States)

    Dimbour, J P; Gilbert, D; Dandrieux, A; Dusserre, G

    2003-01-31

    Water sprays are sometimes used as a means of mitigating accidental releases of chlorine gas. This paper gives results of a series of small-scale experimental field tests on the mitigation of chlorine gaseous releases (about 1kg/min) by various downward water sprays. The releases were from a cylinder of liquefied chlorine located in a storage shed. The shed could be configured to simulate confined and semi-confined installations used at public swimming pools. The water sprays were located in the shed. During these tests, different types of spray nozzles and storage configurations were tested under various atmospheric conditions, in order to select the best water spray. It was shown that the best chlorine downstream concentration reduction (factor 3-5 at 10m) was achieved with a flat fan water spray for the semi-confined configuration. Poor absorption in water was observed (fog water spray for the confined configuration. This is expected since chlorine is a low soluble gas. It has been evidenced for the confined configuration, that even if reduction of concentration has been observed (factor 2), downstream concentration remains very high (>10,000ppm), and above critical level of toxicity. Consequently, the use of water sprays in this case without additives to promote absorption seems to be inefficient.

  2. Artificial Neural Networks and Concentration Residual Augmented ...

    African Journals Online (AJOL)

    Methoxyphenoxy) - 1, 2 - propanediol] is an alpha - adrenergic sympathomimetic agent which stimulates alpha - adrenergic receptors, producing pronounced vasoconstriction [3]. The combination of the four drugs is used for treating bronchial spasm and as antitussive. The UV absorption spectra of the four drugs display.

  3. Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions.

    Science.gov (United States)

    Rahman, S M E; Ding, Tian; Oh, Deog-Hwan

    2010-05-15

    Strong acid electrolyzed water (SAEW) has a very limited application due to its low pH value (4.0, 5.0, 6.0 and 9.0) and temperatures (4, 15, 23, 35 and 50 degrees C) were determined. Reductions of bacterial populations of 1.7 to 6.6 log(10) CFU/mL in various treated conditions in cell suspensions were observed after treatment with LcEW and SAEW, compared to the untreated control. Dip washing (1 min at 35 degrees C) of lettuce leaves in both electrolyzed water resulted in 2.5 to 4.0 log(10) CFU/g compared to the unwashed control. Strong inactivation effects were observed in LcEW, and no significant difference (p>0.05) was observed between LcEW and SAEW. The effective form of chlorine compounds in LcEW was almost exclusively hypochlorous acid (HOCl), which has strong antimicrobial activity and leaves no residuals due to the low concentration of residual chlorine. Thus, LcEW could be widely applied as a new sanitizer in the food industry. 2010 Elsevier B.V. All rights reserved.

  4. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    International Nuclear Information System (INIS)

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Toulhoat, Nelly; Barthe, Marie France; Desgardin, Pierre; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle

    2007-01-01

    there is a great probability for the chlorine contained in the UO 2 grains to have reached the grain boundaries after 3 years, in the core of the fuel rod as well as at its periphery. Moreover, diffusion and concentration of chlorine at grain boundaries has been evidenced using SIMS mapping. Our results indicate therefore, that, during reactor operation and after, the majority of 36 Cl is likely to have moved to grain boundaries, rim and gap. This fraction might then significantly contribute to the rapid or instant release of chlorine. This could have important consequences for safety assessment. During reactor operation, chlorine ( 35 Cl), an impurity of the nuclear fuel, is activated into 36 Cl, a long lived mobile isotope. Because of its long half life and its mobility, this isotope may contribute significantly to the instant release fraction under disposal conditions. Thermal annealing of Cl implanted UO 2 sintered pellets show that it is mobile from temperatures as low as 1273 K (E a = 4.3 eV). Chlorine diffusion induced by irradiation with fission products preserves a thermally activated contribution. The radiation induced defects significantly enhance chlorine migration. (authors)

  5. Report: New reliable method for the measurement of chlorine in refuse-derived fuels through combustion experiments in a pilot plant.

    Science.gov (United States)

    Schröer, Ramona; Urban, A I

    2010-02-01

    The calorific values and the chlorine contents of refuse-derived fuels were measured in the pilot combustion plant (PCP) by means of combustion experiments followed by mass and energy balancing. This plant reaches an increased precision by measuring the integrated values throughout the whole experimental period of three hours, based on a fuel capacity of 10 kg per test, allowing a more reliable measurement of pollutants than for experimental analysis of only a few grams of the sample. The combustion experiments are shown for the verification of the quality of the chlorine balancing in the PCP. The test evaluation was carried out by balancing the inputs and outputs of chlorine in the mass streams, and the recovery rates for chlorine were determined. An emission pattern for the chlorine is described by the transfer coefficients and via the temporal fluctuation of the hydrogen chloride concentration in the flue gas. The results of the combustion experiments prove that the balancing via combustion experiments in the PCP provides reliable data on the chlorine concentrations in the fuels, and is a new and reliable method for measuring polluting chlorine in refuse-derived fuels.

  6. UNDERSTANDING CHLORINE AND CHLORAMINE DECAY KINETICS IN OLD CAST IRON PIPES, 2. CONVERSION FROM CONVENTIONAL TREATMENT TO MICROFILTRATION IN A SMALL WATER SYSTEM

    Science.gov (United States)

    This insitu pipe loop study was designed to determine the disinfectant kinetics associated with very old unlined cast iron pipelines with both chlorine and chloramination residuals. An abandoned 90-year-old unlined cast iron pipeline about 2000 ft long was acclimated to conduct a...

  7. Growth and Histological Effects to Protothaca staminea (Littleneck Clam) of Long-Term Exposure to Chlorinated Sea Water

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, C. I.; Hillman, A. E.; Wilkinson, P.; Woodruff, D. L.

    1980-08-01

    There has been considerable concern about the potential for long-term effects to marine organisms from chlorinated sea water. As part of a larger study to investigate the effects of materials resulting from seawater chlorination on marine organisms, groups of littleneck clams, Protothaca staminea, were exposed to sea water that had been chlorinated. Two experiments were conducted. In one test, groups of littleneck clams were exposed to dilutions of chlorinated sea water that had average chlorine produced oxidant (CPO) concentrations of 16 {micro}g/l or less. In the second test, groups of clams were exposed to chlorinated seawater-unchlorinated seawater mixtures that had target CPO concentrations of 0, 6, 12, 25, 50 and 100 {micro}g/l. In the first experiment, length measurements were made on all clams at approximately one-month intervals for three months. In the second test, length, weight, depth, width and edge etching were used to measure growth, and subsamples were harvested and measured at one-month intervals. In addition, clams were preserved for histological examination. The clams in the first experiment all had negative growth. In the second test, growth was inhibited under all conditions through the first four months of exposure. During the last four months, there was positive signs of growth at the 0, 6 and 12 {micro}g/l CPO test conditions. Histological examination indicates that P. staminea does not adapt well to being held in aquaria. Most clams, tram all test and control conditions, showed evidence of necrosis at one month. This condition seemed to improve with longer exposure at lower CPO concentrations but persisted at CPO concentrations of 25 {micro}g/l and higher. Other histological effects were apparent at the higher exposure concentrations as the length of exposure increased.

  8. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    Science.gov (United States)

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  9. CHARACTERIZATION OF ENALAPRIL AND RANITIDINE CHLORINATION BY-PRODUCTS BY LIQUID CHROMATOGRAPHY/HIGH-RESOLUTION MASS SPECTROMETRY AND THEIR TOXICITY EVALUATION

    Directory of Open Access Journals (Sweden)

    Frederico Jehár Oliveira Quintão

    Full Text Available Due to its low cost, its capability for disinfection and oxidation, chlorination using gaseous chlorine or hypochlorite salts, has also been commonly applied in water treatment plants for oxidation and disinfection purposes. Little is known about the identity and toxicity of by-products resulting from the chlorination of pharmaceutical micropollutants, such as enalapril (ENA and ranitidine (RAN. ENA and RAN chlorination by-products were characterized in this study by high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC/HRMS and their toxicity were assessed by MTT assay. Chlorination experiments with ENA and RAN solutions (10 mg L-1 indicate degradation efficiencies of 100% for both compounds after only 5 min of exposure to chlorine at concentration of 9.53 mg Cl2 L-1. On the other hand mineralization rates were lower than 3%, thereby indicating there was accumulation of degradation by-products in all experiments. Mass spectrometric analysis revealed, at all times of reaction after the addition of hypochlorite, the presence of 1-(2-((4-(chlorophenyl-1-ethoxy-1-oxobutan-2-ylaminopropanoylpyrrolidine-2-carboxylic acid (enalapril by-product and N-chloro-N-(2-(((chloro-5-((dimethylaminomethylfuran-2-ylmethylsulfinylethyl-N-methyl-2-nitroethene 1,1-diamine (ranitidine by-product. Despite the formation of oxidized chlorinated by-products in all chlorination assays, the treated solutions were nontoxic to HepG2 cells by the MTT assay. It has been observed that chlorination (10 mg L-1, 5 min of ENA and RAN solutions exhibited high degradation efficiencies of the target compounds and low mineralization rates. Based on the mass spectrometry data, the routes for ENA and RAN successive oxidation by chlorine has been proposed.

  10. Formation of chlorinated organic compounds in fluidized bed combustion of recycled fuels; Kloorattujen orgaanisten yhdisteiden muodostuminen kierraetyspolttoaineiden leijukerrospoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Vesterinen, R.; Kallio, M.; Kirjalainen, T.; Kolsi, A.; Merta, M. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    Four tests of co-combustion of recycled fuels (REP) with peat and coal in the 15 kW fluidized bed reactor were performed. The recycled fuel was so-called dry fraction in four vessels sampling at Keltinmaeki. In three tests a part of peat energy was replaced with coal. The mixtures were prepared so that in all mixtures 25 % of energy was recycled fuel and 75 % was either peat or the mixture of peat and coal. The concentrations of polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and chlorophenols decreased with increasing part of coal due to the increasing sulphur/chlorine ratio. Principal Component Analysis (PCA) and Partial Least Square regression analysis (PLS) showed that the chlorine, copper and sulphur contents of the fuel effected most on the concentrations of chlorophenols, chlorobenzenes, PCBs and PCDDs/PCDFs. Other variables influencing on a model were the lead concentration and the sulphur/chlorine ratio in fuel and the hydrogen chloride concentration of the flue gas. The concentrations of chlorophenols and chlorobenzenes were also significant for PCDD/PCDF concentrations in flue gas. The sulphur, chlorine, copper and chromium contents in fly ash and the temperature of the reactor influenced on the chlorophenol, chlorobenzene, PCB and PCDD/PCDF concentrations in fly ash. The chlorophenol and chlorobenzene contents in fly ash, the sulphur/chlorine ratio and the lead content in fuel, the sulphur dioxide, hydrogen chloride and carbon monoxide concentrations in flue gas had also influence on PCDD/PCDF concentrations in fly ash

  11. Antiradiation effectiveness of the chlorine C

    International Nuclear Information System (INIS)

    Bubnova, O.M.; Grechka, I.I.; Znamensky, V.V.

    1996-01-01

    At present ever more attention of the experimenters in the field of search of high-effective antiray means - is directed to development of preparations from bio-active substances of a natural origin. In this connection all greater interest is caused by researches of antiray activity of these compounds, distinguished, as a rule, from known preparations of synthetic manufacture of low toxicity, absence of expressed collateral effects and possibility of course application. It has biological (antiray) activity in dozes 5-10 mg/kg and chlorine C which is derivative of chlorophil A. At present it passes tests in oncology. Porphyrines (synthetic and natural) are recently subjected to wide study as potential medicinal means, due to their ability to be accumulated in bodies of the reticulo-endothelial system and proliferous tissues, as well as their physical-chemical characteristics (fluorescence, photosensitizing action, colouring). All this testifies for the benefit of perspective use of porphyrin for treatment and diagnostics of tumors. According to the above described properties of porphyrines there is that fact, that for some of them radioprotective properties are revealed during the injections as well as before and after radiation treatment. The above said has formed the basis for study of antiray properties of the chlorine C during the experiments on small-sized laboratory animals. Antiradiation effectivity of chlorine C was studied on the mice (CBA x C57 B1) F1. Chlorine C was applied in a wide range of dozes with its' use in 3 variants: before radiation treatment, after radiation treatment, combined (before and after radiation treatment). Radioprotective activity of chlorine C reduces at an increase of a time of the injection before radiation treatment and at other ways of injection (intramuscularly, subcutaneously, per os). Studies of medical activity of chlorine C in experiments on mice have shown, that the compound does not possess medical activity. The death of

  12. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  13. Fabrication and Characterization of a SPR Based Fiber Optic Sensor for the Detection of Chlorine Gas Using Silver and Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Sruthi P. Usha

    2015-04-01

    Full Text Available A fiber optic chlorine gas sensor working on surface plasmon resonance (SPR technique fabricated using coatings of silver and zinc oxide films over unclad core of the optical fiber is reported. The sensor probe is characterized using wavelength interrogation and recording SPR spectra for different concentrations of chlorine gas around the probe. A red shift is observed in the resonance wavelength on increasing the concentration of the chlorine gas. The thickness of the zinc oxide film is optimized to achieve the maximum sensitivity of the sensor. In addition to wavelength interrogation, the sensor can also work on intensity modulation. The selectivity of the sensor towards chlorine gas is verified by carrying out measurements for different gases. The sensor has various advantages such as better sensitivity, good selectivity, reusability, fast response, low cost, capability of online monitoring and remote sensing.

  14. Accumulation of pesticide residues by shrimp, fish and brine shrimp during pond culture at Ghorabari (District Thatta)

    International Nuclear Information System (INIS)

    Sultana, R.; Wajeeha, F.A.; Ameer, F.; Munshi, A.B.; Nasir, M.

    2012-01-01

    Residual level of persistent organo chlorines (OC) such as sigma-HCH (alpha-HCH, beta-HCH, gamma-HCH, delta-HCH, sigma-DDT (o,p'-DDD, op-DDE, p,p-DDE pp-DDD, pp'-DDT, o,p'-DDT), dieldrin and endrin were measured in a number of water samples from Ambro creek and their accumulation in shrimp (Penaeus merguiensis and P. penicillatus), fish (Otolithes ruber) and brine shrimp (Artemia sp.) reared in ponds for a period of four months. Samples were extracted with organic solvents, and quantified using gas chromatography-electron capture detection (GC/ECD). It has been found that results of animal tissue and water are not same however OCs, (mainly sigma DT and beta-HCH 4,4-DDT, Dieldrin + 2,4-DDT, and Methoxychlor were detected in all samples ). Heptachlor exo-epoxide were found in fish and Artemia sp. and absent in all shrimp samples. Heptachlor endo-epoxide was detected only in Artemia sp. and average residual concentration of OCs in Artemia sp. was 0.004-0.09 ppm. Methoxychlor was found in the highest quantity in all the samples whether it was fish, shrimp or Artemia. In fish average residual concentration of all (OCs) in individual sample was 0.03 - 0.180 ppm. (author)

  15. The application of environmental chlorine-36 to hydrology

    International Nuclear Information System (INIS)

    Roman, D.; Airey, P.L.

    1981-01-01

    Chlorine-36 (Tsub1/2) 308,000 y) is of potential value in the study of the dynamics of the redistribution of chloride throughout the Pleistocene. Specific applications to the dating of very old groundwater and to investigations of the evolution of salinity can be foreseen. Both electrostatic accelerators and radioactive counting techniques can be used to estimate the specific activity of the isotope. Because of the relatively low capital cost, the latter are likely to be used for the routine measurements where practicable. One of the possible mixtures for liquid scintillation counting is SiCl 4 toluene/butyl-PBD. A rapid direct synthesis of silicon tetrachloride from the groundwater silver nitrate precipitates is described. Quantitative evidence is presented that at the SiCl 4 concentrations normally used, the scintillator is not butyl-PBD, but the 1:1 molecular complex SiCl 4 -butyl-PBD. (author)

  16. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...... between K-containing species and radical pool under combustion conditions has been improved. The available K/O/H/Cl chemistry has been updated by using both experimental work and detailed kinetic modeling. The experimental work was done by introducing gaseous KCl to CO oxidation system under reducing...... level, but the effect levels off at high concentrations. The experimental data were interpreted in terms of a detailed chemical kinetic model and used to update the K/O/H/Cl chemistry. The oxidation of SO2 to SO3 under combustion conditions has been suggested to be the rate limiting step in the gaseous...

  17. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Contamin, G.

    1965-04-01

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author) [fr

  18. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  19. QCM-based measurement of chlorine-induced polymer degradation kinetics.

    Science.gov (United States)

    Kearney, Logan T; Howarter, John A

    2014-07-29

    Highly structured network polymers are prepared via a molecular layer by layer technique (mLbL) and used as a model system to study aqueous degradation of polymer thin films in real time. Quantitative analysis of the degradation kinetics was enabled by the use of a quartz crystal microbalance (QCM). We conclude that the common metric of halogen, specifically chlorine, exposure (concentration × time) to be an ineffective normalization unit and showed a multistage adsorption process consistent with the established chemical mechanism. Additionally, degradation progression was tracked at multiple points of exposure to determine the effects of chlorination on the chemical and morphological state of the polymer structure with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The formation of known halogenation products were corroborated with XPS through the high resolution spectra. Insight into the heterogeneous nature of the nanostructural degradation was derived from the AFM images. Periodic rinsing was found to release adsorbed chlorine but had negligible benefits on extending the exposure limits of the polyamide film. Fluorinated amine monomer (3,4-difluoroaniline) was incorporated into the surface of the polymer to determine the effect of limiting N-halogenation and the formation of the halogenated ring product. The modified surface layer reduced the rate and magnitude of chlorine adsorption relative to the neat polyamide surface. The QCM technique was shown to be an effective tool for rapid and high fidelity evaluation of molecular degradation and modification strategies to increase device lifetimes.

  20. Organic chloramines in chlorine-based disinfected water systems: A critical review.

    Science.gov (United States)

    How, Zuo Tong; Kristiana, Ina; Busetti, Francesco; Linge, Kathryn L; Joll, Cynthia A

    2017-08-01

    This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation. Copyright © 2017. Published by Elsevier B.V.

  1. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J.

    2015-01-01

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl − led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  2. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  3. Review of environmental exposure concentrations of chemical warfare agent residues and associated the fish community risk following the construction and completion of the Nord Stream gas pipeline between Russia and Germany.

    Science.gov (United States)

    Sanderson, Hans; Fauser, Patrik; Rahbek, Malene; Larsen, Jørn Bo

    2014-08-30

    This paper compiles all the measured chemical warfare agent (CWA) concentrations found in relation to the Nord Stream pipeline work in Danish waters for the past 5 years. Sediment and biota sampling were performed along the pipeline route in four campaigns, prior to (in 2008 and 2010), during (in 2011) and after (in 2012) the construction work. No parent CWAs were detected in the sediments. Patchy residues of CWA degradation products of Adamsite, Clark I, phenyldichloroarsine, trichloroarsine and Lewisite II, were detected in a total of 29 of the 391 sediment samples collected and analyzed the past 5 years. The cumulative fish community risk quotient for the different locations, calculated as a sum of background and added risk, ranged between 0 and 0.017 suggesting a negligible acute CWA risk toward the fish community. The added risk from sediment disturbance in relation to construction of the pipelines represents less than 2% of the total risk in the areas with the highest calculated risk. The analyses of benthic infauna corroborate the finding of CWA related low risk across the years. There was no significant difference in CWA risk before (2008) and after the pipeline construction (2012). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Control of the Kanzawa Spider Mite, Tetranychus kanzawai Kishida and Pink Tea Rust Mite, Acaphylla theavagrans Kadono and the Residual Effect of Spraying Petroleum Oil Emulsifiable Concentrate just before the Sprouting of the First Crop of Tea

    Science.gov (United States)

    Yoshioka, Tetsuya; Sakaida, Teruki; Nakazono, Kentaro; Nitabaru, Yuichi

    Petroleum oil emulsifiable concentrate (POEC) is a commercial acaricide used for the control of Tetranychus kanzawai Kishida in the autumn/winter season. Further, the damage of bacterial shoot blight increases if POEC is sprayed at this time of the year. It is thought that the occurrence of bacterial shoot blight doesn't increase if POEC is sprayed just before the sprouting of the first crop of tea. However, it is suspected that spraying of POEC at this time results in the formation of an oily film that floats on the surface of tea infusion. In this study, we examined the efficiency of spraying POEC at this time of the year in controlling the growth of T. kanzawai and Acaphylla theavagrans Kadono and the residual effect. We obtained the following results: (1) spraying POEC before sprouting of the first crop of tea resulted in effective control of the density of T. kanzawai and A. theavagrans for 1 month or longer, and (2) the oily film was not observed on the surface of the tea infusion. These results indicate that POEC can serve as one of the important control agents of mites when sprayed just before the sprouting of the first crop of tea.

  5. Thermal diffusion of chlorine in uranium dioxide

    International Nuclear Information System (INIS)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Jaffrezic, H.; Gavarini, S.; Martin, P.; Raimbault, L.; Scheidegger, A.M.

    2006-01-01

    In a nuclear reactor, isotopes such as 35 Cl present as impurities in the nuclear fuel are activated by thermal neutron capture. During interim storage or geological disposal of nuclear fuel, the activation products such as 36 Cl may be released from the fuel to the geo/biosphere and contribute to the ''instant release fraction'' as they are likely to migrate in defects and grain boundaries. In order to differentiate diffusion mechanisms due to ''athermal'' processes during irradiation from thermally activated diffusion, both irradiation and thermal effects must be assessed. This work concerns the measurement of the thermal diffusion coefficient of chlorine in UO 2 . 37 Cl was implanted at a 10 13 at/cm 2 fluence in depleted UO 2 samples which were then annealed in the 900-1200 C temperature range and finally analyzed by secondary ion mass spectrometry (SIMS) to obtain 37 Cl depth profiles. The migration process appears to be rather complex, involving mechanisms such as atomic, grain boundary, directed diffusion along preferential patterns as well as trapping into sinks before successive effusion. However, using a diffusion model based on general equation of transport, apparent diffusion coefficients could be calculated for 1000 and 1100 C and a mean activation energy of 4.3 eV is proposed. This value is one of the lowest values compared to those found in literature for other radionuclides pointing out a great ability of chlorine to migrate in UO 2 at relatively low temperatures. In order to unequivocally determine the diffusion behaviour of both implanted and pristine chlorine before and after thermal annealing, the structural environment of chlorine in UO 2 was examined using micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS). (orig.)

  6. Hydrochloric acid and the chlorine budget of the lower statosphere

    Science.gov (United States)

    Webster, C. R.; May, R. D.; Jaegle, L.; Hu, H.; Sander, S. P.; Gunson, M. R.; Toon, G. C.; Russell, J. M., III; Stimpfle, R. M.; Koplow, J. P.

    1994-01-01

    Concentrations of HCl measurements in the lower stratosphere in 1993 by the ALIAS instrument on the ER-2 aircraft reveal that only 40% of inorganic chlorine (Cl(y), inferred from in situ measurements of organic chlorinated sources gases) is present as HCl, significantly lower than model predictions. Although the sum of measured HCl, ClO and ClONO2, the latter inferred from measurements of ClO and NO2 equals Cl(y) to within the incertainty of measurement, it is systematically less than Cl(y) by 30-50%. This discrepancy suggests that concentrations of ClONO2 may exceed those of HC; near 20 km altitude, consistent with a slower photolysis rate for ClONO2 than calculated using recommended cross sections. Comparison of profiles of HCl measured during 1992 and 1193 at mid-latitudes by balloon (BLISS and MARKIV), space shuttle (ATMOS), and satellite (HALOE) instruments with the aircraft data reveal an apparent pressure dependence to the HCl to Cl(y) ratio, consistent with a factor of 3-10 reduction in the photolysis rate for ClONO2 at ER-2 altitudes. However, the diurnal variation of ClO is well-simulated by models using the recommended photolysis rate, and simulations measurements of ClONO2 and HCl at mid-latitudes by ATMOS and MARKIV report HCl (HCL+ ClONO2) ratios greater than or equal to 50%. Premliminary measurements by ALIAS in the southern hemisphere report HCl/Cl(y) values of about 75%.

  7. Chlorination and Carbochlorination of Cerium Oxide

    International Nuclear Information System (INIS)

    Esquivel, Marcelo; Bohe, Ana; Pasquevich, Daniel

    2000-01-01

    The chlorination and carbochlorination of cerium oxide were studied by thermogravimetry under controlled atmosphere (TG) in the 700 0 C 950 0 C temperature range.Both reactants and products were analyzed by X-ray diffraction (RX), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). Thermodynamic calculations were performed by computer assisted software.The chlorination starts at a temperature close to 800 0 C.This reaction involves the simultaneous formation and evaporation of CeCl3.Both processes control the reaction rate and their kinetic may not be easily separated.The apparent chlorination activation energy in the 850 0 C-950 0 C temperature range is 172 to 5 kJ/ mole.Carbon transforms the CeO2-Cl2 into a more reactive system: CeO2-C-Cl2, where the effects of the carbon content, total flow rate and temperature were analyzed.The carbochlorination starting temperature is 700 0 C.This reaction is completed in one step controlled by mass transfer with an apparent activation energy of 56 to 5 kJ/mole in the 850 0 C-950 0 C temperature range

  8. Pourbaix diagrams for the system copper-chlorine at 5-100 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Beverskog, B. [Studsvik Material AB, Nykoeping (Sweden); Puigdomenech, I. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1998-04-01

    Pourbaix diagrams for the copper-chlorine system in the temperature interval 5-100 deg C have been revised. Predominance diagrams for dissolved copper containing species have also been calculated. Two different total concentrations of each dissolved element, 10{sup -4} and 10{sup -6} molal for copper and 0.2 and 1.5 molal for chlorine have been used in the calculations. Chloride is the predominating chlorine species in aqueous solutions. Presence of chloride increases the corrosion regions of copper at the expense of the immunity and passivity regions in the Pourbaix diagrams. CuCl{sub 2} {center_dot} 3Cu(OH){sub 2} is the only copper-chloride solid phase that forms at the concentrations of chlorine studied. However, its stability area decreases with increasing temperature. The ion CuCl{sub 2}{sup -} predominates at all temperatures at [Cl(aq)]{sub tot}=0.2 molal and this reduces the immunity and passivity areas. A corrosion region exists between the immunity and passivity regions at 100 deg C at [Cu(aq)]{sub tot}=10{sup -6} and [Cl(aq)]{sub tot}=0.2 molal. At the chlorine concentration of 1.5 molal the corrosion region exists in the whole temperature range investigated. The ion CuCl{sub 3}{sup 2-} predominates at 5-25 and 100 deg C, while CuCl{sub 2}{sup -} predominates at 50-80 deg C at [Cl(aq)]{sub tot=}1-5 molal. A copper concentration of 10{sup -4} molal reduces the corrosion areas due to expansion of the immunity and passivity areas. However, a corrosion region still exists between the immunity and passivity regions at all investigated temperatures at pH{sub {Tau}}<9.5 and 1.5 molal chloride concentration. According to our calculations the copper canisters in the deep nuclear waste repository should not corrode at the copper concentration of 10{sup -6} molal and the chloride concentration of 0.2 molal. However, at 80-100 deg C the equilibrium potentials postulated for the Swedish nuclear repository are dangerously close to a corrosion situation. According to

  9. Chronic toxicity of parabens and their chlorinated by-products in Ceriodaphnia dubia.

    Science.gov (United States)

    Terasaki, Masanori; Abe, Ryoko; Makino, Masakazu; Tatarazako, Norihisa

    2015-01-01

    The chronic toxicity of 12 compounds of parabens and their chlorinated by-products was investigated using 7-day Ceriodaphnia dubia test under static renewal condition in order to generate information on how to disinfect by-products of preservatives that are discharged in aquatic systems. The mortality and inhibition of reproduction tended to increase with increasing hydrophobicity and decreased with the degree of chlorination of parabens. The EC50 values for mortality, offspring number, and first brood production ranged between 0.30-3.1, 0.047-12, and 1.3-6.3 mg L(-1) , respectively. For the number of neonates, the most sensitive endpoint, the no-observed-effect concentration (NOEC) and lowest-observed-effect concentration (LOEC) values ranged from 0.63 to 10 mg L(-1) and from 1.2 to 19 mg L(-1) , respectively. Methylparaben (MP), benzylparaben (BnP), and dichlorinated BnP (Cl2 BnP) elicited a significant decrease in offspring numbers even at their lowest concentration tested; the NOEC for these compounds was determined to be less than the lowest test concentration (1.3, 0.04, and 0.63 mg L(-1) for MP, BnP, and Cl2 BnP, respectively). Propylparaben (PP), chlorinated PP, isopropylparaben (iPP), and chlorinated iPP exhibited nonmonotonic concentration-dependent response; their NOEC and LOEC values could not be determined. The multivariate approach involving principal component analysis and hierarchical cluster analysis revealed four groups that corresponded to the toxicological profiles of parabens. Our results suggested that disinfection of parabens by chlorination could reduce aquatic toxicity of original compounds. The findings obtained in our study together with the data available on paraben concentrations in aquatic systems can be used to perform preliminary risk assessment by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) for the marine aquatic environment. The calculated PEC/PNEC ratios ranged from 0

  10. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment.

    Science.gov (United States)

    Dodd, Michael C; Vu, Ngoc Duy; Ammann, Adrian; Le, Van Chieu; Kissner, Reinhard; Pham, Hung Viet; Cao, The Ha; Berg, Michael; Von Gunten, Urs

    2006-05-15

    Kinetics and mechanisms of As(III) oxidation by free available chlorine (FAC-the sum of HOCl and OCl-), ozone (O3), and monochloramine (NH2Cl) were investigated in buffered reagent solutions. Each reaction was found to be first order in oxidant and in As(III), with 1:1 stoichiometry. FAC-As(III) and O3-As(III) reactions were extremely fast, with pH-dependent, apparent second-order rate constants, k''app, of 2.6 (+/- 0.1) x 10(5) M(-1) s(-1) and 1.5 (+/- 0.1) x 10(6) M(-1) s(-1) at pH 7, whereas the NH2Cl-As(III) reaction was relatively slow (k''app = 4.3 (+/- 1.7) x 10(-1) M(-1) s(-1) at pH 7). Experiments conducted in real water samples spiked with 50 microg/L As(III) (6.7 x 10(-7) M) showed that a 0.1 mg/L Cl2 (1.4 x 10-6 M) dose as FAC was sufficient to achieve depletion of As(III) to waters containing negligible NH3 concentrations and DOC concentrations water containing 1 mg-N/L (7.1 x 10(-5) M) as NH3, >75% As(III) oxidation could be achieved within 10 s of dosing 1-2 mg/L Cl2 (1.4-2.8 x 10(-5) M) as FAC. As(III) residuals remaining in NH3-containing waters 10 s after dosing FAC were slowly oxidized (t1/2 > or = 4 h) in the presence of NH2Cl formed by the FAC-NH3 reaction. Ozonation was sufficient to yield >99% depletion of 50 microg/L As(III) within 10 s of dosing 0.25 mg/L O3 (5.2 x 10(-6) M) to real waters containing water containing 5.4 mg-C/L of DOC. NH3 had negligible effect on the efficiency of As(III) oxidation by O3, due to the slow kinetics of the O3-NH3 reaction at circumneutral pH. Time-resolved measurements of As(III) loss during chlorination and ozonation of real waters were accurately modeled using the rate constants determined in this investigation.

  11. Chlorine-36 and the initial value problem

    Science.gov (United States)

    Davis, Stanley N.; Cecil, DeWayne; Zreda, Marek; Sharma, Pankaj

    Chlorine-36 is a radionuclide with a half-life of 3.01×105a. Most 36Cl in the hydrosphere originates from cosmic radiation interacting with atmospheric gases. Large amounts were also produced by testing thermonuclear devices during 1952-58. Because the monovalent anion, chloride, is the most common form of chlorine found in the hydrosphere and because it is extremely mobile in aqueous systems, analyses of both total Cl- as well as 36Cl have been important in numerous hydrologic studies. In almost all applications of 36Cl, a knowledge of the initial, or pre-anthropogenic, levels of 36Cl is useful, as well as essential in some cases. Standard approaches to the determination of initial values have been to: (a) calculate the theoretical cosmogenic production and fallout, which varies according to latitude; (b) measure 36Cl in present-day precipitation and assume that anthropogenic components can be neglected; (c) assume that shallow groundwater retains a record of the initial concentration; (d) extract 36Cl from vertical depth profiles in desert soils; (e) recover 36Cl from cores of glacial ice; and (f) calculate subsurface production of 36Cl for water that has been isolated from the atmosphere for more than one million years. The initial value from soil profiles and ice cores is taken as the value that occurs directly below the depth of the easily defined bomb peak. All six methods have serious weaknesses. Complicating factors include 36Cl concentrations not related to cosmogenic sources, changes in cosmogenic production with time, mixed sources of chloride in groundwater, melting and refreezing of water in glaciers, and seasonal groundwater recharge that does not contain average year-long concentrations of 36Cl. Résumé Le chlore-36 est un radionucléide de période 3.01×105a. Pour l'essentiel, le 36Cl dans l'hydrosphère provient des effets du rayonnement cosmique sur les gaz atmosphériques. De grandes quantités de 36Cl ont aussi été produites au cours des

  12. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang (Malaysia)

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  13. Study of Organochlorinated Pesticide Residues and PCBs in Vegetable and Fruit Samples from market in Peja –Kosovo

    Directory of Open Access Journals (Sweden)

    MSc. Defrime Berisha

    2013-12-01

    In this study, were analyzed samples of fruit and vegetables from the market of Peja, Kosovo in September 2011. Ultrasonic extraction was used for extracting pesticide residues from samples. Clean-up procedure was performed using firstly sulfuric acid followed a second clean-up procedure in an “open” florisil column. The organochlorine pesticides detected were HCHs (a-, b-, γ- and d-isomers and the DDT-related chemicals (o,p-DDE, p,p-DDE, p,p-DDD, p,p-DDT, hexachlorobenzene (HCB, heptachlor, heptachlor epoxide, methoxychlor and Aldrine’s. Analyses were done with capillary column Rtx-5, 60m long, 0.32mm internal diameter, 0.25 μm film thicknesses on a gas chromatograph Dani 1000, with μECD detector. The found concentrations of the chlorinated pesticides were lower than accepted levels for studied samples

  14. Inactivation of Ascaris eggs in water using sequential solar driven photo-Fenton and free chlorine.

    Science.gov (United States)

    Bandala, Erick R; González, Liliana; Sanchez-Salas, Jose Luis; Castillo, Jordana H

    2012-03-01

    Sequential helminth egg inactivation using a solar driven advanced oxidation process (AOP) followed by chlorine was achieved. The photo-assisted Fenton process was tested alone under different H(2)O(2) and/or Fe(II) concentrations to assess its ability to inactivate Ascaris suum eggs. The effect of free chlorine alone was also tested. The lowest egg inactivation results were found using Fe(II) or H(2)O(2) separately (5 and 140 mmol L(-1), respectively) in dark conditions, which showed about 28% inactivation of helminth eggs. By combining Fe(II) and H(2)O(2) at the same concentrations described earlier, 55% of helminth egg inactivation was achieved. By increasing the reagent's concentration two-fold, 83% egg inactivation was achieved after 120 min of reaction time. Process efficiency was enhanced by solar excitation. Using solar disinfection only, the A. suum eggs inactivation reached was the lowest observed (58% egg inactivation after 120 min (120 kJ L(-1))), compared with tests using the photo-Fenton process. The use of the photo-Fenton reaction enhanced the process up to over 99% of egg inactivation after 120 kJ L(-1) when the highest Fe(II) and H(2)O(2) concentration was tested. Practically no effect on the helminth eggs was observed with free chlorine alone after 550 mg min L(-1) was used. Egg inactivation in the range of 25-30% was obtained for sequential processes (AOP then chlorine) using about 150 mg min L(-1).

  15. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    OpenAIRE

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T.S.

    1997-01-01

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the chlorinated polymers is not compromised until a relatively high lactam content in the copolymer is attained. The incorporation of segmental interaction parameters, derived from separate studies involving pol...

  16. Chlorine gas processing of oxide nuclear fuel particles containing thorium

    International Nuclear Information System (INIS)

    Knotik, K.; Bildstein, H.; Falta, G.; Wagner, H.

    Experimental studies on the chloride extraction and separation of U and Th from coated Th--U oxide particles are reported. After a description of the chlorination equipment and the experimental procedures, the results are discussed. The yield of U is determined as a function of the reaction temperature. The results of a thermogravimetric analysis of the chlorination of uranium carbide and thorium carbides are reported and used to establish the reaction mechanism for the chlorination

  17. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  18. The Dutch secret: how to provide safe drinking water without chlorine in the Netherlands

    Directory of Open Access Journals (Sweden)

    G. J. Medema

    2009-03-01

    Full Text Available The Netherlands is one of the few countries where chlorine is not used at all, neither for primary disinfection nor to maintain a residual disinfectant in the distribution network. The Dutch approach that allows production and distribution of drinking water without the use of chlorine while not compromising microbial safety at the tap, can be summarized as follows:
    1. Use the best source available, in order of preference:
        – microbiologically safe groundwater,
        – surface water with soil passage such as artificial recharge or bank filtration,
        – direct treatment of surface water in a multiple barrier treatment;
    2. Use a preferred physical process treatment such as sedimentation, filtration and UV-disinfection. If absolutely necessary, also oxidation by means of ozone or peroxide can be used, but chlorine is avoided;
    3. Prevent ingress of contamination during distribution;
    4. Prevent microbial growth in the distribution system by production and distribution of biologically stable (biostable water and the use of biostable materials;
    5. Monitor for timely detection of any failure of the system to prevent significant health consequences.

    New developments in safe drinking water in the Netherlands include the adaptation of the Dutch drinking water decree, implementation of quantitative microbial risk assessment (QMRA by water companies and research into source water quality, drinking water treatment efficacy, safe distribution and biostability of drinking water during distribution and Legionella. This paper summarizes how the Dutch water companies warrant the safety of the drinking water without chlorine.

  19. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  20. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination.

    Science.gov (United States)

    Aghdam, Ehsan; Xiang, Yingying; Sun, Jianliang; Shang, Chii; Yang, Xin; Fang, Jingyun

    2017-08-01

    The formation of disinfection by-products (DBPs) from the degradation of N,N-diethyl-3-methyl benzoyl amide (DEET) and ibuprofen (IBP) by the ultraviolet irradiation (UV)/chlorine process and subsequent post-chlorination was investigated and compared with the UV/H 2 O 2 process. The pseudo first-order rate constants of the degradation of DEET and IBP by the UV/chlorine process were 2 and 3.1 times higher than those by the UV/H 2 O 2 process, respectively, under the tested conditions. This was due to the significant contributions of both reactive chlorine species (RCS) and hydroxyl radicals (HO) in the UV/chlorine process. Trichloromethane, 1,1,1-trichloro-2-propanone and dichloroacetic acid were the major known DBPs formed after 90% of both DEET and IBP that were degraded by the UV/chlorine process. Their yields increased by over 50% after subsequent 1-day post-chlorination. The detected DBPs after the degradation of DEET and IBP comprised 13.5% and 19.8% of total organic chlorine (TOCl), respectively, and the proportions increased to 19.8% and 33.9% after subsequent chlorination, respectively. In comparison to the UV/H 2 O 2 process accompanied with post-chlorination, the formation of DBPs and TOCl in the UV/chlorine process together with post-chlorination was 5%-63% higher, likely due to the generation of more DBP precursors from the attack of RCS, in addition to HO. Copyright © 2017. Published by Elsevier B.V.

  1. Chlorination of parabens: reaction kinetics and transformation product identification.

    Science.gov (United States)

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app ) of 9.65 × 10 -3  M -0.614 ·s -1 , 1.77 × 10 -2  M -1.019 ·s -1 , 2.98 × 10 -2  M -0.851 ·s -1 , and 1.76 × 10 -2  M -0.860 ·s -1 for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH 4 + concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH 4 + was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  2. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.

    Science.gov (United States)

    Bond, Tom; Templeton, Michael R; Rifai, Omar; Ali, Hussain; Graham, Nigel J D

    2014-09-01

    Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation-chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, β-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation-chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation-chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Analysis of urban particulate standard reference materials for the determination of chlorinated organic contaminants and additional chemical and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Poster, D.L.; Schantz, M.M.; Wise, S.A. [Analytical Chemistry Div., National Institute of Standards and Technology, Gaithersburg, MD (United States); Vangel, M.G. [Statistical Engineering Div., National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1999-02-01

    A previously issued National Institute of Standards and Technology (NIST) Standard Reference Material (SRM), SRM 1649, Urban Dust/Organics has been analyzed for chlorinated organic contaminants (polychlorinated biphenyls and chlorinated pesticides) to provide certified values for a new class of compounds relative to the former certification. The material will be reissued as SRM 1649a. Four different analytical techniques were used. Specifically, two different methods of extraction (Soxhlet and pressurized fluid extraction) were used in conjunction with sample analysis by gas chromatography with two different columns (5% phenyl-methyl polysiloxane and 50% methyl C-18 dimethyl polysiloxane) that exhibit distinct selectivity, and with two different modes of detection (electron capture detection and mass spectrometry). The results from these techniques were combined to generate certified concentrations for 35 PCB congeners (some in combination) and 8 chlorinated pesticides. Ancillary assessments of additional chemical and physical properties of SRM 1649a include homogeneity, moisture, total organic carbon, extractable mass, and the particle-size distribution. The approach and the results for the certification of the PCB congeners and chlorinated pesticides in SRM 1649a, and the determination of the additional chemical and physical properties are described. In addition, the determination of PCBs and chlorinated pesticides in SRM 1648, Urban Particulate Matter (a particulate material certified for inorganic constituents), is also discussed although certified values are not presented. (orig.) With 6 figs., 4 tabs., 45 refs.

  4. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    Science.gov (United States)

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Behaviour of phenyl-urea type herbicides and related chemical residues in soil-plant systems

    International Nuclear Information System (INIS)

    Suess, A.; Eben, C.

    1975-01-01

    Uniformly 14 C-labelled aniline derivatives were used to indicate the degradation of phenyl-urea type herbicides. The results suggested cleavage of the benzene ring when present as a soil residue, cleavage apparently being reduced by increased chlorination of the ring. (author)

  6. Chlorinated Cyanurates: Method Interferences and Application Implications

    Science.gov (United States)

    Experiments were conducted to investigate method interferences, residual stability, regulated DBP formation, and a water chemistry model associated with the use of Dichlor & Trichlor in drinking water.

  7. Chlorine resistance patterns of bacteria from two drinking water distribution systems.

    OpenAIRE

    Ridgway, H F; Olson, B H

    1982-01-01

    The relative chlorine sensitivities of bacteria isolated from chlorinated and unchlorinated drinking water distribution systems were compared by two independent methods. One method measured the toxic effect of free chlorine on bacteria, whereas the other measured the effect of combined chlorine. Bacteria from the chlorinated system were more resistant to both the combined and free forms of chlorine than those from the unchlorinated system, suggesting that there may be selection for more chlor...

  8. Sonolysis of chlorinated compounds in aqueous solution.

    Science.gov (United States)

    Lim, Myung Hee; Kim, Seung Hyun; Kim, Young Uk; Khim, Jeehyeong

    2007-02-01

    To examine the reaction rates of sonochemical degradation of aqueous phase carbon tetrachloride, trichloroethylene and 1,2,3-trichloropropane at various temperatures, power intensities, and saturating gases, the batch tests were carried out. The degradations of chlorinated hydrocarbons were analyzed as pseudo first order reactions and their reaction rate constants were in the range of 10(-1)-10(-3)/min. The reaction was fast at the low temperature with higher power intensity. Also, the reaction went fast with the saturating gas with high specific heat ratio, high solubility and low thermal conductivity. The main mechanism of destruction of chemicals was believed the thermal combustion in the bubble.

  9. The Association between Nutritional Markers and Biochemical Parameters and Residual Renal Function in Peritoneal Dialysis Patients.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Residual renal function (RRF is an important prognostic factor for peritoneal dialysis patients as it influences the quality of life and mortality. This study was conducted to explore the potential factors correlated with RRF. A cross-sectional study was conducted by recruiting 155 patients with residual GFR more than 1mL/min per 1.73m2 at the initiation of peritoneal dialysis. We collected the demographic characteristics, nutritional markers and biochemical parameters of all participants, and analyzed the correlation between these variables and residual GFR as well. The odds ratio of RRF loss associated with each of the nutritional markers and biochemical parameters were estimated by logistic regression model. The residual GFR was negatively correlated with serum phosphate (ORQ3 = 2.67, 95%CI: 1.03-6.92; ORQ4 = 3.45, 95%CI: 1.35-9.04, magnesium (ORQ4 = 3.77, 95%CI: 1.48-3.63, and creatinine (ORQ3 = 2.93, 95%CI: 1.09-7.88; ORQ4 = 8.64 95%CI: 2.79-26.78, while positively associated with normalized protein catabolic rate (ORQ3 = 0.24, 95%CI: 0.09-0.65; ORQ4 = 0.11, 95%CI: 0.03-0.35, 24 hours urine volume(ORQ1 = 22.87, 95%CI: 2.76-189.24; ORQ3 = 0.08, 95%CI: 0.02-0.28 and serum chlorine concentrations (ORQ1 = 5.34, 95%CI: 1.94-14.68; ORQ4 = 0.28, 95%CI: 0.09-0.85, respectively. Our study suggested that the nutritional markers and biochemical parameters, though not all, but at least in part were closely correlated with RRF in peritoneal dialysis patients.

  10. The Effect of Exposure to Low Levels of Chlorine Gas on the Pulmonary Function and Symptoms in a Chloralkali Unit.

    Science.gov (United States)

    Neghab, Masoud; Amiri, Fatemeh; Soleimani, Esmaeel; Hosseini, Seyed Younus

    2016-01-01

    The present study was undertaken to ascertain whether (or not) long term occupational exposure to low (sub-TLV levels) atmospheric concentrations of chlorine gas was associated with any significant decrements in the parameters of pulmonary function and/or  increased prevalence of respiratory symptoms. In this retrospective cohort study that was performed in 2012, 54 workers of a local chloralkali unit and 38 non-exposed office staff were enrolled and compared. Atmospheric concentrations of chlorine gas were measured by numerous sampling with gas detector tubes. Data on respiratory symptoms were gathered using a standard questionnaire. Furthermore, spirometry test was performed for subjects both prior to and at the end of shift. Mean atmospheric concentration of chlorine gas was 0.27 ±0.05 ppm that was lower than the existing TLV value for this toxic irritant gas. Symptoms of respiratory diseases were significantly more frequent among exposed subjects than in referent individuals. Additionally, mean values of most parameters of pulmonary function including FEV1 (P=0.031), FEV1/FVC ratio (P=0.003) and PEF (P=0.005) were significantly lower than their corresponding values for unexposed subjects. Additional cross shift decrements were also noted in some lung functional capacities, although changes were not statistically significant. Exposure to sub-TLV levels of chlorine gas is associated with statistically significant decrements in the parameters of pulmonary function as well as increased prevalence of respiratory symptoms.

  11. High Pressure Experiments on Metal-Silicate Partitioning of Chlorine in a Magma Ocean: Implications for Terrestrial Chlorine Depletion

    Science.gov (United States)

    Kuwahara, Hideharu; Gotou, Hirotada; Shinmei, Toru; Ogawa, Nobuhiro; Yamaguchi, Asuka; Takahata, Naoto; Sano, Yuji; Yagi, Takehiko; Sugita, Seiji

    2017-11-01

    In the bulk silicate Earth, chlorine is more depleted than other elements with similar volatilities; however, the cause of terrestrial chlorine depletion is not well understood. Two major hypotheses have been proposed to explain this depletion: Incorporation into the Earth's metallic core and escape to space. The former hypothesis can be tested by investigating the partitioning of chlorine between iron-rich metallic liquids and silicate melts. In this study, we investigated the experimental partitioning of chlorine between iron-rich metallic liquids and silicate melts at pressures from 4 to 23 GPa and temperatures from 1,650 to 2,400°C using multi-anvil presses. The results demonstrate that chlorine is moderately to highly lithophile under the experimental conditions. In sulfur-free experiments, chlorine becomes slightly more siderophile as temperature increases and less siderophile as pressure increases. For sulfur-bearing experiments, no significant effects of pressure or temperature were observed. Based on these data and thermodynamic considerations, we obtained empirical laws to estimate chlorine partition coefficients between iron-rich metallic liquids and silicate melts. Under the P-T conditions that would have controlled metal-silicate equilibration during core segregation in the Earth, the calculated metal-silicate partition coefficients for chlorine are much lower than unity. This result suggests that terrestrial chlorine that may have been present in the accreting Earth was not partitioned into its core, supporting that escape to space is the more likely hypothesis. If terrestrial chlorine was lost to space, chlorine depletion may have resulted from the loss of the primordial hydrosphere during the formation of the Earth.

  12. Chlorine-containing natural