WorldWideScience

Sample records for residual chemical shift

  1. chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR

    International Nuclear Information System (INIS)

    Yao Xiaolan; Yamaguchi, Satoru; Hong Mei

    2002-01-01

    The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=-65.7 deg., ψ=-40 deg.), and the Val residue in GG*V (φ=-81.5 deg., ψ=-50.7 deg.). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα-Hα and Cα-N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ 11 axis is 116 deg. ± 5 deg. from the Cα-Hα bond while the σ 22 axis is 40 deg. ± 5 deg. from the Cα-N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ 33 axis is tilted by 115 deg. ± 5 deg. from the Cα-Hα bond and 98 deg. ± 5 deg. from the Cα-N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα-Hα bond is much smaller in α-helices than in β-sheets

  2. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Frank H.; Riepl, Hubert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Maurer, Till [Boehringer Ingelheim Pharma GmbH and Co. KG, Analytical Sciences Department (Germany); Gronwald, Wolfram [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Neidig, Klaus-Peter [Bruker BioSpin GmbH, Software Department (Germany); Kalbitzer, Hans Robert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)], E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de

    2007-12-15

    Protein-protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation {delta}{delta}{sub comb}. In this paper different procedures (published and non-published) to calculate {delta}{delta}{sub comb} are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.

  3. Chemical shift-dependent apparent scalar couplings: An alternative concept of chemical shift monitoring in multi-dimensional NMR experiments

    International Nuclear Information System (INIS)

    Kwiatkowski, Witek; Riek, Roland

    2003-01-01

    The paper presents an alternative technique for chemical shift monitoring in a multi-dimensional NMR experiment. The monitored chemical shift is coded in the line-shape of a cross-peak through an apparent residual scalar coupling active during an established evolution period or acquisition. The size of the apparent scalar coupling is manipulated with an off-resonance radio-frequency pulse in order to correlate the size of the coupling with the position of the additional chemical shift. The strength of this concept is that chemical shift information is added without an additional evolution period and accompanying polarization transfer periods. This concept was incorporated into the three-dimensional triple-resonance experiment HNCA, adding the information of 1 H α chemical shifts. The experiment is called HNCA coded HA, since the chemical shift of 1 H α is coded in the line-shape of the cross-peak along the 13 C α dimension

  4. Empirical correlation between protein backbone {sup 15}N and {sup 13}C secondary chemical shifts and its application to nitrogen chemical shift re-referencing

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liya [Cold Spring Harbor Laboratory (United States); Markley, John L. [University of Wisconsin, Biochemistry Department (United States)], E-mail: markley@nmrfam.wisc.edu

    2009-06-15

    The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting {sup 13}C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to {sup 15}N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary {sup 15}N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i - 1. Thus once alpha and beta {sup 13}C chemical shifts are available (their difference is referencing error-free), the {sup 15}N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have {delta}{sup 15}N values mis-referenced by over 0.7 ppm and over 25% of them have {delta}{sup 1}H{sup N} values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone {sup 15}N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself.

  5. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  6. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  7. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry (United States)

    2013-06-15

    We introduce a Python-based program that utilizes the large database of {sup 13}C and {sup 15}N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D {sup 13}C-{sup 13}C, {sup 15}N-{sup 13}C, or 3D {sup 15}N-{sup 13}C-{sup 13}C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D {sup 13}C-{sup 13}C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the C{alpha} and C{beta} chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-C{alpha}-C{beta} or N-C{alpha}-C{beta}), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  8. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  9. A probabilistic approach for validating protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Wang Bowei; Wang, Yunjun; Wishart, David S.

    2010-01-01

    It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3-6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called 'Probabilistic Approach for protein Nmr Assignment Validation (PANAV)' and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAVhttp://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.

  10. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...

  11. De novo protein structure generation from incomplete chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vernon, Robert; Baker, David [University of Washington, Department of Biochemistry and Howard Hughes Medical Institute (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-02-15

    NMR chemical shifts provide important local structural information for proteins. Consistent structure generation from NMR chemical shift data has recently become feasible for proteins with sizes of up to 130 residues, and such structures are of a quality comparable to those obtained with the standard NMR protocol. This study investigates the influence of the completeness of chemical shift assignments on structures generated from chemical shifts. The Chemical-Shift-Rosetta (CS-Rosetta) protocol was used for de novo protein structure generation with various degrees of completeness of the chemical shift assignment, simulated by omission of entries in the experimental chemical shift data previously used for the initial demonstration of the CS-Rosetta approach. In addition, a new CS-Rosetta protocol is described that improves robustness of the method for proteins with missing or erroneous NMR chemical shift input data. This strategy, which uses traditional Rosetta for pre-filtering of the fragment selection process, is demonstrated for two paramagnetic proteins and also for two proteins with solid-state NMR chemical shift assignments.

  12. Protein backbone angle restraints from searching a database for chemical shift and sequence homology

    Energy Technology Data Exchange (ETDEWEB)

    Cornilescu, Gabriel; Delaglio, Frank; Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    1999-03-15

    Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C{alpha}, 13C{beta}, 13C', 1H{alpha} and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar {phi} and {psi} backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 deg. Approximately 3% of the predictions made by TALOS are found to be in error.

  13. 13C NMR Chemical Shifts of the Triclinic and Monoclinic Crystal forms of Valinomycin

    International Nuclear Information System (INIS)

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M.; Grant, David M.

    2004-01-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state 13 C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, δ iso , for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, δ 22 . Additionally it was found that the smallest shift component, δ 33 , for the L-lactic acid (L-Lac) and D-α-hydroxyisovaleric acid (D-Hyi) C α -O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the δ 33 component that governs the behavior of δ iso in these alpha carbons

  14. Sequential nearest-neighbor effects on computed {sup 13}C{sup {alpha}} chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Serrano, Pedro; Wuethrich, Kurt [The Scripps Research Institute, Department of Molecular Biology (United States); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-09-15

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of {sup 13}C{sup {alpha}} chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue {alpha}/{beta} protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed {sup 13}C{sup {alpha}} chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical {sup 13}C{sup {alpha}} chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed {sup 13}C{sup {alpha}} chemical shifts, {Delta}{sub ca,i}, for the individual residues along the sequence. This indicates that the {Delta}{sub ca,i} -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  15. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database

    Energy Technology Data Exchange (ETDEWEB)

    Ginzinger, Simon W. [Center of Applied Molecular Engineering, University of Salzburg, Department of Molecular Biology, Division of Bioinformatics (Austria)], E-mail: simon@came.sbg.ac.at; Coles, Murray [Max-Planck-Institute for Developmental Biology, Department of Protein Evolution (Germany)], E-mail: Murray.Coles@tuebingen.mpg.de

    2009-03-15

    We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods.

  16. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database

    International Nuclear Information System (INIS)

    Ginzinger, Simon W.; Coles, Murray

    2009-01-01

    We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods

  17. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    and retinoid receptors (ACTR). We find that small differences in the methyl carbon chemical shifts due to the ¿-gauche effect may provide information about the side chain rotamer distributions. However, the effects of neighboring residues on the methyl group chemical shifts obscure the direct observation...... of ¿-gauche effect. To overcome this, we reference the chemical shifts to those in a more disordered state resulting in residue specific random coil chemical shifts. The (13)C secondary chemical shifts of the methyl groups of valine, leucine, and isoleucine show sequence specific effects, which allow...

  18. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C′ chemical shifts of multiple contiguous residues in highly resolved 3D spectra

    International Nuclear Information System (INIS)

    Yoshimura, Yuichi; Kulminskaya, Natalia V.; Mulder, Frans A. A.

    2015-01-01

    Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings between sequentially adjoining backbone carbonyl carbon nuclei, combined with semi-constant time chemical shift evolution, for resonance assignments of small folded and larger unfolded proteins. Extended sequential connectivity strongly lifts chemical shift degeneracy of the backbone nuclei in disordered proteins. We show here that 3D (H)N(COCO)NH and (HN)CO(CO)NH experiments with relaxation-optimized multiple pulse mixing correlate up to seven adjacent backbone amide nitrogen or carbonyl carbon nuclei, respectively, and connections across proline residues are also obtained straightforwardly. Multiple, recurrent long-range correlations with ultra-high resolution allow backbone 1 H N , 15 N H , and 13 C′ resonance assignments to be completed from a single pair of 3D experiments

  20. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    International Nuclear Information System (INIS)

    Schwarzinger, Stephan; Kroon, Gerard J.A.; Foss, Ted R.; Wright, Peter E.; Dyson, H. Jane

    2000-01-01

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  1. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2010-03-15

    We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and {sup 13}C{sup {beta}} chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-{sup 13}C{sup {gamma}}, Promega calculates the statistical probability that a Xaa-Pro peptide bond is cis. Besides its potential as a validation tool, Promega is particularly useful for studies of larger proteins where Pro-{sup 13}C{sup {gamma}} assignments can be challenging, and for on-going efforts to determine protein structures exclusively on the basis of backbone and {sup 13}C{sup {beta}} chemical shifts.

  2. Pressure-dependent {sup 13}C chemical shifts in proteins: origins and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilton, David J. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom); Kitahara, Ryo [Ritsumeikan University, College of Pharmaceutical Sciences (Japan); Akasaka, Kazuyuki [Kinki University, Department of Biotechnological Science, School of Biology-Oriented Science and Technology (Japan); Williamson, Mike P. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom)], E-mail: m.williamson@sheffield.ac.uk

    2009-05-15

    Pressure-dependent {sup 13}C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH{sub 3}, CH{sub 2} and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the {gamma}-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual {sup 13}C{alpha} shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas {sup 13}C{beta} shifts retain significant dependence on local compression, making them less useful as structural restraints.

  3. Chemical shift imaging: a review

    International Nuclear Information System (INIS)

    Brateman, L.

    1986-01-01

    Chemical shift is the phenomenon that is seen when an isotope possessing a nuclear magnetic dipole moment resonates at a spectrum of resonance frequencies in a given magnetic field. These resonance frequencies, or chemical shifts, depend on the chemical environments of particular nuclei. Mapping the spatial distribution of nuclei associated with a particular chemical shift (e.g., hydrogen nuclei associated with water molecules or with lipid groups) is called chemical shift imaging. Several techniques of proton chemical shift imaging that have been applied in vivo are presented, and their clinical findings are reported and summarized. Acquiring high-resolution spectra for large numbers of volume elements in two or three dimensions may be prohibitive because of time constraints, but other methods of imaging lipid of water distributions (i.e., selective excitation, selective saturation, or variations in conventional magnetic resonance imaging pulse sequences) can provide chemical shift information. These techniques require less time, but they lack spectral information. Since fat deposition seen by chemical shift imaging may not be demonstrated by conventional magnetic resonance imaging, certain applications of chemical shift imaging, such as in the determination of fatty liver disease, have greater diagnostic utility than conventional magnetic resonance imaging. Furthermore, edge artifacts caused by chemical shift effects can be eliminated by certain selective methods of data acquisition employed in chemical shift imaging

  4. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  5. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    International Nuclear Information System (INIS)

    Fritzsching, Keith J.; Hong, Mei; Schmidt-Rohr, Klaus

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ( 13 C– 13 C, 15 N– 13 C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13 C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13 C NMR data and almost all 15 N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13 C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a

  6. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue

  7. Chemical shift homology in proteins

    International Nuclear Information System (INIS)

    Potts, Barbara C.M.; Chazin, Walter J.

    1998-01-01

    The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C α protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins

  8. Assignment of protein backbone resonances using connectivity, torsion angles and 13Cα chemical shifts

    International Nuclear Information System (INIS)

    Morris, Laura C.; Valafar, Homayoun; Prestegard, James H.

    2004-01-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just 13 C α chemical shifts (δ( 13 C α )) and data restricting the φ and ψ backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in δ( 13 C α ), φ, and ψ space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and 13 C α chemical shift data are available

  9. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-08-15

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  10. Improving 3D structure prediction from chemical shift data

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  11. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2007-01-01

    Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in φ/ψ/χ 1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C' chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 A) structure is available. The relative importance of the weighting factors for the φ/ψ/χ 1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C', respectively, including outliers

  12. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  13. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  14. Cα and Cβ Carbon-13 Chemical Shifts in Proteins From an Empirical Database

    International Nuclear Information System (INIS)

    Iwadate, Mitsuo; Asakura, Tetsuo; Williamson, Michael P.

    1999-01-01

    We have constructed an extensive database of 13C Cα and Cβ chemical shifts in proteins of solution, for proteins of which a high-resolution crystal structure exists, and for which the crystal structure has been shown to be essentially identical to the solution structure. There is no systematic effect of temperature, reference compound, or pH on reported shifts, but there appear to be differences in reported shifts arising from referencing differences of up to 4.2 ppm. The major factor affecting chemical shifts is the backbone geometry, which causes differences of ca. 4 ppm between typical α- helix and β-sheet geometries for Cα, and of ca. 2 ppm for Cβ. The side-chain dihedral angle χ1 has an effect of up to 0.5 ppm on the Cα shift, particularly for amino acids with branched side-chains at Cβ. Hydrogen bonding to main-chain atoms has an effect of up to 0.9 ppm, which depends on the main- chain conformation. The sequence of the protein and ring-current shifts from aromatic rings have an insignificant effect (except for residues following proline). There are significant differences between different amino acid types in the backbone geometry dependence; the amino acids can be grouped together into five different groups with different φ,ψ shielding surfaces. The overall fit of individual residues to a single non-residue-specific surface, incorporating the effects of hydrogen bonding and χ1 angle, is 0.96 ppm for both Cα and Cβ. The results from this study are broadly similar to those from ab initio studies, but there are some differences which could merit further attention

  15. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  16. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  17. Database proton NMR chemical shifts for RNA signal assignment and validation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Shawn; Heng Xiao [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce@onemoonscientific.com [University of Maryland, Baltimore County, Department of Chemistry and Biochemistry (United States); Summers, Michael F., E-mail: summers@hhmi.umbc.edu [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States)

    2013-01-15

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4{sup 3} possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA {sup 1}H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  18. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2017-02-15

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H{sup δ21} and H{sup ε21}, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  19. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  20. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  1. The calculation of proton chemical shifts in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Raymond J [Liverpool Univ. (United Kingdom). Dept. of Chemistry

    1994-12-31

    Novel extension of the CHARGE3 semi-empirical calculation of the partial atomic charges in molecules are described which allow the accurate calculation of the proton chemical shifts of a variety of acyclic alkanes. This simple scheme predicts the proton chemical shifts of all the simple alkanes, cyclohexane and methyl cyclohexanes, norbornane, trans-decalin and trans perhydrophenanthrene, comprising a range of chemical shifts from 0.3 to 2.2 {delta} with the known substituent chemical shifts of other functional groups this could allow the general prediction of proton chemical shifts in a simple and useful format. (author) 13 refs., 2 figs.

  2. Validation of archived chemical shifts through atomic coordinates

    Science.gov (United States)

    Rieping, Wolfgang; Vranken, Wim F

    2010-01-01

    The public archives containing protein information in the form of NMR chemical shift data at the BioMagResBank (BMRB) and of 3D structure coordinates at the Protein Data Bank are continuously expanding. The quality of the data contained in these archives, however, varies. The main issue for chemical shift values is that they are determined relative to a reference frequency. When this reference frequency is set incorrectly, all related chemical shift values are systematically offset. Such wrongly referenced chemical shift values, as well as other problems such as chemical shift values that are assigned to the wrong atom, are not easily distinguished from correct values and effectively reduce the usefulness of the archive. We describe a new method to correct and validate protein chemical shift values in relation to their 3D structure coordinates. This method classifies atoms using two parameters: the per-atom solvent accessible surface area (as calculated from the coordinates) and the secondary structure of the parent amino acid. Through the use of Gaussian statistics based on a large database of 3220 BMRB entries, we obtain per-entry chemical shift corrections as well as Z scores for the individual chemical shift values. In addition, information on the error of the correction value itself is available, and the method can retain only dependable correction values. We provide an online resource with chemical shift, atom exposure, and secondary structure information for all relevant BMRB entries (http://www.ebi.ac.uk/pdbe/nmr/vasco) and hope this data will aid the development of new chemical shift-based methods in NMR. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20602353

  3. Empirical isotropic chemical shift surfaces

    International Nuclear Information System (INIS)

    Czinki, Eszter; Csaszar, Attila G.

    2007-01-01

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For-(l-Ala) n -NH 2 , with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the 13C α ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (α D ), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical 13C α - 1 H α ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins

  4. MR chemical shift imaging of human atheroma

    International Nuclear Information System (INIS)

    Mohiaddin, R.H.; Underwood, R.; Firmin, D.; Abdulla, A.K.; Rees, S.; Longmore, D.

    1988-01-01

    The lipid content of atheromatous plaques has been measured with chemical shift MR imaging by taking advantage of the different resonance frequencies of protons in lipid and water. Fifteen postmortem aortic specimens of the human descending aorta and the aortae of seven patients with documented peripheral vascular disease were studied at 0.5 T. Spin-echo images were used to localize the lesions before acquisition of the chemical shift images. The specimens were examined histologically, and the lipid distribution in the plaque showed good correlation with the chemical shift data. Validation in vivo and clinical applications remain to be established

  5. Probabilistic validation of protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel; Ulrich, Eldon L.; Markley, John L.

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  6. Probabilistic validation of protein NMR chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  7. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  8. Rapid and reliable protein structure determination via chemical shift threading.

    Science.gov (United States)

    Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S

    2018-01-01

    Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .

  9. What can we learn by computing 13Cα chemical shifts for X-ray protein models?

    International Nuclear Information System (INIS)

    Arnautova, Yelena A.; Vila, Jorge A.; Martin, Osvaldo A.; Scheraga, Harold A.

    2009-01-01

    The room-temperature X-ray structures of two proteins, solved at 1.8 and 1.9 Å resolution, are used to investigate whether a set of conformations, rather than a single X-ray structure, provides better agreement with both the X-ray data and the observed 13 C α chemical shifts in solution. The room-temperature X-ray structures of ubiquitin and of the RNA-binding domain of nonstructural protein 1 of influenza A virus solved at 1.8 and 1.9 Å resolution, respectively, were used to investigate whether a set of conformations rather than a single X-ray structure provides better agreement with both the X-ray data and the observed 13 C α chemical shifts in solution. For this purpose, a set of new conformations for each of these proteins was generated by fitting them to the experimental X-ray data deposited in the PDB. For each of the generated structures, which show R and R free factors similar to those of the deposited X-ray structure, the 13 C α chemical shifts of all residues in the sequence were computed at the DFT level of theory. The sets of conformations were then evaluated by their ability to reproduce the observed 13 C α chemical shifts by using the conformational average root-mean-square-deviation (ca-r.m.s.d.). For ubiquitin, the computed set of conformations is a better representation of the observed 13 C α chemical shifts in terms of the ca-r.m.s.d. than a single X-ray-derived structure. However, for the RNA-binding domain of nonstructural protein 1 of influenza A virus, consideration of an ensemble of conformations does not improve the agreement with the observed 13 C α chemical shifts. Whether an ensemble of conformations rather than any single structure is a more accurate representation of a protein structure in the crystal as well as of the observed 13 C α chemical shifts is determined by the dispersion of coordinates, in terms of the all-atom r.m.s.d. among the generated models; these generated models satisfy the experimental X-ray data with

  10. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    Science.gov (United States)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  11. Peptides containing internal residues of pyroglutamic acid: proton NMR characteristics

    International Nuclear Information System (INIS)

    Khan, S.A.

    1986-01-01

    The proton NMR characteristics of internal pyroglutamic acid (Glp; 5-oxoproline) residues in seven tripeptides of the general structure Boc-Xxx-Glp-Yyy-NH 2 were studied. In general, the chemical shifts of several diagnostic protons moved downfield on going from the Glu-containing peptides (Boc-Xxx-Glu-Yyy-NH 2 ) to the corresponding Glp-containing peptides. The C-2 proton of the Xxx residue was shifted by about 1.1 ppm. The N-2 proton of the Yyy residue was shifted by about 0.5 ppm. The C-2 proton of the Glx residue itself was shifted by about 0.5 ppm. One of the Glx C-3 protons was also shifted by about 0.5 ppm, but the other remained essentially unchanged. Finally, the Glx C-4 protons were shifted by about 0.3 ppm. Internal Glu residues are readily converted chemically into internal Glp residues. This conversion also occurs as a side reaction during HP cleavage of the protecting group from Glu(OBzl) residues. The spontaneous fragmentation of serum proteins C3, C4 and λ 2 -macroglobulin under denaturing conditions is probably due to regioselective hydrolysis of an internal Glp residue formed in each of these proteins upon denaturation. These proton NMR characteristics may be useful in establishing the presence of internal Glp residues in synthetic and natural peptides

  12. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  13. Solid-state NMR chemical-shift perturbations indicate domain reorientation of the DnaG primase in the primosome of Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Gardiennet, Carole [Université de Lorraine, CNRS, CRM2, UMR 7036 (France); Wiegand, Thomas [ETH Zurich, Physical Chemistry (Switzerland); Bazin, Alexandre [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Cadalbert, Riccardo [ETH Zurich, Physical Chemistry (Switzerland); Kunert, Britta; Lacabanne, Denis [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Gutsche, Irina [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), CNRS, IBS, CEA, IBS (France); Terradot, Laurent, E-mail: l.terradot@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France)

    2016-03-15

    We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.

  14. Chemical activation of gasification carbon residue for phosphate removal

    Science.gov (United States)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  15. Identifying inter-residue resonances in crowded 2D {sup 13}C-{sup 13}C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yimin; Cross, Timothy A. [Florida State University, Department of Chemistry and Biochemistry (United States); Fu Riqiang, E-mail: rfu@magnet.fsu.edu [National High Magnet Field Lab (United States)

    2013-07-15

    The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional {sup 13}C-{sup 13}C chemical shift correlation spectra is presented. With the analyses of {sup 13}C-{sup 13}C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly {sup 13}C labeled protein that are consistent with the high resolution structure of the M2 (22-62) protein (Sharma et al., Science 330(6003):509-512, 2010)

  16. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Science.gov (United States)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  17. Drug and chemical residues in domestic animals.

    Science.gov (United States)

    Mussman, H C

    1975-02-01

    Given the large number of chemical substances that may find their way into the food supply, a system is needed to monitor their presence. The U. S. Department of Agriculture's Meat and Poultry Inspection Program routinely tests for chemical residues in animals coming to slaughter. Pesticides, heavy metals, growth promotants (hormones and hormonelike agents), and antibiotics are included. Samples are taken statistically so that inferences as to national incidence of residues can be drawn. When a problem is identified, a more selective sampling is designed to help follow up on the initial regulatory action. In testing for pesticides, only DDT and dieldrin are found with any frequency and their levels are decreasing; violative residues of any chlorinated hydrocarbon are generally a result of an industrial accident rather than agricultural usage. Analyses for heavy metals have revealed detectable levels of mercury, lead, and others, but none at levels that are considered a health hazard. Of the hormone or hormonelike substances, only diethylstilbestrol has been a residue problem and its future is uncertain. The most extensive monitoring for veterinary drugs is on the antimicrobials, including sulfonamides, streptomycin, and the tetracycline group of antibiotics that constitute the bulk of the violations; their simultaneous use prophylactically and therapeutically has contributed to the problem in certain cases. A strong, well-designed user education program on proper application of pesticides, chemicals, and veterinary drugs appears to be one method of reducing the incidence of unwanted residues.

  18. Role of quantitative chemical shift magnetic resonance imaging and chemical shift subtraction technique in discriminating adenomatous from non adenomatous adrenal solid lesions

    Directory of Open Access Journals (Sweden)

    Ahmed H. Afifi

    2017-03-01

    Conclusion: The signal intensity index and adrenal to spleen ratio are the most reliable quantitative chemical shift MRI methods in differentiation of adrenal adenomas from other non-adenomatous adrenal solid lesions. Chemical shift subtraction MRI is a recent technique that gives highly confident discrimination between two categories of pathology without using of any reference organ.

  19. PPM-One: a static protein structure based chemical shift predictor

    International Nuclear Information System (INIS)

    Li, Dawei; Brüschweiler, Rafael

    2015-01-01

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  20. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  1. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.

    Science.gov (United States)

    Sanz-Hernández, Máximo; De Simone, Alfonso

    2017-11-01

    The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.

  2. Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Lundstroem, Patrik; Lin Hong; Kay, Lewis E.

    2009-01-01

    A labeling scheme is introduced that facilitates the measurement of accurate 13 C β chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13 C enrichment (30-40%) at C β side-chain carbon positions for 15 of the amino acids with little 13 C label at positions one bond removed (∼5%). A pair of samples are produced using [1- 13 C]-glucose/NaH 12 CO 3 or [2- 13 C]-glucose as carbon sources with isolated and enriched (>30%) 13 C β positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13 C β chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples

  3. Measurement of edge residual stresses in glass by the phase-shifting method

    Science.gov (United States)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  4. Chemical Shift Imaging (CSI) by precise object displacement

    OpenAIRE

    Leclerc, Sebastien; Trausch, Gregory; Cordier, Benoit; Grandclaude, Denis; Retournard, Alain; Fraissard, Jacques; Canet, Daniel

    2006-01-01

    International audience; A mechanical device (NMR lift) has been built for displacing vertically an object (typically a NMR sample tube) inside the NMR probe with an accuracy of 1 Μm. A series of single pulse experiments are performed for incremented vertical positions of the sample. With a sufficiently spatially selective rf field, one obtains chemical shift information along the displacement direction (one dimensional Chemical Shift Imaging – CSI). Knowing the vertical radio-frequency (rf) f...

  5. Chemical shifts of oxygen-17 NMR in polyoxotungstates

    International Nuclear Information System (INIS)

    Kazanskij, L.P.; Fedotov, M.A.; Spitsyn, V.I.

    1977-01-01

    17 O NMR spectra of aqueous solutions containing paratungstate BH 2 W 12 O 42 10- and metatungstate H 2 W 12 O 40 6- anions have been measured. On the basis of the obtained data a scale of chemical shifts for oxygen atoms connected by various bonds with tungsten atoms is suggested. The obtained data are compared with the Raman spectra of crystalline salts and their aqueous solutions. Chemical shifts of 17 O NMR spectra have been also measured in other heteropolyanions

  6. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  7. Nucleic acid helix structure determination from NMR proton chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Werf, Ramon M. van der; Tessari, Marco; Wijmenga, Sybren S., E-mail: S.Wijmenga@science.ru.nl [Radboud University Nijmegen, Department of Biophysical Chemistry, Institute of Molecules and Materials (Netherlands)

    2013-06-15

    We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

  8. Residual stress measurement method in MEMS microbeams using frequency shift data

    International Nuclear Information System (INIS)

    Somà, Aurelio; Ballestra, Alberto

    2009-01-01

    The dynamical behaviour of a set of gold microbeams affected by residual stress has been studied. Experimental frequency shift curves were obtained by increasing the dc voltage applied to the specimens. Comparison with different analytical and numerical models has been carried out in order to identify both analytical and finite element models in the presence of residual stress. Residual strain and stress, due to the fabrication process, have been widely reported in the literature in both out-of-plane microcantilevers and clamped–clamped microbeams by using mainly the value of pull-in voltage and static deflection data. In the case of a microcantilever, an accurate modelling includes the effect of the initial curvature due to microfabrication. In double-clamped microbeams, a pre-load applied by tensile stress is considered. A good correspondence is pointed out between measurements and numerical models so that the residual stress effect can be evaluated for different geometrical configurations

  9. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  10. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  11. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  12. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun; Liu Haiyan [University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Structural Biology, School of Life Sciences (China)], E-mail: hyliu@ustc.edu.cn

    2007-01-15

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the {alpha} and {beta} regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  13. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  14. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    International Nuclear Information System (INIS)

    Harris, R.K.; Menezes, S.M. Cabral de; Granger, P.; Hoffman, R.E.; Zilm, K.W.

    2008-01-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1 H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13 C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  15. The direct measurement of the heteronuclear chemical shifts relative to tetramethylsilane

    International Nuclear Information System (INIS)

    Moritz, A.G.

    1988-12-01

    The measurement of heteronuclear chemical shifts using absolute frequencies of the heteronucleus and the 1 H resonance of tetramethylsilane has been examined. This method avoids the problems associated with external standards and gives results which can be obtained quickly and with high precision. The method has a number of advantages in the accurate measurement of chemical shifts, as for example 31 P in chemical warfare agents and related chemicals and allows multinuclear data to be obtained without dynamic range or potential interference problems. 15 refs., 4 tabs

  16. Laboratory studies of the properties of in-situ burn residues: chemical composition of residues

    International Nuclear Information System (INIS)

    Trudel, B.K.; Buist, I.A.; Schatzke, D.; Aurand, D.

    1996-01-01

    The chemical composition of the residue from small-scale burns of thick oil slicks was studied. The objective was to describe the changes in chemical composition in oils burning on water and to determine how these changes were influenced by the condition of the burn. Small-scale test burns involved burning 40-cm diameter pools of oil on water. A range of eight oil types including seven crude oils and an automotive diesel were burned. For each oil, slicks of fresh oil of three different thicknesses were tested. Two of the oils were tested before and after weathering. Results showed that the composition of the residue differed greatly from the parent oil. Asphaltenes, high-boiling-point aromatics and resins remained concentrated in the burn residue. The burning of slicks appeared to remove most of the lower-molecular weight aromatic hydrocarbons which included the more toxic and more bioavailable components of the crude oils. 11 refs., 6 tabs

  17. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  18. Temperature dependence of 1H NMR chemical shifts and its influence on estimated metabolite concentrations.

    Science.gov (United States)

    Wermter, Felizitas C; Mitschke, Nico; Bock, Christian; Dreher, Wolfgang

    2017-12-01

    Temperature dependent chemical shifts of important brain metabolites measured by localised 1 H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations. Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C. Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10 -4  ppm/K. For 32-40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1-10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected. If 1 H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

  19. Theoretical Study of the NMR Chemical Shift of Xe in Supercritical Condition

    DEFF Research Database (Denmark)

    Lacerda Junior, Evanildo Gomes; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin

    2018-01-01

    In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129Xe chemical shift depends under these conditions...... on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xen...... this approach we obtain very good agreement with the experimental data, showing that the chemical shift of 129Xe in supercritical conditions is very well described by cluster calculations at the HF level, with small contributions from relativistic and electron correlation effects....

  20. 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software

    Science.gov (United States)

    Azizi, S. N.; Rostami, A. A.; Godarzian, A.

    2005-05-01

    Hartree-Fock self-consistent-field (HF-SCF) theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts for ABOUT 90 units of 19 compounds of various silicate species of precursors for zeolites. Calculations have been performed at geometries optimized at the AM1 semi-empirical method. The GIAO-HF-SCF calculations were carried out with using three different basis sets: 6-31G*, 6-31+G** and 6-311+G(2d,p). To demonstrate the quality of the calculations the calculated chemical shifts, δ, were compared with the corresponding experimental values for the compounds in study. The results, especially with 6-31+g** are in excellent agreement with experimental values. The calculated chemical shifts, in practical point of view, appear to be accurate enough to aid in experimental peak assignments. The difference between the experimental and calculated 29Si chemical shift values not only depends on the Qn units but also it seems that basis set effects and the level of theory is more important. For the series of molecules studied here, the standard deviations and mean absolute errors for 29Si chemical shifts relative to TMS determined using Hartree--Fock 6-31+G** basis is nearly in all cases smaller than the errors for shifts determined using HF/6-311+G(2d,p).

  1. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-01-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), 1 H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1 H– 1 H homonuclear dipolar couplings and narrow 1 H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1 H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1 H– 1 H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  2. Resolution of NMR chemical shift images into real and imaginary components

    International Nuclear Information System (INIS)

    Yamamoto, E.; Kohno, H.

    1986-01-01

    Fast chemical shift imaging of two-line materials is described using a modified spin-echo sequence. The method resolves the two chemical shift images into real and imaginary components representing the reconstructed image. The measuring time is reduced to half of that for the conventional method proposed by Dixon et al, and quantitative evaluation of the images becomes possible. Reference material with a single resonant line is used to eliminate the phase error caused by static field inhomogeneity and the inherent apparatus offset phase. Experiments are conducted using acetone and benzene with a medium-bore superconductive magnet operating at 0.5T. From these experiments, two chemical shift images are obtained. These images are then superimposed to produce a conventional density image. (author)

  3. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    International Nuclear Information System (INIS)

    Cromsigt, Jenny A.M.T.C.; Hilbers, Cees W.; Wijmenga, Sybren S.

    2001-01-01

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1 H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1 H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  4. A procedure to validate and correct the {sup 13}C chemical shift calibration of RNA datasets

    Energy Technology Data Exchange (ETDEWEB)

    Aeschbacher, Thomas; Schubert, Mario, E-mail: schubert@mol.biol.ethz.ch; Allain, Frederic H.-T., E-mail: allain@mol.biol.ethz.ch [ETH Zuerich, Institute for Molecular Biology and Biophysics (Switzerland)

    2012-02-15

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of {sup 13}C NMR data of RNAs. Our procedure uses five {sup 13}C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the {sup 13}C calibration and detect errors or inconsistencies in RNA {sup 13}C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure-{sup 13}C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable {sup 13}C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure-chemical shift relationships with this improved list of {sup 13}C chemical shift data. This is demonstrated by a clear relationship between ribose {sup 13}C shifts and the sugar pucker, which can be used to predict a C2 Prime - or C3 Prime -endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  5. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    Science.gov (United States)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  6. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  7. Relation between chemical shift artifact and infiltration on MR imaging of renal cell carcinoma

    International Nuclear Information System (INIS)

    Yoshigoe, Fukuo; Makino, Hideki; Yanada, Syuichi; Ohishi, Yukihiko; Mashima, Yasuoki; Yamada, Hideo.

    1994-01-01

    Retrospective study on the relation between existence of the interruption and disturbance of chemical shift artifact and tumor infiltration at the periphery of the kidney on MR imaging was evaluated in 28 cases with renal cell carcinoma. Judgement was possible in 9 out of the 11 cases with pathological stage below pT2 and 14 cases out of 17 pT3 cases. Judgement was impracticable in 5 cases because the peripheral fat tissue of the kidney was too less to observe chemical shift artifact and the tumor was spreading at the side opposite to the chemical shift artifact. Chemical shift artifact on MRI in this study correlated well with renal tumor infiltration. (author)

  8. /sup 1/H-NMR chemical shift imaging suitable for low field systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Etsuji; Onodera, Takashi; Shiono, Hidemi; Kohno, Hideki

    1986-12-01

    An echo-time encoding proton NMR chemical shift imaging proposed by Dixon is extended to be applicable to low filed systems. The method utilizes the small phase angle between magnetic vectors of water and lipid protons to decrease the signal decays with spin-spin relaxation. The inevitable phase error caused by the static field inhomogeneity is corrected by using phase images of phantom measured under the same conditions as the actual measurements. The experiments were carried out using CuSO/sub 4/ doped water and vegetable oil at 0.5 T. Two chemical shift images could be clearly resolved with only one scan when the field inhomogeneity was larger than the chemical shift difference.

  9. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.

    Science.gov (United States)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele

    2014-09-23

    Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.

  10. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....

  11. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  12. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  13. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    International Nuclear Information System (INIS)

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-01-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  14. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega...

  15. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  16. Instructive of chemical residues waste administration

    International Nuclear Information System (INIS)

    Alfaro Vargas, Ariel

    2014-01-01

    An instructive is established for the waste management system of chemical residues generated at the Universidad de Costa Rica, ensuring the collection, separation, transportation, reuse, recycling and final disposal. The laboratory waste management system is conditioned to the volume and type of waste generated. The respective procedures are listed in data sheets according to the corresponding model: avoid, reduce, recycle, treat, delete. The materials are identified as: expired products, materials or damaged products, substances that have lost some of the required characteristics, waste from the regular activities of the lab, unused products that now no longer used because they are considered inadequate. The chemicals reagents or hazardous are transformed into small amounts of derivatives safe products, or less hazardous, to allow for removal or to pick up a spill of these without problem [es

  17. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Directory of Open Access Journals (Sweden)

    Feng YongE

    Full Text Available Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  18. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    Directory of Open Access Journals (Sweden)

    Robert Kalescky

    2016-04-01

    Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  19. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  20. Identification of helix capping and β-turn motifs from NMR chemical shifts

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13 C β chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  1. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts

    International Nuclear Information System (INIS)

    Swain, Monalisa; Atreya, Hanudatta S.

    2009-01-01

    Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1 H α and 13 C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment

  2. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  3. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  4. Spectral fitting for signal assignment and structural analysis of uniformly {sup 13}C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, Yoh; Akutsu, Hideo; Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan)], E-mail: tfjwr@protein.osaka-u.ac.jp

    2007-08-15

    We describe an approach for the signal assignment and structural analysis with a suite of two-dimensional {sup 13}C-{sup 13}C magic-angle-spinning solid-state NMR spectra of uniformly {sup 13}C-labeled peptides and proteins. We directly fit the calculated spectra to experimental ones by simulated annealing in restrained molecular dynamics program CNS as a function of atomic coordinates. The spectra are calculated from the conformation dependent chemical shift obtained with SHIFTX and the cross-peak intensities computed for recoupled dipolar interactions. This method was applied to a membrane-bound 14-residue peptide, mastoparan-X. The obtained C', C{sup {alpha}} and C{sup {beta}} chemical shifts agreed with those reported previously at the precisions of 0.2, 0.7 and 0.4 ppm, respectively. This spectral fitting program also provides backbone dihedral angles with a precision of about 50 deg. from the spectra even with resonance overlaps. The restraints on the angles were improved by applying protein database program TALOS to the obtained chemical shifts. The peptide structure provided by these restraints was consistent with the reported structure at the backbone RMSD of about 1 A.

  5. Construction of a risk assessment system for chemical residues in agricultural products.

    Science.gov (United States)

    Choi, Shinai; Hong, Jiyeon; Lee, Dayeon; Paik, Minkyoung

    2014-01-01

    Continuous monitoring of chemical residues in agricultural and food products has been performed by various government bodies in South Korea. These bodies have made attempts to systematically manage this information by creating a monitoring database system as well as a system based on these data with which to assess the health risk of chemical residues in agricultural products. Meanwhile, a database system is being constructed consisting of information about monitoring and, following this, a demand for convenience has led to the need for an evaluation tool to be constructed with the data processing system. Also, in order to create a systematic and effective tool for the risk assessment of chemical residues in foods and agricultural products, various evaluation models are being developed, both domestically and abroad. Overseas, systems such as Dietary Exposure Evaluation Model: Food Commodity Intake Database and Cumulative and Aggregate Risk Evaluation System are being used; these use the US Environmental Protection Agency as a focus, while the EU has developed Pesticide Residue Intake Model for assessments of pesticide exposure through food intake. Following this, the National Academy of Agricultural Science (NAAS) created the Agricultural Products Risk Assessment System (APRAS) which supports the use and storage of monitoring information and risk assessments. APRAS efficiently manages the monitoring data produced by NAAS and creates an extraction feature included in the database system. Also, the database system in APRAS consists of a monitoring database system held by the NAAS and food consumption database system. Food consumption data is based on Korea National Health and Nutrition Examination Survey. This system is aimed at exposure and risk assessments for chemical residues in agricultural products with regards to different exposure scenarios.

  6. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC')

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Alexandre M.J.J.; Houben, Klaartje; Guenneugues, Marc; Kaptein, Robert; Boelens, Rolf [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)

    2001-11-15

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small {alpha}/{beta} protein chymotrypsin inhibitor 2. Dihedral angle restraints for the {phi} and {psi} angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond {sup 3hb}J{sub NC'} coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 A backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.

  7. DFT/GIAO calculations of the relative contributions of hyperconjugation to the chemical shifts of ethanol

    International Nuclear Information System (INIS)

    Carneiro, J. Walkimar de M.; Dias, Jacques F.; Seidl, Peter R.; Tostes, J. Glauco R.

    2002-01-01

    Our previous DFT/GIAO calculations on different types of alcohols reveal that the rotation of the hydroxyl group can affect the chemical shift of carbons and hydrogens close to the substituent in different ways. Besides the steric and electrostatic effects that have been widely studied, hyperconjugation with the lone pairs on oxygen of the hydroxyl group leads to changes in bond lengths and angles as well as to different charge distributions. As all three of these factors also affect chemical shifts, we undertook a systematic investigation of their relative contributions to the chemical shifts of ethanol, a molecule in which there is minimum interference among these factors. Calculations by the B3LYP method at the 6-31G(d) level for ethanol conformers corresponding to a rotation around the carbon-oxygen bond at 30 dec increments are used to show how relative contributions vary with the dihedral angle formed between the carbon-carbon and oxygen-hydrogen bonds (C-C-O-H). Largest contributions to carbon chemical shifts can be attributed to changes in bond lengths while for hydrogen chemical shifts also contribute significantly differences in charge distribution. (author)

  8. Anisotropy of the fluorine chemical shift tensor in UF6

    International Nuclear Information System (INIS)

    Rigny, P.

    1965-04-01

    An 19 F magnetic resonance study of polycrystalline UF 6 is presented. The low temperature complex line can be analyzed as the superposition of two distinct lines, which is attributed to a distortion of the UF 6 octahedron in the solid. The shape of the two components is studied. Their width is much larger than the theoretical dipolar width, and must be explained by large anisotropies of the fluorine chemical shift tensors. The resulting shape functions of the powder spectra are determined. The values of the parameters of the chemical shift tensors yield estimates of the characters of the U-F bonds, and this gives some information on the ground state electronic wave function of the UF 6 molecule in the solid. (author) [fr

  9. Determination of the positions and residues of the. delta. /sup + +/ and. delta. /sup 0/ poles. [Phase shifts,coulomb corrections

    Energy Technology Data Exchange (ETDEWEB)

    Vasan, S S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1976-04-19

    The poles and the associated residues in the ..pi..N P/sub 33/ amplitude corresponding to the resonances ..delta../sup + +/ and ..delta../sup 0/ are determined by fitting the ..pi../sup +/p and ..pi../sup -/p hadronic phase shifts from the Carter 73 analysis. The ..delta../sup + +/ and ..delta../sup 0/ pole positions are determined also from the nuclear phase shifts, these being the phase shifts made up of the hadronic phase shifts plus the Coulomb corrections. The pole positions obtained from the two sets of phase shifts are different, the differences being larger in the case of the ..delta../sup + +/.

  10. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  11. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2010-01-01

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13 C β chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13 C β atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ 15 N, δ 13 C', δ 13 C α , δ 13 C β , δ 1 H α and δ 1 H N , respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  12. Cyclohexanecarbonitriles: Assigning Configurations at Quaternary Centers From 13C NMR CN Chemical Shifts.1

    Science.gov (United States)

    Wei, Guoqing

    2009-01-01

    13C NMR chemical shifts of the nitrile carbon in cyclohexanecarbonitriles directly correlate with the configuration of the quaternary, nitrile-bearing stereocenter. Comparing 13C NMR chemical shifts for over 200 cyclohexanecarbonitriles reveals that equatorially oriented nitriles resonate 3.3 ppm downfield, on average, from their axial counterparts. Pairs of axial/equatorial diastereomers varying only at the nitrile-bearing carbon consistently exhibit downfield shifts of δ 0.4–7.2 for the equatorial nitrile carbon, even in angularly substituted decalins and hydrindanes. PMID:19348434

  13. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). Copyright © 2014 John Wiley & Sons, Ltd.

  14. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    Science.gov (United States)

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society

  15. Isotope effects on chemical shifts in tautomeric systems with double proton transfer. Citronin

    International Nuclear Information System (INIS)

    Hansen, P.E.; Langgard, M.; Bolvig, S.

    1998-01-01

    Primary and secondary deuterium isotope effects on 1 H and 13 C chemical shifts are measured in citrinin, a tautomeric compound with an unusual doubly intramolecularly hydrogen bonded structure. The isotope effects are to a large extent dominated by equilibrium contributions and deuteration leads to more of the deuterated enol forms rather than the deuterated acid form. 1 H 13 C and 17 O nuclear shieldings are calculated using density functional ab initio methods. A very good correlation between calculated nuclear shieldings and experimental 1 H and 13 C chemical shifts is obtained. The tautomeric equilibrium can be analyzed based on the isotope effects on B-6 and C-8 carbons and shows an increase in the o-quinone form on lowering the temperature. Furthermore, upon deuteration the largest equilibrium shift is found for deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration is increasing at lower temperature. (author)

  16. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2010-09-15

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and {sup 13}C{sup {beta}} chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and {sup 13}C{sup {beta}} atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for {delta}{sup 15}N, {delta}{sup 13}C', {delta}{sup 13}C{sup {alpha}}, {delta}{sup 13}C{sup {beta}}, {delta}{sup 1}H{sup {alpha}} and {delta}{sup 1}H{sup N}, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  17. Advancing environmental toxicology through chemical dosimetry: External exposures versus tissue residues

    Science.gov (United States)

    McCarty, L.S.; Landrum, P.F.; Luoma, S.N.; Meador, J.P.; Merten, A.A.; Shephard, B.K.; van Wezelzz, A.P.

    2011-01-01

    The tissue residue dose concept has been used, although in a limited manner, in environmental toxicology for more than 100 y. This review outlines the history of this approach and the technical background for organic chemicals and metals. Although the toxicity of both can be explained in tissue residue terms, the relationship between external exposure concentration, body and/or tissues dose surrogates, and the effective internal dose at the sites of toxic action tends to be more complex for metals. Various issues and current limitations related to research and regulatory applications are also examined. It is clear that the tissue residue approach (TRA) should be an integral component in future efforts to enhance the generation, understanding, and utility of toxicity testing data, both in the laboratory and in the field. To accomplish these goals, several key areas need to be addressed: 1) development of a risk-based interpretive framework linking toxicology and ecology at multiple levels of biological organization and incorporating organism-based dose metrics; 2) a broadly applicable, generally accepted classification scheme for modes/mechanisms of toxic action with explicit consideration of residue information to improve both single chemical and mixture toxicity data interpretation and regulatory risk assessment; 3) toxicity testing protocols updated to ensure collection of adequate residue information, along with toxicokinetics and toxicodynamics information, based on explicitly defined toxicological models accompanied by toxicological model validation; 4) continued development of residueeffect databases is needed ensure their ongoing utility; and 5) regulatory guidance incorporating residue-based testing and interpretation approaches, essential in various jurisdictions. ??:2010 SETAC.

  18. Conformational analysis of the chemical shifts for molecules containing diastereotopic methylene protons

    Science.gov (United States)

    Borowski, Piotr

    2012-01-01

    Quantum chemistry SCF/GIAO calculations were carried out on a set of compounds containing diastereotopic protons. Five molecules, including recently synthesized 1,3-di(2,3-epoxypropoxy)benzene, containing the chiral or pro-chiral center and the neighboring methylene group, were chosen. The rotational averages (i.e. normalized averages with respect to the rotation about the torsional angle τ with the exponential energy weight at temperature T) calculated individually for each of the methylene protons in 1,3-di(2,3-epoxypropoxy)benzene differ by ca. 0.6 ppm, which is significantly less than the value calculated for the lowest energy conformer. This value turned out to be low enough to guarantee the proper ordering of theoretical chemical shifts, supporting the interpretation of the 1H NMR spectrum of this important compound. The rotational averages of chemical shifts for methylene protons for a given type of conformer are shown to be essentially equal to the Boltzmann averages (here, the population-weighted averages for the individual conformers representing minima on the E( τ) cross-section). The calculated Boltzmann averages in the representative conformational space may exhibit completely different ordering as compared to the chemical shifts calculated for the lowest-energy conformer. This is especially true in the case of molecules, for which no significant steric effects are present. In this case, only Boltzmann averages account for the experimental pattern of proton signals. In addition, better overall agreement with experiment (lower value of the root-mean-square deviation between calculated and measured chemical shifts) is typically obtained when Boltzmann averages are used.

  19. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  20. Chemical structure investigation on SFEF fractions of Dagang vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Yan, G.; Zhao, S.; Guo, S. [China Univ. of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing; Zhang, Z. [Beijing Aeronautical Technology Research Center, Beijing (China)

    2006-07-01

    One of the most important problems in petroleum chemistry is the molecular structure and composition of heavy oil fractions and its importance in applications pertaining to the recovery, refining, and upgrading of petroleum. This paper presented an investigation into the chemical structure on supercritical fluid extraction and fraction (SFEF) factions of Dagang vacuum residue. Dagang vacuum residue was cut into sixteen fractions and a tailing with SFEF instrument. Then, using a chromatography, all SFEF fractions were further separated into four group compositions, notably saturated hydrocarbons, aromatic hydrocarbons, resins and asphaltenes (SARA). Last, the chemical structure was explored through a thorough analysis of the products from the ruthenium ions-catalyzed oxidation (RICO) reaction of those aromatics, resins and asphaltenes. The paper discussed the experiment in terms of samples and chemicals; supercritical fluid extraction and fraction; SARA separation; and RICO. The results and discussions focused on alkyl side chains attached to aromatic carbon; polymethylene bridges connecting two aromatic units; benzenecarboxylic acids an aromatic units; and others. The study has brought to light useful characterization on covalent molecular structure of two typical SFEF fractions, notably the tenth and fifteen fraction. 17 refs., 6 tabs., 16 figs., 1 appendix.

  1. Proton chemical shift imaging after myocardial infarction

    International Nuclear Information System (INIS)

    Bouchard, A.; Doyle, M.; Pohost, G.M.

    1989-01-01

    The present study was undertaken to test whether chemical shift imaging could detect spatially the lipids known to accumulate in myocardium after an ischemic insult. Seven dogs underwent a 24-hour coronary artery occlusion. Hearts were removed and imaged ex vivo by the Dixon method (1.5 T), and myocardial samples were obtained for high-resolution H-1 spectroscopy. Lipid images revealed regions of increased signal intensity in the periphery f the myocardial infarction. The zones of high lipid signal corresponded to zones with elevated mobile lipids as detected by H-1 spectroscopy

  2. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  3. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    Markin, Craig J.; Spyracopoulos, Leo

    2012-01-01

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K D value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1 H– 15 N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k off ). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k off ∼ 3,000 s −1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k off from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k off values over a wide range, from 100 to 15,000 s −1 . The validity of line shape analysis for k off values approaching intermediate exchange (∼100 s −1 ), may be facilitated by more accurate K D measurements from NMR

  4. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    Science.gov (United States)

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  5. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics.

    Science.gov (United States)

    Klukowski, Piotr; Schubert, Mario

    2018-06-15

    A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  6. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Elucidation of the substitution pattern of 9,10-anthraquinones through the chemical shifts of peri-hydroxyl protons

    DEFF Research Database (Denmark)

    Schripsema, Jan; Danigno, Denise

    1996-01-01

    In 9,10-anthraquinones the chemical shift of a peri-hydroxyl proton is affected by the substituents in the other benzenoid ring. These effects are additive. They are useful for the determination of substitution patterns and have been used to revise the structures of six previously reported...... anthraquinones containing methoxyl, hydroxyl, methylenedioxy and beta-methyl substituents. Because the chemical shifts of the other protons are hardly affected by substitutions in the other ring, the characteristic chemical shifts for a wide variety of substitution patterns could be derived....

  8. Identification of chemical signatures of gunshot residues in different fabrics

    International Nuclear Information System (INIS)

    Freitas, Joao Carlos Dias de

    2010-01-01

    The modern forensic science goes hand in hand with scientific research. The forensic scientists are faced every day with many cases requiring the analysis of residues from firing gun (gunshot residues). This works describes the development of a methodology to determine chemical signatures of shots from a firearm, by measuring the concentrations of Pb, Ba e Sb in the residues from these shots deposited near the entrance hole of bullets, based on the technique with high resolution inductively coupled plasma mass spectrometry (HRICP-MS). Shots were performed on five types of target-fabrics and collected testimonies from regions close to the entrance hole of projectiles. The results showed that the method enabled us to identify and distinguish the residues of the .38 caliber revolver and pistols .40 and 9mm caliber. The use of ternary graphs as a tool for data analysis helped to identify specific patterns of distribution of blank samples and gunshot residues deposited after firing revolvers and pistols. The methodology enabled the assignment of the origin of the shot through the confirmation of the residues collected also from the hands of shooters. As a result the methodology in police procedures and aims to add a valuable contribution to forensic investigations. (author)

  9. Vanadium NMR Chemical Shifts of (Imido)vanadium(V) Dichloride Complexes with Imidazolin-2-iminato and Imidazolidin-2-iminato Ligands: Cooperation with Quantum-Chemical Calculations and Multiple Linear Regression Analyses.

    Science.gov (United States)

    Yi, Jun; Yang, Wenhong; Sun, Wen-Hua; Nomura, Kotohiro; Hada, Masahiko

    2017-11-30

    The NMR chemical shifts of vanadium ( 51 V) in (imido)vanadium(V) dichloride complexes with imidazolin-2-iminato and imidazolidin-2-iminato ligands were calculated by the density functional theory (DFT) method with GIAO. The calculated 51 V NMR chemical shifts were analyzed by the multiple linear regression (MLR) analysis (MLRA) method with a series of calculated molecular properties. Some of calculated NMR chemical shifts were incorrect using the optimized molecular geometries of the X-ray structures. After the global minimum geometries of all of the molecules were determined, the trend of the observed chemical shifts was well reproduced by the present DFT method. The MLRA method was performed to investigate the correlation between the 51 V NMR chemical shift and the natural charge, band energy gap, and Wiberg bond index of the V═N bond. The 51 V NMR chemical shifts obtained with the present MLR model were well reproduced with a correlation coefficient of 0.97.

  10. Valorisation of food residues: waste to wealth using green chemical technologies

    OpenAIRE

    Clark, James H.; Luque, Rafael

    2013-01-01

    Waste valorisation practises have attracted a significant amount of attention in recent years with the aim of managing waste in the most sustainable way. Food waste constitutes a largely under-exploited residue from which a variety of valuable chemicals can be derived. This contribution is aimed to set the scene for a further development and promotion of sustainable food waste valorisation practises to different end products using green chemical technologies

  11. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.J. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ng, K.H., E-mail: ngkh@um.edu.m [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ramli, N.; Azman, R.R. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia)

    2011-02-15

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  12. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    International Nuclear Information System (INIS)

    Lim, C.J.; Ng, K.H.; Ramli, N.; Azman, R.R.

    2011-01-01

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  13. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-12-15

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K{sub D}) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K{sub D} value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of {sup 1}H-{sup 15}N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k{sub off}). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k{sub off} {approx} 3,000 s{sup -1} in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k{sub off} from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k{sub off} values over a wide range, from 100 to 15,000 s{sup -1}. The validity of line shape analysis for k{sub off} values approaching intermediate exchange ({approx}100 s{sup -1}), may be facilitated by

  14. Occurrence of pesticide non extractable residues in physical and chemical fractions from two natural soils.

    Science.gov (United States)

    Andreou, K.; Jones, K.; Semple, K.

    2009-04-01

    Distribution of pesticide non extractable residues resulted from the incubation of two natural soils with each of the isoproturon, diazinon and cypermethrin pesticide was assessed in this study. Pesticide non extractable residues distribution in soil physical and chemical fractions is known to ultimately affect their fate. This study aimed to address the fate and behaviour of the non extractable residues in the context of their association with soil physical and chemical fractions with varying properties and characteristics. Non extractable residues were formed from incubation of each pesticide in the two natural soils over a period of 24 months. Soils containing the non extractable residues were fractionated into three solid phase fractions using a physical fractionation procedure as follows: Sediment (SED, >20 μm), (II) Microaggregate (MA, 20-2 μm) and (III) Colloid phase (COL, 2-0.05 μm). Each soil fraction was then fractionated into organic carbon chemical fractionations as follows: Fulvic acid (FA), Humic acid (HA) and Humin (HM). Significant amount of the pesticides was lost during the incubation period. Enrichment factors for the organic carbon and the 14C-pesticide residues were higher in the MA and COL fraction rather than the SED fraction. Greater association and enrichment of the fulvic acid fraction of the organic carbon in the soil was observed. Non extractable residues at the FA fraction showed to diminish while in the HA fraction were increased with decreasing the fraction size. An appreciable amount of non extractable residues were located in the HM fraction but this was less than the amount recovered in the humic substances. Long term fate of pesticide non extractable residues in the soil structural components is important in order to assess any risk associated with them.

  15. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand.

    Science.gov (United States)

    Jones, Benjamin E H; Haynes, Richard J; Phillips, Ian R

    2011-02-01

    In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tone of alumina produced, about 2 tones of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation. Samples of freshly deposited residue sand were collected from Alcoa's Kwinana refinery. Samples were treated with phosphogypsum (2% v/v), incubated, and leached. A laboratory experiment was then set up in which the two organic wastes were applied at 0 or the equivalent to 60 tones ha(-1) in combination with residue mud added at rates of 0%, 10% and 20% v/v. Samples were incubated for 8 weeks, after which, key chemical, physical and microbial properties of the residue sand were measured along with seed germination. Additions of residue mud increased exchangeable Na(+), ESP and the pH, and HCO (3) (-) and Na(+) concentrations in saturation paste extracts. Additions of biosolids and poultry manure increased concentrations of extractable P, NH (4) (+) , K, Mg, Cu, Zn, Mn and Fe. Addition of residue mud, in combination with organic wastes, caused a marked decrease in macroporosity and a concomitant increase in mesoporosity, available water holding capacity and the quantity of water held at field capacity. With increasing residue mud additions, the percentage of sample present as sand particles (2 mm diameter) increased; greatest aggregation occurred where a combination of residue mud and poultry manure were added. Stability of aggregates, as measured by

  16. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  17. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene

    Science.gov (United States)

    Sun, Jianbo; Finklea, Harry O.; Liu, Yuxin

    2017-03-01

    Poly(methyl methacrylate) (PMMA) residue has long been a critical challenge for practical applications of the transferred chemical vapor deposited (CVD) graphene. Thermal annealing is empirically used for the removal of the PMMA residue; however experiments imply that there are still small amounts of residues left after thermal annealing which are hard to remove with conventional methods. In this paper, the thermal degradation of the PMMA residue upon annealing was studied by Raman spectroscopy. The study reveals that post-annealing residues are generated by the elimination of methoxycarbonyl side chains in PMMA and are believed to be absorbed on graphene via the π-π interaction between the conjugated unsaturated carbon segments and graphene. The post-annealing residues are difficult to remove by further annealing in a non-oxidative atmosphere due to their thermal and chemical stability. An electrolytic cleaning method was shown to be effective in removing these post-annealing residues while preserving the underlying graphene lattice based on Raman spectroscopy and atomic force microscopy studies. Additionally, a solution-gated field effect transistor was used to study the transport properties of the transferred CVD graphene before thermal annealing, after thermal annealing, and after electrolytic cleaning, respectively. The results show that the carrier mobility was significantly improved, and that the p-doping was reduced by removing PMMA residues and post-annealing residues. These studies provide a more in-depth understanding on the thermal annealing process for the removal of the PMMA residues from transferred CVD graphene and a new approach to remove the post-annealing residues, resulting in a residue-free graphene.

  18. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes

    Science.gov (United States)

    Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da

    2018-04-01

    The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.

  19. 9 CFR 318.16 - Pesticide chemicals and other residues in products.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... ingredients. Residues of pesticide chemicals, food additives and color additives or other substances in or on ingredients (other than meat, meat byproducts, and meat food products) used in the formulation of products...

  20. Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of 129 Xe

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K; Slack, CC; Vassiliou, CC; Dao, P; Gomes, MD; Kennedy, DJ; Truxal, AE; Sperling, LJ; Francis, MB; Wemmer, DE; Pines, A

    2015-09-17

    Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here in this paper, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca2+, Cu2+, Ce3+, Zn2+, Cd2+, Ni2+, Co2+, Cr2+, Fe3+, and Hg2+ are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of 129Xe. Lastly, these sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.

  1. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    Science.gov (United States)

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  3. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  4. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  5. Identification of Chemical Agents (Mimics) Residues after Destructive Adsorption Using TPD and UV-vis-IR and Raman

    National Research Council Canada - National Science Library

    Klabunde, Kenneth J

    2001-01-01

    Instrumentation was purchased that helps characterize the chemical structures and chemical reactions that occur when nanocrystalline metal oxides carry out destructive adsorption of chemical agents mimics. The residues (adducts...

  6. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds

    International Nuclear Information System (INIS)

    Kirk, K.; Kuchel, P.W.

    1988-01-01

    The marked difference between the intra- and extracellular 31 P NMR chemical shifts of various phosphoryl compounds when added to a red cell suspension may be largely understood in terms of the effects of hemoglobin on the 31 P NMR chemical shifts. The presence of [oxy- or (carbonmonoxy)-] hemoglobin inside the red cell causes the bulk magnetic susceptibility of the cell cytoplasm to be significantly less than that of the external solution. This difference is sufficient to account for the difference in the intra- and extracellular chemical shifts of the two phosphate esters trimethyl phosphate and triethyl phosphate. However, in the case of the compounds dimethyl methylphosphonate, diethyl methylphosphonate, and trimethylphosphine oxide as well as the hypophosphite, phenylphosphinate, and diphenylphosphinate ions, hemoglobin exerts an additional, much larger, effect, causing the 31 P NMR resonances to shift to lower frequency in a manner that cannot be accounted for in terms of magnetic susceptibility. Lysozyme is a protein structurally unrelated to hemoglobin and was shown to cause similar shifts to lower frequency of the resonances of these six compounds; this suggests that the mechanism may involve a property of proteins in general and not a specific property of hemoglobin. The effect of different solvents on the chemical shifts of the eight phosphoryl compounds provided an insight into the possible physical basis of the effect. It is proposed that, in addition to magnetic susceptibility effects, hemoglobin exerts its influence on phosphoryl chemical shifts by disrupting the hydrogen bonding of the phosphoryl group to solvent water

  7. Screening of antibiotics and chemical analysis of penicillin residue in fresh milk and traditional dairy products in Oyo state, Nigeria

    Directory of Open Access Journals (Sweden)

    Isaac Olufemi Olatoye

    2016-09-01

    Full Text Available Background and Aim: There are global public health and economic concerns on chemical residues in food of animal origin. The use of antibiotics in dairy cattle for the treatment of diseases such as mastitis has contributed to the presence of residues in dairy products. Penicillin residues as low as 1 ppb can lead to allergic reactions and shift of resistance patterns in microbial population as well as interfere with the processing of several dairy products. Antibiotic monitoring is an essential quality control measure in safe milk production. This study was aimed at determining antibiotic residue contamination and the level of penicillin in dairy products from Fulani cattle herds in Oyo State. Materials and Methods: The presence of antibiotic residues in 328 samples of fresh milk, 180 local cheese (wara, and 90 fermented milk (nono from Southwest, Nigeria were determined using Premi® test kit (R-Biopharm AG, Germany followed by high-performance liquid chromatography analysis of penicillin-G residue. Results: Antibiotic residues were obtained in 40.8%, 24.4% and 62.3% fresh milk, wara and nono, respectively. Penicillin-G residue was also detected in 41.1% fresh milk, 40.2% nono and 24.4% wara at mean concentrations of 15.22±0.61, 8.24±0.50 and 7.6±0.60 μg/L with 39.3%, 36.7% and 21.1%, respectively, containing penicillin residue above recommended Codex maximum residue limit (MRL of 5 μg/L in dairy. There was no significant difference between the mean penicillin residues in all the dairy products in this study. Conclusion: The results are of food safety concern since the bulk of the samples and substantial quantities of dairy products in Oyo state contained violative levels of antibiotic residues including penicillin residues in concentrations above the MRL. This could be due to indiscriminate and unregulated administration of antibiotics to dairy cattle. Regulatory control of antibiotic use, rapid screening of milk and dairy farmers

  8. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  9. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    Directory of Open Access Journals (Sweden)

    Q. Lin

    2017-07-01

    Full Text Available To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI coupled with a real-time single-particle aerosol mass spectrometer (SPAMS was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. , southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC, potassium-rich (K-rich, amine, dust, Pb, Fe, organic carbon (OC, sodium-rich (Na-rich and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %, followed by the K-rich type (33.9 %. Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5–4.1 % to the total cloud residues. Higher fraction of nitrate (88–89 % was found in the dust and Na-rich cloud residues relative to sulfate (41–42 % and ammonium (15–23 %. Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  10. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    International Nuclear Information System (INIS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-01-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++ ) and Zn (Zn + ) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed

  11. Evaluating the residual stress in PbTiO3 thin films prepared by a polymeric chemical method

    International Nuclear Information System (INIS)

    Valim, D; Filho, A G Souza; Freire, P T C; Filho, J Mendes; Guarany, C A; Reis, R N; Araujo, E B

    2004-01-01

    We report a study of residual stress in PbTiO 3 (PT) thin films prepared on Si substrates by a polymeric chemical method. The E(1TO) frequency was used to evaluate the residual stress through an empirical equation available for bulk PT. We find that the residual stress in PT films increases as the film thickness decreases and conclude that it originates essentially from the contributions of extrinsic and intrinsic factors. Polarized Raman experiments showed that the PT films prepared by a polymeric chemical method are somewhat a-domain (polar axis c parallel to the substrate) oriented

  12. Binding energies and chemical shifts of least bound core electron excitations in cubic Asub(N)Bsub(8-N) semiconductors

    International Nuclear Information System (INIS)

    Bechstedt, F.; Enderlein, R.; Wischnewski, R.

    1981-01-01

    Core electron binding energies Esup(B) with respect to the vacuum level and their chemical shifts are calculated for the least bound core levels of cations and anions of cubic Asub(N)Bsub(8-N) semiconductors. Starting from the HF-binding energy of the free atom absolute values of Esup(B) are obtained by adding core level shifts and relaxation energies. Core level shifts are calculated by means of an electrostatic model with ionic and bond charges according to Phillips' bond charge model. For the calculation of relaxation energies the linear dielectric theory of electronic polarization is applied. Valence and core electrons, and diagonal and non-diagonal screening are taken into account. The theoretical results for chemical shifts of binding energies are compared with experimental values from XPS-measurements corrected by work function data. Good agreement is obtained in all cases within the error limit of about one eV. Chemical and atomic trends of core level shifts, relaxation energies, and binding energies are discussed in terms of changes of atomic and solid state parameters. Chemical shifts and relaxation energies are predicted for various ternary Asub(N)Bsub(8-N) compounds. (author)

  13. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark

    DEFF Research Database (Denmark)

    Götze, Ramona; Pivnenko, Kostyantyn; Boldrin, Alessio

    2016-01-01

    differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable......Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher...... recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant...

  14. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States); Monaco, Stephen; Schatschneider, Bohdan [The Pennsylvania State University, The Eberly Campus, 2201 University Dr, Lemont Furnace, Pennsylvania 15456 (United States)

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  15. Carbon 13 nuclear magnetic resonance chemical shifts empiric calculations of polymers by multi linear regression and molecular modeling

    International Nuclear Information System (INIS)

    Da Silva Pinto, P.S.; Eustache, R.P.; Audenaert, M.; Bernassau, J.M.

    1996-01-01

    This work deals with carbon 13 nuclear magnetic resonance chemical shifts empiric calculations by multi linear regression and molecular modeling. The multi linear regression is indeed one way to obtain an equation able to describe the behaviour of the chemical shift for some molecules which are in the data base (rigid molecules with carbons). The methodology consists of structures describer parameters definition which can be bound to carbon 13 chemical shift known for these molecules. Then, the linear regression is used to determine the equation significant parameters. This one can be extrapolated to molecules which presents some resemblances with those of the data base. (O.L.). 20 refs., 4 figs., 1 tab

  16. The 40th anniversary of the discovery of NMR-chemical shift and nuclear spin-spin coupling

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Gou Qingquan

    1989-01-01

    After the discovery of NMR Phenomenon in the physics laboratories of E.M.Purcell at Harvard and F.Bloch at Stanford in 1946, W.G.Proctor and F.C.Yu made the successful discovery of NMR-chemical shift and nuclear spin-spin coupling at Stanford in 1950, Which brought NMR spectroscopy from the physics laboratory to the laboratories of many different fields. This is worth memorizing. Retrospecting the past 40 years, it is sure that chemical shift theory will be much more prosperous prospects

  17. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  18. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  19. PACSY, a relational database management system for protein structure and chemical shift analysis.

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  20. PACSY, a relational database management system for protein structure and chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States); Yu, Wookyung [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry and Chemistry Institute for Functional Materials (Korea, Republic of); Chang, Iksoo [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Yonsei University, Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry (Korea, Republic of); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States)

    2012-10-15

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  1. PACSY, a relational database management system for protein structure and chemical shift analysis

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu. PMID:22903636

  2. PACSY, a relational database management system for protein structure and chemical shift analysis

    International Nuclear Information System (INIS)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L.

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  3. Studies on the utilization of agricultural residues in the manufacture of pulp and paper, and industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, V.S.; Kamath, G.P.; Basu, S.

    1980-03-15

    While demand for pulp and paper products in India is increasing at the annual rate of 7 to 8%, availability of cellulosic raw material to meet the ever increasing demand is becoming a serious problem. It has been estimated that bamboo, the traditional source of cellulosic raw material in India, even after ensuring the most scientific and best possible exploitation, could provide less than 50% of the requirement. In a big agricultural country like India, agri-residues like straws and bagasse, along with jute sticks, available in huge quantity, could provide substantial amount of cellulosic resources to the pulp and paper industry. Realizing the importance of agri-residue utilization in Indian economy, a series of research projects have been initiated and completed during the last 15 years to study the techno-economic feasibility of manufacturing pulp, paper, and industrial chemicals, based on rice and wheat straws, bagasse, and jute sticks. The economic advantages of the mechano-chemical pulping process, as compared to the conventional pressure, pulping process, for the conversion of agri-residues into pulp and paer is evaluated. For highlighting the importance of agri-residues in the field of useful chemical recovery possibilities, experimental data are given on the saccarification of agri-residues into reducing sugars by the simple acid hydrolysis method with the help of concentrated sulfuric acid.

  4. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.

    Science.gov (United States)

    Odlare, M; Pell, M; Svensson, K

    2008-01-01

    A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.

  5. Measurement of the signs of methyl {sup 13}C chemical shift differences between interconverting ground and excited protein states by R{sub 1{rho}}: an application to {alpha}B-crystallin

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Andrew J.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2012-05-15

    Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond time-scale exchange processes involving the interconversion between a visible ground state and one or more minor, sparsely populated invisible 'excited' conformational states. Recently it has also become possible to determine atomic resolution structural models of excited states using a wide array of CPMG RD approaches. Analysis of CPMG RD datasets provides the magnitudes of the chemical shift differences between the ground and excited states, {Delta}{omega}, but not the sign. In order to obtain detailed structural insights from, for example, excited state chemical shifts and residual dipolar coupling measurements, these signs are required. Here we present an NMR experiment for obtaining signs of {sup 13}C chemical shift differences of {sup 13}CH{sub 3} methyl groups using weak field off-resonance R{sub 1{rho}} relaxation measurements. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering sample conditions so that the signs of {Delta}{omega} values obtained from the spin-lock approach can be validated against those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring signs of chemical shift differences and the relative strengths of each method are discussed. In the case of the 650 kDa human {alpha}B-crystallin complex where there are large transverse relaxation differences between ground and excited state spins the R{sub 1{rho}} method is shown to be superior to more 'traditional' experiments for sign determination.

  6. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    Science.gov (United States)

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  7. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  8. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO4 and LiCoPO4.

    Science.gov (United States)

    Mondal, Arobendo; Kaupp, Martin

    2018-04-05

    A novel protocol to compute and analyze NMR chemical shifts for extended paramagnetic solids, accounting comprehensively for Fermi-contact (FC), pseudocontact (PC), and orbital shifts, is reported and applied to the important lithium ion battery cathode materials LiFePO 4 and LiCoPO 4 . Using an EPR-parameter-based ansatz, the approach combines periodic (hybrid) DFT computation of hyperfine and orbital-shielding tensors with an incremental cluster model for g- and zero-field-splitting (ZFS) D-tensors. The cluster model allows the use of advanced multireference wave function methods (such as CASSCF or NEVPT2). Application of this protocol shows that the 7 Li shifts in the high-voltage cathode material LiCoPO 4 are dominated by spin-orbit-induced PC contributions, in contrast with previous assumptions, fundamentally changing interpretations of the shifts in terms of covalency. PC contributions are smaller for the 7 Li shifts of the related LiFePO 4 , where FC and orbital shifts dominate. The 31 P shifts of both materials finally are almost pure FC shifts. Nevertheless, large ZFS contributions can give rise to non-Curie temperature dependences for both 7 Li and 31 P shifts.

  9. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  10. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    Science.gov (United States)

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-05-10

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide

  11. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.

    2002-01-01

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd

  12. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  13. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis.

    Science.gov (United States)

    Kühn, Jens-Peter; Hernando, Diego; Mensel, Birger; Krüger, Paul C; Ittermann, Till; Mayerle, Julia; Hosten, Norbert; Reeder, Scott B

    2014-06-01

    To compare the accuracy of liver fat quantification using a three-echo chemical shift-encoded magnetic resonance imaging (MRI) technique without and with correction for confounders with spectroscopy (MRS) as the reference standard. Fifty patients (23 women, mean age 56.6 ± 13.2 years) with fatty liver disease were enrolled. Patients underwent T2-corrected single-voxel MRS and a three-echo chemical shift-encoded gradient echo (GRE) sequence at 3.0T. MRI fat fraction (FF) was calculated without and with T2* and T1 correction and multispectral modeling of fat and compared with MRS-FF using linear regression. The spectroscopic range of liver fat was 0.11%-38.7%. Excellent correlation between MRS-FF and MRI-FF was observed when using T2* correction (R(2)  = 0.96). With use of T2* correction alone, the slope was significantly different from 1 (1.16 ± 0.03, P fat were addressed, the results showed equivalence between fat quantification using MRI and MRS (slope: 1.02 ± 0.03, P = 0.528; intercept: 0.26% ± 0.46%, P = 0.572). Complex three-echo chemical shift-encoded MRI is equivalent to MRS for quantifying liver fat, but only with correction for T2* decay and T1 recovery and use of spectral modeling of fat. This is necessary because T2* decay, T1 recovery, and multispectral complexity of fat are processes which may otherwise bias the measurements. Copyright © 2013 Wiley Periodicals, Inc.

  14. Chemical shift of Mn and Cr K-edges in X-ray absorption

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation. D Joseph A K Yadav S N Jha D Bhattacharyya. Volume 36 Issue 6 November 2013 pp ...

  15. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  16. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent...

  17. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  18. Chemical modelling of pore water composition from PFBC residues

    International Nuclear Information System (INIS)

    Karlsson, L.G.

    1991-01-01

    The concentration of trace elements varies depending on the source of the coal and also due to the combustion process used. Mercury is one important element among the trace elements in the coal residues, generally recognised as potentially harmful to the biological system. To predict the pore water concentrations of mercury and other important constituents leached from coal combustion residues disposal sites, mechanistic data on chemical reactions are required. The present study is an application of a basially thermodynamical approach using the geochemical code EQ3NR. The presence of discrete solid phases that control the aqueous concentrations of major elements such as aluminium, calcium and silicon are identified. Solid phases are modelled in equilibrium with a hypothetical pore water at a pH range of 7-11. In this study the thermodynamic database of EQ3NR has been complemented with data for cadmium, mercury and lead taken from the OECD/NEA Thermodynamic Database and from a compilation made by Lindsay. Possible solubility limiting phases for the important trace elements arsenic, cadmium, chromium, copper, mercury, nickel and lead have been identified. Concentrations of these trace elements as a function of pH in the hypothetical pore water were calculated using mechanistic thermodynamial data. The thermodynamical approach in this study seems justified because most solid residues that are either present or expected to form during weathering have relatively fast precipitation/dissolution kinetics. (21 refs., 18 figs., 5 tabs.)

  19. Chemical shift-selective snapshot FLASH MR imaging in combination with inversion-recovery T1 contrast at different field strengths

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1991-01-01

    With fast MR imaging, chemical shift contract becomes available to the clinician in seconds. The purpose of this paper is to evaluate the combination of chemical shift selective (CHESS) MR imaging using the snapshot FLASH MR method with the inversion-recovery technique and to obtain information concerning the signal-to-noise and chemical shift with the presaturation method at different field strengths. Investigations with volunteers and experimental animals were done at 2 and 3 T (whole body) and in a 4.7-T animal image. For the inversion-recovery experiments, saturation was done before every snapshot FLASH image. With increasing field strength due to signal-to-noise and chemical shift advantages, the method performs better. Increasing T1 values are also important at high field strengths. The combined technique is useful only for T1 water images with fat saturation. It also allows fast quantification of T1 in water-containing organs and pathologic processes. At high field strengths, fast CHESS and T1 imaging promise fast quantitative information. This is a possible argument for clinical high-field-strength MR imagining along with MR spectroscopy

  20. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Science.gov (United States)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  1. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  2. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  3. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    Science.gov (United States)

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.

  4. Pressure Shift Freezing as Potential Alternative for Generation of Decellularized Scaffolds

    Directory of Open Access Journals (Sweden)

    S. Eichhorn

    2013-01-01

    Full Text Available Background. Protocols using chemical reagents for scaffold decellularization can cause changes in the properties of the matrix, depending on the type of tissue and the chemical reagent. Technologies using physical techniques may be possible alternatives for the production grafts with potential superior matrix characteristics. Material and Methods. We tested four different technologies for scaffold decellularization. Group 1: high hydrostatic pressure (HHP, 1 GPa; Group 2: pressure shift freezing (PSF; Group 3: pulsed electric fields (PEF; Group 4: control group: detergent (SDS. The degree of decellularization was assessed by histological analysis and the measurement of residual DNA. Results. Tissue treated with PSF showed a decellularization with a penetration depth (PD of 1.5 mm and residual DNA content of . HHD treatment caused a PD of 0.2 mm with a residual DNA content of . PD in PEF was 0.5 mm, and the residual DNA content was . In the SDS group, PD was found to be 5 mm, and the DNA content was determined at . Conclusion. PSF showed promising results as a possible technique for scaffold decellularization. The penetration depth of PSF has to be optimized, and the mechanical as well as the biological characteristics of decellularized grafts have to be evaluated.

  5. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†

    Science.gov (United States)

    Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.

    2016-01-01

    The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  6. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    Science.gov (United States)

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.

  7. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  8. Orientation-dependent surface core-level shifts and chemical shifts on clean and H 2S-covered GaAs

    Science.gov (United States)

    Ranke, W.; Finster, J.; Kuhr, H. J.

    1987-08-01

    Photoelectron spectra of the As 3d and Ga 3d core levels were studied in situ on a cylindrically shaped GaAs single crystal for the six inequivalent orientations (001), (113), (111), (110), (11¯1) and (11¯3). On the clean surface, prepared by molecular beam epitaxy (MBE), surface core levels are shifted by 0.25 to 0.55 eV towards smaller binding energy (BE) for As 3d and -0.25 to -0.35 eV towards higher BE for Ga, depending on orientation. Additional As causes As 3d contributions shifted between -0.45 and -0.7 eV towards higher BE. The position and intensity of them is influenced by H 2S adsorption. At 150 K, H 2S adsorbs preferentially on As sites. As chemical shifts appear at -0.6 to -0.9 eV towards higher BE. Simultaneously, As accumulation occurs on all orientations with the exception of (110). High temperature adsorption (550 K, 720 K) influences mainly the Ga 3d peaks. Two peaks shifted by about -0.45 and -0.8 eV towards higher Be were found which are attributed to Ga atoms with one or two sulfur ligands, respectively. At 720 K, also As depletion is observed. The compatibility of surface core-level positions and intensities with recent structural models for the (111) and (11¯1) surfaces is discussed.

  9. Criteria to average out the chemical shift anisotropy in solid-state NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Stephane Mananga, Eugene

    2013-01-01

    Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. DipoCoup: A versatile program for 3D-structure homology comparison based on residual dipolar couplings and pseudocontact shifts

    International Nuclear Information System (INIS)

    Meiler, Jens; Peti, Wolfgang; Griesinger, Christian

    2000-01-01

    A program, DipoCoup, is presented that allows to search the protein data bank for proteins which have a three dimensional fold that is at least partially homologous to a protein under investigation. The three dimensional homology search uses secondary structure alignment based on chemical shifts and dipolar couplings or pseudocontact shifts for the three dimensional orientation of secondary structure elements. Moreover, the program offers additional tools for handling and analyzing dipolar couplings

  11. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  12. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging

    International Nuclear Information System (INIS)

    Ragab, Yasser; Emad, Yasser; Gheita, Tamer; Mansour, Maged; Abou-Zeid, A.; Ferrari, Serge; Rasker, Johannes J.

    2009-01-01

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  13. Lanthanide shift reagents, binding, shift mechanisms and exchange

    International Nuclear Information System (INIS)

    Boer, J.W.M. de

    1977-01-01

    Paramagnetic lanthanide shift reagents, when added to a solution of a substrate, induce shifts in the nuclear magnetic resonance (NMR) spectrum of the substrate molecules. The induced shifts contain information about the structure of the shift reagent substrate complex. The structural information, however, may be difficult to extract because of the following effects: (1) different complexes between shift reagent and substrate may be present in solution, e.g. 1:1 and 1:2 complexes, and the shift observed is a weighed average of the shifts of the substrate nuclei in the different complexes; (2) the Fermi contact interaction, arising from the spin density at the nucleus, contributes to the induced shift; (3) chemical exchange effects may complicate the NMR spectrum. In this thesis, the results of an investigation into the influence of these effects on the NMR spectra of solutions containing a substrate and LSR are presented. The equations describing the pseudo contact and the Fermi contact shift are derived. In addition, it is shown how the modified Bloch equations describing the effect of the chemical exchange processes occurring in the systems studied can be reduced to the familiar equations for a two-site exchange case. The binding of mono- and bifunctional ethers to the shift reagent are reported. An analysis of the induced shifts is given. Finally, the results of the experiments performed to study the exchange behavior of dimethoxyethane and heptafluorodimethyloctanedionato ligands are presented

  14. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  15. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  16. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  17. Identifying stereoisomers by ab-initio calculation of secondary isotope shifts on NMR chemical shieldings.

    Science.gov (United States)

    Böhm, Karl-Heinz; Banert, Klaus; Auer, Alexander A

    2014-04-23

    We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  18. Calculation of the NMR chemical shift for a 4d1 system in a strong crystal field environment of trigonal symmetry with a threefold axis of quantization

    International Nuclear Information System (INIS)

    Ahn, Sang Woon; Oh, Se Woung; Ro, Seung Woo

    1986-01-01

    The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a 4d 1 system in a strong crystal field environment of trigonal symmetry, where the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. we observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R 3 ) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around R≥0.2 nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift. (Author)

  19. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience

    International Nuclear Information System (INIS)

    Kohl, Chad A.; Chivers, F.S.; Lorans, Roxanne; Roberts, Catherine C.; Kransdorf, Mark J.

    2014-01-01

    To re-assess the accuracy of chemical shift imaging in diagnosing indeterminate bone marrow lesions as benign or malignant. We retrospectively reviewed our experience with MR imaging of the pelvis to assess the accuracy of chemical shift imaging in distinguishing benign from malignant bone lesions. Two musculoskeletal radiologists retrospectively reviewed all osseous lesions biopsied since 2006, when chemical shift imaging was added to our routine pelvic imaging protocol. Study inclusion criteria required (1) MR imaging of an indeterminate bone marrow lesion about the pelvis and (2) subsequent histologic confirmation. The study group included 50 patients (29 male, 21 female) with an average age of 67 years (range, 41-89 years). MR imaging results were evaluated using biopsy results as the ''gold standard.'' There were 27 malignant and 23 benign lesions. Chemical shift imaging using an opposed-phase signal loss criteria of less than 20 % to indicate a malignant lesion, correctly diagnosed 27/27 malignant lesions and 14/23 benign lesions, yielding a 100 % sensitivity, 61 % specificity, 75 % PPV, 100 % NPV, and 82 % accuracy. The area under the receiver operator characteristic (ROC) curve was 0.88. The inter-rater and intra-rater agreement K values were both 1.0. Chemical shift imaging is a useful adjunct MR technique to characterize focal and diffuse marrow abnormalities on routine non-contrast pelvic imaging. It is highly sensitive in identifying malignant disease. Despite its lower specificity, the need for biopsy could be eliminated in more than 60 % of patients with benign disease. (orig.)

  20. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.

    Science.gov (United States)

    Pierens, Gregory K; Venkatachalam, T K; Reutens, David C

    2016-04-01

    A comparative study of experimental and calculated NMR chemical shifts of six compounds comprising 2-amino and 2-hydroxy phenyl benzoxazoles/benzothiazoles/benzimidazoles in four solvents is reported. The benzimidazoles showed interesting spectral characteristics, which are discussed. The proton and carbon chemical shifts were similar for all solvents. The largest chemical shift deviations were observed in benzene. The chemical shifts were calculated with density functional theory using a suite of four functionals and basis set combinations. The calculated chemical shifts revealed a good match to the experimentally observed values in most of the solvents. The mean absolute error was used as the primary metric. The use of an additional metric is suggested, which is based on the order of chemical shifts. The DP4 probability measures were also used to compare the experimental and calculated chemical shifts for each compound in the four solvents. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  2. Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils

    Science.gov (United States)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and 20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.

  3. Deuterium isotope shifts for backbone {sup 1}H, {sup 15}N and {sup 13}C nuclei in intrinsically disordered protein {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, Alexander S.; Ying Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-10-15

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise {sup 2}H isotope shift measurements for {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 15}N, and {sup 1}H{sup N} have been obtained by using a mixed sample of protonated and uniformly perdeuterated {alpha}-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil {sup 2}H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  4. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    Science.gov (United States)

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  5. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  6. A micro-spectroscopy study on the influence of chemical residues from nanofabrication on the nitridation chemistry of Al nanopatterns

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B., E-mail: bing@raunvis.hi.is [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Olafsson, S. [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Zakharov, A.A. [MAX-lab, Lund University, S-22100 Lund (Sweden); Agnarsson, B. [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Department of Applied Physics, Chalmers University of Technology, S-41296 Gothenburg (Sweden); Gislason, H.P. [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Goethelid, M. [Materialfysik, MAP, ICT, KTH, ELECTRUM 229, 16440 Kista (Sweden)

    2012-03-01

    We applied spatially resolved photoelectron spectroscopy implemented with an X-ray photoemission electron microscopy (XPEEM) using soft X-ray synchrotron radiation to identify the compositional and morphological inhomogeneities of a SiO{sub 2}/Si substrate surface nanopatterned with Al before and after nitridation. The nanofabrication was conducted by a polymethylmethacrylate (PMMA)-based e-beam lithography and a fluorine-based reactive ion etching (RIE), followed by Al metalization and acetone lift-off. Three types of chemical residues were identified before nitridation: (1) fluorocarbons produced and accumulated mainly during RIE process on the sidewalls of the nanopatterns; (2) a thick Al-bearing PMMA layer and/or (3) a thin PMMA residue layer owing to unsuccessful or partial lift-off of the e-beam unexposed PMMA between the nanopatterns. The fluorocarbons actively influenced the surface chemical composition of the nanopatterns by forming Al-F compounds. After nitridation, in the PMMA residue-free area, the Al-F compounds on the sidewalls were decomposed and transformed to AlN. The PMMA residues between the nanopatterns had no obvious influence on the surface chemical composition and nitridation properties of the Al nanopatterns. They were only partially decomposed by the nitridation. The regional surface morphology of the nanopatterns revealed by the secondary electron XPEEM was consistent with the scanning electron microscopy results.

  7. Principal chemical properties of artificial soil composed of fly ash and furfural residue

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.J.; Li, F.; Wang, X.L.; Liu, X.M.; Zhang, L.N. [Shandong Agricultural University, Tai An (China). College of Resources & Environments

    2006-10-15

    To solve soil shortage in reclaiming subsided land of coal mines, the principal chemical properties of artificial soil formed by mixing organic furfural residue and inorganic fly ash were examined. The results indicated that the artificial soil was suitable for agriculture use after irrigation and desalination, the available nutrients in the artificial soil could satisfy the growth demand of plants, and the pH tended to the neutrality.

  8. NMR chemical shift and J coupling parameterization and quantum mechanical reference spectrum simulation for selected nerve agent degradation products in aqueous conditions.

    Science.gov (United States)

    Koskela, Harri; Anđelković, Boban

    2017-10-01

    The spectral parameters of selected nerve agent degradation products relevant to the Chemical Weapons Convention, namely, ethyl methylphosphonate, isopropyl methylphosphonate, pinacolyl methylphosphonate and methylphosphonic acid, were studied in wide range of pH conditions and selected temperatures. The pH and temperature dependence of chemical shifts and J couplings was parameterized using Henderson-Hasselbalch-based functions. The obtained parameters allowed calculation of precise chemical shifts and J coupling constants in arbitrary pH conditions and typical measurement temperatures, thus facilitating quantum mechanical simulation of reference spectra in the chosen magnetic field strength for chemical verification. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G

    International Nuclear Information System (INIS)

    Cai Ling; Kosov, Daniel S.; Fushman, David

    2011-01-01

    We performed density functional calculations of backbone 15 N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245–253, 2009) to compute 15 N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15 N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15 N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.

  10. [Chemical composition and content of antiphysiological factors of jojoba (Simmondsia chinensis) residual meal].

    Science.gov (United States)

    Pérez-Gil, F; Sanginés, G L; Torreblanca, R A; Grande, M L; Carranco, J M

    1989-12-01

    Jojoba (Simmondsia chinensis) is a perennial plant with an interesting economic value by processing it for liquid wax production. By pressing of jojoba seeds, by-product which has been called "residual meal" has been obtained, and because of its high protein content, it would be a great interest to evaluate it as animal feedstuff. The results of this study showed the following. Both seed and residual meal were analyzed in regard to their chemical proximal composition: crude protein 14.03 and 25.24%; ether extract, 48.89 and 14.73%; crude fiber, 10.03 and 10.07%; ash, 1.59 and 4.72, and nitrogen-free extract, 25.46 and 45.25, the limiting amino acids being methionine, lysine and isoleucine. The trypsin inhibitor factors were 13.747 and 11,197 TIU/g; and hemagglutinins and saponins were negative for both samples. Cyanogenic glucosides were positive in both samples. It was concluded that jojoba residual meal is an alternative as an adequate feedstuff in those regions where jojoba is produced. Nevertheless, prior to consumption it must be treated so as to eliminate the toxic factors.

  11. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  12. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  13. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  14. 40 CFR 721.9635 - Terpene residue distillates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Terpene residue distillates. 721.9635... Substances § 721.9635 Terpene residue distillates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as terpene residue distillates (PMN P-96-897...

  15. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.

    Science.gov (United States)

    Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian

    2014-02-11

    An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.

  16. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  17. Study of chemical shifts of the chloroform complexes with cyclic donors of electrons

    International Nuclear Information System (INIS)

    Blaszkiewicz, B.; Pajak, Z.

    1973-01-01

    Chemical shifts of chloroform complexes with the heterocyclic electron donors: pyridine, piperidine, alpha-picoline and gamma-picoline have been studied using the high resolution (5.10 -9 ) spectrometer operating at 80 MHz. An attempt has also been made to study the three - component solutions of : chloroform, a heterocyclic donor of electrons and carbon tetrachloride. The results, which have been obtained, indicate that the complex-forming power of pyridine and other electron donors is greater in carbon tetrachloride than in other solvents. (S.B.)

  18. Coronary artery atherosclerosis associated with shift work in chemical plant workers by using coronary CT angiography.

    Science.gov (United States)

    Kang, WonYang; Park, Won-Ju; Jang, Keun-Ho; Kim, Soo-Hyeon; Gwon, Do-Hyeong; Lim, Hyeong-Min; Ahn, Ji-Sung; Moon, Jai-Dong

    2016-08-01

    The aim of this study was to investigate whether shift work is related to elevated risk of coronary artery disease (CAD) by determining the coronary artery calcium (CAC) score and the presence of coronary artery stenosis by using coronary artery CT angiography (CCTA). In this study, 110 male workers participated and underwent a CCTA examination for CAC scoring, which represents coronary artery plaque, and were evaluated for luminal stenosis. All of the participants were working in the same chemical plant, of whom 70 worked day shifts and 40 worked rotating shifts. In a multivariate logistic regression analysis, including age, smoking status, alcohol consumption, regular exercise and waist circumference, shift work was associated with a 2.89-fold increase in the odds of developing coronary plaque compared with day work (OR, 2.89; 95% CI 1.07 to 7.82). The association between shift work and coronary plaque was strong after adjustment for age, low-density lipoprotein cholesterol, hypertension and diabetes mellitus (OR, 2.92; 95% CI 1.02 to 8.33). In addition, the number of years of shift work employment was associated with coronary plaque. However, no association was found between shift work and coronary artery stenosis. Shift work could induce CAD onset via the atherosclerotic process, and shift work employment duration was associated with an increased risk of atherosclerosis in male workers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    Science.gov (United States)

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  20. Is the Lamb shift chemically significant?

    Science.gov (United States)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  1. Diffusion-weighted imaging of the liver at 3 T using section-selection gradient reversal: emphasis on chemical shift artefacts and lesion conspicuity

    International Nuclear Information System (INIS)

    Lee, J.S.; Kim, Y.K.; Jeong, W.K.; Choi, D.; Lee, W.J.

    2015-01-01

    Aim: To assess the value of section-selection gradient reversal (SSGR) in liver diffusion-weighted imaging (DWI) by comparing it to conventional DWI with an emphasis on chemical shift artefacts and lesion conspicuity. Materials and methods: Forty-eight patients (29 men and 19 women; age range 33–80 years) with 48 liver lesions underwent two DWI examinations using spectral presaturation with inversion recovery fat suppression with and without SSGR at 3 T. Two reviewers evaluated each DWI (b = 100 and b = 800 image) with respect to chemical shift artefacts and liver lesion conspicuity using five-point scales and performed pairwise comparisons between the two DWIs. The signal-to-noise ratio (SNR) of the liver and the lesion and the lesion–liver contrast-to-noise ratio (CNR) were also calculated. Results: SSGR-DWI was significantly better than conventional DWI with respect to chemical shift artefacts and lesion conspicuity in both separate reviews and pairwise comparisons (p < 0.05). There were significant differences in the SNR of the liver (b = 100 and b = 800 images) and lesion (b = 800) between SSGR-DWI and conventional DWI (p < 0.05). Conclusion: Applying the SSGR method to DWI using SPIR fat suppression at 3 T could significantly reduce chemical shift artefacts without incurring additional acquisition time or SNR penalties, which leads to increased conspicuity of focal liver lesions. - Highlights: • Chemical shift artefact in liver DWI is markedly decreased by applying SSGR. • Liver lesion conspicuity is improved by applying SSGR to DWI. • In SNR of the liver, SSGR-DWI is better than conventional DWI

  2. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    International Nuclear Information System (INIS)

    Lehtivarjo, Juuso; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino; Peräkylä, Mikael

    2012-01-01

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1 H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6–17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for 1 Hα, 1 HN, 13 Cα, 13 Cβ, 13 CO and backbone 15 N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  3. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    Energy Technology Data Exchange (ETDEWEB)

    Lehtivarjo, Juuso, E-mail: juuso.lehtivarjo@uef.fi; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino [University of Eastern Finland, School of Pharmacy (Finland); Peraekylae, Mikael [University of Eastern Finland, Institute of Biomedicine (Finland)

    2012-03-15

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein {sup 1}H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6-17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for {sup 1}H{alpha}, {sup 1}HN, {sup 13}C{alpha}, {sup 13}C{beta}, {sup 13}CO and backbone {sup 15}N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  4. Behaviour of bound residues of carbon-14 labelled organic environmental chemicals in vegetable materials

    International Nuclear Information System (INIS)

    Wallnoefer, P.; Koeniger, M.; Ziegler, W.

    1991-01-01

    Growing cultures of cell suspensions of tomato and maize were capable of partly integrating (radioactively labelled) chemicals like 4-nitrophenol or 2-nitroaniline into the cell wall structure. The rates of integration found range from 1.1 per cent (4-NP in tomato) to 7.7 per cent (2-NA in maize). Maize is more prone to form bound residues than tomato; moreover, the results point to a dependence on the chemical structure of the xenobiotic substance. Enzymatic-chemical disaggregation of the cell wall material revealed an uneven distribution of radioactivity in the individual fractions: Tomato cells stored 4-NP above all in the starch fraction and to a smaller extent in the protein fraction, while storage of 2-NA in starch, protein and hemicellulose was about equal. Maize cells integrated both substances preferably into lignin and to a distinctly smaller extent also into starch and protein. (orig.) [de

  5. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    International Nuclear Information System (INIS)

    Murray, A.M.

    1999-01-01

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS)

  6. Towars a chemical reagents and residues management at the teaching laboratories of the Chemistry School of the Universidad Nacional

    OpenAIRE

    Ana Cristina Benavides Benavides; Xinia Vargas González; Gustavo Chaves Barboza; José Ángel Rodríguez Corrales

    2016-01-01

    The academic activities carried out at the School of Chemistry make indispensable to develop actions oriented toward the consolidation of a reagent and residue management system, especially in the teaching laboratories. The project “Management of reagents and residues in the teaching laboratories of the School of Chemistry” works under the Green Chemistry values which designs products and chemical processes that reduce or eliminate the use and production of dangerous substances, to benefit th...

  7. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    Science.gov (United States)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  8. Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Joseph, D.; Jha, S.N.; Nayak, C.; Bhattacharyya, D.; Babu, P. Venu

    2014-01-01

    Uranium L 3 X-ray absorption edge was measured in various compounds containing uranium in U 4+ , U 5+ and U 5+ oxidation states. The measurements have been carried out at the Energy Dispersive EXAFS beamline (BL-08) at INDUS-2 synchrotron radiation source at RRCAT, Indore. Energy shifts of ∼ 2-3 eV were observed for U L 3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on U cation in the above compounds. (author)

  9. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Erlach, Markus Beck; Koehler, Joerg [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Crusca, Edson [University of São Paulo, Physics Institute of São Carlos (Brazil); Kremer, Werner [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Munte, Claudia E. [University of São Paulo, Physics Institute of São Carlos (Brazil); Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2016-06-15

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms {sup 1}H{sup α}, {sup 13}C{sup α} and {sup 13}C′ in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2} (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B{sub 1} and B{sub 2} are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.Graphical Abstract.

  10. Application of the Fenske-Hall molecular orbital method to the calculation of 11B NMR chemical shifts. Antipodal substituent effects in deltahedral clusters

    International Nuclear Information System (INIS)

    Fehlner, T.P.; Czech, P.T.; Fenske, R.F.

    1990-01-01

    Utilizing Fenske-Hall wave functions and eigenvalues combined with the Ramsey sum over states (SOS) approximation, it is demonstrated that the sign and magnitude of the paramagnetic contribution to the shielding correlates well with the observed 11 B chemical shifts of a substantial variety of boron- and metal-containing compounds. Analysis of the molecular orbital (MO) contributions in the SOS approximation leads to an explanation of the large downfield shifts associated with metal-rich metallaboranes. A similar analysis demonstrates the importance of selected cluster occupied and unoccupied MO's in explaining both exo-cage substituent effects in which the antipodal boron resonance is shifted upfield and endo-cage substituent effects (interchange of isolobal fragments within the cage framework) in which the antipodal boron resonance is shifted downfield. Exo- and endo-cage substitution perturbs these MO's in an understandable fashion, leading to an internally consistent explanation of the observed chemical shift changes. 36 refs., 8 figs., 4 tabs

  11. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    Science.gov (United States)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  12. Fate and possible nutritional and toxicological significance of methylbromide residues in fumigated cocoa beans. Coordinated programme on isotopic tracer-aided studies on foreign chemical residues in food

    International Nuclear Information System (INIS)

    Adomako, D.

    1975-03-01

    Methyl bromide residues in cocoa as a result of fumigation under practical conditions have been studied. Cocoa beans were exposed to 14 C-labelled CH 3 Br for 24 hours at 20-32degC and dosage 23.5 to 28mg/1 of fumigants (moisture content of 6-7%). Whole unroasted beans and their shells and nibs as well as shells and nibs of roasted (105degC for 30 min) beans were extracted separately with toluene (for free CH 3 Br) and the dried residues wet combusted. 14 C-activities were determined by liquid scintillation counting. Total methyl bromide (bound and free) was equivalent 83-98ppm in whole unroasted beans 35 hours after treatment and aeration, and 31, 15 and 10ppm after 7, 42 and 70 days respectively in one set of experiments and 37, 53 and 42ppm after 76, 60 and 51 days in another set. Approximately 80% of the residue occurred in the shells which constitute only 12 to 13% of unroasted beans. 99% of the total residues appeared to be in chemically-bound form. Roasting reduced the total residues by 32 to 62% in nibs and 3.6 to 14% in shells. A striking effect of roasting was the occurrence in roasted nibs of residues as (extractable) carbon-14 (62-82% of the total residues compared to 16.5 - 27% in unroasted nibs). The bound residues behaved as methylated derivatives whilst the volatile fraction behaved as volatile aroma compounds formed by Maillard type reactions from the 14 C-labelled amino acides and sugars

  13. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  14. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  15. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian

    2010-01-01

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of 13 C- 13 correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN n ν and RN n ν mixing sequences as well as heteronuclear RN n ν s ,ν k feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG) 97 -RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN n ν s ,ν k pulse sequences both 15 N- 13 C and 13 C- 15 N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D- 15 N- 13 C- 13 C and 13 C- 15 N-( 1 H)- 1 H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle χ in RNA. This was demonstrated by means of the (CUG) 97 -RNA. The simultaneous acquisition of all relevant crossing signals of the correlation spectra leads not only to an essential time saving, but

  16. Determination of hydration numbers of electrolytes from temperature dependence of PMR chemical shifts

    International Nuclear Information System (INIS)

    Subramanian, N.

    1979-01-01

    The method proposed by Malinowski et al. for the determination of effective hydration numbers (h) of electrolytes leads to a consistent incrrease in the observed values of 'h' with increase in solution concentration. An attempt is made to rationalize the experimental results by cosidering the simultaneous effects of temperature and concentration on the proton chemical shift. It is suggested that Malinowski's technique might yeld 'h' values very close to the true value for those ions for which there is a fortuitous cancellation of structure-making and structure-breaking properties. (Author) [pt

  17. Chemical characterization of candy made of Erva-Mate (Ilex paraguariensis A. St. Hil.) residue.

    Science.gov (United States)

    Vieira, Manoela A; Rovaris, Angela A; Maraschin, Marcelo; De Simas, Karina N; Pagliosa, Cristiane M; Podestá, Rossana; Amboni, Renata D M C; Barreto, Pedro L M; Amante, Edna R

    2008-06-25

    The aim of this work was to evaluate the chemical properties of the residues from erva-mate processing and also to determine the candy-making performance with addition of residues from erva-mate on consumers' acceptance and purchase intent of this new product. The candies containing different amounts of mate powder were evaluated through overall acceptability test and purchase intent. Mate powder showed high contents of dietary fiber, total ash, and total polyphenols. The total dietary fiber content of the mate candies ranged from 5.7 to 6.29% on a dry matter basis. Supplementation with mate powder caused significant increases in polyphenol and mineral contents of mate candies. The incorporation of mate powder increased the hardness of the candies and produced desirable results in their nutritional characteristics. The sensory tests indicated that mate candies were acceptable and approved in relation to purchase intent.

  18. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emel Maden; Güntert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2015-09-15

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  19. Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers

    Science.gov (United States)

    Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.

    2018-04-01

    In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.

  20. Radiotracer studies on the fate and transformation of pesticide residues in the environment and food chains. Part of a coordinated programme on isotopic-tracer-aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Lee, S.R.

    1980-10-01

    The magnitude and fate of some pesticide chemicals in Korean foods were studied with particular reference to oil-bearing crops and related products. Application of the chemicals was made under conditions of actual agricultural practice. Analytical methodologies included nuclear activation, gas chromatographic, spectrophotometric and radiotracer techniques. Residues of benzene hexachloride, heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin and DDT found in refined vegetable oil samples were below or within the tolerance limits set by international organizations and as such, these are unlikely to present any toxicological hazard to the consumer. Also, residues of the herbicides nitrogen, alachlor and butachlor applied to oil-bearing crops were not detected in the seeds. Studies on 14 C-BHC residues in rice revealed that polishing and washing play an important role in removing a considerable portion of the residue. Data on the arsenic-containing neoasozine residues suggest that the products consumed by the human (grain and oil) contained residues below the tolerance limit and are unlikely to present any toxicological hazard to the consumer. On the other hand, relatively high arsenic concentrations (2.2 mg/kg) were found in the cake (serving as animal feed) and should be carefully evaluated in the light of toxicological data

  1. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: 1H and 13C chemical shift assignments

    International Nuclear Information System (INIS)

    Facundo, Valdir A.; Morais, Selene M.; Braz Filho, Raimundo

    2004-01-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete 1 H and 13 C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  2. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Phoebe Dreux Chappell

    2013-09-01

    Full Text Available Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a three-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a three-month-old Haida eddy remained largely (>80% similar over a two-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  3. Applications of Chemical Shift Imaging to Marine Sciences

    Directory of Open Access Journals (Sweden)

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  4. Improvement of chemical shift selective saturation (CHESS) pulse for MR angiography

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Sashie, Hiroyuki; Hiraga, Akira; Matsuda, Tsuyoshi

    2000-01-01

    We improved the fat suppression technique based on chemical shift selective saturation (CHESS). To do this, we shortened the duration of the CHESS pulse to achieve a short repetition time (TR) for MR angiography (MRA). A short-duration CHESS pulse causes broad frequency band saturation, creating extensive offset from the resonance frequency of water. In our phantom experiment, the best parameters of the short-duration CHESS pulse were 3.84 ms in duration, -650 Hz in offset frequency from water resonance, and had a 130-degree flip angle. With this technique, MRA will be able to be carried out without a significant increase in TR. Thus, better vessel contrast will be maintained in time-of-flight (TOF) MRA or contrast-enhanced MRA when using the maximum intensity projection (MIP) method. (author)

  5. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  6. System for the chemical professing and evaluation gives the residual thickness the gives detecting for gives appearances LR115 type 2

    International Nuclear Information System (INIS)

    Carrazana Gonzalez, J.A.; Tomas Zerquera, J.; Prendes Alonso, M.

    1998-01-01

    In this work the system is described built in the CPHR for the homogeneous chemical processing gives detecting gives nuclear appearances. A new developed method is exposed, based on the application gives the technique optical densitometry, for the precise estimate gives the residual thickness, gives detecting, gives nuclear appearances LR115 type 2 after the process gives chemical engraving

  7. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  8. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate...... results fur the systems investigated, provided that relaxations of the valence electrons upon the core-hole transition are properly accounted for. Therefore, such calculations provide a powerful tool for identification of impurity states based on x-ray fluorescence data. Results for an Al impurity...

  10. Determining High-Quality Critical Body Residues for Multiple Species and Chemicals by Applying Improved Experimental Design and Data Interpretation Concepts

    DEFF Research Database (Denmark)

    van der Heijden, Stephan A.; Hermens, Joop L. M.; Sinnige, Theo L.

    2015-01-01

    Ecotoxicological effect data are generally expressed as effective concentrations in the external exposure medium and do thus not account for differences in chemical uptake, bioavailability, and metabolism, which can introduce substantial data variation. The Critical Body Residue (CBR) concept......, and by a factor of 2.6 between the three species but for individual chemicals. Accounting for the chemicals internal distribution to different partitioning domains and relating effects to estimated concentrations in the target compartment (i.e., membrane lipids) was expected to but did not decrease the overall...

  11. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  12. Unusual chemical properties of N-terminal histidine residues of glucagon and vasoactive intestinal peptide

    International Nuclear Information System (INIS)

    Hefford, M.A.; Evans, R.M.; Oda, G.; Kaplan, H.

    1985-01-01

    An N-terminal histidine residue of a protein or peptide has two functional groups, viz., an alpha-amino group and an imidazole group. A new procedure, based on the competitive labeling approach described by Duggleby and Kaplan has been developed by which the chemical reactivity of each functional group in such a residue can be determined as a function of pH. Only very small amounts of material are required, which makes it possible to determine the chemical properties in dilute solution or in proteins and polypeptides that can be obtained in only minute quantities. With this approach, the reactivity of the alpha-amino group of histidylglycine toward 1-fluoro-2,4-dinitrobenzene gave an apparent pK /sub a/ value of 7.64 +/- 0.07 at 37 degrees C, in good agreement with a value of 7.69 +/- 0.02 obtained by acid-base titration. However, the reactivity of the imidazole function gave an apparent pK /sub a/ value of 7.16 +/- 0.07 as compared to the pK /sub a/ value of 5.85 +/- 0.01 obtained by acid-base titration. Similarly, in glucagon and vasoactive intestinal peptide (VIP), apparent pKa values of 7.60 +/- 0.04 and 7.88 +/- 0.18, respectively, were obtained for the alpha-amino of their N-terminal histidine, and pKa values of 7.43 +/- 0.09 and 7.59 +/- 0.18 were obtained for the imidazole function

  13. Chemical shift assignments of the first and second RRMs of Nrd1, a fission yeast MAPK-target RNA binding protein.

    Science.gov (United States)

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2017-10-01

    Negative regulator differentiation 1 (Nrd1), a fission yeast RNA binding protein, modulates cytokinesis and sexual development and contributes to stress granule formation in response to environmental stresses. Nrd1 comprises four RRM domains and binds and stabilizes Cdc4 mRNA that encodes the myosin II light chain. Nrd1 binds the Cpc2 fission-yeast RACK1 homolog, and the interaction promotes Nrd1 localization to stress granules. Interestingly, Pmk1 mitogen-activated protein kinase phosphorylates Thr40 in the unstructured N-terminal region and Thr126 in the first RRM domain of Nrd1. Phosphorylation significantly reduces RNA-binding activity and likely modulates Nrd1 function. To reveal the relationship between the structure and function of Nrd1 and how phosphorylation affects structure, we used heteronuclear NMR techniques to investigate the three-dimensional structure of Nrd1. Here we report the 1 H, 13 C, and 15 N resonance assignments of RRM1-RRM2 (residues 108-284) comprising the first and second RRMs obtained using heteronuclear NMR techniques. Secondary structures derived from the chemical shifts are reported. These data should contribute to the understanding of the three-dimensional structure of the RRM1-RRM2 region of Nrd1 and the perturbation caused by phosphorylation.

  14. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  15. Assessing potential forest and steel inter-industry residue utilisation by sequential chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Makela, M.

    2012-10-15

    Traditional process industries in Finland and abroad are facing an emerging waste disposal problem due recent regulatory development which has increased the costs of landfill disposal and difficulty in acquiring new sites. For large manufacturers, such as the forest and ferrous metals industries, symbiotic cooperation of formerly separate industrial sectors could enable the utilisation waste-labeled residues in manufacturing novel residue-derived materials suitable for replacing commercial virgin alternatives. Such efforts would allow transforming the current linear resource use and disposal models to more cyclical ones and thus attain savings in valuable materials and energy resources. The work described in this thesis was aimed at utilising forest and carbon steel industry residues in the experimental manufacture of novel residue-derived materials technically and environmentally suitable for amending agricultural or forest soil properties. Single and sequential chemical extractions were used to compare the pseudo-total concentrations of trace elements in the manufactured amendment samples to relevant Finnish statutory limit values for the use of fertilizer products and to assess respective potential availability under natural conditions. In addition, the quality of analytical work and the suitability of sequential extraction in the analysis of an industrial solid sample were respectively evaluated through the analysis of a certified reference material and by X-ray diffraction of parallel sequential extraction residues. According to the acquired data, the incorporation of both forest and steel industry residues, such as fly ashes, lime wastes, green liquor dregs, sludges and slags, led to amendment liming capacities (34.9-38.3%, Ca equiv., d.w.) comparable to relevant commercial alternatives. Only the first experimental samples showed increased concentrations of pseudo-total cadmium and chromium, of which the latter was specified as the trivalent Cr(III). Based on

  16. Nonsuppressing normal thymus on chemical-shift MR imaging and anterior mediastinal lymphoma. Differentiation with diffusion-weighted MR imaging by using the apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Priola, Adriano Massimiliano; Priola, Sandro Massimo; Gned, Dario; Veltri, Andrea; Giraudo, Maria Teresa

    2018-01-01

    To prospectively evaluate usefulness of the apparent diffusion coefficient (ADC) in differentiating anterior mediastinal lymphoma from nonsuppressing normal thymus on chemical-shift MR, and to look at the relationship between patient age and ADC. Seventy-three young subjects (25 men, 48 women; age range, 9-29 years), who underwent chemical-shift MR and diffusion-weighted MR were divided into a normal thymus group (group A, 40 subjects), and a lymphoma group (group B, 33 patients). For group A, all subjects had normal thymus with no suppression on opposed-phase chemical-shift MR. Two readers measured the signal intensity index (SII) and ADC. Differences in SII and ADC between groups were tested using t-test. ADC was correlated with age using Pearson correlation coefficient. Mean SII±standard deviation was 2.7±1.8% for group A and 2.2±2.4% for group B, with no significant difference between groups (P=.270). Mean ADC was 2.48±0.38 x 10 -3 mm 2 /s for group A and 1.24±0.23 x 10 -3 mm 2 /s for group B. A significant difference between groups was found (P<.001), with no overlap in range. Lastly, significant correlation was found between age and ADC (r=0.935, P<.001) in group A. ADC of diffusion-weighted MR is a noninvasive and accurate parameter for differentiating lymphoma from nonsuppressing thymus on chemical-shift MR in young subjects. (orig.)

  17. MR chemical shift imaging and spectroscopy of atherosclerotic plaque

    International Nuclear Information System (INIS)

    Vinitski, S.; Consigny, P.M.; Shapiro, M.J.; Janes, N.; Smullens, S.N.; Rifkin, M.D.

    1989-01-01

    The purpose of this study was to develop a technique for in vivo imaging and characterization of atherosclerotic plaque. The authors used a spin-echo technique with a short echo time (TE) of 11 msec. Lipid/water suppression was achieved by means of hybrid chemical shift imaging. Lesions were induced in three rabbits by a combination of balloon denudation of the abdominal aorta and a high-cholesterol diet. Following in vivo imaging of these rabbit aortas and human carotid arteries (1.5 T), the animals were killed or carotid endarterectomy was performed so that the plaques could be excised. The plaques were then analyzed in vitro both histologically and with high-resolution spectroscopy (8.5 T). Use of the short TE improved lesion visualization. The fat/water suppression showed only a small amount of mobile lipids in plaque. Both MR spectroscopic and histologic analysis corroborated these images. The composition of atherosclerotic plaques in both humans and rabbits was demonstrated to be heterogeneous, with predominantly nonmobile lipids. These results suggest that the combination of short TE MR imaging and fat/water suppression can identify plaque and delineate areas containing mobile lipids

  18. Sulphate Removal from Water by Carbon Residue from Biomass Gasification: Effect of Chemical Modification Methods on Sulphate Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Hanna Runtti

    2016-02-01

    Full Text Available Sulphate removal from mine water is a problem because traditional chemical precipitation does not remove all sulphates. In addition, it creates lime sediment as a secondary waste. Therefore, an inexpensive and environmental-friendly sulphate removal method is needed in addition to precipitation. In this study, carbon residues from a wood gasification process were repurposed as precursors to a suitable sorbent for SO42- ion removal. The raw material was modified using ZnCl2, BaCl2, CaCl2, FeCl3, or FeCl2. Carbon residues modified with FeCl3 were selected for further consideration because the removal efficiency toward sulphate was the highest. Batch sorption experiments were performed to evaluate the effects of the initial pH, initial SO42- ion concentration, and contact time on sulphate removal. The removal of SO42- ions using Fe-modified carbon residue was notably higher compared with unmodified carbon residue and commercially available activated carbon. The sorption data exhibited pseudo-second-order kinetics. The isotherm analysis indicated that the sorption data of Fe-modified carbon residues can be represented by the bi-Langmuir isotherm model.

  19. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    International Nuclear Information System (INIS)

    Bellstedt, Peter; Herbst, Christian; Häfner, Sabine; Leppert, Jörg; Görlach, Matthias; Ramachandran, Ramadurai

    2012-01-01

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC′C and 3D C′NCA with sequential 13 C acquisitions, 3D NHH and 3D NC′H with sequential 1 H acquisitions and 3D CANH and 3D C’NH with broadband 13 C– 15 N mixing are demonstrated using microcrystalline samples of the β1 immunoglobulin binding domain of protein G (GB1) and the chicken α-spectrin SH3 domain.

  20. Calculation of 125Te NMR Chemical Shifts at the Full Four-Component Relativistic Level with Taking into Account Solvent and Vibrational Corrections: A Gateway to Better Agreement with Experiment.

    Science.gov (United States)

    Rusakova, Irina L; Rusakov, Yuriy Yu; Krivdin, Leonid B

    2017-06-29

    Four-component relativistic calculations of 125 Te NMR chemical shifts were performed in the series of 13 organotellurium compounds, potential precursors of the biologically active species, at the density functional theory level under the nonrelativistic and four-component fully relativistic conditions using locally dense basis set scheme derived from relativistic Dyall's basis sets. The relativistic effects in tellurium chemical shifts were found to be of as much as 20-25% of the total calculated values. The vibrational and solvent corrections to 125 Te NMR chemical shifts are about, accordingly, 6 and 8% of their total values. The PBE0 exchange-correlation functional turned out to give the best agreement of calculated tellurium shifts with their experimental values giving the mean absolute percentage error of 4% in the range of ∼1000 ppm, provided all corrections are taken into account.

  1. Analysis of Corrosion Residues Collected from the Aluminum Basket Rails of the High-Burnup Demonstration Cask.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    On September, 2015, an inspection was performed on the TN-32B cask that will be used for the high-burnup demonstration project. During the survey, wooden cribbing that had been placed within the cask eleven years earlier to prevent shifting of the basket during transport was removed, revealing two areas of residue on the aluminum basket rails, where they had contacted the cribbing. The residue appeared to be a corrosion product, and concerns were raised that similar attack could exist at more difficult-to-inspect locations in the canister. Accordingly, when the canister was reopened, samples of the residue were collected for analysis. This report presents the results of that assessment, which determined that the corrosion was due to the presence of the cribbing. The corrosion was associated with fungal material, and fungal activity likely contributed to an aggressive chemical environment. Once the cask has been cleaned, there will be no risk of further corrosion.

  2. Residue-specific description of non-native transient structures in the ensemble of acid-denatured structures of the all-beta protein c-src SH3

    DEFF Research Database (Denmark)

    Rösner, Heike I; Poulsen, Flemming Martin

    2010-01-01

    -src loop to the third beta-strand, exhibited an apparent helicity of nearly 45%. Furthermore, the RT loop and the diverging turn appeared to adopt non-native-like helical conformations. Interestingly, none of the residues found in transient helical conformations exhibited significant varphi-values [Riddle......Secondary chemical shift analysis has been used to characterize the unfolded state of acid-denatured c-src SH3. Even though native c-src SH3 adopts an all-beta fold, we found evidence of transient helicity in regions corresponding to native loops. In particular, residues 40-46, connecting the n...

  3. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  4. A New Paradigm for Chemical Engineering?

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    evidence of this change comes from the jobs taken by graduating chemical engineering professionals in North America, Europe, and some of the Asian countries. In terms of where the graduating chemical engineers are going to work, a clear shift from the commodity chemical industry to the product oriented...... businesses has been observed. There is an increasing trend within the chemical industry to focus on products and the sustainable processes that can make them. Do these changes point to a paradigm shift in chemical engineering as a discipline? Historically, two previous paradigm shifts in chemical engineering...... corresponded to major shifts in chemical engineering as a discipline, which affected not only the education of chemical engineers, but also the development of chemical engineering as a discipline. Has the time come for a new paradigm shift that will prepare the current and future chemical engineering graduates...

  5. 40 CFR 180.564 - Indoxacarb; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Indoxacarb; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.564 Indoxacarb; tolerances for residues. (a) General. Tolerances are established for residues of...

  6. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  7. Clinical application of 1H-chemical-shift imaging (CSI) to brain diseases

    International Nuclear Information System (INIS)

    Naruse, Shoji; Furuya, Seiichi; Ide, Mariko

    1992-01-01

    An H-1 chemical shift imaging (CSI) was developed as part of the clinical MRI system, by which magnetic resonance spectra (MRS) can be obtained from multiple small voxels and metabolite distribution in the brain can be visualized. The present study was to determine the feasibility and clinical potential of using an H-1 CSI. The device used was a Magnetom H 15 apparatus. The study population was comprised of 25 healthy subjects, 20 patients with brain tumor, 4 with ischemic disease, and 6 with miscellaneous degenerative disease. The H-1 CSI was obtained by the 3-dimensional Fourier transformation. After suppressing the lipid signal by the inversion-recovery method and the water signal by the chemical-shift selective pulse with a following dephasing gradient, 2-directional 16 x 16 phase encodings were applied to the 16 x 16∼18 x 18 cm field of view, in which a 8 x 8 x 2∼10 x 10 x 2 cm area was selected by the stimulated echo or spin-echo method. The metabolite mapping and its contour mapping were created by using the curve-fitted area, with interpolation to the 256 x 256 matrix. In the healthy group, high resolution spectra for N-acetyl aspartate (NAA), creatine, choline (Cho), and glutamine/glutamate were obtained from each voxel; and metabolite mapping and contour mapping also clearly showed metabolite distribution in the brain. In the group of brain tumor, an increased Cho and lactate and loss of NAA were observed, along with heterogeneity within the tumor and changes in the surrounding tissue; and there was a good correlation between lactate peak and tumor malignancy. The group of ischemic and degenerative disease had a decreased NAA and increased lactate on both spectra and metabolite mapping, depending on disease stage. These findings indicated that H-1 CSI is helpful for detecting spectra over the whole brain, as well as for determining metabolite distribution. (N.K.)

  8. Risk assessment and risk management at the Canadian Food Inspection Agency (CFIA): a perspective on the monitoring of foods for chemical residues.

    Science.gov (United States)

    Bietlot, Henri P; Kolakowski, Beata

    2012-08-01

    The Canadian Food Inspection Agency (CFIA) uses 'Ranked Risk Assessment' (RRA) to prioritize chemical hazards for inclusion in monitoring programmes or method development projects based on their relative risk. The relative risk is calculated for a chemical by scoring toxicity and exposure in the 'risk model scoring system' of the Risk Priority Compound List (RPCL). The relative ranking and the risk management options are maintained and updated in the RPCL. The ranking may be refined by the data generated by the sampling and testing programs. The two principal sampling and testing programmes are the National Chemical Residue Monitoring Program (NCRMP) and the Food Safety Action Plan (FSAP). The NCRMP sampling plans focus on the analysis of federally registered products (dairy, eggs, honey, meat and poultry, fresh and processed fruit and vegetable commodities, and maple syrup) for residues of veterinary drugs, pesticides, environmental contaminants, mycotoxins, and metals. The NCRMP is complemented by the Food Safety Action Plan (FSAP) targeted surveys. These surveys focus on emerging chemical hazards associated with specific foods or geographical regions for which applicable maximum residue limits (MRLs) are not set. The data from the NCRMP and FSAP also influence the risk management (follow-up) options. Follow-up actions vary according to the magnitude of the health risk, all with the objective of preventing any repeat occurrence to minimize consumer exposure to a product representing a potential risk to human health. © Her Majesty the Queen in Right of Canada 2012. Drug Testing and Analysis © 2012 John Wiley & Sons, Ltd.

  9. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  10. Stabilization of plutonium bearing residues at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bronson, M.C.; Van Konynenburg, R.A.; Ebbinghaus, B.B.

    1995-01-01

    The US Department of Energy's (US DOE) Lawrence Livermore National Laboratory (LLNL) has plutonium holdings including metal, oxide and residue materials, all of which need stabilization of some type. Residue materials include calcined ash, calcined precipitates, pyrochemical salts, glove box sweepings, metallurgical samples, graphite, and pyrochemical ceramic crucibles. These residues are typical of residues stored throughout the US DOE plutonium sites. The stabilization process selected for each of these residues requires data on chemical impurities, physical attributes, and chemical forms of the plutonium. This paper outlines the characterization and stabilization of LLNL ash residues, pyrochemical salts, and graphite

  11. Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

    Science.gov (United States)

    Ebert, M.; Worringen, A.; Benker, N.; Mertes, S.; Weingartner, E.; Weinbruch, S.

    2010-10-01

    During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and soot (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3-8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17-27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9-15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the separate components contained within the individual particles.

  12. Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

    Directory of Open Access Journals (Sweden)

    M. Ebert

    2011-03-01

    Full Text Available During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI. Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN were identified from the significant enrichment of particle groups in the ice residual (IR samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and carbonaceous material (C-O-S particles by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2. In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3–8 nm sized primary particles (PbS, elemental Pb. C-O-S particles are present in the IR at an abundance of 17–27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9–15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent, and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the sole knowledge of the main component of an individual particle.

  13. Mutational properties of amino acid residues: implications for evolvability of phosphorylatable residues

    DEFF Research Database (Denmark)

    Creixell, Pau; Schoof, Erwin M.; Tan, Chris Soon Heng

    2012-01-01

    in terms of their mutational activity. Moreover, we highlight the importance of the genetic code and physico-chemical properties of the amino acid residues as likely causes of these inequalities and uncover serine as a mutational hot spot. Finally, we explore the consequences that these different......; it is typically assumed that all amino acid residues are equally likely to mutate or to result from a mutation. Here, by reconstructing ancestral sequences and computing mutational probabilities for all the amino acid residues, we refute this assumption and show extensive inequalities between different residues...... mutational properties have on phosphorylation site evolution, showing that a higher degree of evolvability exists for phosphorylated threonine and, to a lesser extent, serine in comparison with tyrosine residues. As exemplified by the suppression of serine's mutational activity in phosphorylation sites, our...

  14. On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification

    Science.gov (United States)

    Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.

    2014-01-01

    Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362

  15. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  16. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena......An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  17. A residue-specific shift in stability and amyloidogenicity of antibody variable domains.

    Science.gov (United States)

    Nokwe, Cardine N; Zacharias, Martin; Yagi, Hisashi; Hora, Manuel; Reif, Bernd; Goto, Yuji; Buchner, Johannes

    2014-09-26

    Variable (V) domains of antibodies are essential for antigen recognition by our adaptive immune system. However, some variants of the light chain V domains (VL) form pathogenic amyloid fibrils in patients. It is so far unclear which residues play a key role in governing these processes. Here, we show that the conserved residue 2 of VL domains is crucial for controlling its thermodynamic stability and fibril formation. Hydrophobic side chains at position 2 stabilize the domain, whereas charged residues destabilize and lead to amyloid fibril formation. NMR experiments identified several segments within the core of the VL domain to be affected by changes in residue 2. Furthermore, molecular dynamic simulations showed that hydrophobic side chains at position 2 remain buried in a hydrophobic pocket, and charged side chains show a high flexibility. This results in a predicted difference in the dissociation free energy of ∼10 kJ mol(-1), which is in excellent agreement with our experimental values. Interestingly, this switch point is found only in VL domains of the κ family and not in VLλ or in VH domains, despite a highly similar domain architecture. Our results reveal novel insight into the architecture of variable domains and the prerequisites for formation of amyloid fibrils. This might also contribute to the rational design of stable variable antibody domains. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process.

    Science.gov (United States)

    Masarin, Fernando; Cedeno, Fernando Roberto Paz; Chavez, Eddyn Gabriel Solorzano; de Oliveira, Levi Ezequiel; Gelli, Valéria Cress; Monti, Rubens

    2016-01-01

    Biorefineries serve to efficiently utilize biomass and their by-products. Algal biorefineries are designed to generate bioproducts for commercial use. Due to the high carbohydrate content of algal biomass, biorefinery to generate biofuels, such as bioethanol, is of great interest. Carrageenan is a predominant polysaccharide hydrocolloid found in red macroalgae and is widely used in food, cosmetics, and pharmaceuticals. In this study, we report the biorefinery of carrageenan derived from processing of experimental strains of the red macroalgae Kappaphycus alvarezii. Specifically, the chemical composition and enzymatic hydrolysis of the residue produced from carrageenan extraction were evaluated to determine the conditions for efficient generation of carbohydrate bioproducts. The productivity and growth rates of K. alvarezii strains were assessed along with the chemical composition (total carbohydrates, ash, sulfate groups, proteins, insoluble aromatics, galacturonic acid, and lipids) of each strain. Two strains, brown and red, were selected based on their high growth rates and productivity and were treated with 6 % KOH for extraction of carrageenan. The yields of biomass from treatment with 6 % KOH solution of the brown and red strains were 89.3 and 89.5 %, respectively. The yields of carrageenan and its residue were 63.5 and 23 %, respectively, for the brown strain and 60 and 27.8 %, respectively, for the red strain. The residues from the brown and red strains were assessed to detect any potential bioproducts. The galactan, ash, protein, insoluble aromatics, and sulfate groups of the residue were reduced to comparable extents for the two strains. However, KOH treatment did not reduce the content of glucan in the residue from either strain. Glucose was produced by enzymatic hydrolysis for 72 h using both strains. The glucan conversion was 100 % for both strains, and the concentrations of glucose from the brown and red strains were 13.7 and 11.5 g L(-1

  19. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  20. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  1. Position of residues in transmembrane peptides with respect to the lipid bilayer: A combined lipid NOEs and water chemical exchange approach in phospholipid bicelles

    International Nuclear Information System (INIS)

    Glover, Kerney Jebrell; Whiles, Jennifer A.; Vold, Regitze R.; Melacini, Giuseppe

    2002-01-01

    The model transmembrane peptide P16 was incorporated into small unaligned phospholipid bicelles, which provide a 'native-like' lipid bilayer compatible with high-resolution solution NMR techniques. Using amide-water chemical exchange and amide-lipid cross-relaxation measurements, the interactions between P16 and bicelles were investigated. Distinctive intermolecular NOE patterns observed in band-selective 2D-NOESY spectra of bicellar solutions with several lipid deuteration schemes indicated that P16 is preferentially interacting with the 'bilayered' region of the bicelle rather than with the rim. Furthermore, when amide-lipid NOEs were combined with amide-water chemical exchange cross-peaks of selectively 15 N-labeled P16 peptides, valuable information was obtained about the position of selected residues relative to the membrane-water interface. Specifically, three main classes were identified. Class I residues lie outside the bilayer and show amide-water exchange cross-peaks but no amide-lipid NOEs. Class II residues reside in the bilayer-water interface and show both amide-water exchange cross-peaks and amide-lipid NOEs. Class III residues are embedded within the hydrophobic core of the membrane and show no amide-water exchange cross-peaks but strong amide-lipid NOEs

  2. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    Science.gov (United States)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  3. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

    2013-06-01

    Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

  4. Physico-chemical and sensorial evaluation of sugarcane spirits produced using distillation residue

    Directory of Open Access Journals (Sweden)

    Evandro Galvão Tavares Menezes

    2013-02-01

    Full Text Available The objective of the present study was to analyze the use of vinasse from cachaça as an ingredient of the fermentation medium for the spirit production. The fermentations were conducted out in three successive batches using a Saccharomyces cerevisiae isolate. In the first batch, the sugarcane broth was only diluted with distilled water. In the second and third batches, the fermentations were carried out using the cane broth diluted with vinasse from the distillation of the sugarcane wines of the first and second batches, respectively at a concentration of 10% (v/v. The spirits were submitted to the physicochemical and sensorial analyses. The results showed that vinasse addition did not affect the fermentation, distillation and chemical-sensorial quality of the beverage. Therefore, the vinasse addition could be an alternative use for that residue.

  5. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain.

    Science.gov (United States)

    Kieken, Fabien; Loth, Karine; van Nuland, Nico; Tompa, Peter; Lenaerts, Tom

    2018-04-01

    Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1 H, 15 N and 13 C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.

  6. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C’ scalar couplings (3hbJNC’)

    NARCIS (Netherlands)

    Bonvin, A.M.J.J.; Houben, K.; Guenneugues, M.N.L.; Kaptein, R.; Boelens, R.

    2001-01-01

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small alpha/beta protein

  7. SHIFTING WEED COMPOSITIONS AND BIOMASS PRODUCTION IN SWEET CORN FIELD TREATED WITH ORGANIC COMPOSTS AND CHEMICAL WEED CONTROLS

    Directory of Open Access Journals (Sweden)

    Marulak Simarmata

    2015-10-01

    Full Text Available The objectives of the research were to study the shift of weed compositions in sweet corn field treated with organic compost and chemical weed controls and to compare the effect of treatment combinations on weed growth, weed biomass and sweet corn biomass. The research was conducted in Bengkulu, Indonesia, from April to July 2014. Results showed that the number of weed species decreased after the trials from 14 to 13. There was a shift in weed compositions because 5 species of weeds did not emerge after the trials, but 4 new species were found. Chemical weed control used a herbiside mixture of atrazine and mesotrione applied during postemergence was the most effective method to control weeds, which was observed on decreased weed emergence and weed biomass down to 22.33 and 25.00 percent of control, respectively. Subsequently, biomass production of sweet corn increased up to 195.64 percent at the same trials. Biomass of weeds and sweet corn were also affected by the organic composts. Weed biomass was inhibited by treatment of composted empty fruith bunches of oil palm, whereas significantly increased of sweet corn biomass were observed in the plots of organic manure.

  8. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

    Science.gov (United States)

    Mälkiä, Annika; Madrid, Rodolfo; Meseguer, Victor; de la Peña, Elvira; Valero, María; Belmonte, Carlos; Viana, Félix

    2007-05-15

    TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates

  9. The contribution of chemical shift imaging with digital subtracting images to the diagnosis of steatohepatitis

    International Nuclear Information System (INIS)

    Guo Xinghua; Wang Juanping; Zhang Chongjie; Zheng Guofang; Fan Ruiqiang; Zhu Sumei; Liu Qiwang

    2006-01-01

    Objective: To investigate the diagnosis value of chemical shift imaging with digital subtracting in steatohepatitis. Methods: The in-phase images were subtracted by the out-phase ones in 34 cases of steatohepatitis, and the CNR were measured on these subtracted images to estimate the steatosis of the liver. The relationship of CT grade of steatohepatitis and CNR from the subtracted images was analyzed to evaluate the relationship between CNR and the degree of hepatic steatosis. The sensitivity and specificity of the subtracting and eyeballing methods were compared with chi-square test. Results: On the subtracted images, the liver and spleen were seen nearly the same aspects as low signals, CNR=0.98±0.06, meanwhile the spongy vertebra and the subcutaneous or abdominal lipid were seen as obvious higher signals in 52 normal cases. On the 34 steatohepatitis, scattered high signals were seen in the liver, which made the signal of liver higher than that of spleen, CNR=3.25±0.91--14.35±6.10. There was positive correlation between CNR and CT grade in the 34 cases of steatohepatitis, r=0.893, P<0.01. The sensitivity and specificity of the subtracting method were 88.24% and 94. 23%, significantly higher than that of the eyeballing results, 32.35% and 80.77%, P<0.01 and P<0.05. Conclusion: Chemical shift imaging with digital subtracting is a sensitive, specific, objective method to diagnose steatohepatitis and it is of potential ability for quantitative diagnosis. (authors)

  10. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  11. Combined echo offset (Dixon) and line volume chemical shift imaging as a clinical imaging protocol

    International Nuclear Information System (INIS)

    Listerud, J.; Chan, T.; Lenkinski, R.E.; Kressel, H.Y.; Chao, P.W.

    1989-01-01

    The authors have studied the sensitivity and specificity of the line-volume chemical-shift imaging (CSI) method as compared with the Dixon method they have recently implemented on a Signa, which supports a variety of options. Potential sources or error for the Dixon method include line broadening due to susceptibility, field inhomogeneity, and errors form olefinic resonances associated with fat, which behave like water in the Dixon regime. The authors investigate whether a combined Dixon/line-volume CSI method could be used to improve the placement of the line volume and to provide higher sensitivity and specificity than does the Dixon method alone

  12. Increased precision for analysis of protein-ligand dissociation constants determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-06-15

    NMR is ideally suited for the analysis of protein-protein and protein ligand interactions with dissociation constants ranging from {approx}2 {mu}M to {approx}1 mM, and with kinetics in the fast exchange regime on the NMR timescale. For the determination of dissociation constants (K{sub D}) of 1:1 protein-protein or protein-ligand interactions using NMR, the protein and ligand concentrations must necessarily be similar in magnitude to the K{sub D}, and nonlinear least squares analysis of chemical shift changes as a function of ligand concentration is employed to determine estimates for the parameters K{sub D} and the maximum chemical shift change ({Delta}{delta}{sub max}). During a typical NMR titration, the initial protein concentration, [P{sub 0}], is held nearly constant. For this condition, to determine the most accurate parameters for K{sub D} and {Delta}{delta}{sub max} from nonlinear least squares analyses requires initial protein concentrations that are {approx}0.5 Multiplication-Sign K{sub D}, and a maximum concentration for the ligand, or titrant, of {approx}10 Multiplication-Sign [P{sub 0}]. From a practical standpoint, these requirements are often difficult to achieve. Using Monte Carlo simulations, we demonstrate that co-variation of the ligand and protein concentrations during a titration leads to an increase in the precision of the fitted K{sub D} and {Delta}{delta}{sub max} values when [P{sub 0}] > K{sub D}. Importantly, judicious choice of protein and ligand concentrations for a given NMR titration, combined with nonlinear least squares analyses using two independent variables (ligand and protein concentrations) and two parameters (K{sub D} and {Delta}{delta}{sub max}) is a straightforward approach to increasing the accuracy of measured dissociation constants for 1:1 protein-ligand interactions.

  13. MR imaging of osteonecrosis using frequency selective chemical shift sequences; Neue Aspekte in der MR-Diagnostik der Osteonekrose: Selektive Fett/Wasser-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Duda, S H [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Laniado, M [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Schick, F [Inst. fuer Physik, Tuebingen Univ. (Germany)

    1994-12-31

    The MR appearance of osteonecrosis was assessed on selective fat- and water images to further evaluate the nature of double-line sign. Conventional T1- and T2-weighted SE and frequency selective chemical shift images of eight patients with avascular necrosis of the femoral head and three patients with bone infarcts were retrospectively reviewed. Eight of 11 patients showed a double-line sign on T2-weighted SE images. In these cases, correlation with selective water images revealed that a chemical shift artifact contributed to appearance and location of the hyperintense line. The authors conclude that chemical shift imaging improves our understanding of the nature of the double-line sign. (orig.) [Deutsch] Das MR-tomographische Erscheinungsbild der Osteonekrose auf selektiven Fett- und Wasserbildern wurde analysiert, um das in der Literatur beschriebene Doppellinienzeichen naeher zu untersuchen. Hierfuer wurden sowohl die herkoemmlichen T1- und T2-gewichteten Spin-Echo-Sequenzen herangezogen, als auch frequenzselektive Bilder, die aufgrund chemischer Verschiebung gewonnen wurden (1,5 T). Es wurden die Untersuchungen von acht Patienten mit avaskulaerer Hueftkopfnekrose und von drei Patienten mit Knocheninfarkten retrospektiv ausgewertet. Acht von 11 Patienten zeigten ein Doppellinienzeichen auf den T2-gewichteten Bildern. Die Korrelation mit den selektiven Wasserbildern ergab, dass durch chemische Verschiebung bedingte Artefakte das Erscheinungsbild und den Ort der hyperintensen Linie beeinflussten. Die Bildgebung mit Hilfe der chemischen Verschiebung verbessert unser Verstaendnis der MRT-Charakteristika der Osteonekrose. (orig.)

  14. Investigation of the structural preference and flexibility of the loop residues in amyloid fibrils of the HET-s prion.

    Science.gov (United States)

    Dolenc, Jožica; Meier, Beat H; Rusu, Victor H; van Gunsteren, Wilfred F

    2016-02-17

    The structural variability of a 16-residue loop (residues 246-261) which is in part disordered and connects two layers of the β-solenoid formed by the prion-form of HET-s and its prion domain HET-s(218-289) is investigated using molecular dynamics computer simulation. A system of three HET-s(218-289) molecules in a β-sheet structure as in the fibril is simulated in aqueous solution. The trajectory structures appear to be consistent with the Cα chemical shift data obtained. In order to delineate the influence of the β-sheet core of the fibril upon the structural variability of the loop, the latter is also simulated without the β-sheet core, but with its N- and C-terminal residues restrained at their positions in the fibril. The analysis of the trajectories shows that the structural variability of the loop is restricted by the β-sheet core, least at its N-terminal end and most in the middle of the trimer.

  15. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    Science.gov (United States)

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  16. Effect of residual water content on the physico-chemical properties of sucralfate dried gel obtained by microwave drying.

    Science.gov (United States)

    Gainotti, Alessandro; Losi, Elena; Bettini, Ruggero; Colombo, Paolo; Sonvico, Fabio; Baroni, Daniela; Santi, Patrizia; Colombo, Gaia

    2005-08-01

    The purpose of this study was to investigate the physico-chemical characteristics of sucralfate humid gel dried by microwaves, in relation to the residual water content. Differential scanning calorimetry (DSC) allowed for the determination of the water state in sucralfate samples. Fourier-transform infrared (FT-IR) spectroscopy was used to monitor the changes in sucralfate gel structure induced by the microwave drying. A boundary value of total water content for sucralfate gel samples was found at 42% (w/w). Below this value only bound water was present, whereas above this value, the increase in total water was due to free water. In the physical form of gel, the strength of the coordination between sulfate anions and the positively charged aluminum hydroxide was dependent on the residual water content. The study of the sedimentation behavior of water suspensions prepared with dried sucralfate allowed for the evaluation of the retention of gel properties. We found that the microwave drying process affected the sedimentation of sucralfate dried gel suspensions independent of the residual water content: when suspensions were prepared from sucralfate dried gel powders containing more than 42% (w/w) of residual water, the sedimentation ratio was higher than 0.9. The non-gel powder suspension showed a sedimentation ratio of 0.68 +/- 0.02, whereas the sucralfate humid gel suspension did not sediment.

  17. Chemical composition of Pleurotus pulmonarius (Fr. Quél., substrates and residue after cultivation

    Directory of Open Access Journals (Sweden)

    Silva Sueli Oliveira

    2002-01-01

    Full Text Available The cultivation of Pleurotus pulmonarius was carried out on different substrate: cotton waste (A leaves of Cymbopogon citratus (B and leaves of Panicum maximum Jacq. (C. The mushroom had a varied chemical composition; nevertheless they contained a good composition for to be used as a good source of protein for human kind. The results showed the higher protein content (29.19% and fibre (9.0% for the mushroom that were cultivated on cotton peel. The substrate composition and the residue composition after the mushroom harvest were: Protein for the substrate "A" (10.63% and 9.35%, "B" (7.87% and 4.24% and "C" (7.55% and 5.90 %; Lipids "A" (4.17% and 2.03%, "B"(2.77% and 3.20% and "C" (0.91% and 2.05%; Fibres "A" (49.02% and 37.02%, "B" (28.40% and 23.26% and "C" (37.50% and 26.66% respectively. The substrate "A" showed 0.048% of iron and "C" 0.14% of magnesium, 0.31% of potassium and 0.26% of calcium. In the substrate "B" the quantity of the minerals were very low in comparison to the other substrates. The residues after the harvest of mushroom could be used as fertiliser or as complement in the composition for animal feed.

  18. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    Science.gov (United States)

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.

  19. (DDT) and hexachlorohexane (HCH) pesticide residues in foodstuffs ...

    African Journals Online (AJOL)

    Dichloro-diphenyl-trichloro-ethane (DDT) and hexachlorohexane (HCH) pesticide residues in foodstuffs from markets in Ile-Ife, Nigeria. ... International Journal of Biological and Chemical Sciences ... Keywords: Dichlorodiphenyltrichloroethane, hexachlorocyclohexane, pesticide, residue, cowpea grain, yam chip.

  20. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies.

    Science.gov (United States)

    Lin, Jonathan S; Hwang, Ken-Pin; Jackson, Edward F; Hazle, John D; Stafford, R Jason; Taylor, Brian A

    2013-10-01

    A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0

  1. Extended averaging phase-shift schemes for Fizeau interferometry on high-numerical-aperture spherical surfaces

    Science.gov (United States)

    Burke, Jan

    2010-08-01

    Phase-shifting Fizeau interferometry on spherical surfaces is impaired by phase-shift errors increasing with the numerical aperture, unless a custom optical set-up or wavelength shifting is used. This poses a problem especially for larger numerical apertures, and requires good error tolerance of the phase-shift method used; but it also constitutes a useful testing facility for phase-shift formulae, because a vast range of phase-shift intervals can be tested in a single measurement. In this paper I show how the "characteristic polynomials" method can be used to generate a phase-shifting method for the actual numerical aperture, and analyse residual cyclical phase errors by comparing a phase map from an interferogram with a few fringes to a phase mpa from a nulled fringe. Unrelated to the phase-shift miscalibration, thirdharmonic error fringes are found. These can be dealt with by changing the nominal phase shift from 90°/step to 60°/step and re-tailoring the evaluation formula for third-harmonic rejection. The residual error has the same frequency as the phase-shift signal itself, and can be removed by averaging measurements. Some interesting features of the characteristic polynomials for the averaged formulae emerge, which also shed some light on the mechanism that generates cyclical phase errors.

  2. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Farshchian, Nazanin, E-mail: farshchian.n@gmail.com [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Tamari, Saghar; Farshchian, Negin [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Madani, Hamid [Department of Pathology, Imam-Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Rezaie, Mansour [Department of Biostatistics, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Mohammadi-Motlagh, Hamid-Reza, E-mail: mohammadimotlagh@gmail.com [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2011-11-15

    Purpose: Today, distinguishing metastatic lymph nodes from secondary benign inflammatory ones via using non-invasive methods is increasingly favorable. In this study, the diagnostic value of chemical shift artifact (CSA) in magnetic resonance imaging (MRI) was evaluated to distinguish benign lymphadenopathy. Subjects and methods: A prospective intraindividual internal review board-approved study was carried out on 15 men and 15 women having lymphadenopathic lesions in different locations of the body who underwent contrast-enhanced dynamic MR imaging at 1.5 T. Then, the imaging findings were compared with pathology reports, using the statistics analyses. Results: Due to the findings of the CSA existence in MRI, a total of 56.7% of the studied lesions (17 of 30) were identified as benign lesions and the rest were malignant, whereas the pathology reports distinguished twelve malignant and eighteen benign cases. Furthermore, the CSA findings comparing the pathology reports indicated that CSA, with confidence of 79.5%, has a significant diagnostic value to differentiate benign lesions from malignant ones. Conclusion: Our study demonstrated that CSA in MR imaging has a suitable diagnostic potential nearing readiness for clinical trials. Furthermore, CSA seems to be a feasible tool to differentiate benign lymph nodes from malignant ones; however, further studies including larger numbers of patients are required to confirm our results.

  3. Evidence of chemical-potential shift with hole doping in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Shen, Z.; Dessau, D.S.; Wells, B.O.; Olson, C.G.; Mitzi, D.B.; Lombado, L.; List, R.S.; Arko, A.J.

    1991-01-01

    We have performed photoemission studies on high-quality Bi 2 Sr 2 CaCu 2 O 8+δ samples with various δ. Our results show a clear chemical-potential shift (0.15--0.2 eV) as a function of doping. This result and the existing angle-resolved-photoemission data give a rather standard doping behavior of this compound in its highly doped regime

  4. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Laursen, Louise Vagner; Elstrøm, Ulrik Vindelev; Vestergaard, Anne; Muren, Ludvig P.; Petersen, Jørgen Baltzer; Lindegaard, Jacob Christian; Grau, Cai; Tanderup, Kari

    2012-01-01

    Purpose: Due to the often quite extended treatment fields in cervical cancer radiotherapy, uncorrected rotational set-up errors result in a potential risk of target miss. This study reports on the residual rotational set-up error after using daily cone beam computed tomography (CBCT) to position cervical cancer patients for radiotherapy treatment. Methods and materials: Twenty-five patients with locally advanced cervical cancer had daily CBCT scans (650 CBCTs in total) prior to treatment delivery. We retrospectively analyzed the translational shifts made in the clinic prior to each treatment fraction as well as the residual rotational errors remaining after translational correction. Results: The CBCT-guided couch movement resulted in a mean translational 3D vector correction of 7.4 mm. Residual rotational error resulted in a target shift exceeding 5 mm in 57 of the 650 treatment fractions. Three patients alone accounted for 30 of these fractions. Nine patients had no shifts exceeding 5 mm and 13 patients had 5 or less treatment fractions with such shifts. Conclusion: Twenty-two of the 25 patients have none or few treatment fractions with target shifts larger than 5 mm due to residual rotational error. However, three patients display a significant number of shifts suggesting a more systematic set-up error.

  5. {sup 31}P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging; P-MR-Spektroskopie aller Wandabschnitte des menschlichen Herzens bei 1,5 T mit akquisitionsgewichteter Chemical-shift-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Koestler, H.; Beer, M.; Buchner, S.; Sandstede, J.; Pabst, T.; Kenn, W.; Hahn, D. [Wuerzburg Univ. (Germany). Abt. fuer Roentgendiagnostik; Landschuetz, W.; Kienlin, M. von [Wuerzburg Univ. (Germany). Physikalisches Inst.; Neubauer, S. [Dept. of Cardiovascular Medicine, John Radcliffe Hospital, Oxford (United Kingdom)

    2001-12-01

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac {sup 31}P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders {sup 31}P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.) [German] Ziel: Ziel der Arbeit war es zu untersuchen, ob die akquisitionsgewichtete Chemical-shift-Bildgebung (AW-CSI) die Bestimmung von PCr und ATP in der Seiten- und Hinterwand des menschlichen Herzens an einem klinischen 1,5 T MR-Tomographen erlaubt. Methoden: 12 gesunde Probanden wurden jeweils mit einer chemical shift imaging (CSI) und einer AW-CSI-Sequenz untersucht. Die Sequenzen unterschieden sich lediglich in der Anzahl der Wiederholungen der einzelnen

  6. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  7. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  8. H-1 chemical shift imaging of the brain in guanidino methyltransferase deficiency, a creatine deficiency syndrome; guanidinoacetate accumulation in the gray matter

    NARCIS (Netherlands)

    Sijens, PE; Verbruggen, KT; Meiners, LC; Soorani-Lunsing, RJ; Rake, JP; Oudkerk, M

    MR spectroscopy results in a mild case of guanidinoacetate methyltransferase (GAMT) deficiency are presented. The approach differs from previous MRS studies in the acquisition of a chemical shift imaging spectral map showing gray and white matter with the corresponding spectra in one overview. MR

  9. Saturated amine oxides: Part 8. Hydroacridines: Part 27. Effects of N-oxidation and of N-quaternization on the 15N NMR chemical shifts of N-methylpiperidine-derived mono-, bi-, and tricycloaliphatic tertiary amines.

    Science.gov (United States)

    Potmischil, Francisc; Duddeck, Helmut; Nicolescu, Alina; Deleanu, Calin

    2007-03-01

    The (15)N chemical shifts of 13 N-methylpiperidine-derived mono-, bi- and tricycloaliphatic tertiary amines, their methiodides and their N-epimeric pairs of N-oxides were measured, and the contributions of specific structural parameters to the chemical shifts were determined by multilinear regression analysis. Within the examined compounds, the effects of N-oxidation upon the (15)N chemical shifts of the amines vary from +56 ppm to +90 ppm (deshielding), of which approx. +67.7 ppm is due to the inductive effect of the incoming N(+)--O(-) oxygen atom, whereas the rest is due to the additive shift effects of the various C-alkyl substituents of the piperidine ring. The effects of quaternization vary from -3.1 ppm to +29.3 ppm, of which approx. +8.9 ppm is due to the inductive effect of the incoming N(+)--CH(3) methyl group, and the rest is due to the additive shift effects of the various C-alkyl substituents of the piperidine ring. The shift effects of the C-alkyl substituents in the amines, the N-oxides and the methiodides are discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Correlates to sleepiness on night shift among male workers engaged in three-shift work in a chemical plant: its association with sleep practice and job stress.

    Science.gov (United States)

    Kageyama, Takayuki; Kobayashi, Toshio; Abe-Gotoh, Ayano

    2011-01-01

    The purpose of this study was to examine the correlation of sleepiness during night shift (SNS) in male shiftworkers with nonpharmacological self-management (nPSM) practices to facilitate good day sleep, and also with job stress. Sleepiness on the job and possible correlates to SNS among 157 male shiftworkers in a rotating three-shift schedule at a chemical plant were cross-sectionally investigated using a self-administered questionnaire. Multivariate analyses revealed that SNS was positively associated with drinking alcoholic beverages before day sleep, but inversely associated with subjective health status, being of the evening type, abstaining from caffeine before day sleep, having a bath before day sleep, job control, reward from work, feeling suited to the job, and support from colleagues. SNS correlated with certain nPSM practices and also with possible modifiers of job stress. These findings provide clues to developing countermeasures against SNS among shiftworkers. The effects of nPSM practices and job stress management on their day sleep and SNS should be examined in detail.

  11. Estimates of diet selection in cattle grazing cornstalk residues by measurement of chemical composition and near infrared reflectance spectroscopy of diet samples collected by ruminal evacuation.

    Science.gov (United States)

    Petzel, Emily A; Smart, Alexander J; St-Pierre, Benoit; Selman, Susan L; Bailey, Eric A; Beck, Erin E; Walker, Julie A; Wright, Cody L; Held, Jeffrey E; Brake, Derek W

    2018-05-04

    Six ruminally cannulated cows (570 ± 73 kg) fed corn residues were placed in a 6 × 6 Latin square to evaluate predictions of diet composition from ruminally collected diet samples. After complete ruminal evacuation, cows were fed 1-kg meals (dry matter [DM]-basis) containing different combinations of cornstalk and leaf and husk (LH) residues in ratios of 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. Diet samples from each meal were collected by removal of ruminal contents after 1-h and were either unrinsed, hand-rinsed or machine-rinsed to evaluate effects of endogenous compounds on predictions of diet composition. Diet samples were analyzed for neutral (NDF) and acid (ADF) detergent fiber, acid detergent insoluble ash (ADIA), acid detergent lignin (ADL), crude protein (CP), and near infrared reflectance spectroscopy (NIRS) to calculate diet composition. Rinsing type increased NDF and ADF content and decreased ADIA and CP content of diet samples (P content of diet samples. Differences in concentration between cornstalk and LH residues within each chemical component were standardized by calculating a coefficient of variation (CV). Accuracy and precision of estimates of diet composition were analyzed by regressing predicted diet composition and known diet composition. Predictions of diet composition were improved by increasing differences in concentration of chemical components between cornstalk and LH residues up to a CV of 22.6 ± 5.4%. Predictions of diet composition from unrinsed ADIA and machine-rinsed NIRS had the greatest accuracy (slope = 0.98 and 0.95, respectively) and large coefficients of determination (r2 = 0.86 and 0.74, respectively). Subsequently, a field study (Exp. 2) was performed to evaluate predictions of diet composition in cattle (646 ± 89 kg) grazing corn residue. Five cows were placed in 1 of 10 paddocks and allowed to graze continuously or to strip-graze corn residues. Predictions of diet composition from ADIA, ADL, and NIRS did not

  12. Direct methods and residue type specific isotope labeling in NMR structure determination and model-driven sequential assignment

    International Nuclear Information System (INIS)

    Schedlbauer, Andreas; Auer, Renate; Ledolter, Karin; Tollinger, Martin; Kloiber, Karin; Lichtenecker, Roman; Ruedisser, Simon; Hommel, Ulrich; Schmid, Walther; Konrat, Robert; Kontaxis, Georg

    2008-01-01

    Direct methods in NMR based structure determination start from an unassigned ensemble of unconnected gaseous hydrogen atoms. Under favorable conditions they can produce low resolution structures of proteins. Usually a prohibitively large number of NOEs is required, to solve a protein structure ab-initio, but even with a much smaller set of distance restraints low resolution models can be obtained which resemble a protein fold. One problem is that at such low resolution and in the absence of a force field it is impossible to distinguish the correct protein fold from its mirror image. In a hybrid approach these ambiguous models have the potential to aid in the process of sequential backbone chemical shift assignment when 13 C β and 13 C' shifts are not available for sensitivity reasons. Regardless of the overall fold they enhance the information content of the NOE spectra. These, combined with residue specific labeling and minimal triple-resonance data using 13 C α connectivity can provide almost complete sequential assignment. Strategies for residue type specific labeling with customized isotope labeling patterns are of great advantage in this context. Furthermore, this approach is to some extent error-tolerant with respect to data incompleteness, limited precision of the peak picking, and structural errors caused by misassignment of NOEs

  13. System for chemical decontamination of nuclear reactor primary systems

    International Nuclear Information System (INIS)

    Schlonski, J.S.; McGiure, M.F.; Corpora, G.J.

    1992-01-01

    This patent describes a method of chemically decontaminating a nuclear reactor primary system, having a residual heat removal system with one or more residual heat removal heat exchangers, each having an upstream and a downstream side, at or above ambient pressure. It comprises: injecting decontamination chemicals using an injection means; circulating the injected decontamination chemicals throughout the primary system; directing the circulated decontamination chemicals and process fluids to a means for removing suspended solids and dissolved materials after the circulated chemicals and process fluids have passed through the residual heat removal heat exchanger; decontaminating the process fluids; and feeding the decontaminated process fluids to the injection means. This patent also describes a chemical decontamination system for use at, or above, ambient pressure in a nuclear reactor primary system having a residual heat removal system. It comprises: means for injecting decontamination chemicals into the primary system; means for removing dissolved and suspended materials and decontamination chemicals from the primary system; one or more residual heat removal pumps; means located downstream of one of the residual heat removal heat exchangers; and a return line connecting the means

  14. Transport and Application of Heat-Activated Persulfate for In-situ Chemical Oxidation of Residual Trichloroethylene

    Science.gov (United States)

    Quig, L.; Johnson, G. R.

    2015-12-01

    Persulfate ISCO has been shown to treat a wide range of contaminants. While persulfate ISCO can be tailored to site and pollutant specific characteristics (e.g., activation via energy or catalysis), thermal activation of persulfate is particularly promising as it can be easily controlled and requires no additional reagents. A mechanistic study of the physical and chemical processes controlling the effectiveness of this remedial approach is not well documented in the literature with much therein focused on reactions in batch systems. The purpose of this research was twofold. Initial studies characterized the overall transport behavior of unactivated and thermally-activated persulfate (20, 60, and 90°C) in one-dimensional soil column systems. Finally, experiments were conducted to investigate persulfate ISCO as a remedial approach for residual-phase trichloroethylene (TCE). At all activation temperatures investigated, persulfate exhibited ideal transport behavior in miscible displacement experiments. Moment analysis of persulfate ion breakthrough curves indicated negligible interaction of persulfate with the natural sandy material. Persulfate ISCO for residual-phase TCE was characterized at two flow rates, 0.2 mL/min and 0.5 mL/min, resulting in two degrees of persulfate activation, 39.5% and 24.6%, respectively. Both ISCO soil column systems showed an initial, long-term plateau in effluent TCE concentrations indicating steady-state dissolution of pure phase TCE. Observed effluent concentrations decreased after 75 and 100 pore volumes (normalized for the measured residual NAPL fraction) compared to 110 pore volumes in the control study. Pseudo first-order reaction rate constants for the decreasing TCE concentrations equaled 0.063/hr and 0.083/hr, respectively, compared to 0.041/hr for the control. Moment analysis of the complete dissolution of TCE in the persulfate/activated persulfate remediation systems indicated approximately 33% oxidation of TCE mass present. By

  15. Sensor fault-tolerant control for gear-shifting engaging process of automated manual transmission

    Science.gov (United States)

    Li, Liang; He, Kai; Wang, Xiangyu; Liu, Yahui

    2018-01-01

    Angular displacement sensor on the actuator of automated manual transmission (AMT) is sensitive to fault, and the sensor fault will disturb its normal control, which affects the entire gear-shifting process of AMT and results in awful riding comfort. In order to solve this problem, this paper proposes a method of fault-tolerant control for AMT gear-shifting engaging process. By using the measured current of actuator motor and angular displacement of actuator, the gear-shifting engaging load torque table is built and updated before the occurrence of the sensor fault. Meanwhile, residual between estimated and measured angular displacements is used to detect the sensor fault. Once the residual exceeds a determined fault threshold, the sensor fault is detected. Then, switch control is triggered, and the current observer and load torque table estimates an actual gear-shifting position to replace the measured one to continue controlling the gear-shifting process. Numerical and experiment tests are carried out to evaluate the reliability and feasibility of proposed methods, and the results show that the performance of estimation and control is satisfactory.

  16. Pesticide residues in birds and mammals

    Science.gov (United States)

    Stickel, L.F.; Edwards, C.A.

    1973-01-01

    SUMMARY: Residues of organochlorine pesticides and their breakdown products are present in the tissues of essentially all wild birds throughout the world. These chemicals accumulate in fat from a relatively small environmental exposure. DDE and dieldrin are most prevalent. Others, such as heptachlor epoxide, chlordane, endrin, and benzene hexachloride also occur, the quantities and kinds generally reflecting local or regional use. Accumulation may be sufficient to kill animals following applications for pest control. This has occurred in several large-scale programmes in the United States. Mortality has also resulted from unintentional leakage of chemical from commercial establishments. Residues may persist in the environment for many years, exposing successive generations of animals. In general, birds that eat other birds, or fish, have higher residues than those that eat seeds and vegetation. The kinetic processes of absorption, metabolism, storage, and output differ according to both kind of chemical and species of animal. When exposure is low and continuous, a balance between intake and excretion may be achieved. Residues reach a balance at an approximate animal body equilibrium or plateau; the storage is generally proportional to dose. Experiments with chickens show that dieldrin and heptachlor epoxide have the greatest propensity for storage, endrin next, then DDT, then lindane. The storage of DDT was complicated by its metabolism to DDE and DDD, but other studies show that DDE has a much greater propensity for storage than either DDD or DDT. Methoxychlor has little cumulative capacity in birds. Residues in eggs reflect and parallel those in the parent bird during accumulation, equilibrium, and decline when dosage is discontinued. Residues with the greatest propensity for storage are also lost most slowly. Rate of loss of residues can be modified by dietary components and is speeded by weight loss of the animal. Under sublethal conditions of continuous

  17. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  18. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  19. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  20. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    Science.gov (United States)

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  1. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of /sup 13/C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A.; Bzhezovskii, V.M.; Kushnarev, D.F.; Proidakov, A.G. (Irkutskii Gosudarstvennyj Univ. (USSR))

    1981-06-01

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on /sup 13/C chemical shifts in eleven isological series of R/sup 1/-Eh-R/sup 2/ unsaturated compounds are compared. A linear relation between /sup 13/C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on /sup 13/C chemical shifts of R/sup 1/ and R/sup 2/ substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms.

  2. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    Science.gov (United States)

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  3. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Novotný, J.; Straka, Michal; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R.

    2015-01-01

    Roč. 17, č. 38 (2015), s. 24944-24955 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : NMR chemical shifts * transition metal complexes * relativistic effects * method calibration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04214c

  4. High-Frequency H-1 NMR Chemical Shifts of Sn-II and Pb-II Hydrides Induced by Relativistic Effects: Quest for Pb-II Hydrides

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 20 (2016), s. 10302-10309 ISSN 0020-1669 Institutional support: RVO:61388963 Keywords : hydrides of TlI and PbII * high-frequency 1H chemical shifts * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  5. Propoxur (2-iso propoxy-phenyl-N-methylcarbamate) residues in cocoa beans. Part of a coordinated programme on isotopic-tracer aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Adomako, D.

    1982-05-01

    Pod-bearing Amazon and Amelonado cocoa plants were sprayed with Unden 20% (propoxur, arprocarb, baygon) at the recommended rate of 210 g a.i./ha and twice the recommended rate at monthly intervals from July to October 1976, and cured beans from the ripe pods analysed for propoxur residues by gas chromatography. In a radiotracer study with 14 C-labelled propoxur, the effect of processing methods on residues and systemic uptake of propoxur from insecticide deposits on pod surfaces were also investigated. Residues did not exceed 0.03 mg/kg. There was no relationship between residues and harvesting time, cocoa type or rate of application. Contamination of beans with insecticide deposits on the pod surface during processing, and systemic uptake of insecticide from pod surfaces were negligible. Experiments were also designed to provide data on 14 C-propoxur residues in cocoa beans, uptake of the chemical from pod surfaces and persistence on the leaves and in the soil. Leaves were picked from the lowest five branches of the cocoa trees, 13 months after the application of 14 C-propoxur, dried at 80 0 for 4 days, stored and analysed for their 14 C-activity. Soil samples were collected at 15 cm and 30 cm distances from the trunk base of treated trees, dried, stored and analysed. The analytical procedure involved extraction and clean-up steps after a standard method using acetone, chloroform and a coagulating agent. Propoxur residues in cocoa leaves collected 13 months after the insecticide application ranged from 0.01 to 0.04 mg/kg. Residues in shells from cocoa pods treated with 14 C-propoxur 2 months prior to harvest did not exceed 0.02 mg/kg. Propoxur residues in soil samples collected at 6, 16, and 19 months following application ranged from 0.01 to 0.03 mg/kg. These low levels are probably related to volatilization and heavy rains. Possible binding to soil cannot be precluded. The low levels of propoxur are unlikely to present any toxicological hazard to humans

  6. Recovery of transuranics from process residues

    International Nuclear Information System (INIS)

    Gray, J.H.; Gray, L.W.

    1987-01-01

    Process residues are generated at both the Rocky Flats Plant (RFP) and the Savannah River Plant (SRP) during aqueous chemical and pyrochemical operations. Frequently, process operations will result in either impure products or produce residues sufficiently contaminated with transuranics to be nondiscardable as waste. Purification and recovery flowsheets for process residues have been developed to generate solutions compatible with subsequent Purex operations and either solid or liquid waste suitable for disposal. The ''scrub alloy'' and the ''anode heel alloy'' are examples of materials generated at RFP which have been processed at SRP using the developed recovery flowsheets. Examples of process residues being generated at SRP for which flowsheets are under development include LECO crucibles and alpha-contaminated hydraulic oil

  7. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Refined Model for the Structure of Acireductone Dioxygenase from Klebsiella ATCC 8724 Incorporating Residual Dipolar Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Pochapsky, Thomas C., E-mail: pochapsk@brandeis.edu; Pochapsky, Susan S.; Ju Tingting [Brandeis University, Department of Chemistry (United States); Hoefler, Chris [Brandeis University, Department of Biochemistry (United States); Liang Jue [Brandeis University, Department of Chemistry (United States)

    2006-02-15

    Acireductone dioxygenase (ARD) from Klebsiella ATCC 8724 is a metalloenzyme that is capable of catalyzing different reactions with the same substrates (acireductone and O{sub 2}) depending upon the metal bound in the active site. A model for the solution structure of the paramagnetic Ni{sup 2+}-containing ARD has been refined using residual dipolar couplings (RDCs) measured in two media. Additional dihedral restraints based on chemical shift (TALOS) were included in the refinement, and backbone structure in the vicinity of the active site was modeled from a crystallographic structure of the mouse homolog of ARD. The incorporation of residual dipolar couplings into the structural refinement alters the relative orientations of several structural features significantly, and improves local secondary structure determination. Comparisons between the solution structures obtained with and without RDCs are made, and structural similarities and differences between mouse and bacterial enzymes are described. Finally, the biological significance of these differences is considered.

  9. Physical and chemical properties of ice residuals during the 2013 and 2014 CLACE campaigns

    Science.gov (United States)

    Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Hammer, Emanuel; Gysel, Martin; Färber, Raphael; Fuchs, Claudia; Schnaiter, Martin; Baltensperger, Urs; Schmidt, Susan; Schneider, Johannes; Bigi, Alessandro; Toprak, Emre; Linke, Claudia; Klimach, Thomas

    2014-05-01

    The shortcomings in our understanding and, thus, representation of aerosol-cloud interactions are one of the major sources of uncertainty in climate model projections. Among the poorly understood processes is mixed-phase cloud formation via heterogeneous nucleation, and the subsequent spatial and temporal evolution of such clouds. Cloud glaciation augments precipitation formation, resulting in decreased cloud cover and lifetime, and affects cloud radiative properties. Meanwhile, the physical and chemical properties of atmospherically relevant ice nuclei (IN), the sub-population of aerosol particles which enable heterogeneous nucleation, are not well known. Extraction of ice residuals (IR) in mixed-phase clouds is a difficult task, requiring separation of the few small, freshly formed ice crystals (the IR within such crystals can be deemed representative of the original IN) not only from interstitial particles, but also from the numerous supercooled droplets which have aerodynamic diameters similar to those of the ice crystals. In order to address the difficulties with ice crystal sampling and IR extraction in mixed-phase clouds, the new Ice Selective Inlet (ISI) has been designed and deployed at the Jungfraujoch field site. Small ice crystals are selectively sampled via the inlet with simultaneous counting, sizing and imaging of hydrometeors contained in the cloud by a set of optical particle spectrometers, namely Welas optical particle counters (OPC) and a Particle Phase Discriminator (PPD). The heart of the ISI is a droplet evaporation unit with ice-covered inner walls, resulting in removal of droplets using the Wegener-Bergeron-Findeisen process, while transmitting a relatively high fraction of small ice crystals. The ISI was deployed in the winters of 2013 and 2014 at the high alpine Jungfraujoch site (3580 m.a.s.l) during the intensive CLACE field campaigns. The measurements focused on analysis of the physical and chemical characteristics of IR and the

  10. Creatinine and creatininium cation in water solution. Tautomerism and quantitative interpretation of the solution acidity effect on 1H, 13C and 1:4N NMR chemical shifts

    International Nuclear Information System (INIS)

    Kotsyubynskyy, D.; Molchanov, S.; Gryff-Keller, A.

    2004-01-01

    1 H, 13 C and 1 :4N NMR chemical shifts for creatinine in water solution of various acidity have been measured. Analysis of these data enabled determination of the acidity constant of creatininium cation and the chemical shifts of the neutral and protonated forms of creatinine. Molecular energies and carbon and nitrogen magnetic shielding constants for various tautomeric structures of the investigated species have been calculated using the quantum chemistry method GIAO DFT B3LYP/6-311++G(2d,p). Compilation of the available experimental and theoretical results has provided additional information on the problem of tautomerism of this important biological molecule. (author)

  11. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    Science.gov (United States)

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  12. Hazardous properties of paint residues from the furniture industry.

    Science.gov (United States)

    Vaajasaari, Kati; Kulovaara, Maaret; Joutti, Anneli; Schultz, Eija; Soljamo, Kari

    2004-01-30

    The objective of this study was to screen nine excess paint residues for environmental hazard and to evaluate their disposability in a non-hazardous or hazardous-waste landfill. These residues were produced in the process of spray-painting furniture. Residues were classified according to their leaching and ecotoxicological properties. Leaching properties were determined with the European standard SFS-EN 12457-2 leaching-test. The toxicity of the leaching-test eluates was measured with plant-, bacteria- and enzyme-inhibition bioassays. Total organic carbon, formaldehyde and solvent concentrations in the solid wastes and in the leaching-test eluates were analysed. It seemed likely that leached formaldehyde caused very high acute toxicity in leaching-test eluates of the dry-booth residues. This hypothesis was based on the fact that the formaldehyde concentrations in the leaching-test eluates of the dry-booth residues were 62-75 times higher than the EC50 value reported in the literature for formaldehyde. The results of the water-curtain booth residues showed that the samples with the highest TOC and aromatic solvent concentrations were also the most toxic. The studied excess paint residues were complex organic mixtures and contained large amounts of compounds not identifiable from chemical data. Therefore, the evaluation of the hazard based solely on available chemical data is unlikely to be sufficient, as evidenced by our study. Our results show that harmful compounds remain in the solid waste and the toxicity results of their leaching-test eluates show that toxicity may leach from residues in contact with water at landfill sites. They also confirm the benefit of combining chemical and ecotoxicological assays in assessing the potential environmental hazard of complex organic mixtures found in wastes. Copyright 2003 Elsevier B.V.

  13. Comparison of the solution and crystal structures of staphylococcal nuclease with 13C and 15N chemical shifts used as structural fingerprints

    International Nuclear Information System (INIS)

    Cole, H.B.R.; Sparks, S.W.; Torchia, D.A.

    1988-01-01

    The authors report high-resolution 13 C and 15 N NMR spectra of crystalline staphylococcal nuclease (Nase) complexed to thymidine 3',5'-diphosphate and Ca 2+ . High sensitivity and resolution are obtained by applying solid-state NMR techniques-high power proton decoupling and cross-polarization magic angle sample spinning (CPMASS)-to protein samples that have been efficiently synthesized and labeled by an overproducing strain of Escherichia coli. A comparison of CPMASS and solution spectra of Nase labeled with either [methyl- 13 C]methionine or [ 15 ]valine shows that the chemical shifts in the crystalline and solution states are virtually identical. This result is strong evidence that the protein conformations in the solution and crystalline states are nearly the same. Because of the close correspondence of the crystal and solution chemical shifts, sequential assignments obtained in solution apply to the crystal spectra. It should therefore be possible to study the molecular structure and dynamics of many sequentially assigned atomic sites in Nase crystals. Similar experiments are applicable to the growing number of proteins that can be obtained from efficient expression systems

  14. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  15. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    elemental shifts recorded in the veneering ceramic did not suffice to draw definitive conclusions regarding potential chemical interaction of the veneering ceramic with zirconia. Sandblasting damaged the zirconia surface and induced phase transformation that also resulted in residual compressive stress. Difference in CTE of zirconia versus that of the veneering ceramic resulted in an unfavorable residual tensile stress at the zirconia-veneering ceramic interface. © International & American Associations for Dental Research 2015.

  16. Determination of Pesticide Residues in Cannabis Smoke

    Directory of Open Access Journals (Sweden)

    Nicholas Sullivan

    2013-01-01

    Full Text Available The present study was conducted in order to quantify to what extent cannabis consumers may be exposed to pesticide and other chemical residues through inhaled mainstream cannabis smoke. Three different smoking devices were evaluated in order to provide a generalized data set representative of pesticide exposures possible for medical cannabis users. Three different pesticides, bifenthrin, diazinon, and permethrin, along with the plant growth regulator paclobutrazol, which are readily available to cultivators in commercial products, were investigated in the experiment. Smoke generated from the smoking devices was condensed in tandem chilled gas traps and analyzed with gas chromatography-mass spectrometry (GC-MS. Recoveries of residues were as high as 69.5% depending on the device used and the component investigated, suggesting that the potential of pesticide and chemical residue exposures to cannabis users is substantial and may pose a significant toxicological threat in the absence of adequate regulatory frameworks.

  17. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  18. Interpreting residues of petroleum hydrocarbons in wildlife tissues

    International Nuclear Information System (INIS)

    Hall, R.J.; Coon, N.C.

    1988-08-01

    This report is the first publication in the field of environmental-contaminant effects on wildlife to tell the reader how to interpret the results of analytical chemical results. Specifically, the publication describes how to interpret residues of petroleum hydrocarbons in wildlife tissues. Pollutant oil residues in avian species are emphasized

  19. 40 CFR 180.464 - Dimethenamid; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...)-acetamide, applied as either the 90:10 or 50:50 S:R isomers, in or on the following food commodities... Pumpkin 0.01 Squash, winter 0.01 (d) Indirect or inadvertent residues. [Reserved] [65 FR 51551, Aug. 24...

  20. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera development and longevity.

    Directory of Open Access Journals (Sweden)

    Judy Y Wu

    Full Text Available BACKGROUND: Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. METHODOLOGY/PRINCIPAL FINDINGS: Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment or in relatively uncontaminated brood comb (control. Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8 of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor

  1. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  2. Methyl bromide residues in fumigated cocoa beans with particular reference to inorganic bromide

    International Nuclear Information System (INIS)

    Adomako, D.

    1976-01-01

    Inorganic bromide residues and 14 C-labelled methylated products (expressed as CH 3 Br equivalent) in cocoa beans fumigated with [ 14 C]-methyl bromide have been determined by radiometric and chemical methods. Determination of 14 C by direct combustion in an oxygen chamber followed by liquid scintillation counting confirmed previous findings with respect to the magnitude, distribution and chemical nature of the residues. Although recovery of added bromide was good, the values of total bromide obtained by the chemical method were only half of those estimated from the total residual 14 C-activity. This is attributed to loss of organic (presumably, protein-bound) bromide. In agreement with the total 14 C-labelled residue contents, total bromide in shells was 20 times greater than that in nibs. The low levels of residues in the nib (12ppm as CH 3 Br equivalent, 10ppm Br) and the further reduction of organic residues by roasting suggest that no toxicological and nutritional hazards may be expected from fumigation of cocoa beans with methyl bromide. (author)

  3. Detection of fat in focal liver lesions using chemical-shift MR imaging: its significance in patients with and without hepatic cirrhosis

    International Nuclear Information System (INIS)

    Martin, J.

    1999-01-01

    To determine the utility of the chemical shift technique in MRI for the detection of fact in focal hepatic lesions and to see its significance in patients with and without hepatic cirrhosis. 159 patients with 207 hepatic lesions were studied using MRI (IT). Two groups were established: a) patients with hepatic cirrhosis (n=63 with 69 lesions) and b) patients without cirrhosis (n=96 with 138 lesions). Images were obtained in phase (P) and in opposite phase (OP) with gradient echo sequences (RG). The parameter used to differentiate the lesions with fat from those without fat was the variation percentage of the intensity of the signal (VIS) between the images in P and in OP. The statistical valuation was carried out using Student's t tests and the area under the ROC curve. The chemical shift technique detected fat in 25 lesions (12%), 10 hepatocarcinomas in the patients with cirrhosis and two angiomyolipomas and 13 nodular fat infiltrations in the patients who did not have cirrhosis. The average VIS percentage in the 10 hepatocarcinomas was 174.77% (ranging from 88.64% to 369.33%) while in the remaining 59 hepatocarcinomas it was -4.03% (ranging from 12.79% to -19.10%) (p=0.003). In the patients who did not have cirrhosis the average VIS percentage of the lesions with fat was 161.23 (ranging from 19.82 to 605.78) while in the lesions without fat it was -0.41 (ranging from -18.96 to 19.52) (p=0.003). The area under the ROC curve was 1 for the VIS parameter. The chemical shift technique allowed for fat to be detected within hepatic lesions. Based on our study, a nodule with fat in a patient with hepatic cirrhosis is suspected to have hepatocarcinomas while in patients who do not suffer from cirrhosis the existence of fat in a nodule favours its bening nature. (Author) 39 refs

  4. Residual thermal stresses in a solid sphere cast from a thermosetting material

    Science.gov (United States)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  5. 40 CFR 180.303 - Oxamyl; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.303... methyl N,N-dimethyl-N-hydroxy-1-thiooxamimidate calculated as oxamyl in or on the following food..., nonbell 5.0 Pineapple 1 Pineapple, process residue 2.0 Pumpkin 2.0 Soybean, seed 0.1 Spearmint, tops 10.0...

  6. Measuring proton shift tensors with ultrafast MAS NMR.

    Science.gov (United States)

    Miah, Habeeba K; Bennett, David A; Iuga, Dinu; Titman, Jeremy J

    2013-10-01

    A new proton anisotropic-isotropic shift correlation experiment is described which operates with ultrafast MAS, resulting in good resolution of isotropic proton shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles which reintroduces the proton chemical shift anisotropy in the indirect dimension. The experiment has been used to measure the proton shift tensor parameters for the OH hydrogen-bonded protons in tyrosine·HCl and citric acid at Larmor frequencies of up to 850 MHz. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Utility residual fuel oil market conditions: An update

    International Nuclear Information System (INIS)

    Mueller, H.A. Jr.

    1992-01-01

    Planning for residual fuel oil usage and management remains an important part of the generation fuel planning and management function for many utilities. EPRI's Utility Planning Methods Center has maintained its analytical overview of the fuel oil markets as part of its overall fuel planning and management research program. This overview provides an update of recent fuel oil market directions. Several key events of the past year have had important implications for residual fuel oil markets. The key events have been the changes brought about by the Persian Gulf War and its aftermath, as well as continuing environmental policy developments. The Persian Gulf conflict has created renewed interest in reducing fuel oil use by utilities as part of an overall reduction in oil imports. The policy analysis performed to date has generally failed to properly evaluate utility industry capability. The Persian Gulf conflict has also resulted in an important change in the structure of international oil markets. The result of this policy-based change is likely to be a shift in oil pricing strategy. Finally, continued change in environmental requirements is continuing to shift utility residual oil requirements, but is also changing the nature of the US resid market itself

  8. Protein structure refinement using a quantum mechanics-based chemical shielding predictor

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Jensen, Jan Halborg

    2017-01-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor...... of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic...

  9. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  10. Chemical-modification studies of a unique sialic acid-binding lectin from the snail Achatina fulica. Involvement of tryptophan and histidine residues in biological activity.

    Science.gov (United States)

    Basu, S; Mandal, C; Allen, A K

    1988-01-01

    A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin. Images Fig. 3. PMID:3140796

  11. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  12. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ji Hye [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Young Kon, E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lim, Sanghyeok [Department of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain.

  13. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    International Nuclear Information System (INIS)

    Min, Ji Hye; Kim, Young Kon; Lim, Sanghyeok; Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae

    2015-01-01

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain

  14. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.

    Science.gov (United States)

    Bratholm, Lars A; Jensen, Jan H

    2017-03-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ , 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1-0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural

  15. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    Science.gov (United States)

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  16. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact

    Science.gov (United States)

    Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe

    2011-01-01

    Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895

  17. Chemical shifts as a novel measure of interactions between two binding sites of symmetric dialkyldimethylammonium bromides to α-cyclodextrin

    International Nuclear Information System (INIS)

    Funasaki, Noriaki; Ishikawa, Seiji; Hirota, Shun

    2006-01-01

    Complex formation of α-cyclodextrin (α-CD) with decyltrimethylammonium (DeTAB), N,N-dioctyldimethylammonium (DOAB), and N,N-didecyldimethylammonium bromides (DDeAB) was investigated by proton NMR spectroscopy. Analysis of chemical shifts yielded macroscopic 1:1 and 1:2 binding constants (K 1 and K 2 ) and chemical shift differences (Δδ SD and Δδ SD2 ) for the 1:1 and 1:2 complexes of DeTAB, DOAB, and DDeAB with α-CD. The K 1 and K 2 values of DDeAB were quantitatively explained on the basis of the assumption that the microscopic 1:1 binding constant of DDeAB is identical to the observed K 1 value of DeTAB. The K 2 value of DDeAB was also explained in terms of its observed K 1 value and the independent binding of two alkyl chains. Furthermore, the Δδ SD and Δδ SD2 values for protons of DDeAB and α-CD were quantitatively explained on the basis of the assumption that the geometry of the decyl group of DDeAB in an α-CD cavity is identical to that of DeTAB. The Δδ SD value was also explicable on the basis of the same geometric assumption and the observed Δδ SD2 value for this system. Similar results were obtained for the 1:1 and 1:2 DOAB-α-CD complexes

  18. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L.; Markley, John L.; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-01-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1 H, 13 C and 15 N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  19. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins

    Energy Technology Data Exchange (ETDEWEB)

    Barb, Adam W., E-mail: abarb@iastate.edu; Subedi, Ganesh P. [Iowa State University, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology (United States)

    2016-01-15

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb{sup 3+} with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (−0.221 to 0.081 ppm) and residual dipolar couplings (−7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb{sup 3+}){sub 2} complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems.

  20. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins

    International Nuclear Information System (INIS)

    Barb, Adam W.; Subedi, Ganesh P.

    2016-01-01

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb 3+ with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (−0.221 to 0.081 ppm) and residual dipolar couplings (−7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb 3+ ) 2 complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems

  1. NMR Chemical Shift of a Helium Atom as a Probe for Electronic Structure of FH, F-, (FHF)-, and FH2.

    Science.gov (United States)

    Tupikina, E Yu; Efimova, A A; Denisov, G S; Tolstoy, P M

    2017-12-21

    In this work, we present the first results of outer electronic shell visualization by using a 3 He atom as a probe particle. As model objects we have chosen F - , FH, and FH 2 + species, as well as the hydrogen-bonded complex FH···F - at various H···F - distances (3.0, 2.5, 2.0, and 1.5 Å and equilibrium at ca. 1.14 Å). The interaction energy of investigated objects with helium atom (CCSD/aug-cc-pVTZ) and helium atom chemical shift (B3LYP/pcS-2) surfaces were calculated, and their topological analysis was performed. For comparison, the results of standard quantum mechanical approaches to electronic shell visualization were presented (ESP, ELF, ED, ∇ 2 ED). We show that the Laplacian of helium chemical shift, ∇ 2 δ He , is sensitive to fluorine atom lone pair localization regions, and it can be used for the visualization of the outer electronic shell, which could be used to evaluate the proton accepting ability. The sensitivity of ∇ 2 δ He to lone pairs is preserved at distances as large as 2.0-2.5 Å from the fluorine nucleus (in comparison with the distance to ESP minima, located at 1.0-1.5 Å or maxima of ELF, which are as close as 0.6 Å to the fluorine nucleus).

  2. Automated Fragmentation Polarizable Embedding Density Functional Theory (PE-DFT) Calculations of Nuclear Magnetic Resonance (NMR) Shielding Constants of Proteins with Application to Chemical Shift Predictions

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Bratholm, L.A.; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    that are comparable with experiment. The introduction of a probabilistic linear regression model allows us to substantially reduce the number of snapshots that are needed to make comparisons with experiment. This approach is further improved by augmenting snapshot selection with chemical shift predictions by which we...

  3. Change from an 8-hour shift to a 12-hour shift, attitudes, sleep, sleepiness and performance.

    Science.gov (United States)

    Lowden, A; Kecklund, G; Axelsson, J; Akerstedt, T

    1998-01-01

    The present study sought to evaluate the effect of a change from a rotating 3-shift (8-hour) to a 2-shift shift (12 hour) schedule on sleep, sleepiness, performance, perceived health, and well-being. Thirty-two shift workers at a chemical plant (control room operators) responded to a questionnaire a few months before a change was made in their shift schedule and 10 months after the change. Fourteen workers also filled out a diary, carried activity loggers, and carried out reaction-time tests (beginning and end of shift). Fourteen day workers served as a reference group for the questionnaires and 9 were intensively studied during a week with workdays and a free weekend. The questionnaire data showed that the shift change increased satisfaction with workhours, sleep, and time for social activities. Health, perceived accident risk, and reaction-time performance were not negatively affected. Alertness improved and subjective recovery time after night work decreased. The quick changes in the 8-hour schedule greatly increased sleep problems and fatigue. Sleepiness integrated across the entire shift cycle showed that the shift workers were less alert than the day workers, across workdays and days off (although alertness increased with the 12-hour shift). The change from 8-hour to 12-hour shifts was positive in most respects, possibly due to the shorter sequences of the workdays, the longer sequences of consecutive days off, the fewer types of shifts (easier planning), and the elimination of quick changes. The results may differ in groups with a higher work load.

  4. A complete set of NMR chemical shifts and spin-spin coupling constants for L-Alanyl-L-Alanine zwitterion and analysis of its conformational behavior

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Buděšínský, Miloš; Špirko, Vladimír; Kapitán, Josef; Šebestík, Jaroslav; Sychrovský, Vladimír

    2005-01-01

    Roč. 127, - (2005), 17079-17089 ISSN 0002-7863 R&D Projects: GA AV ČR(CZ) IAA4055104; GA ČR(CZ) GA203/05/0388 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * chemical shifts * coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.419, year: 2005

  5. Antibiotic Residues - A Global Health Hazard

    Directory of Open Access Journals (Sweden)

    Nisha A.R.

    Full Text Available Use of Antibiotic that might result in deposition of residues in meat, milk and eggs must not be permitted in food intended for human consumption. If use of antibiotics is necessary as in prevention and treatment of animal diseases, a withholding period must be observed until the residues are negligible or no longer detected. The use of antibiotics to bring about improved performance in growth and feed efficiency, to synchronize or control of reproductive cycle and breeding performance also often lead to harmful residual effects. Concern over antibiotic residues in food of animal origin occurs in two times; one which produces potential threat to direct toxicity in human, second is whether the low levels of antibiotic exposure would result in alteration of microflora, cause disease and the possible development of resistant strains which cause failure of antibiotic therapy in clinical situations. A withdrawal period is established to safeguard human from exposure of antibiotic added food. The withdrawal time is the time required for the residue of toxicological concern to reach safe concentration as defined by tolerance. It is the interval from the time an animal is removed from medication until permitted time of slaughter. Heavy responsibility is placed on the veterinarian and livestock producer to observe the period for a withdrawal of a drug prior to slaughter to assure that illegal concentration of drug residue in meat, milk and egg do not occur. Use of food additives may improve feed efficiency 17% in beef cattle, 10% in lambs, 15% in poultry and 15% in swine. But their indiscriminate use will produce toxicity in consumers. WHO and FAO establish tolerances for a drug, pesticide or other chemical in the relevant tissues of food producing animals. The tolerance is the tissue concentration below, which a marker residue for the drug or chemical must fall in the target tissue before that animal edible tissues are considered safe for human

  6. How effective are common household preparations on removing pesticide residues from fruit and vegetables? A review.

    Science.gov (United States)

    Chung, Stephen Wc

    2018-06-01

    Nowadays, the use of pesticides is inevitable for pest control in crops, especially for fruit and vegetables. After the harvest from raw agricultural commodities, the amount of pesticide residues in food is mainly influenced by the storage, handling and processing that follow. If good agricultural and good manufacturing practices are enforced effectively, the amount of pesticide residues would be brought below the corresponding maximum residue level. Thus, the consumption of raw and/or prepared fruit and vegetables would be safe. Nonetheless, reports regarding pesticide residues in fruit or vegetables on mass media have been worrying consumers, who are concerned about the adverse effects of pesticide residues. As a result, consumers perform household processing before consumption to reduce any related risks. However, can these preparations effectively remove pesticide residues? Reviewing the extensive literature, it showed that, in most cases, washing and soaking can only lead to a certain degree of reduction in residue level, while other processing such as peeling, soaking in chemical baths and blanching can reduce pesticide residues more effectively. In general, the behaviour of residues during processing can be rationalised in terms of the physico-chemical properties of the pesticide and the nature of the process. In contrast, the reported studies are diversified and some areas still lack sufficient studies to draw any remarks. Recommendations are provided with respect to the available information that aims to formulate an environmental friendly, cost-effective and efficient household processing of fruit and vegetables to reduce pesticide residues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. The earthworm gastrointestinal effect on the release of organic bound residues in soils

    Science.gov (United States)

    Du, J. H.

    2018-03-01

    Earthworm activities promote the release of bound residues and the digestive activities of earthworms contribute to the process. Earthworm digestive effects on bound residues can be divided into physical and chemical effects. Physical effects include gastrointestinal abrasion and mixing. The abrasion of soil and litter residues in earthworm gizzards and intestine can grind the food into fine particles, which increase the contact surface with microbial and promote the desorption of bound residues. Chemical effects are attributed to the secreted surfactant substances and digestive enzymes. The surfactants, especially at levels that lead to micellization, can enhance the desorption process of the organic contaminants that sored in the soil. The enzymes in earthworm digestive tracts can decompose the humus in soil, which may promote the release of organic residues that bind with humus.

  8. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  9. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  10. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  11. Shifts in Plant Chemical Defenses of Chile Pepper (Capsicum annuum L. Due to Domestication in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Luna-Ruiz

    2018-04-01

    Full Text Available We propose that comparisons of wild and domesticated Capsicum species can serve as a model system for elucidating how crop domestication influences biotic and abiotic interactions mediated by plant chemical defenses. Perhaps no set of secondary metabolites (SMs used for plant defenses and human health have been better studied in the wild and in milpa agro-habitats than those found in Capsicum species. However, very few scientific studies on SM variation have been conducted in both the domesticated landraces of chile peppers and in their wild relatives in the Neotropics. In particular, capsaicinoids in Capsicum fruits and on their seeds differ in the specificity of their ecological effects from broad-spectrum toxins in other members of the Solanaceae. They do so in a manner that mediates specific ecological interactions with a variety of sympatric Neotropical vertebrates, invertebrates, nurse plants and microbes. Specifically, capsaicin is a secondary metabolite (SM in the placental tissues of the chile fruit that mediates interactions with seed dispersers such as birds, and with seed predators, ranging from fungi to insects and rodents. As with other Solanaceae, a wide range of SMs in Capsicum spp. function to ecologically mediate the effects of a variety of biotic and abiotic stresses on wild chile peppers in certain tropical and subtropical habitats. However, species in the genus Capsicum are the only ones found within any solanaceous genus that utilize capsaicinoids as their primary means of chemical defense. We demonstrate how exploring in tandem the evolutionary ecology and the ethnobotany of human-chile interactions can generate and test novel hypotheses with regard to how the domestication process shifts plant chemical defense strategies in a variety of tropical crops. To do so, we draw upon recent advances regarding the chemical ecology of a number of wild Capsicum species found in the Neotropics. We articulate three hypotheses regarding

  12. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  13. High-Frequency C-13 and Si-29 NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of TII and Pb-II: Decisive Role of Relativistic Effects

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 4 (2016), s. 1770-1781 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : high-frequency NMR chemical shifts * HALA effect * relativistic DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  14. UTILIZATION OF AGROINDUSTRIALES RESIDUES AS BIOFUELS AND BIOREFINERY

    Directory of Open Access Journals (Sweden)

    Deyanira Muñoz-Muñoz

    2014-12-01

    Full Text Available The use of residues generated in the process agro-industrials are interest worldwide. At present, research is this in lignocellulosic biomass for energy, fuels, chemicals and biomaterials through clean technologies and closed systems that conserve the environment. In this research, based on the characteristics of the typical agro-industrial residues of Cauca Department, sugarcane bagasse, sisal dust, cassava bran and the mixtures, was evaluated use as biorefinery. Were determined the thermal, physical chemical and morphologic properties in seven samples of residues, were performed exploratory tests, were determined pretreatments and applications and the possible use were identified. We conclude that the sample M6 with 9,93 % moisture, 4,12% ash, 43,97% carbon, 5,86% hydrogen, 0,43% nitrogen, 15 MJ/kg of lower heating value and 22,25%of cellulose, 9,30% of hemicellulose and 4,56% lignin, presents characteristics appropriate to be used in furnaces and boilers less power for the rural sector by the amount of ash, which keeps the low heating power stable and reduces the emission of particulate matter. For the thermal, physical, chemical and morphological characteristics, all the samples of M1 to M7, they can be hydrolyzed, densified and taken advantage like biofuel and / or biorefinery

  15. Chemical modelling of trace elements in pore water from PFBC residues containing ammonia

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Brandberg, F.

    1993-01-01

    Ammonia is added to the PFBC process with the purpose to reduce the emissions of NO x in the stack gases. The design of the system for cleaning the stack gases will lead to an increased adsorption of ammonia and an accumulation of soluble ammonium salts in the cyclone ash from PFBC processes. This can be an environmental problem since the amounts will increase over the coming years and there will be a need to dispose the residues. When infiltrating rainwater penetrates the disposed residues ammonia and ammonium salts result in a contamination of the pore water with ammonia in the disposed residues. This entail the solubility of several trace elements in the residues that form soluble complexes with ammonia will increase and cause an increased contamination of groundwater and surface water. In this study the increased solubilities is calculated for the trace elements cadmium, cobalt, copper, mercury, nickel, silver and zinc in the residues using thermodynamical data. The calculations have been performed with probable solid phases of the trace elements at oxidizing and reducing conditions as a function of pH and at varying concentration of ammonia in the pore water. The thermodynamic calculations have been performed with the geochemical code EQ3NR. The results from the calculations show that as a concentration of 17 mg NH 3 /l in the pore water of the residues increases the solubilities for copper and silver. If the concentration of ammonia increases to 170 mg NH 3 /l will the solubilities increase also for cadmium, nickel and zinc. (12 refs., 39 figs.)

  16. Impact of sugarcane field residue and mill bagasse on seed germination

    Science.gov (United States)

    Research indicates that sugarcane field residue and sugarcane mill bagasse may be allelopathic. Allelopathy is the chemical interaction between plants, which may result in the inhibition of plant growth and development. Previous research in Louisiana indicated that sugarcane field residue may inhibi...

  17. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation

    Science.gov (United States)

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but few data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tom...

  18. Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg

    2017-01-01

    -shift with X = 6, 7, 8, or 9) in the hydroperoxy acyl peroxy radicals, this H-shift is a reversible reaction and it scrambles between two peroxides, hydroperoxy acyl peroxy and peroxy peroxoic acid radicals. The forward reaction rate constants of the 1,X-OOH H-shift reactions are estimated to be above 103 s–1...... with transition state theory corrected with Eckart quantum tunnelling correction. The ratio between the forward and reverse reaction rate constant of the 1,X-OOH H-shift reactions is around ∼105. Therefore, the equilibrium is pushed toward the production of peroxy peroxoic acid radicals. These very fast 1,X-OOH H......We have used quantum mechanical chemical calculations (CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ) to investigate the hydrogen shift (H-shift) reactions in acyl peroxy and hydroperoxy acyl peroxy radicals. We have focused on the H-shift reactions from a hydroperoxy group (OOH) (1,X-OOH H...

  19. CheShift-2 resolves a local inconsistency between two X-ray crystal structures

    International Nuclear Information System (INIS)

    Vila, Jorge A.; Sue, Shih-Che; Fraser, James S.; Scheraga, Harold A.; Dyson, H. Jane

    2012-01-01

    Since chemical shifts provide important and relatively accessible information about protein structure in solution, a Web server, CheShift-2, was developed for structure interrogation, based on a quantum mechanics database of 13 C α chemical shifts. We report the application of CheShift-2 to a local inconsistency between two X-ray crystal structures (PDB IDs 1IKN and 1NFI) of the complex between the p65/p50 heterodimer of NFκB and its inhibitor IκBα. The availability of NMR resonance assignments that included the region of the inconsistency provided an opportunity for independent validation of the CheShift-2 server. Application of the server showed that the 13 C α chemical shifts measured for the Gly270-Pro281 sequence close to the C-terminus of IκBα were unequivocally consistent with the backbone structure modeled in the 1IKN structure, and were inconsistent with the 1NFI structure. Previous NOE measurements had demonstrated that the position of a tryptophan ring in the region immediately N-terminal in this region was not consistent with either structure. Subsequent recalculation of the local structure in this region, based on the electron density of the deposited structure factors for 1IKN, confirmed that the local backbone structure was best modeled by 1IKN, but that the rotamer of Trp258 is consistent with the 1NFI structure, including the presence of a hydrogen bond between the ring NεH of Trp258 and the backbone carbonyl group of Gln278. The consensus between all of these measures suggests that the CheShift-2 server operates well under circumstances in which backbone chemical shifts are available but where local plasticity may render X-ray structural data ambiguous.

  20. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    Science.gov (United States)

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  1. Atmospheric Peroxy Radical Measurements by Chemical Amplification - Cavity Attenuated Phase Shift Spectroscopy

    Science.gov (United States)

    Wood, E. C.; Charest, J. R.

    2013-12-01

    We present a new chemical amplifier for the detection of peroxy radicals using Cavity Attenuated Phase Shift spectroscopy (CAPS) detection of NO2. The amplification scheme is similar to other chemical amplifiers and involves addition of CO (8%) and NO (3 ppm) to air sampled in a PFA tube. The chain length is quantified by amplification of a known concentration of methyl peroxy radicals (CH3O2) and peroxyacetyl radicals (CH3COO2) sampled by the instrument's reactor. The CH3O2 and CH3COO2 radicals are produced by photolysis of acetone at 254 nm and quantified by conversion to NO2 by reaction with excess NO. The chain length (CL) in dry air is over 200 and constant at RO2 concentrations under 500 ppt. The CL decreases by 55% at a relative humidity of 50%. A 0.95 cm (3/8') ID PFA tube, a 0.32 cm (1/8' ID) PFA tube, and a 0.48 cm ID quartz reactor give near-identical chain lengths and RH dependence, demonstrating the small importance of wall reactions (for clean tubing) as radical termination steps. The instrument comprises two independent inlets and CAPS detectors, allowing for simultaneous measurements in ROx mode (= NO2 + O3 + RO2 + HO2) and Ox mode (= NO2 + O3) thereby greatly reducing the effect of variations in background [Ox]. The 1σ precision of the instrument at constant background [Ox] and 0% relative humidity is 0.2 ppt ROx with 100 second averaging and increases to 0.3 ppt at an RH of 50%. The absolute uncertainty of the measurements is estimated as 20% and is affected by the accuracy of the NO2 calibration, the precision of the CAPS when calibrating at low RO2 concentrations, and the uncertainty in the photolysis quantum yield for the CH3CO + CH3 channel of acetone photolysis.

  2. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    International Nuclear Information System (INIS)

    Li, G.-W.; Xu, Z.; Chen, Q.-W.; Tian, Y.-N.; Wang, X.-Y.; Zhou, L.; Chang, S.-X.

    2014-01-01

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  3. Bound xenobiotic residues in food commodities of plant and animal origin: IUPAC Reports on Pesticides (40)

    NARCIS (Netherlands)

    Skidmore, M.W.; Paulson, G.D.; Kuiper, H.A.; Ohlin, B.

    1998-01-01

    In order to assess the dietary risk resulting from the use of pesticides or veterinary drugs the nature of the chemical residues on food commodities needs to be determined. Elucidation of the nature of the chemical residue is carried out using radiolabelled studies where the radiolabelled xenobiotic

  4. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  5. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-01-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  6. Annatto seed residue (Bixa orellana L.: nutritional quality

    Directory of Open Access Journals (Sweden)

    Melissa Alessandra Valério

    2015-06-01

    Full Text Available Considering that annatto seeds are rich in protein, the present work aimed to evaluate the biological quality of this nutrient in the meal residue originating from annatto seed processing. We determined the general composition, mineral levels, amino acid composition and chemical scores, antinutritional factors, and protein quality using biological assays. The following values were obtained: 11.50% protein, 6.74% moisture, 5.22% ash, 2.22% lipids, 42.19% total carbohydrates and 28.45% fiber. The residue proved to be a food rich in fiber and also a protein source. Antinutritional factors were not detected. The most abundant amino acids were lysine, phenylalanine + tyrosine, leucine and isoleucine. Valine was the most limiting amino acid (chemical score 0.22. The protein quality of the seed residue and the isolated protein showed no significant differences. The biological value was lower than that of the control protein but higher than that found in other vegetables. Among the biochemical analyses, only creatinine level was decreased in the two test groups compared to the control group. Enzyme tests did not indicate liver toxicity. The results showed favorable aspects for the use of annatto seed residue in the human diet, meriting further research.

  7. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin

    Science.gov (United States)

    De Souza, Leonardo A.; Tavares, Wagner M. G.; Lopes, Ana Paula M.; Soeiro, Malucia M.; De Almeida, Wagner B.

    2017-05-01

    In this work, we showed that comparison between experimental and theoretical 1H NMR chemical shift patterns, calculated using Density Functional Theory (DFT), can be used for the prediction of molecular structure of flavonoids in solution, what is experimentally accessible for gas phase (electron diffraction methods) and solid samples (X-ray diffraction). The best match between B3LYP/6-31G(d,p)-PCM 1H NMR calculations for B ring rotated structures and experimental spectra can provide information on the conformation adopted by polyphenols in solution (usually DMSO-d6, acetone-d6 as solvents), which may differ from solid state and gas phase observed structures, and also DFT optimized geometry in the vacuum.

  8. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rasia, Rodolfo M. [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France); Lescop, Ewen [CNRS, Institut de Chimie des Substances Naturelles (France); Palatnik, Javier F. [Universidad Nacional de Rosario, Instituto de Biologia Molecular y Celular de Rosario, Facultad de Ciencias Bioquimicas y Farmaceuticas (Argentina); Boisbouvier, Jerome, E-mail: jerome.boisbouvier@ibs.fr; Brutscher, Bernhard, E-mail: Bernhard.brutscher@ibs.fr [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France)

    2011-11-15

    It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less than 24 h on a single aligned protein sample, greatly improves convergence of the Rosetta-NMR protocol, allowing for overnight fold calculation of small proteins. We demonstrate the performance of our fast fold calculation approach for ubiquitin as a test case, and for two RNA-binding domains of the plant protein HYL1. Structure calculations based on simulated RDC data highlight the importance of an accurate and precise set of several complementary RDCs as additional input restraints for high-quality de novo structure determination.

  9. Removal of six pesticide residues in cowpea with alkaline electrolysed water.

    Science.gov (United States)

    Han, Yongtao; Song, Le; An, Quanshun; Pan, Canping

    2017-06-01

    Reduction of six pesticide residues (isoprocarb, chlorpyrifos, bifenthrin, beta-cypermethrin, difenoconazole and azoxystrobin) in cowpea by alkaline electrolysed water (AlEW) solutions with different pH was investigated. The commonly used washing treatments in household processing were used for comparison. The residue magnitudes were determined by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Results showed that the removal effect of AlEW solution on the six pesticides was superior to tap water, 5% sodium chloride, 5% sodium carbonate and 5% acetic acid solution. AlEW with pH 12.2 had more potential to eliminate the six pesticides in cowpeas. Moreover, the reduction of pesticide residues gradually increased with the increase of washing time. This study demonstrated that AlEW solution with pH of 12.2 could be used to reduce pesticide residues on fresh cowpea samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition......, in the solution state the 2-bond and 3-bond J(1H–13C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl......-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl...

  11. Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions.

    Science.gov (United States)

    Zahoor; Tu, Yuanyuan; Wang, Lingqiang; Xia, Tao; Sun, Dan; Zhou, Shiguang; Wang, Yanting; Li, Ying; Zhang, Heping; Zhang, Tong; Madadi, Meysam; Peng, Liangcai

    2017-11-01

    In this study, a combined pretreatment was performed in four wheat accessions using steam explosion followed with different concentrations of H 2 SO 4 or NaOH, leading to increased hexoses yields by 3-6 folds from enzymatic hydrolysis. Further co-supplied with 1% Tween-80, Talq90 and Talq16 accessions exhibited an almost complete enzymatic saccharification of steam-exploded (SE) residues after 0.5% H 2 SO 4 or 1% NaOH pretreatment, with the highest bioethanol yields at 18.5%-19.4%, compared with previous reports about wheat bioethanol yields at 11%-17% obtained under relatively strong pretreatment conditions. Furthermore, chemical analysis indicated that much enhanced saccharification in Talq90 and Talq16 may be partially due to their relatively low cellulose CrI and DP values and high hemicellulose Ara and H-monomer levels in raw materials and SE residues. Hence, this study has not only demonstrated a mild pretreatment technology for a complete saccharification, but it has also obtained the high ethanol production in desirable wheat accessions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Reactivity study on thermal cracking of vacuum residues

    Science.gov (United States)

    León, A. Y.; Díaz, S. D.; Rodríguez, R. C.; Laverde, D.

    2016-02-01

    This study focused on the process reactivity of thermal cracking of vacuum residues from crude oils mixtures. The thermal cracking experiments were carried out under a nitrogen atmosphere at 120psi between 430 to 500°C for 20 minutes. Temperature conditions were established considering the maximum fractional conversion reported in tests of thermogravimetry performed in the temperature range of 25 to 600°C, with a constant heating rate of 5°C/min and a nitrogen flow rate of 50ml/min. The obtained products were separated in to gases, distillates and coke. The results indicate that the behaviour of thermal reactivity over the chemical composition is most prominent for the vacuum residues with higher content of asphaltenes, aromatics, and resins. Finally some correlations were obtained in order to predict the weight percentage of products from its physical and chemical properties such as CCR, SARA (saturates, aromatics, resins, asphaltenes) and density. The results provide new knowledge of the effect of temperature and the properties of vacuum residues in thermal conversion processes.

  13. Obtention of ceramic pigments with residue from electroplating

    International Nuclear Information System (INIS)

    Boss, A.; Kniess, C.T.; Aguiar, B.M. de; Prates, P.B.; Milanez, K.

    2011-01-01

    The incorporation of industrial residues in industrial processes opens up new business opportunities and reduces the volume of extraction of raw materials, preserving natural resources, which are limited. An important residue is the mud from galvanic industry, consisting of alkali and transition metals. According to NBR 10004/2004, this residue can be classified as Class I (hazardous), depending on the concentration of metals present in the mud. This paper proposes a method for reusing the residue from electroplating in ceramic pigments. The characterization of residual plating was obtained by chemical analysis, mineralogical analysis and pH measurements. The electroplating waste was incorporated in different percentages on a standard pigment formula of industrial ceramic, consisting mainly of Zn, Fe and Cr. The obtained pigments were applied in ceramic glazes to colorimetric and visual analysis, which showed good results with the addition of up to 15% of industrial waste. (author)

  14. A Study on Residual Stress Measurements by Using Laser Speckle Interferometry

    International Nuclear Information System (INIS)

    Rho, Kyung Wan; Kang, Young June; Hong, Seong Jin; Kang, Hyung Soo

    1999-01-01

    Residual stress is one of the causes which make defects in engineering components and materials. And interest in the measurement of residual stress exists in many industries. There are commonly used methods by which residual stresses are currently measured. But these methods have a little demerits: time consumption and other problems. Therefore we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry, finite element method and spot heating. The speckle pattern interferometer measures in-plane deformations while the heating provides for very localized stress relief. FEM is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heating and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, the ambiguity problem for the fringe patterns has solved by a phase shifting method

  15. The effect of reuse of unhairing-liming residual floats through ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... Key words: Unhairing-liming process, reusing, leather industry, environment, bacterial and fungal numbers. INTRODUCTION .... 4.0 x101. -: No growth. Chemical analysis of samples. Chemical analyses of sodium sulphide and lime were done for the regeneration of ULP residual liquors. While preparing ...

  16. Allelopathic impact of HoCP 96-540 field residue on seed germination

    Science.gov (United States)

    Research indicates that sugarcane field residue and sugarcane mill bagasse may be allelopathic. Allelopathy is the chemical interaction between plants, which may result in the inhibition of plant growth and development. Previous research in Louisiana indicated that sugarcane field residue may inhibi...

  17. Reduction method for residual stress of welded joint using random vibration

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro

    2005-01-01

    Welded joints are used for construction of many structures. Residual stress is induced near the bead caused by locally given heat. Tensile residual stress on the surface may reduce fatigue strength. In this paper, a new method for reduction of residual stress using vibration during welding is proposed. As vibrational load, random vibration, white noise and filtered white noise are used. Two thin plates are butt-welded. Residual stress is measured with a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. It is concluded that tensile residual stress near the bead is reduced by using random vibration during welding

  18. 40 CFR 180.425 - Clomazone; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Cotton, undelinted seed 0.05 Cucumber 0.1 Pea, succulent 0.05 Pepper 0.05 Peppermint, tops 0.05 Pumpkin 0...

  19. 40 CFR 180.588 - Quinoxyfen; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Pepper, bell 0.35 Pepper, nonbell 1.7 Pumpkin 0.20 Squash, winter 0.20 Strawberry 0.90 (b) Section 18...

  20. CHARACTERIZATION OF AGROINDUSTRIAL RESIDUES WITH A VIEW TO ITS EXPLOITATION

    Directory of Open Access Journals (Sweden)

    Emir Cabrera Rodríguez

    2016-10-01

    Full Text Available Agroindustrial residues are considered one of the most important renewable resources to obtain products of economic and social interest. This study assesses the potential use of coconut husk, sugar cane straw and sugar cane bagasse marrow through their chemical characterization. For this, the total solid contents, the ash, lignin, holocellulose and extractive contents are determined, as well as the zero charge Ph and the total acid and basic groups of materials. Results show a large lignin percentage in coconut husk composition (42.3 ± 1.03%, which is significantly higher than that of the other residues. That is why this material is a promising feedstock to obtain high-added value chemical products like phenolic compounds, which can replace those derived from crude oil. Straw and marrow have high holocellulose percentages of 61.1 ± 1.0% and 60.3 ± 1.3%, respectively, deserving attention as feedstock for biofuels production and chemical compound synthesis. On the other hand, all residues have higher number of acid sites with a predominance of carboxyl and hydroxyl groups according to infrared spectroscopy (FTIR. Therefore, all materials display potentialities for heavy metals and dissolving colorants biosorption.

  1. Initial contents of residue quality parameters predict effects of larger soil fauna on decomposition of contrasting quality residues

    Directory of Open Access Journals (Sweden)

    Ratikorn Sanghaw

    2017-10-01

    Full Text Available A 52-week decomposition study employing the soil larger fauna exclusion technique through litter bags of two mesh sizes (20 and 0.135 mm was conducted in a long-term (18 yr field experiment. Organic residues of contrasting quality of N, lignin (L, polyphenols (PP and cellulose (CL all in grams per kilogram: rice straw (RS: 4.5N, 22.2L, 3.9PP, 449CL, groundnut stover (GN: 21.2N, 71.4L, 8.1PP, 361CL, dipterocarp leaf litter (DP: 5.1N, 303L, 68.9PP, 271CL and tamarind leaf litter (TM: 11.6N, 190L, 27.7PP, 212CL were applied to soil annually to assess and predict soil larger fauna effects (LFE on decomposition based on the initial contents of the residue chemical constituents. Mass losses in all residues were not different under soil fauna inclusion and exclusion treatments during the early stage (up to week 4 after residue incorporation but became significantly higher under the inclusion than the exclusion treatments during the later stage (week 8 onwards. LFE were highest (2–51% under the resistant DP at most decomposition stages. During the early stage (weeks 1–4, both the initial contents of labile (N and CL and recalcitrant C, and recalcitrant C interaction with labile constituents of residues showed significant correlations (r = 0.64–0.90 with LFE. In the middle stage (week 16, LFE under resistant DP and TM had significant positive correlations with L, L + PP and L/CL. They were also affected by these quality parameters as shown by the multiple regression analysis. In the later stages (weeks 26–52, the L/CL ratio was the most prominent quality parameter affecting LFE. Keywords: Mesofauna and macrofauna, Microorganisms, Recalcitrant and labile compounds, Residue chemical composition, Tropical sandy soil

  2. Hepatic fat quantification using automated six-point Dixon: Comparison with conventional chemical shift based sequences and computed tomography.

    Science.gov (United States)

    Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; PDixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Residual Resistance Data from Cavity Production Projects at Jefferson Lab

    International Nuclear Information System (INIS)

    Ciovati, Gianluigi; Geng, Rongli; Mammosser, John; Saunders, Jeffrey

    2010-01-01

    A fundamental limitation towards achieving high quality factors in superconducting radio-frequency cavities is the so-called residual resistance. Understanding and controlling the residual resistance has important implications towards improving the efficiency and reduce the operating cost of continuous wave superconducting linear accelerators. In this contribution we will report on the residual resistance values obtained from measurements of the quality factor of a large set of cavities, with resonant frequency between 805 MHz and 1.5 GHz, all of them processed and tested at Jefferson Lab. Surface treatments included both buffered chemical polishing and electropolishing. The results indicate an approximate value of the residual resistance of about 7-10 n Omega.

  4. Radiotracer studies of fungicide residues in food plants

    International Nuclear Information System (INIS)

    1990-04-01

    Agricultural fungicides are chemicals used on seeds, crops and in soils throughout the growing season. Fungicide treatments may lead to various levels of chemical residues in food commodities. Primary emphasis has been placed on ethylenebisdithiocarbamates (EBDCs), an important group of agrofungicides used in preparations for spraying or dusting major crops such as apples, pears, broccoli, cabbages, egg plants, cauliflower, grapes, lettuce, peppers, celery, cucumbers and tomatoes. Treatments with EBDCs result in terminal residues containing ethylenthiourea (ETU). This is a toxicologically significant decomposition product which has attracted considerable attention in recent years due to indications of its potential goitrogenic and carcinogenic properties. In recognition of the need for a coordinated examination of ETU levels in food, particularly under tropical conditions, the program of radiotracer techniques as a tool for studying fungicide residue problems on food was initiated in 1984. In current studies, three EBDCs, maneb, zineb and mancozeb from different manufacturers in different countries were analysed. This report describes the model protocols (Annexes I, II and III) as they were set up for determination of residues in commodities and soil, using radiotracer and conventional chromatographic techniques . In the 16 papers presented in this report C 14 -labelled EBDCs are determined in plants, vegetables, and soils, before and after cooking, as a function of time and of other agricultural parameters. Refs, figs and tabs

  5. 40 CFR 180.110 - Maneb; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.110... None Pepper 7 None Potato 0.1 None Pumpkin 7 None Squash, summer 4 None Squash, winter 4 None Tomato 4...

  6. Comparison of CT and chemical-shift MRI for differentiating thymoma from non-thymomatous conditions in myasthenia gravis: value of qualitative and quantitative assessment

    International Nuclear Information System (INIS)

    Priola, A.M.; Priola, S.M.; Gned, D.; Giraudo, M.T.; Fornari, A.; Veltri, A.

    2016-01-01

    Aim: To evaluate the usefulness of computed tomography (CT) and chemical-shift magnetic resonance imaging (MRI) in patients with myasthenia gravis (MG) for differentiating thymoma (THY) from thymic lymphoid hyperplasia (TLH) and normal thymus (NT), and to determine which technique is more accurate. Materials and methods: Eighty-three patients with generalised MG who underwent surgery were divided into the TLH/NT group (A; 65 patients) and THY group (B; 24 patients). Differences in qualitative characteristics and quantitative data (CT: radiodensity in Hounsfield units; MRI: signal intensity index [SII]) between groups were tested using Fisher's exact test and Student's t-test. Logistic regression models were estimated for both qualitative and quantitative analyses. At quantitative analysis, discrimination abilities were determined according to the area under the receiver operating characteristic (ROC) curve (AUROC) with computation of optimal cut-off points. The diagnostic accuracies of CT and MRI were compared using McNemar's test. Results: At qualitative assessment, MRI had higher accuracy than CT (96.4%, 80/83 and 86.7%, 72/83, respectively). At quantitative analysis, both the radiodensity and SII were significantly different between groups (p<0.0001). For CT, at quantitative assessment, the AUROC of the radiodensity in discriminating between groups was 0.904 (optimal cut-off point, 20 HU) with an accuracy of 77.1% (64/83). For MRI, the AUROC of the SII was 0.989 (optimal cut-off point, 7.766%) with an accuracy of 96.4% (80/83), which was significantly higher than CT (p<0.0001). By using optimal cut-off points for cases with an erroneous diagnosis at qualitative assessment, accuracy improved both for CT (89.2%, 74/83) and MRI (97.6%, 81/83). Conclusion: Quantitative analysis is useful in evaluating patients with MG and improves the diagnostic accuracy of CT and MRI based on qualitative assessment. Chemical-shift MRI is more reliable than CT in differentiating

  7. 210Pb content in natural gas pipeline residues ('black-powder') and its correlation with the chemical composition

    International Nuclear Information System (INIS)

    Godoy, Jose Marcus; Carvalho, Franciane; Cordilha, Aloisio; Matta, Luiz Ernesto; Godoy, Maria Luiza

    2005-01-01

    The present work was carried out to assess the 210 Pb content in 'black-powder' found in pigging operations on gas pipelines in Brazil, in particular, on the Campos Basin gas pipeline. Additionally, the chemical composition of such deposits was determined and an eventual correlation with 210 Pb concentration evaluated. Typical 'black-powder' generated in the natural gas pipeline from Campos Basin oilfield contains mainly iron oxide (∼81%) and residual organic matter (∼9%). The 210 Pb content ranges from 4.9 to 0.04 kBq kg -1 and seems to be inversely correlated with the distance to the platforms. On the other hand, 226 Ra concentration is higher on the pipeline branch between the platform and the onshore installations. 228 Ra was only observed in few samples, in particular, in the samples with the highest 226 Ra content

  8. The tissue residues of sodium dehydroacetate used as feed preservative in swine.

    Science.gov (United States)

    Liu, Hao; Han, Lingling; Xie, Jiayu; Wu, Yingchao; Xie, Yang; Zhang, Yumei

    2018-01-01

    Sodium dehydroacetate (Na-DHA) is a food and feed additive with antimicrobial effects. There is little information on Na-DHA residue levels in foods derived from animals. In this study, Na-DHA residue levels in swine tissues were determined by HLPC, and the pharmacokinetics of Na-DHA in tissues were determined. The Na-DHA residue levels in swine tissues were liver > muscle > fat. The pharmacokinetics of Na-DHA followed a binomial regression model, and the half-time of Na-DHA in swine tissues was 9.07 days for kidney, 7.19 days for liver, 6.66 days for muscle, and 5.39 days for fat tissue. The accuracy of the HPLC method for Na-DHA determination ranged from 80.18% to 91.33% recovery, with coefficients of variation swine diet is a safe feed additive based on residue elimination and ADI values reported. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Crop residue stabilization and application to agricultural and degraded soils: A review.

    Science.gov (United States)

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 40 CFR 180.254 - Carbofuran; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... than 1 ppm is carbamates) 2 12/31/09 Pumpkin (of which not more than 0.6 ppm is carbamates) 0.8 12/31...

  11. 40 CFR 180.215 - Naled; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.215... 0.5 Pea, succulent 0.5 Pepper 0.5 Pumpkin 0.5 Safflower, seed 0.5 Spinach 3 Squash, summer 0.5...

  12. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    Science.gov (United States)

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W.

  13. Understanding and controlling chromaticity shift in LED devices

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Mills, Karmann; Lamvik, Michael; Perkins, Curtis; Bobashev, Georgiy; Young, Joseph; Yaga, Robert; Johnson, Cortina

    2017-05-30

    Chromaticity shift in light-emitting diode (LED) devices arises from multiple mechanisms, and at least five different chromaticity shift modes (CSMs) have been identified to date. This paper focuses on the impacts of irreversible phosphor degradation as a cause of chromaticity shifts in LED devices. The nitride phosphors used to produce warm white LEDs are especially vulnerable to degradation due to thermal and chemical effects such as reactions with oxygen and water. As a result, LED devices utilizing these phosphors were found to undergo either a green shift or, less commonly, a red shift depending on the phosphor mix in the LED devices. These types of chromaticity shifts are classified as CSM-2 (green shift) and CSM-5 (red shift). This paper provides an overview of the kinetic processes responsible for green and red chromaticity shifts along with examples from accelerated stress testing of 6” downlights. Both CSMs appear to proceed through analogous mechanisms that are initiated at the surface of the phosphor. A green shift is produced by the surface oxidation of the nitride phosphor that changes the emission profile to lower wavelengths. As the surface oxidation reaction proceeds, reactant limitations slow the rate and bulk oxidation processes become more prevalent. We found that a red chromaticity shift arises from quenching of the green phosphor, also possibly due to surface reactions of oxygen, which shift the emission chromaticity in the red direction. In conclusion, we discuss the implications of these findings on projecting chromaticity.

  14. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination

    Science.gov (United States)

    Fan, Hsiu-Fang; Cheng, Yong-Song; Ma, Chien-Hui; Jayaram, Makkuni

    2015-01-01

    Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic’ complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations. PMID:25765648

  15. Magnetic separation as a plutonium residue enrichment process

    International Nuclear Information System (INIS)

    Avens, L.R.; Gallegos, U.F.; McFarlan, J.T.

    1990-01-01

    Several plutonium contaminated residues have been subjected to Open Gradient Magnetic Separation (OGMS) on an experimental scale. OGMS experiments on graphite and bomb reduction residues resulted in a plutonium rich fraction and a plutonium lean fraction. Values for the bulk quantity rejected to the lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the lean fraction plutonium content was too high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. 6 refs., 1 fig., 9 tabs

  16. Characterization on incineration residue of radioactive solid wastes

    International Nuclear Information System (INIS)

    Katoh, Kiyoshi; Hirayama, Katsuyoshi; Kato, Akira.

    1989-01-01

    Characterization was carried out on incineration residue discharged from the radioactive solid waste incineration unit (capacity, 100 kg/h) in use at the Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI) to obtain basic data for investigating solidification methods of the residue. The characterized residue was taken from furnace and a primary ceramic filter of the incineration unit which incinerates combustible solid wastes generated at JAERI and the outside organizations. Items of characterization involve a particle size distribution, misplaced materials content, ignition loss, chemical composition and radioactivity of nuclides in the ash. As the results, the size of ash sampled from the furnace distributed a wide range, with about 35∼60 % of ash smaller than 5 mm and about 10∼25 % of massive one larger than 30 mm (max. size: ∼130 mm). The ignition loss was 2∼3 %. The chemical compositions of the ash were mainly SiO 2 , Fe 2 O 3 , CaO and Al 2 O 3 . The specific activities of the ash were about 0.4∼4 x 10 3 Bq/g, and principal contaminants were 60 Co and 137 Cs. (author)

  17. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.

  18. A simple method for measuring signs of {sup 1}H{sup N} chemical shift differences between ground and excited protein states

    Energy Technology Data Exchange (ETDEWEB)

    Bouvignies, Guillaume; Korzhnev, Dmitry M.; Neudecker, Philipp; Hansen, D. Flemming [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada); Cordes, Matthew H. J. [University of Arizona, Department of Chemistry and Biochemistry (United States); Kay, Lewis E., E-mail: kay@pound.med.utoronto.c [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2010-06-15

    NMR relaxation dispersion spectroscopy is a powerful method for studying protein conformational dynamics whereby visible, ground and invisible, excited conformers interconvert on the millisecond time-scale. In addition to providing kinetics and thermodynamics parameters of the exchange process, the CPMG dispersion experiment also allows extraction of the absolute values of the chemical shift differences between interconverting states, |{Delta}{omega}-tilde|, opening the way for structure determination of excited state conformers. Central to the goal of structural analysis is the availability of the chemical shifts of the excited state that can only be obtained once the signs of {Delta}{omega}-tilde are known. Herein we describe a very simple method for determining the signs of {sup 1}H{sup N} {Delta}{omega}-tilde values based on a comparison of peak positions in the directly detected dimensions of a pair of {sup 1}H{sup N}-{sup 15}N correlation maps recorded at different static magnetic fields. The utility of the approach is demonstrated for three proteins that undergo millisecond time-scale conformational rearrangements. Although the method provides fewer signs than previously published techniques it does have a number of strengths: (1) Data sets needed for analysis are typically available from other experiments, such as those required for measuring signs of {sup 15}N {Delta}{omega}-tilde values, thus requiring no additional experimental time, (2) acquisition times in the critical detection dimension can be as long as necessary and (3) the signs obtained can be used to cross-validate those from other approaches.

  19. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  20. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  1. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1 H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1 H/ 1 H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials

  2. The influence of the calibration standard and the chemical composition of the water samples residue in the counting efficiency of proportional detectors for gross alpha and beta counting. Application on the radiologic control of the IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Santos, Cecilia Martins

    2003-01-01

    In this work the efficiency calibration curves of thin-window and low background gas-flow proportional counters were determined for calibration standards with different energies and different absorber thicknesses. For the gross alpha counting we have used 241 Am and natural uranium standards and for the gross beta counting we have used 90 Sr/ 90 Y and 137 Cs standards in residue thicknesses ranging from 0 to approximately 18 mg/cm 2 . These sample thicknesses were increased with a previously determined salted solution prepared simulating the chemical composition of the underground water of IPEN The counting efficiency for alpha emitters ranged from 0,273 +- 0,038 for a weightless residue to only 0,015 +- 0,002 in a planchet containing 15 mg/cm 2 of residue for 241 Am standard. For natural uranium standard the efficiency ranged from 0,322 +- 0,030 for a weightless residue to 0,023 +- 0,003 in a planchet containing 14,5 mg/cm 2 of residue. The counting efficiency for beta emitters ranged from 0,430 +- 0,036 for a weightless residue to 0,247 +- 0,020 in a planchet containing 17 mg/cm 2 of residue for 137 Cs standard. For 90 Sr/ 90 Y standard the efficiency ranged from 0,489 +- 0,041 for a weightless residue to 0,323 +- 0,026 in a planchet containing 18 mg/cm 2 of residue. Results make evident the counting efficiency variation with the alpha or beta emitters energies and the thickness of the water samples residue. So, the calibration standard, the thickness and the chemical composition of the residue must always be considered in the gross alpha and beta radioactivity determination in water samples. (author)

  3. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    Science.gov (United States)

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  4. Calculation of relativistic and isotope shifts in Mg I

    International Nuclear Information System (INIS)

    Berengut, J.C.; Flambaum, V.V.; Kozlov, M.G.

    2005-01-01

    We present an ab initio method of calculation of the isotope and relativistic shifts in atoms with a few valence electrons. It is based on an energy calculation involving the combination of the configuration-interaction method and many-body perturbation theory. This work is motivated by analyses of quasar absorption spectra that suggest that the fine-structure constant α was smaller at an early epoch. Relativistic shifts are needed to measure this variation of α, while isotope shifts are needed to resolve systematic effects in this study. The isotope shifts can also be used to measure isotopic abundances in gas clouds in the early universe, which are needed to study nuclear reactions in stars and supernovae and test models of chemical evolution. This paper shows that the isotope shift in magnesium can be calculated to very high precision using our method

  5. 40 CFR 180.294 - Benomyl; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.294.../08 Poultry, meat byproducts, except liver 0.1 1/1/08 Pumpkin 1.0 1/1/07 Raspberry 7.0 1/1/08 Rice...

  6. Chemical shift of U L3 edges in different uranium compounds ...

    Indian Academy of Sciences (India)

    Administrator

    by X-ray absorption spectroscopy with synchrotron radiation. D JOSEPH†, C NAYAK††, ... Bhabha Atomic Research Centre, Mumbai 400 085, India. MS received 28 .... As has been discussed in the 'Introduction' section, the above edge shift ...

  7. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    International Nuclear Information System (INIS)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino; Braz-Filho, Raimundo; Carvalho, Mario G. de

    2012-01-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1 H, 13 C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1 H and 13 C NMR chemical shift assignments. (author)

  8. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix

    International Nuclear Information System (INIS)

    Ikura, Mitsuhiko; Kay, L.E.; Bax, A.; Krinks, M.

    1991-01-01

    Heteronuclear 3D and 4D NMR experiments have been used to obtain 1 H, 13 C, and 15 N backbone chemical shift assignments in Ca 2+ -loaded clamodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-bionding domain (residues 577-602) of rabbit skeletal muscle muosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca 2+ -binding site 1 (E11-E14), the N-terminal portion of the central helix (M72-D78), and the second helix of the Ca 2+ -binding site 4 (F141-M145). Analysis of backbone NOE connectivities indicates a change from α-helical to an extended conformation for residues 75-77 upon complexation with M13. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site 3

  9. Characteristics of purple nonsulfur bacteria grown under Stevia residue extractions.

    Science.gov (United States)

    Xu, J; Feng, Y; Wang, Y; Lin, X

    2013-11-01

    As a consequence of the large-scale cultivation of Stevia plants, releases of plant residues, the byproduct after sweetener extraction, to the environment are inevitable. Stevia residue and its effluent after batching up contain large amounts of organic matters with small molecular weight, which therefore are a potential pollution source. Meanwhile, they are favourite substrates for micro-organism growths. This investigation was aimed to utilize the simulated effluent of Stevia residue to enrich the representative purple nonsulfur bacterium (PNSB), Rhodopseudomonas palustris (Rps. palustris), which has important economic values. The growth profile and quality of Rps. palustris were characterized by spectrophotometry, compared to those grown in common PNSB mineral synthetic medium. Our results revealed that the simulated effluent of Stevia residue not only stimulated Rps. palustris growth to a greater extent, but also increased its physiologically active cytochrome concentrations and excreted indole-3-acetic acid (IAA) content. This variation in phenotype of Rps. palustris could result from the shift in its genotype, further revealed by the repetitive sequence-based PCR (rep-PCR) fingerprinting analysis. Our results showed that the effluent of Stevia residue was a promising substrate for microbial growth. © 2013 The Society for Applied Microbiology.

  10. Relative availability of crop residue-N in rice cultivation

    International Nuclear Information System (INIS)

    Sirwando, H; Abdullah, N.

    1988-01-01

    The use of plant residues for soil amendment will reduce the use of chemical fertilizers. The experiment to study the uptake of N from various plant residues by rice crop. Three kinds of plant residue of soybean labelled with 15-N. Four levels of urea (0, 15, 30, 40 kg N/ha) were applied to aluvial soil from Pusakanegara. The factorial experiment was conducted in fully randomize design, with plant residues as the main treatment, and rate of urea as substreatment. The results obtained from this experiment showed that plant dry weight, N content of grain, straw, and the whole plant of Atomita I rice treated with soybean strow seens to be higher than those treated with the straw of rice or corn. (author). 6 refs.; 7 tabs

  11. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties.

    Science.gov (United States)

    Sun, Hongfang; Li, Zishanshan; Bai, Jing; Memon, Shazim Ali; Dong, Biqin; Fang, Yuan; Xu, Weiting; Xing, Feng

    2015-02-13

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)₂, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  12. Proton magnetic resonance chemical shift imaging (1H CSI)-directed stereotactic biopsy

    International Nuclear Information System (INIS)

    Son, B.-C.; Kim, B.-C.; Kang, J.-K.; Choi, B.-G.; Kim, E.-N.; Baik, H.-M.; Choe, B.-Y.; Naruse, S.

    2001-01-01

    Introduction. To add metabolic information during stereotactic biopsy target selection, the authors adopted proton chemical shift imaging ( 1 H CSI)-directed stereotactic biopsy. Currently, proton single voxel spectroscopy (SVS) technique has been reported in stereotactic biopsy. We performed 1 H CSI in combination with a stereotactic headframe and selected targets according to local metabolic information, and evaluated the pathological results. Patients and Method. The 1 H CSI-directed stereotactic biopsy was performed in four patients. 1 H CSI and conventional Gd-enhancement stereotactic MRI were performed simultaneously after the fitting of a stereotactic frame. After reconstructing the metabolic maps of N-acetylaspartate (NAA)/phosphocreatine (Cr), phosphocholine (Cho)/Cr, and Lactate/Cr ratios, focal areas of increased Cho/Cr ratio and Lac/Cr ratios were selected as target sites in the stereotactic MR images. Result. 1 H CSI is possible with the stereotactic headframe in place. No difficulty was experienced performing 1 H CSI or making a diagnosis. Pathological samples taken from areas of increased Cho/Cr ratios and decreased NAA/Cr ratios provided information upon increased cellularity, mitoses and cellular atypism, and facilitated diagnosis. Pathological samples taken from areas of increased Lac/ Cr ratio snowed predominant feature of necrosis. Conclusion. 1 H CSI was feasible with the stereotactic headframe in place. The final pathological results obtained were concordant with the local metabolic information from 1 H CSI. We believe that 1 H CSI-directed stereotactic biopsy has the potential to significantly improve the accuracy of stereotactic biopsy targeting. (author)

  13. Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass.

    NARCIS (Netherlands)

    German-Baez, L.J.; Valdez-Flores, M.A.; Felix-Medina, J.V.; Norzagaray-Valenzuela, C.D.; Santos-Ballardo, D.U.; Reyes-Moreno, C.; Shelton, L.M.; Valdez-Ortiz, A.

    2017-01-01

    The production of photosynthetic biofuels using microalgae is a promising strategy to combat the use of non-renewable energy sources. The microalgae residual biomass is a waste by-product of biofuel production; however, it could prove to have utility in the development of sustainable nutraceuticals

  14. Benchmarking of density functionals for a soft but accurate prediction and assignment of (1) H and (13)C NMR chemical shifts in organic and biological molecules.

    Science.gov (United States)

    Benassi, Enrico

    2017-01-15

    A number of programs and tools that simulate 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user-friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these "unreliable" tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi-empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple-ζ basis sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. 40 CFR 180.435 - Deltamethrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... in food handling establishments, including food service, manufacturing and processing establishments.... Contamination of food/feed or food/feed contact surfaces shall be avoided. (B) To assure safe use of the...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  16. 40 CFR 180.422 - Tralomethrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...-handling establishments, including food service, manufacturing, and processing establishments, such as... shall be limited to a maximum of 0.06 percent active ingredient. Contamination of food and food-contact...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  17. 40 CFR 180.442 - Bifenthrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... application of bifenthrin in food handling establishments, including food service, manufacturing and... ingredient. Contamination of food/feed or food/feed contact surfaces shall be avoided. (B) To assure safe use...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  18. 40 CFR 180.108 - Acephate; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... establishments, including food service, manufacturing and processing establishments, such as restaurants... avoid atomization or splashing of the spray. Contamination of food or food-contact surfaces shall be... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.108...

  19. Anxiety about starting three-shift work among female workers: findings from the Female Shift Workers' Health Study.

    Science.gov (United States)

    Kubo, Tatsuhiko; Maruyama, Takashi; Shirane, Kiyoyumi; Otomo, Hajime; Matsumoto, Tetsuro; Oyama, Ichiro

    2008-03-01

    In 1999, the Japanese Law on Equal Employment Opportunity and Conditions was amended and the previous prohibition of the assignment of female workers to night work was abolished. Subsequently, the number of female shift workers has been increasing in Japan, necessitating greater attention to the health care of this population. The aim of the current study is to evaluate the relationship between anxiety expressed about starting three-shift work and background characteristics among female workers who were being assigned to three-shift work for the first time. The subjects were 38 middle-aged female workers (age range: 44 to 59 years) who were working at a chemical plant. The women completed a self-administered questionnaire before starting three-shift work. Levels of anxiety about starting three-shift work were assessed by the question 'Do you feel anxious about starting three-shift work?' The available responses were: 'Very agree', 'Considerably agree', 'Rather agree', 'Slightly agree' and 'Not agree at all', and 63% of the subjects gave one of the first two answers, which were defined as indicating anxiety. We also acquired information regarding lifestyle and occupation for each subject, including the following factors: frequency of breakfast consumption, subjective sleep insufficiency, previous experience of similar work before beginning shift work, previous experience of two-shift work, and responsibility for household duties. In the study, we found a marginally statistically significant trend association between frequent breakfast consumption and anxiety about starting three-shift work (P(trend) = 0.09). Anxiety was also high among subjects with sleep disorders, especially those suffering from subjective sleep insufficiency (P = 0.08). Due to the small study population, these results should be interpreted with caution and confirmed by future studies.

  20. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, Elwy H.; Yao, Xuejun [Australian National University, Research School of Chemistry (Australia); Feintuch, Akiva [Weizmann Institute of Science, Department of Chemical Physics (Israel); Adams, Luke A.; Aurelio, Luigi; Graham, Bim [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Goldfarb, Daniella [Weizmann Institute of Science, Department of Chemical Physics (Israel); Otting, Gottfried, E-mail: gottfried.otting@anu.edu.au [Australian National University, Research School of Chemistry (Australia)

    2016-01-15

    Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Δχ) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative approach, we used multiple Gd{sup 3+}-Gd{sup 3+} distances measured by double electron–electron resonance (DEER) experiments to define the metal position, allowing Δχ-tensor determinations from more robust 5-parameter fits that can be performed with a relatively sparse set of PCSs. Using this approach with the 32 kDa E. coli aspartate/glutamate binding protein (DEBP), we demonstrate a structural transition between substrate-bound and substrate-free DEBP, supported by PCSs generated by C3-Tm{sup 3+} and C3-Tb{sup 3+} tags attached to a genetically encoded p-azidophenylalanine residue. The significance of small PCSs was magnified by considering the difference between the chemical shifts measured with Tb{sup 3+} and Tm{sup 3+} rather than involving a diamagnetic reference. The integrative sparse data approach developed in this work makes poorly soluble proteins of limited stability amenable to structural studies in solution, without having to rely on cysteine mutations for tag attachment.

  2. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue.

    Science.gov (United States)

    Huang, Hui; Yao, Wenlin; Li, Ronghua; Ali, Amjad; Du, Juan; Guo, Di; Xiao, Ran; Guo, Zhanyu; Zhang, Zengqiang; Awasthi, Mukesh Kumar

    2018-02-01

    This study aimed to evaluate the chemical forms, behavior and environmental risk of heavy metal (HMs) Zn, Pb and Cd in phytoremediation residue (PMR) pyrolyzed at 350 °C, 550 °C and 750 °C, respectively. The behavior of HMs variation during the PMR pyrolysis process was analyzed and the potential HMs environmental risk of phytoremediation residue biochars (PMB) was assessed which was seldom investigated before. The results showed that the pyrolysis temperature increase decreased the soluble/exchangeable HMs fraction and alleviated the HMs bioavailability. When the temperature was over 550 °C, the adsorbed Zn(II), Pb(II) and Cd(II) were turned into oxides forms and concentrated in PMB with more stable forms exhibiting lower risk assessment code and potential ecological risk index. The ecotoxicity test showed higher pyrolysis temperature favored the reduction of PMB ecotoxicity. It is suggested that pyrolysis temperature above 550°C may be suitable for thermal treatment of PMR with acceptable environmental risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. (¹⁵N ± ¹³C') edited (4, 3)D-H(CC)CONH TOCSY and (4, 3)D-NOESY HNCO experiments for unambiguous side chain and NOE assignments of proteins with high shift degeneracy.

    Science.gov (United States)

    Kumar, Dinesh; Arora, Ashish

    2011-11-01

    Well-resolved and unambiguous through-bond correlations and NOE data are crucial for high-quality protein structure determination by NMR. In this context, we present here (4, 3)D reduced dimensionality (RD) experiments: H(CC)CONH TOCSY and NOESY HNCO--which instead of (15)N shifts exploit the linear combination of (15)N(i) and (13)C'(i-1) shifts (where i is a residue number) to resolve the through-bond (1)H-(1)H correlations and through-space (1)H-(1)H NOEs. The strategy makes use of the fact that (15)N and (13)C' chemical shifts when combined linearly provide a dispersion which is better compared to those of the individual chemical shifts. The extended dispersion thus available in these experiments will help to obtain the unambiguous side chain and accurate NOE assignments especially for medium-sized alpha-helical or partially unstructured proteins [molecular weight (MW) between 12-15 kDa] as well as higher MW (between 15-25 kDa) folded proteins where spectral overlap renders inaccurate and ambiguous NOEs. Further, these reduced dimensionality experiments in combination with routinely used (15)N and (13)C' edited TOCSY and NOESY experiments will provide an alternative way for high-quality NMR structure determination of large unstable proteins (with very high shift degeneracy), which are not at all amenable to 4D NMR. The utility of these experiments has been demonstrated here using (13)C/(15)N labeled ubiquitin (76 aa) protein. Copyright © 2011 John Wiley & Sons, Ltd.

  4. NMR Characterization of Flavanone Naringenin 7-O-Glycoside Diastereomer

    Directory of Open Access Journals (Sweden)

    SUN Li-juan

    2017-12-01

    Full Text Available To discriminate R and S flavanone glycoside using NMR, the mixture of R and S naringenin 7-O-glycoside was first isolated from Gleditsia sinensis. 1H and 13C NMR data of the mixture were recorded with 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC in DMSO-d6 solution. The two diastereomers were then separated with chiral chromatographic isolation, with their absolute configurations determined by circular dichroism. To avoid the disturbance of protons from glucose residues to dihydroflavonoid, 1H NMR spectra were acquired for pure R and S naringenin 7-O-glycoside and their mixture in CD3CN. The two diastereomers showed the largest proton chemical shift differences at the end group of glucose residue (H-1" with a chemical shift difference of 9.4 Hz. The OH-5 proton showed a chemical shift difference of 5.8 Hz. The chemical shift of the three protons on ring C were all influenced by configuration.

  5. Chemical Analysis of Organic Residues Found in Hellenistic Time Amphorae from SE Bulgaria

    Science.gov (United States)

    Zlateva, B.; Rangelov, M.

    2015-05-01

    We have used IR spectroscopy, 1H NMR spectroscopy, high-performance liquid chromatography and thin-layer chromatography to study the composition of resin residues found in 22 amphorae from Apollonia Pontika (SE Bulgaria). In particular this analysis of the resin residues was aimed at discovering the content of the amphorae and to verify the hypothesis on the transport of wine, named "Retsina". Additionally this hypothesis has been confirmed by a similar analysis of the modern resin sample from Aleppo pine (Pinus Halepensis) growing in the Attica region (Greece).

  6. 40 CFR 180.34 - Tests on the amount of residue remaining.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations..., cauliflower, kohlrabi. (12) Cantaloups, honeydew melons, muskmelons, pumpkins, watermelons, winter squash. (13...

  7. Theoretical estimation of pnicogen bonds and hydrogen bonds in small heterocyclic complexes: Red-shifts and blue-shifts ruled by polarization effects

    International Nuclear Information System (INIS)

    Oliveira, Boaz G.

    2014-01-01

    Graphical abstract: - Highlights: • This paper definitively discusses the interaction strength. • Analyses of the red-shifts and blue-shift. • Stretch frequencies of the hydrogen bonds and pnicogen bonds in heterocyclic compounds. • Theoretical calculations derived from topological parameters of the Quantum Theory of Atoms in Molecules (QTAIM). • The analysis of the Natural Bond Orbital (NBO) in line with the Bent’s rule of the chemical bonding. - Abstract: The occurrence of pnicogen bonds (N⋯P) and hydrogen bonds (F⋯H or Cl⋯H) in heterocyclic complexes formed by C 2 H 5 N⋯PH 3 , C 2 H 5 N⋯PH 2 F and C 2 H 5 N⋯PH 2 Cl was investigated at the B3LYP/6-311++G(d,p) level of theory. Analysis of the infrared spectra revealed the appearance of both red and blue shifts for the P–H bonds. However, in the case of the P–F and P–Cl bonds only red shifts were observed. The phenomenology of these vibration modes was interpreted on the basis of the QTAIM atomic radii as well as the contributions of the s and p orbitals determined via NBO calculations. The results of this latter investigation are consistent with the rehybridization theory and the Bent rule for chemical bonding. The charge transfer between N and P was determined in order to verify whether these atoms present an acid or base profile upon the formation of the pnicogen bonds

  8. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    Science.gov (United States)

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  9. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH.

    Science.gov (United States)

    Wang, Xiaojuan; Butterly, Clayton R; Baldock, Jeff A; Tang, Caixian

    2017-06-01

    Residues differing in quality and carbon (C) chemistry are presumed to contribute differently to soil pH change and long-term soil organic carbon (SOC) pools. This study examined the liming effect of different crop residues (canola, chickpea and wheat) down the soil profile (0-30cm) in two sandy soils differing in initial pH as well as the long-term stability of SOC at the amended layer (0-10cm) using mid-infrared (MIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. A field column experiment was conducted for 48months. Chickpea- and canola-residue amendments increased soil pH at 0-10cm in the Podzol by up to 0.47 and 0.36units, and in the Cambisol by 0.31 and 0.18units, respectively, at 48months when compared with the non-residue-amended control. The decomposition of crop residues was greatly retarded in the Podzol with lower initial soil pH during the first 9months. The MIR-predicted particulate organic C (POC) acted as the major C sink for residue-derived C in the Podzol. In contrast, depletion of POC and recovery of residue C in MIR-predicted humic organic C (HOC) were detected in the Cambisol within 3months. Residue types showed little impact on total SOC and its chemical composition in the Cambisol at 48months, in contrast to the Podzol. The final HOC and resistant organic C (ROC) pools in the Podzol amended with canola and chickpea residues were about 25% lower than the control. This apparent priming effect might be related to the greater liming effect of these two residues in the Podzol. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 31P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging

    International Nuclear Information System (INIS)

    Koestler, H.; Beer, M.; Buchner, S.; Sandstede, J.; Pabst, T.; Kenn, W.; Hahn, D.

    2001-01-01

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac 31 P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders 31 P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.) [de

  11. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    International Nuclear Information System (INIS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-01-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β -SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β -SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t -test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size. (paper)

  12. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Science.gov (United States)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  13. SU-F-J-126: Influence of Six Dimensional Motions in Frameless Stereotactic Dosimetry Incorporating Rotational Shifts as Equivalent Translational Shifts: A Feasibility Study for Elekta-BrainLAB Stereotactic System

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B [Fortis Memorial Research Institute, Gurgaon (India); GLA University, Mathura, UP (India); Manikandan, A [NRI medical college, Gunbtur, Andra pradesh (India); Jassal, K; Ganesh, T [King Fahad Specialist Hospital, New Delhi (India); Munshi, A; Mohanti, B [Fortis Memorial Research Institute, Gurgaon, Haryana (India); Pradhan, A [GLA University, Mathura, UP (India)

    2016-06-15

    Purpose: Six dimensional positional shifts (translational and rotational) determined by a volumetric imaging system were mathematically combined and incorporated as simple translational shifts and the resultant impact on dose characteristics was studied. Methods: Thirty patients who underwent either single fraction (12 Gy) or five fractions (5 Gy per fraction) stereotactic treatments were included in this study. They were immobilized using a double layered thermoplastic mask from BrainLAB. Isocenter matching was done using infrared marker of ExacTrac. An initial cone beam CT (CBCT) gave positional shifts in 6-dimensions that were applied through 6-D motion enabled couch. A verification CBCT was done following corrections before treatment. These 6-D positional shifts determined at each imaging session from the first CBCT were mathematically combined to give three simple translational shifts. Doses were recalculated in the patient matrix with these positional errors present by moving the whole image dataset. Doses were also recalculated after second CBCT with only residual errors present. PTV dose statistics were compared. Results: For the approved plans V100%(PTV), V100%(GTV), D95%(PTV), D95%(GTV), D1%(PTV) and D1%(GTV) were 96.2±3.0%, 98.2±1.4%, 102%±1.7%, 103±1.2%, 107.9±8.9% and 109.3±7.5% of prescription dose respectively. With the positional errors present (after 1st CBCT) the corresponding values were 86.7±4.9%, 91.3±2.9%, 89.6±4.2%, 95.9±3.7%, 108.3±9.9% and 108.6±4.5%. Post-correction (after 2nd CBCT) with only residual errors present, values were 94.5±5.7%, 97.3±2.9%, 99.3%±3.2%, 102%±2.1%, 107.6±8.5% and 109.0±7.6% respectively. Significant and nominal OAR dose variation was observed between pre- and post-table corrections. Conclusion: Positional errors significantly affect PTV dose statistics. They need to be corrected before delivery of stereotactic treatments although the magnitude of dose changes can vary from patient

  14. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica.

    Science.gov (United States)

    Saucedo-Luna, Jaime; Castro-Montoya, Agustin Jaime; Martinez-Pacheco, Mauro Manuel; Sosa-Aguirre, Carlos Ruben; Campos-Garcia, Jesus

    2011-06-01

    Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147 °C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40 °C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R (2) = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.

  15. Saturation mutagenesis in selected amino acids to shift Pseudomonas sp. acidic lipase Lip I.3 substrate specificity and activity.

    Science.gov (United States)

    Panizza, Paola; Cesarini, Silvia; Diaz, Pilar; Rodríguez Giordano, Sonia

    2015-01-25

    Several Pseudomonas sp. CR611 Lip I.3 mutants with overall increased activity and a shift towards longer chain substrates were constructed. Substitution of residues Y29 and W310 by smaller amino acids provided increased activity on C18-substrates. Residues G152 and S154, modified to study their influence on interfacial activation, displayed a five and eleven fold increased activity.

  16. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  17. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation.

    Science.gov (United States)

    Morshedi, Dina; Ebrahim-Habibi, Azadeh; Moosavi-Movahedi, Ali Akbar; Nemat-Gorgani, Mohsen

    2010-04-01

    Studies on the aggregation of mutant proteins have provided new insights into the genetics of amyloid diseases and the role of the net charge of the protein on the rate, extent, and type of aggregate formation. In the present work, hen egg white lysozyme (HEWL) was employed as the model protein. Acetylation and (separately) citraconylation were employed to neutralize the charge on lysine residues. Acetylation of the lysine residues promoted amyloid formation, resulting in more pronounced fibrils and a dramatic decline in the nucleation time. In contrast, citraconylation produced the opposite effect. In both cases, native secondary and tertiary structures appeared to be retained. Studies on the effect of pH on aggregation suggested greater possibilities for amorphous aggregate formation rather than fibrillation at pH values closer to neutrality, in which the protein is known to take up a conformation more similar to its native form. This is in accord with reports in the literature suggesting that formation of amorphous aggregates is more favored under relatively more native conditions. pH 5 provided a critical environment in which a mixture of amorphous and fibrillar structures were observed. Use of Tango and Aggrescan software which describe aggregation tendencies of different parts of a protein structure suggested critical importance of some of the lysine residues in the aggregation process. Results are discussed in terms of the importance of the net charge in control of protein-protein interactions leading to aggregate formation and possible specific roles of lysine residues 96 and 97. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Characterisation of some South African water treatment residues ...

    African Journals Online (AJOL)

    2005-07-03

    Jul 3, 2005 ... Land application of water treatment residue (WTR) the by-product from the production of potable water, is becoming the preferred ... were analysed for some physical (particle size distribution, particle density and plant available water) and chemical attributes ...... for Industrial Wastes – Theory and Practice.

  19. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  20. Characterization of Bottom and Fly Ashes Generated Co-incineration of Biomass with Automotive Shredder Residue

    Directory of Open Access Journals (Sweden)

    Othaman Muhamad Fazli

    2017-01-01

    Full Text Available One of the viable techniques to reduce land filling of automotive shredder residue is by co-incinerating them with biomass. This study focuses on characterization of bottom and fly ashes produced from the coincineration of the automotive shredded residue with oil palm biomass. The co-incineration was carried out in a pilot-scale fluidized bed incinerator. The oil palm biomass used was oil palm shell while the automotive shredded residue was obtained from a local recycling company. The characterization was done based on particle size distribution, morphology (SEM analysis and chemical composition (EDS analysis. In term of chemical composition the ashes contain C (Carbon, O (Oxygen, Si (Silicon, K (Potassium, Ca (Calcium and Fe (Ferum.

  1. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  2. Washing effects of limonene on pesticide residues in green peppers.

    Science.gov (United States)

    Lu, Hai-Yan; Shen, Yan; Sun, Xing; Zhu, Hong; Liu, Xian-Jin

    2013-09-01

    The presence of pesticide residues in food has caused much concern. The low health risks and environmental impacts of limonene make it a very interesting solvent for use in green chemistry. Washing effects of limonene on pesticide residues of methyl chlorpyrifos, chlorothalonil, chlorpyrifos, fenpropathrin and deltamethrin were investigated in green pepper. Results showed that washing with a low concentration of limonene for 5 min (where LOQ is limit of quantitation) caused 53.67%, limonene for 10 min produced 55.90%, limonene for 5 min was the optimal treatment for elimination of pesticide residues in green pepper, considering effect and treatment time as well as cost. © 2013 Society of Chemical Industry.

  3. Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study

    Directory of Open Access Journals (Sweden)

    E. Virmond

    2013-06-01

    Full Text Available Besides high industrial development, Brazil is also an agribusiness country. Each year about 330 million metrics tons (Mg of biomass residues are generated, requiring tremendous effort to develop biomass systems in which production, conversion and utilization of bio-based products are carried out efficiently and under environmentally sustainable conditions. For the production of biofuels, organic chemicals and materials, it is envisaged to follow a biorefinery model which includes modern and proven green chemical technologies such as bioprocessing, pyrolysis, gasification, Fischer-Tropsch synthesis and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This paper presents promising options for valorization of Brazilian agroindustrial biomass sources and residues originating from the biofuel production chains as renewable energy sources and addresses the main aspects of the thermochemical technologies which have been applied.

  4. Chemical information from Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Madden, H.H.

    1981-01-01

    The nature of chemical information in Auger electron spectroscopy (AES) data is reviewed with special emphasis on data from solid surface systems. Two strategies are most frequently used to extract this information: (i) measuring and analyzing energy (chemical) shifts in Auger peaks; and (ii) making use of the shapes of Auger signals to determine the chemical environment at the site of the initial core hole. Chemical shift data are primarily illustrated by highlighting the interaction of oxygen with solids; and analyses of these data based on core-level binding-energy shifts, relaxation, and hole--hole interactions are outlined and discussed. Auger transitions that involve valence electrons are usually those for which lineshapes are taken as indications of the local chemistry at the initial core-hole site. Attempts at extracting valence band density-of-states information from lineshapes are proving successful and this approach to the surface chemical information in AES is illustrated with the aid of examples dealing with the interaction of silicon with hydrogen and with oxygen. The use of the AES lineshapes simply as ''fingerprints'' of the core-hole-site chemistry is examined and illustrated by examples which include studies of silicon nitride properties, of solid surface properties related to catalytic reactions, and of passive films on iron. Auger decay activated desorption processes are briefly examined and found to promise new and unique chemical information when combined with conventional AES. Some gas phase AES studies are also briefly reviewed

  5. Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI.

    Science.gov (United States)

    Motosugi, Utaroh; Hernando, Diego; Bannas, Peter; Holmes, James H; Wang, Kang; Shimakawa, Ann; Iwadate, Yuji; Taviani, Valentina; Rehm, Jennifer L; Reeder, Scott B

    2015-11-01

    To evaluate free-breathing chemical shift-encoded (CSE) magnetic resonance imaging (MRI) for quantification of hepatic proton density fat-fraction (PDFF). A secondary purpose was to evaluate hepatic R2* values measured using free-breathing quantitative CSE-MRI. Fifty patients (mean age, 56 years) were prospectively recruited and underwent the following four acquisitions to measure PDFF and R2*; 1) conventional breath-hold CSE-MRI (BH-CSE); 2) respiratory-gated CSE-MRI using respiratory bellows (BL-CSE); 3) respiratory-gated CSE-MRI using navigator echoes (NV-CSE); and 4) single voxel MR spectroscopy (MRS) as the reference standard for PDFF. Image quality was evaluated by two radiologists. MRI-PDFF measured from the three CSE-MRI methods were compared with MRS-PDFF using linear regression. The PDFF and R2* values were compared using two one-sided t-test to evaluate statistical equivalence. There was no significant difference in the image quality scores among the three CSE-MRI methods for either PDFF (P = 1.000) or R2* maps (P = 0.359-1.000). Correlation coefficients (95% confidence interval [CI]) for the PDFF comparisons were 0.98 (0.96-0.99) for BH-, 0.99 (0.97-0.99) for BL-, and 0.99 (0.98-0.99) for NV-CSE. The statistical equivalence test revealed that the mean difference in PDFF and R2* between any two of the three CSE-MRI methods was less than ±1 percentage point (pp) and ±5 s(-1) , respectively (P liver PDFF and R2* and are as valid as the standard breath-hold technique. © 2015 Wiley Periodicals, Inc.

  6. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  7. Effect of Indoor Residual Spraying on the Incidence of Malaria in ...

    African Journals Online (AJOL)

    Background: Indoor residual spraying (IRS), the application of a chemical to the internal walls of the structure in order to kill an insect that sits on the wall treated with such a chemical, is one of the methods adopted by World Health Organisation in combating malaria by controlling the vector mosquito. In line with the Zambian ...

  8. Anaerobic treatment of solid and liquid residues. Papers

    International Nuclear Information System (INIS)

    Maerkl, H.; Stegmann, R.

    1994-01-01

    Anaerobic processes are getting increasing attention in the disposal of liquid waste of the food industry and chemical industry and solid organic residues of the municipal sector. The main advantages of anaerobic processes are the favourable energy balance and the comparatively small volume of new biomass produced. There are new satisfactory technical solutions for nearly all problems encountered in practice. A conference on ''Anaerobic treatment of solid and liquid residues'' was held on 2-4 November 1994. The state of the art and new developments were presented in lectures by experts from research and practice. (orig.) [de

  9. Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters

    International Nuclear Information System (INIS)

    Ishima, Rieko; Torchia, Dennis A.

    2005-01-01

    Off-resonance effects can introduce significant systematic errors in R 2 measurements in constant-time Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation dispersion experiments. For an off-resonance chemical shift of 500 Hz, 15 N relaxation dispersion profiles obtained from experiment and computer simulation indicated a systematic error of ca. 3%. This error is three- to five-fold larger than the random error in R 2 caused by noise. Good estimates of total R 2 uncertainty are critical in order to obtain accurate estimates in optimized chemical exchange parameters and their uncertainties derived from χ 2 minimization of a target function. Here, we present a simple empirical approach that provides a good estimate of the total error (systematic + random) in 15 N R 2 values measured for the HIV protease. The advantage of this empirical error estimate is that it is applicable even when some of the factors that contribute to the off-resonance error are not known. These errors are incorporated into a χ 2 minimization protocol, in which the Carver-Richards equation is used fit the observed R 2 dispersion profiles, that yields optimized chemical exchange parameters and their confidence limits. Optimized parameters are also derived, using the same protein sample and data-fitting protocol, from 1 H R 2 measurements in which systematic errors are negligible. Although 1 H and 15 N relaxation profiles of individual residues were well fit, the optimized exchange parameters had large uncertainties (confidence limits). In contrast, when a single pair of exchange parameters (the exchange lifetime, τ ex , and the fractional population, p a ), were constrained to globally fit all R 2 profiles for residues in the dimer interface of the protein, confidence limits were less than 8% for all optimized exchange parameters. In addition, F-tests showed that quality of the fits obtained using τ ex , p a as global parameters were not improved when these parameters were free to fit the R

  10. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    Science.gov (United States)

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  12. Feed Technology of Fibrous Sugarcane Residues for Ruminants

    Directory of Open Access Journals (Sweden)

    Kuswandi

    2007-06-01

    Full Text Available Abundant sugarcane residue during shortage of roughage in dry season gives an opportunity to raise ruminants around sugarcane industries. However, these products are not widely used by farmers due to an assumption that the usage is inefficient and that the feed utilization technology is not widely recognized. Sugarcane fibrous residues (tops, bagasse and pith may be a potential feed component if pre-treated to increase its digestion and consumption by the animal, and/or supplemented by other ingredients to balance nutrients in the rumen as well as those for production purpose. Digestibility can be increased by chemical treatments such as ammoniation and other alkaline treatments, whereas consumption can be increased by physical treatments such as grinding, hammermilling or pelleting. Nutrients that are missing in these fibrous residues can be provided by addition of urea, molasses and minerals for maintenance need, and bypass nutrients (carbohydrates, protein and fats that are digested in the small intestine and available for tissue or milk synthesis. There are three options for development of livestock agribusiness based on fibrous sugarcane residues; however, these require several technologies to optimize the utilization of these residues.

  13. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  14. Eco-Friendly Multipurpose Lubricating Greases from Vegetable Residual Oils

    Directory of Open Access Journals (Sweden)

    Ponnekanti Nagendramma

    2015-10-01

    Full Text Available Environmentally friendly multipurpose grease formulation has been synthesized by using Jatropha vegetable residual oil with lithium soap and multifunctional additive. The thus obtained formulation was evaluated for its tribological performance on a four-ball tribo-tester. The anti-friction and anti-wear performance characteristics were evaluated using standard test methods. The biodegradability and toxicity of the base oil was assessed. The results indicate that the synthesized residual oil grease formulation shows superior tribological performance when compared to the commercial grease. On the basis of physico-chemical characterization and tribological performance the vegetable residual oil was found to have good potential for use as biodegradable multipurpose lubricating grease. In addition, the base oils are biodegradable and non toxic.

  15. A study on the neoasozine residues in rice grain by neutron activation method

    International Nuclear Information System (INIS)

    Kim, Y.H.; Lee, K.J.; Lee, S.R.

    1981-01-01

    Residues of neoasozine in rice grain were determined by neutron activation and colorimetric techniques. Twice application of the chemical before flowering did not lead to any increased residue level while 4-times application resulted in significant increase in the residue level up to 0.54 - 0.75 mg As 2 O 3 /kg. The partition ratio of arsenic residues into polished rice grain and bran was 73 : 27 in 100 % polishing while most of the residues in the bran was transferred to oil cake fraction during solvent extraction, reaching up to 2.9 mg As 2 O 3 /kg. The neutron activation technique was advantageous because of its high sensitivity and the smaller sample amounts required for analysis. (author)

  16. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Science.gov (United States)

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  17. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  18. Study of consumer fireworks post-blast residues by ATR-FTIR.

    Science.gov (United States)

    Martín-Alberca, Carlos; Zapata, Félix; Carrascosa, Héctor; Ortega-Ojeda, Fernando E; García-Ruiz, Carmen

    2016-03-01

    Specific analytical procedures are requested for the forensic analysis of pre- and post-blast consumer firework samples, which present significant challenges. Up to date, vibrational spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR) have not been tested for the analysis of post-blast residues in spite of their interesting strengths for the forensic field. Therefore, this work proposes a simple and fast procedure for the sampling and analysis of consumer firework post-blast residues by a portable FTIR instrument with an Attenuated Total Reflection (ATR) accessory. In addition, the post-blast residues spectra of several consumer fireworks were studied in order to achieve the identification of their original chemical compositions. Hence, this work analysed 22 standard reagents usually employed to make consumer fireworks, or because they are related to their combustion products. Then, 5 different consumer fireworks were exploded, and their residues were sampled with dry cotton swabs and directly analysed by ATR-FTIR. In addition, their pre-blast fuses and charges were also analysed in order to stablish a proper comparison. As a result, the identification of the original chemical compositions of the post-blast samples was obtained. Some of the compounds found were potassium chlorate, barium nitrate, potassium nitrate, potassium perchlorate or charcoal. An additional study involving chemometric tools found that the results might greatly depend on the swab head type used for the sampling, and its sampling efficiency. The proposed procedure could be used as a complementary technique for the analysis of consumer fireworks post-blast residues. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues.

    Directory of Open Access Journals (Sweden)

    Chaya Rapp

    Full Text Available Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer, we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr and sulfotyrosine (sTyr residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.

  20. 40 CFR 180.368 - Metolachlor; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances....02 Poultry, meat byproducts 0.05 Pumpkin 0.10 Safflower, seed 0.10 Shallot, bulb 0.10 Sheep, fat 0.02... or on the following food commodities: Commodity Parts per million Animal feed, nongrass, group 18 1.0...

  1. Amino acid compositional shifts during streptophyte transitions to terrestrial habitats.

    Science.gov (United States)

    Jobson, Richard W; Qiu, Yin-Long

    2011-02-01

    Across the streptophyte lineage, which includes charophycean algae and embryophytic plants, there have been at least four independent transitions to the terrestrial habitat. One of these involved the evolution of embryophytes (bryophytes and tracheophytes) from a charophycean ancestor, while others involved the earliest branching lineages, containing the monotypic genera Mesostigma and Chlorokybus, and within the Klebsormidiales and Zygnematales lineages. To overcome heat, water stress, and increased exposure to ultraviolet radiation, which must have accompanied these transitions, adaptive mechanisms would have been required. During periods of dehydration and/or desiccation, proteomes struggle to maintain adequate cytoplasmic solute concentrations. The increased usage of charged amino acids (DEHKR) may be one way of maintaining protein hydration, while increased use of aromatic residues (FHWY) protects proteins and nucleic acids by absorbing damaging UV, with both groups of residues thought to be important for the stabilization of protein structures. To test these hypotheses we examined amino acid sequences of orthologous proteins representing both mitochondrion- and plastid-encoded proteomes across streptophytic lineages. We compared relative differences within categories of amino acid residues and found consistent patterns of amino acid compositional fluxuation in extra-membranous regions that correspond with episodes of terrestrialization: positive change in usage frequency for residues with charged side-chains, and aromatic residues of the light-capturing chloroplast proteomes. We also found a general decrease in the usage frequency of hydrophobic, aliphatic, and small residues. These results suggest that amino acid compositional shifts in extra-membrane regions of plastid and mitochondrial proteins may represent biochemical adaptations that allowed green plants to colonize the land.

  2. Design of high-power, broadband 180o pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the design of high-power, broadband 180 o pulses and mixing sequences for generating dipolar and scalar coupling mediated 13 C- 13 C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1 H decoupling during mixing is presented. Considering RF field strengths in the range of 100-120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here

  3. Specific features of the determination of residual stresses in materials by diffraction techniques

    Science.gov (United States)

    Gorkunov, E. S.; Zadvorkin, S. M.; Goruleva, L. S.

    2017-12-01

    Residual stresses arising in separate machine parts and structural components during production and use to a large extent govern their lifetime. In this connection, the development and improvement of nondestructive methods for the determination of residual stresses is an important task for nondestructive testing. Standards regulate only the determination of macroscopic stresses, and in practice these stresses are most often determined with the application of the sin2ψ method. This paper, using quenched structural steels as an example, compares the results of residual stress determination by the sin2ψ method with those obtained by the method based on the analysis of the diffraction line profile as dependent on the value of the irradiated volume. It is demonstrated that, as the irradiated volume decreases, the value of residual stresses determined by the sin2ψ method may vary considerably, up to the change of the sign. For a more complete characteristic of residual stresses it is proposed to use, besides the determination of macrostresses by the shift of the diffraction lines, the value of microscopic stresses calculated from the line profile analysis.

  4. Devices for collecting chemical compounds

    Science.gov (United States)

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  5. Energy phase shift as mechanism for catalysis

    KAUST Repository

    Beke-Somfai, Tamás

    2012-05-01

    Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-shifted relative to each other provides a possibility to sustain the overall reaction by internal \\'energy recycling\\', bypassing the need for thermal activation, and in principle allowing the system to work adiabatically. Using an analytical model for superimposed, phase-shifted potentials of F 1-ATP synthase provides a description integrating main characteristics of this rotary enzyme complex. © 2012 Elsevier B.V. All rights reserved.

  6. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Cort, John R.; Cho, Herman M.

    2009-01-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. Computational Protocols for Prediction of Solute NMR Relative Chemical Shifts. A Case Study of L-Tryptophan in Aqueous Solution

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Olsen, Jógvan Magnus H.; Aidas, Kestutis

    2011-01-01

    to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations......In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers...... using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute–solvent configurations extracted from the MD simulation at 300 K are found to be inferior...

  8. Food processing as a means for pesticide residue dissipation

    Directory of Open Access Journals (Sweden)

    Đorđević Tijana

    2016-01-01

    Full Text Available Pesticides are one of the major inputs used for increasing agricultural productivity of crops. However, their inadequate application may produce large quantities of residues in the environment and, once the environment is contaminated with pesticides, they may easily enter into the human food chain through plants, creating a potentially serious health hazard. Nowadays, consumers are becoming more aware of the importance of safe and high quality food products. Thus it is pertinent to explore simple, cost-effective strategies for decontaminating food from pesticides. Various food processing techniques, at industrial and/or domestical level, have been found to significantly reduce the contents of pesticide residues in most food materials. The extent of reduction varies with the nature of pesticides, type of commodity and processing steps. Pesticides, especially those with limited movement and penetration ability, can be removed with reasonable efficiency by washing, and the effectiveness of washing depends on pesticide solubility in water or in different chemical solvents. Peeling of fruit and vegetable skin can dislodge pesticide residues to varying degrees, depending on constitution of a commodity, chemical nature of the pesticide and environmental conditions. Different heat treatments (drying, pasteurization, sterilization, blanching, steaming, boiling, cooking, frying or roasting during various food preparation and preservation processes can cause losses of pesticide residues through evaporation, co-distillation and/or thermal degradation. Product manufactures, from the simplest grain milling, through oil extraction and processing, juicing/pureeing or canning of fruits and vegetables, to complex bakery and dairy production, malting and brewing, wine making and various fermentation processes, play a role in the reduction of pesticide contents, whereby each operation involved during processing usually adds to a cumulative effect of reduction of

  9. Adaption of the microbial community to continuous exposures of multiple residual antibiotics in sediments from a salt-water aquacultural farm.

    Science.gov (United States)

    Xi, Xiuping; Wang, Min; Chen, Yongshan; Yu, Shen; Hong, Youwei; Ma, Jun; Wu, Qian; Lin, Qiaoyin; Xu, Xiangrong

    2015-06-15

    Residual antibiotics from aquacultural farming may alter microbial community structure in aquatic environments in ways that may adversely or positively impact microbially-mediated ecological functions. This study investigated 26 ponds (26 composited samples) used to produce fish, razor clam and shrimp (farming and drying) and 2 channels (10 samples) in a saltwater aquacultural farm in southern China to characterize microbial community structure (represented by phospholipid fatty acids) in surface sediments (0-10 cm) with long-term exposure to residual antibiotics. 11 out of 14 widely-used antibiotics were quantifiable at μg kg(-1) levels in sediments but their concentrations did not statistically differ among ponds and channels, except norfloxacin in drying shrimp ponds and thiamphenicol in razor clam ponds. Concentrations of protozoan PLFAs were significantly increased in sediments from razor clam ponds while other microbial groups were similar among ponds and channels. Both canonical-correlation and stepwise-multiple-regression analyses on microbial community and residual antibiotics suggested that roxithromycin residuals were significantly related to shifts in microbial community structure in sediments. This study provided field evidence that multiple residual antibiotics at low environmental levels from aquacultural farming do not produce fundamental shifts in microbial community structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bauxite and bauxite residue, characterization and electron microscopy study

    International Nuclear Information System (INIS)

    Antunes, M.L.P.; Conceicao, F.T.; Toledo, S.P.; Kiyohara, P.K.

    2012-01-01

    Through the Bayer process, bauxite is refined and alumina is produced. In this process, a highly alkaline residue, red mud is generated and its disposal represents an environmental problem. The aim of this paper is to present the characterization of Brazilian bauxite and Brazilian red mud by: X-ray diffraction, specific surface area, chemical composition analysis by ICP-MS, transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDS), and scanning electron microscopy (SEM) and discuss possible applications of this residue. The results identify as a constituent of both materials: Al 2 O 3 , Fe 2 O 3 , TiO 2 and SiO 2 and the presence of Na 2 O in residue. The analysis by electron microscopy of Bauxite shows particles with hexagonal shape and red mud shows small particles size. (author)

  11. Backbone and sidechain methyl Ile (δ1), Leu and Val chemical shift assignments of RDE-4 (1-243), an RNA interference initiation protein in C. elegans.

    Science.gov (United States)

    Chiliveri, Sai Chaitanya; Kumar, Sonu; Marelli, Udaya Kiran; Deshmukh, Mandar V

    2012-10-01

    The RNAi pathway of several organisms requires presence of double stranded RNA binding proteins for functioning of Dicer in gene regulation. In C. elegans, a double stranded RNA binding protein, RDE-4 (385 aa, 44 kDa) recognizes long exogenous dsRNA and initiates the RNAi pathway. We have achieved complete backbone and stereospecific methyl sidechain Ile (δ1), Leu and Val chemical shifts of first 243 amino acids of RDE-4, namely RDE-4ΔC.

  12. Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI.

    Science.gov (United States)

    Hu, Houchun H; Yin, Larry; Aggabao, Patricia C; Perkins, Thomas G; Chia, Jonathan M; Gilsanz, Vicente

    2013-10-01

    To compare fat-signal fractions (FFs) and T2* values between brown (BAT) and white (WAT) adipose tissue located within the supraclavicular fossa and subcutaneous depots, respectively. Twelve infants and 39 children were studied. Children were divided into lean and overweight/obese subgroups. Chemical-shift-encoded water-fat magnetic resonance imaging (MRI) was used to quantify FFs and T2* metrics in the supraclavicular and adjacent subcutaneous adipose tissue depots. Linear regression and t-tests were performed. Infants had lower supraclavicular FFs than children (P children exhibited lower supraclavicular FFs and T2* values than overweight children (P children, but not in infants. FFs in both depots were positively correlated with age and weight in infants (P children, they were correlated with weight and body mass index (BMI) (P children (P children, which are potentially indicative of physiological differences in adipose tissue fat content, amount, and metabolic activity. Copyright © 2013 Wiley Periodicals, Inc.

  13. Integrated assessment of soil quality after application of the biogas fermentation residues - a laboratory experiment

    Science.gov (United States)

    Telesiński, Arkadiusz; Cybulska, Krystyna; Płatkowski, Maciej; Stręk, Michał; Jarnuszewski, Grzegorz; Wrońska, Ilona; Mularewicz, Piotr; Kajdan, Tomasz; Biczak, Robert; Kołosowski, Paweł

    2017-11-01

    The aim of study was to determine the impact of three different biogas fermentation residues on some chemical and biochemical characteristics in sandy soil. The laboratory experiment was carried out on loamy sand. Residues were added to soil samples in the forms of pulp, drought, and granulate at dosages of 10, 50, and 100 g·kg-1. The reference was the soil sample without residues. On day 28, the content of macroelements and heavy metals was determined. In addition, on days 1, 7, 14, 28, and 56, the content of biomass and the activities of some hydrolases and oxidoreductases were assayed. Results showed that the application of all fermentation residues caused an increase in most of the chemical parameters. The highest impact on pH and the content of Ctot, Ntot, Stot, K, and P was observed in the soil treated with granulate, whereas the increase in the content of heavy metals was the highest after the drought application. The effect of biogas fermentation residues on all hydrolases and o-diphenol oxidase activities was mostly significant, but depended on the kind of residues and the day of experiment. Biomass content and the activity of dehydrogenase were increased in the whole experiment.

  14. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  15. 40 CFR 180.533 - Esfenvalerate; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., in or on food commodities as follows: Commodity Parts per million Almond 0.2 Almond, hulls 5.0 Apple... Poultry, meat byproducts, except liver 0.3 Pumpkin 0.5 Radish, roots 0.3 Radish, tops 3.0 Sheep, fat 1.5...

  16. Fuel characteristics and pyrolysis studies of solvent extractables and residues from the evergreen shrub Calotropis procera

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, M.D.; Gregorski, K.S.; Pavlath, A.E.

    1984-01-01

    Solvent extractables and residues from milkweed were evaluated as sources of liquid and solid fuels. Selected chemical, physical and pyrolytic determinations of the extractables and residues indicated that hexane extract is a potentially valuable, high density fuel resource. Methanol extract was shown to be a lower energy, highly toxic extract. Extracted residues were demonstrated to be valuable as solid fuel energy resources. 31 references.

  17. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  18. Analysis of residual stress in subsurface layers after precision hard machining of forging tools

    Directory of Open Access Journals (Sweden)

    Czan Andrej

    2018-01-01

    Full Text Available This paper is focused on analysis of residual stress of functional surfaces and subsurface layers created by precision technologies of hard machining for progressive constructional materials of forging tools. Methods of experiments are oriented on monitoring of residual stress in surface which is created by hard turning (roughing and finishing operations. Subsequently these surfaces were etched in thin layers by electro-chemical polishing. The residual stress was monitored in each etched layer. The measuring was executed by portable X-ray diffractometer for detection of residual stress and structural phases. The results significantly indicate rise and distribution of residual stress in surface and subsurface layers and their impact on functional properties of surface integrity.

  19. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse.

    Science.gov (United States)

    Cheng, Weizhi; Roessler, Justin; Blaisi, Nawaf I; Townsend, Timothy G

    2014-12-01

    Drinking water treatment residues (WTR) offer potential benefits when recycled through land application. The current guidance in Florida, US allows for unrestricted land application of lime softening WTR; alum and ferric WTR require additional evaluation of total and leachable concentrations of select trace metals prior to land application. In some cases a mixed WTR is produced when lime softening is accompanied by the addition of a coagulant or other treatment chemical; applicability of the current guidance is unclear. The objective of this research was to characterize the total and leachable chemical content of WTR from Florida facilities that utilize multiple treatment chemicals. Lime and mixed lime WTR samples were collected from 18 water treatment facilities in Florida. Total and leachable concentrations of the WTR were measured. To assess the potential for disposal of mixed WTR as clean fill below the water table, leaching tests were conducted at multiple liquid to solid ratios and under reducing conditions. The results were compared to risk-based soil and groundwater contamination thresholds. Total metal concentrations of WTR were found to be below Florida soil contaminant thresholds with Fe found in the highest abundance at a concentration of 3600 mg/kg-dry. Aluminum was the only element that exceeded the Florida groundwater contaminant thresholds using SPLP (95% UCL = 0.23 mg/L; risk threshold = 0.2 mg/L). Tests under reducing conditions showed elevated concentrations of Fe and Mn, ranging from 1 to 3 orders of magnitude higher than SPLP leachates. Mixed lime WTR concentrations (total and leachable) were lower than the ferric and alum WTR concentrations, supporting that mixed WTR are appropriately represented as lime WTR. Testing of WTR under reducing conditions demonstrated the potential for release of certain trace metals (Fe, Al, Mn) above applicable regulatory thresholds; additional evaluation is needed to assess management options where

  20. Regulations and decisions in environmental impact assessment of residues radioactivity content

    International Nuclear Information System (INIS)

    Santos, Adir Janete Godoy dos

    2005-01-01

    Surveillance of natural radionuclides in the environment did not have high priority over many years compared to that of man-made radioactivity. There is, however, an increasing interest in such measurements since enhanced exposure to natural radioactivity is receiving the same legal weight as any other radiation exposure. In this context the surveillance of technologically enhanced naturally occurring materials, called TENORM becomes important. In Brazil, the industries of processing and chemical compounds production were developed based on mining, milling, transformation and manufacture of ores from sedimentary origin, ignea or metamorphic, which must determine the radioactive composition of the generated solid wastes and residues. Many solids residues stored in the environment has been of environmental concern facing the industries and environmentalists in Brazil as it presents a potential threat to the surrounding environment and to individuals occupationally exposed. Radiation protection regulations have not been applied yet to these industries, as the Brazilian regulatory agency (Comissao Nacional de Energia Nuclear - CNEN) has only recently published a regulatory guide concerning mining and milling of naturally occurring radioactive materials, which may generate enhanced concentrations of radionuclides. With respect to external and internal exposure to natural radionuclides from the solid residues storage, the nuclides of 232 Th, 235 U and 238 U decay chains are relevant, due to the exposure of workers as well as of members of the public. Radionuclides released from a source can be present as ions, molecules, complexes, mononuclear or polynuclear species, colloids, pseudocolloids, particles or fragments varying in size (nominal molecular mass), structure, morphology, density, valence and charge properties. One of the main points in environmental impact assessment is to identify whether the chemical availability is under influence of these speciation