WorldWideScience

Sample records for residual chemical shift

  1. Enhanced measurement of residual chemical shift anisotropy for small molecule structure elucidation.

    Science.gov (United States)

    Liu, Yizhou; Cohen, Ryan D; Gustafson, Kirk R; Martin, Gary E; Williamson, R Thomas

    2018-03-05

    A method is introduced to measure residual chemical shift anisotropies conveniently and accurately in the mesophase of poly-γ-(benzyl-l-glutamate). The alignment amplitude is substantially enhanced over common methods which greatly benefits measurements particularly on sp 3 carbons. The approach offers significant improvements in data accuracy and utility for small molecule structure determination.

  2. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.

    Science.gov (United States)

    Kumar, Arun V; Ali, Rehana F M; Cao, Yu; Krishnan, V V

    2015-10-01

    The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue's averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80% accuracy measured by Matthew correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with >90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chemical shift imaging: a review

    International Nuclear Information System (INIS)

    Brateman, L.

    1986-01-01

    Chemical shift is the phenomenon that is seen when an isotope possessing a nuclear magnetic dipole moment resonates at a spectrum of resonance frequencies in a given magnetic field. These resonance frequencies, or chemical shifts, depend on the chemical environments of particular nuclei. Mapping the spatial distribution of nuclei associated with a particular chemical shift (e.g., hydrogen nuclei associated with water molecules or with lipid groups) is called chemical shift imaging. Several techniques of proton chemical shift imaging that have been applied in vivo are presented, and their clinical findings are reported and summarized. Acquiring high-resolution spectra for large numbers of volume elements in two or three dimensions may be prohibitive because of time constraints, but other methods of imaging lipid of water distributions (i.e., selective excitation, selective saturation, or variations in conventional magnetic resonance imaging pulse sequences) can provide chemical shift information. These techniques require less time, but they lack spectral information. Since fat deposition seen by chemical shift imaging may not be demonstrated by conventional magnetic resonance imaging, certain applications of chemical shift imaging, such as in the determination of fatty liver disease, have greater diagnostic utility than conventional magnetic resonance imaging. Furthermore, edge artifacts caused by chemical shift effects can be eliminated by certain selective methods of data acquisition employed in chemical shift imaging

  4. Empirical isotropic chemical shift surfaces

    International Nuclear Information System (INIS)

    Czinki, Eszter; Csaszar, Attila G.

    2007-01-01

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For-(l-Ala) n -NH 2 , with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the 13C α ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (α D ), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical 13C α - 1 H α ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins

  5. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Frank H.; Riepl, Hubert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Maurer, Till [Boehringer Ingelheim Pharma GmbH and Co. KG, Analytical Sciences Department (Germany); Gronwald, Wolfram [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Neidig, Klaus-Peter [Bruker BioSpin GmbH, Software Department (Germany); Kalbitzer, Hans Robert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)], E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de

    2007-12-15

    Protein-protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation {delta}{delta}{sub comb}. In this paper different procedures (published and non-published) to calculate {delta}{delta}{sub comb} are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.

  6. chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR

    International Nuclear Information System (INIS)

    Yao Xiaolan; Yamaguchi, Satoru; Hong Mei

    2002-01-01

    The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=-65.7 deg., ψ=-40 deg.), and the Val residue in GG*V (φ=-81.5 deg., ψ=-50.7 deg.). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα-Hα and Cα-N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ 11 axis is 116 deg. ± 5 deg. from the Cα-Hα bond while the σ 22 axis is 40 deg. ± 5 deg. from the Cα-N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ 33 axis is tilted by 115 deg. ± 5 deg. from the Cα-Hα bond and 98 deg. ± 5 deg. from the Cα-N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα-Hα bond is much smaller in α-helices than in β-sheets

  7. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  8. A probabilistic approach for validating protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Wang Bowei; Wang, Yunjun; Wishart, David S.

    2010-01-01

    It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3-6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called 'Probabilistic Approach for protein Nmr Assignment Validation (PANAV)' and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAVhttp://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.

  9. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  10. MR chemical shift imaging of human atheroma

    International Nuclear Information System (INIS)

    Mohiaddin, R.H.; Underwood, R.; Firmin, D.; Abdulla, A.K.; Rees, S.; Longmore, D.

    1988-01-01

    The lipid content of atheromatous plaques has been measured with chemical shift MR imaging by taking advantage of the different resonance frequencies of protons in lipid and water. Fifteen postmortem aortic specimens of the human descending aorta and the aortae of seven patients with documented peripheral vascular disease were studied at 0.5 T. Spin-echo images were used to localize the lesions before acquisition of the chemical shift images. The specimens were examined histologically, and the lipid distribution in the plaque showed good correlation with the chemical shift data. Validation in vivo and clinical applications remain to be established

  11. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure......In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  13. Sigmatropic proton shifts: a quantum chemical study.

    Science.gov (United States)

    Wang, Yi; Yu, Zhi-Xiang

    2017-09-13

    A quantum chemical study of [1,j] sigmatropic proton shifts in polyenyl anions and related conjugated systems has been performed. We found that the Woodward-Hoffmann rules can be applied to understand the stereochemical outcome of these sigmatropic rearrangements, showing that [1,j] sigmatropic proton shift occurs antarafacially when j = 4n + 2, while suprafacial proton shift is symmetry-allowed when j = 4n. The activation barriers for [1,j] proton shifts in polyenyl anions C j H j+3 - are 48.2 (j = 2), 32.8 (j = 4), 21.0 (j = 6), 40.5 (j = 8), and 49.1 (j = 10) kcal mol -1 , respectively. This trend can be explained by the trade-off between stereoelectronic requirement and ring strain in the proton shift transition structure. Among these reactions, only the [1,6] proton shift with the lowest activation barrier can occur intramolecularly under mild reaction conditions. The others are unlikely to take place in a direct manner. Consequently, proton shuttles are generally required to facilitate these sigmatropic proton shifts through a protonation/deprotonation mechanism.

  14. 51st North American Chemical Residue Workshop.

    Science.gov (United States)

    Yang, Paul; Martos, Perry; Barrett, Brad

    2015-06-03

    Manuscripts collected in this 51st North American Chemical Residue Workshop (NACRW) Symposium issue of the Journal of Agricultural and Food Chemistry (JAFC) were originally presented at the 51st NACRW meeting. The 2014 NACRW JAFC symposium collects 14 publications representing the broad range of topics in chemical analyses presented at the 2014 meeting. These include the analysis of chemical residues and contaminants in food, environment, feed, botanical, and bee samples as well as the application of quality control/quality assurance protocols in routine and method development.

  15. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...

  16. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical....... Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series...

  17. Empirical correlation between protein backbone 15N and 13C secondary chemical shifts and its application to nitrogen chemical shift re-referencing

    International Nuclear Information System (INIS)

    Wang Liya; Markley, John L.

    2009-01-01

    The linear analysis of chemical shifts (LACS) has provided a robust method for identifying and correcting 13 C chemical shift referencing problems in data from protein NMR spectroscopy. Unlike other approaches, LACS does not require prior knowledge of the three-dimensional structure or inference of the secondary structure of the protein. It also does not require extensive assignment of the NMR data. We report here a way of extending the LACS approach to 15 N NMR data from proteins, so as to enable the detection and correction of inconsistencies in chemical shift referencing for this nucleus. The approach is based on our finding that the secondary 15 N chemical shift of the backbone nitrogen atom of residue i is strongly correlated with the secondary chemical shift difference (experimental minus random coil) between the alpha and beta carbons of residue i - 1. Thus once alpha and beta 13 C chemical shifts are available (their difference is referencing error-free), the 15 N referencing can be validated, and an appropriate offset correction can be derived. This approach can be implemented prior to a structure determination and can be used to analyze potential referencing problems in database data not associated with three-dimensional structure. Application of the LACS algorithm to the current BMRB protein chemical shift database, revealed that nearly 35% of the BMRB entries have δ 15 N values mis-referenced by over 0.7 ppm and over 25% of them have δ 1 H N values mis-referenced by over 0.12 ppm. One implication of the findings reported here is that a backbone 15 N chemical shift provides a better indicator of the conformation of the preceding residue than of the residue itself

  18. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database

    International Nuclear Information System (INIS)

    Ginzinger, Simon W.; Coles, Murray

    2009-01-01

    We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods

  19. Instructive of chemical residues waste administration

    International Nuclear Information System (INIS)

    Alfaro Vargas, Ariel

    2014-01-01

    An instructive is established for the waste management system of chemical residues generated at the Universidad de Costa Rica, ensuring the collection, separation, transportation, reuse, recycling and final disposal. The laboratory waste management system is conditioned to the volume and type of waste generated. The respective procedures are listed in data sheets according to the corresponding model: avoid, reduce, recycle, treat, delete. The materials are identified as: expired products, materials or damaged products, substances that have lost some of the required characteristics, waste from the regular activities of the lab, unused products that now no longer used because they are considered inadequate. The chemicals reagents or hazardous are transformed into small amounts of derivatives safe products, or less hazardous, to allow for removal or to pick up a spill of these without problem [es

  20. Sequential nearest-neighbor effects on computed {sup 13}C{sup {alpha}} chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Serrano, Pedro; Wuethrich, Kurt [The Scripps Research Institute, Department of Molecular Biology (United States); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-09-15

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of {sup 13}C{sup {alpha}} chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue {alpha}/{beta} protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed {sup 13}C{sup {alpha}} chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical {sup 13}C{sup {alpha}} chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed {sup 13}C{sup {alpha}} chemical shifts, {Delta}{sub ca,i}, for the individual residues along the sequence. This indicates that the {Delta}{sub ca,i} -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  1. Rapid and reliable protein structure determination via chemical shift threading.

    Science.gov (United States)

    Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S

    2018-01-01

    Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .

  2. Chemical shift of UL 3 edges in different uranium compounds ...

    Indian Academy of Sciences (India)

    Energy shifts of ∼ 2–3 eV were observed for U L3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the ...

  3. Validation of archived chemical shifts through atomic coordinates

    Science.gov (United States)

    Rieping, Wolfgang; Vranken, Wim F

    2010-01-01

    The public archives containing protein information in the form of NMR chemical shift data at the BioMagResBank (BMRB) and of 3D structure coordinates at the Protein Data Bank are continuously expanding. The quality of the data contained in these archives, however, varies. The main issue for chemical shift values is that they are determined relative to a reference frequency. When this reference frequency is set incorrectly, all related chemical shift values are systematically offset. Such wrongly referenced chemical shift values, as well as other problems such as chemical shift values that are assigned to the wrong atom, are not easily distinguished from correct values and effectively reduce the usefulness of the archive. We describe a new method to correct and validate protein chemical shift values in relation to their 3D structure coordinates. This method classifies atoms using two parameters: the per-atom solvent accessible surface area (as calculated from the coordinates) and the secondary structure of the parent amino acid. Through the use of Gaussian statistics based on a large database of 3220 BMRB entries, we obtain per-entry chemical shift corrections as well as Z scores for the individual chemical shift values. In addition, information on the error of the correction value itself is available, and the method can retain only dependable correction values. We provide an online resource with chemical shift, atom exposure, and secondary structure information for all relevant BMRB entries (http://www.ebi.ac.uk/pdbe/nmr/vasco) and hope this data will aid the development of new chemical shift-based methods in NMR. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20602353

  4. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2017-02-15

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H{sup δ21} and H{sup ε21}, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  5. 13C NMR Chemical Shifts of the Triclinic and Monoclinic Crystal forms of Valinomycin

    International Nuclear Information System (INIS)

    Kameda, Tsunenori; McGeorge, Gary; Orendt, Anita M.; Grant, David M.

    2004-01-01

    Two different crystalline polymorphs of valinomycin, the triclinic and monoclinic forms, have been studied by high resolution, solid state 13 C CP-MAS NMR spectroscopy. Although the two polymorphs of the crystal are remarkably similar, there are distinct differences in the isotropic chemical shifts between the two spectra. For the triclinic form, the carbon chemical shift tensor components for the alpha carbons adjacent to oxygen in the lactic acid and hydroxyisovaleric acid residues and the ester carbonyls of the valine residue were obtained using the FIREMAT experiment. From the measured components, it was found that the behavior of the isotropic chemical shift, δ iso , for valine residue ester carbonyl carbons is predominately influenced by the intermediate component, δ 22 . Additionally it was found that the smallest shift component, δ 33 , for the L-lactic acid (L-Lac) and D-α-hydroxyisovaleric acid (D-Hyi) C α -O carbon was significantly displaced depending upon the nature of individual amino acid residues, and it is the δ 33 component that governs the behavior of δ iso in these alpha carbons

  6. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  7. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2013-01-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ 1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts

  8. Assignment of protein backbone resonances using connectivity, torsion angles and 13Cα chemical shifts

    International Nuclear Information System (INIS)

    Morris, Laura C.; Valafar, Homayoun; Prestegard, James H.

    2004-01-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just 13 C α chemical shifts (δ( 13 C α )) and data restricting the φ and ψ backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in δ( 13 C α ), φ, and ψ space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and 13 C α chemical shift data are available

  9. Chemical Shift Imaging (CSI) by precise object displacement

    OpenAIRE

    Leclerc, Sebastien; Trausch, Gregory; Cordier, Benoit; Grandclaude, Denis; Retournard, Alain; Fraissard, Jacques; Canet, Daniel

    2006-01-01

    International audience; A mechanical device (NMR lift) has been built for displacing vertically an object (typically a NMR sample tube) inside the NMR probe with an accuracy of 1 Μm. A series of single pulse experiments are performed for incremented vertical positions of the sample. With a sufficiently spatially selective rf field, one obtains chemical shift information along the displacement direction (one dimensional Chemical Shift Imaging – CSI). Knowing the vertical radio-frequency (rf) f...

  10. PROSHIFT: Protein chemical shift prediction using artificial neural networks

    International Nuclear Information System (INIS)

    Meiler, Jens

    2003-01-01

    The importance of protein chemical shift values for the determination of three-dimensional protein structure has increased in recent years because of the large databases of protein structures with assigned chemical shift data. These databases have allowed the investigation of the quantitative relationship between chemical shift values obtained by liquid state NMR spectroscopy and the three-dimensional structure of proteins. A neural network was trained to predict the 1 H, 13 C, and 15 N of proteins using their three-dimensional structure as well as experimental conditions as input parameters. It achieves root mean square deviations of 0.3 ppm for hydrogen, 1.3 ppm for carbon, and 2.6 ppm for nitrogen chemical shifts. The model reflects important influences of the covalent structure as well as of the conformation not only for backbone atoms (as, e.g., the chemical shift index) but also for side-chain nuclei. For protein models with a RMSD smaller than 5 A a correlation of the RMSD and the r.m.s. deviation between the predicted and the experimental chemical shift is obtained. Thus the method has the potential to not only support the assignment process of proteins but also help with the validation and the refinement of three-dimensional structural proposals. It is freely available for academic users at the PROSHIFT server: www.jens-meiler.de/proshift.html

  11. Counterion influence on chemical shifts in strychnine salts.

    Science.gov (United States)

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  13. Bayesian inference of protein structure from chemical shift data.

    Science.gov (United States)

    Bratholm, Lars A; Christensen, Anders S; Hamelryck, Thomas; Jensen, Jan H

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction.

  14. Frequency response of multipoint chemical shift-based spectral decomposition.

    Science.gov (United States)

    Brodsky, Ethan K; Chebrolu, Venkata V; Block, Walter F; Reeder, Scott B

    2010-10-01

    To provide a framework for characterizing the frequency response of multipoint chemical shift based species separation techniques. Multipoint chemical shift based species separation techniques acquire complex images at multiple echo times and perform maximum likelihood estimation to decompose signal from different species into separate images. In general, after a nonlinear process of estimating and demodulating the field map, these decomposition methods are linear transforms from the echo-time domain to the chemical-shift-frequency domain, analogous to the discrete Fourier transform (DFT). In this work we describe a technique for finding the magnitude and phase of chemical shift decomposition for input signals over a range of frequencies using numerical and experimental modeling and examine several important cases of species separation. Simple expressions can be derived to describe the response to a wide variety of input signals. Agreement between numerical modeling and experimental results is very good. Chemical shift-based species separation is linear, and therefore can be fully described by the magnitude and phase curves of the frequency response. The periodic nature of the frequency response has important implications for the robustness of various techniques for resolving ambiguities in field inhomogeneity.

  15. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    International Nuclear Information System (INIS)

    Labudde, D.; Leitner, D.; Krueger, M.; Oschkinat, H.

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the α-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely α-helix, β-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time

  16. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    Science.gov (United States)

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  17. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2010-03-15

    We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and {sup 13}C{sup {beta}} chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-{sup 13}C{sup {gamma}}, Promega calculates the statistical probability that a Xaa-Pro peptide bond is cis. Besides its potential as a validation tool, Promega is particularly useful for studies of larger proteins where Pro-{sup 13}C{sup {gamma}} assignments can be challenging, and for on-going efforts to determine protein structures exclusively on the basis of backbone and {sup 13}C{sup {beta}} chemical shifts.

  18. MR imaging of osteonecrosis using frequency selective chemical shift sequences

    International Nuclear Information System (INIS)

    Duda, S.H.; Laniado, M.; Schick, F.

    1993-01-01

    The MR appearance of osteonecrosis was assessed on selective fat- and water images to further evaluate the nature of double-line sign. Conventional T1- and T2-weighted SE and frequency selective chemical shift images of eight patients with avascular necrosis of the femoral head and three patients with bone infarcts were retrospectively reviewed. Eight of 11 patients showed a double-line sign on T2-weighted SE images. In these cases, correlation with selective water images revealed that a chemical shift artifact contributed to appearance and location of the hyperintense line. The authors conclude that chemical shift imaging improves our understanding of the nature of the double-line sign. (orig.) [de

  19. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim

    2015-01-01

    content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain......Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model......, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information...

  20. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  1. Screening of antibiotics and chemical analysis of penicillin residue in fresh milk and traditional dairy products in Oyo state, Nigeria

    OpenAIRE

    Olatoye, Isaac Olufemi; Daniel, Oluwayemisi Folashade; Ishola, Sunday Ayobami

    2016-01-01

    Background and Aim: There are global public health and economic concerns on chemical residues in food of animal origin. The use of antibiotics in dairy cattle for the treatment of diseases such as mastitis has contributed to the presence of residues in dairy products. Penicillin residues as low as 1 ppb can lead to allergic reactions and shift of resistance patterns in microbial population as well as interfere with the processing of several dairy products. Antibiotic monitoring is an essentia...

  2. Nucleic acid helix structure determination from NMR proton chemical shifts

    International Nuclear Information System (INIS)

    Werf, Ramon M. van der; Tessari, Marco; Wijmenga, Sybren S.

    2013-01-01

    We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

  3. 15N NMR Chemical Shifts of Ring Substituted Benzonitriles

    Czech Academy of Sciences Publication Activity Database

    Žáček, Petr; Dransfeld, A.; Exner, Otto; Schraml, Jan

    2006-01-01

    Roč. 44, č. 12 (2006), s. 1073-1080 ISSN 0749-1581 R&D Projects: GA ČR(CZ) GA203/06/0738 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40550506 Keywords : Hammett correlation * chemical shifts * magnetic susceptibility Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.610, year: 2006

  4. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    International Nuclear Information System (INIS)

    Fritzsching, Keith J.; Hong, Mei; Schmidt-Rohr, Klaus

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ( 13 C– 13 C, 15 N– 13 C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13 C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13 C NMR data and almost all 15 N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13 C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a

  5. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue

  6. Anisotropy of the fluorine chemical shift tensor in UF6

    International Nuclear Information System (INIS)

    Rigny, P.

    1965-04-01

    An 19 F magnetic resonance study of polycrystalline UF 6 is presented. The low temperature complex line can be analyzed as the superposition of two distinct lines, which is attributed to a distortion of the UF 6 octahedron in the solid. The shape of the two components is studied. Their width is much larger than the theoretical dipolar width, and must be explained by large anisotropies of the fluorine chemical shift tensors. The resulting shape functions of the powder spectra are determined. The values of the parameters of the chemical shift tensors yield estimates of the characters of the U-F bonds, and this gives some information on the ground state electronic wave function of the UF 6 molecule in the solid. (author) [fr

  7. Temperature dependence of 1H chemical shifts in proteins

    International Nuclear Information System (INIS)

    Baxter, Nicola J.; Williamson, Michael P.

    1997-01-01

    Temperature coefficients have been measured by 2D NMR methods for the amide and CαH proton chemical shifts in two globular proteins, bovine pancreatic trypsin inhibitor and hen egg-white lysozyme.The temperature-dependent changes in chemical shift are generally linear up to about 15 deg. below the global denaturation temperature, and the derived coefficients span a range of roughly -16 to +2 ppb/K for amide protons and -4 to +3 ppb/K for CαH. The temperature coefficients can be rationalized by the assumption that heating causes increases in thermal motion in the protein. Precise calculations of temperature coefficients derived from protein coordinates are not possible,since chemical shifts are sensitive to small changes in atomic coordinates.Amide temperature coefficients correlate well with the location of hydrogen bonds as determined by crystallography. It is concluded that a combined use of both temperature coefficients and exchange rates produces a far more reliable indicator of hydrogen bonding than either alone. If an amide proton exchanges slowly and has a temperature coefficient more positive than-4.5 ppb/K, it is hydrogen bonded, while if it exchanges rapidly and has a temperature coefficient more negative than -4.5 ppb/K, it is not hydrogen bonded. The previously observed unreliability of temperature coefficients as measures of hydrogen bonding in peptides may arise from losses of peptide secondary structure on heating

  8. Chemical composition of carcass sawdust residue as a predictor of ...

    African Journals Online (AJOL)

    vergelykings van bees- en varkkarkasse. Die resultate dui daarop dat die saagresidu-metode van ... Keywords: Carcass chemical composition, fat, protein, ash, sawdust residue, sheep. * To whom correspondence ... moisture, fat, protein and ash percentages respectively. A sim- ilar observation was made by Shields et al.

  9. Laboratory studies of the properties of in-situ burn residues: chemical composition of residues

    International Nuclear Information System (INIS)

    Trudel, B.K.; Buist, I.A.; Schatzke, D.; Aurand, D.

    1996-01-01

    The chemical composition of the residue from small-scale burns of thick oil slicks was studied. The objective was to describe the changes in chemical composition in oils burning on water and to determine how these changes were influenced by the condition of the burn. Small-scale test burns involved burning 40-cm diameter pools of oil on water. A range of eight oil types including seven crude oils and an automotive diesel were burned. For each oil, slicks of fresh oil of three different thicknesses were tested. Two of the oils were tested before and after weathering. Results showed that the composition of the residue differed greatly from the parent oil. Asphaltenes, high-boiling-point aromatics and resins remained concentrated in the burn residue. The burning of slicks appeared to remove most of the lower-molecular weight aromatic hydrocarbons which included the more toxic and more bioavailable components of the crude oils. 11 refs., 6 tabs

  10. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  11. Identification of chemical signatures of gunshot residues in different fabrics

    International Nuclear Information System (INIS)

    Freitas, Joao Carlos Dias de

    2010-01-01

    The modern forensic science goes hand in hand with scientific research. The forensic scientists are faced every day with many cases requiring the analysis of residues from firing gun (gunshot residues). This works describes the development of a methodology to determine chemical signatures of shots from a firearm, by measuring the concentrations of Pb, Ba e Sb in the residues from these shots deposited near the entrance hole of bullets, based on the technique with high resolution inductively coupled plasma mass spectrometry (HRICP-MS). Shots were performed on five types of target-fabrics and collected testimonies from regions close to the entrance hole of projectiles. The results showed that the method enabled us to identify and distinguish the residues of the .38 caliber revolver and pistols .40 and 9mm caliber. The use of ternary graphs as a tool for data analysis helped to identify specific patterns of distribution of blank samples and gunshot residues deposited after firing revolvers and pistols. The methodology enabled the assignment of the origin of the shot through the confirmation of the residues collected also from the hands of shooters. As a result the methodology in police procedures and aims to add a valuable contribution to forensic investigations. (author)

  12. Microbial population, chemical composition and silage fermentation of cassava residues.

    Science.gov (United States)

    Napasirth, Viengsakoun; Napasirth, Pattaya; Sulinthone, Tue; Phommachanh, Kham; Cai, Yimin

    2015-09-01

    In order to effectively use the cassava (Manihot esculenta Crantz) residues, including cassava leaves, peel and pulp for livestock diets, the chemical and microbiological composition, silage preparation and the effects of lactic acid bacteria (LAB) inoculants on silage fermentation of cassava residues were studied. These residues contained 10(4) to 10(5) LAB and yeasts, 10(3) to 10(4) coliform bacteria and 10(4) aerobic bacteria in colony forming units (cfu) on a fresh matter (FM) basis. The molds were consistently at or below the detectable level (10(2) cfu of FM) in three kinds of cassava residues. Dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) content of cassava residues were 17.50-30.95%, 1.30-16.41% and 25.40-52.90% on a DM basis, respectively. The silage treatments were designed as control silage without additive (CO) or with LAB inoculants Chikuso-1 (CH, Lactobacillus plantarum) and Snow Lacto (SN, Lactobacillus rhamnosus) at a rate of 5 mg/kg of FM basis. All silages were well preserved with a low pH (below 4.0) value and when cassava residues silage treated with inoculants CH and SN improved fermentation quality with a lower pH, butyric acid and higher lactic acid than control silage. © 2015 Japanese Society of Animal Science.

  13. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  14. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  15. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  16. Chemical Protein Ubiquitylation with Preservation of the Native Cysteine Residues.

    Science.gov (United States)

    Yang, Kun; Li, Guorui; Gong, Ping; Gui, Weijun; Yuan, Libo; Zhuang, Zhihao

    2016-06-02

    We report a cysteine-based ligation strategy for generating a monoubiquitylated protein while preserving the native cysteine residues on the acceptor protein. In monoubiquitylation of proliferating cell nuclear antigen (PCNA) this method circumvents the need to mutate the native cysteine residues on PCNA. The chemically ubiquitylated PCNA contains a noncleavable linkage of the same length as the native isopeptide linkage. It also retains the normal function of the native Ub-PCNA in stimulating the ATPase activity of replication factor C (RFC) and lesion bypass synthesis by Polη. This method may be adapted for chemical ubiquitylation of other proteins and for site-specific modification of a target protein at a specific site through sulfhydryl chemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH

    International Nuclear Information System (INIS)

    Kjaergaard, Magnus; Brander, Søren; Poulsen, Flemming M.

    2011-01-01

    Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970–2978, 2001). The chemical shifts are determined at neutral pH in order to match the conditions of most studies of intrinsically disordered proteins. Temperature has a non-negligible effect on the 13 C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary structure in disordered proteins.

  18. Chemical shift of U L3 edges in different uranium compounds ...

    Indian Academy of Sciences (India)

    Administrator

    the chemical environment of the metal ion. The change in absorption edge which could be attributed to different chemical environment of a metal ion inside a compound is generally known as the chemical shift. In the present study, the effect of chemical environ- ment on shifting of L3 X-ray absorption edge of uranium.

  19. Theoretical Modeling of 99 Tc NMR Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.; Chatterjee, Sayandev; Levitskaia, Tatiana G.

    2016-09-06

    Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchange correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.

  20. 50th anniversary of the Florida pesticide residue workshop and the birth of the north american chemical residue workshop.

    Science.gov (United States)

    Mastovska, Katerina

    2014-04-30

    The papers in this special issue of Journal of Agricultural and Food Chemistry were originally presented at the 50th North American Chemical Residue Workshop (NACRW), formerly known as the Florida Pesticide Residue Workshop (FPRW). The 2013 meeting celebrated the rich history of 50 years of the FPRW and the birth of the NACRW, which in its name reflects the increased scope of the workshop to topics related to the analysis of all chemical residues and contaminants in food, feed, and environmental samples.

  1. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  2. 9 CFR 318.16 - Pesticide chemicals and other residues in products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Pesticide chemicals and other residues... PREPARATION OF PRODUCTS General § 318.16 Pesticide chemicals and other residues in products. (a) Nonmeat ingredients. Residues of pesticide chemicals, food additives and color additives or other substances in or on...

  3. Hydrophobic clustering in nonnative states of a protein: Interpretation of chemical shifts in NMR spectra of denatured states of lysozyme

    International Nuclear Information System (INIS)

    Evans, P.A.; Topping, K.D.; Woolfson, D.N.; Dobson, C.M.

    1991-01-01

    Chemical shifts of resonances of specific protons in the 1H NMR spectrum of thermally denatured hen lysozyme have been determined by exchange correlation with assigned native state resonances in 2D NOESY spectra obtained under conditions where the two states are interconverting. There are subtle but widespread deviations of the measured shifts from the values which would be anticipated for a random coil; in the case of side chain protons these are virtually all net upfield shifts and it is shown that this may be the averaged effect of interactions with aromatic rings in a partially collapsed denatured state. In a very few cases, notably that of two sequential tryptophan residues, it is possible to interpret these effects in terms of specific, local interresidue interactions. Generally, however, there is no correlation with either native state shift perturbations or with sequence proximity to aromatic groups. Diminution of most of the residual shift perturbations on reduction of the disulfide cross-links confirms that they are not simply effects of residues adjacent in the sequence. Similar effects of chemical denaturants, with the disulfides intact, demonstrate that the shift perturbations reflect an enhanced tendency to side chain clustering in the thermally denatured state. The temperature dependences of the shift perturbations suggest that this clustering is noncooperative and is driven by small, favorable enthalpy changes. While the extent of conformational averaging is clearly much greater than that observed for a homologous protein, alpha-lactalbumin, in its partially folded molten globule state, the results clearly show that thermally denatured lysozyme differs substantially from a random coil, principally in that it is partially hydrophobically collapsed

  4. Chemical and isotopic compositions in acid residues from various meteorites

    Science.gov (United States)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-03-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  5. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  6. Residual metallic contamination of transferred chemical vapor deposited graphene.

    Science.gov (United States)

    Lupina, Grzegorz; Kitzmann, Julia; Costina, Ioan; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Vaziri, Sam; Östling, Mikael; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Kataria, Satender; Gahoi, Amit; Lemme, Max C; Ruhl, Guenther; Zoth, Guenther; Luxenhofer, Oliver; Mehr, Wolfgang

    2015-05-26

    Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

  7. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    and retinoid receptors (ACTR). We find that small differences in the methyl carbon chemical shifts due to the ¿-gauche effect may provide information about the side chain rotamer distributions. However, the effects of neighboring residues on the methyl group chemical shifts obscure the direct observation...... a quantitative analysis of the ensemble of ¿(2)-angles of especially leucine residues in disordered proteins. The changes in the rotamer distributions upon denaturation correlate to the changes upon helix induction by the co-solvent trifluoroethanol, suggesting that the side chain conformers are directly...

  8. MR chemical shift imaging and spectroscopy of atherosclerotic plaque

    International Nuclear Information System (INIS)

    Vinitski, S.; Consigny, P.M.; Shapiro, M.J.; Janes, N.; Smullens, S.N.; Rifkin, M.D.

    1989-01-01

    The purpose of this study was to develop a technique for in vivo imaging and characterization of atherosclerotic plaque. The authors used a spin-echo technique with a short echo time (TE) of 11 msec. Lipid/water suppression was achieved by means of hybrid chemical shift imaging. Lesions were induced in three rabbits by a combination of balloon denudation of the abdominal aorta and a high-cholesterol diet. Following in vivo imaging of these rabbit aortas and human carotid arteries (1.5 T), the animals were killed or carotid endarterectomy was performed so that the plaques could be excised. The plaques were then analyzed in vitro both histologically and with high-resolution spectroscopy (8.5 T). Use of the short TE improved lesion visualization. The fat/water suppression showed only a small amount of mobile lipids in plaque. Both MR spectroscopic and histologic analysis corroborated these images. The composition of atherosclerotic plaques in both humans and rabbits was demonstrated to be heterogeneous, with predominantly nonmobile lipids. These results suggest that the combination of short TE MR imaging and fat/water suppression can identify plaque and delineate areas containing mobile lipids

  9. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.

    Science.gov (United States)

    Sanz-Hernández, Máximo; De Simone, Alfonso

    2017-11-01

    The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.

  10. Evaluation of fatty replacement in the normal thymus with chemical-shift MR imaging

    International Nuclear Information System (INIS)

    Inaoka, Tsutomu; Takahashi, Koji; Iwata, Kunihiro

    2004-01-01

    The purpose of this study was to evaluate a fatty replacement in the normal thymus with chemical-shift MR imaging and a correlation between chemical-shift ratio and age. Between December 2001 and January 2003, 30 normal subjects (15 males and 15 females 8-25 years, mean age 15.7 years) who underwent chemical-shift MR imaging for the thymus were assessed. Signal intensities of the thymus and the paraspinal muscle were measured and thymus/muscle ratios (T/M ratios) were calculated. We calculated signal intensity alterations between in-phase and opposed-phase images (chemical-shift ratios) and evaluated a correlation between age and them. A significant correlation between chemical-shift ratios and age was identified (r=0.725, p<.001). Chemical-shift MR imaging can depict fatty replacement in the normal thymus in the adolescence and young adults. (author)

  11. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  12. Temperature dependence of1H NMR chemical shifts and its influence on estimated metabolite concentrations.

    Science.gov (United States)

    Wermter, Felizitas C; Mitschke, Nico; Bock, Christian; Dreher, Wolfgang

    2017-12-01

    Temperature dependent chemical shifts of important brain metabolites measured by localised 1 H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations. Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C. Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10 -4  ppm/K. For 32-40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1-10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected. If 1 H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

  13. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega...

  14. Backbone chemical shifts assignments, secondary structure, and ligand binding of a family GH-19 chitinase from moss, Bryum coronatum.

    Science.gov (United States)

    Shinya, Shoko; Nagata, Takuya; Ohnuma, Takayuki; Taira, Toki; Nishimura, Shigenori; Fukamizo, Tamo

    2012-10-01

    Family GH19 chitinases have been recognized as important in the plant defense against fungal pathogens. However, their substrate-recognition mechanism is still unknown. We report here the first resonance assignment of NMR spectrum of a GH19 chitinase from moss, Bryum coronatum (BcChi-A). The backbone signals were nearly completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of the chitin dimer to the enzyme solution perturbed the chemical shifts of HSQC resonances of the amino acid residues forming the putative substrate-binding cleft. Further NMR analysis of the ligand binding to BcChi-A will improve understanding of the substrate-recognition mechanism of GH-19 enzymes.

  15. Quantum chemical calculation and experimental measurement of the 13C chemical shift tensors of vanillin and 3,4-dimethoxybenzaldehyde

    Science.gov (United States)

    Zheng, Guang; Hu, Jianzhi; Zhang, Xiaodong; Shen, Lianfang; Ye, Chaohui; Webb, Graham A.

    1997-03-01

    The principal values of the 13C nuclear magnetic resonance chemical shift tensors in vanillin and 3,4-dimethoxybenzaldehyde are reported. Theoretical results of the 13C chemical shift tensors were obtained by employing the gauge included atomic orbital (GIAO) approach. The geometrical parameters were optimized by using the MNDO method. The observed chemical shifts of these two compounds were determined in powders by using the recently introduced magic angle turning (MAT) experiment. The results presented in this paper clearly demonstrate the importance of using tensor information in the study of molecular structures.

  16. Temperature-dependent chemical shift in the aqueous solution of xenon

    OpenAIRE

    Peuravaara, P. (Petri)

    2017-01-01

    Abstract At standard pressure, the chemical shift of Xe-129 in an aqueous solution of xenon exhibits a maximum as a function of temperature at 311 K, which is in contrast to the well-known density maximum of water at 277 K. In the present work, this phenomenon is studied by means of a molecular dynamics simulation, where the xenon chemical shift is computed quantum-chemically for snapshots of the simulation trajectory. Also...

  17. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    International Nuclear Information System (INIS)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David

    2015-01-01

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder

  18. Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift.

    Science.gov (United States)

    Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo

    2016-04-01

    Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.

  19. Nanofiltration and sensing of picomolar chemical residues in aqueous solution using an optical porous resonator in a microelectrofluidic channel.

    Science.gov (United States)

    Huang, Lei; Guo, Zhixiong

    2012-02-17

    For the first time the use of a porous microresonator placed in a microelectrofluidic system for integrated functions of nanofiltration and sensing of small biomolecules and chemical analytes in extremely dilute solution was proposed and investigated. As an example, aminoglycosides in drug residues in food and livestock products were considered as the trace chemical analyte. The filtration process of the charged analyte in aqueous solution driven by an applied electrical field and the accompanying optical whispering-gallery modes in the resonator are modeled. The dynamic process of adsorption and desorption of the analyte onto the porous matrix is studied. Deposition of the analyte inside the porous structure will alter the material refractive index of the resonator, and thus induce an optical resonance frequency shift. By measuring the optical frequency shift, the analyte concentration as well as the absorption/desorption process can be analyzed. Through an intensive numerical study, a correlation between the frequency shift and the analyte concentration and the applied electrical voltage gradient was obtained. This reveals a linear relationship between the resonance frequency shift and the analyte concentration. The applied electrical voltage substantially enhances the filtration capability and the magnitude of the optical frequency shift, pushing the porous resonator-based sensor to function at the extremely dilute picomolar concentration level for small bio/chemical molecules down to the sub-nanometer scale. Moreover, use of the second-order whispering-gallery mode is found to provide better sensitivity compared with the first-order mode.

  20. Substructure elucidation and chemical shift estimation using the nuclear magnetic resonance spectral database

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Hayamizu, Kikuko; Yanagisawa, Masaru

    1989-01-01

    A computer system for substructure elucidation and chemical shift estimation by the use of nuclear magnetic resonance (NMR) spectra is described. In this system, substructures in a molecule can be elucidated by specifying chemical shift values or ranges, and conversely chemical shift values can be estimated by specifying substructures for both 1 H- and 13 C-NMR data. The retrieval of data can be performed interactively between 1 H- and 13 C-NMR data. It is possible to estimate all chemical shift values for a compound by giving its chemical structure. The search file for these purposes is created for signals (or signal groups) from a large number of 1 H- and 13 C-NMR spectra in our database. The information contained in the search file consists of substructures and the corresponding chemical shift values. A line notation system has been developed to plot chemical structures with spectral assignments of NMR signals and to extract substructures corresponding to particular chemical shift values. (author)

  1. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    International Nuclear Information System (INIS)

    Cromsigt, Jenny A.M.T.C.; Hilbers, Cees W.; Wijmenga, Sybren S.

    2001-01-01

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1 H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1 H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  2. Combined Effects of Noise and Shift Work on Workers’ Physiological Parameters in a Chemical Industry

    OpenAIRE

    M. Motamedzade; S. Ghazaiee

    2003-01-01

    This study was conducted to determine the combined effects of noise and shift work on physiological parameters including body temperature, heart rate and blood pressure. This study was performed in a chemical industry in Tehran in 1993. The workers’ physiological parameters was recorded at the beginning and at the end of all work shifts. Groups under study included : day workers (n=115) , day workers with continuous noise exposure (n=44) , two-shift workers without...

  3. Quantitative chemical-shift MR imaging cutoff value: Benign versus malignant vertebral compression – Initial experience

    Directory of Open Access Journals (Sweden)

    Dalia Z. Zidan

    2014-09-01

    Conclusion: Quantitative chemical shift MR imaging could be a valuable addition to standard MR imaging techniques and represent a rapid problem solving tool in differentiating benign from malignant vertebral compression, especially in patients with known primary malignancies.

  4. PPM-One: a static protein structure based chemical shift predictor

    International Nuclear Information System (INIS)

    Li, Dawei; Brüschweiler, Rafael

    2015-01-01

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  5. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal s...

  6. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Directory of Open Access Journals (Sweden)

    Anthony J. SAVIOLA, David CHISZAR, Stephen P. MACKESSY

    2012-08-01

    Full Text Available Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake. Crotalus viridis viridis (prairie rattlesnake takes different prey at different life stages, and neonates typically prey on ectotherms, while adults feed almost entirely on small endotherms. We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed, and that this response shifts from one prey type to another as individuals age. To examine if an ontogenetic shift in response to chemical cues occurred, we recorded the rate of tongue flicking for 25 neonate, 20 subadult, and 20 adult (average SVL = 280.9, 552, 789.5 mm, respectively wild-caught C. v. viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard, Sceloporus undulatus, and house gecko, Hemidactylus frenatus, two endotherms (deer mouse, Peromyscus maniculatus and lab mouse, Mus musculus, and water controls were used. Neonates tongue flicked significantly more to chemical cues of their common prey, S. undulatus, than to all other chemical cues; however, the response to this lizard’s chemical cues decreased in adult rattlesnakes. Subadults tongue flicked with a higher rate of tongue flicking to both S. undulatus and P. maniculatus than to all other treatments, and adults tongue flicked significantly more to P. maniculatus than to all other chemical cues. In addition, all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M. musculus and H. frenatus. This shift in chemosensory response correlated with the previously described ontogenetic shifts in C. v. viridis diet. Because many vipers show a similar ontogenetic shift in diet and venom composition, we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid

  7. Screening of antibiotics and chemical analysis of penicillin residue in fresh milk and traditional dairy products in Oyo state, Nigeria

    Directory of Open Access Journals (Sweden)

    Isaac Olufemi Olatoye

    2016-09-01

    Full Text Available Background and Aim: There are global public health and economic concerns on chemical residues in food of animal origin. The use of antibiotics in dairy cattle for the treatment of diseases such as mastitis has contributed to the presence of residues in dairy products. Penicillin residues as low as 1 ppb can lead to allergic reactions and shift of resistance patterns in microbial population as well as interfere with the processing of several dairy products. Antibiotic monitoring is an essential quality control measure in safe milk production. This study was aimed at determining antibiotic residue contamination and the level of penicillin in dairy products from Fulani cattle herds in Oyo State. Materials and Methods: The presence of antibiotic residues in 328 samples of fresh milk, 180 local cheese (wara, and 90 fermented milk (nono from Southwest, Nigeria were determined using Premi® test kit (R-Biopharm AG, Germany followed by high-performance liquid chromatography analysis of penicillin-G residue. Results: Antibiotic residues were obtained in 40.8%, 24.4% and 62.3% fresh milk, wara and nono, respectively. Penicillin-G residue was also detected in 41.1% fresh milk, 40.2% nono and 24.4% wara at mean concentrations of 15.22±0.61, 8.24±0.50 and 7.6±0.60 μg/L with 39.3%, 36.7% and 21.1%, respectively, containing penicillin residue above recommended Codex maximum residue limit (MRL of 5 μg/L in dairy. There was no significant difference between the mean penicillin residues in all the dairy products in this study. Conclusion: The results are of food safety concern since the bulk of the samples and substantial quantities of dairy products in Oyo state contained violative levels of antibiotic residues including penicillin residues in concentrations above the MRL. This could be due to indiscriminate and unregulated administration of antibiotics to dairy cattle. Regulatory control of antibiotic use, rapid screening of milk and dairy farmers

  8. 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software

    Science.gov (United States)

    Azizi, S. N.; Rostami, A. A.; Godarzian, A.

    2005-05-01

    Hartree-Fock self-consistent-field (HF-SCF) theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts for ABOUT 90 units of 19 compounds of various silicate species of precursors for zeolites. Calculations have been performed at geometries optimized at the AM1 semi-empirical method. The GIAO-HF-SCF calculations were carried out with using three different basis sets: 6-31G*, 6-31+G** and 6-311+G(2d,p). To demonstrate the quality of the calculations the calculated chemical shifts, δ, were compared with the corresponding experimental values for the compounds in study. The results, especially with 6-31+g** are in excellent agreement with experimental values. The calculated chemical shifts, in practical point of view, appear to be accurate enough to aid in experimental peak assignments. The difference between the experimental and calculated 29Si chemical shift values not only depends on the Qn units but also it seems that basis set effects and the level of theory is more important. For the series of molecules studied here, the standard deviations and mean absolute errors for 29Si chemical shifts relative to TMS determined using Hartree--Fock 6-31+G** basis is nearly in all cases smaller than the errors for shifts determined using HF/6-311+G(2d,p).

  9. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

    Science.gov (United States)

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.

    2011-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  10. Chemical shift of Mn and Cr K-edges in X-ray absorption ...

    Indian Academy of Sciences (India)

    increases, since the metal atom transforms to a positive ion while participating in the formation of a chemical bond and this energy shift ( E) increases with an increase in the oxi- dation state or positive charge on the metal ions. Thus, as the valency ... the bond, electronegativity of the anion etc or in other words, the chemical ...

  11. Magnetic couplings in the chemical shift of paramagnetic NMR.

    Science.gov (United States)

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case.

  12. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....

  13. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.

    Science.gov (United States)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele

    2014-09-23

    Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.

  14. Effects of hyacinth residues on chemical properties and productivity ...

    African Journals Online (AJOL)

    Water hyacinth (Eichhornia crassipes) is an aquatic weed that has blocked many navigable water-ways in the tropics. ... amendments more than S2 and showed that maize performance during the first cropping was better on S1 than S2, whereas during the residual cropping the crop performed equally well on both soils.

  15. Active-site residues of procarboxypeptidase Y are accessible to chemical modification

    DEFF Research Database (Denmark)

    Sørensen, S O; Winther, Jakob R.

    1994-01-01

    The accessibility of the active-site cleft of procarboxypeptidase Y from Saccharomyces cerevisiae has been studied by chemical modifications of two specific amino-acid residues. Previous studies have shown that these residues, Cys-341 and Met-398 in the mature enzyme, are located in the S1 and S'1...

  16. Chemical shift of Mn and Cr K-edges in X-ray absorption ...

    Indian Academy of Sciences (India)

    ... observed for Mn K edge in the Mn-compounds while a shift of 13–20 eV was observed for Cr K edge in Cr-compounds compared to values in elementalMn and Cr, respectively. The different chemical shifts observed for compounds having the same oxidation state of the cation but different anions or ligands show the effect ...

  17. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    ” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative......Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static...... indicating transmission via the hydrogen bond. In addition, unusual long range effects are seen. Structures, 1H and 13C NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using density functional theory methods...

  18. Theoretical Study of the NMR Chemical Shift of Xe in Supercritical Condition

    DEFF Research Database (Denmark)

    Lacerda Junior, Evanildo Gomes; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin

    2018-01-01

    In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129Xe chemical shift depends under these conditions...... on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xen...... clusters (n =2-8 depending on the density). The analysis of the relativistic effects is made at the level of 4-component Hartree-Fock calculations (4c-HF) and electron correlation effects are considered using second order Møller-Plesset perturbation theory (MP2). To simplify the calculations...

  19. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    ). The differences are due to different conformational behavior of the OH and OCH3 groups; while the ortho-disubstituted OH group remains planar in polyphenols due to hydrogen bonding and conjugative stabilization, the steric congestion in ortho-disubstituted anisoles outweighs the conjugative effects and forces...... correlation between computed and observed 1H NMR chemical shifts, including agreement between computed and observed chemical shift changes caused by O-methylation. The observed regularities can aid structure elucidation of partly O-methylated polyphenols, including many natural products and drugs...

  20. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me......Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation...

  1. Determination of deuterium fraction in heavy water by proton chemical shifts

    International Nuclear Information System (INIS)

    Kellomaeki, A.; Jutila, M.

    1979-01-01

    One nuclear magnetic resonance method used to determine the deuterium fraction of heavy water samples is based on the chemical shifts of dissolved fluoride ions depending on the deuterium content of the sample. This method presented indicated that the proton chemical shifts of the hydrogen form sulfonated polystyrene ion exchangers suspended in H 2 O--D 2 O mixtures are dependent on the deuterium content of the solvent. The strong polystyrene sulfuric acid ion exchangers are more practical: the concentration of the interior electrolytic solution is automatically regulated by the fairly constant swelling of the resin and the peak of the exterior water provides an internal standard in every sample. 2 figures

  2. Proton Magnetic Resonance and Human Thyroid Neoplasia III. Ex VivoChemical-Shift Microimaging

    Science.gov (United States)

    Rutter, Allison; Künnecke, Basil; Dowd, Susan; Russell, Peter; Delbridge, Leigh; Mountford, Carolyn E.

    1996-03-01

    Magnetic-resonance chemical-shift microimaging, with a spatial resolution of 40 × 40 μm, is a modality which can detect alterations to cellular chemistry and hence markers of pathological processes in human tissueex vivo.This technique was used as a chemical microscope to assess follicular thyroid neoplasms, lesions which are unsatisfactorily investigated using standard histopathological techiques or water-based magnetic-resonance imaging. The chemical-shift images at the methyl frequency (0.9 ppm) identify chemical heterogeneity in follicular tumors which are histologically homogeneous. The observed changes to cellular chemistry, detectable in foci of approximately 100 cells or less, support the existence of a preinvasive state hitherto unidentified by current pathological techniques.

  3. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    Science.gov (United States)

    Lin, Qinhao; Zhang, Guohua; Peng, Long; Bi, Xinhui; Wang, Xinming; Brechtel, Fred J.; Li, Mei; Chen, Duohong; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-07-01

    To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5-4.1 %) to the total cloud residues. Higher fraction of nitrate (88-89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41-42 %) and ammonium (15-23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  4. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand.

    Science.gov (United States)

    Jones, Benjamin E H; Haynes, Richard J; Phillips, Ian R

    2011-02-01

    In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tone of alumina produced, about 2 tones of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation. Samples of freshly deposited residue sand were collected from Alcoa's Kwinana refinery. Samples were treated with phosphogypsum (2% v/v), incubated, and leached. A laboratory experiment was then set up in which the two organic wastes were applied at 0 or the equivalent to 60 tones ha(-1) in combination with residue mud added at rates of 0%, 10% and 20% v/v. Samples were incubated for 8 weeks, after which, key chemical, physical and microbial properties of the residue sand were measured along with seed germination. Additions of residue mud increased exchangeable Na(+), ESP and the pH, and HCO (3) (-) and Na(+) concentrations in saturation paste extracts. Additions of biosolids and poultry manure increased concentrations of extractable P, NH (4) (+) , K, Mg, Cu, Zn, Mn and Fe. Addition of residue mud, in combination with organic wastes, caused a marked decrease in macroporosity and a concomitant increase in mesoporosity, available water holding capacity and the quantity of water held at field capacity. With increasing residue mud additions, the percentage of sample present as sand particles (2 mm diameter) increased; greatest aggregation occurred where a combination of residue mud and poultry manure were added. Stability of aggregates, as measured by

  5. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene.

    Science.gov (United States)

    Sun, Jianbo; Finklea, Harry O; Liu, Yuxin

    2017-03-24

    Poly(methyl methacrylate) (PMMA) residue has long been a critical challenge for practical applications of the transferred chemical vapor deposited (CVD) graphene. Thermal annealing is empirically used for the removal of the PMMA residue; however experiments imply that there are still small amounts of residues left after thermal annealing which are hard to remove with conventional methods. In this paper, the thermal degradation of the PMMA residue upon annealing was studied by Raman spectroscopy. The study reveals that post-annealing residues are generated by the elimination of methoxycarbonyl side chains in PMMA and are believed to be absorbed on graphene via the π-π interaction between the conjugated unsaturated carbon segments and graphene. The post-annealing residues are difficult to remove by further annealing in a non-oxidative atmosphere due to their thermal and chemical stability. An electrolytic cleaning method was shown to be effective in removing these post-annealing residues while preserving the underlying graphene lattice based on Raman spectroscopy and atomic force microscopy studies. Additionally, a solution-gated field effect transistor was used to study the transport properties of the transferred CVD graphene before thermal annealing, after thermal annealing, and after electrolytic cleaning, respectively. The results show that the carrier mobility was significantly improved, and that the p-doping was reduced by removing PMMA residues and post-annealing residues. These studies provide a more in-depth understanding on the thermal annealing process for the removal of the PMMA residues from transferred CVD graphene and a new approach to remove the post-annealing residues, resulting in a residue-free graphene.

  6. Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of 129 Xe

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K; Slack, CC; Vassiliou, CC; Dao, P; Gomes, MD; Kennedy, DJ; Truxal, AE; Sperling, LJ; Francis, MB; Wemmer, DE; Pines, A

    2015-09-17

    Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here in this paper, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca2+, Cu2+, Ce3+, Zn2+, Cd2+, Ni2+, Co2+, Cr2+, Fe3+, and Hg2+ are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of 129Xe. Lastly, these sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.

  7. Residual effects of animal manures on physical and chemical ...

    African Journals Online (AJOL)

    This experiment was conducted to investigate effects of animal manures on chemical composition of silage produced from Panicum maximum (Ntchisi) two - years post application. The plots were established in June 2010 during this period, animal manures from cattle dung, swine waste, poultry droppings and small ...

  8. Identification of helix capping and β-turn motifs from NMR chemical shifts

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13 C β chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  9. Chemical shift of Mn and Cr K-edges in X-ray absorption ...

    Indian Academy of Sciences (India)

    The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds. Keywords. Mn K edge; Cr K edge; EXAFS; synchrotron radiation; energy shift; oxidation state; effective charge. 1. Introduction. It is well known that the X-ray absorption edge of a ...

  10. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate...

  11. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  12. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static” ...

  13. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    Science.gov (United States)

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  14. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  15. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern

    Science.gov (United States)

    Ismail, Baraem; Reuhs, Bradley L.; Nielsen, S. Suzanne

    The food chain that starts with farmers and ends with consumers can be complex, involving multiple stages of production and distribution (planting, harvesting, breeding, transporting, storing, importing, processing, packaging, distributing to retail markets, and shelf storing) (Fig. 18.1). Various practices can be employed at each stage in the food chain, which may include pesticide treatment, agricultural bioengineering, veterinary drug administration, environmental and storage conditions, processing applications, economic gain practices, use of food additives, choice of packaging material, etc. Each of these practices can play a major role in food quality and safety, due to the possibility of contamination with or introduction (intentionally and nonintentionally) of hazardous substances or constituents. Legislation and regulation to ensure food quality and safety are in place and continue to develop to protect the stakeholders, namely farmers, consumers, and industry. [Refer to reference (1) for information on regulations of food contaminants and residues.

  16. Rapid chemical shift encoding with single-acquisition single-slab 3D GRASE.

    Science.gov (United States)

    Kim, Hahnsung; Kim, Dong-Hyun; Sohn, Chul-Ho; Park, Jaeseok

    2017-11-01

    To investigate the feasibility of chemical shift encoded, single-slab 3D GRASE for rapid fat-water separation within a single acquisition. The proposed method incorporates signal-to-noise-ratio-optimal chemical shift encoding into single-slab 3D GRASE with variable flip angles. Chemical shift induced phase information was encoded in succession to different positions in k-space by inserting phase encoding blips between adjacent lobes of the oscillating readout gradients. To enhance imaging efficiency, signal prescription-based variable flip angles were used in the long refocusing pulse train. After echo-independent phase correction, missing signals in k-echo space were interpolated using convolution kernels that span over all echoes. Fat-water separation in a single acquisition was performed using both multi-echo fast spin echo and GRASE as compared to conventional multiacquisition fast spin echo with echo shifts. The proposed single-slab 3D GRASE shows superior performance in accurately delineating cartilage structures compared to its counterpart, multi-echo 3D fast spin echo. Compared with multiacquisition fast spin echo with three echo shifts (63 min), the proposed method substantially speeds up imaging time (7 min), and achieves 0.6 mm isotropic resolution in knee imaging with reduced artifacts and noise. We successfully demonstrated the feasibility of rapid chemical shift encoding and separation using the proposed, single-acquisition single-slab 3D GRASE for high resolution isotropic imaging within clinically acceptable time. Magn Reson Med 78:1852-1861, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Modeling NMR chemical shift: A survey of density functional theory approaches for calculating tensor properties.

    Science.gov (United States)

    Sefzik, Travis H; Turco, Domenic; Iuliucci, Robbie J; Facelli, Julio C

    2005-02-17

    The NMR chemical shift, a six-parameter tensor property, is highly sensitive to the position of the atoms in a molecule. To extract structural parameters from chemical shifts, one must rely on theoretical models. Therefore, a high quality group of shift tensors that serve as benchmarks to test the validity of these models is warranted and necessary to highlight existing computational limitations. Here, a set of 102 13C chemical-shift tensors measured in single crystals, from a series of aromatic and saccharide molecules for which neutron diffraction data are available, is used to survey models based on the density functional (DFT) and Hartree-Fock (HF) theories. The quality of the models is assessed by their least-squares linear regression parameters. It is observed that in general DFT outperforms restricted HF theory. For instance, Becke's three-parameter exchange method and mpw1pw91 generally provide the best predicted shieldings for this group of tensors. However, this performance is not universal, as none of the DFT functionals can predict the saccharide tensors better than HF theory. Both the orientations of the principal axis system and the magnitude of the shielding were compared using the chemical-shift distance to evaluate the quality of the calculated individual tensor components in units of ppm. Systematic shortcomings in the prediction of the principal components were observed, but the theory predicts the corresponding isotropic value more accurately. This is because these systematic errors cancel, thereby indicating that the theoretical assessment of shielding predictions based on the isotropic shift should be avoided.

  18. Rapid calculation of protein chemical shifts using bond polarization theory and its application to protein structure refinement.

    Science.gov (United States)

    Jakovkin, Igor; Klipfel, Marco; Muhle-Goll, Claudia; Ulrich, Anne S; Luy, Burkhard; Sternberg, Ulrich

    2012-09-21

    Although difficult to analyze, NMR chemical shifts provide detailed information on protein structure. We have adapted the semi-empirical bond polarization theory (BPT) to protein chemical shift calculation and chemical shift driven protein structure refinement. A new parameterization for BPT amide nitrogen chemical shift calculation has been derived from MP2 ab initio calculations and successfully evaluated using crystalline tripeptides. We computed the chemical shifts of the small globular protein ubiquitin, demonstrating that BPT calculations can match the results obtained at the DFT level of theory at very low computational cost. In addition to the calculation of chemical shift tensors, BPT allows the calculation of chemical shift gradients and consequently chemical shift driven geometry optimizations. We applied chemical shift driven protein structure refinement to the conformational analysis of a set of Trypanosoma brucei (the causative agent of African sleeping sickness) tryparedoxin peroxidase Px III structures. We found that the interaction of Px III with its reaction partner Tpx seems to be governed by conformational selection rather than by induced fit.

  19. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Science.gov (United States)

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

  20. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    International Nuclear Information System (INIS)

    Lim, C.J.; Ng, K.H.; Ramli, N.; Azman, R.R.

    2011-01-01

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  1. Direct and residual effects of manure on soil chemical properties

    Science.gov (United States)

    Nastri, A.; Triberti, L.; Giordani, G.; Comellini, F.; Baldoni, G.

    2009-04-01

    The beneficial effects of manure recycling in cropland on soil fertility are well documented. Nowadays it can help sequestrate C in the soil organic matter, advocated to mitigate the atmospheric CO2 increase. Because of the gradual disappearance of conventional livestock farming in Western Europe, the study of the persistence of the positive effects of manuring after its interruption can be interesting. Any research on soil fertility dynamic, however, requires long-term experiments because it is quite slow and greatly influenced by weather. A field trial, started in 1966 and still in progress in the Experimental Farm of Bologna University, compares 5 crop rotations (a 9-year course: corn-wheat-corn-wheat-corn-wheat-alfalfa-alfalfa-alfalfa, corn-wheat and sugarbeet-wheat, continuous corn and continuous wheat), at 3 levels of cattle manure supply combined with 3 inorganic NP fertilizers rates in a split-split plot replicated twice. The soil is an alluvial silty loam, fertile but low in organic matter (13.3 g kg-1). Manure is spread before corn, sugarbeet and alfalfa, at a mean yearly rate of 0 (M0), 20 (M1) and 40 (M2) t ha-1 of fresh material. Since 1984 M2 has been interrupted to evaluate residual effects. Regarding mineral fertilizer rates, for this study we considered only the unfertilized control (N0P0) and N1P1 level, corresponding to a mean yearly application of 220 kg N ha-1 and 75 kg P2O5 ha-1. Each year, since 1972 till now, we have sampled soil in the ploughed layer (0-0.4 m) to assess its pH (in water) and its content of organic carbon (SOC, Lotti method), total nitrogen (TN, Kjeldahl) and available phosphorus (P2O5, Olsen). To reduce the influence of crops and weather, statistical analyses were conducted on the averages of data obtained in the 4-year periods at the end of four 9-year cycles (1972-75, 81-84, 90-93 and 99-02). In 30 years, the continuous M1 supply without any inorganic integration increased SOC, TN and P2O5 by +3.6 t ha-1 (+11%), +1.09 t

  2. Isotope effects on chemical shifts in tautomeric systems with double proton transfer. Citronin

    International Nuclear Information System (INIS)

    Hansen, P.E.; Langgard, M.; Bolvig, S.

    1998-01-01

    Primary and secondary deuterium isotope effects on 1 H and 13 C chemical shifts are measured in citrinin, a tautomeric compound with an unusual doubly intramolecularly hydrogen bonded structure. The isotope effects are to a large extent dominated by equilibrium contributions and deuteration leads to more of the deuterated enol forms rather than the deuterated acid form. 1 H 13 C and 17 O nuclear shieldings are calculated using density functional ab initio methods. A very good correlation between calculated nuclear shieldings and experimental 1 H and 13 C chemical shifts is obtained. The tautomeric equilibrium can be analyzed based on the isotope effects on B-6 and C-8 carbons and shows an increase in the o-quinone form on lowering the temperature. Furthermore, upon deuteration the largest equilibrium shift is found for deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration at OH-8 and the shift in the tautomeric equilibrium upon deuteration is increasing at lower temperature. (author)

  3. Occurrence of pesticide non extractable residues in physical and chemical fractions from two natural soils.

    Science.gov (United States)

    Andreou, K.; Jones, K.; Semple, K.

    2009-04-01

    Distribution of pesticide non extractable residues resulted from the incubation of two natural soils with each of the isoproturon, diazinon and cypermethrin pesticide was assessed in this study. Pesticide non extractable residues distribution in soil physical and chemical fractions is known to ultimately affect their fate. This study aimed to address the fate and behaviour of the non extractable residues in the context of their association with soil physical and chemical fractions with varying properties and characteristics. Non extractable residues were formed from incubation of each pesticide in the two natural soils over a period of 24 months. Soils containing the non extractable residues were fractionated into three solid phase fractions using a physical fractionation procedure as follows: Sediment (SED, >20 μm), (II) Microaggregate (MA, 20-2 μm) and (III) Colloid phase (COL, 2-0.05 μm). Each soil fraction was then fractionated into organic carbon chemical fractionations as follows: Fulvic acid (FA), Humic acid (HA) and Humin (HM). Significant amount of the pesticides was lost during the incubation period. Enrichment factors for the organic carbon and the 14C-pesticide residues were higher in the MA and COL fraction rather than the SED fraction. Greater association and enrichment of the fulvic acid fraction of the organic carbon in the soil was observed. Non extractable residues at the FA fraction showed to diminish while in the HA fraction were increased with decreasing the fraction size. An appreciable amount of non extractable residues were located in the HM fraction but this was less than the amount recovered in the humic substances. Long term fate of pesticide non extractable residues in the soil structural components is important in order to assess any risk associated with them.

  4. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  5. 13C solid-state NMR chemical shift anisotropy analysis of the anomeric carbon in carbohydrates.

    Science.gov (United States)

    Chen, Ying-Ying; Luo, Shun-Yuan; Hung, Shang-Cheng; Chan, Sunney I; Tzou, Der-Lii M

    2005-03-21

    (13)C NMR solid-state structural analysis of the anomeric center in carbohydrates was performed on six monosaccharides: glucose (Glc), mannose (Man), galactose (Gal), galactosamine hydrochloride (GalN), glucosamine hydrochloride (GlcN), and N-acetyl-glucosamine (GlcNAc). In the 1D (13)C cross-polarization/magic-angle spinning (CP/MAS) spectrum, the anomeric center C-1 of these carbohydrates revealed two well resolved resonances shifted by 3-5ppm, which were readily assigned to the anomeric alpha and beta forms. From this experiment, we also extracted the (13)C chemical shift anisotropy (CSA) tensor elements of the two forms from their spinning sideband intensities, respectively. It was found out that the chemical shift tensor for the alpha anomer was more axially symmetrical than that of the beta form. A strong linear correlation was obtained when the ratio of the axial asymmetry of the (13)C chemical shift tensors of the two anomeric forms was plotted in a semilogarithmic plot against the relative population of the two anomers. Finally, we applied REDOR spectroscopy to discern whether or not there were any differences in the sugar ring conformation between the anomers. Identical two-bond distances of 2.57A (2.48A) were deduced for both the alpha and beta forms in GlcNAc (GlcN), suggesting that the two anomers have essentially identical sugar ring scaffolds in these sugars. In light of these REDOR distance measurements and the strong correlation observed between the ratio of the axial asymmetry parameters of the (13)C chemical shift tensors and the relative population between the two anomeric forms, we concluded that the anomeric effect arises principally from interaction of the electron charge clouds between the C-1-O-5 and the C-1-O-1 bonds in these monosaccharides.

  6. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    Markin, Craig J.; Spyracopoulos, Leo

    2012-01-01

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K D value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1 H– 15 N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k off ). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k off ∼ 3,000 s −1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k off from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k off values over a wide range, from 100 to 15,000 s −1 . The validity of line shape analysis for k off values approaching intermediate exchange (∼100 s −1 ), may be facilitated by more accurate K D measurements from NMR

  7. The great chemical residue detection debate: dog versus machine

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-09-01

    Many engineering groups desire to construct instrumentation to replace dog-handler teams in identifying and localizing chemical mixtures. This goal requires performance specifications for an "artificial dog-handler team". Progress toward generating such specifications from laboratory tests of dog-handler teams has been made recently at the Sensory Research Institute, and the method employed is amenable to the measurement of tasks representative of the decision-making that must go on when such teams solve problems in actual (and therefore informationally messy) situations. As progressively more quantitative data are obtained on progressively more complex odor tasks, the boundary conditions of dog-handler performance will be understood in great detail. From experiments leading to this knowledge, one ca develop, as we do in this paper, a taxonomy of test conditions that contain various subsets of the variables encountered in "real world settings". These tests provide the basis for the rigorous testing that will provide an improved basis for deciding when biological sensing approaches (e.g. dog-handler teams) are best and when "artificial noses" are most valuable.

  8. Uniform fat suppression in hands and feet through the use of two-point Dixon chemical shift MR imaging

    NARCIS (Netherlands)

    Maas, M.; Dijkstra, P. F.; Akkerman, E. M.

    1999-01-01

    To assess the potential of two-point Dixon chemical shift magnetic resonance imaging to achieve uniform fat suppression in the distal parts of the extremities. Two-point Dixon chemical shift imaging was performed in 31 consecutive patients clinically suspected to have bone marrow disease. In some

  9. Spectral phase shift and residual angular dispersion of an accousto-optic programme dispersive filter

    International Nuclear Information System (INIS)

    Boerzsoenyi, A.; Meroe, M.

    2010-01-01

    Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3

  10. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    Science.gov (United States)

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  11. Substituent Chemical Shifts of (E)-1-Aryl-3-thienylpropen-1-ones

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Sook Han; Jeon, Hyun Ju; Yu, Ji Sook; Lee, Chang Kiu [Kangwon National University, Chuncheon (Korea, Republic of)

    2010-06-15

    Substituent chemical shifts were examined for the 2- and 3-thiophene derivatives of chalcone and compared to the thiophene series of derivatives with the phenyl series. The chemical shift values for the α-carbons of the enones showed and inverse correlation with the Hammett σ values, but the correlation coefficients were moderate (r = 0.836 - 0.878). On the other hand, the β-carbons showed a normal correlation with excellent correlation coefficients (r = 0.994). The absolute magnitude of the ρ values for the α-carbon are about half of those of the β-carbon. The observation may be the result of a through-space transition of the electronic effect of the substituents in addition to the through bond transition.

  12. PACSY, a relational database management system for protein structure and chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States); Yu, Wookyung [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry and Chemistry Institute for Functional Materials (Korea, Republic of); Chang, Iksoo [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Yonsei University, Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry (Korea, Republic of); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States)

    2012-10-15

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  13. PACSY, a relational database management system for protein structure and chemical shift analysis.

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  14. Chemical shift selective magnetic resonance imaging of the optic nerve in patients with acute optic neuritis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1988-01-01

    of the 16 patients, abnormalities were seen. In one patient with bilateral symptoms, signal hyperintensity and swelling of the right side of the chiasm were found. In another patient the optic nerve was found diffusely enlarged with only a marginally increased signal in the second echo. In the third patient......Optic neuritis is often the first manifestation of multiple sclerosis (MS). Sixteen patients with acute optic neuritis and one patient with benign intracranial hypertension (BIH) were investigated by magnetic resonance imaging, using a chemical shift selective double spin echo sequence. In 3...... an area of signal hyperintensity and swelling was seen in the left optic nerve. In the patient with BIH the subarachnoid space which surrounds the optic nerves was enlarged. Even using this refined pulse sequence, avoiding the major artefact in imaging the optic nerve, the chemical shift artefact, lesions...

  15. PACSY, a relational database management system for protein structure and chemical shift analysis

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu. PMID:22903636

  16. PACSY, a relational database management system for protein structure and chemical shift analysis

    International Nuclear Information System (INIS)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L.

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  17. From Raw Data to Protein Backbone Chemical Shifts Using NMRFx Processing and NMRViewJ Analysis.

    Science.gov (United States)

    Johnson, Bruce A

    2018-01-01

    Assignment of the chemical shifts of the backbone atoms (HN, N, CA, CB, and C) of proteins is often a prerequisite to using NMR information in the study of proteins. These chemical shifts and their perturbations are the basis for the analysis of protein dynamics, ligand binding, and backbone conformation. They are generally assigned prior to full side-chain assignments and the determination of the complete three-dimensional molecular structure. This chapter describes the use of two software packages, NMRFx Processor and NMRViewJ, in going from raw NMR data to backbone assignments. The step-by-step procedure describes processing of the data and the use of manual and automated features of the RunAbout tool in NMRViewJ to perform the assignments.

  18. Crime Scene Investigation: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool

    Science.gov (United States)

    2016-02-26

    MDW/SGVU SUBJECT: Professional Presentation Approva l 26 FEB 2016 1. Your paper, entitled Crime Scene Investigation: Clinical Aoolication of...or technical information as a publication/presentation, a new 59 MDW Form 3039 must be submitted for review and approval.] Crime Scene Investiga...tion: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool 1. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED Crime Scene

  19. Chemical shift assignments of polyketide cyclase_like protein CGL2373 from Corynebacterium glutamicum.

    Science.gov (United States)

    Liang, Chunjie; Hu, Rui; Ramelot, Theresa A; Kennedy, Michael A; Li, Xuegang; Yang, Yunhuang; Zhu, Jiang; Liu, Maili

    2017-10-01

    Protein CGL2373 from Corynebacterium glutamicum, which is 155 amino acids long and 17.7 kDa, is a member of the polyketide_cyc2 family. As a potential polyketide cyclase, it may play an important role in the biosynthesis of aromatic polyketides that are the source of many bioactive molecules. Here we report the complete 1 H, 13 C and 15 N chemical shift assignments of CGL2373, which lays a foundation for further structural and functional research.

  20. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    Science.gov (United States)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  1. Valorisation of food residues: waste to wealth using green chemical technologies

    OpenAIRE

    Clark, James H.; Luque, Rafael

    2013-01-01

    Waste valorisation practises have attracted a significant amount of attention in recent years with the aim of managing waste in the most sustainable way. Food waste constitutes a largely under-exploited residue from which a variety of valuable chemicals can be derived. This contribution is aimed to set the scene for a further development and promotion of sustainable food waste valorisation practises to different end products using green chemical technologies

  2. Analysis of seven-membered lactones by computational NMR methods: proton NMR chemical shift data are more discriminating than carbon.

    Science.gov (United States)

    Marell, Daniel J; Emond, Susanna J; Kulshrestha, Aman; Hoye, Thomas R

    2014-01-17

    We report an NMR chemical shift study of conformationally challenging seven-membered lactones (1-11); computed and experimental data sets are compared. The computations involved full conformational analysis of each lactone, Boltzmann-weighted averaging of the chemical shifts across all conformers, and linear correction of the computed chemical shifts. DFT geometry optimizations [M06-2X/6-31+G(d,p)] and GIAO NMR chemical shift calculations [B3LYP/6-311+G(2d,p)] provided the computed chemical shifts. The corrected mean absolute error (CMAE), the average of the differences between the computed and experimental chemical shifts for each of the 11 lactones, is encouragingly small (0.02-0.08 ppm for (1)H or 0.8-2.2 ppm for (13)C). Three pairs of cis versus trans diastereomeric lactones were used to assess the ability of the method to distinguish between stereoisomers. The experimental shifts were compared with the computed shifts for each of the two possible isomers. We introduce the use of a "match ratio"--the ratio of the larger CMAE (worse fit) to the smaller CMAE (better fit). A greater match ratio value indicates better distinguishing ability. The match ratios are larger for proton data [2.4-4.0 (av = 3.2)] than for carbon [1.1-2.3 (av = 1.6)], indicating that the former provide a better basis for discriminating these diastereomers.

  3. Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water.

    Science.gov (United States)

    Simate, Geoffrey S; Iyuke, Sunny E; Ndlovu, Sehliselo; Heydenrych, Mike; Walubita, Lubinda F

    2012-02-01

    The volume of industrial and domestic wastewater is increasing significantly year by year with the change in the lifestyle based on mass consumption and mass disposal brought about by the dramatic development of economies and industries. Therefore, effective advanced wastewater treatment is required because wastewater contains a variety of constituents such as particles, organic materials, and emulsion depending on the resource. However, residual chemicals that remain during the treatment of wastewaters form a variety of known and unknown by-products through reactions between the chemicals and some pollutants. Chronic exposure to these by-products or residual chemicals through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. For example, residual aluminium salts in treated water may cause Alzheimer's disease (AD). As for carbon nanotubes (CNTs), despite their potential impacts on human health and the environment having been receiving more and more attention in the recent past, existing information on the toxicity of CNTs in drinking water is limited with many open questions. Furthermore, though general topics on the human health impacts of traditional water treatment chemicals have been studied, no comparative analysis has been done. Therefore, a qualitative comparison of the human health effects of both residual CNTs and traditional water treatment chemicals is given in this paper. In addition, it is also important to cover and compare the human health effects of CNTs to those of traditional water treatment chemicals together in one review because they are both used for water treatment and purification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.

    Science.gov (United States)

    Camilloni, Carlo; Robustelli, Paul; De Simone, Alfonso; Cavalli, Andrea; Vendruscolo, Michele

    2012-03-07

    Following the recognition that NMR chemical shifts can be used for protein structure determination, rapid advances have recently been made in methods for extending this strategy for proteins and protein complexes of increasing size and complexity. A remaining major challenge is to develop approaches to exploit the information contained in the chemical shifts about conformational fluctuations in native states of proteins. In this work we show that it is possible to determine an ensemble of conformations representing the free energy surface of RNase A using chemical shifts as replica-averaged restraints in molecular dynamics simulations. Analysis of this surface indicates that chemical shifts can be used to characterize the conformational equilibrium between the two major substates of this protein. © 2012 American Chemical Society

  5. Construction of a risk assessment system for chemical residues in agricultural products.

    Science.gov (United States)

    Choi, Shinai; Hong, Jiyeon; Lee, Dayeon; Paik, Minkyoung

    2014-01-01

    Continuous monitoring of chemical residues in agricultural and food products has been performed by various government bodies in South Korea. These bodies have made attempts to systematically manage this information by creating a monitoring database system as well as a system based on these data with which to assess the health risk of chemical residues in agricultural products. Meanwhile, a database system is being constructed consisting of information about monitoring and, following this, a demand for convenience has led to the need for an evaluation tool to be constructed with the data processing system. Also, in order to create a systematic and effective tool for the risk assessment of chemical residues in foods and agricultural products, various evaluation models are being developed, both domestically and abroad. Overseas, systems such as Dietary Exposure Evaluation Model: Food Commodity Intake Database and Cumulative and Aggregate Risk Evaluation System are being used; these use the US Environmental Protection Agency as a focus, while the EU has developed Pesticide Residue Intake Model for assessments of pesticide exposure through food intake. Following this, the National Academy of Agricultural Science (NAAS) created the Agricultural Products Risk Assessment System (APRAS) which supports the use and storage of monitoring information and risk assessments. APRAS efficiently manages the monitoring data produced by NAAS and creates an extraction feature included in the database system. Also, the database system in APRAS consists of a monitoring database system held by the NAAS and food consumption database system. Food consumption data is based on Korea National Health and Nutrition Examination Survey. This system is aimed at exposure and risk assessments for chemical residues in agricultural products with regards to different exposure scenarios.

  6. 78 FR 70906 - Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2013-11-27

    ... AGENCY 40 CFR Part 180 Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on... residues of pesticide chemicals in or on various commodities. DATES: Comments must be received on or before... manufacturer, or pesticide manufacturer. The following list of North American Industrial Classification System...

  7. Elucidation of the substitution pattern of 9,10-anthraquinones through the chemical shifts of peri-hydroxyl protons

    DEFF Research Database (Denmark)

    Schripsema, Jan; Danigno, Denise

    1996-01-01

    In 9,10-anthraquinones the chemical shift of a peri-hydroxyl proton is affected by the substituents in the other benzenoid ring. These effects are additive. They are useful for the determination of substitution patterns and have been used to revise the structures of six previously reported...... anthraquinones containing methoxyl, hydroxyl, methylenedioxy and beta-methyl substituents. Because the chemical shifts of the other protons are hardly affected by substitutions in the other ring, the characteristic chemical shifts for a wide variety of substitution patterns could be derived....

  8. Low-carbon Scenarios Development for Modal Shift in the Chemical Industry

    Directory of Open Access Journals (Sweden)

    Ocicka Barbara

    2017-01-01

    Full Text Available Supply chain managers have to deal with the performance requirement to significantly reduce CO2 emissions in searching for excellence in green business processes management. The purpose of this article is to examine the perspectives on low-carbon scenarios development for modal shift in the chemical industry. The author outlines main research findings from the Interreg Central Europe ChemMultimodal project realised by 14 partners from 7 countries, among others by Department of Logistics at Warsaw School of Economics in Poland. The project idea is focused on analysing the potential and growth opportunities for multimodal transport usage in chemical supply chain management. Firstly, the objectives, current status and methodology of the project are explained. Then, the results of the research carried out among chemical and logistics companies operating in Poland are discussed. Furthermore, there is recognised that transport modal shift decisions determine changes in supply chain configurations that might be supported by planning and management tools. Consequently, the elements of the ChemMultimodal toolbox are outlined and its potential significance for low-carbon scenarios development is highlighted. As a result, both theoretical and practical implications of the research findings are indicated.

  9. Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils

    Science.gov (United States)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and 20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.

  10. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2010-01-01

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13 C β chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13 C β atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ 15 N, δ 13 C', δ 13 C α , δ 13 C β , δ 1 H α and δ 1 H N , respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  11. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.

    Science.gov (United States)

    Odlare, M; Pell, M; Svensson, K

    2008-01-01

    A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.

  12. Thymic hyperplasia and thymus gland tumors: differentiation with chemical shift MR imaging.

    Science.gov (United States)

    Inaoka, Tsutomu; Takahashi, Koji; Mineta, Masayuki; Yamada, Tomonori; Shuke, Noriyuki; Okizaki, Atsutaka; Nagasawa, Kenichi; Sugimori, Hiroyuki; Aburano, Tamio

    2007-06-01

    To prospectively evaluate chemical shift magnetic resonance (MR) imaging for differentiating thymic hyperplasia from tumors of the thymus gland. The institutional review board approved this study; informed consent was obtained and patient confidentiality was protected. The authors assessed 41 patients (17 male, 24 female; age range, 16-78 years) in whom thymic lesions were seen at chest computed tomography. Patients were assigned to a hyperplasia group (n=23) (18 patients with hyperplastic thymus associated with Graves disease and five with rebound thymic hyperplasia) and a tumor group (n=18) (seven patients with thymomas, four with invasive thymomas, five with thymic cancers, and two with malignant lymphomas). T2-weighted fast spin-echo and T1-weighted in-phase and opposed-phase MR images were obtained in all patients and visually assessed. A chemical shift ratio (CSR), determined by comparing the signal intensity of the thymus gland with that of the paraspinal muscle, was calculated for quantitative analysis. Mean CSRs for the patient groups and subgroups were analyzed by using Welch t and Newman-Keuls tests. Pthymus gland had homogeneous signal intensity in all 23 patients in the hyperplasia group and in 12 of the 18 patients in the tumor group. The mean CSR (+/- standard deviation) was 0.614 +/- 0.130 in the hyperplasia group and 1.026 +/- 0.039 in the tumor group. Mean CSRs in the patients with a hyperplastic thymus and Graves disease, rebound thymic hyperplasia, thymoma, invasive thymoma, thymic cancer, and malignant lymphoma were 0.594 +/- 0.120, 0.688 +/- 0.154, 1.033 +/- 0.043, 1.036 +/- 0.040, 1.020 +/- 0.044, and 0.997 +/- 0.010, respectively. The difference in CSR between the hyperplasia and tumor groups was significant (Pthymus gland signal intensity at chemical shift MR imaging; no tumor group patients had a decrease in thymus gland signal intensity. Chemical shift MR imaging can be used to differentiate thymic hyperplasia from thymic tumors. (c) RSNA

  13. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Science.gov (United States)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  14. Simulations of Xe-129 NMR chemical shift of atomic xenon dissolved in liquid benzene

    Czech Academy of Sciences Publication Activity Database

    Standara, Stanislav; Kulhánek, P.; Marek, R.; Horníček, Jan; Bouř, Petr; Straka, Michal

    2011-01-01

    Roč. 129, 3/5 (2011), s. 677-684 ISSN 1432-881X R&D Projects: GA ČR GA203/09/2037; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902; European Reintegration Grant(XE) 230955; European Community(XE) 205872 Institutional research plan: CEZ:AV0Z40550506 Keywords : Xe-129 NMR chemical shift * dynamical averaging * density functional theory * Breit-Pauli perturbation theory * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.162, year: 2011

  15. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    Directory of Open Access Journals (Sweden)

    Benjamin Görling

    2016-09-01

    Full Text Available Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored.

  16. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, J.

    2014-01-01

    Significance Chemical shifts are the most fundamental parameters measured in nuclear magnetic resonance spectroscopy. Since these parameters are exquisitely sensitive to the local atomic environment, they can provide detailed information about the three-dimensional structures of proteins. It has...... recently been shown that using such information directly as input in molecular simulations based on the molecular fragment replacement strategy can help the process of protein structure determination. Here, we show how to implement this strategy to determine not only the structures of proteins but also...

  17. Advancing environmental toxicology through chemical dosimetry: External exposures versus tissue residues

    Science.gov (United States)

    McCarty, L.S.; Landrum, P.F.; Luoma, S.N.; Meador, J.P.; Merten, A.A.; Shephard, B.K.; van Wezelzz, A.P.

    2011-01-01

    The tissue residue dose concept has been used, although in a limited manner, in environmental toxicology for more than 100 y. This review outlines the history of this approach and the technical background for organic chemicals and metals. Although the toxicity of both can be explained in tissue residue terms, the relationship between external exposure concentration, body and/or tissues dose surrogates, and the effective internal dose at the sites of toxic action tends to be more complex for metals. Various issues and current limitations related to research and regulatory applications are also examined. It is clear that the tissue residue approach (TRA) should be an integral component in future efforts to enhance the generation, understanding, and utility of toxicity testing data, both in the laboratory and in the field. To accomplish these goals, several key areas need to be addressed: 1) development of a risk-based interpretive framework linking toxicology and ecology at multiple levels of biological organization and incorporating organism-based dose metrics; 2) a broadly applicable, generally accepted classification scheme for modes/mechanisms of toxic action with explicit consideration of residue information to improve both single chemical and mixture toxicity data interpretation and regulatory risk assessment; 3) toxicity testing protocols updated to ensure collection of adequate residue information, along with toxicokinetics and toxicodynamics information, based on explicitly defined toxicological models accompanied by toxicological model validation; 4) continued development of residueeffect databases is needed ensure their ongoing utility; and 5) regulatory guidance incorporating residue-based testing and interpretation approaches, essential in various jurisdictions. ??:2010 SETAC.

  18. Polychlorinated biphenyl (Aroclor< 1254) residues in rainbow trout: effects on sensitivity to nine fishery chemicals

    Science.gov (United States)

    Bills, T.D.; Marking, L.L.; Mauck, W.L.

    1981-01-01

    The influence of background polychlorinated biphenyl (PCB) residues in rainbow trout (Salmo gairdneri) on the susceptibility of the fish to nine chemicals routinely or occasionally used in fishery operations was evaluated. Rainbow trout fry were divided into three groups: one was exposed to 0.01 ppb and another to 0.1 ppb of the PCB Aroclor (R) 1254; the third (control) group was unexposed. After 30 days of exposure, whole body residues were 0.28 and 2.31 ppm for fish exposed to 0.01 and 0.1 ppb, respectively; control fish had residue concentrations of 0.04 ppm. Acute toxicity tests showed that both groups of exposed fish were more sensitive to rotenone and 2,4-D. Exposure did not significantly affect sensitivity to 2-[digeranylamino]-ethanol (GD-174), 3-trifluoromethyl-4-nitrophenol (TFM), nifurpirinol (Furanace), tricaine methanesulfonate (MS-222), or copper sulfate. Fishery managers should be aware that sensitivity of fish to control chemicals may be altered by the presence of contaminants in the water or residues of contaminants in the fish.

  19. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds

    International Nuclear Information System (INIS)

    Kirk, K.; Kuchel, P.W.

    1988-01-01

    The marked difference between the intra- and extracellular 31 P NMR chemical shifts of various phosphoryl compounds when added to a red cell suspension may be largely understood in terms of the effects of hemoglobin on the 31 P NMR chemical shifts. The presence of [oxy- or (carbonmonoxy)-] hemoglobin inside the red cell causes the bulk magnetic susceptibility of the cell cytoplasm to be significantly less than that of the external solution. This difference is sufficient to account for the difference in the intra- and extracellular chemical shifts of the two phosphate esters trimethyl phosphate and triethyl phosphate. However, in the case of the compounds dimethyl methylphosphonate, diethyl methylphosphonate, and trimethylphosphine oxide as well as the hypophosphite, phenylphosphinate, and diphenylphosphinate ions, hemoglobin exerts an additional, much larger, effect, causing the 31 P NMR resonances to shift to lower frequency in a manner that cannot be accounted for in terms of magnetic susceptibility. Lysozyme is a protein structurally unrelated to hemoglobin and was shown to cause similar shifts to lower frequency of the resonances of these six compounds; this suggests that the mechanism may involve a property of proteins in general and not a specific property of hemoglobin. The effect of different solvents on the chemical shifts of the eight phosphoryl compounds provided an insight into the possible physical basis of the effect. It is proposed that, in addition to magnetic susceptibility effects, hemoglobin exerts its influence on phosphoryl chemical shifts by disrupting the hydrogen bonding of the phosphoryl group to solvent water

  20. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  1. Effects of chemical modification of lysine residues on the sweetness of lysozyme.

    Science.gov (United States)

    Masuda, Tetsuya; Ide, Nobuyuki; Kitabatake, Naofumi

    2005-03-01

    Lysozyme is a sweet-tasting protein with a sweetness threshold value of around 7 microM. To clarify the effect of basicity at the side chain of lysine residues on the threshold values of sweetness, charge-specific chemical modifications such as guanidination, acetylation and phosphopyridoxylation of lysine residues were performed. Sensory analysis showed that the sweetness threshold value of lysozyme was not changed by guanidination, whereas it was increased markedly by acetylation and phosphopyridoxylation. To confirm the importance of the basicity in the lysine residues in detail, purification of acetylated (Ac-) and phosphopyridoxylated (PLP-) lysozymes using SP-ion exchange column chromatography was performed. The threshold values were not changed by modification with fewer than two residues (approximately 7 microM), whereas the threshold values significantly increased to 15 and 34 microM when tetra-Ac and tri-PLP, respectively. Furthermore, sweetness was not detected at 30 microM (hexa-, penta-Ac and tetra-PLP). It should be noted that removal of the negative charges of the phosphate groups in the tri-PLP lysozyme by acid phosphatase resulted in the recovery of sweetness (6.4 microM), indicating that basicity at the position of the lysine residues is responsible for lysozyme sweetness and that strict charge complementarities might be required for interaction to its putative receptor.

  2. COMPARISON BETWEEN ASPHALTENES (SUBFRACTIONS EXTRACTED FROM TWO DIFFERENT ASPHALTIC RESIDUES: CHEMICAL CHARACTERIZATION AND PHASE BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Silas R. Ferreira

    2016-01-01

    Full Text Available Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (subfractions were extracted from an asphaltic residue (AR02, characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01 described in a previous article. The (subfractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN, presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.

  3. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  4. Relativistic heavy atom effect on13C NMR chemical shifts initiated by adjacent multiple chalcogens.

    Science.gov (United States)

    Rusakov, Yu Yu; Rusakova, I L

    2018-02-07

    In this paper, we have investigated the cumulative peculiarity of the "heavy atom on light atom" effect on the 13 C NMR chemical shifts, initiated by the adjacent chalcogens. For this purpose, the most accurate hybrid computational scheme for the calculation of chemical shifts of carbon nuclei, directly bonded with several heavy chalcogens, is introduced and attested on the representative series of molecules. The best hybrid scheme combines the nonrelativistic coupled cluster-based approach with the different types of corrections, including vibrational, solvent, and relativistic. The dependences of the total relativistic corrections to carbon shielding constants in 2 series of model compounds, namely, X═ 13 C═Y (X, Y = O, S, Se, Te) and C(XH) m (YH) n (ZH) p (QH) s H 1-m H 1-n H 1-p H 1-s (X, Y, Z, Q = S, Se, Te and m, n, p, s = 0, 1), on the total atomic number of the adjacent chalcogens have been obtained. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Chemical shift assignments of CHU_1110: an AHSA1-like protein from Cytophaga hutchinsonii.

    Science.gov (United States)

    Liang, Chunjie; He, Ting; Li, Tao; Yang, Yunhuang; Zhu, Jiang; Liu, Maili

    2018-04-01

    AHSA1 protein family is one of the four largest families in the Bet v1-like protein superfamily. The functions and structures of proteins in AHSA1 family are still largely unknown. CHU_1110 with 167 amino acids and a molecular weight of 19.2 kDa is a member of the AHSA1 family from Cytophaga hutchinsonii, a soil bacterium known for its ability to digest crystalline cellulose. Here we report the complete 1 H, 13 C and 15 N chemical shift assignments of CHU_1110. The secondary structural elements of CGL2373 are consistent with the canonical AHSA1 structure. However the sequence identity of CHU_1110 with other members of AHSA1 family with functional and structural reports, such as RHE_CH02687 from Rhizobium etli, Aha1 from Homo sapiens and Yndb from Bacillus subtilis, are very low, which may suggest a different function of CHU_1110. Our chemical shift assignments of CHU_1110 are essential for the following structural and functional research of CHU_1110.

  6. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: 1H and 13C chemical shift assignments

    International Nuclear Information System (INIS)

    Facundo, Valdir A.; Morais, Selene M.; Braz Filho, Raimundo

    2004-01-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete 1 H and 13 C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  7. Solid-state NMR chemical-shift perturbations indicate domain reorientation of the DnaG primase in the primosome of Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Gardiennet, Carole [Université de Lorraine, CNRS, CRM2, UMR 7036 (France); Wiegand, Thomas [ETH Zurich, Physical Chemistry (Switzerland); Bazin, Alexandre [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Cadalbert, Riccardo [ETH Zurich, Physical Chemistry (Switzerland); Kunert, Britta; Lacabanne, Denis [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Gutsche, Irina [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), CNRS, IBS, CEA, IBS (France); Terradot, Laurent, E-mail: l.terradot@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [Université de Lyon 1, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS (France)

    2016-03-15

    We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.

  8. Windowless dipolar recoupling: the detection of weak dipolar couplings between spin 1/2 nuclei with large chemical shift anisotropies

    Science.gov (United States)

    Gregory, D. M.; Mitchell, D. J.; Stringer, J. A.; Kiihne, S.; Shiels, J. C.; Callahan, J.; Mehta, M. A.; Drobny, G. P.

    1995-12-01

    A new homonuclear dipolar recoupling technique is described which uses a sequence of phase-shifted, windowless irradiations applied synchronously with sample spinning. Experiments performed on a series of doubly labeled dicarboxylic acids, alanine-1,3- 13C 2, and 2'-deoxythymidine-4,6- 13C 2 demonstrate that this new windowless dipolar recoupling pulse sequence can accurately determine internuclear distances from polycrystalline solids in cases where the coupled spins have large chemical shift anisotropies and large differences in isotropic chemical shift.

  9. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Horiba, Koji [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Oshima, Masaharu [Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  10. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Science.gov (United States)

    Nagamura, Naoka; Kitada, Yuta; Tsurumi, Junto; Matsui, Hiroyuki; Horiba, Koji; Honma, Itaru; Takeya, Jun; Oshima, Masaharu

    2015-06-01

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying -30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  11. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  12. Behaviour of bound residues of carbon-14 labelled organic environmental chemicals in vegetable materials

    International Nuclear Information System (INIS)

    Wallnoefer, P.; Koeniger, M.; Ziegler, W.

    1991-01-01

    Growing cultures of cell suspensions of tomato and maize were capable of partly integrating (radioactively labelled) chemicals like 4-nitrophenol or 2-nitroaniline into the cell wall structure. The rates of integration found range from 1.1 per cent (4-NP in tomato) to 7.7 per cent (2-NA in maize). Maize is more prone to form bound residues than tomato; moreover, the results point to a dependence on the chemical structure of the xenobiotic substance. Enzymatic-chemical disaggregation of the cell wall material revealed an uneven distribution of radioactivity in the individual fractions: Tomato cells stored 4-NP above all in the starch fraction and to a smaller extent in the protein fraction, while storage of 2-NA in starch, protein and hemicellulose was about equal. Maize cells integrated both substances preferably into lignin and to a distinctly smaller extent also into starch and protein. (orig.) [de

  13. 129Xe chemical shift in human blood and pulmonary blood oxygenation measurement in humans using hyperpolarized 129Xe NMR

    Science.gov (United States)

    Norquay, Graham; Leung, General; Stewart, Neil J.; Wolber, Jan

    2016-01-01

    Purpose To evaluate the dependency of the 129Xe‐red blood cell (RBC) chemical shift on blood oxygenation, and to use this relation for noninvasive measurement of pulmonary blood oxygenation in vivo with hyperpolarized 129Xe NMR. Methods Hyperpolarized 129Xe was equilibrated with blood samples of varying oxygenation in vitro, and NMR was performed at 1.5 T and 3 T. Dynamic in vivo NMR during breath hold apnea was performed at 3 T on two healthy volunteers following inhalation of hyperpolarized 129Xe. Results The 129Xe chemical shift in RBCs was found to increase nonlinearly with blood oxygenation at 1.5 T and 3 T. During breath hold apnea, the 129Xe chemical shift in RBCs exhibited a periodic time modulation and showed a net decrease in chemical shift of ∼1 ppm over a 35 s breath hold, corresponding to a decrease of 7–10 % in RBC oxygenation. The 129Xe‐RBC signal amplitude showed a modulation with the same frequency as the 129Xe‐RBC chemical shift. Conclusion The feasibility of using the 129Xe‐RBC chemical shift to measure pulmonary blood oxygenation in vivo has been demonstrated. Correlation between 129Xe‐RBC signal and 129Xe‐RBC chemical shift modulations in the lung warrants further investigation, with the aim to better quantify temporal blood oxygenation changes in the cardiopulmonary vascular circuit. Magn Reson Med 77:1399–1408, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27062652

  14. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  15. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain.

    Science.gov (United States)

    Kieken, Fabien; Loth, Karine; van Nuland, Nico; Tompa, Peter; Lenaerts, Tom

    2018-04-01

    Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1 H, 15 N and 13 C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.

  16. Improvement of chemical shift selective saturation (CHESS) pulse for MR angiography

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Sashie, Hiroyuki; Hiraga, Akira; Matsuda, Tsuyoshi

    2000-01-01

    We improved the fat suppression technique based on chemical shift selective saturation (CHESS). To do this, we shortened the duration of the CHESS pulse to achieve a short repetition time (TR) for MR angiography (MRA). A short-duration CHESS pulse causes broad frequency band saturation, creating extensive offset from the resonance frequency of water. In our phantom experiment, the best parameters of the short-duration CHESS pulse were 3.84 ms in duration, -650 Hz in offset frequency from water resonance, and had a 130-degree flip angle. With this technique, MRA will be able to be carried out without a significant increase in TR. Thus, better vessel contrast will be maintained in time-of-flight (TOF) MRA or contrast-enhanced MRA when using the maximum intensity projection (MIP) method. (author)

  17. Deuterium isotope effect on 13C chemical shifts of tetrabutylammonium salts of Schiff bases amino acids.

    Science.gov (United States)

    Rozwadowski, Z

    2006-09-01

    Deuterium isotope effects on 13C chemical shift of tetrabutylammonium salts of Schiff bases, derivatives of amino acids (glycine, L-alanine, L-phenylalanine, L-valine, L-leucine, L-isoleucine and L-methionine) and various ortho-hydroxyaldehydes in CDCl3 have been measured. The results have shown that the tetrabutylammonium salts of the Schiff bases amino acids, being derivatives of 2-hydroxynaphthaldehyde and 3,5-dibromosalicylaldehyde, exist in the NH-form, while in the derivatives of salicylaldehyde and 5-bromosalicylaldehyde a proton transfer takes place. The interactions between COO- and NH groups stabilize the proton-transferred form through a bifurcated intramolecular hydrogen bond. Copyright (c) 2006 John Wiley & Sons, Ltd.

  18. Chemical characterization of candy made of Erva-Mate (Ilex paraguariensis A. St. Hil.) residue.

    Science.gov (United States)

    Vieira, Manoela A; Rovaris, Angela A; Maraschin, Marcelo; De Simas, Karina N; Pagliosa, Cristiane M; Podestá, Rossana; Amboni, Renata D M C; Barreto, Pedro L M; Amante, Edna R

    2008-06-25

    The aim of this work was to evaluate the chemical properties of the residues from erva-mate processing and also to determine the candy-making performance with addition of residues from erva-mate on consumers' acceptance and purchase intent of this new product. The candies containing different amounts of mate powder were evaluated through overall acceptability test and purchase intent. Mate powder showed high contents of dietary fiber, total ash, and total polyphenols. The total dietary fiber content of the mate candies ranged from 5.7 to 6.29% on a dry matter basis. Supplementation with mate powder caused significant increases in polyphenol and mineral contents of mate candies. The incorporation of mate powder increased the hardness of the candies and produced desirable results in their nutritional characteristics. The sensory tests indicated that mate candies were acceptable and approved in relation to purchase intent.

  19. Clinical application of 1H-chemical-shift imaging (CSI) to brain diseases

    International Nuclear Information System (INIS)

    Naruse, Shoji; Furuya, Seiichi; Ide, Mariko

    1992-01-01

    An H-1 chemical shift imaging (CSI) was developed as part of the clinical MRI system, by which magnetic resonance spectra (MRS) can be obtained from multiple small voxels and metabolite distribution in the brain can be visualized. The present study was to determine the feasibility and clinical potential of using an H-1 CSI. The device used was a Magnetom H 15 apparatus. The study population was comprised of 25 healthy subjects, 20 patients with brain tumor, 4 with ischemic disease, and 6 with miscellaneous degenerative disease. The H-1 CSI was obtained by the 3-dimensional Fourier transformation. After suppressing the lipid signal by the inversion-recovery method and the water signal by the chemical-shift selective pulse with a following dephasing gradient, 2-directional 16 x 16 phase encodings were applied to the 16 x 16∼18 x 18 cm field of view, in which a 8 x 8 x 2∼10 x 10 x 2 cm area was selected by the stimulated echo or spin-echo method. The metabolite mapping and its contour mapping were created by using the curve-fitted area, with interpolation to the 256 x 256 matrix. In the healthy group, high resolution spectra for N-acetyl aspartate (NAA), creatine, choline (Cho), and glutamine/glutamate were obtained from each voxel; and metabolite mapping and contour mapping also clearly showed metabolite distribution in the brain. In the group of brain tumor, an increased Cho and lactate and loss of NAA were observed, along with heterogeneity within the tumor and changes in the surrounding tissue; and there was a good correlation between lactate peak and tumor malignancy. The group of ischemic and degenerative disease had a decreased NAA and increased lactate on both spectra and metabolite mapping, depending on disease stage. These findings indicated that H-1 CSI is helpful for detecting spectra over the whole brain, as well as for determining metabolite distribution. (N.K.)

  20. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  1. 77 FR 63782 - Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on a Commodity

    Science.gov (United States)

    2012-10-17

    ... manufacturer, or pesticide manufacturer. The following list of North American Industrial Classification System... AGENCY 40 CFR Part 180 Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on... pesticide petition requesting the establishment or modification of regulations for residues of pesticide...

  2. 77 FR 59576 - Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2012-09-28

    ... manufacturer, or pesticide manufacturer. The following list of North American Industrial Classification System... AGENCY 40 CFR Part 180 Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on... a pesticide petition requesting the establishment or modification of regulations for residues of...

  3. Chemical synthesis and characterization of elastin-like polypeptides (ELPs) with variable guest residues.

    Science.gov (United States)

    Aladini, Firouzeh; Araman, Can; Becker, Christian F W

    2016-05-01

    The properties of elastin-like polypeptides (ELPs), specifically the fact that they are soluble in aqueous buffers below and aggregate reversibly above a well-defined transition temperature, are extensively used for protein purification, enzyme recycling, and more recently, for in vivo applications such as drug delivery and tissue engineering. ELPs are artificial but biocompatible polypeptides composed of pentameric repeats (Val-Pro-Gly-Xaa-Gly) containing different guest residues Xaa, derived from mammalian elastin. The temperature-dependent aggregation and desaggregation of ELPs is controlled by composition of the pentameric repeats as well as the number of repetitive units within the ELP. External parameters such as ELP concentration, pH, and most importantly, salt effects heavily influence the transition temperature. Here, we explore the chemical synthesis of a series of 51mer peptides consisting of 10 pentameric ELP repeats with hydrophobic as well as charged guest residues such as isoleucine, leucine, alanine, lysine, and/or glutamate all prepared by Boc-based solid phase peptide synthesis. These guest residues expand the available toolbox of synthetic ELPs and provide ELPs that can be chemically modified and tuned to specific environments. An N-terminal cysteine is added allowing disulfide-based crosslinking of ELPs and to link synthetic ELPs to a recombinantly produced protein using native chemical ligation. Transition temperatures of all synthetic ELPs and the fusion construct were determined by measuring turbidity in solution and spanned a large temperature range between 25 and 70 °C, providing synthetically accessible ELPs with transition temperatures suitable for in vitro and in vivo applications. Cycling between their soluble and aggregate state has been observed at least 6 times without significant loss of material for all synthetic ELPs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide

  4. Calibration of a portable cost-effective chemical residue detection system with adaptive neural net control

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-07-01

    The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.

  5. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  6. DipoCoup: A versatile program for 3D-structure homology comparison based on residual dipolar couplings and pseudocontact shifts

    International Nuclear Information System (INIS)

    Meiler, Jens; Peti, Wolfgang; Griesinger, Christian

    2000-01-01

    A program, DipoCoup, is presented that allows to search the protein data bank for proteins which have a three dimensional fold that is at least partially homologous to a protein under investigation. The three dimensional homology search uses secondary structure alignment based on chemical shifts and dipolar couplings or pseudocontact shifts for the three dimensional orientation of secondary structure elements. Moreover, the program offers additional tools for handling and analyzing dipolar couplings

  7. The Relationship Between the Surface Morphology and Chemical Composition of Gunshot Residue Particles.

    Science.gov (United States)

    Kara, Ilker; Lisesivdin, Sefer Bora; Kasap, Mehmet; Er, Elif; Uzek, Ugur

    2015-07-01

    In this study, chemical composition and morphology of gunshot residue (GSR) of 9 × 19 mm Parabellum-type MKE (Turkey)-brand ammunition were analyzed by scanning electron microscope and energy dispersive X-ray spectrometer. GSR samples were collected by "swab" technique from the shooter's right hand immediately after shooting. According to general principles of thermodynamics, it is likely that the structures will have a more regular (homogeneous) spherical form to minimize their surface area due to very high temperatures and pressures that occur during explosion. Studied samples were collected under the same conditions with the same original ammunition, from the same firearm and a single shooter. This is because many other variables may affect size, structure, and composition in addition to the concentrations of elements of the structure. Results indicated that the chemical compositions are effective in the formation of GSR morphological structures. © 2015 American Academy of Forensic Sciences.

  8. Evaluating the residual stress in PbTiO3 thin films prepared by a polymeric chemical method

    International Nuclear Information System (INIS)

    Valim, D; Filho, A G Souza; Freire, P T C; Filho, J Mendes; Guarany, C A; Reis, R N; Araujo, E B

    2004-01-01

    We report a study of residual stress in PbTiO 3 (PT) thin films prepared on Si substrates by a polymeric chemical method. The E(1TO) frequency was used to evaluate the residual stress through an empirical equation available for bulk PT. We find that the residual stress in PT films increases as the film thickness decreases and conclude that it originates essentially from the contributions of extrinsic and intrinsic factors. Polarized Raman experiments showed that the PT films prepared by a polymeric chemical method are somewhat a-domain (polar axis c parallel to the substrate) oriented

  9. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  10. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO4and LiCoPO4.

    Science.gov (United States)

    Mondal, Arobendo; Kaupp, Martin

    2018-03-09

    A novel protocol to compute and analyze NMR chemical shifts for extended paramagnetic solids, accounting comprehensively for Fermi-contact (FC), pseudocontact (PC), and orbital shifts, is reported and applied to the important lithium ion battery cathode materials LiFePO 4 and LiCoPO 4 . Using an EPR-parameter-based ansatz, the approach combines periodic (hybrid) DFT computation of hyperfine and orbital-shielding tensors with an incremental cluster model for g- and zero-field-splitting (ZFS) D-tensors. The cluster model allows the use of advanced multireference wave function methods (such as CASSCF or NEVPT2). Application of this protocol shows that the 7 Li shifts in the high-voltage cathode material LiCoPO 4 are dominated by spin-orbit-induced PC contributions, in contrast with previous assumptions, fundamentally changing interpretations of the shifts in terms of covalency. PC contributions are smaller for the 7 Li shifts of the related LiFePO 4 , where FC and orbital shifts dominate. The 31 P shifts of both materials finally are almost pure FC shifts. Nevertheless, large ZFS contributions can give rise to non-Curie temperature dependences for both 7 Li and 31 P shifts.

  11. Shifts in Plant Chemical Defenses of Chile Pepper (Capsicum annuum L. Due to Domestication in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Luna-Ruiz

    2018-04-01

    Full Text Available We propose that comparisons of wild and domesticated Capsicum species can serve as a model system for elucidating how crop domestication influences biotic and abiotic interactions mediated by plant chemical defenses. Perhaps no set of secondary metabolites (SMs used for plant defenses and human health have been better studied in the wild and in milpa agro-habitats than those found in Capsicum species. However, very few scientific studies on SM variation have been conducted in both the domesticated landraces of chile peppers and in their wild relatives in the Neotropics. In particular, capsaicinoids in Capsicum fruits and on their seeds differ in the specificity of their ecological effects from broad-spectrum toxins in other members of the Solanaceae. They do so in a manner that mediates specific ecological interactions with a variety of sympatric Neotropical vertebrates, invertebrates, nurse plants and microbes. Specifically, capsaicin is a secondary metabolite (SM in the placental tissues of the chile fruit that mediates interactions with seed dispersers such as birds, and with seed predators, ranging from fungi to insects and rodents. As with other Solanaceae, a wide range of SMs in Capsicum spp. function to ecologically mediate the effects of a variety of biotic and abiotic stresses on wild chile peppers in certain tropical and subtropical habitats. However, species in the genus Capsicum are the only ones found within any solanaceous genus that utilize capsaicinoids as their primary means of chemical defense. We demonstrate how exploring in tandem the evolutionary ecology and the ethnobotany of human-chile interactions can generate and test novel hypotheses with regard to how the domestication process shifts plant chemical defense strategies in a variety of tropical crops. To do so, we draw upon recent advances regarding the chemical ecology of a number of wild Capsicum species found in the Neotropics. We articulate three hypotheses regarding

  12. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  13. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  14. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  15. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    Directory of Open Access Journals (Sweden)

    Q. Lin

    2017-07-01

    Full Text Available To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI coupled with a real-time single-particle aerosol mass spectrometer (SPAMS was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. , southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC, potassium-rich (K-rich, amine, dust, Pb, Fe, organic carbon (OC, sodium-rich (Na-rich and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %, followed by the K-rich type (33.9 %. Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5–4.1 % to the total cloud residues. Higher fraction of nitrate (88–89 % was found in the dust and Na-rich cloud residues relative to sulfate (41–42 % and ammonium (15–23 %. Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  16. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions

    International Nuclear Information System (INIS)

    Kirk, K.; Kuchel, P.W.

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31 P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31 P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved

  17. Fate and possible nutritional and toxicological significance of methylbromide residues in fumigated cocoa beans. Coordinated programme on isotopic tracer-aided studies on foreign chemical residues in food

    International Nuclear Information System (INIS)

    Adomako, D.

    1975-03-01

    Methyl bromide residues in cocoa as a result of fumigation under practical conditions have been studied. Cocoa beans were exposed to 14 C-labelled CH 3 Br for 24 hours at 20-32degC and dosage 23.5 to 28mg/1 of fumigants (moisture content of 6-7%). Whole unroasted beans and their shells and nibs as well as shells and nibs of roasted (105degC for 30 min) beans were extracted separately with toluene (for free CH 3 Br) and the dried residues wet combusted. 14 C-activities were determined by liquid scintillation counting. Total methyl bromide (bound and free) was equivalent 83-98ppm in whole unroasted beans 35 hours after treatment and aeration, and 31, 15 and 10ppm after 7, 42 and 70 days respectively in one set of experiments and 37, 53 and 42ppm after 76, 60 and 51 days in another set. Approximately 80% of the residue occurred in the shells which constitute only 12 to 13% of unroasted beans. 99% of the total residues appeared to be in chemically-bound form. Roasting reduced the total residues by 32 to 62% in nibs and 3.6 to 14% in shells. A striking effect of roasting was the occurrence in roasted nibs of residues as (extractable) carbon-14 (62-82% of the total residues compared to 16.5 - 27% in unroasted nibs). The bound residues behaved as methylated derivatives whilst the volatile fraction behaved as volatile aroma compounds formed by Maillard type reactions from the 14 C-labelled amino acides and sugars

  18. Identification of improvised explosives residues using physical-chemical analytical methods under real conditions after an explosion

    Science.gov (United States)

    Kotrlý, Marek; Mareš, Bohumil; Turková, Ivana; Beroun, Ivo

    2016-05-01

    Within the analysis of cases relating to the use of explosives for crimes, we have experienced a shift from using industrial explosives towards substances made in amateur and illegal way. Availability of industrial explosives is increasingly limited to a narrow sphere of subjects with a relevant permission. Thus, on the part of perpetrators, terrorists, ever greater attention is paid to illegal production of explosives that are easily made from readily available raw materials. Another alarming fact is the availability of information found on the internet. Procedures of preparation are often very simple and do not require even a deeper professional knowledge. Explosive characteristics are not actually accessible for many of these substances (detonation velocity, sensitivity, working capacity, brisance, physical and chemical stability, etc.). Therefore, a project is being implemented, which on grounds of assessment of individual information available in literature and on the internet, aiming at choosing individual areas of potentially abusable substances (e.g. mixtures of nitric acid (98%) with organic substances, mixtures nitromethane and tetranitromethane with organic substances, mixtures of chlorates and perchlorates of alkali metals with organic substances, chemically individual compounds of organic base type of perchloric acid, azides, fulminates, acetylides, picrates, styphnates of heavy metals, etc.). It is directed towards preparation of these explosives also in non-stoichiometric mixtures, conducting test explosives, determination of explosive characteristics (if they are unknown) and analysis of both primary phases and post-blast residues through available analytical techniques, such as gas and liquid chromatography with mass detection, FTIR, micro-Raman spectrometry, electron microscopy with microanalysis and Raman microspectrometry directly in SEM chamber for analysis at the level of individual microparticles. The received characteristics will be used to

  19. Residue characteristics of sludge from a chemical industrial plant by microwave heating pyrolysis.

    Science.gov (United States)

    Lin, Kuo-Hsiung; Lai, Nina; Zeng, Jun-Yan; Chiang, Hung-Lung

    2018-03-01

    Sludge from biological wastewater treatment procedures was treated using microwave heating pyrolysis to reduce the environmental impact of a chemical plant. In this study, major elements, trace elements, PAHs and nitro-PAHs in raw sludge, and pyrolysis residues were investigated. The contents of major element from raw sludge were carbon 46.7 ± 5.9%, hydrogen 5.80 ± 0.58%, nitrogen 6.81 ± 0.59%, and sulfur 1.34 ± 0.27%. Trace elemental concentrations including Zn, Mn, Cr, Cd, As, and Sn were 0.410 ± 0.050, 0.338 ± 0.008, 0.063 ± 0.006, 0.019 ± 0.001, 0.004 ± 0.001, and 0.003 ± 0.002 mg/g, respectively. For various pyrolysis temperatures, Ca, Fe, Sr, Cr, and Sn contents remained at almost the same level as those in raw sludge. Results indicated that these elements did not easily volatilize. The content of 16 PAH species was about 4.78 μg/g in the raw sludge and 23-65 μg/g for pyrolysis residues associated with various temperatures. The content of ten nitro-PAHs was about 58 ng/g for the raw sludge and 141-744 ng/g for pyrolysis residues. The total nitro-PAH content was highest at 600 °C and then decreased when the temperature was over 600 °C. Total nitro-PAH content was about 247 ng/g at 800 °C.

  20. Physico-chemical and sensorial evaluation of sugarcane spirits produced using distillation residue

    Directory of Open Access Journals (Sweden)

    Evandro Galvão Tavares Menezes

    2013-02-01

    Full Text Available The objective of the present study was to analyze the use of vinasse from cachaça as an ingredient of the fermentation medium for the spirit production. The fermentations were conducted out in three successive batches using a Saccharomyces cerevisiae isolate. In the first batch, the sugarcane broth was only diluted with distilled water. In the second and third batches, the fermentations were carried out using the cane broth diluted with vinasse from the distillation of the sugarcane wines of the first and second batches, respectively at a concentration of 10% (v/v. The spirits were submitted to the physicochemical and sensorial analyses. The results showed that vinasse addition did not affect the fermentation, distillation and chemical-sensorial quality of the beverage. Therefore, the vinasse addition could be an alternative use for that residue.

  1. Chemical Interaction of Protein Cysteine Residues with Reactive Metabolites of Methyleugenol.

    Science.gov (United States)

    Feng, Yukun; Wang, Hui; Wang, Qian; Huang, Wenlin; Peng, Ying; Zheng, Jiang

    2017-02-20

    Methyleugenol (ME), an alkenylbenzene compound, is a natural ingredient of several herbs and is used as flavoring agent in foodstuffs and fragrance in cosmetics. The hepatotoxicity, cytotoxicity, and carcinogenesis of ME have been well documented, and metabolic activation has been suggested to involve in ME-induced toxicities. The objective of this study was to identify chemical identity of interactions of protein with reactive metabolites of ME. Modification of cysteine residues of protein was observed in microsomal incubations and mice after exposure to ME. Three types of protein modification derived from the corresponding epoxide, α,β-unsaturated aldehyde, and carbonium ion of ME were detected in vitro and in vivo. The protein adduction took place in time- and dose-dependent manners. Dexamethasone, ketoconazole, and l-buthionine sulfoximine increased the protein modification induced by ME, which was proportional to the hepatotoxicity of ME. The findings facilitate the understanding of mechanism action of ME toxicities.

  2. Validation of methods used in the Florida Department of Agricultural and Consumer Services' Chemical Residue Laboratory.

    Science.gov (United States)

    Parker, G A

    1991-01-01

    Very few methods for detecting residues of pesticides in food or agricultural samples have undergone rigorous colloborative study and possess official AOAC status. The Chemical Residue Laboratory has formalized a method validation scheme to use when incorporating or developing new, unofficial methods. These methods are validated by assessing certain performance parameters: scope, specificity, linear range, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). For accuracy and precision assessment, 12 replicate fortifications must yield recoveries within the range of 70-120% with a coefficient of variation (CV) that compares favorably to the Horwitz CV. LOD and LOQ are equivalent to 3 and 10 times, respectively, the background signal contributed by a sample matrix blank. This criterion that we use for LOD/LOQ is not universal. In fact, because of differing definitions, we have encountered difficulties in enforcing a tolerance by using a registrant's method. This paper also presents an example of our method validation scheme, using a recent method development project for detecting sulfamethazine in raw milk. The sulfamethazine project also revealed unanticipated personnel problems, underscoring the importance of the human factor in quality assurance.

  3. Chemical composition of Pleurotus pulmonarius (Fr. Quél., substrates and residue after cultivation

    Directory of Open Access Journals (Sweden)

    Silva Sueli Oliveira

    2002-01-01

    Full Text Available The cultivation of Pleurotus pulmonarius was carried out on different substrate: cotton waste (A leaves of Cymbopogon citratus (B and leaves of Panicum maximum Jacq. (C. The mushroom had a varied chemical composition; nevertheless they contained a good composition for to be used as a good source of protein for human kind. The results showed the higher protein content (29.19% and fibre (9.0% for the mushroom that were cultivated on cotton peel. The substrate composition and the residue composition after the mushroom harvest were: Protein for the substrate "A" (10.63% and 9.35%, "B" (7.87% and 4.24% and "C" (7.55% and 5.90 %; Lipids "A" (4.17% and 2.03%, "B"(2.77% and 3.20% and "C" (0.91% and 2.05%; Fibres "A" (49.02% and 37.02%, "B" (28.40% and 23.26% and "C" (37.50% and 26.66% respectively. The substrate "A" showed 0.048% of iron and "C" 0.14% of magnesium, 0.31% of potassium and 0.26% of calcium. In the substrate "B" the quantity of the minerals were very low in comparison to the other substrates. The residues after the harvest of mushroom could be used as fertiliser or as complement in the composition for animal feed.

  4. Unusual chemical properties of N-terminal histidine residues of glucagon and vasoactive intestinal peptide

    International Nuclear Information System (INIS)

    Hefford, M.A.; Evans, R.M.; Oda, G.; Kaplan, H.

    1985-01-01

    An N-terminal histidine residue of a protein or peptide has two functional groups, viz., an alpha-amino group and an imidazole group. A new procedure, based on the competitive labeling approach described by Duggleby and Kaplan has been developed by which the chemical reactivity of each functional group in such a residue can be determined as a function of pH. Only very small amounts of material are required, which makes it possible to determine the chemical properties in dilute solution or in proteins and polypeptides that can be obtained in only minute quantities. With this approach, the reactivity of the alpha-amino group of histidylglycine toward 1-fluoro-2,4-dinitrobenzene gave an apparent pK /sub a/ value of 7.64 +/- 0.07 at 37 degrees C, in good agreement with a value of 7.69 +/- 0.02 obtained by acid-base titration. However, the reactivity of the imidazole function gave an apparent pK /sub a/ value of 7.16 +/- 0.07 as compared to the pK /sub a/ value of 5.85 +/- 0.01 obtained by acid-base titration. Similarly, in glucagon and vasoactive intestinal peptide (VIP), apparent pKa values of 7.60 +/- 0.04 and 7.88 +/- 0.18, respectively, were obtained for the alpha-amino of their N-terminal histidine, and pKa values of 7.43 +/- 0.09 and 7.59 +/- 0.18 were obtained for the imidazole function

  5. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bueltmann, Eva; Lanfermann, Heinrich [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Naegele, Thomas [University of Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Radiological University Hospital, Tuebingen (Germany); Klose, Uwe [University of Tuebingen, Section of Experimental MR of the CNS, Department of Neuroradiology, Radiological University Hospital, Tuebingen (Germany)

    2017-01-15

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  6. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    International Nuclear Information System (INIS)

    Bueltmann, Eva; Lanfermann, Heinrich; Naegele, Thomas; Klose, Uwe

    2017-01-01

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  7. 1H MR chemical shift imaging detection of phenylalanine in patients suffering from phenylketonuria (PKU)

    International Nuclear Information System (INIS)

    Sijens, Paul E.; Oudkerk, Matthijs; Reijngoud, Dirk-Jan; Spronsen, Francjan J. van; Leenders, Klaas L.; Valk, Harold W. de

    2004-01-01

    Short echo time single voxel methods were used in previous MR spectroscopy studies of phenylalanine (Phe) levels in phenylketonuria (PKU) patients. In this study, apparent T 2 relaxation time of the 7.3-ppm Phe multiplet signal in the brain of PKU patients was assessed in order to establish which echo time would be optimal. 1 H chemical shift imaging (CSI) examinations of a transverse plain above the ventricles of the brain were performed in 10 PKU patients and 11 persons not suffering from PKU at 1.5 T, using four echo times (TE 20, 40, 135 and 270 ms). Phe was detectable only when the signals from all CSI voxels were summarized. In patients suffering from PKU the T 2 relaxation times of choline, creatine and N-acetyl aspartate (NAA) were similar to those previously reported for healthy volunteers (between 200 and 325 ms). The T 2 of Phe in brain tissue was 215±120 ms (standard deviation). In the PKU patients the brain tissue Phe concentrations were 141±69 μM as opposed to 58±23 μM in the persons not suffering from PKU. In the detection of Phe, MR spectroscopy performed at TE 135 or 270 ms is not inferior to that performed at TE 20 or 40 ms (all previous studies). Best results were obtained at TE=135 ms, relating to the fact that at that particular TE, the visibility of a compound with a T 2 of 215 ms still is good, while interfering signals from short-TE compounds are negligible. (orig.)

  8. {sup 1}H MR chemical shift imaging detection of phenylalanine in patients suffering from phenylketonuria (PKU)

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, Paul E.; Oudkerk, Matthijs [University Hospital Groningen, Department of Radiology, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Reijngoud, Dirk-Jan; Spronsen, Francjan J. van [University Hospital Groningen, Department of Pediatrics, Groningen (Netherlands); Leenders, Klaas L. [University Hospital Groningen, Department of Neurology, Groningen (Netherlands); Valk, Harold W. de [University Medical Centre of Utrecht, Department of Internal Medicine, Utrecht (Netherlands)

    2004-10-01

    Short echo time single voxel methods were used in previous MR spectroscopy studies of phenylalanine (Phe) levels in phenylketonuria (PKU) patients. In this study, apparent T{sub 2} relaxation time of the 7.3-ppm Phe multiplet signal in the brain of PKU patients was assessed in order to establish which echo time would be optimal. {sup 1}H chemical shift imaging (CSI) examinations of a transverse plain above the ventricles of the brain were performed in 10 PKU patients and 11 persons not suffering from PKU at 1.5 T, using four echo times (TE 20, 40, 135 and 270 ms). Phe was detectable only when the signals from all CSI voxels were summarized. In patients suffering from PKU the T{sub 2} relaxation times of choline, creatine and N-acetyl aspartate (NAA) were similar to those previously reported for healthy volunteers (between 200 and 325 ms). The T{sub 2} of Phe in brain tissue was 215{+-}120 ms (standard deviation). In the PKU patients the brain tissue Phe concentrations were 141{+-}69 {mu}M as opposed to 58{+-}23 {mu}M in the persons not suffering from PKU. In the detection of Phe, MR spectroscopy performed at TE 135 or 270 ms is not inferior to that performed at TE 20 or 40 ms (all previous studies). Best results were obtained at TE=135 ms, relating to the fact that at that particular TE, the visibility of a compound with a T{sub 2} of 215 ms still is good, while interfering signals from short-TE compounds are negligible. (orig.)

  9. Utilization of chemical shift MRI in the diagnosis of disorders affecting pediatric bone marrow

    International Nuclear Information System (INIS)

    Winfeld, Matthew; Ahlawat, Shivani; Safdar, Nabile

    2016-01-01

    MRI signal intensity of pediatric bone marrow can be difficult to interpret using conventional methods. Chemical shift imaging (CSI), which can quantitatively assess relative fat content, may improve the ability to accurately diagnose bone marrow abnormalities in children. Consecutive pelvis and extremity MRI at a children's hospital over three months were retrospectively reviewed for inclusion of CSI. Medical records were reviewed for final pathological and/or clinical diagnosis. Cases were classified as normal or abnormal, and if abnormal, subclassified as marrow-replacing or non-marrow-replacing entities. Regions of interest (ROI) were then drawn on corresponding in and out-of-phase sequences over the marrow abnormality or over a metaphysis and epiphysis in normal studies. Relative signal intensity ratio for each case was then calculated to determine the degree of fat content in the ROI. In all, 241 MRI were reviewed and 105 met inclusion criteria. Of these, 61 had normal marrow, 37 had non-marrow-replacing entities (osteomyelitis without abscess n = 17, trauma n = 9, bone infarction n = 8, inflammatory arthropathy n = 3), and 7 had marrow-replacing entities (malignant neoplasm n = 4, bone cyst n = 1, fibrous dysplasia n = 1, and Langerhans cell histiocytosis n = 1). RSIR averages were: normal metaphyseal marrow 0.442 (0.352-0.533), normal epiphyseal marrow 0.632 (0.566-698), non-marrow-replacing diagnoses 0.715 (0.630-0.799), and marrow-replacing diagnoses 1.06 (0.867-1.26). RSIR for marrow-replacing entities proved significantly different from all other groups (p < 0.05). ROC analysis demonstrated an AUC of 0.89 for RSIR in distinguishing marrow-replacing entities. CSI techniques can help to differentiate pathologic processes that replace marrow in children from those that do not. (orig.)

  10. Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

    Directory of Open Access Journals (Sweden)

    M. Ebert

    2011-03-01

    Full Text Available During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI. Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN were identified from the significant enrichment of particle groups in the ice residual (IR samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and carbonaceous material (C-O-S particles by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2. In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3–8 nm sized primary particles (PbS, elemental Pb. C-O-S particles are present in the IR at an abundance of 17–27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9–15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent, and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the sole knowledge of the main component of an individual particle.

  11. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    Science.gov (United States)

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-04-20

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic-structure and SO-HALA effect have been missing. By analyzing 1H NMR chemical shifts of the 6th-period hydrides (Cs-At) we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d2-5d8 and 6p4 HA hydrides and deshielded in 4f0, 5d0, 6s0, 6p0 HA hydrides. This general and intuitive concept explains periodic trends in the 1H NMR chemical shifts along the 6th-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to non-hydride LAs. The decades-old question why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property, which can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of magnetic field. Using an analogy between SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide chemical audience.

  12. In situ fixation of metals in soils using bauxite residue: chemical assessment.

    Science.gov (United States)

    Lombi, Enzo; Zhao, Fang-Jie; Zhan, Gangya; Sun, Bo; Fitz, Walter; Zhang, Hao; McGrath, Steve P

    2002-01-01

    Contamination of soils with heavy metals and metalloids is a widespread problem all over the world. Low cost, non-invasive, in situ technologies are required for remediation processes. We investigated the efficiency of a bauxite residue (red mud) to fix heavy metals in two soils, one contaminated by industrial activities (French soil), and one by sewage sludge applications (UK soil). This Fe-oxide rich material was compared with lime, or beringite, a modified aluminosilicate that has been used for in situ fixation processes. Four different crop species were successively grown in pots. Metal concentrations in the soil pore waters were analyzed during the growing cycles. At the end of the experiment fluxes of heavy metals were measured using a diffusive gradient in thin film technique (DGT). Furthermore, a sequential extraction procedure (SEP) and an acidification test were performed to investigate the mechanisms of metal fixation by different soil amendments. In both soils, the concentrations of metals in the soil pore water and metal fluxes were greatly decreased by the amendments. An application of 2% red mud performed as well as beringite applied at 5%. Increasing soil pH was a common mechanism of action for all the amendments. However, the red mud amendment shifted metals from the exchangeable to the Fe-oxide fraction, and decreased acid extractability of metals. The results suggest that specific chemisorption, and possibly metal diffusion into oxide particles could also be the mechanisms responsible for the fixation of metals by red mud.

  13. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  14. Vanadium NMR Chemical Shifts of (Imido)vanadium(V) Dichloride Complexes with Imidazolin-2-iminato and Imidazolidin-2-iminato Ligands: Cooperation with Quantum-Chemical Calculations and Multiple Linear Regression Analyses.

    Science.gov (United States)

    Yi, Jun; Yang, Wenhong; Sun, Wen-Hua; Nomura, Kotohiro; Hada, Masahiko

    2017-11-30

    The NMR chemical shifts of vanadium ( 51 V) in (imido)vanadium(V) dichloride complexes with imidazolin-2-iminato and imidazolidin-2-iminato ligands were calculated by the density functional theory (DFT) method with GIAO. The calculated 51 V NMR chemical shifts were analyzed by the multiple linear regression (MLR) analysis (MLRA) method with a series of calculated molecular properties. Some of calculated NMR chemical shifts were incorrect using the optimized molecular geometries of the X-ray structures. After the global minimum geometries of all of the molecules were determined, the trend of the observed chemical shifts was well reproduced by the present DFT method. The MLRA method was performed to investigate the correlation between the 51 V NMR chemical shift and the natural charge, band energy gap, and Wiberg bond index of the V═N bond. The 51 V NMR chemical shifts obtained with the present MLR model were well reproduced with a correlation coefficient of 0.97.

  15. Photography - Determination of thiosulphate and other residual chemicals in processed photographic films, plates and papers - Methylene blue photometric method and silver sulphide densitometric method

    CERN Document Server

    International Organization for Standardization. Geneva

    1977-01-01

    Photography - Determination of thiosulphate and other residual chemicals in processed photographic films, plates and papers - Methylene blue photometric method and silver sulphide densitometric method

  16. Proton Chemical Shift Imaging of the Brain in Pediatric and Adult Developmental Stuttering.

    Science.gov (United States)

    O'Neill, Joseph; Dong, Zhengchao; Bansal, Ravi; Ivanov, Iliyan; Hao, Xuejun; Desai, Jay; Pozzi, Elena; Peterson, Bradley S

    2017-01-01

    Developmental stuttering is a neuropsychiatric condition of incompletely understood brain origin. Our recent functional magnetic resonance imaging study indicates a possible partial basis of stuttering in circuits enacting self-regulation of motor activity, attention, and emotion. To further characterize the neurophysiology of stuttering through in vivo assay of neurometabolites in suspect brain regions. Proton chemical shift imaging of the brain was performed in a case-control study of children and adults with and without stuttering. Recruitment, assessment, and magnetic resonance imaging were performed in an academic research setting. Ratios of N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (NAA) to creatine (Cr) and choline compounds (Cho) to Cr in widespread cerebral cortical, white matter, and subcortical regions were analyzed using region of interest and data-driven voxel-based approaches. Forty-seven children and adolescents aged 5 to 17 years (22 with stuttering and 25 without) and 47 adults aged 21 to 51 years (20 with stuttering and 27 without) were recruited between June 2008 and March 2013. The mean (SD) ages of those in the stuttering and control groups were 12.2 (4.2) years and 13.4 (3.2) years, respectively, for the pediatric cohort and 31.4 (7.5) years and 30.5 (9.9) years, respectively, for the adult cohort. Region of interest-based findings included lower group mean NAA:Cr ratio in stuttering than nonstuttering participants in the right inferior frontal cortex (-7.3%; P = .02), inferior frontal white matter (-11.4%; P stuttering sample included higher NAA:Cr and Cho:Cr ratios (regression coefficient, 197.4-275; P stuttering severity (r = 0.40-0.52; P = .001-.02). This spectroscopy study of stuttering demonstrates brainwide neurometabolite alterations, including several regions implicated by other neuroimaging modalities. Prior ascription of a role in stuttering to inferior frontal and superior temporal gyri, caudate, and other

  17. Evaluation of vertebral bone marrow fat content by chemical-shift MRI in osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan; Mutlu, Fatma Senturk; Yazici, Zeynep; Yildirim, Nalan [Uludag University Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey)

    2011-05-15

    To quantitatively evaluate vertebral bone marrow fat content and investigate its association with osteoporosis with chemical-shift magnetic resonance imaging (CS-MRI). Fifty-six female patients (age range 50-65 years) with varying bone mineral densities as documented with dual x-ray absorptiometry (DXA) were prospectively included in the study. According to the DXA results, the patients were grouped as normal bone density, osteopenic, or osteoporotic. In order to calculate fat content, the lumbar region was visualized in the sagittal plane by CS-MRI sequence. ''Region of interest'' (ROI)s were placed within L3 vertebral bodies and air (our reference point) at different time points by different radiologists. Fat content was calculated through ''signal intensity (SI) suppression rate'' and ''SI Index''. The quantitative values were compared statistically with those obtained from DXA examinations. Kruskal-Wallis, and Mann-Whitney U tests were used for comparisons between groups. The reliability of the measurements performed by two radiologists was evaluated with the ''intraclass correlation coefficient''. This study was approved by an institutional review board and all participants provided informed consent to participate in the study. Eighteen subjects with normal bone density (mean T score, 0.39 {+-} 1.3 [standard deviation]), 20 subjects with osteopenia (mean T score, -1.79 {+-} 0.38), and 18 subjects with osteoporosis (mean T score, -3 {+-} 0.5) were determined according to DXA results. The median age was 55.9 (age range 50-64 years) in the normal group, 55.5 (age range 50-64 years) in the osteopenic group, and 55.1 (age range 50-65 years) in the osteoporotic group (p = 0.872). In the CS-MRI examination, the values of ''SI suppression ratio'' and ''SI Index'' (median [min:max]) were calculated by the first and second reader, independently. There

  18. Calculation of the NMR chemical shift for a 4d1 system in a strong crystal field environment of trigonal symmetry with a threefold axis of quantization

    International Nuclear Information System (INIS)

    Ahn, Sang Woon; Oh, Se Woung; Ro, Seung Woo

    1986-01-01

    The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a 4d 1 system in a strong crystal field environment of trigonal symmetry, where the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. we observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R 3 ) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around R≥0.2 nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift. (Author)

  19. Studies of 17 0 NMR chemical shift effects of the structural relationships of charge distributions on substituted ketones

    International Nuclear Information System (INIS)

    Leal, Katia Z.; Malvestiti, Ivani; Battiste, Merle A.

    1995-01-01

    Oxygen-17 NMR spectroscopy data, at natural abundance, in acetonitirle were obtained for a series of methyl alkyl ketones and alkyl-carboxylic acids in order to study substituent induced electronic effects on the carbonyl group. The trend in chemical shifts for the relatively unhindered ketones is a general increase shielding with increasing size of the alkyl group; however an steric chrownding becomes significant marked deshielding is observed and attributed to sterically induced depolarization of the C-O bond. Ionization potentials and net atomic charges for the methyl ketones and carboxylic acids are estimated using the MOPAC program and compared with those for substituted cyclohexanones, bicyclo-[2,2,2]-2-octanones. The 17 O - chemical shifts for some strined bridgehead methyl ketones are estimated from a correlation with 13 C - N.M.R. values for the carbonyl carbon. (author)

  20. New fat suppression method with no pre-saturation pulse. WCHASE (water chemical-shift selective excitation)

    International Nuclear Information System (INIS)

    Tokunaga, Yu; Miyazaki, Mitsue; Machida, Yoshio; Takai, Hiroshi; Kojima, Fumitoshi

    1998-01-01

    A new fat suppression method with no pre-saturation pulse, water chemical-shift selective excitation (WCHASE), was developed. The characteristic feature of WCHASE is as follows. First, narrowing the frequency bandwidth of the 90deg RF pulse to chemical shift between water and fat signals, about 230 Hz in 1.5 T. Next, the ratio of slice gradient amplitudes for 90deg and 180deg. RF pulses are optimized in order to eliminate fat components from all slices. Prior to the experiment, a brief phase map shimming was performed to adjust B 0 field inhomogeneity using first order gradients. The WCHASE technique was compared with CHESS and conventional spin echo without fat suppression on the brain of healthy volunteers. The experimental results showed better fat suppression effect with WCHASE compared to CHESS. (author)

  1. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6

    Directory of Open Access Journals (Sweden)

    M. Kamphus

    2010-08-01

    Full Text Available Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l. during the Cloud and Aerosol Characterization Experiment (CLACE 6 in February and March 2007. During mixed phase cloud events ice crystals from 5–20 μm were separated from larger ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI. During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR were analyzed for size and composition by the two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT and a commercial Aerosol Time-of-Flight Mass Spectrometer (ATOFMS, TSI Model 3800. During CLACE 6 the SPLAT instrument characterized 355 individual IR that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 IR. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094. The measurements showed that mineral dust was strongly enhanced in the ice particle residues. Close to all of the SPLAT spectra from ice residues did contain signatures from mineral compounds, albeit connected with varying amounts of soluble compounds. Similarly, close to all of the ATOFMS IR spectra show a

  2. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  3. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.

    Science.gov (United States)

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2014-11-01

    The main factors affecting the accuracy and computational cost of the calculation of (31)P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of (31)P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS-2 or larger, and those of Pople, 6-311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta-zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of (31)P NMR chemical shifts within the 1-2-ppm error. Relativistic corrections to (31)P NMR absolute shielding constants are of major importance reaching about 20-30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1-2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO-DFT-KT2/pcS-3//pcS-2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of (31)P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm. Copyright © 2014 John Wiley & Sons, Ltd.

  4. The observed and calculated 1H and 13C chemical shifts of tertiary amines and their N-oxides

    Czech Academy of Sciences Publication Activity Database

    Pohl, Radek; Dračínský, Martin; Slavětínská, Lenka; Buděšínský, Miloš

    2011-01-01

    Roč. 49, č. 6 (2011), s. 320-327 ISSN 0749-1581 R&D Projects: GA ČR GA203/09/1919 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * 1H * 13C * in situ oxidation of tertiary amines * calculated chemical shifts * HF * MP2 * DFT Subject RIV: CC - Organic Chemistry Impact factor: 1.437, year: 2011

  5. Towars a chemical reagents and residues management at the teaching laboratories of the Chemistry School of the Universidad Nacional

    Directory of Open Access Journals (Sweden)

    Ana Cristina Benavides Benavides

    2016-03-01

    Full Text Available The academic activities carried out at the School of Chemistry make indispensable to develop actions oriented toward the consolidation of a reagent and residue management system, especially in the teaching laboratories. The project “Management of reagents and residues in the teaching laboratories of the School of Chemistry” works under the Green Chemistry values which designs products and chemical processes that reduce or eliminate the use and production of dangerous substances, to benefit the environment. With a preventive vision, a change from the  laboratory practices is looked to select those with less environmental impact. Additionally, residue quantification is made and its management protocols are developed for each practice. The project has several stages: diagnose, action implementation, student, teacher and administration personnel training and evaluation during the process and at the end of it. The article describes methodological aspects of the project operation emphasizing on reagent and residue quantification through flow diagrams.

  6. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI.

    Science.gov (United States)

    Baum, Thomas; Yap, Samuel P; Dieckmeyer, Michael; Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Rummeny, Ernst J; Bauer, Jan S; Karampinos, Dimitrios C

    2015-10-01

    The assessment of bone marrow composition has recently gained significant attention due to its association with bone loss pathophysiology and cancer therapy-induced bone marrow damage. The purpose of our study was to investigate the anatomical variation of the vertebral bone marrow fat using chemical shift-encoding based water-fat MRI and to assess the repeatability of these measurements. Chemical shift-encoding based water-fat MRI of the whole spine was performed in 28 young, healthy subjects (17 males, 11 females, 26 ± 4 years). Six subjects were scanned three times with repositioning to assess the repeatability of these measurements. Proton density fat fraction (PDFF) maps were computed and manually segmented to obtain PDFF of C3-L5. Mean PDFF of all subjects significantly increased from C3 to L5 (P vertebral bone marrow fat could be reproducibly assessed by using chemical shift-encoding based water-fat MRI and showed anatomical variations. © 2015 Wiley Periodicals, Inc.

  7. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  8. Derivation of 13C chemical shift surfaces for the anomeric carbons of oligosaccharides and glycopeptides using ab initio methodology

    Energy Technology Data Exchange (ETDEWEB)

    Swalina, Chet W.; Zauhar, Randy J.; DeGrazia, Michael J.; Moyna, Guillermo [University of the Sciences in Philadelphia, Department of Chemistry and Biochemistry (United States)

    2001-09-15

    The dependence between the anomeric carbon chemical shift and the glycosidic bond < {phi}, {psi}> dihedral angles in oligosaccharide and glycopeptide model compounds was studied by Gauge-Including Atomic Orbital (GIAO) ab initio calculations. Complete chemical shift surfaces versus {phi} and {psi} for d-Glcp-d-Glcp disaccharides with (1{sup {yields}}1), (1{sup {yields}}2), (1{sup {yields}}3), and (1{sup {yields}}4) linkages in both {alpha}- and {beta}-configurations were computed using a 3-21G basis set, and scaled to reference results from calculations at the 6-311G** level of theory. Similar surfaces were obtained for GlcNAcThr and GlcNAcSer model glycopeptides in {alpha}- and {beta}-configurations, using in this case different conformations for the peptide moiety. The results obtained for both families of model compounds are discussed. We also present the determination of empirical formulas of the form {sup 13}C{delta}=f({phi},{psi}) obtained by fitting the raw ab initio data to trigonometric series expansions suitable for use in molecular mechanics and dynamics simulations. Our investigations are consistent with experimental observations and earlier calculations performed on smaller glycosidic bond models, and show the applicability of chemical shift surfaces in the study of the conformational behavior of oligosaccharides and glycopeptides.

  9. Physico-chemical Characteristics of Oil and Seed Residues of Bauhinia variegata and Bauhinia linnaei

    Directory of Open Access Journals (Sweden)

    Sarfraz Arain

    2012-06-01

    Full Text Available Physico-chemical characteristics of two Bauhinia seed varieties (B. variegata and B. linnaei, were evaluated for commercial exploration. Physico-chemical characteristics of the oils for both varieties were demonstrated and mean values found to be refractive index (40 °C 1.4589 and 1.4588, peroxide value 1.9 and 2.4 (meq O2 / kg of oil, iodine value 84.5 and 92.2 (g of I2/100g of oil, saponification number 191.3 and 195.5 (mg of KOH /g of oil, free fatty acids 0.6% and 0.9%, unsaponifiable matter 0.9% and 1.2% and color (1 in. cell, 2.2-2.9R + 30.0-25.0Y, respectively. Linoleic 42.1 and 45.8 %, oleic 13.4 and 12.6%, stearic 17.5 and 18.8% and palmitic 22.1 and 16.8% were the main fatty acids in the crude seed oils. Minor amounts of palmitoleic, margaric, linolenic, arachidic, behenic, eicosapentaenoic and nervonic acid were also identified. The composition of defatted seed residue of B. variegata and B. linnaei were found as: protein 41.9% and 38.6%, oil 18.0%, and 17.4% ash 4.8% and 4.2%, moisture 6.7% and 6.3%, fiber 6.9% and 7.3% and total carbohydrate 28.4% and 33.8%, respectively. Proximate and fatty acid composition of both Bauhinia varieties were found to be almost similar. It was concluded that Bauhinia seed is a rich source of linoleic acid and could be explored for commercial uses.

  10. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  11. A micro-spectroscopy study on the influence of chemical residues from nanofabrication on the nitridation chemistry of Al nanopatterns

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B., E-mail: bing@raunvis.hi.is [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Olafsson, S. [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Zakharov, A.A. [MAX-lab, Lund University, S-22100 Lund (Sweden); Agnarsson, B. [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Department of Applied Physics, Chalmers University of Technology, S-41296 Gothenburg (Sweden); Gislason, H.P. [Physics Department, Science Institute, University of Iceland, Dunhaga 3,107 Reykjavik (Iceland); Goethelid, M. [Materialfysik, MAP, ICT, KTH, ELECTRUM 229, 16440 Kista (Sweden)

    2012-03-01

    We applied spatially resolved photoelectron spectroscopy implemented with an X-ray photoemission electron microscopy (XPEEM) using soft X-ray synchrotron radiation to identify the compositional and morphological inhomogeneities of a SiO{sub 2}/Si substrate surface nanopatterned with Al before and after nitridation. The nanofabrication was conducted by a polymethylmethacrylate (PMMA)-based e-beam lithography and a fluorine-based reactive ion etching (RIE), followed by Al metalization and acetone lift-off. Three types of chemical residues were identified before nitridation: (1) fluorocarbons produced and accumulated mainly during RIE process on the sidewalls of the nanopatterns; (2) a thick Al-bearing PMMA layer and/or (3) a thin PMMA residue layer owing to unsuccessful or partial lift-off of the e-beam unexposed PMMA between the nanopatterns. The fluorocarbons actively influenced the surface chemical composition of the nanopatterns by forming Al-F compounds. After nitridation, in the PMMA residue-free area, the Al-F compounds on the sidewalls were decomposed and transformed to AlN. The PMMA residues between the nanopatterns had no obvious influence on the surface chemical composition and nitridation properties of the Al nanopatterns. They were only partially decomposed by the nitridation. The regional surface morphology of the nanopatterns revealed by the secondary electron XPEEM was consistent with the scanning electron microscopy results.

  12. A Paradigm Shift: Supply Chain Collaboration and Competition in and between Europe’s Chemical Clusters

    NARCIS (Netherlands)

    L.N. van Wassenhove (Luk); B. Lebreton (Baptiste); P. Letizia (Paolo)

    2007-01-01

    textabstractWith the attention of the chemical industry focused on exploiting the low cost feedstocks in the Middle East and the growth markets of Brazil, Russia, India, China and South East Asia, this report provides a timely reminder to policy makers, chemical companies and logistics service

  13. Chemical shift of Mn and Cr K-edges in X-ray absorption ...

    Indian Academy of Sciences (India)

    ... but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds.

  14. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Phoebe Dreux Chappell

    2013-09-01

    Full Text Available Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a three-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a three-month-old Haida eddy remained largely (>80% similar over a two-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  15. Pleomorphic ichthyosis: proposed name for a heterogeneous group of congenital ichthyoses with phenotypic shifting and mild residual scaling.

    Science.gov (United States)

    Vahlquist, Anders

    2010-09-01

    Congenital ichthyosis is often associated with typical neonatal phenotypes, "Collodion baby" and "Harlequin foetus", later transforming into severe lamellar or erythrodermic ichthyosis. However, in a minority of cases the skin condition will improve spontaneously after birth, although slight scaling, xerosis, hypohidrosis and keratoderma usually persist. Some of these patients will eventually be diagnosed as suffering from self-improving collodion ichthyosis, ichthyosis prematurity syndrome, or other, even rarer, forms of ichthyosis also characterized by a phenotypic shift in early childhood. This paper summarizes newly described aetiologies for some of these diseases and discusses difficulties encountered when trying to distinguish them clinically from other types of autosomal recessive congenital ichthyosis. To remind health providers about this heterogeneous group of partially transient disorders of cornification, a new umbrella term, "pleomorphic ichthyosis", is proposed.

  16. CHEMICAL AND MORPHOLOGICAL EVALUATION OF STARCHES FROM LEGUMES AND APPLICATION OF THE EXTRACTION RESIDUES IN EXPANDED EXTRUDED SNACKS

    Directory of Open Access Journals (Sweden)

    Reinaldo Eduardo FERREIRA

    2012-04-01

    Full Text Available Starches from legumes (carioca bean, white bean and chickpea were extracted, aiming at their chemical and morphological characterization, as well as evaluating the use ofthe extraction residues to elaborate expanded extruded snacks. The analyses carried out for the starches and their respective residues were moisture, proteins, lipids, ash, dietary fiber and carbohydrates. The starches were also evaluated with respect to their morphological characteristics, using Scanning Electron Microscopy (SEM. The residues were used in formulations containing corn flour to produce expanded extruded snacks. These snacks were evaluated as to their expansion index (EI, water absorption index (WAI and water solubility index (WSI. WAI and WSI analyses were also performed for the residues. The results demonstrated that the starches presented similar composition regarding moisture and carbohydrates, with a high carbohydrate content (close to 91%. The starch granules presented sizes between 15 and 25μm and a flat oval shape, with the chickpea starch granules being the smallest with a tendency to form agglomerates. The residues presented significant amounts ofcarbohydrates (between 70 and 75%, apart from expressive quantities ofdietary fibers (between 25 and 39%. In the evaluation ofWAI and WSI ofthe residues, IAA values were close for the sources studied (close to 11g/g, WSI was greater for carioca bean (close to 15.6%. The snacks containing the carioca bean residues had the highest EI value (6.3, while the highest values for WAI and WSI (respectively, 14.4g/g and 31.1% were found for the snacks with white bean residues.

  17. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    International Nuclear Information System (INIS)

    Govasmark, Espen; Staeb, Jessica; Holen, Borge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-01-01

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg -1 DM) and copper (23-93 mg kg -1 DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg -1 DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg -1 ) and Σ PAH 16 (0.2-1.98 mg kg -1 DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil ( -1 DM) and thiabendazol ( -1 DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  18. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  19. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

    Science.gov (United States)

    Mälkiä, Annika; Madrid, Rodolfo; Meseguer, Victor; de la Peña, Elvira; Valero, María; Belmonte, Carlos; Viana, Félix

    2007-05-15

    TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates

  20. Chemical Shift Artifact on Steady-State MRI Sequences for Detection of Vesical Wall Invasion in Placenta Percreta.

    Science.gov (United States)

    Kumar, Ishan; Verma, Ashish; Jain, Shivi; Jain, Madhu; Shukla, R C; Srivastava, Arvind

    2016-04-01

    Antenatal diagnosis of the invasiveness of a placenta percreta helps in planning the surgical approach, reducing blood loss and morbidity. Doppler sonography is the mainstay diagnostic modality with a sensitivity of 80-95 %. With the advent of high magnetic field MRI techniques, there has been recent interest in evaluation of placenta by MRI. On an extensive PUBMED search, we could not find any citations describing imaging, ultrasound, or MRI features to evaluate vesical wall invasion by placenta percreta. We attempt to evaluate transmyometrial vesical wall invasion by placenta percreta using chemical shift artifact as a marker of intact bladder-myometrial interface on steady-state MRI sequences. This is a prospective observational study, conducted at a university hospital. We have compiled clinico-radiological criteria for diagnosis of invasive placentae based on the existing body of evidences, in four patients. We further go on to analyze a specific proposed sign on a newly introduced MR imaging sequence i.e., loss of chemical shift artifact (India ink line) on steady-state GRE sequence (TrueFISP), to diagnose transmyometrial vesical invasion in placenta percreta. Though the sample size is small, the sensitivity, specificity, positive, and negative predictive value of the proposed sign for the purpose was 100 %. Loss of chemical shift artifact (India ink line) on steady-state GRE sequences at the vesico-myometrial junction in case of invasive placentae confirms vesical wall invasion, a prospective diagnoses of which can help in planning the surgical protocol and preventing potentially fatal blood loss.

  1. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    compared to single voxel methods. In the present study, the optimal voxel size is calculated from segmented human brain data and accompanying field maps. The optimal voxel size is found to be approximately 8 cc, but a wide range of values, 4-64 cc, can be chosen with little increase in estimated......Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations...

  2. Peptides containing internal residues of pyroglutamic acid: proton NMR characteristics

    International Nuclear Information System (INIS)

    Khan, S.A.

    1986-01-01

    The proton NMR characteristics of internal pyroglutamic acid (Glp; 5-oxoproline) residues in seven tripeptides of the general structure Boc-Xxx-Glp-Yyy-NH 2 were studied. In general, the chemical shifts of several diagnostic protons moved downfield on going from the Glu-containing peptides (Boc-Xxx-Glu-Yyy-NH 2 ) to the corresponding Glp-containing peptides. The C-2 proton of the Xxx residue was shifted by about 1.1 ppm. The N-2 proton of the Yyy residue was shifted by about 0.5 ppm. The C-2 proton of the Glx residue itself was shifted by about 0.5 ppm. One of the Glx C-3 protons was also shifted by about 0.5 ppm, but the other remained essentially unchanged. Finally, the Glx C-4 protons were shifted by about 0.3 ppm. Internal Glu residues are readily converted chemically into internal Glp residues. This conversion also occurs as a side reaction during HP cleavage of the protecting group from Glu(OBzl) residues. The spontaneous fragmentation of serum proteins C3, C4 and λ 2 -macroglobulin under denaturing conditions is probably due to regioselective hydrolysis of an internal Glp residue formed in each of these proteins upon denaturation. These proton NMR characteristics may be useful in establishing the presence of internal Glp residues in synthetic and natural peptides

  3. The combined use of quantum chemical calculations and CP/MAS NMR spectroscopy to investigate soil bound residues of labeled xenobiotics

    Science.gov (United States)

    Lewandowski, Hans; Philipp, Herbert; Meier, Robert J.; Narres, Hans-Dieter; Berns, Anne E.

    2010-05-01

    Application of solid state Nuclear Magnetic Resonance (NMR) spectroscopy to 13C- and 15N-labeled compounds is a powerful tool to study the interactions of xenobiotics with soil and its components. The type of interaction with soil components, like organic matter or the mineral phase, influences binding and release of a xenobiotic and its metabolites in soil. As such interactions to the soil matrix cause shifts in the initial positions of the NMR signals of the investigated labeled compound, NMR can be used to elucidate the binding type of bound residues. Density functional theory (DFT) calculations are excellent suited to support such NMR studies of xenobiotics. In a first step, DFT calculations were used to support the interpretation of the spectra of labeled xenobiotics, their metabolites and reaction products synthesized through reaction with model substances (representing specific functionalities of humic substances). In a second step, they allow to evaluate the influence of possible bonds on the initial chemical shift (e.g. towards higher or lower field). This can be especially helpful in the case of bonds like van-der-Waals interactions, for which it is difficult to prepare defined model substances. CP/MAS-NMR spectroscopy and DFT calculations were applied to study the interactions of several labeled xenobiotics and soil organic matter.

  4. Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology.

    Science.gov (United States)

    Robustelli, Paul; Cavalli, Andrea; Dobson, Christopher M; Vendruscolo, Michele; Salvatella, Xavier

    2009-06-04

    It has recently been shown that protein structures can be determined from nuclear magnetic resonance (NMR) chemical shifts using a molecular fragment replacement strategy. In these approaches, structural motifs are selected from existing protein structures on the basis of chemical shift and sequence homology and assembled to generate new structures. Here, we demonstrate that it is also possible to determine structures of proteins by directly incorporating experimental NMR chemical shifts as structural restraints in conformational searches, without the use of structural homology and molecular fragment replacement. In this approach, a protein is folded from an extended conformation to its native state using a simulated annealing procedure that minimizes an energy function that combines a standard force field with a term that penalizes the differences between experimental and calculated chemical shifts. We provide an initial demonstration of this procedure by determining the structure of two small proteins, with alpha and beta folds, respectively.

  5. Chemical shift of U L3 edges in different uranium compounds ...

    Indian Academy of Sciences (India)

    Administrator

    same oxidation state of the metal ion, its X-ray absorption edge may appear at different energies in different materi- als, depending on the nature of ligands attached to the metal ion, coordination number, covalent character of the bond, electronegativity of the anion or in other words the chemical environment of the metal ion.

  6. Chemical shift of neutron resonances and some ideas on neutron resonances and scattering theory

    International Nuclear Information System (INIS)

    Ignatovich, V.K.; )

    2002-01-01

    The dependence of positions of neutron resonances in nuclei in condensed matter on chemical environment is considered. A possibility of theoretical description of neutron resonances, different from R-matrix theory is investigated. Some contradictions of standard scattering theory are discussed and a new approach without these contradictions is formulated [ru

  7. NMR chemical shift and J coupling parameterization and quantum mechanical reference spectrum simulation for selected nerve agent degradation products in aqueous conditions.

    Science.gov (United States)

    Koskela, Harri; Anđelković, Boban

    2017-10-01

    The spectral parameters of selected nerve agent degradation products relevant to the Chemical Weapons Convention, namely, ethyl methylphosphonate, isopropyl methylphosphonate, pinacolyl methylphosphonate and methylphosphonic acid, were studied in wide range of pH conditions and selected temperatures. The pH and temperature dependence of chemical shifts and J couplings was parameterized using Henderson-Hasselbalch-based functions. The obtained parameters allowed calculation of precise chemical shifts and J coupling constants in arbitrary pH conditions and typical measurement temperatures, thus facilitating quantum mechanical simulation of reference spectra in the chosen magnetic field strength for chemical verification. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Chemical composition of flours made of residues from the king palm (Archontophoenix alexandrae industry

    Directory of Open Access Journals (Sweden)

    Manoela Alano Vieira

    2009-08-01

    Full Text Available Residues from King palm (Archontophoenix alexandrae processing were used for the production of flours, which were then chemically characterized. The protein content in these flours ranged from 3.62 to 9.75 g/100g and was higher in sifted leaf flour (SLF. The dietary fiber contents varied from 64 to 72 g/100g. These values were high when compared to those of flours used in human nutrition. Analysis of anti-nutritional factors showed phytate contents to be below the levels that affected the bioavailability of minerals in human diet. Tannin contents were compatible with those found in legumes, between 0 and 2000 mg/100g. These flours showed high mineral content, which suggested a possibility for them to be used as food supplement. However, the bioavailability of these minerals could be affected by high total dietary fibre concentrations and anti-nutritional components contained in the samples.Resíduos do processamento de palmeira-real (Archontophoenix alexandrae foram utilizados para produção de farinha e caracterizados quimicamente. O conteúdo de proteína encontrado nas farinhas variam de 3,62 a 9,75, sendo maior na farinha da folha peneirada. Os teores de fibra dietética total variaram de 64.00 a 72 g/100g, valores altos quando comparados com farinhas tradicionalmente utilizadas na alimentação humana. A análise de fatores antinutricionais indicou teores de fitato abaixo dos níveis que afetam a biodisponibilidade de minerais na dieta. Os teores de tanino foram significativos, compatíveis aos encontrados nas leguminosas entre 0 e 2000 mg/100g. As farinhas de palmeirareal apresentaram elevados teores de minerais, podendo ser indicadas como suplementos em alimentos, porém, deve-se considerar que a biodisponibilidade destes minerais pode ser afetada pela alta concentração de fibras dietéticas totais e de outros componentes antinutricionais contidos na amostra.

  9. Velocity encoding with the slice select refocusing gradient for faster imaging and reduced chemical shift-induced phase errors.

    Science.gov (United States)

    Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B

    2014-06-01

    To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.

  10. SHIFTING WEED COMPOSITIONS AND BIOMASS PRODUCTION IN SWEET CORN FIELD TREATED WITH ORGANIC COMPOSTS AND CHEMICAL WEED CONTROLS

    Directory of Open Access Journals (Sweden)

    Marulak Simarmata

    2015-10-01

    Full Text Available The objectives of the research were to study the shift of weed compositions in sweet corn field treated with organic compost and chemical weed controls and to compare the effect of treatment combinations on weed growth, weed biomass and sweet corn biomass. The research was conducted in Bengkulu, Indonesia, from April to July 2014. Results showed that the number of weed species decreased after the trials from 14 to 13. There was a shift in weed compositions because 5 species of weeds did not emerge after the trials, but 4 new species were found. Chemical weed control used a herbiside mixture of atrazine and mesotrione applied during postemergence was the most effective method to control weeds, which was observed on decreased weed emergence and weed biomass down to 22.33 and 25.00 percent of control, respectively. Subsequently, biomass production of sweet corn increased up to 195.64 percent at the same trials. Biomass of weeds and sweet corn were also affected by the organic composts. Weed biomass was inhibited by treatment of composted empty fruith bunches of oil palm, whereas significantly increased of sweet corn biomass were observed in the plots of organic manure.

  11. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  12. NMR Chemical Shift of a Helium Atom as a Probe for Electronic Structure of FH, F-, (FHF)-, and FH2.

    Science.gov (United States)

    Tupikina, E Yu; Efimova, A A; Denisov, G S; Tolstoy, P M

    2017-12-21

    In this work, we present the first results of outer electronic shell visualization by using a 3 He atom as a probe particle. As model objects we have chosen F - , FH, and FH 2 + species, as well as the hydrogen-bonded complex FH···F - at various H···F - distances (3.0, 2.5, 2.0, and 1.5 Å and equilibrium at ca. 1.14 Å). The interaction energy of investigated objects with helium atom (CCSD/aug-cc-pVTZ) and helium atom chemical shift (B3LYP/pcS-2) surfaces were calculated, and their topological analysis was performed. For comparison, the results of standard quantum mechanical approaches to electronic shell visualization were presented (ESP, ELF, ED, ∇ 2 ED). We show that the Laplacian of helium chemical shift, ∇ 2 δ He , is sensitive to fluorine atom lone pair localization regions, and it can be used for the visualization of the outer electronic shell, which could be used to evaluate the proton accepting ability. The sensitivity of ∇ 2 δ He to lone pairs is preserved at distances as large as 2.0-2.5 Å from the fluorine nucleus (in comparison with the distance to ESP minima, located at 1.0-1.5 Å or maxima of ELF, which are as close as 0.6 Å to the fluorine nucleus).

  13. Localized in vivo 1H spectroscopy and chemical shift imaging of the bone marrow in leukemic patients

    International Nuclear Information System (INIS)

    Bongers, H.; Schick, F.; Skalej, M.; Jung, W.I.; Einsele, H.

    1992-01-01

    Six healthy volunteers, ten patients with acute leukemia, one patient with hypersplenia and two with bone marrow carcinosis were studied. Nine patients with leukemia were restudied during chemotherapy. A double spin echo localization method, implemented on a 1.5 T whole body unit was used for 1 H magnetic resonance spectroscopy (MRS). A cubic (13 mm) 3 voxel was chosen in a midlumbar vertebra. For chemical shift imaging (CSI) the SENEX sequence was used. We recorded fat and water images in a representative midsagittal plane. Patients with acute leukemia and hypercellular bone marrow showed a severe reduction or loss of the bone marrow fat signal and an increased water signal. Water T1 increased during therapy in three patients. The bone marrow fat reappeared in the spectra and chemical shift images within 2 or 3 weeks in responders and remained unchanged or reappeared later in non-responders. A normal fat signal could be detected in leukemic patients without hypercellular bone marrow. Specificity was missing for 1 H MRS and CSI; marrow carcinosis and benign stimulation (hypersplenia) could not be separated from leukemia. In clinical routine, CSI may have advantages over 1 H MRS, because a large anatomic field can be examined. Inhomogeneous fat signal distributions can be detected and were seen in several cases during therapy. 1 H MRS and CSI allow non-invasive therapy monitoring of leukemic patients and might be of prognostic value. (orig.)

  14. Calculation of fluorine chemical shift tensors for the interpretation of oriented (19)F-NMR spectra of gramicidin A in membranes.

    Science.gov (United States)

    Sternberg, Ulrich; Klipfel, Marco; Grage, Stephan L; Witter, Raiker; Ulrich, Anne S

    2009-08-28

    A semi-empirical method for the prediction of chemical shifts, based on bond polarization theory, has recently been introduced for (13)C. Here, we extended this approach to calculate the (19)F chemical shift tensors of fluorine bound to aromatic rings and in aliphatic CF(3) groups. For the necessary parametrization, ab initio chemical shift calculations were performed at the MP2 level for a set of fluorinated molecules including tryptophan. The bond polarization parameters obtained were used to calculate the (19)F chemical shift tensors for several crystalline molecules, and to reference the calculated values on a chemical shift scale relative to CFCl(3). As a first biophysical application, we examined the distribution of conformations of a (19)F-labeled tryptophan side chain in the membrane-bound ion channel peptide, gramicidin A. The fluorine chemical shift tensors were calculated from snapshots of a molecular dynamics simulation employing the (19)F-parametrized bond polarization theory. In this MD simulation, published (2)H quadrupolar and (15)N-(1)H dipolar couplings of the indole ring were used as orientational constraints to determine the conformational distribution of the 5F-Trp(13) side chain. These conformations were then used to interpret the spectra of (19)F-labeled gramicidin A in fluid and gel phase lipid bilayers.

  15. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    Science.gov (United States)

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.

  16. Demystifying fluorine chemical shifts: Electronic structure calculations address origins of seemingly anomalous 19F-NMR spectra of fluorohistidine isomers and analogues

    Science.gov (United States)

    Kasireddy, Chandana; Bann, James G.

    2015-01-01

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of 19F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in 19F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of 19F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  17. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process.

    Science.gov (United States)

    Masarin, Fernando; Cedeno, Fernando Roberto Paz; Chavez, Eddyn Gabriel Solorzano; de Oliveira, Levi Ezequiel; Gelli, Valéria Cress; Monti, Rubens

    2016-01-01

    Biorefineries serve to efficiently utilize biomass and their by-products. Algal biorefineries are designed to generate bioproducts for commercial use. Due to the high carbohydrate content of algal biomass, biorefinery to generate biofuels, such as bioethanol, is of great interest. Carrageenan is a predominant polysaccharide hydrocolloid found in red macroalgae and is widely used in food, cosmetics, and pharmaceuticals. In this study, we report the biorefinery of carrageenan derived from processing of experimental strains of the red macroalgae Kappaphycus alvarezii. Specifically, the chemical composition and enzymatic hydrolysis of the residue produced from carrageenan extraction were evaluated to determine the conditions for efficient generation of carbohydrate bioproducts. The productivity and growth rates of K. alvarezii strains were assessed along with the chemical composition (total carbohydrates, ash, sulfate groups, proteins, insoluble aromatics, galacturonic acid, and lipids) of each strain. Two strains, brown and red, were selected based on their high growth rates and productivity and were treated with 6 % KOH for extraction of carrageenan. The yields of biomass from treatment with 6 % KOH solution of the brown and red strains were 89.3 and 89.5 %, respectively. The yields of carrageenan and its residue were 63.5 and 23 %, respectively, for the brown strain and 60 and 27.8 %, respectively, for the red strain. The residues from the brown and red strains were assessed to detect any potential bioproducts. The galactan, ash, protein, insoluble aromatics, and sulfate groups of the residue were reduced to comparable extents for the two strains. However, KOH treatment did not reduce the content of glucan in the residue from either strain. Glucose was produced by enzymatic hydrolysis for 72 h using both strains. The glucan conversion was 100 % for both strains, and the concentrations of glucose from the brown and red strains were 13.7 and 11.5 g L(-1

  19. Chemical modelling of trace elements in pore water from PFBC residues containing ammonia

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Brandberg, F.

    1993-01-01

    Ammonia is added to the PFBC process with the purpose to reduce the emissions of NO x in the stack gases. The design of the system for cleaning the stack gases will lead to an increased adsorption of ammonia and an accumulation of soluble ammonium salts in the cyclone ash from PFBC processes. This can be an environmental problem since the amounts will increase over the coming years and there will be a need to dispose the residues. When infiltrating rainwater penetrates the disposed residues ammonia and ammonium salts result in a contamination of the pore water with ammonia in the disposed residues. This entail the solubility of several trace elements in the residues that form soluble complexes with ammonia will increase and cause an increased contamination of groundwater and surface water. In this study the increased solubilities is calculated for the trace elements cadmium, cobalt, copper, mercury, nickel, silver and zinc in the residues using thermodynamical data. The calculations have been performed with probable solid phases of the trace elements at oxidizing and reducing conditions as a function of pH and at varying concentration of ammonia in the pore water. The thermodynamic calculations have been performed with the geochemical code EQ3NR. The results from the calculations show that as a concentration of 17 mg NH 3 /l in the pore water of the residues increases the solubilities for copper and silver. If the concentration of ammonia increases to 170 mg NH 3 /l will the solubilities increase also for cadmium, nickel and zinc. (12 refs., 39 figs.)

  20. Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results

    International Nuclear Information System (INIS)

    Alves de Freitas, Antonio; Abrao, Alcidio; Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu

    2008-01-01

    An analytical procedure was established in order to obtain selective fractions containing radium isotopes ( 228 Ra), thorium ( 232 Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of 228 Ra, 226 Ra, 238 U, 210 Pb, and 40 K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples

  1. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  2. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins

    Energy Technology Data Exchange (ETDEWEB)

    Barb, Adam W., E-mail: abarb@iastate.edu; Subedi, Ganesh P. [Iowa State University, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology (United States)

    2016-01-15

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb{sup 3+} with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (−0.221 to 0.081 ppm) and residual dipolar couplings (−7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb{sup 3+}){sub 2} complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems.

  3. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins

    International Nuclear Information System (INIS)

    Barb, Adam W.; Subedi, Ganesh P.

    2016-01-01

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb 3+ with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (−0.221 to 0.081 ppm) and residual dipolar couplings (−7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb 3+ ) 2 complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems

  4. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  5. Analysis of Phyllostachys pubescens bamboo residues for liquefaction: chemical components, infrared spectroscopy, and thermogravimetry

    Science.gov (United States)

    Jinqiu Qi; Chung-Yun Hse; Todd F. Shupe

    2013-01-01

    Residues of Phyllostachys pubescens bamboo obtained from central Louisiana, USA, were comprehensively investigated for use in liquefaction. The results showed that bamboo branches had the highest Klason lignin and ash content, about 26% and 2.75%, respectively. The epidermis layer sample had relatively higher carbohydrate content, while the wax layer sample had the...

  6. Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass.

    NARCIS (Netherlands)

    German-Baez, L.J.; Valdez-Flores, M.A.; Felix-Medina, J.V.; Norzagaray-Valenzuela, C.D.; Santos-Ballardo, D.U.; Reyes-Moreno, C.; Shelton, L.M.; Valdez-Ortiz, A.

    2017-01-01

    The production of photosynthetic biofuels using microalgae is a promising strategy to combat the use of non-renewable energy sources. The microalgae residual biomass is a waste by-product of biofuel production; however, it could prove to have utility in the development of sustainable nutraceuticals

  7. Neutralization of residual antimicrobial processing chemicals in broiler carcass rinse for improved detection of Campylobacter

    Science.gov (United States)

    Campylobacter presence on broiler carcasses in the U.S. is regulated. Processors may apply antimicrobial processing aids as a spray or immersion to lower contamination on carcasses. In the U.S., broiler carcasses are generally sampled by whole carcass rinse and the potential exists for residual le...

  8. Behaviour of phenyl-urea type herbicides and related chemical residues in soil-plant systems

    International Nuclear Information System (INIS)

    Suess, A.; Eben, C.

    1975-01-01

    Uniformly 14 C-labelled aniline derivatives were used to indicate the degradation of phenyl-urea type herbicides. The results suggested cleavage of the benzene ring when present as a soil residue, cleavage apparently being reduced by increased chlorination of the ring. (author)

  9. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin

    Science.gov (United States)

    De Souza, Leonardo A.; Tavares, Wagner M. G.; Lopes, Ana Paula M.; Soeiro, Malucia M.; De Almeida, Wagner B.

    2017-05-01

    In this work, we showed that comparison between experimental and theoretical 1H NMR chemical shift patterns, calculated using Density Functional Theory (DFT), can be used for the prediction of molecular structure of flavonoids in solution, what is experimentally accessible for gas phase (electron diffraction methods) and solid samples (X-ray diffraction). The best match between B3LYP/6-31G(d,p)-PCM 1H NMR calculations for B ring rotated structures and experimental spectra can provide information on the conformation adopted by polyphenols in solution (usually DMSO-d6, acetone-d6 as solvents), which may differ from solid state and gas phase observed structures, and also DFT optimized geometry in the vacuum.

  10. Chemical shift assignments of RHE_RS02845, a NTF2-like domain-containing protein from Rhizobium etli.

    Science.gov (United States)

    Li, Tao; Li, Shuangli; Liang, Chunjie; Zhu, Jiang; Liu, Maili; Yang, Yunhuang

    2018-03-23

    The nuclear transport factor 2 (NTF2) like superfamily includes members of the NTF2 family, delta-5-3-ketosteroid isomerases, and the beta subunit of ring hydroxygenases. This family plays important roles in both eukaryotic and prokaryotic cells, and is taken as a classic example of divergent evolution because proteins in this family exhibit diverse biological functions, although share common structural features. We cloned the gene RHE_RS02845 encoding a predicted NTF2-like domain-containing protein in Rhizobium etli, and prepared U- 13 C/ 15 N-labeled protein samples for its three-dimensional NMR structural determination. Here, chemical shift assignments for both backbone and side-chain atoms are reported, which is prerequisite for further structural calculation and functional research using NMR spectroscopy.

  11. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... shifts of all substructures from the proposed models. A full reconstruction makes sure that all carbons are accounted for and enables on the negative side to discuss structural elements identified from recorded spectra of humic substances that cannot be observed in the simulated spectrum. On the positive...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....

  12. Shifts in Soil Chemical Properties and Bacterial Communities Responding to Biotransformed Dry Olive Residue Used as Organic Amendment

    Czech Academy of Sciences Publication Activity Database

    Siles, J. A.; Cajthaml, Tomáš; Hernandez, P.; Perez-Mendoza, D.; Garcia-Romera, I.; Sampedro, I.

    2015-01-01

    Roč. 70, č. 1 (2015), s. 231-243 ISSN 0095-3628 R&D Projects: GA TA ČR TE01020218 Institutional support: RVO:61388971 Keywords : Bioremediation * Biotransformation * Mediterranean soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.232, year: 2015

  13. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    International Nuclear Information System (INIS)

    Li, G.-W.; Xu, Z.; Chen, Q.-W.; Tian, Y.-N.; Wang, X.-Y.; Zhou, L.; Chang, S.-X.

    2014-01-01

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  14. Chemical shifts as a novel measure of interactions between two binding sites of symmetric dialkyldimethylammonium bromides to {alpha}-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Funasaki, Noriaki [Department of Physical Chemistry, Faculty of Pharmaceutical Sciences, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan)]. E-mail: funasaki@mb.kyoto-phu.ac.jp; Ishikawa, Seiji [Department of Physical Chemistry, Faculty of Pharmaceutical Sciences, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan); Hirota, Shun [Department of Physical Chemistry, Faculty of Pharmaceutical Sciences, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2006-01-12

    Complex formation of {alpha}-cyclodextrin ({alpha}-CD) with decyltrimethylammonium (DeTAB), N,N-dioctyldimethylammonium (DOAB), and N,N-didecyldimethylammonium bromides (DDeAB) was investigated by proton NMR spectroscopy. Analysis of chemical shifts yielded macroscopic 1:1 and 1:2 binding constants (K {sub 1} and K {sub 2}) and chemical shift differences ({delta}{delta} {sub SD} and {delta}{delta} {sub SD2}) for the 1:1 and 1:2 complexes of DeTAB, DOAB, and DDeAB with {alpha}-CD. The K {sub 1} and K {sub 2} values of DDeAB were quantitatively explained on the basis of the assumption that the microscopic 1:1 binding constant of DDeAB is identical to the observed K {sub 1} value of DeTAB. The K {sub 2} value of DDeAB was also explained in terms of its observed K {sub 1} value and the independent binding of two alkyl chains. Furthermore, the {delta}{delta} {sub SD} and {delta}{delta} {sub SD2} values for protons of DDeAB and {alpha}-CD were quantitatively explained on the basis of the assumption that the geometry of the decyl group of DDeAB in an {alpha}-CD cavity is identical to that of DeTAB. The {delta}{delta} {sub SD} value was also explicable on the basis of the same geometric assumption and the observed {delta}{delta} {sub SD2} value for this system. Similar results were obtained for the 1:1 and 1:2 DOAB-{alpha}-CD complexes.

  15. Utility of chemical shift and diffusion-weighted imaging in characterization of hyperattenuating adrenal lesions at 3.0T

    International Nuclear Information System (INIS)

    Song, Jiqing; Zhang, Chengqi; Liu, Qingwei; Yu, Taifei; Jiang, Xuemei; Xia, Qinghua; Zhang, Yinan; Sequeiros, Roberto Blanco

    2012-01-01

    Objective: The purpose of our study was to evaluate the value of chemical shift imaging (CSI) and diffusion weighted imaging (DWI) at 3.0 T MRI in adrenal hyperattenuating lesions. Methods: Fifty-one hyperattenuating adrenal lesions in 40 patients were evaluated. Signal intensity index (SII), adrenal to spleen ratio (ASR) and apparent diffusion coefficient (ADC) were used as quantitative analysis parameters. Results: The mean SII, ASR and ADC values were: benign pheochromocytomas (n = 22), 7.04%; 0.96, 1.15 × 10 −3 mm 2 /s; lipid-poor adenomas (n = 18), 33.77%, 0.71, 1.07 × 10 −3 mm 2 /s; malignant tumors (n = 7), 11.24%; 1.00; 0.92 × 10 −3 mm 2 /s. There were significant differences between the lipid-poor adenomas and nonadenomas for SII and ASR, and there were significant differences between the benign and the malignant tumor ADC values. The optimal diagnostic threshold point of SII and ASR for lipid-poor adenomas was 11.96%, 0.83, the sensitivity and specificity were 88.9%, 97.5% and 97%, 83.3%. The optimal diagnostic threshold point of ADC value for benign lesions and malignant tumors was 1.04 × 10 −3 mm 2 /s, the sensitivity and specificity were 61.4% and 85.7%. Conclusion: Quantitative analysis of chemical shift MRI and DWI can help to characterize the hyperattenuating adrenal lesions, especially in differentiatiation between the lipid-poor adenomas, the benign pheochromocytomas, and the malignant tumors

  16. The effect of selected fungicides on the chemical composition of strawberry fruits and contamination with dithiocarbamate residues

    Directory of Open Access Journals (Sweden)

    Wysocki Karol

    2014-12-01

    Full Text Available In a four-year field experiment, fenhexamid, iprodione, pyrimethanil and thiram were applied in four different series as fungicides recommended for the control of grey mold (Botrytis cinerea in strawberries. The plant protection products had no significant effect on the chemical composition of strawberry fruits of the Kent and Senga Sengana cultivars with the exception of an increase in the vitamin C level in ‘Kent’ strawberries. They also contributed to minor variations in the content of extract, total sugars, organic acids, polyphenols and anthocyanins. Dithiocarbamate residues were detected in all samples from the first harvest of strawberries that had been treated with the thiram fungicide

  17. Determination of Pentachlorophenol and Hexachlorobenzene in Natural Waters Affected by Industrial Chemical Residues

    Directory of Open Access Journals (Sweden)

    Zuin Vânia Gomes

    1999-01-01

    Full Text Available This paper presents the development of a methodology for the simultaneous analysis of pentachlorophenol and hexachlorobenzene in natural waters affected by industrial residues, as its principal goal. Samples were collected in Quarentenário, São Vicente city, where most of the population utilize wells for their supply. The liquid-liquid extraction employed to remove PCP and HCB from the matrix for further identification and quantification, showed very good recovery and repeatability. The recovery range was between 81.5% and 103.0%, with a relative standard deviation of 2.4% and 4.1% for a fortification level of 10 ng L-1. In addition, organochlorine compounds were determined by GC-ECD and/or GC-MS. The limit of quantification was 5 ng L-1 for PCP and 2 ng L-1 for HCB, which are below the maximum level allowed by the EC directives for pesticide residues in drinking water.

  18. A field study of radiation fog. The chemical composition of interstitial aerosol and droplet residues

    International Nuclear Information System (INIS)

    Gieray R.; Wieser, P.

    1993-01-01

    In order to investigate the discrimination of atmospheric trace components due to cloud or fog formation, the residues resulting from droplet evaporation are compared with particles of the interstitial aerosol. A counterflow virtual impactor (CVI), described e.g. by OGREN et al. (1985) is used to separate the fog droplets from both the gaseous and the particulate aerosol components. The fog droplets sampled evaporate in the airborne state and the residues are either collected on a nucleopore filter or by means of a five-stage cascade impactor on thin films. In addition, both the humidity originating from droplet evaporation and the number concentration of the droplet residues are measured. These data can be used to study the time dependence of the liquid water content, the number density and the volume equivalent diameter of the fog droplets sampled, respectively. Soot particles only appear in the fraction of the interstitial aerosol. They are not involved in the formation of the liquid phase. The average residence time and the transport of soot particles in the atmosphere are influenced by this fact. The relatively low average scavenged fraction of lead, potassium and zinc can be attributed to the observed enrichment of these elements in soot particles remaining in the interstitial aerosol. (orig./BBR) [de

  19. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  20. Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water

    Directory of Open Access Journals (Sweden)

    Francisco H. M. Luzardo

    2015-01-01

    Full Text Available In this work, a study of the correlation between the functional groups present in the chemical structure of the fibers of coconut shells, cocoa and eucalyptus, and their adsorption capacity of Cd+2 and Cu+2 ions from water was performed. The content of soluble solids and reactive phenols in aqueous extracts were determined. The chemical functional groups present in the fibers were examined using the IR spectra. The adsorption capacity of the peels was determined using atomic absorption spectrophotometer. For Cd+2, a significant correlation between the adsorption capacity and some specific chemical functional groups present in the fiber was verified. The potential use of these peels, as adsorbent of Cd+2 ions, is based on the presence of OH functional groups such as aryl-OH, aryl-O-CH2 of phenol carboxylic acids, as well as carbonyl groups derived from carboxylic acid salts, in these fibers.

  1. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  2. Application of a novel measure of EEG non-stationarity as 'Shannon- entropy of the peak frequency shifting' for detecting residual abnormalities in concussed individuals.

    Science.gov (United States)

    Cao, Cheng; Slobounov, Semyon

    2011-07-01

    The aim of this report was to propose a novel measure of non-stationarity of EEG signals, named Shannon- entropy of the peak frequency shifting (SEPFS). The feasibility of this method was documented comparing this measure with traditional time domain assessment of non-stationarity and its application to EEG data sets obtained from student-athletes before and after suffering a single episode of mild traumatic brain injury (mTBI) with age-matched normal controls. Instead of assessing the power density distribution on the time-frequency plane, like previously proposed measures of signal non-stationarity, this new measure is based on the shift of the dominant frequency of the EEG signal over time. We applied SEPFS measure to assess the properties of EEG non-stationarity in subjects before and shortly after they suffered mTBI. Student-athletes at high risk for mTBI (n=265) were tested prior to concussive episodes as a baseline. From this subject pool, 30 athletes who suffered from mTBI were retested on day 30 post-injury. Additional subjects pool (student-athletes without history of concussion, n=30) were recruited and test-re-tested within the same 30 day interval. Thirty-two channels EEG signals were acquired in sitting eyes closed condition. The results showed that the SEPFS values significantly decreased in subjects suffering from mTBI. Specifically, reduced EEG non-stationarity was observed in occipital, temporal and central brain areas, indicating the possibility of residual brain dysfunctions in concussed individuals. A similar but less statistically significant trend was observed using traditional time domain analysis of EEG non-stationarity. The proposed measure has at least two merits of interest: (1) it is less affected by the limited resolution of time-frequency representation of the EEG signal; (2) it takes into account the neural characteristics of the EEG signal that have not been considered in previously proposed measures of non-stationarity. This new

  3. Comparative behaviour of organochlorine insecticides and related chemical residues in model ecosystems

    International Nuclear Information System (INIS)

    Klein, W.; Anagnostopoulos, M.; Begum, S.; Elsner, E.; Freitag, D.; Gaeb, W.; Greb, W.; Haque, A.; Hustert, K.; Kilzer, L.; Kohli, J.; Korte, F.; Kotzias, D.; Lay, J.P.; Moza, P.N.; Mueller, H.; Mueller, Werner; Mueller, Wolfgang; Nohynek, G.; Parlar, A.; Prestel, D.; Sandrock, K.; Sotiriou, N.; Viswanathan, P.; Viswanathan, S.; Vockel, D.; Weisgerber, I.

    1975-01-01

    A comprehensive series of isotopictracer-aided studies of the behaviour of organochlorine residues in model ecosystems is reported. Studies of the fate of 14 C-labelled aldrin or dieldrin in soil supporting carrots and potatoes under simulated conditions of agricultural practice have been extended. The formation of the polar metabolite dihydrochlordene dicarboxylic acid was confirmed. The metabolism of these compounds, and of 14 C-heptachlor and 14 C-lindane by green algae were also studied. Aldrin and heptachlor underwent epoxidation and lindane dehydrochlorination. Comparative studies were made of the metabolism of 14 C-PCBs in rat, monkey, microorganisms, higher plants and of their movement from contaminated soil into crops. Experiments on abiotic transformation of organochlorine residues by ultraviolet radiation are reported. The significance of some of the ratios observed in the context of environmental behaviour is discussed. The fate of dieldrin in soil-plant-food-animal systems is discussed as a model ''trace contaminant'' in view of the relative wealth of data now available, some as a result of experiments initiated 20 years ago. (author)

  4. Persistence of epoxy-based sealer residues in dentin treated with different chemical removal protocols.

    Science.gov (United States)

    Kuga, Milton Carlos; Faria, Gisele; Rossi, Marcos Antonio; do Carmo Monteiro, Jardel Camilo; Bonetti-Filho, Idomeo; Berbert, Fábio Luiz Camargo Vilella; Keine, Kátia Cristina; Só, Marcus Vinicius Reis

    2013-01-01

    The presence of residual endodontic sealer in the pulp chamber may cause discoloration of the dental crown and interfere with the adhesion of restorative materials. The aim of this study was to compare the efficacy of different solvents in removing residues of an epoxy resin-based sealer (AH Plus) from the dentin walls of the pulp chamber, by scanning electron microscopy (SEM). Forty-four bovine incisor dental crown fragments were treated with 17% EDTA and 2.5% NaOCl. Specimens received a coating of AH Plus and were left undisturbed for 5 min. Then, specimens were divided in four groups (n = 10) and cleaned with one of the following solutions: isopropyl alcohol, 95% ethanol, acetone solution, or amyl acetate solution. Negative controls (n = 2) did not receive AH Plus, while in positive controls (n = 2) the sealer was not removed. AH Plus removal was evaluated by SEM, and a score system was applied. Data were analyzed by Kruskal-Wallis and Dunn tests. None of the solutions tested was able to completely remove AH Plus from the dentin of the pulp chamber. Amyl acetate performed better than 95% ethanol and isopropyl alcohol (p 0.05) in removing the sealer from dentin. No significant differences were observed between acetone, 95% ethanol, and isopropyl alcohol (p > 0.05). It was concluded that amyl acetate and acetone may be good options for cleaning the pulp chamber after obturation with AH Plus. © Wiley Periodicals, Inc.

  5. Graphic representation of 13C-nuclear magnetic resonance chemical shifts of oxygen-containing organosulfur compounds and its application to the structural analysis

    International Nuclear Information System (INIS)

    Sato, Soei; Nagata, Chikakiyo; Tanaka, Shigeyuki.

    1985-01-01

    A new method for the structural analysis of oxygen-containing organosulfur compounds was examined by 13 C-NMR spectroscopy. The 13 C-NMR spectra were measured for organosulfur compounds of various types such as sulfoxides, sulfones, sulfinic acids, sulfonyl chlorides, sulfonic acids and their salts, sulfuric acid ester compounds and sultam derivatives containing alkyl, alkenyl, alkinyl and aromatic ring groups. The spectra collected from literatures were also used. The 13 C-chemical shifts of α-carbon adjacent to sulfur atom in organosulfur compounds were classified according to the structural types of the compounds and classes of carbon atoms of alkane(CH 3 , CH 2 , > CH-, etc.), alkene, aromatic ring types. The graphic representation for these data was carried out in view of the structural analysis of these compounds. The chemical shifts for α-carbon of oxygen-containing organosulfur compounds were observed at lower-field range than that of sulfide and disulfide compounds. The chemical shifts of α-carbon are gradually shifted to lower-field in order of methyl, methylene, methyne and quaternary carbons. The chemical shifts of α-carbons were also affected by the adjacent groups and their structural types. Detailed graphic representations including adjacent groups were made for a series of compounds which have many kinds of β-groups. This method was succesfully applied to the structural analysis of a textile and polymer additive. (J.P.N.)

  6. System for the chemical professing and evaluation gives the residual thickness the gives detecting for gives appearances LR115 type 2

    International Nuclear Information System (INIS)

    Carrazana Gonzalez, J.A.; Tomas Zerquera, J.; Prendes Alonso, M.

    1998-01-01

    In this work the system is described built in the CPHR for the homogeneous chemical processing gives detecting gives nuclear appearances. A new developed method is exposed, based on the application gives the technique optical densitometry, for the precise estimate gives the residual thickness, gives detecting, gives nuclear appearances LR115 type 2 after the process gives chemical engraving

  7. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    Science.gov (United States)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  8. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    Science.gov (United States)

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  9. Transformation of bisdithiocarbamate fungicides and the chemical nature of their residues in plants

    International Nuclear Information System (INIS)

    Vonk, J.W.

    1975-01-01

    Studies on the fate of 1,2- 14 C-disodium ethylenebisdithiocarbamate (nabam) applied to roots and leaves of cucumber plants under laboratory conditions have revealed that ethylenethiourea (ETU) and dihydro-3 H-imidazodithiazole (DIDT) were major initial breakdown products. On applying nabam to roots, residues in the plants consisted mainly of ETU, which was rapidly metabolized to 2-imidazoline and ethyleneurea. Moreover, a considerable amount of unidentified, mostly polar material was found. After 19 days, 87% of the total radioactivity taken up could be recovered. Of this only 22% could be identified. Two weeks after applying nabam to leaves, about 89% of the applied activity could be recovered. ETU, DIDT, a small amount of 2-imidazoline, and unknown polar material were present in or on the treated leaf. Only 0.3% had moved into the untreated parts. (author)

  10. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    Science.gov (United States)

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on

  11. Radiotracer studies on the fate and transformation of pesticide residues in the environment and food chains. Part of a coordinated programme on isotopic-tracer-aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Lee, S.R.

    1980-10-01

    The magnitude and fate of some pesticide chemicals in Korean foods were studied with particular reference to oil-bearing crops and related products. Application of the chemicals was made under conditions of actual agricultural practice. Analytical methodologies included nuclear activation, gas chromatographic, spectrophotometric and radiotracer techniques. Residues of benzene hexachloride, heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin and DDT found in refined vegetable oil samples were below or within the tolerance limits set by international organizations and as such, these are unlikely to present any toxicological hazard to the consumer. Also, residues of the herbicides nitrogen, alachlor and butachlor applied to oil-bearing crops were not detected in the seeds. Studies on 14 C-BHC residues in rice revealed that polishing and washing play an important role in removing a considerable portion of the residue. Data on the arsenic-containing neoasozine residues suggest that the products consumed by the human (grain and oil) contained residues below the tolerance limit and are unlikely to present any toxicological hazard to the consumer. On the other hand, relatively high arsenic concentrations (2.2 mg/kg) were found in the cake (serving as animal feed) and should be carefully evaluated in the light of toxicological data

  12. 1H and 13C NMR Data on Hydroxy/methoxy Flavonoids and the Effects of Substituents on Chemical Shifts

    International Nuclear Information System (INIS)

    Yoon, Hyuk; Eom, Sung Lock; Hyun, Ji Ye; Jo, Geun Hyeong; Hwang, Do Seok; Lee, Sun Hee; Yong, Yeon Joong; Lee, Young Han; Lim, Yoong Ho; Park, Jun Cheol

    2011-01-01

    Polyphenols have recently been examined for such applications, and they are classified based on their carbon skeletons: phenolic acids with C6-C1 skeleton, hydrocinammates with C6-C 3 skeleton, stilbenes with C6-C2-C6 skeleton, and flavonoids with C6-C 3 -C6 skeleton.2 Of these compounds, flavonoids are ubiquitously found in most plants. Since flavonoids belong to polyphenols, they have many hydroxy groups. From a bioavailability point of view, hydroxy groups prevent cell membrane transport, and hydroxyflavonoids can be metabolized by O-methyltransferases. However, methoxylated flavonoids may not have these problems. Hydroxylated or methoxylated flavonoids are found from natural sources. Nuclear magnetic resonance (NMR) spectroscopy is widely used to identify different compounds including hydroxylated or methoxylated flavonoids. Because the position and the number of substituted hydroxy or/and methoxy groups will change the 1 H and 13 C chemical shifts, it is important to understand these changes so that the structures of newly isolated hydroxy/methoxy-flavonoids can be easily identified

  13. Influence of the chemical shift artifact on measurements of compact bone thickness in equine distal limb MR images.

    Science.gov (United States)

    Dimock, Abigail N; Spriet, Mathieu

    2010-01-01

    The effect of the chemical shift artifact, resulting from misregistration or phase cancellation at the interface between compact and trabecular bone, on apparent bone thickness was quantified in six isolated equine limbs. Sagittal T1-weighted spin echo (SE) and in-phase three-dimensional spoiled gradient echo (SPGR) images were acquired twice with a 1.5 T magnetic resonance (MR) unit, switching the frequency encoding direction between acquisitions. Out-of-phase SPGR images were also obtained. MR images with different frequency encoding directions were compared with each other and to radiographs made from corresponding 3-mm-bone sections. Compact bone thickness was significantly different when comparing images acquired with different frequency encoding directions for both SE and SPGR sequences. Significant differences were identified in the frequency but not the phase encoding direction when measurements of compact bone in MR images were compared with measurements obtained from thin section radiographs for the majority of surfaces studied (P 0.05). Measurements of compact bone from out-of-phase SPGR sequences were significantly different than from in-phase sequences (P echo sequences.

  14. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    International Nuclear Information System (INIS)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D.

    2017-01-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  15. Noninvasive measurements of cardiac high-energy phosphate metabolites in dilated cardiomyopathy by using 31P spectroscopic chemical shift imaging

    International Nuclear Information System (INIS)

    Hansch, A.; Rzanny, R.; Heyne, J.-P.; Reichenbach, J.R.; Kaiser, W.A.; Leder, U.

    2005-01-01

    Dilated cardiomyopathy (DCM) is accompanied by an impaired cardiac energy metabolism. The aim of this study was to investigate metabolic ratios in patients with DCM compared to controls by using spectroscopic two-dimensional chemical shift imaging (2D-CSI). Twenty volunteers and 15 patients with severe symptoms (left ventricular ejection fraction, LVEF 30%) of DCM were investigated. Cardiac 31 P MR 2D-CSI measurements (voxel size: 40 x 40 x 100 mm 3 ) were performed with a 1.5 T whole-body scanner. Measurement time ranged from 15 min to 30 min. Peak areas and ratios of different metabolites were evaluated, including high-energy phosphates (PCr, ATP), 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters (PDE). In addition, we evaluated how PCr/ATP ratios correlate with LVEF as an established prognostic factor of heart failure. The PCr/γ-ATP ratio was significantly decreased in patients with moderate and severe DCM and showed a linear correlation with reduced LVEFs. PDE/ATP ratios were significantly increased only in patients with severe DCM as compared to volunteers. Applying 31 P MRS with commonly-available 2D-CSI sequences is a valuable technique to evaluate DCM by determining PCr/ATP ratios noninvasively. In addition to reduced PCr/ATP ratios observed in patients suffering from DCM, significantly-increased PDE/ATP ratios were found in patients with severe DCM. (orig.)

  16. Synthesis, three-dimensional structure, conformation and correct chemical shift assignment determination of pharmaceutical molecules by NMR and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azeredo, Sirlene O.F. de; Sales, Edijane M.; Figueroa-Villar, José D., E-mail: jdfv2009@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Grupo de Ressonância Magnética Nuclear e Química Medicinal

    2017-07-01

    This work includes the synthesis of phenanthrenequinone guanylhydrazone and phenanthro[9,10-e][1,2,4]triazin-3-amine to be tested as intercalate with DNA for treatment of cancer. The other synthesized product, 2-[(4-chlorophenylamino)methylene]malononitrile, was designed for future determination of its activity against leishmaniasis. A common problem about some articles on the literature is that some previously published compounds display error of their molecular structures. In this article it is shown the application of several procedures of nuclear magnetic resonance (NMR) to determine the complete molecular structure and the non questionable chemical shift assignment of the synthesized compounds, and also their analysis by molecular modeling to confirm the NMR results. To determine the capacity of pharmacological compounds to interact with biological targets is determined by docking. This work is to motivate the application of NMR and molecular modeling on organic synthesis, being a process that is very important for the study of the prepared compounds as interactions with biological targets by NMR. (author)

  17. (210)Pb content in natural gas pipeline residues ("black-powder") and its correlation with the chemical composition.

    Science.gov (United States)

    Godoy, José Marcus; Carvalho, Franciane; Cordilha, Aloisio; Matta, Luiz Ernesto; Godoy, Maria Luiza

    2005-01-01

    The present work was carried out to assess the (210)Pb content in "black-powder" found in pigging operations on gas pipelines in Brazil, in particular, on the Campos Basin gas pipeline. Additionally, the chemical composition of such deposits was determined and an eventual correlation with (210)Pb concentration evaluated. Typical "black-powder" generated in the natural gas pipeline from Campos Basin oilfield contains mainly iron oxide ( approximately 81%) and residual organic matter ( approximately 9%). The (210)Pb content ranges from 4.9 to 0.04k Bqkg(-1) and seems to be inversely correlated with the distance to the platforms. On the other hand, (226)Ra concentration is higher on the pipeline branch between the platform and the onshore installations. (228)Ra was only observed in few samples, in particular, in the samples with the highest (226)Ra content.

  18. Determination of chlorantraniliprole residues in crops by liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry/mass spectrometry.

    Science.gov (United States)

    Grant, Joann; Rodgers, Carol A; Chickering, Clark D; Hill, Sidney J; Stry, James J

    2010-01-01

    An analytical method is presented for the determination of chlorantraniliprole residues in crops. Chlorantraniliprole residues were extracted from crop matrixes with acetonitrile after a water soak. The extracts were passed through a strong anion-exchange (SAX) SPE cartridge stacked on top of a reversed-phase (RP) polymer cartridge. After both cartridges were rinsed and vacuum-dried, the SAX cartridge was removed, and chlorantraniliprole was eluted from the RP polymer cartridge with acetonitrile. The acetonitrile eluate was evaporated to dryness, reconstituted, and analyzed using an LC/MS/MS instrument equipped with an atmospheric pressure chemical ionization source. The method was successfully validated at 0.010, 0.10, and 10 mg/kg for the following crop matrixes: potatoes, sugar beets (tops), lettuce, broccoli, soybeans, soybean forage, tomatoes, cucumbers, oranges, apples, pears, peaches, almonds (nutmeat), rice grain, wheat grain, wheat hay, corn stover, alfalfa forage, cottonseed, grapes, and corn grain. The average recoveries from all crop samples fortified at the method LOQ ranged from 91 to 108%, with an overall average recovery of 97%. The average recoveries from all crop samples fortified at 10 times the method LOQ ranged from 89 to 115%, with an overall average recovery of 101%. For all of the fortified control samples analyzed in this study, the overall average recovery was 99%.

  19. A complete set of NMR chemical shifts and spin-spin coupling constants for L-Alanyl-L-Alanine zwitterion and analysis of its conformational behavior

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Buděšínský, Miloš; Špirko, Vladimír; Kapitán, Josef; Šebestík, Jaroslav; Sychrovský, Vladimír

    2005-01-01

    Roč. 127, - (2005), 17079-17089 ISSN 0002-7863 R&D Projects: GA AV ČR(CZ) IAA4055104; GA ČR(CZ) GA203/05/0388 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * chemical shifts * coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.419, year: 2005

  20. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  1. Automated Fragmentation Polarizable Embedding Density Functional Theory (PE-DFT) Calculations of Nuclear Magnetic Resonance (NMR) Shielding Constants of Proteins with Application to Chemical Shift Predictions

    DEFF Research Database (Denmark)

    Steinmann, Casper; Bratholm, Lars Andersen; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    that are comparable with experiment. The introduction of a probabilistic linear regression model allows us to substantially reduce the number of snapshots that are needed to make comparisons with experiment. This approach is further improved by augmenting snapshot selection with chemical shift predictions by which we...

  2. High-Frequency H-1 NMR Chemical Shifts of Sn-II and Pb-II Hydrides Induced by Relativistic Effects: Quest for Pb-II Hydrides

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 20 (2016), s. 10302-10309 ISSN 0020-1669 Institutional support: RVO:61388963 Keywords : hydrides of TlI and PbII * high-frequency 1H chemical shifts * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  3. High-Frequency C-13 and Si-29 NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of TII and Pb-II: Decisive Role of Relativistic Effects

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 4 (2016), s. 1770-1781 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : high-frequency NMR chemical shifts * HALA effect * relativistic DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  4. Monitoring heavy metals, residual agricultural chemicals and sulfites in traditional herbal decoctions.

    Science.gov (United States)

    Yu, In-Sil; Lee, Jeong-Sook; Kim, Sung-Dan; Kim, Yun-Hee; Park, Hae-Won; Ryu, Hoe-Jin; Lee, Jib-Ho; Lee, Jeong-Mi; Jung, Kweon; Na, Cheol; Joung, Jin-Yong; Son, Chang-Gue

    2017-03-14

    Asian traditional herbal preparations are frequently considered for the contamination with undeclared toxic or hazardous substances. The aim of this study was to determine the toxic heavy metals, pesticides and sulfur dioxide in decoctions that is a common form of final utilization in Korea. A total of 155 decoctions composed of multi-ingredient traditional herbs were randomly sampled from Seoul in Korea between 2013 and 2014. For each decoction, the concentrations of four heavy metals (arsenic, cadmium, lead and mercury), 33 pesticides and sulfur dioxide were analyzed using inductively coupled plasma mass spectrometry (ICP-MS), mercury analyzer, gas chromatography/nitrogen phosphorous detector (GC/NPD), gas chromatography/micro electron capture detector (GC/μECD), and Monier-Williams method respectively. One hundred fifty-two of One hundred fifty-five decoctions (98.1%) contained one of three heavy metals (96.1% for As, 97.4% for Cd, and 90.3% for Pb, 0.0% for Hg). Their average concentrations (77.0 ± 79.7 ug/kg for As, 20.4 ± 23.7 ug/kg for Cd, and 68.8 ± 76.5 ug/kg for Pb) were approximately 20% of the maximum allowable limits of vegetable or ginseng beverage described in the Korean Food Standard Codex while their 95th percentile concentrations were below than the guideline for them. None of 33 pesticides was detected in 155 decoction samples, and only one sample showed over limit of detection for residual sulfites. This study support that the contained status of toxic heavy metals, pesticides and sulfur dioxide in herbal decoctions are currently within safe level in Korea, and provide a reference data for the further studies focused on the safety herbal preparations.

  5. As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia Swingle) residues.

    Science.gov (United States)

    Marín-Rangel, Vania Marilyn; Cortés-Martínez, Raúl; Villanueva, Ruth Alfaro Cuevas; Garnica-Romo, Ma Guadalupe; Martínez-Flores, Héctor Eduardo

    2012-01-01

    The use of biosorbents to remove metals and metalloids from contaminated water systems has gained great usage in various parts of the world. The objective of the current study was to test lemon peels as biosorbents for As (V). Lemon peels were chemically characterized and arsenic contact experiments were performed to determine the adsorption capacity of the peels using different empirical models. The model that fit the experimental data was the Lagergren empirical model with a correlation coefficient of R= 0.8841. The results show that lemon peels were able to retain 474.8 μg of As (V)/g of biosorbent. Lemon agro-industrial waste can be useful in the removal of heavy metals, such as arsenic, from aqueous media. © 2011 Institute of Food Technologists®

  6. High SNR Acquisitions Improve the Repeatability of Liver Fat Quantification Using Confounder-corrected Chemical Shift-encoded MR Imaging.

    Science.gov (United States)

    Motosugi, Utaroh; Hernando, Diego; Wiens, Curtis; Bannas, Peter; Reeder, Scott B

    2017-10-10

    To determine whether high signal-to-noise ratio (SNR) acquisitions improve the repeatability of liver proton density fat fraction (PDFF) measurements using confounder-corrected chemical shift-encoded magnetic resonance (MR) imaging (CSE-MRI). Eleven fat-water phantoms were scanned with 8 different protocols with varying SNR. After repositioning the phantoms, the same scans were repeated to evaluate the test-retest repeatability. Next, an in vivo study was performed with 20 volunteers and 28 patients scheduled for liver magnetic resonance imaging (MRI). Two CSE-MRI protocols with standard- and high-SNR were repeated to assess test-retest repeatability. MR spectroscopy (MRS)-based PDFF was acquired as a standard of reference. The standard deviation (SD) of the difference (Δ) of PDFF measured in the two repeated scans was defined to ascertain repeatability. The correlation between PDFF of CSE-MRI and MRS was calculated to assess accuracy. The SD of Δ and correlation coefficients of the two protocols (standard- and high-SNR) were compared using F-test and t-test, respectively. Two reconstruction algorithms (complex-based and magnitude-based) were used for both the phantom and in vivo experiments. The phantom study demonstrated that higher SNR improved the repeatability for both complex- and magnitude-based reconstruction. Similarly, the in vivo study demonstrated that the repeatability of the high-SNR protocol (SD of Δ = 0.53 for complex- and = 0.85 for magnitude-based fit) was significantly higher than using the standard-SNR protocol (0.77 for complex, P < 0.001; and 0.94 for magnitude-based fit, P = 0.003). No significant difference was observed in the accuracy between standard- and high-SNR protocols. Higher SNR improves the repeatability of fat quantification using confounder-corrected CSE-MRI.

  7. Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kueker, W.; Mehnert, F.; Mader, I.; Naegele, T. [Department of Neuroradiology, University of Tuebingen Medical School, Hoppe-Seyler-Str. 3, 72076, Tuebingen (Germany); Ruff, J. [Siemens Medical Solutions, Erlangen (Germany); Gaertner, S. [Department of Neurology, University of Tuebingen Medical School, Tuebingen (Germany)

    2004-06-01

    Acute demyelinating lesions occur in various inflammatory disorders of the CNS. Apart from multiple sclerosis, most cases can be attributed to an overshooting immunological response to infectious agents called acute disseminated encephalomyelitis (ADEM). ADEM, which is mostly characterized by a monophasic course, has a multiphasic variant (MDEM). The early application of corticosteroids has been shown to be beneficial for the outcome; thus, an early diagnosis is highly desirable. Furthermore, the differential diagnosis ruling out neoplastic disorders may be difficult using conventional MRI alone. The potential diagnostic value of advanced MR techniques such as chemical shift imaging (CSI) and diffusion-weighted imaging (DWI) was investigated in a patient with MDEM, who had a new lesion in continuity with the initial disease manifestation. CSI was performed at 1.5 T with a long echo time of 135 ms for the evaluation of N-acetyl-aspartate (NAA) and choline (Cho) and with short TE of 30 ms for macromolecules (mm) and myo-Inositol (mI). DWI was performed using a single-shot isotropic EPI sequence. Whereas acute and chronic areas of demyelination were neither distinguishable on T2- nor on contrast-enhanced T1-weigted images, CSI and DWI revealed different metabolite concentrations and diffusion characteristics within the composite lesion, clearly separating acute from chronic areas of demyelination. In conclusion, the addition of CSI and DWI may add to the diagnostic power of MRI in the setting of demyelinating disorders by identifying areas of acute and chronic demyelination, even in the absence of contrast enhancement. (orig.)

  8. Using chemical-shift MR imaging to quantify fatty degeneration within supraspinatus muscle due to supraspinatus tendon injuries

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan; Yildirim, Nalan; Yazici, Zeynep [Uludag University Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey); Ercan, Ilker [Uludag University Medical Faculty, Department of Biostatistics, Gorukle, Bursa (Turkey)

    2010-12-15

    The objective of this study was to prospectively quantify the fatty degeneration of supraspinatus (SSP) muscle due to SSP tendon injuries by using chemical-shift magnetic resonance imaging (CS-MRI). Forty-one patients with suspected rotator cuff tear or impingement examined with MR arthrography were included in the study. The following images were obtained after injection of diluted gadolinium chelate into glenohumeral joint: fat-saturated T1-weighted spin echo in the coronal, axial, and sagittal-oblique plane; fat-saturated T2-weighted and intermediate-weighted fast spin-echo in the coronal-oblique plane; and T1-weighted spin echo in the sagittal-oblique plane. CS-MRI was performed in the coronal plane using a double-echo fast low-angle shot (FLASH) sequence. SSP tendon changes were classified as normal, tendinosis, and partial and complete tear according to MR arthrography findings. Fatty degeneration was quantified after measurement of signal intensity values within the region of interest (ROI) placed over SSP muscle. Signal intensity (SI) suppression ratio and SI index were calculated with the values obtained. Degrees of fatty degeneration depicted in normal subjects and subjects with rotator cuff injuries were compared. Median (min:max) was used as descriptive values. SI suppression ratio was -3.5% (-15.5:3.03) in normal subjects, whereas it was -13.5% (-28.55:-6.60), -30.7% (-41.5:-20.35), and -43.75% (-62:-24.90) in tendinosis, partial and complete tears, respectively. SI index was 0.75% (-6:11.5) in normal subjects. It was 10% (4.50:27), 26.5% (19.15:35.5), and 41% (23.9:57) in tendinosis, partial and complete tears, respectively. The increase in degree of fatty degeneration parallels the seriousness of tendon pathology. CS-MRI is a useful method for grading fat accumulation within SSP muscle. (orig.)

  9. Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Kueker, W.; Mehnert, F.; Mader, I.; Naegele, T.; Ruff, J.; Gaertner, S.

    2004-01-01

    Acute demyelinating lesions occur in various inflammatory disorders of the CNS. Apart from multiple sclerosis, most cases can be attributed to an overshooting immunological response to infectious agents called acute disseminated encephalomyelitis (ADEM). ADEM, which is mostly characterized by a monophasic course, has a multiphasic variant (MDEM). The early application of corticosteroids has been shown to be beneficial for the outcome; thus, an early diagnosis is highly desirable. Furthermore, the differential diagnosis ruling out neoplastic disorders may be difficult using conventional MRI alone. The potential diagnostic value of advanced MR techniques such as chemical shift imaging (CSI) and diffusion-weighted imaging (DWI) was investigated in a patient with MDEM, who had a new lesion in continuity with the initial disease manifestation. CSI was performed at 1.5 T with a long echo time of 135 ms for the evaluation of N-acetyl-aspartate (NAA) and choline (Cho) and with short TE of 30 ms for macromolecules (mm) and myo-Inositol (mI). DWI was performed using a single-shot isotropic EPI sequence. Whereas acute and chronic areas of demyelination were neither distinguishable on T2- nor on contrast-enhanced T1-weigted images, CSI and DWI revealed different metabolite concentrations and diffusion characteristics within the composite lesion, clearly separating acute from chronic areas of demyelination. In conclusion, the addition of CSI and DWI may add to the diagnostic power of MRI in the setting of demyelinating disorders by identifying areas of acute and chronic demyelination, even in the absence of contrast enhancement. (orig.)

  10. CHEMICAL COMPOSITION, DEGRADABILITY AND METHANE EMISSION POTENTIAL OF BANANA CROP RESIDUES FOR RUMINANTS

    Directory of Open Access Journals (Sweden)

    Lincoln Nunes Oliveira

    2014-08-01

    Full Text Available Banana leaf hay (BL, banana pseudostem hay (BP, coast-cross hay (CC, 50% coast-cross hay with 50% banana leaf (BLCC and 50% coast-cross hay with 50% pseudostem hay (BPCC were evaluated for chemical composition, cumulative gas production, dry matter degradability and methane emission potential. Inoculums from sheep and cattle were collected to tests. The experimental design was completely randomized in a factorial arrangement of 5 x 2, being data analysed by variance analysis and the means compared by Tukey test (5%. The crude protein levels for the substrates BL, BP, CC, BLCC and BPCC were respectively 13.8%, 3.5%, 8.6%, 9.7% and 6.1%. Despite its low protein level, the BP substrate had higher content of non-fibrous carbohydrates (28.4%, followed by BL (23.4%, BPCC (23.4%, BLCC (20.0% and CC (13.3%. The highest cumulative gas production was observed for BP (P < 0.05, reflecting their greater effective degradability (76.3%. This substrate showed the largest emissions of methane (34,16 mL/g DMD.

  11. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and {sup 31}P chemical shift anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zhengrong; Delaglio, Frank [National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Chemical Physics (United States); Tjandra, Nico [National Heart, Lung and Blood Institute, National Cancer Institute, National Institutes of Health, Laboratory of Biophysical Chemistry (United States); Zhurkin, Victor B. [National Cancer Institute, National Institutes of Health, Laboratory of Experimental and Computational Biology (United States); Bax, Ad [National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Chemical Physics (United States)

    2003-08-15

    The solution structure of d(CGCGAATTCGCG){sub 2} has been determined on the basis of an exceptionally large set of residual dipolar couplings. In addition to the heteronuclear {sup 13}C-{sup 1}H and {sup 15}N-{sup 1}H and qualitative homonuclear {sup 1}H-{sup 1}H dipolar couplings, previously measured in bicelle medium, more than 300 quantitative {sup 1}H-{sup 1}H and 22 {sup 31}P-{sup 1}H dipolar restraints were obtained in liquid crystalline Pf1 medium, and 22 {sup 31}P chemical shift anisotropy restraints. High quality DNA structures can be obtained solely on the basis of these new restraints, and these structures are in close agreement with those calculated previously on the basis of {sup 13}C-{sup 1}H and {sup 15}N-{sup 1}H dipolar couplings. In the newly calculated structures, {sup 31}P-{sup 1}H dipolar and {sup 3}JsubH3{sup '}Psub couplings and {sup 31}P CSA data restrain the phosphodiester backbone torsion angles. The final structure represents a quite regular B-form helix with a modest bending of {approx}10 deg., which is essentially independent of whether or not electrostatic terms are used in the calculation. Combined, the number of homo- and heteronuclear dipolar couplings significantly exceeds the number of degrees of freedom in the system. Results indicate that the dipolar coupling data cannot be fit by a single structure, but are compatible with the presence of rapid equilibria between C2{sup '}-endo and C3{sup '}-endo deoxyribose puckers (sugar switching). The C2{sup '}-H2{sup '}/H2{sup ''} dipolar couplings in B-form DNA are particularly sensitive to sugar pucker and yield the largest discrepancies when fit to a single structure. To resolve these discrepancies, we suggest a simplified dipolar coupling analysis that yields N/S equilibria for the ribose sugar puckers, which are in good agreement with previous analyses of NMR J{sub HH} couplings, with a population of the minor C3{sup '}-endo form higher for

  12. A retrospective cohort study of shift work and risk of cancer-specific mortality in German male chemical workers.

    Science.gov (United States)

    Yong, Mei; Nasterlack, Michael; Messerer, Peter; Oberlinner, Christoph; Lang, Stefan

    2014-02-01

    Human evidence of carcinogenicity concerning shift work is inconsistent. In a previous study, we observed no elevated risk of total mortality in shift workers followed up until the end of 2006. The present study aimed to investigate cancer-specific mortality, relative to shift work. The cohort consisted of male production workers (14,038 shift work and 17,105 day work), employed at BASF Ludwigshafen for at least 1 year between 1995 and 2005. Vital status was followed from 2000 to 2009. Cause-specific mortality was obtained from death certificates. Exposure to shift work was measured both as a dichotomous and continuous variable. While lifetime job history was not available, job duration in the company was derived from personal data, which was then categorized at the quartiles. Cox proportional hazard model was used to adjust for potential confounders, in which job duration was treated as a time-dependent covariate. Between 2000 and 2009, there were 513 and 549 deaths among rotating shift and day work employees, respectively. Risks of total and cancer-specific mortalities were marginally lower among shift workers when taking age at entry and job level into consideration and were statistically significantly lower when cigarette smoking, alcohol intake, job duration, and chronic disease prevalence at entry to follow-up were included as explanatory factors. With respect to mortality risks in relation to exposure duration, no increased risks were found in any of the exposure groups after full adjustment and there was no apparent trend suggesting an exposure-response relation with duration of shift work. The present analysis extends and confirms our previous finding of no excess risk of mortality associated with work in the shift system employed at BASF Ludwigshafen. More specifically, there is also no indication of an increased risk of mortality due to cancer.

  13. Solvent-induced chemical shifts of methoxyl nuclear resonance signals in chalcones by benzene and trifluoroacetic acid

    Science.gov (United States)

    Khurana, Shashi K.; Krishnamoorthy, V.; Parmar, Virinder S.

    The 1H NMR spectra of eight different methoxylated chalcones have separately been recorded, (1) in deuterated chloroform; (2) in a mixture (1:1) of deuterated chloroform and benzene; and (3) in a mixture of deuterated chloroform, benzene and trifluoroacetic acid (2:2:1) and the benzene induced and TFA induced shift values have been assigned to different methoxyl groups. These shift values can serve as a guide in determining the structures of natural or new chalcones. The steric, electronic and conformational factors are discussed to explain the shift values.

  14. 75 FR 57942 - Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2010-09-23

    ... fungicide sulfur dioxide (from sodium metabisulfite), in or on blueberry at 10 ppm. An adequate residue... tolerance in 40 CFR part 180 for residues of the fungicide oxytetracycline, in or on cucurbits, crop group 9..., proposes to establish a tolerance in 40 CFR part 180 for residues of the fungicide fluoxastrobin, (1E)-[2...

  15. 77 FR 43562 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2012-07-25

    ... refined oil, as no concentration of quinclorac residues is expected in these commodities. An adequate..., AG-539 ``Determination of Simazine, G-28279, and G-28273 Residues in Vegetables, Fruit, Grains, and..., AG-539 ``Determination of Simazine, G-28279, and G-28273 Residues in Vegetables, Fruit, Grains, and...

  16. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    Science.gov (United States)

    Joseph, D.; Basu, S.; Jha, S. N.; Bhattacharyya, D.

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH3CO2)2, Cu(CO3)2, and CuSO4 where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of ˜4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.

  17. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    Science.gov (United States)

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  18. Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    Science.gov (United States)

    Nelson, Matthew P.; Gardner, Charles W.; Klueva, Oksana; Tomas, David

    2014-05-01

    Passive, standoff detection of chemical, explosive and narcotic threats employing widefield, shortwave infrared (SWIR) hyperspectral imaging (HSI) continues to gain acceptance in defense and security fields. A robust and user-friendly portable platform with such capabilities increases the effectiveness of locating and identifying threats while reducing risks to personnel. In 2013 ChemImage Sensor Systems (CISS) introduced Aperio, a handheld sensor, using real-time SWIR HSI for wide area surveillance and standoff detection of explosives, chemical threats, and narcotics. That SWIR HSI system employed a liquid-crystal tunable filter for real-time automated detection and display of threats. In these proceedings, we report on a next generation device called VeroVision™, which incorporates an improved optical design that enhances detection performance at greater standoff distances with increased sensitivity and detection speed. A tripod mounted sensor head unit (SHU) with an optional motorized pan-tilt unit (PTU) is available for precision pointing and sensor stabilization. This option supports longer standoff range applications which are often seen at checkpoint vehicle inspection where speed and precision is necessary. Basic software has been extended to include advanced algorithms providing multi-target display functionality, automatic threshold determination, and an automated detection recipe capability for expanding the library as new threats emerge. In these proceedings, we report on the improvements associated with the next generation portable widefield SWIR HSI sensor, VeroVision™. Test data collected during development are presented in this report which supports the targeted applications for use of VeroVision™ for screening residue and bulk levels of explosive and drugs on vehicles and personnel at checkpoints as well as various applications for other secure areas. Additionally, we highlight a forensic application of the technology for assisting forensic

  19. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Novotný, J.; Straka, Michal; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R.

    2015-01-01

    Roč. 17, č. 38 (2015), s. 24944-24955 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : NMR chemical shifts * transition metal complexes * relativistic effects * method calibration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04214c

  20. Chemical modifiers for direct determination of cobalt in coal combustion residues by ultrasonic slurry-sampling-ETAAS

    Energy Technology Data Exchange (ETDEWEB)

    Felipe-Sotelo, M.; Carlosena, A.; Fernandez, E.; Lopez-Mahia, P.; Muniategui, S.; Prada, D. [Dept. of Analytical Chemistry, Univ. of La Coruna (Spain)

    2001-12-01

    Five modifiers were tested for the direct determination of cobalt in coal fly ash and slag by ultrasonic slurry-sampling electrothermal atomic absorption spectrometry (USS-ETAAS).The furnace temperature programs and the appropriate amount for each modifier were optimized to get the highest signal and the best separation between the atomic and background signals. Nitric acid (0.5% v/v) was the most adequate chemical modifier for cobalt determination, selecting 1450 C and 2100 C as pyrolysis and atomization temperatures, respectively. This modifier also acts as liquid medium for the slurry simplifying the procedure. The remaining modifiers enhanced the background signal, totally overlapped with cobalt peak. The method optimized gave a limit of detection of 0.36 {mu}g g{sup -1}, a characteristic mass of 13{+-}1 pg and an overall-method precision which is highly satisfactory (<7%, RSD). The method was validated by analyzing two certified coal fly ash materials, and satisfactory recoveries were obtained (83-90%) and no statistical differences were observed between the experimental and the certified cobalt concentrations. Additionally, certified sediment, soil and urban particulate matter were assayed; again good results were obtained. The developed methodology was used to determine cobalt in several coal combustion residues from five Spanish power plants. (orig.)

  1. Nonsuppressing normal thymus on chemical-shift MR imaging and anterior mediastinal lymphoma: differentiation with diffusion-weighted MR imaging by using the apparent diffusion coefficient.

    Science.gov (United States)

    Priola, Adriano Massimiliano; Priola, Sandro Massimo; Gned, Dario; Giraudo, Maria Teresa; Veltri, Andrea

    2018-04-01

    To prospectively evaluate usefulness of the apparent diffusion coefficient (ADC) in differentiating anterior mediastinal lymphoma from nonsuppressing normal thymus on chemical-shift MR, and to look at the relationship between patient age and ADC. Seventy-three young subjects (25 men, 48 women; age range, 9-29 years), who underwent chemical-shift MR and diffusion-weighted MR were divided into a normal thymus group (group A, 40 subjects), and a lymphoma group (group B, 33 patients). For group A, all subjects had normal thymus with no suppression on opposed-phase chemical-shift MR. Two readers measured the signal intensity index (SII) and ADC. Differences in SII and ADC between groups were tested using t-test. ADC was correlated with age using Pearson correlation coefficient. Mean SII±standard deviation was 2.7±1.8% for group A and 2.2±2.4% for group B, with no significant difference between groups (P=.270). Mean ADC was 2.48±0.38x10 -3 mm 2 /s for group A and 1.24±0.23x10 -3 mm 2 /s for group B. A significant difference between groups was found (Pnormal thymus at visual assessment • ADC is useful for distinguishing nonsuppressing normal thymus from mediastinal lymphoma • ADC is more accurate than transverse-diameter and surface-area in this discrimination • ADC of normal thymus is age dependent and increases with increasing age.

  2. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  3. MR imaging of osteonecrosis using frequency selective chemical shift sequences; Neue Aspekte in der MR-Diagnostik der Osteonekrose: Selektive Fett/Wasser-Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Duda, S.H. [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Laniado, M. [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Schick, F. [Inst. fuer Physik, Tuebingen Univ. (Germany)

    1993-12-31

    The MR appearance of osteonecrosis was assessed on selective fat- and water images to further evaluate the nature of double-line sign. Conventional T1- and T2-weighted SE and frequency selective chemical shift images of eight patients with avascular necrosis of the femoral head and three patients with bone infarcts were retrospectively reviewed. Eight of 11 patients showed a double-line sign on T2-weighted SE images. In these cases, correlation with selective water images revealed that a chemical shift artifact contributed to appearance and location of the hyperintense line. The authors conclude that chemical shift imaging improves our understanding of the nature of the double-line sign. (orig.) [Deutsch] Das MR-tomographische Erscheinungsbild der Osteonekrose auf selektiven Fett- und Wasserbildern wurde analysiert, um das in der Literatur beschriebene Doppellinienzeichen naeher zu untersuchen. Hierfuer wurden sowohl die herkoemmlichen T1- und T2-gewichteten Spin-Echo-Sequenzen herangezogen, als auch frequenzselektive Bilder, die aufgrund chemischer Verschiebung gewonnen wurden (1,5 T). Es wurden die Untersuchungen von acht Patienten mit avaskulaerer Hueftkopfnekrose und von drei Patienten mit Knocheninfarkten retrospektiv ausgewertet. Acht von 11 Patienten zeigten ein Doppellinienzeichen auf den T2-gewichteten Bildern. Die Korrelation mit den selektiven Wasserbildern ergab, dass durch chemische Verschiebung bedingte Artefakte das Erscheinungsbild und den Ort der hyperintensen Linie beeinflussten. Die Bildgebung mit Hilfe der chemischen Verschiebung verbessert unser Verstaendnis der MRT-Charakteristika der Osteonekrose. (orig.)

  4. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

    2013-06-01

    Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

  5. Reproducibility and influencing factors of 31P MR spectroscopy in rabbit liver with two-dimensional chemical shift imaging

    International Nuclear Information System (INIS)

    Yu Risheng; Sun Jianzhong; Ding Wenhong; Xu Xiufang; Wang Zhikang

    2009-01-01

    Objective: To investigate the reproducibility and influencing factors of relative quantification of phosphorus metabolites with two-dimensional chemical shift imaging (2D CSI) in rabbit liver. Methods: Using 2D CSI MRS, 500 ml phosphate (NaH 2 PO 4 ) solution phantom with 0.05 mol/L concentration and one healthy rabbit were scanned 30 times respectively in one day and rescanned 30 times in the next day, and the stability of MR scanner and reproducibility of within-run and between-days in the same individual were analyzed. Each of thirty rabbits was scanned and rescanned one time respectively in different days, and the reproducibility of between-days in one group was analyzed. The data were statistically analyzed with t tests. Results: (1) Phosphate solution phantom had a good reproducibility of within-run with the coefficient variation (CV) of 4.92% and 5.12% respectively in different two days. No significant change of phosphorus metabolites was detected in between-days, which was 16.68±0.82 and 16.56± 0.85 respectively (t=0.665, P>0.05). (2) The CV of metabolites in one healthy rabbit ranged from 8.04% to 34.13%. Among the metabolites, β-ATP had the best reproducibility with the CV less than 10%. PME was 0.88±0.28 and 0.88±0.30, PDE was 4.35±0.66 and 4.35±0.66, Pi was 0.95±0.30 and 0.97±0.28, α-ATP was 5.58±0.60 and 5.61±0.61, β-ATP was 2.70±0.22 and 2.71± 0.22, γ-ATP was 2.20±0.63 and 2.18±0.44 respectively, no significant changes of metabolites were detected in between-days (P>0.05). (3) The CV of metabolites in 30 healthy rabbits ranged from 8.48% to 36.21%. Among the metabolites, β-ATP had the best reproducibility with CV less than 10%. PME was 0.84±0.30 and 0.79±0.28, PDE was 4.29±0.72 and 3.94±0.84, Pi was 0.91±0.28 and 0.92± 0.31, α-ATP was 5.65±0.66 and 5.36±0.60, β-ATP was 2.71±0.23 and 2.66±0.25, γ-ATP was 2.07±0.29 and 1.99±0.37 respectively, no significant changes of metabolites were detected in between-days (P>0

  6. Identification of chemical signatures of gunshot residues in different fabrics; Identificacao de assinaturas quimicas em residuos de disparos de arma de fogo em diferentes alvos

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Joao Carlos Dias de

    2010-07-01

    The modern forensic science goes hand in hand with scientific research. The forensic scientists are faced every day with many cases requiring the analysis of residues from firing gun (gunshot residues). This works describes the development of a methodology to determine chemical signatures of shots from a firearm, by measuring the concentrations of Pb, Ba e Sb in the residues from these shots deposited near the entrance hole of bullets, based on the technique with high resolution inductively coupled plasma mass spectrometry (HRICP-MS). Shots were performed on five types of target-fabrics and collected testimonies from regions close to the entrance hole of projectiles. The results showed that the method enabled us to identify and distinguish the residues of the .38 caliber revolver and pistols .40 and 9mm caliber. The use of ternary graphs as a tool for data analysis helped to identify specific patterns of distribution of blank samples and gunshot residues deposited after firing revolvers and pistols. The methodology enabled the assignment of the origin of the shot through the confirmation of the residues collected also from the hands of shooters. As a result the methodology in police procedures and aims to add a valuable contribution to forensic investigations. (author)

  7. Risk assessment and risk management at the Canadian Food Inspection Agency (CFIA): a perspective on the monitoring of foods for chemical residues.

    Science.gov (United States)

    Bietlot, Henri P; Kolakowski, Beata

    2012-08-01

    The Canadian Food Inspection Agency (CFIA) uses 'Ranked Risk Assessment' (RRA) to prioritize chemical hazards for inclusion in monitoring programmes or method development projects based on their relative risk. The relative risk is calculated for a chemical by scoring toxicity and exposure in the 'risk model scoring system' of the Risk Priority Compound List (RPCL). The relative ranking and the risk management options are maintained and updated in the RPCL. The ranking may be refined by the data generated by the sampling and testing programs. The two principal sampling and testing programmes are the National Chemical Residue Monitoring Program (NCRMP) and the Food Safety Action Plan (FSAP). The NCRMP sampling plans focus on the analysis of federally registered products (dairy, eggs, honey, meat and poultry, fresh and processed fruit and vegetable commodities, and maple syrup) for residues of veterinary drugs, pesticides, environmental contaminants, mycotoxins, and metals. The NCRMP is complemented by the Food Safety Action Plan (FSAP) targeted surveys. These surveys focus on emerging chemical hazards associated with specific foods or geographical regions for which applicable maximum residue limits (MRLs) are not set. The data from the NCRMP and FSAP also influence the risk management (follow-up) options. Follow-up actions vary according to the magnitude of the health risk, all with the objective of preventing any repeat occurrence to minimize consumer exposure to a product representing a potential risk to human health. © Her Majesty the Queen in Right of Canada 2012. Drug Testing and Analysis © 2012 John Wiley & Sons, Ltd.

  8. Integrated ecological and chemical food web accumulation modeling explains PAH temporal trends during regime shifts in a shallow lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Wei; Qin, Ning; Liu, Wenxiu; Yang, Bin; Yang, Chen; Xu, Fuliu; Mooij, Wolf M; Koelmans, Albert A

    2017-08-01

    Shallow lakes can switch suddenly from a turbid situation with high concentrations of phytoplankton and other suspended solids to a vegetated state with clear water, and vice versa. These alternative stable states may have a substantial impact on the fate of hydrophobic organic compounds (HOCs). Models that are fit to simulate impacts from these complex interactions are scarce. We developed a contaminant fate model which is linked to an ecosystem model (PCLake) for shallow lakes. This integrated model was successful in simulating long-term dynamics (1953-2012) of representative polycyclic aromatic hydrocarbons (PAHs) in the main biotic and abiotic components in a large shallow lake (Chaohu in China), which has undergone regime shifts in this period. Historical records from sediment cores were used to evaluate the model. The model revealed that regime shifts in shallow lakes had a strong impact on the fate of less hydrophobic compounds due to the large storage capacity of macrophytes, which accumulated up to 55.6% of phenanthrene in the clear state. The abrupt disappearance of macrophytes after the regime shift resulted in a sudden change in phenanthrene distribution, as the sediment became the major sink. For more hydrophobic compounds such as benzo(a)pyrene, the modeled impact of the regime shift was negligible for the whole environment, yet large for biotic compartments. This study is the first to provide a full mechanistic analysis of the impact of regime shifts on the fate of PAHs in a real lake ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 77 FR 59578 - Notice of Filing of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2012-09-28

    ... 27419-8300, requests to establish tolerances in 40 CFR part 180 for residues of the fungicide isopyrazam... plants using a microcoulometric sulfur detection system. This method has been submitted to the EPA and is... residues of the fungicide mancozeb, in or on tangerine at 10 ppm. The proposed tolerances are to support...

  10. 76 FR 49396 - Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2011-08-10

    ... metabolites M320I04, and M320I23, the residues of concern in plants, and in crop matrices. In this method, residues of metaflumizone are extracted from plant matrices with methanol/water (70:30; v/v) and then... available on-line at http://www.regulations.gov , including any personal information provided, unless the...

  11. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Science.gov (United States)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  12. Hydrogen Atomic Positions of O-H···O Hydrogen Bonds in Solution and in the Solid State: The Synergy of Quantum Chemical Calculations with ¹H-NMR Chemical Shifts and X-ray Diffraction Methods.

    Science.gov (United States)

    Siskos, Michael G; Choudhary, M Iqbal; Gerothanassis, Ioannis P

    2017-03-07

    The exact knowledge of hydrogen atomic positions of O-H···O hydrogen bonds in solution and in the solid state has been a major challenge in structural and physical organic chemistry. The objective of this review article is to summarize recent developments in the refinement of labile hydrogen positions with the use of: (i) density functional theory (DFT) calculations after a structure has been determined by X-ray from single crystals or from powders; (ii) ¹H-NMR chemical shifts as constraints in DFT calculations, and (iii) use of root-mean-square deviation between experimentally determined and DFT calculated ¹H-NMR chemical shifts considering the great sensitivity of ¹H-NMR shielding to hydrogen bonding properties.

  13. Propoxur (2-iso propoxy-phenyl-N-methylcarbamate) residues in cocoa beans. Part of a coordinated programme on isotopic-tracer aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Adomako, D.

    1982-05-01

    Pod-bearing Amazon and Amelonado cocoa plants were sprayed with Unden 20% (propoxur, arprocarb, baygon) at the recommended rate of 210 g a.i./ha and twice the recommended rate at monthly intervals from July to October 1976, and cured beans from the ripe pods analysed for propoxur residues by gas chromatography. In a radiotracer study with 14 C-labelled propoxur, the effect of processing methods on residues and systemic uptake of propoxur from insecticide deposits on pod surfaces were also investigated. Residues did not exceed 0.03 mg/kg. There was no relationship between residues and harvesting time, cocoa type or rate of application. Contamination of beans with insecticide deposits on the pod surface during processing, and systemic uptake of insecticide from pod surfaces were negligible. Experiments were also designed to provide data on 14 C-propoxur residues in cocoa beans, uptake of the chemical from pod surfaces and persistence on the leaves and in the soil. Leaves were picked from the lowest five branches of the cocoa trees, 13 months after the application of 14 C-propoxur, dried at 80 0 for 4 days, stored and analysed for their 14 C-activity. Soil samples were collected at 15 cm and 30 cm distances from the trunk base of treated trees, dried, stored and analysed. The analytical procedure involved extraction and clean-up steps after a standard method using acetone, chloroform and a coagulating agent. Propoxur residues in cocoa leaves collected 13 months after the insecticide application ranged from 0.01 to 0.04 mg/kg. Residues in shells from cocoa pods treated with 14 C-propoxur 2 months prior to harvest did not exceed 0.02 mg/kg. Propoxur residues in soil samples collected at 6, 16, and 19 months following application ranged from 0.01 to 0.03 mg/kg. These low levels are probably related to volatilization and heavy rains. Possible binding to soil cannot be precluded. The low levels of propoxur are unlikely to present any toxicological hazard to humans

  14. Variation of the chemical contents and morphology of gunshot residue in the surroundings of the shooting pistol as a potential contribution to a shooting incidence reconstruction.

    Science.gov (United States)

    Brożek-Mucha, Zuzanna

    2011-07-15

    A study of the chemical contents and sizes of gunshot residue originating from 9×18mm PM ammunition, depositing in the vicinity of the shooting person was performed by means of scanning electron microscopy and energy dispersive X-ray spectrometry. Samples of the residue were collected from targets placed at various distances in the range 0-100cm as well as from hands and clothing of the shooting person. Targets were covered by fragments of white cotton fabric or black bovine leather. In the case of cotton targets microtraces were collected from circles of 5 and 10cm in radius. Results of the examinations in the form of numbers of particles, proportions of their chemical classes and dimensions revealed a dependence on the distance from the gun muzzle, both in the direction of shooting and in the opposite one, i.e., on the shooting person. The parameters describing gunshot residue differed also depending on the kind of the target substrate. The kind of obtained information gives rise to understanding the general rules of the dispersion of gunshot residue in the surroundings of the shooting gun. Thus, it may be utilised in the reconstruction of shooting incidences, especially in establishing the mutual positions of the shooter and other participants of the incident. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Stimulation of Tetrabromobisphenol A Binding to Soil Humic Substances by Birnessite and the Chemical Structure of the Bound Residues.

    Science.gov (United States)

    Tong, Fei; Gu, Xueyuan; Gu, Cheng; Xie, Jinyu; Xie, Xianchuan; Jiang, Bingqi; Wang, Yongfeng; Ertunc, Tanya; Schäffer, Andreas; Ji, Rong

    2016-06-21

    Studies have shown the main fate of the flame retardant tetrabromobisphenol A (TBBPA) in soils is the formation of bound residues, and mechanisms on it are less-understood. This study investigated the effect of birnessite (δ-MnO2), a naturally occurring oxidant in soils, on the formation of bound residues. (14)C-labeled TBBPA was used to investigate the pH dependency of TBBPA bound-residue formation to two soil humic acids (HAs), Elliott soil HA and Steinkreuz soil HA, in the presence of δ-MnO2. The binding of TBBPA and its transformation products to both HAs was markedly increased (3- to 17-fold) at all pH values in the presence of δ-MnO2. More bound residues were formed with the more aromatic Elliott soil HA than with Steinkreuz soil HA. Gel-permeation chromatography revealed a uniform distribution of the bound residues within Steinkreuz soil HA and a nonuniform distribution within Elliott soil HA. (13)C NMR spectroscopy of (13)C-TBBPA residues bound to (13)C-depleted HA suggested that in the presence of δ-MnO2, binding occurred via ester and ether and other types of covalent bonds besides HA sequestration. The insights gained in this study contribute to an understanding of the formation of TBBPA bound residues facilitated by δ-MnO2.

  16. 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: revealing J coupling and chemical shift two-dimensional correlations in disordered solids.

    Science.gov (United States)

    Guerry, Paul; Smith, Mark E; Brown, Steven P

    2009-08-26

    Two-dimensional (2D) variations in (2)J(P(1),P(1)), (2)J(P(1),P(2)), and (2)J(P(2),P(2)) are obtained--using the REINE (REfocused INADEQUATE spin-Echo) pulse sequence presented by Cadars et al. (Phys. Chem. Chem. Phys. 2007, 9, 92-103)--from pixel-by-pixel fittings of the spin-echo modulation for the 2D correlation peaks due to linked phosphate tetrahedra (P(1)-P(1), P(1)-P(2), P(2)-P(1), and P(2)-P(2)) in a (31)P refocused INADEQUATE solid-state MAS NMR spectrum of a cadmium phosphate glass, 0.575CdO-0.425P(2)O(5). In particular, separate variations for each 2D (31)P REINE peak are obtained which reveal correlations between the J couplings and the (31)P chemical shifts of the coupled nuclei that are much clearer than those evident in previously presented 2D z-filtered (31)P spin-echo spectra. Notably, such correlations between the J couplings and the (31)P chemical shifts are observed even though the conditional probability distributions extracted using the protocol of Cadars et al. (J. Am. Chem. Soc. 2005, 127, 4466-4476) indicate that there is no marked correlation between the (31)P chemical shifts of neighboring phosphate tetrahedra. For 2D peaks at the P(2) (31)P chemical shift in the direct dimension, there can be contributions from chains of three units (P(1)-P(2)-P(1)), chains of four units (P(1)-P(2)-P(2)-P(1)), or longer chains or rings (-P(2)-P(2)-P(2)-): for the representative glass considered here, best fits are obtained assuming a glass comprised predominantly of chains of four units. The following variations are found: (2)J(P(1),P(1)) = 13.4 +/- 0.3 to 14.8 +/- 0.5 Hz, (2)J(P(1),P(2)) = 15.0 +/- 0.3 to 18.2 +/- 0.3 Hz, and (2)J(P(2),P(2)) = 5.9 +/- 0.6 to 9.1 +/- 0.9 Hz from the fits to the P(1)-P(1), P(1)-P(2), and P(2)-P(2) peaks, respectively. The correlation of a particular J coupling with the (31)P chemical shifts of the considered nucleus and the coupled nucleus is quantified by the coefficients C(F(2)) and C(F(1)) that correspond to the

  17. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Liver steatosis (LS) evaluated through chemical-shift magnetic resonance imaging liver enzymes in morbid obesity; effect of weight loss obtained with intragastric balloon gastric banding.

    Science.gov (United States)

    Folini, Laura; Veronelli, Annamaria; Benetti, Alberto; Pozzato, Carlo; Cappelletti, Marco; Masci, Enzo; Micheletto, Giancarlo; Pontiroli, Antonio E

    2014-01-01

    The aim of this study was to evaluate in morbid obesity clinical and metabolic effects related to weight loss on liver steatosis (LS), measured through chemical-shift magnetic resonance imaging (MRI) and liver enzymes. Forty obese subjects (8 M/32 W; BMI 42.8 ± 7.12 kg/m(2), mean ± SD) were evaluated for LS through ultrasound (US-LS), chemical-shift MRI (MRI-LS), liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP)], anthropometric parameters [weight, BMI, waist circumference (WC)], lipids, insulin, insulin resistance (HOMA-IR), glycated hemoglobin (HbA1c), oral glucose tolerance test, and body composition [fat mass (FM) and fat-free mass (FFM) at bio-impedance analysis (BIA)]. Anthropometric measures, MRI-LS, BIA, and biochemical parameters were reevaluated 6 months later in 18 subjects undergoing restrictive bariatric approach, i.e., intragastric balloon (BIB, n = 13) or gastric banding (LAGB, n = 5), and in 13 subjects receiving hypocaloric diet. At baseline, US-LS correlates only with MRI-LS, and the latter correlates with ALT, AST, and GGT. After 6 months, subjects undergoing BIB or LAGB had significant changes of BMI, weight, WC, ALT, AST, GGT, ALP, HbA1c, insulin, HOMA-IR, FM, FFM, and MRI-LS. Diet-treated obese subjects had no significant change of any parameter under study; change of BMI, fat mass, and fat-free mass was significantly greater in LAGB/BIB subjects than in diet-treated subjects. Change of MRI-LS showed a significant correlation with changes in weight, BMI, WC, GGT, ALP, and basal MRI-LS. Significant weight loss after BIB or LAGB is associated with decrease in chemical-shift MRI-LS and with reduction in liver enzymes; chemical-shift MRI and liver enzymes allow monitoring of LS in follow-up studies.

  19. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  20. Refinement of labile hydrogen positions based on DFT calculations of 1H NMR chemical shifts: comparison with X-ray and neutron diffraction methods.

    Science.gov (United States)

    Siskos, Michael G; Choudhary, M Iqbal; Gerothanassis, Ioannis P

    2017-05-31

    Numerous gas phase electron diffraction, ultra-fast electron diffraction, X-ray and neutron diffraction experiments on β-dicarbonyl compounds exhibiting enol-enol tautomeric equilibrium, with emphasis on acetylacetone and dibenzoylmethane, have so far been reported with conflicting results on the structural details of the O-HO intramolecular hydrogen bond and resulted in alternative hypotheses on the intramolecular hydrogen bond potential function either a double minimum potential corresponding to two tautomeric forms in equilibrium or a single symmetrical one. We demonstrate herein, firstly, that the DFT calculated OH 1 H NMR chemical shifts of acetylacetone and dibenzoylmethane exhibit a strong linear dependence on the computed OO hydrogen bond length of ∼-50 ppm Å -1 and as a function of the O-HO bond angle of ∼1 ppm per degree, upon the transfer of the hydrogen atom from the ground state toward the transition state. Secondly, the refinement of labile hydrogen atomic positions in intramolecular hydrogen bonds based on the root-mean-square deviation between experimentally determined and DFT calculated 1 H NMR chemical shifts in solution can provide high resolution structures of O-H and O(H)O bond lengths and O-HO bond angles with an accuracy of ∼10 -2 Å and ∼0.5°, respectively. Thirdly, the calculated 1 H NMR chemical shifts in solution of the two ground state tautomers in equilibrium of acetylacetone and dibenzoylmethane are in excellent agreement with the experimental value, even for moderate basis sets for energy minimization. In contrast, the single symmetrical structure in a strongly delocalized system is a transition state with calculated 1 H NMR chemical shifts which strongly deviate from the experimental value. Fourth, the DFT calculated ground state O-H bond lengths of acetylacetone and dibenzoylmethane are in quantitative agreement with the literature data which take into account the effect of quantum nuclear motion. The DFT structural

  1. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2013-01-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives......). The decreasing electronegativity of the halogen substituent (F, Cl, Br and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions...

  2. Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol

    DEFF Research Database (Denmark)

    Hansen, Mads Anders Tengstedt; Jørgensen, Henning; Laursen, Kristian Holst

    2013-01-01

    Biochemical conversion of lignocellulose to fermentable carbohydrates for ethanol production is now being implemented in large-scale industrial production. Applying hydrothermal pretreatment and enzymatic hydrolysis for the conversion process, a residue containing substantial amounts of lignin...

  3. 77 FR 30481 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2012-05-23

    ...); dried shelled pea and bean, except soybean (subgroup 6C); corn, grain; corn, corn, sweet; soybeans; and... Method No. Meth-160, Revision 2. Residues are quantified by GC equipped with a nitrogen-phosphorous...

  4. [Cumulative risk assessment for consumers of agricultural crops polluted with one chemical class pesticide residues (case of triazole fungicides)].

    Science.gov (United States)

    Koval'chuk, N M; Omel'chuk, S T

    2011-01-01

    Different indices of cumulative risk assessment of combination of residues of pesticides which may simultaneously be present in raw agricultural crops, based on toxic evaluation of such combination have been presented. Risk for population health due to consumption of raw agricultural crops with triazole residues is acceptable on hazard index, point of departure index and cumulative risk index, exceeds allowable level on criterion "total margin of exposure".

  5. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees.

    Science.gov (United States)

    Wiggins, Natasha L; Forrister, Dale L; Endara, María-José; Coley, Phyllis D; Kursar, Thomas A

    2016-01-01

    Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.

  6. Three-way principal component analysis as a tool to evaluate the chemical stability of metal bearing residues from wastewater treatment by the ferrite process

    International Nuclear Information System (INIS)

    Pardo, Rafael; Vega, Marisol; Barrado, Enrique; Castrillejo, Yolanda; Sánchez, Isabel

    2013-01-01

    Highlights: • Metal fractionation of residues from the ferrite process was investigated by n-way PCA. • BCR sequential extraction procedure used for metal fractionation. • Tucker3 algorithm originated a coherent two-term trilinear model. • Metal fractionation patterns correlate with magnetic character of solids. -- Abstract: The chemical fractionation patterns of eight metals (Cd, Co, Cu, Cr, Mn, Ni, Pb and Zn) have been determined in 27 metal-bearing residues by using the BCR sequential extraction procedure. The residues were generated as by-products during the optimization of a semi-continuous reactor for metal removal from wastewater based on ferrite synthesis by co-precipitation. The three-dimensional X dataset (samples × metals × fractions) obtained by applying the BCR procedure has been analyzed by multivariate methods: matrix augmentation (MA-PCA) and three-way principal component analysis, 3-PCA (PARAFAC and Tucker3 models). MA-PCA and PARAFAC methods led to two-factor models giving a satisfactory but incomplete picture of the metal fractionation patterns, but the Tucker3 [2,1,2] model allowed to simultaneously describe both the ‘pseudo-total’ (acid-soluble) contents and the chemical fractionation by means of two non-null interactions g 111 and g 212 which explain 53.5% and 18.0% of the total variance, respectively. The A-mode loadings of the g 212 interaction showed the close relationship between the magnetic character of the solid residues, i.e. the crystalline structure, and the chemical fractionation patterns of the metals resulting from the application of the BCR sequential extraction procedure

  7. Persistence of endodontic methacrylate-based cement residues on dentin adhesive surface treated with different chemical removal protocols.

    Science.gov (United States)

    Kuga, Milton Carlos; Só, Marcus Vinicius Reis; De Campos, Edson Alves; Faria, Gisele; Keine, Kátia Cristina; Dantas, Andrea Abi Rached; Faria, Norberto Batista

    2012-10-01

    The aim of this study was to evaluate the persistence of methacrylate-based cement residues on the dentin, after dentin surface cleaning with ethanol or acetone, with or without previous application of a dentin adhesive. Forty bovine crown fragments were obtained and the dentin surface was washed with 1.0 mL of 2.5% sodium hypochlorite (NaOCl), followed by 0.1 mL of 17% ethylenediaminetetraacetic acid application for 3 min, and final irrigation with 2.5% NaOCl. The specimens were air dried and resin-based cement was rubbed onto the dentine surface with a microbrush applicator. In 20 specimens, previously to cement, a dentin adhesive was applied in all surfaces. After 15 min, the surface was scrubbed with a cotton pellet and moistened with ethanol or acetone, compounding the following groups: G1-99.5% ethanol and G2-acetone, without previous use of dentin adhesive; G3-99.5% ethanol and G4-acetone, with previous use of dentin adhesive. The dentin surface was scrubbed until the cement residues could not be visually detected. Sections were then processed for scanning electron microscopy and evaluated at 500× magnification and scores were attributed to each image according to the area covered by residual sealer, and data were subjected to Kruskal-Wallis at 5% significance. The lower residue presence was observed in G3 (P = 0.005). All surface presented cement residues when acetone was used as cleaning solution (P = 0.0005). The cleaning solutions were unable to completely remove the cement residues from both surfaces. The ethanol used after previous application of the dentin adhesive promoted the lower presence of residues. Copyright © 2012 Wiley Periodicals, Inc.

  8. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....

  9. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    Science.gov (United States)

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.

  10. 76 FR 17374 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2011-03-29

    ... analytical method for analysis in milk and fat is based on determination by LC/MS with confirmation by LC/MS... and JAU6476-4-hydroxy. The method for analysis of milk eliminated the initial extraction step in the... spectrometry (LC/MS/ MS) method. Enforcement methods for analysis of residues of imazapic and metabolite...

  11. 77 FR 75082 - Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2012-12-19

    ... analysis of milk eliminated the initial extraction step in the tissue method. Contact: Rosemary Kearns... method for analysis of large animal tissues includes extraction of the residues of concern, followed by... in animal meat, fat, liver and kidney matrices, poultry meat, fat, liver and skin, milk, cream and...

  12. 78 FR 11126 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2013-02-15

    ... may be warranted. Additional data may be needed before EPA can make a final determination on these...) purification. Detection and quantitation are conducted by gas chromatograph equipped with nitrogen phosphorus... outlining the ``Method Validation for the Determination of Residues of Halauxifen-methyl Ester, and...

  13. 75 FR 5790 - Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2010-02-04

    ... detecting fluopicolide and BAM in mustard greens has been submitted with this petition. The LOQ of fluopicolide and the metabolite in the analytical method for mustard greens is 10 parts per billion (ppb) (0.01... residues of the herbicide S-ethyl dipropylthiocarbamate (EPTC), in or on grasses grown for seed, hay at 0.1...

  14. 76 FR 69690 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2011-11-09

    ... detection of residues by gas chromatography using nitrogen phosphorous detection (GC/NPD). Contact: Andrew..., leafy greens, subgroup 5B at 15 ppm; turnip greens at 15 ppm; corn, sweet, kernel plus cob with husks removed at 0.01 ppm; corn, sweet, forage at 10 ppm; corn, sweet, stover at 30 ppm; vegetable, fruiting...

  15. 78 FR 33785 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2013-06-05

    ... chromatography with Nitrogen-Phosphorus detection (GC-NPD) has been developed and validated for residues of..., crop group 14, hulls at 15 ppm; grain, cereal, crop group 15, except rice grain at 4 ppm; sweet corn..., straw at 15 ppm; corn, field, grain at 0.02 ppm; corn, field, forage at 3 ppm; corn, field, stover at 15...

  16. 78 FR 13295 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Science.gov (United States)

    2013-02-27

    ... extraction of mandipropamid residues from crop samples by homogenization with acetonitrile: water (80:20 v/v...) methods D0603/02 (plants) and L0073/01 (livestock) is available to enforce the tolerance expression..., along with more information about dockets generally, is available at http://www.epa.gov/dockets . FOR...

  17. 75 FR 14154 - Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2010-03-24

    ... method employing high performance liquid chromatography/MS/MS (HPLC-MS/MS) with a limit of quantitation... requirement of a tolerance for residues of n-Octyl Alcohol (CAS No. 111-87-5) and n-Decyl Alcohol (CAS No. 112... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0012; FRL-8815-6] Notice of Receipt of Several...

  18. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of Western France.

    Directory of Open Access Journals (Sweden)

    Olivier Lambert

    Full Text Available The honey bee, Apis mellifera, is frequently used as a sentinel to monitor environmental pollution. In parallel, general weakening and unprecedented colony losses have been reported in Europe and the USA, and many factors are suspected to play a central role in these problems, including infection by pathogens, nutritional stress and pesticide poisoning. Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides and veterinary drug residues.A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC-MS/MS. The analysis revealed that 95.7%, 72.3% and 58.6% of the honey, honey bee and pollen samples, respectively, were contaminated by at least one compound. The frequency of detection was higher in the honey samples (n = 28 than in the pollen (n = 23 or honey bee (n = 20 samples, but the highest concentrations were found in pollen. Although most compounds were rarely found, some of the contaminants reached high concentrations that might lead to adverse effects on bee health. The three most frequent residues were the widely used fungicide carbendazim and two acaricides, amitraz and coumaphos, that are used by beekeepers to control Varroa destructor. Apiaries in rural-cultivated landscapes were more contaminated than those in other landscape contexts, but the differences were not significant. The contamination of the different matrices was shown to be higher in early spring than in all other periods.Honey bees, honeys and pollens are appropriate sentinels for monitoring pesticide and veterinary drug environmental pollution. This study revealed the widespread occurrence of multiple residues in beehive matrices and suggests a potential issue with the effects of these residues alone or in combination on honey bee health.

  19. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  1. Comparison of CT and chemical-shift MRI for differentiating thymoma from non-thymomatous conditions in myasthenia gravis: value of qualitative and quantitative assessment

    International Nuclear Information System (INIS)

    Priola, A.M.; Priola, S.M.; Gned, D.; Giraudo, M.T.; Fornari, A.; Veltri, A.

    2016-01-01

    Aim: To evaluate the usefulness of computed tomography (CT) and chemical-shift magnetic resonance imaging (MRI) in patients with myasthenia gravis (MG) for differentiating thymoma (THY) from thymic lymphoid hyperplasia (TLH) and normal thymus (NT), and to determine which technique is more accurate. Materials and methods: Eighty-three patients with generalised MG who underwent surgery were divided into the TLH/NT group (A; 65 patients) and THY group (B; 24 patients). Differences in qualitative characteristics and quantitative data (CT: radiodensity in Hounsfield units; MRI: signal intensity index [SII]) between groups were tested using Fisher's exact test and Student's t-test. Logistic regression models were estimated for both qualitative and quantitative analyses. At quantitative analysis, discrimination abilities were determined according to the area under the receiver operating characteristic (ROC) curve (AUROC) with computation of optimal cut-off points. The diagnostic accuracies of CT and MRI were compared using McNemar's test. Results: At qualitative assessment, MRI had higher accuracy than CT (96.4%, 80/83 and 86.7%, 72/83, respectively). At quantitative analysis, both the radiodensity and SII were significantly different between groups (p<0.0001). For CT, at quantitative assessment, the AUROC of the radiodensity in discriminating between groups was 0.904 (optimal cut-off point, 20 HU) with an accuracy of 77.1% (64/83). For MRI, the AUROC of the SII was 0.989 (optimal cut-off point, 7.766%) with an accuracy of 96.4% (80/83), which was significantly higher than CT (p<0.0001). By using optimal cut-off points for cases with an erroneous diagnosis at qualitative assessment, accuracy improved both for CT (89.2%, 74/83) and MRI (97.6%, 81/83). Conclusion: Quantitative analysis is useful in evaluating patients with MG and improves the diagnostic accuracy of CT and MRI based on qualitative assessment. Chemical-shift MRI is more reliable than CT in

  2. THE COMPARISON OF QUALITY AND CHEMICAL COMPOSITION OF BREADS BAKED WITH RESIDUAL AND COMMERCIAL OAT FLOURS AND WHEAT FLOUR

    Directory of Open Access Journals (Sweden)

    Dorota Litwinek

    2013-02-01

    Full Text Available The aim of the present work was to compare the quality and nutritional value of breads with 50% addition of oat flours of different origin (commercial and residual – a by-product obtained during production of β-glucan preparation to standard wheat bread. Commercial wheat and oat flours and residual oat flour, as well as wheat and 50/50% wheat/oat breads were used as material in this research. Quality of breads was evaluated by their volume, baking yield and total baking loss. Bread crumb texture profile was analyzed by texture analyzer TA.XT Plus. Organoleptic assesment was performed by 15 skilled pearson‘s panel. Moreover both in flours and breads protein, lipids, mineral compounds, dietary fiber (soluble and insoluble fraction and β-glucans content were analyzed by AOAC methods.

  3. Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects

    International Nuclear Information System (INIS)

    Guittet, M.J.; Gautier-Soyer, M.; Crocombette, J.P.

    2001-01-01

    The degree of ionic/covalent character in oxides has a great influence on the electronic structure and the material's properties. A simple phenomenological rule is currently used to predict the evolution of covalence/ionicity in mixed oxides compared to the parent ones, and is also widely used to interpret the x-ray photoelectron spectroscopy (XPS) binding-energy shifts of the cations in terms of charge transfer. We test the validity of this simple rule and its application to XPS of mixed oxides with a prototypical system: zircon ZrSiO 4 and parent oxides ZrO 2 and SiO 2 . The ionic charges on Si, Zr, and O were extracted from the density functional theory in the local density approximation calculations in the plane-wave formalism. In agreement with the predictions of the phenomenological rule, the most ionic cation (Zr) becomes more ionic in ZrSiO 4 than in ZrO 2 , while the more covalent one (Si) experiences a corresponding increase in covalence with respect to SiO 2 . The XPS chemical shifts of the O 1s, Si 2p, and Zr 3d 5/2 photoelectron lines in the three oxides were measured and the respective contributions of charge transfer and electrostatic effects (initial state), as well as extra-atomic relaxation effects (final state) evaluated. The validity of the phenomenological rule of mixed oxides used in x-ray electron spectroscopy as well as the opportunity to use the O1s binding-energy shifts to derive a scale of covalence in silicates is discussed

  4. Evaluation of the Aromaticity of a Non-Planar Carbon Nano-Structure by Nucleus-Independent Chemical Shift Criterion: Aromaticity of the Nitrogen- Doped Corannulene

    Directory of Open Access Journals (Sweden)

    A. Reisi-Vanani

    2014-04-01

    Full Text Available Substitution of two or four carbon atoms by nitrogen in the corannulene molecule as a carbon nanostructure was done and the obtained structures were optimized at MP2/6-31G(d level of theory. Calculations of the nucleus-independent chemical shift (NICS were performed to analyze the aromaticity of the corannulene rings and its derivatives upon doping with N at B3LYP/6-31G(d level of theory. Results showed NICS values in six-membered and five-membered rings of two and four N atoms doped corannulene are different and very dependent to number and position of the N atoms. The values of the mean NICS of all N-doped structures are more positive than intact corannulene that show insertion of N atom to the structures causes to decreasing aromaticity of them.

  5. 31P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging

    International Nuclear Information System (INIS)

    Koestler, H.; Beer, M.; Buchner, S.; Sandstede, J.; Pabst, T.; Kenn, W.; Hahn, D.

    2001-01-01

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac 31 P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders 31 P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.) [de

  6. Comparison of CT and chemical-shift MRI for differentiating thymoma from non-thymomatous conditions in myasthenia gravis: value of qualitative and quantitative assessment.

    Science.gov (United States)

    Priola, A M; Priola, S M; Gned, D; Giraudo, M T; Fornari, A; Veltri, A

    2016-03-01

    To evaluate the usefulness of computed tomography (CT) and chemical-shift magnetic resonance imaging (MRI) in patients with myasthenia gravis (MG) for differentiating thymoma (THY) from thymic lymphoid hyperplasia (TLH) and normal thymus (NT), and to determine which technique is more accurate. Eighty-three patients with generalised MG who underwent surgery were divided into the TLH/NT group (A; 65 patients) and THY group (B; 24 patients). Differences in qualitative characteristics and quantitative data (CT: radiodensity in Hounsfield units; MRI: signal intensity index [SII]) between groups were tested using Fisher's exact test and Student's t-test. Logistic regression models were estimated for both qualitative and quantitative analyses. At quantitative analysis, discrimination abilities were determined according to the area under the receiver operating characteristic (ROC) curve (AUROC) with computation of optimal cut-off points. The diagnostic accuracies of CT and MRI were compared using McNemar's test. At qualitative assessment, MRI had higher accuracy than CT (96.4%, 80/83 and 86.7%, 72/83, respectively). At quantitative analysis, both the radiodensity and SII were significantly different between groups (pquantitative assessment, the AUROC of the radiodensity in discriminating between groups was 0.904 (optimal cut-off point, 20 HU) with an accuracy of 77.1% (64/83). For MRI, the AUROC of the SII was 0.989 (optimal cut-off point, 7.766%) with an accuracy of 96.4% (80/83), which was significantly higher than CT (pqualitative assessment, accuracy improved both for CT (89.2%, 74/83) and MRI (97.6%, 81/83). Quantitative analysis is useful in evaluating patients with MG and improves the diagnostic accuracy of CT and MRI based on qualitative assessment. Chemical-shift MRI is more reliable than CT in differentiating THYs from non-thymomatous conditions. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Electronic structure and (1)H NMR chemical shifts in host-guest complexes of cucurbit[6]uril and sym-tetramethyl cucurbit[6]uril with imidazole derivatives.

    Science.gov (United States)

    Dixit, Priyanka H; Pinjari, Rahul V; Gejji, Shridhar P

    2010-10-14

    Binding patterns and (1)H NMR chemical shifts in the complexes of protonated N-(4-hydroxylphenyl)imidazole (g1), N-(4-aminophenyl)imidazole (g2), 2-phenylimidazole (g3) guests with cucurbit[6]uril (CB[6]), and sym-substituted tetramethyl cucurbit[6]uril (TMeCB[6]) in the gas phase as well as in water have been investigated using the density functional theory. It has been shown that the inclusion complexes of g1 and g2 with CB[6] or TMeCB[6] exhibit selective encapsulation of the phenyl moiety with its substituents binding to portal oxygens on the lower rim of the host and imidazole protons facilitate C-H···O interactions externally with upper rim ureido oxygens. On the other hand, the lowest-energy g3 complex encapsulates the imidazole ring within the host, engendering N-H···O interactions with portal oxygens on the upper rim of the host with the phenyl ring residing outside the cavity owing to an absence of para-substituent and show qualitatively different host-guest binding patterns. Calculated (1)H NMR spectra of the complexes in water reveal shielding of phenyl ring protons within the host cavity which exhibit signals at 0.2-0.5 ppm, whereas the protons of the imidazole ring participating in hydrogen bonded interactions exhibit deshielding, and the corresponding (1)H NMR signals are downshifted by 1.1-1.5 ppm in the spectra compared to those in the unbound guest. (1)H NMR chemical shifts of inclusion complexes thus obtained are in consonant with δ(H) patterns observed in experiments reported in the literature.

  8. 76 FR 2110 - Notice of Receipt of a Pesticide Petition Filed for Residues of Pesticide Chemicals in or on...

    Science.gov (United States)

    2011-01-12

    ... 0F7767. (EPA-HQ-OPP-2009-0996). Enviro Tech Chemical Services, Inc., 500 Winmoore Way, Modesto, CA 95358... potassium hypochlorite, in or on apple; artichoke; asparagus; brussel sprouts; carrot; cauliflower; celery...

  9. Prediction of the formation of biogenic non-extractable residues during degradation of environmental chemicals from biomass yields

    DEFF Research Database (Denmark)

    Trapp, Stefan; Brock, Andreas Libonati; Nowak, Karolina Malgorzata

    2018-01-01

    biomass (theoretical yield) based on Gibbs free energy and microbially available electrons. We compare estimated theoretical yields of biotechnological substrates and of chemicals of environmental concern with experimentally determined yields for validation of the presented approach. A five...

  10. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database.

    Science.gov (United States)

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L; Markley, John L; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-08-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including (1)H, (13)C and (15)N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001-2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  11. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  12. A data-oriented self-calibration and robust chemical-shift encoding by using clusterization (OSCAR): Theory, optimization and clinical validation in neuromuscular disorders.

    Science.gov (United States)

    Siracusano, G; La Corte, A; Gaeta, M; Finocchio, G

    2018-01-01

    Multi-echo Chemical Shift-Encoded (CSE) methods for Fat-Water quantification are growing in clinical use due to their ability to estimate and correct some confounding effects. State of the art CSE water/fat separation approaches rely on a multi-peak fat spectrum with peak frequencies and relative amplitudes kept constant over the entire MRI dataset. However, the latter approximation introduces a systematic error in fat percentage quantification in patients where the differences in lipid chemical composition are significant (such as for neuromuscular disorders) because of the spatial dependence of the peak amplitudes. The present work aims to overcome this limitation by taking advantage of an unsupervised clusterization-based approach offering a reliable criterion to carry out a data-driven segmentation of the input MRI dataset into multiple regions. Results established that the presented algorithm is able to identify at least 4 different partitions from MRI dataset under which to perform independent self-calibration routines and was found robust in NMD imaging studies (as evaluated on a cohort of 24 subjects) against latest CSE techniques with either calibrated or non-calibrated approaches. Particularly, the PDFF of the thigh was more reproducible for the quantitative estimation of pathological muscular fat infiltrations, which may be promising to evaluate disease progression in clinical practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. 75 FR 28009 - Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2010-05-19

    ...). Nissan Chemical Industries, Inc., 3-7-1, Kanda Nishiki-cho, Chiyoda-ku, Tokyo, Japan c/o Lewis & Harrison..., grain at 0.01 ppm. Adequate enforcement methodology LC/MS/MS analysis is available to enforce the... Environmental protection, Agricultural commodities, Feed additives, Food additives, Pesticides and pests...

  14. Chemical Control of Black Flies in Large Rivers as an Impact in Agrochemical Residue-Biota Interactions in Water Ecosystems

    International Nuclear Information System (INIS)

    Haufe, W.O.

    1981-01-01

    Livestock losses have been an obstacle to economic development of the farming and livestock industry in more northerly areas of Canada until two species of black fly, Simulium arcticum and S. luggeri, outbreaks are controlled effectively. The problem is complicated by its association with an abundance of large rivers and streams. Since effective control of black flies is presently limited to reduction of their breeding sources in flowing water, the managers of Canadian inland waters have been concerned about any major practice of using pesticides as black fly larvicides. Consequently, Canadian inland waters have been subject to continuous monitoring of major drainage systems with special attention to the chlorinated hydrocarbon insecticides. The latest status of residues was published from a Canadian Survey of 333 sampling locations between 1972 and 1975

  15. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  16. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0

  17. Influence of liming on residual soil respiration and chemical properties in a tropical no-tillage system

    Directory of Open Access Journals (Sweden)

    Adolfo Valente Marcelo

    2012-02-01

    Full Text Available Because of the climate changes occurring across the planet, especially global warming, the different forms of agricultural soil use have attracted researchers´ attention. Changes in soil management may influence soil respiration and, consequently, C sequestration. The objectives of this study were to evaluate the long-term influence of liming on soil respiration and correlate it with soil chemical properties after two years of liming in a no-tillage system. A randomized complete block design was used with six replications. The experimental treatments consisted of four lime rates and a control treatment without lime. Two years after liming, soil CO2 emission was measured and the soil sampled (layers 0-5, 5-10, 10-20, and 20-30 cm. The P, Ca2+ e Mg2+ soil contents and pH and base saturation were determined. CO2 emission from soil limed at the recommended rate was 24.1 % higher, and at twice the recommended rate, 47.4 % higher than from unlimed soil. Liming improved the chemical properties, and the linear increase in soil respiration rate correlated positively with the P, Ca2+ and Mg2+ soil contents, pH and base saturation, and negatively with H + Al and Al3+ contents. The correlation coefficient between soil respiration rate and chemical properties was highest in the 10-20 cm layer.

  18. Gas chromatographic determination of electron capture sensitive volatile industrial chemical residues in foods, using AOAC pesticide multiresidue extraction and cleanup procedures.

    Science.gov (United States)

    Yurawecz, M P; Puma, B J

    1986-01-01

    Electron capture (EC) gas chromatographic (GC) parameters have been developed for determining some of the more volatile industrial chemicals that can be determined by the AOAC multiresidue method for organochlorine and organophosphorus pesticides with modified GC operating conditions. Retention times relative to pentachlorobenzene are reported for 143 industrial chemicals, pesticides, and related compounds on OV-101 GC columns at 130 degrees C. Also reported for most of the compounds are recoveries from fortified samples carried through the AOAC extraction and cleanup procedures for fatty and/or nonfatty foods, Florisil elution characteristics, and GC relative retention times on mixed OV-101 + OV-210 columns at 130 degrees C. Our laboratory has used the modified EC/GC parameters with the AOAC multiresidue extraction/cleanup procedures to determine many volatile halogenated industrial chemical contaminants in foods, chiefly in samples of fresh-water fish. Other modifications of the AOAC method are described to improve the tentative identification and quantitative measurement of these volatile residues.

  19. Inhibition of thermolysin by phosphonamidate transition-state analogues: measurement of 31P-15N bond lengths and chemical shifts in two enzyme-inhibitor complexes by solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Copié, V; Kolbert, A C; Drewry, D H; Bartlett, P A; Oas, T G; Griffin, R G

    1990-10-02

    31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G

    2014-08-20

    The growing demand for renewable fuels has driven the interest in the utilization of alternative waste materials such as potato peel waste (PPW) which contains fermentable carbohydrate. Fermentation of PPW using a mixed microbial consortium yielded about 60% unreacted PPW fermentation residue (PPW-FR). The PPW and PPW-FR were characterized by a combination of Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, gas chromatography-mass spectrometry (GC-MS), and thermogravimetric analysis (TGA) to quantify changes after fermentation. Fermentation of PPW resulted in fermentation of starch and concentrating lignin plus suberin and lipids in PPW-FR. TGA analysis showed that decomposition peaks differed for PPW (423 °C) and PPW-FR (457 °C). Pyrolysis-GC/MS showed an increase in phenolic and long chain fatty acid compounds with a concomitant decrease in carbohydrate derived compounds in the PPW after fermentation. Both the PPW and PPW-FR have shown potential based on properties to be converted into crude biofuel via thermochemical processes.

  1. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  2. [Chemical residues and contaminants in food of animal origin in Brazil: history, legislation and actions of sanitary surveillance and other regulatory systems].

    Science.gov (United States)

    Spisso, Bernardete Ferraz; Nóbrega, Armi Wanderley de; Marques, Marlice Aparecida Sípoli

    2009-01-01

    Food safety became a relevant subject due to the increasing search for a better way of life and consciousness of the consumers to stand on one's rights to acquire healthy products. The use of substances in animals destined for human consumption requires from pharmacokinetics to residue depletion studies, with the establishment of limitative values so that do not constitute a risk to health. Beyond the substances used deliberately, others coming from environment contamination or contamination of feeding stuffs consumed by these animals may reach human through the diet. The aims of this paper are to collect and discuss the main federal acts covering chemical residues and contaminants in food of animal origin in Brazil, besides those on measures to control veterinary medicinal products and additives for use in animal nutrition. The chronological presentation of the legal basis intends to facilitate the interpretation of the acts inside respective political and economics scenarios. The actions proposed from the different agents involved into the regulatory systems are discussed from the public health point of view.

  3. Chemical shift effect predicting lymph node status in rectal cancer using high-resolution MR imaging with node-for-node matched histopathological validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongmei; Zhang, Chongda; Ye, Feng; Liu, Yuan; Zhou, Chunwu [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, ChaoYang District, Beijing (China); Zheng, Zhaoxu [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Colorectal Oncology, National Cancer Center/Cancer Hospital, ChaoYang District, Beijing (China); Zou, Shuangmei [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Pathology, National Cancer Center/Cancer Hospital, ChaoYang District, Beijing (China)

    2017-09-15

    To evaluate the value of the chemical shift effect (CSE) as well as other criteria for the prediction of lymph node status. Twenty-nine patients who underwent radical surgery of rectal cancers were studied with pre- and postoperative specimen MRI. Lymph nodes were harvested from transverse whole-mount specimens and compared with in vivo and ex vivo images to obtain a precise slice-for-section match. Preoperative MR characteristics including CSE, as well as other predictors, were evaluated by two readers independently between benign and metastatic nodes. A total of 255 benign and 35 metastatic nodes were obtained; 71.4% and 69.4% of benign nodes were detected with regular CSE for two readers, whereas 80.0% and 74.3% of metastatic nodes with absence of CSE. The CSE rendered areas under the ROC curve (AUC) of 0.879 and 0.845 for predicting nodal status for two readers. The criteria of nodal location, border, signal intensity and minimum distance to the rectal wall were also useful but with AUCs (0.629-0.743) lower than those of CSE. CSE is a reliable predictor for differentiating benign from metastatic nodes. Additional criteria should be taken into account when it is difficult to determine the nodal status by using only a single predictor. (orig.)

  4. Scan time reduction in ²³Na-Magnetic Resonance Imaging using the chemical shift imaging sequence: Evaluation of an iterative reconstruction method.

    Science.gov (United States)

    Weingärtner, Sebastian; Wetterling, Friedrich; Konstandin, Simon; Fatar, Marc; Neumaier-Probst, Eva; Schad, Lothar R

    2015-09-01

    To evaluate potential scan time reduction in (23)Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI (23)Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered (1)H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error scan time reduction with improved image quality compared to conventional methods of scan time saving. Copyright © 2014. Published by Elsevier GmbH.

  5. 2D relayed anisotropy correlation NMR: Characterization of the 13C' chemical shift tensor orientation in the peptide plane of the dipeptide AibAib

    International Nuclear Information System (INIS)

    Heise, Bert; Leppert, Joerg; Wenschuh, Holger; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2001-01-01

    An approach to the determination of the orientation of the carbonyl chemical shift (CS) tensor in a 13 C'- 15 N- 1 H dipolar coupled spin network is proposed. The method involves the measurement of the Euler angles of the 13 C'- 15 N and 15 N- 1 H dipolar vectors in the 13 C' CS tensor principal axes system, respectively, via a 13 C- 15 N REDOR experiment and by a 2D relayed anisotropy correlation of the 13 C' CSA (ω 2 ) and 15 N- 1 H dipolar interaction (ω 1 ). Via numerical simulations the sensitivity of the ω 1 cross sections of the 2D spectrum to the Euler angles of the 15 N- 1 H bond vector in the 13 C' CSA frame is shown. Employing the procedure outlined in this work, we have determined the orientation of the 13 C' CS tensor in the peptide plane of the dipeptide AibAib-NH 2 (Aib = α-aminoisobutyric acid). The Euler angles are found to be (χ CN , ψ CN ) = (34 deg. ± 2 deg., 88 deg. ± 2 deg.) and (χ NH , ψ NH ) = (90 deg. ± 10 deg., 80 deg. ± 10 deg.). From the measured Euler angles it is seen that the σ 33 and σ 22 components of the 13 C' CS tensor approximately lie in the peptide plane

  6. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  7. Hepatic steatosis assessment with 1H-spectroscopy and chemical shift imaging at 3.0 T before hepatic surgery: Reliable enough for making clinical decisions?

    International Nuclear Information System (INIS)

    Koelblinger, Claus; Krššák, Martin; Maresch, Judith; Wrba, Fritz; Kaczirek, Klaus; Gruenberger, Thomas; Tamandl, Dietmar; Ba-Ssalamah, Ahmed; Berger-Kulemann, Vanessa; Weber, Michael; Schima, Wolfgang

    2012-01-01

    Purpose: To compare the accuracy of liver fat quantification using chemical shift imaging (CSI) and H1 MR-spectroscopy (MRS) at 3.0 T in patients undergoing liver resection. Methods: Totally 35 patients were included in this prospective IRB approved study. The histopathologically assessed liver fat was compared to the hepatic fat fractions calculated with CSI (with and without spleen correction) and MRS. Spearman's rank correlation and Fisher z-test were used for correlation analysis. Sensitivity and specificity regarding the detection of marked steatosis were calculated for the different modalities and compared using the McNemar test. Results: MRS (r = .85) and CSI with spleen correction (r = .85) showed a significantly better correlation (p = .03) with histology compared to CSI without spleen correction (r = .67). Sensitivity and specificity for the detection of marked steatosis was 100% (12/12) and 87% (20/23) for MRS and 92% (11/12) and 83% (19/23) for CSI with spleen correction (p > .12). Conclusion: For the assessment of hepatic steatosis both CSI with spleen correction and MRS at 3.0 T, show a good correlation with histology. CSI without spleen correction should not be used. Sensitivity and specificity for the detection of marked steatosis are high with both modalities. However, results that are scattered around the cut-off values are not reliable enough for clinical decisions.

  8. Comparison of diffusion-weighted images using short inversion time inversion recovery or chemical shift selective pulse as fat suppression in patients with breast cancer

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Nasu, Katsuhiro; Kuroki, Yoshifumi; Nawano, Shigeru; Ito, Hisao

    2009-01-01

    Fat suppression is essential for diffusion-weighted imaging (DWI) in the body. However, the chemical shift selective (CHESS) pulse often fails to suppress fat signals in the breast. The purpose of this study was to compare DWI using CHESS and DWI using short inversion time inversion recovery (STIR) in terms of fat suppression and the apparent diffusion coefficient (ADC) value. DWI using STIR, DWI using CHESS, and contrast-enhanced T1-weighted images were obtained in 32 patients with breast carcinoma. Uniformity of fat suppression, ADC, signal intensity, and visualization of the breast tumors were evaluated. In 44% (14/32) of patients there was insufficient fat suppression in the breasts on DWI using CHESS, whereas 0% was observed on DWI using STIR (P<0.0001). The ADCs obtained for DWI using STIR were 4.3% lower than those obtained for DWI using CHESS (P<0.02); there was a strong correlation of the ADC measurement (r=0.93, P<0.001). DWI using STIR may be excellent for fat suppression; and the ADC obtained in this sequence was well correlated with that obtained with DWI using CHESS. DWI using STIR may be useful when the fat suppression technique in DWI using CHESS does not work well. (author)

  9. Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA damage and residue analysis

    International Nuclear Information System (INIS)

    Meyers-Schoene, L.; Shugart, L.R.; Beauchamp, J.J.; Walton, B.T.

    1993-01-01

    Two species of turtles that occupy different ecological niches were compared for their usefulness as monitors of freshwater ecosystems where both low-level radioactive and nonradioactive contaminants are present. The pond slider (Trachemys scripta) and common snapping turtle (Chelydra serpentina) were analyzed for the presence of 90 Sr, 137 Cs, 60 Co, and Hg, radionuclides and chemicals known to be present at the contaminated site, and single-strand breaks in liver DNA. The integrity of the DNA was examined by the alkaline unwinding assay, a technique that detects strand breaks as a biological marker of possible exposure to genotoxic agents. This measure of DNA damage was significantly increased in both species of turtles at the contaminated site compared with turtles of the same species at a reference site, and shows that contaminant-exposed populations were under more severe genotoxic stress than those at the reference site. The level of strand breaks observed at the contaminated site was high and in the range reported for other aquatic species exposed to deleterious concentrations of genotoxic agents such as chemicals and ionizing radiation. Statistically significantly higher concentrations of radionuclides and Hg were detected in the turtles from the contaminated area. Mercury concentrations were significantly higher in the more carnivorous snapping turtle compared with the slider; however, both species were effective monitors of the contaminants

  10. Qualidade química da água residual da criação de peixes para cultivo de alface em hidroponia Chemical quality of residual water from fish breeding tanks for cultivation of hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Glauco E. P. Cortez

    2009-08-01

    Full Text Available Com o objetivo de avaliar a associação do cultivo de alface em hidroponia com utilização dos resíduos do sistema de criação intensiva de peixe, desenvolveu-se um trabalho no Centro de Aqüicultura, na FCAV-UNESP, Campus de Jaboticabal, SP. A integração foi projetada para que a água circulasse de maneira fechada entre os sistemas, passando pelos tanques de criação de peixes, por um decantador, para remo��ão dos resíduos por um reservatório para conversão biológica da amônia em nitrato e pelo sistema hidropônico, retornando aos tanques de criação dos peixes. Foram avaliadas três cultivares de alface, que constituíram os tratamentos com quatro repetições. Os resultados da análise química da água residual da criação indicaram a presença da maioria dos nutrientes minerais necessários ao desenvolvimento vegetal, em concentração próxima aos valores encontrados em soluções nutritivas utilizadas para o cultivo da alface em hidroponia, exceto potássio e magnésio. A baixa concentração de magnésio na água não impediu o desenvolvimento da alface; entretanto, as plantas indicaram sintomas visuais de deficiência deste nutriente. Não houve diferenças entre as cultivares quanto à produtividade e ao peso fresco de plantas.Aiming to evaluate the association of hydroponic lettuce cultivation with residues from a fish intensive breeding system, a project was carried out in the Aquaculture Center in the FCAV-UNESP at Jaboticabal, SP, Brazil. A closed system was designed in order to allow the water to circulate through the fish tanks, a clarifier tank for removal of residues, a reservoir for biological conversion of ammonia into nitrate, and the hydroponic system. After this process, water returned back to the fish tanks. Three varieties of lettuce, constituting the treatments with four repetitions were evaluated. The results of the chemical analysis of the residual water from the fish tanks indicated the presence of

  11. Proton resonance frequency chemical shift thermometry: experimental design and validation toward high-resolution noninvasive temperature monitoring and in vivo experience in a nonhuman primate model of acute ischemic stroke.

    Science.gov (United States)

    Dehkharghani, S; Mao, H; Howell, L; Zhang, X; Pate, K S; Magrath, P R; Tong, F; Wei, L; Qiu, D; Fleischer, C; Oshinski, J N

    2015-06-01

    Applications for noninvasive biologic temperature monitoring are widespread in biomedicine and of particular interest in the context of brain temperature regulation, where traditionally costly and invasive monitoring schemes limit their applicability in many settings. Brain thermal regulation, therefore, remains controversial, motivating the development of noninvasive approaches such as temperature-sensitive nuclear MR phenomena. The purpose of this work was to compare the utility of competing approaches to MR thermometry by using proton resonance frequency chemical shift. We tested 3 methodologies, hypothesizing the feasibility of a fast and accurate approach to chemical shift thermometry, in a phantom study at 3T. A conventional, paired approach (difference [DIFF]-1), an accelerated single-scan approach (DIFF-2), and a new, further accelerated strategy (DIFF-3) were tested. Phantom temperatures were modulated during real-time fiber optic temperature monitoring, with MR thermometry derived simultaneously from temperature-sensitive changes in the water proton chemical shift (∼0.01 ppm/°C). MR thermometry was subsequently performed in a series of in vivo nonhuman primate experiments under physiologic and ischemic conditions, testing its reproducibility and overall performance. Chemical shift thermometry demonstrated excellent agreement with phantom temperatures for all 3 approaches (DIFF-1: linear regression R(2) = 0.994; P thermometry and present in vivo applications under physiologic and ischemic conditions in a primate stroke model. © 2015 by American Journal of Neuroradiology.

  12. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    Science.gov (United States)

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  13. A 1H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Kobayashi, Teruya; Yoshikiyo, Keisuke; Matsui, Yoshihisa; Takahashi, Tetsuya; Aso, Yuji

    2009-02-01

    A 1H NMR spectroscopic study showed that the side chains of Trp residues of chicken egg white lysozyme in an aqueous solution are included by Glucosyl-β-cyclodextrin (G1-β-CD). The 1H NMR signals due to Trp residues shifted with the addition of G1-β-CD. The addition of methyl α- D-glucopyranoside, which has no inclusion ability, gave different effect on the shift of 1H NMR signals. The 1H NMR signals due to Cys64 and Ile98 were also influenced to a considerable extent with the addition of G1-β-CD, suggesting that these hydrophobic amino acid residues are also included by the CD. The chemical shift values of 1H NMR signals, due to indole rings of tryptophan residues, changed more with the addition of G1-β-CD. The magnitudes of the chemical shift change were different depending on their locations in the protein. The chemical shift values of 1H NMR signals, due to those Trp residues in the active site of the lysozyme were smaller than those locating at relatively near the surface of the protein.

  14. Gestão integrada de resíduos químicos em instituições de ensino superior Integrated management for chemical residues in academic institutions

    Directory of Open Access Journals (Sweden)

    Patricia Carla Giloni-Lima

    2008-01-01

    Full Text Available Since chemical residues management must be seriously considered at institutions of higher education and due to the relevance of this subject for students, this work proposes the involvement of the scientific community in the establishment of a program for management of chemical residues at universities, starting with a committee, to coordinate the process. The program should integrate the entire scientific community in an organized effort. The program involves legislative, educational and environmental management aspects, with environmental education as an important tool to integrate all the administrative areas of a chemistry department.

  15. Shifting Attention

    Science.gov (United States)

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  16. Novel aggregate formation of a frame-shift mutant protein of tissue-nonspecific alkaline phosphatase is ascribed to three cysteine residues in the C-terminal extension. Retarded secretion and proteasomal degradation.

    Science.gov (United States)

    Komaru, Keiichi; Ishida, Yoko; Amaya, Yoshihiro; Goseki-Sone, Masae; Orimo, Hideo; Oda, Kimimitsu

    2005-04-01

    In the majority of hypophosphatasia patients, reductions in the serum levels of alkaline phosphatase activity are caused by various missense mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. A unique frame-shift mutation due to a deletion of T at cDNA number 1559 [TNSALP (1559delT)] has been reported only in Japanese patients with high allele frequency. In this study, we examined the molecular phenotype of TNSALP (1559delT) using in vitro translation/translocation system and COS-1 cells transiently expressing this mutant protein. We showed that the mutant protein not only has a larger molecular size than the wild type enzyme by approximately 12 kDa, reflecting an 80 amino acid-long extension at its C-terminus, but that it also lacks a glycosylphosphatidylinositol anchor. In support of this, alkaline phosphatase activity of the cells expressing TNSALP (1559delT) was localized at the juxtanucleus position, but not on the cell surface. However, only a limited amount of the newly synthesized protein was released into the medium and the rest was polyubiquitinated, followed by degradation in the proteasome. SDS/PAGE and analysis by sucrose-density-gradient analysis indicated that TNSALP (1559delT) forms a disulfide-bonded high-molecular-mass aggregate. Interestingly, the aggregate form of TNSALP (1559delT) exhibited a significant enzyme activity. When all three cysteines at positions of 506, 521 and 577 of TNSALP (1559delT) were replaced with serines, the aggregation disappeared and instead this modified mutant protein formed a noncovalently associated dimer, strongly indicating that these cysteine residues in the C-terminal region are solely responsible for aggregate formation by cross-linking the catalytically active dimers. Thus, complete absence of TNSALP on cell surfaces provides a plausible explanation for a severe lethal phenotype of a homozygote hypophosphatasia patient carrying TNSALP (1559delT).

  17. Anatomical Variation of Age-Related Changes in Vertebral Bone Marrow Composition Using Chemical Shift Encoding-Based Water–Fat Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Thomas Baum

    2018-04-01

    Full Text Available Assessment of vertebral bone marrow composition has been proposed as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. We investigated the anatomical variation of age-related changes of vertebral proton density fat fraction (PDFF using chemical shift encoding-based water–fat magnetic resonance imaging (MRI. 156 healthy subjects were recruited (age range 20–29 years: 12/30 males/females; 30–39: 15/9; 40–49: 4/14; 50–59: 9/27; 60–69: 5/19; 70–79: 4/8. An eight-echo 3D spoiled gradient-echo sequence at 3T MRI was used for chemical shift-encoding based water–fat separation at the lumbar spine. Vertebral bodies of L1–L4 were manually segmented to extract PDFF values at each vertebral level. PDFF averaged over L1–L4 was significantly (p < 0.05 higher in males than females in the twenties (32.0 ± 8.0 vs. 27.2 ± 6.0% and thirties (35.3 ± 6.7 vs. 27.3 ± 6.2%. With increasing age, females showed an accelerated fatty conversion of the bone marrow compared to men with no significant (p > 0.05 mean PDFF differences in the forties (32.4 ± 8.4 vs. 34.5 ± 6.8% and fifties (42.0 ± 6.1 vs. 40.5 ± 9.7%. The accelerated conversion process continued resulting in greater mean PDFF values in females than males in the sixties (40.2 ± 6.9 vs. 48.8 ± 7.7%; p = 0.033 and seventies (43.9 ± 7.6 vs. 50.5 ± 8.2%; p = 0.208, though the latter did not reach statistical significance. Relative age-related PDFF change from the twenties to the seventies increased from 16.7% (L1 to 51.4% (L4 in males and 76.8% (L1 to 85.7% (L4 in females. An accelerated fatty conversion of bone marrow was observed in females with increasing age particularly evident after menopause. Relative age-related PDFF changes showed an anatomical variation with most pronounced changes at lower lumbar vertebral levels in both sexes.

  18. The use of chemical shift temperature gradients to establish the paramagnetic susceptibility tensor orientation: Implication for structure determination/refinement in paramagnetic metalloproteins

    International Nuclear Information System (INIS)

    Xia Zhicheng; Nguyen, Bao D.; La Mar, Gerd N.

    2000-01-01

    The use of dipolar shifts as important constraints in refining molecular structure of paramagnetic metalloproteins by solution NMR is now well established. A crucial initial step in this procedure is the determination of the orientation of the anisotropic paramagnetic susceptibility tensor in the molecular frame which is generated interactively with the structure refinement. The use of dipolar shifts as constraints demands knowledge of the diamagnetic shift, which, however, is very often not directly and easily accessible. We demonstrate that temperature gradients of dipolar shifts can serve as alternative constraints for determining the orientation of the magnetic axes, thereby eliminating the need to estimate the diamagnetic shifts. This approach is tested on low-spin, ferric sperm whale cyanometmyoglobin by determining the orientation, anisotropies and anisotropy temperature gradients by the alternate routes of using dipolar shifts and dipolar shift gradients as constraints. The alternate routes ultimately lead to very similar orientation of the magnetic axes, magnetic anisotropies and magnetic anisotropy temperature gradients which, by inference, would lead to an equally valid description of the molecular structure. It is expected that the use of the dipolar shift temperature gradients, rather than the dipolar shifts directly, as constraints will provide an accurate shortcut in a solution structure determination of a paramagnetic metalloprotein

  19. Comparison of modified two-point dixon and chemical shift encoded MRI water-fat separation methods for fetal fat quantification.

    Science.gov (United States)

    Giza, Stephanie A; Miller, Michael R; Parthasarathy, Prasiddha; de Vrijer, Barbra; McKenzie, Charles A

    2018-01-10

    Fetal fat is indicative of the energy balance within the fetus, which may be disrupted in pregnancy complications such as fetal growth restriction, macrosomia, and gestational diabetes. Water-fat separated MRI is a technique sensitive to tissue lipid content, measured as fat fraction (FF), and can be used to accurately measure fat volumes. Modified two-point Dixon and chemical shift encoded MRI (CSE-MRI) are water-fat separated MRI techniques that could be applied to imaging of fetal fat. Modified two-point Dixon has biases present that are corrected in CSE-MRI which may contribute to differences in the fat measurements. To compare the measurement of fetal fat volume and FF by modified two-point Dixon and CSE-MRI. Cross-sectional study for comparison of two MRI pulse sequences. Twenty-one pregnant women with singleton pregnancies. 1.5T, modified two-point Dixon and CSE-MRI. Manual segmentation of total fetal fat volume and mean FF from modified 2-point Dixon and CSE-MRI FF images. Reliability was assessed by calculating the intraclass correlation coefficient (ICC). Agreement was assessed using a one-sample t-test on the fat measurements difference values (modified two-point Dixon - CSE-MRI). The difference scores were tested against a value of 0, which would indicate that the measurements were identical. The fat volume and FF measured by modified two-point Dixon and CSE-MRI had excellent reliability, demonstrated by ICCs of 0.93 (P Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla.

    Science.gov (United States)

    Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J

    2006-03-31

    Altered high energy and membrane metabolism, measured with phosphorus magnetic resonance spectroscopy (31P-MRS), has been inconsistently reported in schizophrenic patients in several anatomical brain regions implicated in the pathophysiology of this illness, with little attention to the effects of brain tissue type on the results. Tissue regression analysis correlates brain tissue type to measured metabolite levels, allowing for the extraction of "pure" estimated grey and white matter compartment metabolite levels. We use this tissue analysis technique on a clinical dataset of first episode schizophrenic patients and matched controls to investigate the effect of brain tissue specificity on altered energy and membrane metabolism. In vivo brain spectra from two regions, (a) the fronto-temporal-striatal region and (b) the frontal-lobes, were analyzed from 12 first episode schizophrenic patients and 11 matched controls from a (31)P chemical shift imaging (CSI) study at 4 Tesla (T) field strength. Tissue regression analyses using voxels from each region were performed relating metabolite levels to tissue content, examining phosphorus metabolite levels in grey and white matter compartments. Compared with controls, the first episode schizophrenic patient group showed significantly increased adenosine triphosphate levels (B-ATP) in white matter and decreased B-ATP levels in grey matter in the fronto-temporal-striatal region. No significant metabolite level differences were found in grey or white matter compartments in the frontal cortex. Tissue regression analysis reveals grey and white matter specific aberrations in high-energy phosphates in first episode schizophrenia. Although past studies report inconsistent regional differences in high-energy phosphate levels in schizophrenia, the present analysis suggests more widespread differences that seem to be strongly related to tissue type. Our data suggest that differences in grey and white matter tissue content between past

  1. Effect of Araxa rockphosphate and simple superphosphate on some physico-chemical properties and on the available residual P of an oxic Paleudalf

    International Nuclear Information System (INIS)

    Urquiaga C, S.; Reichardt, K.; Libardi, P.L.

    The experiment was developed using soil samples (TRE, Oxic Paleudalfs) from the Experimental Field Station of ESALQ, located in Piracicaba, SP, Brazil. This soil had received during the period of three years 6 ton/ha of Araxa Rockphosphate (34.6% P 2 O 5 ) or 0.5 ton/ha of Simple Superphosphate (20% P 2 O 5 ) while three crops of beans (Phaseolus vulgaris, L.) were grown. This greenhouse experiment had the objective of evaluating the effect of these fertilizer applications on some physico-chemical properties of the soil, and also study the residual P effect through the Olsen and 'A value' methods. Results indicate that Araxa Rockphosphate (48.4% CaO), although applied at high rate, did not affect soil reaction. On the other hand, both fertilizers increased the exchangeable Ca 2+ level in approximately 0.5 me/100 g. In short therm (less than 3 years), the response of Araxa Rockphosphate corresponded to its 2% citric acid soluble P 2 O 5 content (4%) rather than to its total P 2 O 5 content. Through 'A values' (using KH 2 32 PO 4 ) it was shown that the residual effect of Simple Superphosphate (108.6 Kg P 2 O 5 /ha) was similar to the Araxa Rockphosphate (136.6 Kg P 2 O 5 /ha), but these were significantly greater than the natural P content of the soil (54.0 Kg P 2 O 5 /ha). The evaluation of available P in the soil (with and without fertilizer) by Olsen's method, had and efficiency of 64 and 94% (respectively) as compared to the 'A value' method. (Author) [pt

  2. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L.; Broer, R.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the

  3. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  4. Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals

    NARCIS (Netherlands)

    Escher, B.I.; Ashauer, R.; Dyer, S.; Hermens, J.L.M.; van der Lee, J.H.; Leslie, H.A.; Mayer, P.; Meador, J.P.; Warne, M.S.J.

    2011-01-01

    This article reviews the mechanistic basis of the tissue residue approach for toxicity assessment (TRA). The tissue residue approach implies that whole-body or organ concentrations (residues) are a better dose metric for describing toxicity to aquatic organisms than is the aqueous concentration

  5. Studies by nuclear and physico-chemical methods of tissue's metallic contamination located around biomaterials. Toxicity measurements of several biomaterials residual radioactivity

    International Nuclear Information System (INIS)

    Guibert, Geoffroy

    2004-01-01

    Implants used as biomaterials fulfill conditions of functionality, compatibility and occasionally bio-activity. There are four main families of biomaterials: metals and metal alloys, polymers, bio-ceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. These debris develop different problems: toxicity, inflammatory reactions, prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters which have an influence on tissue response. We characterize metallic contamination coming from knee prosthesis into surrounding capsular tissue by depth migration, in vivo behaviours, content, size and nature of debris. The PIXE-RBS and STEM-EDXS methods, that we used, are complementary, especially about characterization scale. Debris contamination distributed in the whole articulation is very heterogeneous. Debris migrate on several thousands μm in tissue. Solid metallic particles, μm, are found in the most polluted samples, for both kinds of alloys TA6V and CrCoMo. In the mean volume analysed by PIXE, the in vivo mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TA6V debris and chemical evolution of CrCoMo debris. Complementary measures of TA6V grains, on a nano-metric scale by STEM-EDXS, show a dissolution of coarse grain (μm) in smaller grains (nm). Locally, TA6V grains of a phase are detected and could indicate a preferential dissolution of β phase (grain boundaries) with dropping of Al and V, both toxic and carcinogenic elements. A thin target protocol development correlates PIXE and histological analysis on the same zone. This protocol allows to locate other pathologies in relationship with weaker metal contamination, μg/g, thanks to the great sensitivity of PIXE method. Harmlessness with respect to the residual radioactivity of several natural or synthetic biomaterials is established, using ultra low background noise γ detection system. (author)

  6. Evolution Of Chemical Conditions And Estimated Plutonium Solubility In The Residual Waste Layer During Post-Closure Aging Of Tank 18

    International Nuclear Information System (INIS)

    Denham, M.

    2012-01-01

    evolution. In Denham (2007, Rev. 1), the solubilities in the oxidized regions were estimated at Eh values in equilibrium with dissolved oxygen. Here, these are considered to be maximum possible solubilities because Eh values are unlikely to be in equilibrium with dissolved oxygen. More realistic Eh values are estimated here and plutonium solubilities calculated at these are considered more realistic. Apparent solubilities of plutonium that coprecipitated with iron phases are estimated from Pu:Fe ratios in Tank 18 residual waste and the solubilities of the host iron phases. The estimated plutonium solubilities are shown. Uncertainties in the grout simulations and plutonium solubility estimates are discussed. The primary uncertainty in the grout simulations is that little is known about the physical state of the grout as it ages. The simulations done here are pertinent to a porous medium, which may or may not be applicable to fractured grout, depending on the degree and nature of the fractures. Other uncertainties that are considered are the assumptions about the reducing capacity imparted by blast furnace slag, the effects of varying dissolved carbon dioxide and oxygen concentrations, and the treatment of silica in the simulations. The primary uncertainty in the estimates of plutonium solubility is that little is known about the exact form of plutonium in the residual waste. Other uncertainties include those inherent in the thermodynamic data, pH variations from those estimated in the grout simulations, the effects of the treatment of silica in the grout simulations, and the effect of varying total dissolved carbonate concentrations. The objective of this document is to update the model for solubility controls on release of plutonium from residual waste in closed F-Area waste tanks. The update is based on new information including a new proposed grout formulation, chemical analysis of Tank 18 samples and more current thermodynamic data for plutonium and grout minerals. In

  7. Lanthanide shift reagents, binding, shift mechanisms and exchange

    International Nuclear Information System (INIS)

    Boer, J.W.M. de

    1977-01-01

    Paramagnetic lanthanide shift reagents, when added to a solution of a substrate, induce shifts in the nuclear magnetic resonance (NMR) spectrum of the substrate molecules. The induced shifts contain information about the structure of the shift reagent substrate complex. The structural information, however, may be difficult to extract because of the following effects: (1) different complexes between shift reagent and substrate may be present in solution, e.g. 1:1 and 1:2 complexes, and the shift observed is a weighed average of the shifts of the substrate nuclei in the different complexes; (2) the Fermi contact interaction, arising from the spin density at the nucleus, contributes to the induced shift; (3) chemical exchange effects may complicate the NMR spectrum. In this thesis, the results of an investigation into the influence of these effects on the NMR spectra of solutions containing a substrate and LSR are presented. The equations describing the pseudo contact and the Fermi contact shift are derived. In addition, it is shown how the modified Bloch equations describing the effect of the chemical exchange processes occurring in the systems studied can be reduced to the familiar equations for a two-site exchange case. The binding of mono- and bifunctional ethers to the shift reagent are reported. An analysis of the induced shifts is given. Finally, the results of the experiments performed to study the exchange behavior of dimethoxyethane and heptafluorodimethyloctanedionato ligands are presented

  8. Determination of pKa values of tenoxicam from 1H NMR chemical shifts and of oxicams from electrophoretic mobilities (CZE) with the aid of programs SQUAD and HYPNMR.

    Science.gov (United States)

    Rodríguez-Barrientos, Damaris; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Moya-Hernández, Rosario; Gómez-Balderas, Rodolfo; Ramírez-Silva, María Teresa

    2009-12-15

    In this work it is explained, by the first time, the application of programs SQUAD and HYPNMR to refine equilibrium constant values through the fit of electrophoretic mobilities determined by capillary zone electrophoresis experiments, due to the mathematical isomorphism of UV-vis absorptivity coefficients, NMR chemical shifts and electrophoretic mobilities as a function of pH. Then, the pK(a) values of tenoxicam in H(2)O/DMSO 1:4 (v/v) have been obtained from (1)H NMR chemical shifts, as well as of oxicams in aqueous solution from electrophoretic mobilities determined by CZE, at 25 degrees C. These values are in very good agreement with those reported by spectrophotometric and potentiometric measurements.

  9. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    , in the solution state the 2-bond and 3-bond J(1H–13C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl......-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl...... derivatives are in the A-form. In the solid state all three compounds are on the B-form. The 4-pyridoyl derivative shows unusual deuterium isotope effects in the solid, which are ascribed to a change of the crystal structure of the deuteriated compound...

  10. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Proton Resonance Frequency Chemical Shift Thermometry: Experimental Design and Validation Towards High-Resolution Non-Invasive Temperature Monitoring, and in vivo Experience in a Non-human Primate Model of Acute Ischemic Stroke

    Science.gov (United States)

    Dehkharghani, Seena; Mao, Hui; Howell, Leonard; Zhang, Xiaodong; Pate, K S; Magrath, P R; Tong, Frank; Wei, L; Qiu, D; Fleischer, C; Oshinski, J N

    2016-01-01

    BACKGROUND AND PURPOSE Applications for non-invasive biological temperature monitoring are widespread in biomedicine, and of particular interest in the context of brain temperature regulation, where traditionally costly and invasive monitoring schemes limit their applicability in many settings. Brain thermal regulation therefore remains controversial, motivating the development of non-invasive approaches such as temperature-sensitive NMR phenomena. The purpose of this work was to compare the utility of competing approaches to MR thermometry (MRT) employing proton resonance frequency chemical shift. Three methodologies were tested, hypothesizing the feasibility of a fast and accurate approach to chemical shift thermometry, in a phantom study at 3.0 Tesla. MATERIALS AND METHODS A conventional, paired approach (DIFF-1), an accelerated single-scan approach (DIFF-2), and a new, further accelerated strategy (DIFF-3) were tested. Phantom temperatures were modulated during real-time fiber optic temperature monitoring, with MRT derived simultaneously from temperature-sensitive changes in the water proton chemical shift (~0.01 ppm/°C). MRT was subsequently performed in a series of in vivo non-human primate experiments under physiologic and ischemic conditions testing its reproducibility and overall performance. RESULTS Chemical shift thermometry demonstrated excellent agreement with phantom temperatures for all three approaches (DIFF-1 linear regression R2=0.994, p<0.001, acquisition time 4 min 40 s; DIFF-2 R2=0.996, p<0.001, acquisition time 4 min; DIFF-3 R2=0.998, p<0.001, acquisition time 40 s). CONCLUSION These findings confirm the comparability in performance of three competing approaches MRT, and present in vivo applications under physiologic and ischemic conditions in a primate stroke model. PMID:25655874

  12. Tough Shift

    DEFF Research Database (Denmark)

    Brewer, Robert S.; Verdezoto, Nervo; Holst, Thomas

    2015-01-01

    people to change their behavior at home. Leveraging prior research on encouraging reductions in residential energy use through game play, we introduce ShareBuddy: a casual mobile game intended to encourage players not only to reduce, but also to shift their electricity use. We conducted two field studies...... real-world resource use into a game....

  13. Carbaryl and monocrotophos residues in cottonseed products. Part of a coordinated programme on isotopic tracer-aided studies of chemical residues in cotton seed, feed, oil and related products

    International Nuclear Information System (INIS)

    Pablo, F.E.

    1981-03-01

    Cotton plants of Deltapine variety were treated with carbaryl (naphthyl-1- 14 C), (6.7 mg/plant) three times at two week intervals. Seeds were collected at maturity and 14 C-residues were determined in the oil and cake by standard procedures. 14 C-carbaryl and/or metabolite residues were 0.42 and 0.15 mg/kg in the crude oil and cake respectively. Parallel studies were conducted with spectrophotometric techniques using p-nitrobenzene diazonium fluoborate as chromogenic agent. Applications were made three times at a rate of 14 mg/plant. Residues in the crude oil and cake were found to be 0.83 and 0.04 mg/kg respectively. The higher residue level in the oil - compared to the radiometric technique - probably relates to higher application rates. Cotton plants of Deltapine variety were treated with (N-methyl- 14 C) monocrotophos (0.09 mg/plant) three times at two week intervals, as recommended for agricultural practice. Seeds were collected at maturity and standard procedures for extraction, clean-up and paper and thin-layer chromatography were adopted for the ultimate determination of residues in seed, oil and cake. Parallel experiments, using spectrophotometric techniques, were made for comparison. 14 C-residues of monocrotophos and/or metabolites in cottonseed, crude oil and cake were found to be 0.06, 0.12 and 0.05 mg/kg respectively. Corresponding data obtained by non-nuclear techniques were 0.18, 0.42 and 0.15 mg/kg respectively. The discrepancy between the two sets of results may be related to different rates of application: 0.3 mg and 0.09 mg/plant for non-nuclear and radiometric techniques respectively. Among the major metabolites identified in the cottonseed were dimethyl phosphate and O-desmethyl monocrotophos. N-demethylated monocrotophos and sugar conjugates were also identified

  14. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    International Nuclear Information System (INIS)

    Zuiderweg, Erik R. P.; Bagai, Ireena; Rossi, Paolo; Bertelsen, Eric B.

    2013-01-01

    For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 × 10 260 possible assignments. In “EZ-ASSIGN”, the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281–298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592–610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335–344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested

  15. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  16. Quantification and Assessment of the Chemical Form of Residual Gadolinium in the Brain After Repeated Administration of Gadolinium-Based Contrast Agents: Comparative Study in Rats.

    Science.gov (United States)

    Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus

    2017-07-01

    Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma-mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in the soluble fraction was comparable to the

  17. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  18. Shifting Blame?

    DEFF Research Database (Denmark)

    Garofalo, Orsola; Rott, Christina

    2017-01-01

    either the decision maker or a spokesperson communicates the decided allocation to recipients, who then determine whether to punish either of them. We find that receivers punish both the decision maker and the spokesperson more often, and more heavily, for unfair allocations communicated...... by the spokesperson if there is room for shifting blame. The increased punishment results from the messenger’s style of delivery: spokespersons are more likely than decision makers to express emotional regret instead of rational need. Receivers seem to punish the former style of communication because they view...

  19. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  20. Research within the coordinated programme on isotopic-tracer-aided studies of chemical residues in cotton seed, oil, feed and related products

    International Nuclear Information System (INIS)

    Qureshi, M.J.

    1981-06-01

    14 C-methyl and 14 C-ring-labelled carbaryl (1-naphthyl-N-methyl carbamate) were used to study the fate and magnitude of the insecticide in the plant and cotton seed products. Under conditions of actual agricultural practice, 0.08-0.09, 0.23-0.30 and 0.05 mg/kg of 14 C-residues were found in the seed, crude oil and cake respectively. In oil, the residue was resolved into 4 compounds, 2 identified as carbaryl and 1-naphthol. Residues from the soil did not exceed 0.3 mg/kg after the first week and declined to 0.1 mg/kg after 5 weeks. Parallel experiments were conducted under field conditions using 14 C-phenyl leptophos (4-bromo-2,5-dichlorophenyl methyl phenyl phosphorothioate). Leptophos residues were determined in the cotton seed products during 1975, 1976 and 1977, with mean values for leptophos residues in the cotton seed, crude oil and cake of 0.26, 1.10 and 0.07 mg/kg, respectively. Experiments with non-labelled monocrotophos [3-(dimethoxy phosphinyloxy)-N-methyl cis-crotonamide] gave residues of 0.30, 1.56 and 0.02 mg/kg in the seed, crude oil and cake, respectively. Carbaryl residues in two local maize varieties were determined by a colorimetric method. Cooking in aqueous, oil or aqueous-oil media led to 63-83% loss of carbaryl residues, after 30 minutes. Storage of corn oil for one year had essentially no effect on the concentration of carbaryl residues under laboratory conditions (presumably similar to regular storage conditions). An overall effect of simulated commercial processing procedures (saponification, deodorization and winterization) gave a loss of 70% of the original carbaryl in the oil. Commercial cooking procedures for national popular dishes resulted in near-complete elimination of carbaryl residues (up to 98%). Frying onions and potatoes in carbaryl-spiked corn oil for 3 min. up to 210 0 C resulted in 55-60% loss of the residue

  1. Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C

    OpenAIRE

    Courtade, Gaston; Wimmer, Reinhard; Dimarogona, Maria; Sandgren, Mats; Eijsink, Vincent; Aachmann, Finn Lillelund

    2016-01-01

    The apo-form of the 23.3 kDa catalytic domain of the AA9 family lytic polysaccharide monooxygenase NcLPMO9C from Neurospora crassa has been isotopically labeled and recombinantly expressed in Pichia pastoris. In this paper, we report the 1H, 13C, and 15N chemical shift assignments of this LPMO. © Springer Verlag. The final publication is available at https://link.springer.com/article/10.1007%2Fs12104-016-9683-x. This is the authors' accepted and refereed manuscript to the article.

  2. Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C.

    Science.gov (United States)

    Courtade, Gaston; Forsberg, Zarah; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Aachmann, Finn L

    2017-10-01

    The apo-form of the 21.4 kDa catalytic domain and the 10.7 kDa carbohydrate binding domain of the AA10 family lytic polysaccharide monooxygenase ScLPMO10C from Streptomyces coelicolor have been isotopically labeled and recombinantly expressed in Escherichia coli. In this paper, we report the 1 H, 13 C, and 15 N chemical shift assignments of each individual domain as well as an ensemble of the assignment for the full-length protein, including its approximately 30-amino acid long linker.

  3. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  4. 40 CFR 721.4500 - Isopropylamine distillation residues and ethylamine distillation residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Isopropylamine distillation residues and ethylamine distillation residues. 721.4500 Section 721.4500 Protection of Environment... residues and ethylamine distillation residues. (a) Chemical substances and significant new use subject to...

  5. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination.

    Science.gov (United States)

    Fan, Hsiu-Fang; Cheng, Yong-Song; Ma, Chien-Hui; Jayaram, Makkuni

    2015-03-31

    Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of 'non-productive', 'pre-synaptic' and 'synaptic' complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination

    Science.gov (United States)

    Fan, Hsiu-Fang; Cheng, Yong-Song; Ma, Chien-Hui; Jayaram, Makkuni

    2015-01-01

    Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic’ complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations. PMID:25765648

  7. Shifting Sugars and Shifting Paradigms

    Science.gov (United States)

    Siegal, Mark L.

    2015-01-01

    No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face. PMID:25688600

  8. Shifting sugars and shifting paradigms.

    Directory of Open Access Journals (Sweden)

    Mark L Siegal

    2015-02-01

    Full Text Available No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face.

  9. Is there substituent cross-interaction effect in all the conjugated systems containing Cdbnd N polar bond? The substituent effects on the NMR chemical shifts of 2,5-disubstituted pyrimidines

    Science.gov (United States)

    Yuan, Hua; Zhang, Yan; Chen, Chun-Ni; Li, Meng-Yang

    2018-03-01

    The substituent cross-interaction effect in the substituted benzylidene anilines (p-Xsbnd C6H4sbnd CHdbnd Nsbnd C6H4sbnd Y-p) has been observed and widely investigated. In order to investigate whether the substituent cross-interaction effect exist in all the conjugated systems containing Cdbnd N polar bond, this paper employed 2-X-5-Y pyrimidines as the model compounds for study. The influences of substituents X and Y on the 1H NMR and 13C NMR chemical shifts of 2, 5-disubsitituted pyrimidines have been systematically investigated. Quantitative structure-chemical shifts relationship models have been built for δ(H4,6), δ(C2), δ(C4,6) and δ(C5) with four to six molecular descriptors. These models were confirmed of good stability and predictive performances by leave-one-out cross validation. This study indicates that the substituent effects of 2,5-disubstituted pyrimidines are much more complex than that of the substituted benzylidene anilines. More structural factors besides of Hammett parameter should be taken into consideration. Different from the substituted benzylidene anilines, the cross-interaction effect (Δσ2) of substituents X and Y has little contribution to δ(H4,6), δ(C2), δ(C5) and δ(C4,6) of 2,5-disubstituted pyrimidines.

  10. Novel application of chemical shift gradient echo in- and opposed-phase sequences in 3 T MRI for the detection of H-MRS visible lipids and grading of glioma.

    Science.gov (United States)

    Ramli, Norlisah; Khairy, Azua Mohd; Seow, Pohchoo; Tan, Li Kuo; Wong, Jeannie Hsiu Ding; Ganesan, Dharmendra; Rahmat, Kartini

    2016-07-01

    We evaluated the feasibility of using chemical shift gradient-echo (GE) in- and opposed-phase (IOP) imaging to grade glioma. A phantom study was performed to investigate the correlation of (1)H MRS-visible lipids with the signal loss ratio (SLR) obtained using IOP imaging. A cross-sectional study approved by the institutional review board was carried out in 22 patients with different glioma grades. The patients underwent scanning using IOP imaging and single-voxel spectroscopy (SVS) using 3T MRI. The brain spectra acquisitions from solid and cystic components were obtained and correlated with the SLR for different grades. The phantom study showed a positive linear correlation between lipid quantification at 0.9 parts per million (ppm) and 1.3 ppm with SLR (r = 0.79-0.99, p classification probabilities for grade II (SII = 1), grade III (SIII = 0.50) and grade IV (SIV = 0.89). The results underscore the lipid quantification differences in grades of glioma and provide a more comprehensive characterization by using SLR in chemical shift GE IOP imaging. SLR in IOP sequence demonstrates good performance in glioma grading. • Strong correlation was seen between lipid concentration and SLR obtained using IOP • IOP sequence demonstrates significant differences in signal loss within the glioma grades • SLR at solid tumour portions was the best measure for differentiation • This sequence is applicable in a research capacity for glioma staging armamentarium.

  11. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  12. A multi-residue method for pesticides analysis in green coffee beans using gas chromatography-negative chemical ionization mass spectrometry in selective ion monitoring mode.

    Science.gov (United States)

    Pizzutti, Ionara R; de Kok, Andre; Dickow Cardoso, Carmem; Reichert, Bárbara; de Kroon, Marijke; Wind, Wouter; Weber Righi, Laís; Caiel da Silva, Rosselei

    2012-08-17

    In this study, a new gas chromatography-mass spectrometry (GC-MS) method, using the very selective negative chemical ionization (NCI) mode, was developed and applied in combination with a modified acetonitrile-based extraction method (QuEChERS) for the analysis of a large number of pesticide residues (51 pesticides, including isomers and degradation products) in green coffee beans. A previously developed integrated sample homogenization and extraction method for both pesticides and mycotoxins analysis was used. An homogeneous slurry of green milled coffee beans and water (ratio 1:4, w/w) was prepared and extracted with acetonitrile/acetic acid (1%), followed by magnesium sulfate addition for phase separation. Aliquots from this extract could be used directly for LC-MS/MS analysis of mycotoxins and LC-amenable pesticides. For GC-MS analysis, a further clean-up was necessary. C18- and PSA-bonded silica were tested as dispersive solid-phase extraction (d-SPE) sorbents, separate and as a mixture, and the best results were obtained using C18-bonded silica. For the optimal sensitivity and selectivity, GC-MS detection in the NCI-selected ion monitoring (SIM) mode had to be used to allow the fast analysis of the difficult coffee bean matrix. The validation was performed by analyzing recovery samples at three different spike concentrations, 10, 20 and 50 μg kg(-1), with 6 replicates (n=6) at each concentration. Linearity (r(2)) of calibration curves, estimated instrument and method limits of detection and limits of quantification (LOD(i), LOD(m), LOQ(i) and LOQ(m), respectively), accuracy (as recovery %), precision (as RSD%) and matrix effects (%) were determined for each individual pesticide. From the 51 analytes (42 parent pesticides, 4 isomers and 5 degradation products) determined by GC-MS (NCI-SIM), approximately 76% showed average recoveries between 70-120% and 75% and RSD ≤ 20% at the lowest spike concentration of 10 μg kg(-1), the target method LOQ. For the

  13. Determination of the configuration in six-membered saturated heterocycles (N, P, S, Se) and their oxidation products using experimental and calculated NMR chemical shifts

    Czech Academy of Sciences Publication Activity Database

    Buděšínský, Miloš; Vaněk, Václav; Dračínský, Martin; Pohl, Radek; Poštová Slavětínská, Lenka; Sychrovský, Vladimír; Pícha, Jan; Císařová, I.

    2014-01-01

    Roč. 70, č. 25 (2014), s. 3871-3886 ISSN 0040-4020 R&D Projects: GA ČR GA203/09/1919; GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : six-membered saturated heterocycles (N, P, S, Se) * oxidation products * configuration * NMR * quantum chemical calculations * X- ray structures Subject RIV: CC - Organic Chemistry Impact factor: 2.641, year: 2014

  14. Effect of enzymatic desialylation of human serum amyloid P component on surface exposure of laser photo CIDNP (chemically induced dynamic nuclear polarization) - reactive histidine, tryptophan and tyrosine residues

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Siebert, H.-C; André, S.; Reuter, G.; Gabius, H.-J.; Kaptein, R.

    1995-01-01

    The human pentraxin serum amyloid P component (SAP) exhibits no microheterogeneity in its complex di-antennary glycan. To elucidate whether the removal of sialic acids from this glycoprotein might affect the accessibility of certain amino acid residues of the protein we employed the laser photo

  15. Evolution of chemical conditions and estimated solubility controls on radionuclides in the residual waste layer during post-closure aging of high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Millings, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2012-08-28

    in a flow and transport model were estimated for 27 elements in each of the chemical stages generated in the grout simulations plus local groundwater. The grout simulations were run with the initial infiltrating fluid in equilibrium with atmospheric oxygen to account for degradation of the reduction capacity of the grout. However, a lower Eh was used in pore fluids in the oxidizing conditions used to estimate solubilities to be more consistent with measured Eh values and natural systems. Solubilities of plutonium are affected by this decision, but those of other elements are not. In addition, the baseline for H-Area tanks is that they will be washed with oxalic acid prior to being filled with grout. Hence, oxalate was included in the pore fluids by assuming equilibrium with calcium oxalate. Solubility estimates were done by equilibrating a solubility controlling phase for each element with the pore fluid compositions using The Geochemist’s Workbench®. Condition B pore fluids are similar to Condition D. Therefore, solubilities for Condition B were not estimated, but assumed to be the same as in Condition D. In general solubility controlling phases were selected to bias solubilities to higher values. Several elements had no solubility controls and solubility estimates for other elements were omitted because the elements had short half-lives or were present in residual waste in very low amounts. For these it is recommended that release from the tank be instantaneous when the tank liner is breached. There is considerable uncertainty in this approach to enabling a flow and transport model to account for variable waste release. Yet, it is also flexible and requires much less computing time than a fully coupled reactive transport model. This allows some of the uncertainty to be addressed by multiple flow and transport sensitivity cases. Some of the uncertainties are addressed within this document. These include uncertainty in infiltrate composition, grout mineralogy, and

  16. Distribution and biodegradability of 14C-residues bound in various soil fractions after treatment of the soil with model 14C-chemicals

    International Nuclear Information System (INIS)

    Scheunert, I.; Meer-Bekk, C. ter; Korte, F.

    1986-01-01

    The long-term fate of 14 C-labelled 4-chloroaniline, 2,4,6-trichloroaniline, 2,4,6-trichlorophenol and trichloroethylene in soil was studied under field conditions. As a natural reference compound, 14 C-glucose was also studied. Most of the trichloroethylene applied was lost by volatilization and/or degradation during a 25-week period. The soils were exhaustively extracted with methanol and then re-extracted with acetate buffer solutions. The extracted soils were fractionated into humic acid, fulvic acid, humin and inorganic fractions. With the exception of 2,4,6-trichloroaniline the bound residues were more than 31% of the amount of radiocarbon initially applied. Insoluble residues of the natural compound glucose were bound preferentially in the inorganic fraction, whereas 14 C of the four xenobiotics was concentrated more in the humic acid fraction, with the portion increasing in the order: glucose 14 C in soil is present in a metabolized form. (author)

  17. Synthesis, structural characterization and study of blue shift in optical properties of zinc oxide nano particles prepared by chemical route method

    Science.gov (United States)

    Taunk, P. B.; Das, R.; Bisen, D. P.; Tamrakar, Raunak Kumar

    2015-12-01

    We report the synthesis and optical properties of ZnO nano particle using TEA (Tri Ethanol Amine) and without TEA by chemical route method. By decreasing the concentration of TEA, reaction rate is decreases and inter planner spacing d is increases, band gap is increased from 4.1 to 4.8 eV. In case of without TEA band gap is obtained 3.4 eV. Morphology, growth and the nature of crystalline of the powder samples were performed by X- ray Diffraction (XRD); UV spectrophotometer, scanning electron microscope (SEM) and Photoluminescence (PL). Luminescence properties are discussed by probing the photoluminescence properties of ZnO nano particles with TEA at different molar concentrations.

  18. Chemical and physical characterization of fertile soil-derived ice residuals from the Fifth International Ice Nucleation workshop in November 2014 (FIN-1)

    Science.gov (United States)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Laskin, Alexander; Zelenyuk, Alla

    2017-04-01

    The climate impact of ice-nucleating particles (INPs) derived from fertile soils on global scale has been recently accented by their diversity and efficient freezing ability. However, their representation in atmospheric models is limited in part due to our incomplete knowledge of fertile soil composition, abundance and associated sensitivity to heterogeneous ice nucleation. To fill given knowledge gap, we have investigated a unique/rich set of ice crystal residual samples derived from a variety of fertile soil samples obtained through our participation in the Fifth International Ice Nucleation workshop (FIN-1). FIN-1 was held at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility at Karlsruhe Institute of Technology (KIT), which is the world's foremost facility for studying ice clouds in a controlled setting, in November 2014 to comprehensively study the heterogeneous ice formation in the atmosphere with collaboration among 10 international groups that were funded through European consortium, NSF and USDOE agencies. Here, we will present the nanoscale surface morphology and elemental/molecular composition of ice crystal residuals as well as that of total aerosol samples from the FIN-1 activity to identify and classify any specific mineral and organic inclusions that may have promoted nucleation of ice. Comparing total aerosols to residuals will shed light on the composition and abundance of certain particle types in INPs. Acknowledgements: The valuable contributions of the INUIT (Ice Nuclei Research Unit) collaborators, the FIN organizers, their institutions and the FIN-1 Workshop science team are gratefully acknowledged.

  19. Residual risk

    African Journals Online (AJOL)

    ing the residual risk of transmission of HIV by blood transfusion. An epidemiological approach assumed that all HIV infections detected serologically in first-time donors were pre-existing or prevalent infections, and that all infections detected in repeat blood donors were new or incident infections. During 1986 - 1987,0,012%.

  20. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  1. CING: an integrated residue-based structure validation program suite

    International Nuclear Information System (INIS)

    Doreleijers, Jurgen F.; Sousa da Silva, Alan W.; Krieger, Elmar; Nabuurs, Sander B.; Spronk, Christian A. E. M.; Stevens, Tim J.; Vranken, Wim F.; Vriend, Gert; Vuister, Geerten W.

    2012-01-01

    We present a suite of programs, named CING for Common Interface for NMR Structure Generation that provides for a residue-based, integrated validation of the structural NMR ensemble in conjunction with the experimental restraints and other input data. External validation programs and new internal validation routines compare the NMR-derived models with empirical data, measured chemical shifts, distance- and dihedral restraints and the results are visualized in a dynamic Web 2.0 report. A red–orange–green score is used for residues and restraints to direct the user to those critiques that warrant further investigation. Overall green scores below ∼20 % accompanied by red scores over ∼50 % are strongly indicative of poorly modelled structures. The publically accessible, secure iCing webserver (https://nmr.le.ac.ukhttps://nmr.le.ac.uk) allows individual users to upload the NMR data and run a CING validation analysis.

  2. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.

    Science.gov (United States)

    Widdifield, Cory M; Perras, Frédéric A; Bryce, David L

    2015-04-21

    Advances in solid-state nuclear magnetic resonance (SSNMR) methods, such as dynamic nuclear polarization (DNP), intricate pulse sequences, and increased applied magnetic fields, allow for the study of systems which even very recently would be impractical. However, SSNMR methods using certain quadrupolar probe nuclei (i.e., I > 1/2), such as (185/187)Re remain far from fully developed due to the exceedingly strong interaction between the quadrupole moment of these nuclei and local electric field gradients (EFGs). We present a detailed high-field (B0 = 21.1 T) experimental SSNMR study on several perrhenates (KReO4, AgReO4, Ca(ReO4)2·2H2O), as well as ReO3 and Re2(CO)10. We propose solid ReO3 as a new rhenium SSNMR chemical shift standard due to its reproducible and sharp (185/187)Re NMR resonances. We show that for KReO4, previously poorly understood high-order quadrupole-induced effects (HOQIE) on the satellite transitions can be used to measure the EFG tensor asymmetry (i.e., ηQ) to nearly an order-of-magnitude greater precision than competing SSNMR and nuclear quadrupole resonance (NQR) approaches. Samples of AgReO4 and Ca(ReO4)2·2H2O enable us to comment on the effects of counter-ions and hydration upon Re(vii) chemical shifts. Calcium-43 and (185/187)Re NMR tensor parameters allow us to conclude that two proposed crystal structures for Ca(ReO4)2·2H2O, which would be considered as distinct, are in fact the same structure. Study of Re2(CO)10 provides insights into the effects of Re-Re bonding on the rhenium NMR tensor parameters and rhenium oxidation state on the Re chemical shift value. As overtone NQR experiments allowed us to precisely measure the (185/187)Re EFG tensor of Re2(CO)10, we were able to measure rhenium chemical shift anisotropy (CSA) for the first time in a powdered sample. Experimental observations are supported by gauge-including projector augmented-wave (GIPAW) density functional theory (DFT) calculations, with NMR tensor calculations also

  3. ¹H, ¹³C, and ¹⁵N backbone and side-chain chemical shift assignment of the toxin Doc in the unbound state.

    Science.gov (United States)

    De Gieter, Steven; Loris, Remy; van Nuland, Nico A J; Garcia-Pino, Abel

    2014-04-01

    Toxin-antitoxin (TA) modules in bacteria are involved in pathogenesis, antibiotic stress response, persister formation and programmed cell death. The toxin Doc, from the phd/doc module, blocks protein synthesis by targeting the translation machinery. Despite a large wealth of biophysical and biochemical data on the regulatory aspects of the operon transcription and role of Doc co-activator and co-repressor, little is still know on the molecular basis of Doc toxicity. Structural information about this toxin is only available for its inhibited state bound to the antitoxin Phd. Here we report the (1)H, (15)N and (13)C backbone and side chain chemical shift assignments of the toxin Doc from of bacteriophage P1 (the model protein from this family of TA modules) in its free state. The BMRB accession number is 18899.

  4. Iboga alkaloids from Peschiera affinis (Apocynaceae) - unequivocal {sup 1}H and {sup 13}C chemical shift assignments: antioxidant activity; Alcaloides iboga de Peschiera affinis (Apocynaceae) - atribuicao inequivoca dos deslocamentos quimicos dos atomos de hidrogenio e carbono: atividade antioxidante

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Allana Kellen L.; Magalhaes, Ticiane S.; Monte, Francisco Jose Q.; Mattos, Marcos Carlos de; Oliveira, Maria Conceicao F. de; Almeida, Maria Mozarina B.; Lemos, Telma L.G.; Braz-Filho, Raimundo [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica], e-mail: tlemos@dqoi.ufc.br

    2009-07-01

    Six known alkaloids iboga type and the triterpene {alpha}- and {beta}-amyrin acetate were isolated from the roots and stems of Peschiera affinis. Their structures were characterized on the basis of spectral data mainly NMR and mass spectra. 1D and 2D NMR spectra were also used to unequivocal {sup 1}H and {sup 13}C chemical shift assignments of alkaloids. The ethanolic extract of roots, alkaloidic and no-alkaloidic fractions and iso-voacristine hydroxyindolenine and voacangine were evaluated for their antioxidative properties using an autographic assay based on {beta}-carotene bleaching on TLC plates, and also spectrophotometric detection by reduction of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical. (author)

  5. Chemical amendment and phytostabilization of an industrial residue contaminated with Zn and Cd Correção química e fitoestabilização de um resíduo industrial contaminado com Zn e Cd

    Directory of Open Access Journals (Sweden)

    Fabiana Soares dos Santos

    2007-10-01

    Full Text Available Phytostabilisation of a contaminated soil with heavy metals is considered a very appropriate technology to reduce erosion and dispersion of contaminants. A greenhouse study was conducted to evaluate the effects of both chemical amendments (calcium silicate and brewery sludge, and phytoremediation using the grass Brachiaria decumbens, on an industrial residue contaminated with Zn and Cd (industrial residue. Industrial residue samples placed into 30 L containers were amended with 20% brewery sludge, calcium silicate (2%, 3%, and 20% of brewery sludge + calcium silicate (2.5%, 4%, and were compared to the control treatment (non-amended residue. After pH stabilization, B. decumbens plants were grown on all treatments in order to evaluate the ability of the species to tolerate high Zn and Cd concentrations from the residue. Samples were collected twice, at planting and harvesting, for pH determination and simple extractions with water, sodium nitrate, acetic acid and DTPA. Differences in Zn and Cd concentrations in extracts allowed to estimate the concentrations of these elements in the most likely chemical forms they are found in the residue. Alkaline and organic industrial amendments reduced Zn and Cd percentages, both in the soluble and exchangeable fractions, as well as caused the predominance of Zn and Cd in the most stable chemical fractions, such as complexed and precipitated compounds. B. decumbens was tolerant to Zn and Cd from the industrial residue after addition of the amendments.A fitoestabilização de solos contaminados com metais pesados é considerada uma boa alternativa para reduzir a erosão e dispersão de contaminantes no ambiente. Foi conduzido um experimento em casa-de-vegetação com o objetivo de avaliar a contenção química (silicato de cálcio e lodo do biodigestor de uma cervejaria e a fitorremediação pela Brachiaria decumbens, de um resíduo industrial contaminado com Zn e Cd, utilizando vasos de 30 L. Os tratamentos

  6. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  7. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    Science.gov (United States)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  8. Chemical transformations of organic matter during the composting of wood industry wastes (residues); Transformacoes quimicas da materia organica durante a compostagem de residuos da industria madeireira

    Energy Technology Data Exchange (ETDEWEB)

    Budziak, Cristiane R.; Maia, Claudia M.B.F.; Mangrich, Antonio S. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: mangrich@quimica.ufpr.br

    2004-06-01

    Composting of sawdust and paper mill sludge, using a 'Kneer' process reactor, was studied in an attempt to elaborate upon organic matter transformation during the process and to define parameters to measure the compost maturity level. Temperature, electron paramagnetic resonance data, ash and C, H, N and S contents, and a spectroscopic method using ultraviolet-visible (UV-VIS) for alkaline (pH = 8.5) and solid samples was used to study the maturity of the compost samples. These parameters were measured in 6 humic acids extracted from the compost samples during 29 days. The results of this work show that the 'Kneer' process is efficient in transforming ligno-celulitic residues in a short time (29 days), into an organic fertilizer material with application perspectives (author)

  9. Combining physico-chemical analysis with a Daphnia magna bioassay to evaluate a recycling technology for drinking water treatment plant waste residuals.

    Science.gov (United States)

    Chen, Ting; Xu, Yongpeng; Zhu, Shijun; Cui, Fuyi

    2015-12-01

    Recycling water treatment plant (WTP) waste residuals is considered to be a feasible method to enhance the efficiency of pollutant removal. This study also evaluated the safety and water quality of a pilot-DWTP waste residuals recycling technology by combining physical-chemistry analysis with a Daphnia magna assay. The water samples taken from each treatment step were extracted and concentrated by XAD-2 resin and were then analyzed for immobilization and enzyme activity with D. magna. The measured parameters, such as the dissolve organic carbon (DOC), UV254 and THM formation potential (THMFPs) of the recycling process, did not obviously increase over 15 days of continuous operation and were even lower than typical values from a conventional process. The extract concentration ranged from 0 to 2 Leq/ml as measured on the 7th and 15th days and the immobilization of D. magna exposed to water treated by the recycling process was nearly equivalent to that of the conventional process. Both the superoxide dismutase (SOD) and the catalase (CAT) activity assay indicated that a lower dose of water extract (0.5, 1, 1.5 Leq/ml) could stimulate the enzyme activity of D. magna, whereas a higher dose (2 Leq/ml at the sampling point C3, R3, R4 ) inhibits the activity. Moreover, the SOD and CAT activity of D. magna with DOC and UV254 showed a strong concentration-effect relationship, where the concentration range of DOC and UV254 were 4.1-16.2 mg/L and 0.071-4.382 cm(-1), respectively. The results showed that there was no statistically significant difference (p>0.05) between the conventional and recycling treatment processes and the toxicity of water samples in the recycling process did not increase during the 15-day continuous recycling trial. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Residue-specific description of non-native transient structures in the ensemble of acid-denatured structures of the all-beta protein c-src SH3

    DEFF Research Database (Denmark)

    Rösner, Heike I; Poulsen, Flemming Martin

    2010-01-01

    Secondary chemical shift analysis has been used to characterize the unfolded state of acid-denatured c-src SH3. Even though native c-src SH3 adopts an all-beta fold, we found evidence of transient helicity in regions corresponding to native loops. In particular, residues 40-46, connecting the n-src...

  11. Conformational studies of per-O-trimethylsilyl derivatives of D-fructoses and oligosaccharides containing β-D-fructofuranose residues by 220- and 300-MHz P.M.R. spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Streefkerk, D.G.; Bie, M.J.A. de

    1974-01-01

    The interpretation of 220- and 300-MHz P.M.R. spectra and the accurate chemical shifts and coupling constants of a number of per-O-trimethylsilyl-(TMS-)D -fructose derivatives and TMS-oligosaccharides containing beta-D-fructofuranose residues are presented. On the basis of calculations with an

  12. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  13. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties

    International Nuclear Information System (INIS)

    Guillon, E.

    2004-09-01

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  14. Physico-chemical study of coating plasma duplex alumina/hydroxyapatite for medical applications relation elaboration/structure/properties(dissolution/adherence/residual constraints)

    International Nuclear Information System (INIS)

    Demonet, N.

    1998-01-01

    The physico-chemical behavior of porous ceramics depositing is studied in order to use them to favour the biological fixing of hip prosthesis fixed without cement. Alumina depositing, hydroxyapatite depositing and duplex (the both together) have been realized by plasma projection on a substrate in Ti-6Al-V. Tests of dissolution have been made. An original method of sound followed by radioactive tracers has allowed to establish an order of phases degradation and to consider the kinetics of calcium ions in function of several parameters of tests. (N.C.)

  15. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    Science.gov (United States)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  16. 40 CFR 721.5650 - Pentanediol light residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Pentanediol light residues. 721.5650... Substances § 721.5650 Pentanediol light residues. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as pentanediol light residues (PMN P-95-1750...

  17. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    Science.gov (United States)

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  18. 40 CFR 180.564 - Indoxacarb; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Indoxacarb; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.564 Indoxacarb; tolerances for residues. (a) General. Tolerances are established for residues of...

  19. 40 CFR 180.176 - Mancozeb; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Mancozeb; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.176 Mancozeb; tolerances for residues. (a) General. Tolerances for residues of a fungicide which is a...

  20. 40 CFR 180.324 - Bromoxynil; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bromoxynil; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.324 Bromoxynil; tolerances for residues. (a) General. (1) Tolerances are established for residues...

  1. 40 CFR 180.314 - Triallate; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Triallate; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.314 Triallate; tolerances for residues. (a) General. Tolerances are established for residues of...

  2. 40 CFR 180.210 - Bromacil; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bromacil; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.210 Bromacil; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide...

  3. 40 CFR 180.298 - Methidathion; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methidathion; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.298 Methidathion; tolerances for residues. (a) General. Tolerances are established for residues of...

  4. 40 CFR 180.299 - Dicrotophos; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Dicrotophos; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.299 Dicrotophos; tolerances for residues. (a) General. Tolerances are established for residues of...

  5. 40 CFR 180.227 - Dicamba; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Dicamba; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.227 Dicamba; tolerances for residues. (a) General. (1) Tolerances are established for the combined residues of...

  6. 40 CFR 180.209 - Terbacil; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Terbacil; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.209 Terbacil; tolerances for residues. (a) General. Tolerances are established for combined residues of the...

  7. 40 CFR 180.249 - Alachlor; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Alachlor; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.249 Alachlor; tolerances for residues. (a) General. Tolerances are established for combined residues of...

  8. 40 CFR 180.128 - Pyrethrins; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pyrethrins; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.128 Pyrethrins; tolerances for residues. (a) General. (1) Tolerances for residues of the...

  9. 40 CFR 180.208 - Benfluralin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Benfluralin; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.208 Benfluralin; tolerances for residues. (a) General. Tolerances are established for residues of...

  10. 40 CFR 180.178 - Ethoxyquin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethoxyquin; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.178 Ethoxyquin; tolerances for residues. (a) General. A tolerance is established for residues of...

  11. 40 CFR 180.241 - Bensulide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bensulide; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.241 Bensulide; tolerances for residues. (a) General. Tolerances are established for the residues...

  12. 40 CFR 180.263 - Phosalone; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phosalone; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.263 Phosalone; tolerances for residues. (a) General. Tolerances are established for residues of...

  13. 40 CFR 180.258 - Ametryn; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ametryn; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.258 Ametryn; tolerances for residues. (a) General. Tolerances are established for residues of the desiccant...

  14. 40 CFR 180.213 - Simazine; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Simazine; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.213 Simazine; tolerances for residues. (a) General. Tolerances are established for the combined residues of the...

  15. 40 CFR 180.269 - Aldicarb; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aldicarb; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.269 Aldicarb; tolerances for residues. (a) General. Tolerances are established for combined residues of the...

  16. 40 CFR 180.315 - Methamidophos; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methamidophos; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.315 Methamidophos; tolerances for residues. (a) Tolerances are established for residues of the...

  17. 40 CFR 180.235 - Dichlorvos; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Dichlorvos; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.235 Dichlorvos; tolerances for residues. (a) General. (1) Tolerances for residues of the...

  18. 40 CFR 180.222 - Prometryn; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Prometryn; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.222 Prometryn; tolerances for residues. (a) General. Tolerances are established for residues of...

  19. 40 CFR 180.262 - Ethoprop; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethoprop; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.262 Ethoprop; tolerances for residues. (a) General. Tolerances are established for residues of the nematocide...

  20. 40 CFR 180.198 - Trichlorfon; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichlorfon; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.198 Trichlorfon; tolerances for residues. (a) General. Tolerances are established for residues of...

  1. 40 CFR 180.304 - Oryzalin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Oryzalin; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.304 Oryzalin; tolerances for residues. (a) General. Tolerances are established for residues of the herbicide...

  2. 40 CFR 180.169 - Carbaryl; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbaryl; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.169 Carbaryl; tolerances for residues. (a) General. (1) Tolerances are established for residues of the...

  3. 40 CFR 180.220 - Atrazine; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Atrazine; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.220 Atrazine; tolerances for residues. (a) General. Tolerances are established for the combined residues of the...

  4. 40 CFR 180.122 - Parathion; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Parathion; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.122 Parathion; tolerances for residues. (a) General. Tolerances are established for residues of...

  5. 40 CFR 180.200 - Dicloran; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Dicloran; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.200 Dicloran; tolerances for residues. (a) General. (1) Tolerances are established for residues of the...

  6. 40 CFR 180.133 - Lindane; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lindane; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.133 Lindane; tolerances for residues. (a) General. Tolerances are established for residues of the insecticide...

  7. 40 CFR 180.328 - Napropamide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Napropamide; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.328 Napropamide; tolerances for residues. (a) General. Tolerances are established for residues of...

  8. 40 CFR 180.132 - Thiram; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Thiram; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.132 Thiram; tolerances for residues. (a) General. Tolerances are established for residues of the fungicide...

  9. 40 CFR 180.243 - Propazine; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Propazine; tolerances for residues...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.243 Propazine; tolerances for residues. Tolerances are established for negligible residues (N) of...

  10. 40 CFR 180.301 - Carboxin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carboxin; tolerances for residues. 180... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.301 Carboxin; tolerances for residues. (a) General. Tolerances are established for the combined residues of the...

  11. Scanning electron microscopy and X-ray microanalysis for chemical and morphological characterisation of the inorganic component of gunshot residue: selected problems.

    Science.gov (United States)

    Brożek-Mucha, Zuzanna

    2014-01-01

    Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident.

  12. Scanning Electron Microscopy and X-Ray Microanalysis for Chemical and Morphological Characterisation of the Inorganic Component of Gunshot Residue: Selected Problems

    Directory of Open Access Journals (Sweden)

    Zuzanna Brożek-Mucha

    2014-01-01

    Full Text Available Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident.

  13. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  14. Significant factors selection in the chemical and enzymatic hydrolysis of lignocellulosic residues by a genetic algorithm analysis and comparison with the standard Plackett-Burman methodology.

    Science.gov (United States)

    Giordano, Pablo C; Beccaria, Alejandro J; Goicoechea, Héctor C

    2011-11-01

    A comparison between the classic Plackett-Burman design (PB) ANOVA analysis and a genetic algorithm (GA) approach to identify significant factors have been carried out. This comparison was made by applying both analyses to data obtained from the experimental results when optimizing both chemical and enzymatic hydrolysis of three lignocellulosic feedstocks (corn and wheat bran, and pine sawdust) by a PB experimental design. Depending on the kind of biomass and the hydrolysis being considered, different results were obtained. Interestingly, some interactions were found to be significant by the GA approach and allowed to identify significant factors, that otherwise, based only in the classic PB analysis, would have not been taken into account in a further optimization step. Improvements in the fitting of c.a. 80% were obtained when comparing the coefficient of determination (R2) computed for both methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Comparative Study of Microbial Activity and Chemical Properties of Soil by Implementing Anti-erosion Measure Vertical Mulching with Organic Residues

    Directory of Open Access Journals (Sweden)

    Gergana Slavova Kuncheva

    2015-01-01

    Full Text Available Water soil erosion is a phenomenon in which soil particles are separated transported and translocated by the action of rain water. Removal of topsoil by water flow leads to a decrease of humus in the soil, deterioration of soil structure, compaction, and reduction of microbial activity.Developed and tested have been number of methods and technologies for soil protection from the effects of water erosion. Such technology is vertical mulching, and straw or compost applied as mulching material.This work is a study of the changes that occur in some soil chemical properties and soil microbiological activity, as a result in the implementation of anti-erosion measure vertical mulching with different mulching materials for growing corn and wheat grain on carbonate chernozem, on sloping agricultural lands.

  16. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  17. Automatic prediction of catalytic residues by modeling residue structural neighborhood

    Directory of Open Access Journals (Sweden)

    Passerini Andrea

    2010-03-01

    Full Text Available Abstract Background Prediction of catalytic residues is a major step in characterizing the function of enzymes. In its simpler formulation, the problem can be cast into a binary classification task at the residue level, by predicting whether the residue is directly involved in the catalytic process. The task is quite hard also when structural information is available, due to the rather wide range of roles a functional residue can play and to the large imbalance between the number of catalytic and non-catalytic residues. Results We developed an effective representation of structural information by modeling spherical regions around candidate residues, and extracting statistics on the properties of their content such as physico-chemical properties, atomic density, flexibility, presence of water molecules. We trained an SVM classifier combining our features with sequence-based information and previously developed 3D features, and compared its performance with the most recent state-of-the-art approaches on different benchmark datasets. We further analyzed the discriminant power of the information provided by the presence of heterogens in the residue neighborhood. Conclusions Our structure-based method achieves consistent improvements on all tested datasets over both sequence-based and structure-based state-of-the-art approaches. Structural neighborhood information is shown to be responsible for such results, and predicting the presence of nearby heterogens seems to be a promising direction for further improvements.

  18. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  19. (DDT) and hexachlorohexane (HCH) pesticide residues in foodstuffs ...

    African Journals Online (AJOL)

    Dichloro-diphenyl-trichloro-ethane (DDT) and hexachlorohexane (HCH) pesticide residues in foodstuffs from markets in Ile-Ife, Nigeria. ... International Journal of Biological and Chemical Sciences ... Keywords: Dichlorodiphenyltrichloroethane, hexachlorocyclohexane, pesticide, residue, cowpea grain, yam chip.

  20. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.