WorldWideScience

Sample records for residential water supply

  1. Intermittent Water Supplies: Challenges and Opportunities for Residential Water Users in Jordan

    OpenAIRE

    Rosenberg, David E.; Talozi, Samer; Lund, Jay

    2008-01-01

    Intermittent access to improved urban water supplies is a large and expanding global problem. This paper describes 16 supply enhancement and 23 demand management actions available to urban residential water users in Jordan to cope with intermittent supplies. We characterize actions by implementation, costs, and water quantities and qualities acquired or conserved. This effort systematically identifies potential options prior to detailed study and shows that water users have significant capaci...

  2. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  3. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    Science.gov (United States)

    Hogeboom, Rick J.; Knook, Luuk; Hoekstra, Arjen Y.

    2018-03-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, residential and industrial water supply, flood protection, fishing and recreation, based on their economic value. We estimate that economic benefits from 2235 reservoirs included in this study amount to 265 × 109 US a year, with residential and industrial water supply and hydroelectricity generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (<1% contribution) and evaporation from the reservoir's surface area, and globally adds up to 66 × 109 m3 y-1. The largest share of this water footprint (57%) is located in non-water scarce basins and only 1% in year-round scarce basins. The primary purposes of a reservoir change with increasing water scarcity, from mainly hydroelectricity generation in non-scarce basins, to residential and industrial water supply, irrigation water supply and flood control in scarcer areas.

  4. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  5. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Directory of Open Access Journals (Sweden)

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  6. A Model of Clean Water Supply and Improvement of Enviromental Sanitary Conditions in Residential Clusters in The Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Chi Nguyen Thuy Lan

    2015-12-01

    Full Text Available In accordance with Decision 99/TTg dated 9/2/1996 and Decision 173/TTg dated 6/11/2001 of the Prime Minister regarding the construction program of residential clusters (residential flood free areas, these residential areas as constructed would be fully equipped with critical infrastructures and services such as water supply and drainage works, toilets with sanitary appropriateness, etc. to ensure environmental sanitary conditions in the residential clusters. However, the actual surveys done in residential clusters in the Mekong Delta show that many arising problems must be addressed to enable the local communities to have better living conditions and ensure the sanitary conditions and environmental safety.

  7. ENERGY-EFFICIENT REGIMES FOR HEATING-SUPPLY OF THE RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Rise in comfort and inhabitation safety is one of the main requirements of the general maintenance, reconstruction of the old and construction of the new residential houses. One of the essential factors of it is substitution in the household hot-water preparing sources: from the individual domestic gas  water-heaters to  the common  entire-building hot-water supply at the expense of the centralized heat supply. Extremely erratic hot-water daily consumption by tenants leads to the necessity of sharp increase in central heat-supply level during a few hours of the day, which requires a significant increase of the source heat-power. On that score, the authors propose to direct a significant part (up to 50 % of the centralized heating and ventilation heat power-consumption to the hot water preparation during the period of short-term hot water consumption peak.Substitution  of  the  individual  domestic  gas  water-heaters  with  the  common  entirebuilding hot-water supply releases a huge amount of natural gas which can be utilized not only for production of the necessary heat power but as well for electric power producing. This substitution is especially advantageous if heat-power is delivered to the residential area from a НРС where significant part of heat especially in a relatively warm season of the year is thrown out into the air. The content of the article is based on several patents received earlier.

  8. Automated Water Supply System and Water Theft Identification Using PLC and SCADA

    OpenAIRE

    Prof. Anubha Panchal,; Ketakee Dagade

    2014-01-01

    In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and contr...

  9. Residential water usage: A case study of the major cities of the western region of Saudi Arabia

    Science.gov (United States)

    Abu Rizaiza, Omar S.

    1991-05-01

    Socioeconomic and climatological data of the major cities of the western region of Saudi Arabia have been used to develop several models to estimate the residential water usage for different kinds of houses. The developed models correlate the residential water usages with temperature, income, family size, price of water, and availability of a garden within the house. The study shows that the residential water uses in houses supplied by a public pipe network are 1.4-2 times greater than the residential water uses in houses supplied by tankers. It also shows that the price elasticities are very similar to those estimated in the United States. Income elasticities, on the other hand, are lower than those typically found in more industrialized countries.

  10. Water Quality and Quantity in Intermittent and Continuous Piped Water Supplies in Hubli-Dharwad, India

    OpenAIRE

    Kumpel, Emily Katherine

    2013-01-01

    In at least 45 low- and middle-income countries, piped water systems deliver water for limited durations. Few data are available of the impact of intermittent water supply (IWS) on the water quality and quantity delivered to households. This thesis examines the impact of intermittently supplied piped water on the quality and quantity of water delivered to residential taps in Hubli-Dharwad, India, when compared to continuous piped water supply. A framework for understanding the pathways throug...

  11. Forecasting HotWater Consumption in Residential Houses

    Directory of Open Access Journals (Sweden)

    Linas Gelažanskas

    2015-11-01

    Full Text Available An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.

  12. ON REASONABLE ESTIMATE OF ENERGY PERFORMANCE OF THE RESIDENTIAL BUILDINGS SUSTENANCE WITH CENTRALIZED HEAT-SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2016-01-01

    Full Text Available As consisted with Directive No 3 of President of the Republic of Belarus of June, 14th 2007 ‘Economy and Husbandry – the Major Factors of Economic Security of the Republic of Belarus’, saving fuel-and-energy resources over the republic in 2010–2015 should amount to 7,1–8,9 MIO tons of fuel equivalent including 1,00–1,25 MIO tons of fuel equivalent at the expense of heat-supply optimization and 0,25–0,40 MIO tons of fuel equivalent at the expense of increasing enclosing structures heat resistance of the buildings, facilities and housing stock. It means, where it is expected to obtain around 18 % of general thermal resources economy in the process of heat-supply optimization, then by means of enhancing the cladding structure heat resistance of the buildings and constructions of various applications – only about 3–5 % and even a bit less so of the housing stock. Till 1994, in residential sector of the Republic of Belarus, the annual heat consumption of the heating and ventilation averaged more than 130 kW×h/(m2×year (~56 %, of the hot-water supply – around 100 kW×h/(m2×year (~44 %. In residential houses, built from 1994 to 2009, heat consumption of the heating and ventilation is already 90 kW×h/(m2×year, of the hot-water supply – around 70 kW×h/(m2×year. In buildings of modern mainstream construction, they expend 60 kW×h/(m2×year (~46 % on heating and ventilation and 70 kW×h/(m2×year (~54 % on hot-water supply. In some modern residential buildings with the exhausted warm air secondary energy resource utilization, the heating and ventilation takes around 30–40 kW×h/(m2×year of heat. Raising energy performance of the residential buildings by means of reducing heat expenses on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy performance process are producing heat and transporting it over the main lines and outside distribution networks. In

  13. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    Directory of Open Access Journals (Sweden)

    Murat Yalçıntaş

    2015-08-01

    Full Text Available The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA model, the time series water supply and demand forecasting model is constructed for the period between 2015 and 2018. Three important sustainability metrics such as water loss to supply ratio, water loss to demand ratio, and water loss to residential demand ratio are also presented. The findings show that residential water demand is responsible for nearly 80% of total water use and the consumption categories including commercial, industrial, agriculture, outdoor, and others have a lower share in total water demand. The results also show that there is a considerable water loss in the water distribution system which requires significant investments on the water supply networks. Furthermore, the forecasting results indicated that pipeline projects will be critical in the near future due to expected increases in the total water demand of Istanbul. The authors suggest that sustainable management of water can be achieved by reducing the residential water use through the use of water efficient technologies in households and reduction in water supply loss through investments on distribution infrastructure.

  14. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  15. Modeling Integrated Water-User Decisions with Intermittent Supplies

    Science.gov (United States)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  16. Choosing the Right Technologies – A Model for Cost Optimized Design of a Renewable Supply System for Residential Zero Energy Buildings

    DEFF Research Database (Denmark)

    Milan, Christian

    , individual performance models are defined. For small scale residential systems the hot water tank is one of the main components, connecting supply and demand side and acting as a buffer during mismatch periods. For this reason, the developed hot water tank model is rather detailed accounting for three...... different temperature layers, two different supply and demand loops as well as individual heat losses. It is presented at the end of the technology chapter. Subsequently, the methodology is validated by investigating the output with one single technology at a time and thus the individual performance models......This work presents a methodology to identify and investigate the cost optimal design of supply systems for Low and Net Zero Energy Buildings with the focus on residential single family houses. A preliminary analysis investigating relevant literature and existing computer tools resulted...

  17. Infectious Intestinal Diseases and Residential Water Services in Mexico: a Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Nicholas P. Sisto

    2017-09-01

    Full Text Available Infectious intestinal diseases (IID represent a widespread public health problem in Mexico. The country also faces major challenges with respect to the provision of residential water services (piped water and sewer—an essential input for hygiene and cleanliness in homes. This paper analyzes morbidity rates from several IID associated with unsanitary living conditions along with a series of residential water services indicators for Mexico’s 2,456 municipalities. With data obtained through a special request to the federal epidemiological authority as well as official census data for 2010, we find stark regional contrasts and identify interesting spatial structures for both IID morbidity and residential water services indicators. In particular, municipalities tend to present values similar to neighboring municipalities, forming clusters of relatively high-value (or low-value municipalities. Moreover we find that municipalities with a relatively high level of access to residential water services tend to present relatively low IID morbidity rates. These results have multiple public policy implications. In order to reduce the incidence of IID effectively and efficiently, interventions should explicitly consider the spatial structure of morbidity and target problem spots—which typically spill over state, municipal and other administrative boundaries. Moreover, improvements in the quality of access to piped water (for example, increasing the frequency of supply may be as important for reducing morbidity as the expansion of basic access to this service.

  18. SOME FEATURES OF THE POWER SUPPLY OF RESIDENTIAL BUILDINGS DURING THE HEATING SEASON

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available A large proportion of consumption of different types of energy by the residential sector, especially in the heating period, makes the energy efficiency of buildings without considering the loss of fuel with a significant reduction in hourly load on the generators, especially at night, already insufficient for real energy savings. Therefore in Belarus, in order to attract the consumer, electricity tariff for heating at night hours (from 11 p.m. to 6.00 a.m. is three times cheaper than at any other time. Significant increase of the electricity consumption of at night could be achieved by using heat accumulators for heating and hot water supply to the residential sector. Particularly effective are water accumulators of heat and accumulators of underfloor heating that enable to use a coolant with a temperature of 40 оC and to increase the useful supply of heat. The use of heat accumulators for daily heating, ventilation and hot water supply of buildings significantly reduces the cost of creating the infrastructure of the territory under construction by eliminating the necessity of running the distribution network of heat or gas supply. The use of the heat accumulators is necessary due to the increase of the time-weighted average outdoor temperature. The mentioned increase in the City of Minsk in the heating season is of about 0.1 °C per year in average, and as for the last 20 years, the increase has led to a reduction of the required heat load on the premises by about 10 %. Research and project work on choosing the most effective options for the arrangement and use the heat accumulators in buildings of the various functions ought to be fulfilled in order to make the application of heat accumulators successful. In this respect civil and power engineers as well as operators should work together so to determine the chronological, technical and economic conditions of charging and use of heat accumulators.

  19. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  20. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    Science.gov (United States)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  1. Legionnaires' Disease acquired within the homes of two patients: link to the home water supply

    International Nuclear Information System (INIS)

    Stout, J.E.; Yu, V.L.; Muraca, P.

    1987-01-01

    Two patients with sporadic community-acquired legionnaires' disease are described. Legionella pneumophila was isolated from sputum specimens, and seroconversion of antibody titers was demonstrated for both patients. Legionella pneumophila was also recovered from the residential water supply of both patients. In each case, the serogroup of the environmental organism matched that of the infecting organism. In one patient, serogroup 3 was isolated - a rare cause of legionnaires' disease, and in the second case, monoclonal antibody testing confirmed that the serogroup 1 organisms isolated from sputum and residential water supply samples were identical. The incubation period of legionnaires' disease is presumed to be up to two weeks. Because of medical problems, both patients had been confined to their homes for the entire two weeks before the onset of symptoms. This is the first report that links acquisition of community-acquired legionnaires' disease to contaminated water supplies within the homes of susceptible patients

  2. The water footprint of human-made reservoirs for hydropower, irrigation, water supply, flood prevention, fishing and recreation on a global scale

    Science.gov (United States)

    Hogeboom, Rick; Knook, Luuk; Hoekstra, Arjen

    2017-04-01

    Increasing the availability of freshwater to meet growing and competing demands is on many policy agendas. The Sustainable Development Goals (SDGs) prescribe sustainable management of water for human consumption. For centuries humans have resorted to building dams to store water in periods of excess for use in times of shortage. Although dams and their reservoirs have made important contributions to human development, it is increasingly acknowledged that reservoirs can be substantial water consumers as well. We estimated the water footprint of human-made reservoirs on a global scale and attributed it to the various reservoir purposes (hydropower generation, residential and industrial water supply, irrigation water supply, flood protection, fishing and recreation) based on their economic value. We found that economic benefits from derived products and services from 2235 reservoirs globally, amount to 311 billion US dollar annually, with residential and industrial water supply and hydropower generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (footprint of reservoirs globally adds up to ˜104 km3yr-1. Attribution per purpose shows that, with a global average water footprint of 21,5 m3GJ,-1 hydropower on average is a water intensive form of energy. We contextualized the water footprint of reservoirs and their purposes with regard to the water scarcity level of the river basin in which they occur. We found the lion's share (55%) of the water footprint is located in non-water scarce basins and only 1% in year-round scarce basins. The purpose for which the reservoir is primarily used changes with increasing water scarcity, from mainly hydropower generation in non-scarce basins, to the (more essential) purposes residential and industrial water supply, irrigation and flood control in scarcer areas. The quantitative explication of how the burden of water consumption from reservoirs is

  3. The Value of Advanced Smart Metering in the Management of Urban Water Supply Services

    Science.gov (United States)

    Guardiola, J.; Pulido-Velazquez, M.; Giuliani, M.; Castelletti, A.; Cominola, A.; Arregui de la Cruz, F.; Escriva-Bou, A.; Soriano, J.; Pérez, J. J.; Castillo, J.; Barba, J.; González, V.; Rizzoli, A. E.

    2016-12-01

    This work intends to outline the experience of the implementation and further exploitation of an extensive network of smart meters (SM) in the city of Valencia by Aguas de Valencia, the water utility that offers water supply and sanitation services to the city of Valencia and its metropolitan area. Valencia has become the first large city in Europe fully equipped with a point-to-point fixed network of SM (currently with more than 430,000 units, about 90% of the meters of the city). The shift towards a water supply management system based on SM is a complex process that entails changes and impacts on different management areas of the water supply organization. A new data management and processing platform has been developed and is already proving notable benefits in the operation of the system. For example, a tool allows to automatically issue and manage work orders when abnormalities such as internal leaks (constant consumption) or meter alarms are detected. Another tool has been developed to reduce levels of non-revenue water by continuously balancing supply and demand in district metered areas. Improving leak detection and adjusting pressure levels has significantly increased the efficiency of the water distribution network. Finally, a service of post-meter leak detection has been also implemented. But the SM also contribute to improve demand management. The customers now receive detailed information on their water consumption, valuable for improving household water management and assessing the value of water conservation strategies. SM are also key tools for improving the level of understanding of demand patterns. Users have been categorized into different clusters depending in their consumption patterns characteristics. Within the EU SmartH2O project, a high resolution and frequency monitoring of residential uses has been conducted in a selected sample of households for a precise disaggregation of residential end-uses. The disaggregation of end-uses allows for

  4. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  5. Estimating Water Supply Arsenic Levels in the New England Bladder Cancer Study

    Science.gov (United States)

    Freeman, Laura E. Beane; Lubin, Jay H.; Airola, Matthew S.; Baris, Dalsu; Ayotte, Joseph D.; Taylor, Anne; Paulu, Chris; Karagas, Margaret R.; Colt, Joanne; Ward, Mary H.; Huang, An-Tsun; Bress, William; Cherala, Sai; Silverman, Debra T.; Cantor, Kenneth P.

    2011-01-01

    Background: Ingestion of inorganic arsenic in drinking water is recognized as a cause of bladder cancer when levels are relatively high (≥ 150 µg/L). The epidemiologic evidence is less clear at the low-to-moderate concentrations typically observed in the United States. Accurate retrospective exposure assessment over a long time period is a major challenge in conducting epidemiologic studies of environmental factors and diseases with long latency, such as cancer. Objective: We estimated arsenic concentrations in the water supplies of 2,611 participants in a population-based case–control study in northern New England. Methods: Estimates covered the lifetimes of most study participants and were based on a combination of arsenic measurements at the homes of the participants and statistical modeling of arsenic concentrations in the water supply of both past and current homes. We assigned a residential water supply arsenic concentration for 165,138 (95%) of the total 173,361 lifetime exposure years (EYs) and a workplace water supply arsenic level for 85,195 EYs (86% of reported occupational years). Results: Three methods accounted for 93% of the residential estimates of arsenic concentration: direct measurement of water samples (27%; median, 0.3 µg/L; range, 0.1–11.5), statistical models of water utility measurement data (49%; median, 0.4 µg/L; range, 0.3–3.3), and statistical models of arsenic concentrations in wells using aquifers in New England (17%; median, 1.6 µg/L; range, 0.6–22.4). Conclusions: We used a different validation procedure for each of the three methods, and found our estimated levels to be comparable with available measured concentrations. This methodology allowed us to calculate potential drinking water exposure over long periods. PMID:21421449

  6. Dietary supply of selenium for adolescents in three residential care orphanages in Southern Ghana

    International Nuclear Information System (INIS)

    Adotey, Dennis K.; Stibilj, Vekoslava; Serfor-Armah, Yaw; Nyarko, Benjamin J.B.; Jaćimović, Radojko

    2011-01-01

    Adolescents require optimum dietary supply of the essential trace mineral selenium (Se); however the absence of reliable and accurate data on the dietary supply of selenium for the adolescent population in Ghanaian residential care orphanages have made it difficult for public health nutritionists to assess the adequacy of the dietary supply. The dietary supply of selenium for adolescents (12–15 years) in three residential care orphanages, (Osu, Tutu-Akwapim and Teshie), in Southern Ghana have been evaluated by sampling their 24-h duplicate diets (including water) for 7-consecutive days using the duplicate diet sampling technique. The mass fraction of selenium in the blended lyophilized homogenates of duplicate diets was determined by radiochemical neutron activation analysis (RNAA). The validity of the RNAA method for selenium determination was checked by analyses of NIST SRM 1548a (Typical diet). The chemical yield of the radiochemical separation was determined by spectrophotometry. The average mass fractions of selenium in the blended lyophilized 24-hour duplicate diets for Osu, Tutu-Akwapim and Teshie were; 165 ± 61 [117.2–285.2], 203 ± 68 [110.5–304.9] and 250 ± 92 [128.8–408.0] ng Se g −1 lyophilized matter respectively. The average dietary supply of Se were, 57.6 ± 17.3 [42.2–88.4], 82.0 ± 30.7 [44.3–136.2] and 91.7 ± 44.2 [46.0–153.4] μg Se day −1 for Osu, Tutu-Akwapim and Teshie orphanages respectively. The data generated will help public health nutritionists in the provision of dietary advice and nutritional support for the studied orphanages, as well as other orphanages. The data will also help in the planning of institutional diets.

  7. Expert opinion on risks to the long-term viability of residential recycled water schemes: An Australian study.

    Science.gov (United States)

    West, Camilla; Kenway, Steven; Hassall, Maureen; Yuan, Zhiguo

    2017-09-01

    The water sector needs to make efficient and prudent investment decisions by carefully considering the long-term viability of water infrastructure projects. To support the assessment and planning of residential recycled water schemes in Australia, we have sought to clarify scheme objectives and to further define the array of critical risks that can impact the long-term viability of schemes. Building on historical information, we conducted a national survey which elicited responses from 88 Australian expert practitioners, of which 64% have over 10 years of industry experience and 42% have experience with more than five residential recycled water schemes. On the basis of expert opinion, residential recycled water schemes are considered to be highly relevant for diversifying and improving water supply security, reducing wastewater effluent discharge and pollutant load to waterways and contributing to sustainable urban development. At present however, the inability to demonstrate an incontestable business case is posing a significant risk to the long-term viability of residential recycled water schemes. Political, regulatory, organisational and financial factors were also rated as critical risks, in addition to community risk perception and fall in demand. The survey results shed further light on the regulatory environment of residential recycled water schemes, with regulatory participants rating the level and impact of risk factors higher than other survey participants in most cases. The research outcomes provide a comprehensive understanding of the critical risks to the long-term viability of residential recycled water schemes, thereby enabling the specification of targeted risk management measures at the assessment and planning stage of a scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Energy efficiency of elevated water supply tanks for high-rise buildings

    International Nuclear Information System (INIS)

    Cheung, C.T.; Mui, K.W.; Wong, L.T.

    2013-01-01

    Highlights: ► We evaluate energy efficiency for water supply tank location in buildings. ► Water supply tank arrangement in a building affects pumping energy use. ► We propose a mathematical model for optimal design solutions. ► We test the model with measurements in 22 Hong Kong buildings. ► A potential annual energy saving for Hong Kong is up to 410 TJ. -- Abstract: High-rise housing, a trend in densely populated cities around the world, increases the energy use for water supply and corresponding greenhouse gas emissions. This paper presents an energy efficiency evaluation measure for water supply system designs and a mathematical model for optimizing pumping energy through the arrangement of water tanks in a building. To demonstrate that the model is useful for establishing optimal design solutions that integrate energy consumption into urban water planning processes which cater to various building demands and usage patterns, measurement data of 22 high-rise residential buildings in Hong Kong are employed. The results show the energy efficiency of many existing high-rise water supply systems is about 0.25 and can be improved to 0.26–0.37 via water storage tank relocations. The corresponding annual electricity that can be saved is 160–410 TJ, a 0.1–0.3% of the total annual electricity consumption in Hong Kong.

  9. Water supply

    International Nuclear Information System (INIS)

    Peterson, F.L.

    1986-01-01

    Options and methodologies for the development of fresh water supplies on Bikini Atoll are much the same as those practiced in the rest of the Marshall Islands and for that matter, most atolls in the central Pacific Ocean Basin. That is, rainfall distribution on Bikini produces a distinct wet season, lasting from about May through November, with the remaining months being generally dry. As a result, fresh water from surface catchments tends to be plentiful during the wet season? but is usually scarce during the dry months, and alternative sources such as groundwater must be utilized during this time. On Bikini the problems of fresh water supply are somewhat more difficult than for most Marshall Island atolls because rainfall is only about half the Marshall Island's average. Tus water supply is a critical factor limiting the carrying capacity of Bikini Atoll. To address this problem BARC has undertaken a study of the Bikini Atoll water supply. Te primary objectives of this work are to determine: (1) alternatives available for fresh water supply, 2 the amounts, location and quality of available supplies and 3 optimal development methods. The study planned for one's year duration, has been underway only since the summer of 1985 and is thus not yet fully completed. However, work done to date, which is presented in this report of preliminary findings, provides a reasonably accurate picture of Bikini's fresh water supplies and the various options available for their development. The work remaining to be completed will mainly add refinements to the water supply picture presented in the sections to follow

  10. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    The population of Delta County, Colorado, like that in much of the Western United States, is forecast to increase substantially in the next few decades. A substantial portion of the increased population likely will reside in rural subdivisions and use residential wells for domestic water supplies. In Colorado, a subdivision developer is required to submit a water-supply plan through the county for approval by the Colorado Division of Water Resources. If the water supply is to be provided by wells, the water-supply plan must include a water-supply report. The water-supply report demonstrates the availability, sustainability, and suitability of the water supply for the proposed subdivision. During 2006, the U.S. Geological Survey, in cooperation with Delta County, Colorado, began a study to develop criteria that the Delta County Land Use Department can use to evaluate water-supply reports for proposed subdivisions. A table was prepared that lists the types of analyses and data that may be needed in a water-supply report for a water-supply plan that proposes the use of ground water. A preliminary analysis of the availability, sustainability, and suitability of the ground-water resources of Rogers Mesa, Delta County, Colorado, was prepared for a hypothetical subdivision to demonstrate hydrologic analyses and data that may be needed for water-supply reports for proposed subdivisions. Rogers Mesa is a 12-square-mile upland mesa located along the north side of the North Fork Gunnison River about 15 miles east of Delta, Colorado. The principal land use on Rogers Mesa is irrigated agriculture, with about 5,651 acres of irrigated cropland, grass pasture, and orchards. The principal source of irrigation water is surface water diverted from the North Fork Gunnison River and Leroux Creek. The estimated area of platted subdivisions on or partially on Rogers Mesa in 2007 was about 4,792 acres of which about 2,756 acres was irrigated land in 2000. The principal aquifer on Rogers

  11. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  12. Forecasting how residential urban form affects the regional carbon savings and costs of retrofitting and decentralized energy supply

    International Nuclear Information System (INIS)

    Hargreaves, Anthony; Cheng, Vicky; Deshmukh, Sandip; Leach, Matthew; Steemers, Koen

    2017-01-01

    Highlights: • An innovative model for testing combinations of spatial planning and decentralised energy supply. • An improved method of modelling the spatial variability of energy consumption per dwelling type. • Shows how spatial planning would affect the future carbon reduction of decentralised supply. • Forecasts the future carbon reduction and costs of retrofitting and decentralised supply. • A method of forecasting how residential space would affect the suitability of decentralised supply. - Abstract: Low carbon energy supply technologies are increasingly used at the building and community scale and are an important part of the government decarbonisation strategy. However, with their present state of development and costs, many of these decentralised technologies rely on public subsidies to be financially viable. It is questionable whether they are cost effective compared to other ways of reducing carbon emissions, such as decarbonisation of conventional supply and improving the energy efficiency of dwellings. Previous studies have found it difficult to reliably estimate the future potential of decentralised supply because this depends on the available residential space which varies greatly within a city region. To address this problem, we used an integrated modelling framework that converted the residential density forecasts of a regional model into a representation of the building dimensions and land of the future housing stock. This included a method of estimating the variability of the dwellings and residential land. We present the findings of a case study of the wider south east regions of England that forecasted the impacts of energy efficiency and decentralised supply scenarios to year 2031. Our novel and innovative method substantially improves the spatial estimates of energy consumption compared to building energy models that only use standard dwelling typologies. We tested the impact of an alternative spatial planning policy on the future

  13. Normalization of water flow rate for external fire fighting of the buildings in settlements with zone water supply

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgievich

    2014-12-01

    Full Text Available In the article the requirements for fire safety assurance are justified for the objects, in which water is supplied with account for serial and parallel area zoning. In the process of zoning the district is segregated into such parts, for which head rate in any point of selection of water from network will not exceed 6 bar. In the current regulatory rules the requirements for the calculation of the costs of water points are stated, as well as in case of extinguishing fires at the sites with water-supply systems zones. It is recommended to analyze each zone of the system of water-supply separately, without interrelation with the common water feeders, water consumers and services of fire extinguishing. Such an approach to assign water discharge for fire extinguishing results in the decrease of fire safety of an object, deforms calculation technique of outside systems of water-supply of the similar-type objects located in different parts of the terrain. Taking the number of fires and water consumption for fire suppression by the number of residents in each zone, we thus underestimate the capacity of the pipeline system. It is offered to make changes in Norms and Standards in force on fire safety of settlements. The recommendations on regulation of the number of fires and water flow for fire fighting in residential objects with zoned systems of water-supply are formulated.

  14. Choosing The Right Technology - Optimized Design Of Renewable Supply Systems For Residential Houses

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    The use of renewable energy sources (RES) has continuously increased throughout the last decade. In the residential building sector the trend goes towards energy supply systems based on multiple RES. This is mainly due to political requirements, governmental subsidies and fuel price development....... These systems not only require an optimal design with respect to the installed capacities but also the right choice in combining the available technologies assuring a cost-effective solution. The aim of this paper is to present an optimization methodology for residential on-site energy supply systems based...... on mixed integer linear programming. The methodology chooses the right combination of technologies and sizes the components based on on-site weather data and expected consumption profiles. Through this approach the fluctuations of RES as well as the user behavior are taken into account already during...

  15. Modeling integrated water user decisions in intermittent supply systems

    Science.gov (United States)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  16. Factors that affect public-supply water use in Florida, with a section on projected water use to the year 2020

    Science.gov (United States)

    Marella, R.L.

    1992-01-01

    Public-supply water use in Florida increased 242 percent between 1960 and 1987 from 530 Mgal/d (million gallons per day) to 1,811 Mgal/d. This change is primarily a result of increases in population and tourism since 1960. Public-supply utilities provide water to a variety of users. In 1985, 71 percent of the water used for public supply was delivered for residential uses, 15 percent for commercial uses, 9 percent for industrial uses, and the remaining 5 percent for public use or other uses. Residential use of public-supply water in Florida has increased nearly 280 Mgal/d, but has decreased in the proportion of total deliveries from 80 to 71 percent between 1975 and 1985. This trend resulted from increased tourism and related commercial services associated with population and visitors. One of several factors that influences public-supply water use in Florida is the increase in resident population, which increased from 4.95 million in 1960 to more than 12.0 million in 1987. Additionally, Florida's nonresident population increased from 18.8 million visitors in 1977, to 34.1 million visitors in 1987, and the part of Florida?s population that relies on public-supply water increased from 68 percent in 1960, to 86 percent in 1987. The public supply per capita use was multiplied by the projected populations for each county for the years 2000, 2010, and 2020 to forecast public-supply water use. Using medium projections, Florida?s population is expected to increase to nearly 16 million in the year 2000, to 18 million in the year 2010, and to almost 20 million in the year 2020, of which an estimated 13.5 million people will be supplied water from public-supply water systems in the year 2000, 15 million in 2010, and nearly 17 million by the year 2020. Public-supply water use is expected to increase to a projected (medium) 2,310 Mgal/d in the year 2000, 2,610 Mgal/d in the year 2010, and 2,890 Mgal/d in the year 2020. If the population exceeds the medium projections for the

  17. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    1991-07-01

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  18. Estimating the Determinants of Residential Water Demand in Italy

    Directory of Open Access Journals (Sweden)

    Giulia Romano

    2014-09-01

    Full Text Available The aim of this study was to estimate the determinants of residential water demand for chief towns of every Italian province, in the period 2007–2009, using the linear mixed-effects model estimated with the restricted-maximum-likelihood method. Results confirmed that the applied tariff had a negative effect on residential water consumption and that it was a relevant driver of domestic water consumption. Moreover, income per capita had a positive effect on water consumption. Among measured climatic and geographical features, precipitation and altitude exerted a strongly significant negative effect on water consumption, while temperature did not influence water demand. Further, data show that small towns in terms of population served were characterized by lower levels of consumption. Water utilities ownership itself did not have a significant effect on water consumption but tariffs were significantly lower and residential water consumption was higher in towns where the water service was managed by publicly owned water utilities. However, further research is needed to gain a better understanding of the connection between ownership of water utilities and water prices and water consumption.

  19. Estimating the Determinants of Residential Water Demand in Italy

    OpenAIRE

    Giulia Romano; Nicola Salvati; Andrea Guerrini

    2014-01-01

    The aim of this study was to estimate the determinants of residential water demand for chief towns of every Italian province, in the period 2007–2009, using the linear mixed-effects model estimated with the restricted-maximum-likelihood method. Results confirmed that the applied tariff had a negative effect on residential water consumption and that it was a relevant driver of domestic water consumption. Moreover, income per capita had a positive effect on water consumption. Among measured cli...

  20. Public-supply water use and self-supplied industrial water use in Tennessee, 2010

    Science.gov (United States)

    Robinson, John A.

    2018-04-26

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Water Resources, prepared this report and displayed and analyzed water use by self-supplied industrial and public-supply water systems in Tennessee for 2010. Public-supply water systems in Tennessee provide water for domestic, industrial, and commercial uses and for municipal services. In 2010, 474 public-supply water systems distributed 917 million gallons per day (Mgal/d) of surface water (67 percent, 617 Mgal/d) and groundwater (33 percent, 300 Mgal/d) to a population of 5.7 million in Tennessee. Gross per capita water use in Tennessee during 2010 was 162 gallons per day.Since 1950, water withdrawals by public-supply water systems in Tennessee have increased from 160 Mgal/d to 917 Mgal/d in 2010. Each of the 95 counties in Tennessee was served by at least 1 public-supply water system in 2010. Tennessee public-supply water systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. Since 2005, surface-water withdrawals have increased by 26 Mgal/d, and groundwater withdrawals have decreased by 29 Mgal/d, which is the first decrease in groundwater withdrawals since 1950; however, 29 systems reported increased groundwater withdrawals during 2010, and 12 of these 29 systems reported increases of 1 Mgal/d or more. Davidson County had the largest surface-water withdrawal rate (136 Mgal/d) in 2010. The largest groundwater withdrawal rate (151 Mgal/d) by a single public-supply water system was reported by Memphis Light, Gas and Water, which served more than 669,000 people in Shelby County in 2010.Self-supplied industrial water use includes water for such purposes as fabrication, processing, washing, diluting, cooling, or transporting a product; incorporating water into a product; or for sanitation needs in facilities that manufacture various products. Water withdrawals for self-supplied

  1. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    Science.gov (United States)

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  2. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  3. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  4. Hot water supply in ''Smart Home''. Decentralized supply, decentralized control; Warmwasserversorgung im 'Smart Home'. Dezentral versorgen, dezentral steuern

    Energy Technology Data Exchange (ETDEWEB)

    Wiechers, Olaf

    2013-10-01

    The separation of the heating system and domestic hot water is already established in commercial and residential construction. The decentralized hot water supply offers environmental and economic benefits. In this paper it is shown that one can also do this in a detached house. [German] Die Trennung von Heizsystem und Warmwasserbereitung ist im Gewerbe- und Wohnungsbau bereits etabliert. Die dezentrale Warmwasserversorgung bietet oekologische und oekonomische Vorteile. In diesem Beitrag wird gezeigt, dass man dies auch bei einem Einfamilienhaus durchfuehren kann.

  5. Rational designing of the internal water supply system in reconstructed residential buildings of mass standard series

    OpenAIRE

    Orlov Evgeny

    2018-01-01

    The issues of water supply system reconstruction in mass series buildings are reviewed with consideration of water- and resource saving. Principal points for location of plumbing cells in apartments, arrangement of water devices and wastewater receivers, selection of pipelines for reconstructed water line are described. Comparative analysis of design variants of inner water line before and following reconstruction are given. It was found that applying the developed system design approaches th...

  6. Accelerating residential PV expansion: supply analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Payne, Adam; Williams, Robert H.; Duke, Richard

    2001-01-01

    Photovoltaic (PV) technology is now sufficiently advanced that market support mechanisms such as net metering plus a renewable portfolio standard (RPS) could induce rapid PV market growth in grid-connected applications. With such support mechanisms, markets would be sufficiently large that manufacturers could profitably build and operate 100 MW p /yr PV module factories, and electricity costs for residential rooftop PV systems would compare favorably with residential electricity prices in certain areas (e.g., California and the greater New York region in the US). This prospect is illustrated by economic and market analyses for one promising technology (amorphous silicon thin-film PV) from the perspectives of both module manufacturers and buyers of new homes with rooftop PV systems. With public policies that reflect the distributed and environmental benefits offered by PV-and that can sustain domestic PV market demand growth at three times the historical growth rate for a period of the order of two decades - PV could provide 3% of total US electricity supply by 2025. (Author)

  7. Integrated urban water management for residential areas: a reuse model.

    Science.gov (United States)

    Barton, A B; Argue, J R

    2009-01-01

    Global concern over growing urban water demand in the face of limited water resources has focussed attention on the need for better management of available water resources. This paper takes the "fit for purpose" concept and applies it in the development of a model aimed at changing current practices with respect to residential planning by integrating reuse systems into the design layout. This residential reuse model provides an approach to the design of residential developments seeking to maximise water reuse. Water balance modelling is used to assess the extent to which local water resources can satisfy residential demands with conditions based on the city of Adelaide, Australia. Physical conditions include a relatively flat topography and a temperate climate, with annual rainfall being around 500 mm. The level of water-self-sufficiency that may be achieved within a reuse development in this environment is estimated at around 60%. A case study is also presented in which a conventional development is re-designed on the basis of the reuse model. Costing of the two developments indicates the reuse scenario is only marginally more expensive. Such costings however do not include the benefit to upstream and downstream environments resulting from reduced demand and discharges. As governments look to developers to recover system augmentation and environmental costs the economics of such approaches will increase.

  8. Residential outdoor water use in Tucson, Arizona: Geospatial, demographic and temporal perspectives

    Science.gov (United States)

    Himmel, Alexander I.

    Outdoor water use by single-family residences in the desert city of Tucson, Arizona is investigated as a multi-scaled coupled human-environment system, using remotely sensed images, GIS data, household water use records and survey responses. Like many desert cities, Tucson's municipal water system faces stresses at multiple spatial and temporal scales: rising demand, limited supplies, competition for distant resources and the likelihood of shortages due to regional climate change. Though the need for demand management is recognized, conflict between the long-term regional scale of the ecosystem that sustains Tucson's water supply and the short-term, local scale of the municipal utility results in a "lack of fit", shown here as the inability to reduce consumption to sustainable levels. While direct regulation of outdoor water use has not been successful, geographic research suggests that modification of the built environment, the focus of the three studies comprising this dissertation, holds promise as a demand management strategy. The first study is a spatial analysis of survey responses on outdoor water use practices during a drought. Next, the potential for substituting common amenities (irrigated landscapes and swimming pools) for private ones is investigated. Residential use was found to be sensitive to park proximity, greenness (proxied by the Normalized Difference Vegetation Index), size and presence of a park pool. Most small parks were net water savers; large parks offered the opportunity to substitute reclaimed water for potable supplies. The last study correlates long-term Landsat-based vegetation and water use trends and integrates these with a spatial analysis of kinetic temperatures. Findings indicate that despite reduced water use, Tucson became greener over the 1995 -- 2008 period. This effect is attributed to a pulse of vegetation establishment in response to a shift in the El Nino -- Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO

  9. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... necessary for residential water heaters, because the existing test procedures for those products already...

  10. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... proposed to amend, where appropriate, its test procedures for residential water heaters, direct heating... notes that the test procedure and metric for residential water heaters currently address and incorporate...

  11. DETERMINANTS OF RESIDENTIAL PER CAPITA WATER ...

    African Journals Online (AJOL)

    This report presents the findings of the study on the determinants of residential per capita water demand of Makurdi metropolis in Benue State, Nigeria. Data for the study was obtained by the use of questionnaires, oral interviews and observations. The data was analyzed using SPSS. Twenty variables were considered in ...

  12. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  13. Nevada test site water-supply wells

    International Nuclear Information System (INIS)

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined

  14. Water quality problems associated with intermittent water supply.

    Science.gov (United States)

    Tokajian, S; Hashwa, F

    2003-01-01

    A controlled study was conducted in Lebanon over a period of 12 months to determine bacterial regrowth in a small network supplying the Beirut suburb of Naccache that had a population of about 3,000. The residential area, which is fed by gravity, is supplied twice a week with chlorinated water from two artesian wells of a confined aquifer. A significant correlation was detected between the turbidity and the levels of heterotrophic plate count bacteria (HPC) in the samples from the distribution network as well as from the artesian wells. However, a negative significant correlation was found between the temperature and the HPC count in the samples collected from the source. A statistically significant increase in counts, possibly due to regrowth, was repeatedly established between two sampling points lying on a straight distribution line but 1 km apart. Faecal coliforms were detected in the source water but none in the network except during a pipe breakage incident with confirmed Escherichia coli reaching 40 CFU/100 mL. However, coliforms such as Citrobacter freundii, Enterobacter agglomerans, E. cloacae and E. skazakii were repeatedly isolated from the network, mainly due to inadequate chlorination. A second controlled study was conducted to determine the effect of storage on the microbial quality of household storage tanks (500 L), which were of two main types - galvanized cast iron and black polyethylene. The mean bacterial count increased significantly after 7 d storage in both tank types. A significant difference was found in the mean HPC/mL between the winter and the summer. Highest counts were found April-June although the maximum temperature was reported later in the summer. A positive correlation was established between the HPC/mL and pH, temperature and storage time.

  15. Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake

    International Nuclear Information System (INIS)

    Wang Yu; Au, S.-K.

    2009-01-01

    This paper describes a process to characterize spatial distribution of water supply reliability among various consumers in a water system and proposes methods to identify critical links of water supply to crucial water consumers under an earthquake. Probabilistic performance of water supply is reflected by the probability of satisfying consumers' water demand, Damage Consequence Index (DCI) and Upgrade Benefit Index (UBI). The process is illustrated using a hypothetical water supply system, where direct Monte Carlo simulation is used for estimating the performance indices. The reliability of water supply to consumers varies spatially, depending on their respective locations in the system and system configuration. The UBI is adopted as a primary index in the identification of critical links for crucial water consumers. A pipe with a relatively large damage probability is likely to have a relatively large UBI, and hence, to be a critical link. The concept of efficient frontier is employed to identify critical links of water supply to crucial water consumers. It is found that a group of links that have the largest UBI individually do not necessarily have the largest group UBI, or be the group of critical links

  16. LCA of Drinking Water Supply

    DEFF Research Database (Denmark)

    Godskesen, Berit; Meron, Noa; Rygaard, Martin

    2018-01-01

    Water supplies around the globe are growing complex and include more intense treatment methods than just decades ago. Now, desalination of seawater and wastewater reuse for both non-potable and potable water supply have become common practice in many places. LCA has been used to assess...... the potentials and reveal hotspots among the possible technologies and scenarios for water supplies of the future. LCA studies have been used to support decisions in the planning of urban water systems and some important findings include documentation of reduced environmental impact from desalination of brackish...... water over sea water, the significant impacts from changed drinking water quality and reduced environmental burden from wastewater reuse instead of desalination. Some of the main challenges in conducting LCAs of water supply systems are their complexity and diversity, requiring very large data...

  17. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool... heating equipment and pool heaters. Table I.1--Amended Energy Conservation Standards for Residential Water... for national energy and water conservation; and 7. Other factors the Secretary of Energy (Secretary...

  18. 46 CFR 108.467 - Water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless when...

  19. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  20. Monitoring of water supply connections as an element to reduce apparent losses of water?

    Science.gov (United States)

    Gwoździej-Mazur, Joanna

    2017-11-01

    Measuring instruments are designed to measure a given physical value, to process the obtained information and forward it to the observer. They are designed to perform specific tasks in specific working conditions and meeting the envisaged requirements. The most important requirement to be met by measuring instruments, is to preserve the established metrological characteristics. The basic and most common instrument for measuring the volume of flowing water is the water meter. Selecting the right water meter in the operating conditions is not an easy issue. The problem has been further intensified by decrease of water consumption which began in the 90s of the twentieth century and continuing to the present day. As a result, there has changed the structure of water consumption in both the residential and industrial applications. In this situation, a right selection of the optimal water meter it is an important case. The article presents the results of research in the field of characteristic flows in the water supply connections in multi-family housing using modern monitoring systems. It has been presented the calculated inequality ratio of water consumption, which can be helpful when designing a plumbing systems. In addition, the structure of water consumption due to the typical flow ranges was determined.

  1. Monitoring of water supply connections as an element to reduce apparent losses of water?

    Directory of Open Access Journals (Sweden)

    Gwoździej-Mazur Joanna

    2017-01-01

    Full Text Available Measuring instruments are designed to measure a given physical value, to process the obtained information and forward it to the observer. They are designed to perform specific tasks in specific working conditions and meeting the envisaged requirements. The most important requirement to be met by measuring instruments, is to preserve the established metrological characteristics. The basic and most common instrument for measuring the volume of flowing water is the water meter. Selecting the right water meter in the operating conditions is not an easy issue. The problem has been further intensified by decrease of water consumption which began in the 90s of the twentieth century and continuing to the present day. As a result, there has changed the structure of water consumption in both the residential and industrial applications. In this situation, a right selection of the optimal water meter it is an important case. The article presents the results of research in the field of characteristic flows in the water supply connections in multi-family housing using modern monitoring systems. It has been presented the calculated inequality ratio of water consumption, which can be helpful when designing a plumbing systems. In addition, the structure of water consumption due to the typical flow ranges was determined.

  2. Water stress, water salience, and the implications for water supply planning

    Science.gov (United States)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  3. WATER SUPPLY ANALYSIS

    International Nuclear Information System (INIS)

    Clark, R.D.

    1996-01-01

    This analysis defines and evaluates the surface water supply system from the existing J-13 well to the North Portal. This system includes the pipe running from J-13 to a proposed Booster Pump Station at the intersection of H Road and the North Portal access road. Contained herein is an analysis of the proposed Booster Pump Station with a brief description of the system that could be installed to the South Portal and the optional shaft. The tanks that supply the water to the North Portal are sized, and the supply system to the North Portal facilities and up to Topopah Spring North Ramp is defined

  4. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  5. 18 CFR 801.6 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply. 801.6... POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper... forth in the comprehensive plan. (c) The Commission shall study the basin's water supply needs, the...

  6. Exploring Tradeoffs in Demand-Side and Supply-Side Management of Urban Water Resources Using Agent-Based Modeling and Evolutionary Computation

    Directory of Open Access Journals (Sweden)

    Lufthansa Kanta

    2015-11-01

    Full Text Available Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger: (1 increases in the volume of water pumped through inter-basin transfers from an external reservoir; and (2 drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.

  7. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  8. 9 CFR 354.224 - Water supply.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  9. 24 CFR 3285.603 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...

  10. Security management of water supply

    Directory of Open Access Journals (Sweden)

    Tchórzewska-Cieślak Barbara

    2017-03-01

    Full Text Available The main aim of this work is to present operational problems concerning the safety of the water supply and the procedures for risk management systems functioning public water supply (CWSS and including methods of hazard identification and risk assessment. Developed a problem analysis and risk assessment, including procedures called. WSP, which is recommended by the World Health Organization (WHO as a tool for comprehensive security management of water supply from source to consumer. Water safety plan is a key element of the strategy for prevention of adverse events in CWSS.

  11. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  12. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  13. Estimated use of water in Alabama in 2005

    Science.gov (United States)

    Hutson, Susan S.; Littlepage, Thomas M.; Harper, Michael J.; Tinney, James O.

    2009-01-01

    Water use in Alabama was about 9,958 million gallons per day (Mgal/d) during 2005. Estimates of withdrawals by source indicate that total surface-water withdrawals were about 9,467 Mgal/d (95 percent of the total withdrawals) and the remaining 491 Mgal/d (5 percent) were from ground water. More surface water than ground water was withdrawn for all categories except aquaculture, mining, and self-supplied residential. During 2005, estimated withdrawals by category and in descending order were: thermoelectric power, 8,274 Mgal/d; public supply, 802 Mgal/d; self-supplied industrial, 550 Mgal/d; irrigation, 161 Mgal/d; aquaculture, 75 Mgal/d; self-supplied residential, 39 Mgal/d; livestock, 28 Mgal/d; and mining, 28 Mgal/d.

  14. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    OpenAIRE

    Hogeboom, Hendrik Jan; Knook, Luuk; Hoekstra, Arjen Y.

    2018-01-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they can consume through evaporation. We estimate the blue water footprint of the world's artificial reservoirs and attribute it to the purposes hydroelectricity generation, irrigation water supply, resid...

  15. 20 CFR 654.405 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State health...

  16. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  17. 25 CFR 137.1 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over a...

  18. Predicting compliance with an information-based residential outdoor water conservation program

    Science.gov (United States)

    Landon, Adam C.; Kyle, Gerard T.; Kaiser, Ronald A.

    2016-05-01

    Residential water conservation initiatives often involve some form of education or persuasion intended to change the attitudes and behaviors of residential consumers. However, the ability of these instruments to change attitudes toward conservation and their efficacy in affecting water use remains poorly understood. In this investigation the authors examine consumer attitudes toward complying with a persuasive water conservation program, the extent to which those attitudes predict compliance, and the influence of environmental contextual factors on outdoor water use. Results indicate that the persuasive program was successful in developing positive attitudes toward compliance, and that those attitudes predict water use. However, attitudinal variables explain a relatively small proportion of the variance in objectively measured water use behavior. Recommendations for policy are made stressing the importance of understanding both the effects of attitudes and environmental contextual factors in behavior change initiatives in the municipal water sector.

  19. Efficient dynamic scarcity pricing in urban water supply

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR

  20. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2010-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  1. Small distributed generation versus centralised supply: a social cost-benefit analysis in the residential and service sectors

    International Nuclear Information System (INIS)

    Gulli, Francesco

    2006-01-01

    This paper aims at measuring the social benefits of small CHP distributed generation (DG) in the residential and service sectors. We do this by comparing the social costs of decentralised and centralised supplies, simulating 'ideal' situations in which any source of allocative inefficiencies is eliminated. This comparison focuses on assessing internal and external costs. The internal costs are calculated by simulating the optimal prices of the electricity and gas inputs. The external costs are estimated by using and elaborating the results of the dissemination process of the ExternE project, one of the most recent and accurate methodologies in this field. The analysis takes into account the main sources of uncertainty about the parameter values, including uncertainty about external cost estimations. Despite these sources of uncertainty, the paper concludes that centralised supply is still preferable to small DG. In fact, the overall range of DG social competitiveness is restricted, even considering further remarkable improvements in DG electrical efficiency and investment costs. The results are particularly unfavourable for the residential sector, whereas, in the service sector, the performance of DG technologies is slightly better

  2. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' including residential water... final rule revising energy conservation standards for residential water heaters, direct heating.... EERE-2009-BT-TP-0013] RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures...

  3. 30 CFR 874.14 - Water supply restoration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... supply restoration projects. For purposes of this section, “water supply restoration projects” are those...

  4. Water Utility Planning for an Emergency Drinking Water Supply

    Science.gov (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  5. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  6. Urban community perception towards intermittent water supply system.

    Science.gov (United States)

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  7. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.

    2014-07-01

    Many large population centres are currently facing considerable difficulties with planning issues to secure future water supplies, as a result of water allocation and environmental issues, litigation, and political dogma. A classic case occurs in the metropolitan Atlanta area, which is a rapidly growing, large population centre that relies solely on surface water for supply. Lake Lanier currently supplies about 70% of the water demand and has been involved in a protracted legal dispute for more than two decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling water demand by implementing a conservation plan, per capita use projections are still very high (at 511 L/day in 2035). Both non-potable reuse and indirect reuse of treated wastewater are contained in the most current water supply plan with up to 380,000 m3/day of wastewater treated using advanced wastewater treatment (nutrient removal) to be discharged into Lake Lanier. The water supply plan, however, includes no additional or new supply sources and has deleted any reference to the use of seawater desalination or other potential water sources which would provide diversification, thereby relying solely on the Coosa and Chattahoochee river reservoirs for the future. © 2014 IWA Publishing.

  8. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  9. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  11. Uranium removal from the water supply

    International Nuclear Information System (INIS)

    Miranzadeh, Mohammad Bagher.

    1996-01-01

    Uranium can be naturally occurring radionuclides that contaminate some potable water supplies. Uranium is found both in surface water and ground water supplies. The United States Environmental Protection Agency recently proposed a maximum contaminant of 20 micro gram/liter for uranium because of concerns about its association with kidney disease and cancer. uranium can be removed from the supply by strong base anion-resin. Exhausted resin is regenerated by sodium chloride solution. (Author)

  12. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Science.gov (United States)

    2013-01-11

    ... corresponded to the levels in the American Society of Heating, Refrigerating and Air Conditioning Engineers... provides a brief history of DOE's more recent test procedure rulemakings related to residential water... performance (e.g., such as ambient air temperature, ambient relative humidity, and inlet water temperature...

  13. Reconstruction of Low Pressure Gas Supply System

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  14. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schwarzburger, Heiko

    2017-01-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [de

  15. Analysing the dynamics of transitions in residential water consumption in the Netherlands

    NARCIS (Netherlands)

    Agudelo-Vera, C.M.; Blokker, E.J.M.; Buscher, C.H.; Vreeburg, J.H.G.

    2014-01-01

    Water infrastructure is inherently a socio-technical system. Rapidly changing urban trends and long-term uncertainties make water infrastructure management complex. This paper analyses the dynamics of residential water consumption in the Netherlands since 1900. During this period, different drivers

  16. Organization and scaling in water supply networks

    Science.gov (United States)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  17. Potential market-size for renewables in the residential sector of Pakistan

    International Nuclear Information System (INIS)

    Athar, G.R; Imtiaz, M.

    2005-01-01

    Renewable energy-sources can be used for meeting the energy-demand of various endues, like water-pumping for irrigation, process-heat for industries and desalination for potable water-supplies. However, the residential sector has the largest potential for renewable energy usage among all sectors of the economy. At present, the residential sector of Pakistan consumes some 26 million Tone of Oil Equivalent (MTOE) energy: with more than 6 MTOE in the form of commercial energy (electricity, natural gas, kerosene, LPG and coal) and about 20 MTOE in the form of non-commercial energy (wood, dung and crop-residues). Applied Systems Analysis Group (ASAG) has carried out a study to project the energy demand of Pakistan up to the year 2024-25, using an energy-demand model MAED. This model uses simulation technique to evaluate the energy-demand implications of a scenario, describing the assumed evolution of demographic parameters, economic activities, lifestyle of the population and technological improvements. The demographic targets of the Population-Policy of Pakistan and economic targets of Government of Pakistan have been adopted as the basis of our reference scenario. The study shows that the energy-demand of the residential sector will increase by a factor of 1.7, compared to the base-year 2001-2002. The residential sector will need 41. 9 MTOE energy, of which: (I) 5.9 MTOE (72.5 TWh) in the form of electricity to fulfill the energy-needs for lighting, cooling and other electric appliances, (II) 24.4 MTOE for cooking, (III) 5.7 MTOE for water heating, and (IV) 5.8 MTOE for space heating. In all these end-uses, renewable energy can make a contribution depending on the cost of energy, convenience of use and reliability of supply. Although, the government is vigorously pursuing a rural electrification program, a portion of residential sector, particularly in remote areas, will not be electrified even by 2024-25. The non-electrified houses will require 3 to 5 TWh of

  18. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  19. Lead isotopes in tap water: implications for Pb sources within a municipal water supply system

    International Nuclear Information System (INIS)

    Cheng Zhongqi; Foland, Kenneth A.

    2005-01-01

    Residential tap waters were investigated to examine the feasibility of using isotopic ratios to identify dominant sources of water Pb in the Columbus (Ohio, USA) municipal supply system. Overall, both the concentrations, which are generally low (0.1-28 μg/L), and isotopic compositions of tap water Pb show wide variations. This contrasts with the situation for a limited number of available service lines, which exhibit only a limited Pb-isotope variation but contain Pb of two very different types with one significantly more radiogenic than the other. Most tap water samples in contact with Pb service lines have Pb-isotope ratios that are different from the pipe Pb. Furthermore, the Pb isotope compositions of sequentially drawn samples in the same residence generally are similar, but those from separate residences are different, implying dominant Pb sources from domestic plumbing. A separate pilot study at two residences without Pb service lines shows isotopic similarity between water and solders in each house, further suggesting that the major Pb sources are domestic in these cases and dominated by Pb from solder joints. Although complicated by the broad range of overall Pb-isotope variations observed and limited by sample availability, the results suggest that Pb isotopes can be used effectively to constrain the sources of Pb in tap waters, especially for individual houses where multiple source candidates can be identified

  20. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  1. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....... softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...

  2. Device for controlling water supply to nuclear reactor

    International Nuclear Information System (INIS)

    Iwasaki, Toshio.

    1974-01-01

    Object: To smoothly control automatic water supply for realizing stable operation of a nuclear reactor by providing a flow rate limiting signal selection circuit and a preferential circuit in a water supply control device for a nuclear reactor wherein the speed of a recirculation pump may be changed in two-steps. Structure: Opening angle signals for a water supply regulating valve are controlled by a nuclear reactor water level signal, a vapor flow rate signal and a supplied water flow rate signal through an adder and an adjuster in response to a predetermined water level setting signal. When the water in the reactor is maintained at a predetermined level, a selection circuit receives a water pump condition signal for selecting one of the signals from a supplied water rate limiting signal generator generating signals for indicating whether one or two water supply pumps are operated. A low value preferential circuit passes the lower of the values generated from the selection circuit and the adder. The selection circuit receives a recirculation pump condition signal and selects either one of the signals from the supplied water flow rate limiting signal generator operated at high speed or low speed. A high value preferential circuit passes the higher value

  3. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    Science.gov (United States)

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  4. Have Chinese water pricing reforms reduced urban residential water demand?

    Science.gov (United States)

    Zhang, B.; Fang, K. H.; Baerenklau, K. A.

    2017-06-01

    China continues to deal with severe levels of water scarcity and water pollution. To help address this situation, the Chinese central government initiated urban water pricing reforms in 2002 that emphasized the adoption of increasing block rate (IBR) price structures in place of existing uniform rate structures. By combining urban water use records with microlevel data from the Chinese Urban Household Survey, this research investigates the effectiveness of this national policy reform. Specifically, we compare household water consumption in 28 cities that adopted IBR pricing structures during 2002-2009, with that of 110 cities that had not yet done so. Based on difference-in-differences models, our results show that the policy reform reduced annual residential water demand by 3-4% in the short run and 5% in the longer run. These relatively modest reductions are consistent with the generous nature of the IBR pricing structures that Chinese cities have typically chosen to implement. Our results imply that more efforts are needed to address China's persistent urban water scarcity challenges.

  5. Drinking Water Supply without Use of a Disinfectant

    Science.gov (United States)

    Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.

  6. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  7. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  8. Residential Water Scarcity in Cyprus: Impact of Climate Change and Policy Options

    Directory of Open Access Journals (Sweden)

    Theodoros Zachariadis

    2010-10-01

    Full Text Available This paper presents an assessment of the cost of water scarcity in Cyprus, today and in the next 20 years, taking into account the effect of projected climate change in the region. It focuses on the residential sector, accounting also for tourism and industry. Using a simple demand function, total scarcity costs in Cyprus are computed for the period 2010–2030, and three scenarios of future water demand are presented. The central estimate shows that the present value of total costs due to water shortages will amount to 72 million Euros (at 2009 prices, and, if future water demand increases a little faster, these costs may reach 200 million Euros. Using forecasts of regional climate models, costs are found to be about 20% higher in a “climate change” scenario. Compared to the loss of consumer surplus due to water shortages, desalination is found to be a costly solution, even if environmental damage costs from the operation of desalination plants are not accounted for. Finally, dynamic constrained optimization is employed and shows that efficient residential water prices should include a scarcity price of about 40 Eurocents per cubic meter at  2009 prices; this would constitute a 30–100% increase in current prices faced by residential consumers. Reductions in rainfall due to climate change would raise this price by another 2-3 Eurocents. Such a pricing policy would provide a clear long-term signal to consumers and firms and could substantially contribute to a sustainable use of water resources in the island.

  9. Using Water Transfers to Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.

    2007-12-01

    Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.

  10. Water supply impacts of nuclear fall

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Luo, Y.; Maciejowski, M.E.; Chester, C.V.

    1989-01-01

    “Nuclear winter,” more properly called “nuclear fall,” could be caused by injection of large amounts of dust into the atmosphere. Besides causing a decrease in temperature, it could be accompanied by “nuclear drought,” a catastrophic decrease in precipitation. Dry land agriculture would then be impossible, and municipal, industrial, and irrigation water supplies would be diminished. It has been argued that nuclear winter/fall poses a much greater threat to human survival than do fall out or the direct impacts of a conflict. However, this does not appear to be true, at least for the U.S. Even under the unprecedented drought that could result from nuclear fall, water supplies would be available for many essential activities. For the most part, ground water supplies would be relatively invulnerable to nuclear drought, and adequate surface supplies would be available for potable uses. This assumes that conveyance facilities and power supplies survive a conflict largely intact or can be repaired

  11. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  12. Radon in private water supplies in SW England

    International Nuclear Information System (INIS)

    Bowring, C.S.; Banks, D.

    1995-01-01

    It has been known since at least the early 1960s that high levels of radon gas can be found dissolved in some water supplies in South West England and, as a result of this, degassing plant was installed in some mains water supplies at this time in order to remove the radon from the water. More recently the result of a survey of just over 500 drinking water supplies throughout the UK has been published. This concluded that the radon level in UK water supplies in general do not constitute a health hazard. In this note we present results from 22 private water supplies in South West England and conclude that for certain individuals levels of radon in water may well present a radiological hazard which is not negligible and that this problem needs to be investigated more fully. (author)

  13. Realisation of a small hydro power plant in the new water reservoir of the water supply of the San Abbondio municipality; Realizzazione di una microcentrale nel nuovo serbatoio dell'acquedotto del comune di S. Abbondio. Progetto definitivo nuovo serbatoio. Progetto di massima e studio varianti microcentrale

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M.

    2008-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the construction project of a new water reservoir including a micro-scale hydro power plant in the drinking-water supply of the municipality of San Abbondio, Switzerland. Following the development of residential areas a new water reservoir located at higher elevation is needed. A former preliminary study had demonstrated the feasibility of a micro-scale hydro power plant in the water supply. The adaptation of the plant design to the new situation is described. Investment cost is estimated and several variants are compared. Recommendations are given to the authorities.

  14. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Directory of Open Access Journals (Sweden)

    J. D. S. Cullis

    2018-02-01

    Full Text Available Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing

  15. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Science.gov (United States)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water

  16. Water quality effects of intermittent water supply in Arraiján, Panama.

    Science.gov (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Natural radioactivity in private water supplies in Devon

    International Nuclear Information System (INIS)

    Talbot, D.; Davis, J.; Rainey, M.

    2000-01-01

    This report details a study of the occurrence of natural radioactivity in private water Supplies in West Devon. Supplies sourced from wells, springs boreholes and a small number surface supplies were sampled. The findings of a laboratory simulation of the radon content in drinks such as tea, coffee and squash are also presented. Of supplies sampled in phase one of the work approximately 8% of tap water and 9% of samples directly from the supply contained radon at concentrations exceeding the draft European Union Commission Recommendation action level of 1000 Bq/I for individual and public water supplies. In a small number of supplies 238 U is present at levels exceeding 2 μg/I, the World Health Organisation (WHO) provisional guideline value for uranium in drinking water. The final aspect of the study looked at seasonal variation in the radon content of selected supplies. This showed considerable variability in radon concentration over the course of a week and between studies carried out several months apart. (author)

  18. Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    Although an extensive literature emphasizes the disadvantages of intermittent water supply, it remains prevalent in rural areas of developing countries. Understanding the effects of water supply time restrictions on domestic water use activities and patterns, especially for hygienic purposes, is

  19. Public-supply water use in Kansas, 1990-2012

    Science.gov (United States)

    Kenny, Joan F.

    2014-01-01

    This fact sheet describes water-use data collection and quantities of surface water and groundwater diverted for public supply in Kansas for the years 1990 through 2012. Data used in this fact sheet are from the Kansas Department of Agriculture’s Division of Water Resources and the Kansas Water Office. Water used for public supply represents about 10 percent of all reported water withdrawals in Kansas. Between 1990 and 2012, annual withdrawals for public supply ranged from a low of 121 billion gallons in 1993 to a high of 159 billion gallons in 2012. Differences in annual withdrawals were associated primarily with climatic fluctuations. Six suppliers distributed about one-half of the total water withdrawn for public supply, and nearly three-quarters of the surface water. Surface water represented between 52 and 61 percent of total annual withdrawals for public supply. The proportion of surface water obtained through contracts from Federal reservoirs increased from less than 5 percent in the 1990s to 8 percent in 2011 and 2012. More than 99 percent of the reported water withdrawn for public supply in Kansas in 2012 was metered, which was an increase from 92 percent in 1990. State population increased steadily from 2.5 million people in 1990 to 2.9 million in 2012. Recent estimates indicate that about 95 percent of the total population was served by public water supply; the remainder obtained water from other sources such as private wells. Average per capita water use as calculated for State conservation planning purposes varied by region of the State. The smallest regional average water use for the years 1990–2012 was 98 gallons per person per day in easternmost Kansas, and the largest regional average water use was 274 gallons per person per day in westernmost Kansas.

  20. Managing Water supply in Developing Countries

    Science.gov (United States)

    Rogers, P. P.

    2001-05-01

    If the estimates are correct that, in the large urban areas of the developing world 30 percent of the population lack access to safe water supply and 50 percent lack access to adequate sanitation, then we are currently faced with 510 million urban residents without access to domestic water and 850 million without access to sanitation. Looking to the year 2020, we will face an additional 1,900 million in need of water and sanitation services. The provision of water services to these billions of people over the next two decades is one of the greatest challenges facing the nations of the world. In addition to future supplies, major problems exist with the management of existing systems where water losses can account for a significant fraction of the water supplied. The entire governance of the water sector and the management of particular systems raise serious questions about the application of the best technologies and the appropriate economic incentive systems. The paper outlines a few feasible technical and economic solutions.

  1. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  2. Assessing the significance of climate and community factors on urban water demand

    OpenAIRE

    Md Mahmudul Haque; Prasanna Egodawatta; Ataur Rahman; Ashantha Goonetilleke

    2015-01-01

    Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The resul...

  3. STATE OF WATER SUPPLY INFRASTRUCTURE IN THE SUBCARPATHIAN CITIES

    Directory of Open Access Journals (Sweden)

    Katarzyna PIETRUCHA-URBANIK

    Full Text Available The characteristics of equipping the Subcarpathian province cities with water supply infrastructure was made on the basis of data collected from the Provincial Office, Statistical Office, reports submitted by water companies regarding the functioning of water supply infrastructure and literature data. The indicators characterizing water supply infrastructure were determined for the years 1995-2014. In the paper the indicators of equipping cities with water supply systems were presented. Also water consumption and changes in the length of the water supply network in the cities of the Subcarpathian Province were examined. The analysis shows that the water consumption for the years 1995-2014 decreased by almost 6 m3∙year-1 per capita. The reason for such situation was the increasing price of water and the ecological awareness of the inhabitants of the Subcarpathian region. In the last year of the analysis the water supply system in urban areas of the Subcarpathian province was used by 95% of the population and, for comparison, in rural areas by 77% of the population. In the paper also changes in prices for water in the Subcarpathian region were shown, on the basis of data from the water tariffs in individual water companies. The important element of urban development is the technical infrastructure which reduces the investment costs. The determined indicators of equipping cities with water supply systems show an upward trend in the development of technical infrastructure. Based on the operational data from the water companies the failure rates in selected water supply networks were determined.

  4. The project finance model in the supply of residential and commercial premises

    Directory of Open Access Journals (Sweden)

    Damir Juričić

    2010-06-01

    Full Text Available A supply of dwellings greater than the demand, a reduction in the availability of housing loans and increased credit risk, caused, inter alia, by the financial crisis: these are the basic features of today’s residential property and commercial premises markets in Croatia today. Built but unsold housing units have exposed private investors, who have organised the supply of units within the balance sheet of their firms, to significant risk of underinvestment. The materialisation of this risk is most manifested in the impossibility of funding the core business because of loans that they have agreed on for the construction of dwelling units meant for sale on the market. The paper then proposes a model that, if it were applied, could insure investors to a greater extent against the risk of underinvestment. The supply of dwelling units with protected rentals by the local public sector organised in the traditional manner, i.e. according to a model in which the local public sector figures in the role of investor, distributes the burden of development costs onto the future generations as well. However, practice has shown that traditional models inequitably expose future generations to the risk of a reduction in the quality of this kind of public service. From this point of view the proposed model transfers to the future generation not only the costs but also the obligations to secure equal qualities of public service in such a way that the private investor long-term assumes the risk of the availability of public building.The problem in this kind of organisation of the supply of a public service is double taxation via VAT, changes in the law concerning which are accordingly proposed.

  5. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  6. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Cotrim, Marycel Elena Barboza

    2006-01-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g -1 , respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  7. Modeling of Residential Water Demand Using Random Effect Model,Case Study: Arak City

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Sajadifar

    2011-10-01

    Full Text Available The present study tries to apply the “Partial Adjustment Model” and “Random Effect Model” techniques to the Stone-Greay’s linear expenditure system, in order to estimate the "Residential Seasonal Demand" for water in Arak city. Per capita water consumption of family residences is regressed on marginal price, per capita income, price of other goods, average temperature and average rainfall. Panel data approaches based on a sample of 152 observations from Arak city referred to 1993-2003. From the estimation of the Elasticity-price of the residential water demand, we want to know how a policy of responsive pricing can lead to more efficient household water consumption inArakcity. Results also indicated that summer price elasticity was twice the winter and price and income elasticity was less than 1 in all cases.

  8. Exploring the water-energy nexus in Brazil: The electricity use for water supply

    International Nuclear Information System (INIS)

    Nogueira Vilanova, Mateus Ricardo; Perrella Balestieri, José Antônio

    2015-01-01

    The present work evaluates the electricity use for the water production and supply in Brazil. Five categories of indicators were proposed, that is, per capita, water losses, energy, greenhouse gases (GHGs) and financial/economic, which were used in the definition of municipal average values. It takes an average 0.862 ± 0.046 kWh m −3 for production and water supply in the country. The results demonstrate that the water supply systems accounted for, at least, 1.9% of total electricity consumption in Brazil in 2012, and the water loss wastes 27% of water and energy in the water supply systems from Brazil. The production and distribution of 1 m 3 of water in Brazilian cities represents the emission of 0.050 ± 0.004 kgCO2e, being 0.014 ± 0.001 kgCO2e.m −3 associated with the water loss volumes. Furthermore, the average Brazilian cities' expenditure with electricity for the water supply is US$ 0.14 ± US$ 0.01, which corresponds to 16.8% ± 0.7% of operating expenditures and 12.9% ± 0.5% of total expenditure of the WSSs. The NE Region is the one that presents the greatest potential for the application of hydraulic and energy efficiency measures in water supply systems (WSSs). - Highlights: • We analyze the electricity use in Brazilian water supply systems. • Five categories of indicators were analyzed statistically. • Brazilian water supply systems uses 0.862 ± 0.046 kWh m −3 to supply water. • At least 1.9% of Brazilian electricity consumption is used in water supply systems. • The Northeast Region of Brazil presents the higher energy/water saving potential

  9. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  10. Introduction of water footprint assessment approach to enhance water supply management in Malaysia

    Science.gov (United States)

    Moni, Syazwan N.; Aziz, Edriyana A.; Malek, M. A.

    2017-10-01

    Presently, Water Footprint (WF) Approach has been used to assess the sustainability of a product's chain globally but is lacking in the services sector. Thus, this paper aims to introduce WF assessment as a technical approach to determine the sustainability of water supply management for the typical water supply treatment process (WSTP) used in Malaysia. Water supply is one of the pertinent services and most of WF accounting begins with data obtained from the water supply treatment plant. Therefore, the amount of WF will be accounted for each process of WSTP in order to determine the water utilization for the whole process according to blue, green and grey WF. Hence, the exact amount of water used in the process can be measured by applying this accounting method to assess the sustainability of water supply management in Malaysia. Therefore, the WF approach in assessing sustainability of WSTP could be implemented.

  11. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  12. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  13. Community-based management of water supply services

    CSIR Research Space (South Africa)

    Mogane-Ramahotswa, B

    1992-01-01

    Full Text Available One of the most important aspects of suitability of water supply is the ability of the community to manage its own scheme. Unlike in urban settlement institutional arrangements for rural water supply are rudimentary. Over the past decade...

  14. Assessing the risk posed by high-turbidity water to water supplies.

    Science.gov (United States)

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  15. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  16. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  17. Optimal Dynamics of Intermittent Water Supply

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  18. 7 CFR 612.6 - Application for water supply forecast service.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Application for water supply forecast service. 612.6... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.6 Application for water supply forecast service. Requests for obtaining water supply forecasts or...

  19. Managing urban water supplies in developing countries Climate change and water scarcity scenarios

    Science.gov (United States)

    Vairavamoorthy, Kala; Gorantiwar, Sunil D.; Pathirana, Assela

    Urban areas of developing countries are facing increasing water scarcity and it is possible that this problem may be further aggravated due to rapid changes in the hydro-environment at different scales, like those of climate and land-cover. Due to water scarcity and limitations to the development of new water resources, it is prudent to shift from the traditional 'supply based management' to a 'demand management' paradigm. Demand management focuses on measures that make better and more efficient use of limited supplies, often at a level significantly below standard service levels. This paper particularly focuses on the intermittent water supplies in the cities of developing countries. Intermittent water supplies need to be adopted due to water scarcity and if not planned properly, results in inequities in water deliveries to consumers and poor levels of service. It is therefore important to recognise these realities when designing and operating such networks. The standard tools available for design of water supply systems often assume a continuous, unlimited supply and the supplied water amount is limited only be the demand, making them unsuitable for designing intermittent supplies that are governed by severely limited water availability. This paper presents details of new guidelines developed for the design and control of intermittent water distribution systems in developing countries. These include a modified network analysis simulation coupled with an optimal design tool. The guidelines are driven by a modified set of design objectives to be met at least cost. These objectives are equity in supply and people driven levels of service (PDLS) expressed in terms of four design parameters namely, duration of the supply; timings of the supply; pressure at the outlet (or flow-rate at outlet); and others such as the type of connection required and the locations of connections (in particular for standpipes). All the four parameters are calculated using methods and

  20. Applying water cooled air conditioners in residential buildings in Hong Kong

    International Nuclear Information System (INIS)

    Chen Hua; Lee, W.L.; Yik, F.W.H.

    2008-01-01

    The objective of this study is to conduct a realistic prediction of the potential energy saving for using water cooled air conditioners in residential buildings in Hong Kong. A split type air conditioner with air cooled (AAC) and water cooled (WAC) options was set up for experimental study at different indoor and outdoor conditions. The cooling output, power consumption and coefficient of performance (COP) of the two options were measured and calculated for comparison. The experimental results showed that the COP of the WAC is, on average, 17.4% higher than that of the AAC. The results were used to validate the mathematical models formulated for predicting the performance of WACs and AACs at different operating conditions and load characteristics. While the development of the mathematical models for WACs was reported in an earlier paper, this paper focuses on the experimental works for the AAC. The mathematical models were further used to predict the potential energy saving for application of WACs in residential buildings in Hong Kong. The predictions were based on actual building developments and realistic operating characteristics. The overall energy savings were estimated to be around 8.7% of the total electricity consumption for residential buildings in Hong Kong. Wider use of WACs in subtropical cities is, therefore, recommended

  1. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  2. Wildland Fire Research: Water Supply and Ecosystem Protection

    Science.gov (United States)

    Research is critical to better understand how fires affect water quality and supply and the overall health of an ecosystem. This information can be used to protect the safety of drinking water and assess the vulnerability of water supplies.

  3. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  4. Radon in private water supplies: the unknown risk

    International Nuclear Information System (INIS)

    Clapham, D.; Horan, N.J.

    1996-01-01

    Radon gas, which is the main contributor to human radiation exposure, is easily dissolved in, and dissipated from, water. Problems with radon occur because, in addition to being ingested, it (a) becomes attached to particles which lodge in the lungs and (b) emits alpha radiation. Concentration has been found to increase inversely with the size of a water supply. Although of little problem in mains water, private water supplies in the UK have been found to contain more than ten times the recommended US levels. Despite this, very little monitoring is carried out for radon in private supplies. Local authorities, situated in areas where the geological conditions are such that high levels of radon would be expected, should carry out a suitable sampling and monitoring programme of their private water supplies. (Author)

  5. Mean Residence Time and Emergency Drinking Water Supply.

    Science.gov (United States)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  6. Maximising water supply system yield subject to multiple reliability ...

    African Journals Online (AJOL)

    Maximising water supply system yield subject to multiple reliability constraints via simulation-optimisation. ... Water supply systems have to satisfy different demands that each require various levels of reliability ... and monthly operating rules that maximise the yield of a water supply system subject to ... HOW TO USE AJOL.

  7. Groundwater potential for water supply during droughts in Korea

    Science.gov (United States)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  8. Analytical Bibliography for Water Supply and Conservation Techniques.

    Science.gov (United States)

    1982-01-01

    American Water Works Association 67:331-35. This article describes the activities of the COMASP (water authority for Sao Paulo , Brazil ) during a...the Water Supply Act of 1958, as amiended. Flood Control Act of 1944. The Secretary of the Army was authorized to sell surplus impounded water in...each category. The issues discussed are: climate and water supply, floods and droughts, groundwater, water conservation in irrigation, water quality

  9. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  10. 40 CFR 230.50 - Municipal and private water supplies.

    Science.gov (United States)

    2010-07-01

    ... a municipal or private water supply system. (b) Possible loss of values: Discharges can affect the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Municipal and private water supplies... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal...

  11. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    Science.gov (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  12. Case study: Fixture water use and drinking water quality in a new residential green building.

    Science.gov (United States)

    Salehi, Maryam; Abouali, Mohammad; Wang, Mian; Zhou, Zhi; Nejadhashemi, Amir Pouyan; Mitchell, Jade; Caskey, Stephen; Whelton, Andrew J

    2018-03-01

    Residential plumbing is critical for the health and safety of populations worldwide. A case study was conducted to understand fixture water use, drinking water quality and their possible link, in a newly plumbed residential green building. Water use and water quality were monitored at four in-building locations from September 2015 through December 2015. Once the home was fully inhabited average water stagnation periods were shortest at the 2nd floor hot fixture (90 percentile of 0.6-1.2 h). The maximum water stagnation time was 72.0 h. Bacteria and organic carbon levels increased inside the plumbing system compared to the municipal tap water entering the building. A greater amount of bacteria was detected in hot water samples (6-74,002 gene copy number/mL) compared to cold water (2-597 gene copy number/mL). This suggested that hot water plumbing promoted greater microbial growth. The basement fixture brass needle valve may have caused maximum Zn (5.9 mg/L), Fe (4.1 mg/L), and Pb (23 μg/L) levels compared to other fixture water samples (Zn ≤ 2.1 mg/L, Fe ≤ 0.5 mg/L and Pb ≤ 8 μg/L). At the basement fixture, where the least amount of water use events occurred (cold: 60-105, hot: 21-69 event/month) compared to the other fixtures in the building (cold: 145-856, hot: 326-2230 event/month), greater organic carbon, bacteria, and heavy metal levels were detected. Different fixture use patterns resulted in disparate water quality within a single-family home. The greatest drinking water quality changes were detected at the least frequently used fixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  14. Oahu, Hawaii's Water Supply: 1848-2020 A.D.

    Science.gov (United States)

    Felix, John Henry

    Demand projections indicate that Oahu's natural ground water supply will be fully developed by the year 2000. Supplementary water resources will need to be developed in keeping with the growth of the economy and population. The author, chairman of the Honolulu Board of Water Supply, authoritatively discusses types of ground water in Hawaii, and…

  15. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  16. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  17. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  18. Application of BIM Technology in Building Water Supply and Drainage Design

    Science.gov (United States)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  19. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  20. WATER SUPPLY OF TRANSPORT OBJECTS

    OpenAIRE

    Badyuk, N. S.

    2009-01-01

    Badyuk N. S. WATER SUPPLY OF TRANSPORT OBJECTS. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ТРАНСПОРТНОЙ МЕДИЦИНЫ № 3 (17), 2009 г. P. 96-104 DOI http://dx.doi.org/10.5281/zenodo.1020024 http://dspace.nbuv.gov.ua/bitstream/handle/123456789/23091/13-Badyuk.pdf?sequence=1 WATER SUPPLY OF TRANSPORT OBJECTS Badyuk N. S. Ukrainian Research Institute for Medicine of Transport, Odessa, Ukraine Summary In the work presented they discuss several peculiarities of wa...

  1. Institutional and socioeconomic aspects of water supply

    Science.gov (United States)

    Rauchenschwandtner, H.; Pachel, M.

    2012-04-01

    Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional

  2. Water supply studies. [management and planning of water supplies in California

    Science.gov (United States)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.

    1973-01-01

    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  3. Water supply at Los Alamos during 1977

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1978-08-01

    The Los Alamos water supply for 1977 consisted of 1474 x 10 6 gal from wells in three fields and 57 x 10 6 gal from the gallery in Water Canyon. The production from the well fields was at its lowest volume since 1970. Water-level trends were as anticipated under current production practices. Well rehabilitation should be continued to ensure an adequate and reliable supply from wells that are 10 to over 25 yr old

  4. Understanding residential water-use behaviour in urban South Africa

    CSIR Research Space (South Africa)

    Jacobs-Mata, Inga M

    2018-01-01

    Full Text Available South Africa’s water supply is under great pressure as demand continues to rise. Demand mitigation strategies implemented by the Department of Water and Sanitation (DWS), water boards and local authorities, and a few water awareness initiatives...

  5. Features of internal water supply and water disposal of shopping centers

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2014-01-01

    Full Text Available Pipeline from an external system should be inlet in the part of the building where a large number of water folding devices will be concentrated. As a rule, for shopping centers with a lot of water consumers it is necessary to make not less than three inputs, each of them should be connected to different areas of an external ring water supply system in order to make the work of the system more reliable.The places for water folding fittings in shopping centers are the following. The water folding devices: mixers are placed in sanitary cabins of shopping centers. Usually, for for water saving in buildings with a big pass-through capacity per hour it is reasonable to use contactless mixers, which are turned on upon raising a hand with a help of motion sensor or light sensor. Another important argument in favor of such mixers is prevention of infections spread for the reason that the consumer doesn't touch the device, so, the risk of bacteria transmission via the device decreases. Such mixer supplies water with a demanded expense and temperature. As a rule, water for such mixers moves from the centralized internal water supply system of hot water, mixing up with cold water. If there is no centralized hot water supply system, it is possible to use hot water storage heaters in case of a small number of visitors or to reject mixers at all in favor of the cranes giving water of only one temperature (cold, which is also practiced.For the branch of economic and household the water receivers are used, which are present in sanitary cabins in most cases by toilet bowls, wash basins, urinals.

  6. Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas

    International Nuclear Information System (INIS)

    Upshaw, Charles R.; Rhodes, Joshua D.; Webber, Michael E.

    2017-01-01

    Highlights: • Hydronic integrated rainwater thermal storage (ITHERST) system concept presented. • ITHERST system modeled to assess peak electric load shifting and water savings. • Case study shows 75% peak load reduction and 9% increase in energy consumption. • Potable rainwater collection could provide ∼50–90% of water used for case study. - Abstract: The United States’ built environment is a significant direct and indirect consumer of energy and water. In Texas, and other parts of the Southern and Western US, air conditioning loads, particularly from residential buildings, contribute significantly to the peak electricity load on the grid, straining transmission. In parallel, water resources in these regions are strained by growing populations and shrinking supplies. One potential method to address both of these issues is to develop integrated thermal energy and auxiliary water (e.g. rainwater, greywater, etc.) storage and management systems that reduce peak load and freshwater consumption. This analysis focuses on a proposed integrated thermal energy and rainwater storage (ITHERST) system that is incorporated into a residential air-source chiller/heat pump with hydronic distribution. This paper describes a step-wise hourly thermodynamic model of the thermal storage system to assess on-peak performance, and a daily volume-balance model of auxiliary water collection and consumption to assess water savings potential. While the model is generalized, this analysis uses a case study of a single family home in Austin, Texas to illustrate its capabilities. The results indicate this ITHERST system could reduce on-peak air conditioning electric power demand by over 75%, with increased overall electric energy consumption of approximately 7–9%, when optimally sized. Additionally, the modeled rainwater collection reduced municipal water consumption by approximately 53–89%, depending on the system size.

  7. A global water supply reservoir yield model with uncertainty analysis

    International Nuclear Information System (INIS)

    Kuria, Faith W; Vogel, Richard M

    2014-01-01

    Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series. (paper)

  8. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  9. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    Science.gov (United States)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  10. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the use...

  11. The energy and emissions footprint of water supply for Southern California

    Science.gov (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  12. Public water supply sources - the practical problems

    International Nuclear Information System (INIS)

    Chambers, E.G.W.

    1990-01-01

    A complex system of reservoirs, streams, treatment works and pipe networks is used to provide the public water supply to consumers in Strathclyde. The manner in which a nuclear event would affect the quality of water available from this supply would depend on a wide variety of factors. The extent to which the quality from each source could be maintained or improved if found to be unsatisfactory would depend on the extent of contamination and the particular characteristics of each source. Development of contingency plans will incorporate monitoring of supplies and development of effective communications both internally and externally. (author)

  13. Water Data Report: An Annotated Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Dunham Whitehead, Camilla; Melody, Moya

    2007-05-01

    This report and its accompanying Microsoft Excel workbooksummarize water data we found to support efforts of the EnvironmentalProtection Agency s WaterSense program. WaterSense aims to extend theoperating life of water and wastewater treatment facilities and prolongthe availability of water resourcesby reducing residential andcommercial water consumption through the voluntary replacement ofinefficient water-using products with more efficient ones. WaterSense hasan immediate need for water consumption data categorized by sector and,for the residential sector, per capita data available by region. Thisinformation will assist policy makers, water and wastewater utilityplanners, and others in defining and refining program possibilities.Future data needs concern water supply, wastewater flow volumes, waterquality, and watersheds. This report focuses primarily on the immediateneed for data regarding water consumption and product end-use. We found avariety of data on water consumption at the national, state, andmunicipal levels. We also found several databases related towater-consuming products. Most of the data are available in electronicform on the Web pages of the data-collecting organizations. In addition,we found national, state, and local data on water supply, wastewater,water quality, and watersheds.

  14. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Fang, A J; Newell, Joshua P; Cousins, Joshua J

    2015-01-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  15. Status of small water supplies in the Nordic countries: Characteristics, water quality and challenges.

    Science.gov (United States)

    Gunnarsdottir, Maria J; Persson, Kenneth M; Andradottir, Hrund O; Gardarsson, Sigurdur M

    2017-11-01

    Access to safe water is essential for public health and is one of the most important prerequisites for good living and safe food production. Many studies have shown that non-compliance with drinking water quality standards in small water supply systems is much higher than in large systems. Nevertheless, people served by small water supply systems have the right to the same level of health protection. Actions are therefore needed to improve the situation. The objective of the present study was to carry out a baseline analysis of the situation in the Nordic region and provide recommendations for governmental policy and actions. Data were gathered on number of water supplies, population served, compliance with regulations and waterborne disease outbreaks from various sources in the Nordic countries. The collected data showed that there are about 12500 regulated water supplies, 9400 of which serve fewer than 500 persons. The number of unregulated and poorly regulated supplies is unknown, but it can be roughly estimated that these serve 10% of the Nordic population on a permanent basis or 2.6 million people. However, this does not tell the whole story as many of the very small water supplies serve transient populations, summerhouse dwellers and tourist sites, with many more users. Non-compliance regarding microbes is much higher in the small supplies. The population weighted average fecal contamination incidence rate in the Nordic region is eleven times higher in the smaller supplies than in the large ones, 0.76% and 0.07%, respectively. Registered waterborne disease outbreaks were also more frequent in the small supplies than in the large ones. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Leaks in the internal water supply piping systems

    OpenAIRE

    Orlov Evgeniy Vladimirovich; Komarov Anatoliy Sergeevich; Mel’nikov Fedor Alekseevich; Serov Aleksandr Evgen’evich

    2015-01-01

    Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of ...

  17. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2009-03-01

    Full Text Available The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  18. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Science.gov (United States)

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  19. 7 CFR 612.5 - Dissemination of water supply forecasts and basic data.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dissemination of water supply forecasts and basic data... SUPPLY FORECASTS § 612.5 Dissemination of water supply forecasts and basic data. Water supply outlook reports prepared by NRCS and its cooperators containing water supply forecasts and basic data are usually...

  20. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates manual...

  1. Sustainability of Drinking Water Supply Projects in Rural of North ...

    African Journals Online (AJOL)

    Background: Safe water supply coverage in the rural areas of Ethiopia is very marginal. The coverage still remains very low because of limited progress in water supply activities in these areas. Factors affecting the continued use of the outcome of water supply projects in the background of limited resources are not well ...

  2. ACCOUNTING FOR NONUNIFORMITY OF WATER CONSUMPTION IN THE EXHAUST AIR HEAT RECLAMATION SYSTEMS FOR HOT WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Samarin Oleg Dmitrievich

    2017-03-01

    Full Text Available This article is devoted to assessment of the influence of variation of daily hot water consumption on the predicted energy effect by using heat recovery of exhaust air in typical exhaust ventilation systems of the most commonly used flat buildings during their switch to the mechanical induction for the pre-heating of water for hot water supply. It outlines the general principle of the organization of this method of energy saving and presents the basic equations of heat transfer in the heat exchanger. The article proposes a simplified method of accounting for changes in the heat transfer coefficient of air-to-water heat exchanger with fluctuations of water demand using existing dependencies for this coefficient from the rate flow of heating and heated fluid through the device. It presents observations to identify the parameters of the real changes of water consumption during the day with the main quantitative characteristics of normally distributed random variables. Calculation of thermal efficiency of the heat exchange equipment using dimensionless parameters through the number of heat transfer under the optimal opposing scheme of fluid motion is completed under conditions of variable water flow rate for the type residential building of the П3-1/16 series using the Monte Carlo method for numerical modeling of stochastic processes. The estimation of the influence of fluctuation of the current water consumption on the instantaneous thermal efficiency factor of the heat exchanger and the total energy consumption of the building is given, and it is shown that the error of said calculation using average daily parameters is within the margin of usual engineering calculation.

  3. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose

    2016-01-01

    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...... consumer pressure desire. A model predictive controller, MPC, is based on a simple model that models the main characteristics of a water distribution network, optimizes a desired cost minimisation, and keeps the system inside specified constraints. In comparison to a logic (on/off) control design...

  4. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  5. Condensing and water supplying systems in an atomic power plant

    International Nuclear Information System (INIS)

    Shinmura, Akira.

    1975-01-01

    Object: To reduce heat loss and eliminate accumulation of drain in water supplying and heating units in an atomic power plant by providing a direct contact type drain cooler between a gland-exhauster vapor condenser and a condensing and de-salting means, the drain from each water supplying and heating unit being collected in said cooler for heating the condensed water. Structure: Condensed water from a condenser is fed by a low pressure condensing pump through an air ejector and gland-exhauster vapor condenser to the direct-contact type drain cooler and is condensed in each water supply heater. Next, it is heated by drain fed through a drain level adjuster valve and an orifice and then forced by a medium pressure condenser pump into the condensing and de-salting means. It is then supplied by a high pressure condensing pump into the successive water supply heater. (Kamimura, M.)

  6. 46 CFR 76.25-15 - Pumps and water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose. The...

  7. Forecasting jobs in the supply chain for investments in residential energy efficiency retrofits in Florida

    Science.gov (United States)

    Fobair, Richard C., II

    This research presents a model for forecasting the numbers of jobs created in the energy efficiency retrofit (EER) supply chain resulting from an investment in upgrading residential buildings in Florida. This investigation examined material supply chains stretching from mining to project installation for three product types: insulation, windows/doors, and heating, ventilating, and air conditioning (HVAC) systems. Outputs from the model are provided for the project, sales, manufacturing, and mining level. The model utilizes reverse-estimation to forecast the numbers of jobs that result from an investment. Reverse-estimation is a process that deconstructs a total investment into its constituent parts. In this research, an investment is deconstructed into profit, overhead, and hard costs for each level of the supply chain and over multiple iterations of inter-industry exchanges. The model processes an investment amount, the type of work and method of contracting into a prediction of the number of jobs created. The deconstruction process utilizes data from the U.S. Economic Census. At each supply chain level, the cost of labor is reconfigured into full-time equivalent (FTE) jobs (i.e. equivalent to 40 hours per week for 52 weeks) utilizing loaded labor rates and a typical employee mix. The model is sensitive to adjustable variables, such as percentage of work performed per type of product, allocation of worker time per skill level, annual hours for FTE calculations, wage rate, and benefits. This research provides several new insights into job creation. First, it provides definitions that can be used for future research on jobs in supply chains related to energy efficiency. Second, it provides a methodology for future investigators to calculate jobs in a supply chain resulting from an investment in energy efficiency upgrades to a building. The methodology used in this research is unique because it examines gross employment at the sub-industry level for specific

  8. Effects of inequality of supply hours on consumers' coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K

    2017-12-01

    To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Using underground mine Karst water to solve water supply problem in underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Wanbei Mining Administration (China). Liuqiao No. 2 Mine

    1995-05-01

    There is a very rich karst water resource under the Liuqiao No. 2 underground mine. Under normal mining conditions the drainage is 546 m{sup 3}/h while the maximum drainage is up to 819 m{sup 3}/h. If water inrush occurred from a broken zone of a fault or a sinkhole of the karst, the flow could be up to 3269 m{sup 3}/h. The karst water is of good quality and high in pressure. The water head pressure at -400 m level is about 3.5 MPa. To save mine construction cost, it was decided that the water supply for coal production equipment, mining operation and mine fire control was to be changed from the surface to the underground by drilling a water well to tap the karst water resource. A water well with a depth of 63.3 m was drilled in the -400 m transportation roadway. The diameter of the well is 127 mm and it has a casing pipe with a diameter of 108 mm which is connected to the water supply pipeline. The pressure of the water supply is measured at 23.5 MPa and the water flow rate is 252 m{sup 3}/h. The establishment of the water supply system has achieved great cost saving for Liuqiao No. 2 Mine. 2 figs.

  10. Energy-Cost Optimisation in Water-Supply System

    OpenAIRE

    Farrukh Mahmood; Haider Ali

    2013-01-01

    Households as well as community water-supply systems for utilisation of underground aquifers are massive consumers of energy. Prevailing energy crisis and focus of the government on demand-side energy policies (i.e., energy conservation) in Pakistan raises need of using energy efficient techniques in almost every aspect of life. This paper analyses performance of community relative to household water-supply system in connection with efficient energy utilisation. Results suggest that total ope...

  11. A Fuzzy Linear Programming Model for Improving Productivity of Electrical Energy in Potable Water Supply Facilities (Case study: Sistan Water Supply Project

    Directory of Open Access Journals (Sweden)

    Vahid Baradaran

    2018-03-01

    Full Text Available One of the most important operational issues in urban drinking water production and distribution systems is to assign a plan for running hours of water supplying electric pumps. The cost of consuming electricity in these pumps allocates most of water and wastewater companies operational costs to itself which is dependent to their running hours. In this paper, meanwhile having a field study in Sistan rural water and wastewater company, the constraints for specifying electric pumps operational time in water supplying resources such as restrictions in fulfilling demand, supply potable water with suitable quality and uselessness of electric pumps have been identified. Due to uncertainty and fuzziness of the constraints, a linear programming model with fuzzy restrictions for determining electric pumps running hours per day is submitted with the aim to minimize electricity consumption and cost. After collecting and using required data for model, it proved that using the proposed model could reduce the costs of electrical energy and increase productivity up to 23 percent per month. The proposed mathematical fuzzy programming is able to specify electric pumps scheduling plan for water supply resources with the aim to reduce the costs of consuming energy.

  12. Urban sprawl and water supply in the Colombian coffee region

    International Nuclear Information System (INIS)

    Gonzalez, Juan Leonardo; Galeano Moreno, Julian; Canon Barriga, Julio

    2012-01-01

    This paper analyses the current situation of water supply systems in the context of urban sprawl in the Colombian coffee region. The authors suggest three factors to understand local and regional water supply systems: land use within areas of urban sprawl; land use in the ecosystems that sustain the water supply; and operation and technical efficiency of the utilities. Accordingly, the work provides an estimate of the degree of urbanization and the spatial extent of urban sprawl in the cities of Manizales, Pereira y Armenia. The ecological land use in Andean and sub Andean ecosystems that supply the aqueducts of these cities is characterized, as well as the operative and technical conditions of water supply providers involved in urban sprawl, highlighting their strengths and their increasing weaknesses.

  13. Food and water supply

    Science.gov (United States)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  14. National water summary 1987: Hydrologic events and water supply and use

    Science.gov (United States)

    Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.; Moody, David W.

    1990-01-01

    Water use in the United States, as measured by freshwater withdrawals in 1985, averaged 338,000 Mgal/d (million gallons per day), which is enough water to cover the 48 conterminous States to a depth of about 2.4 inches. Only 92,300 Mgal/d, or 27.3 percent of the water withdrawn, was consumptive use and thus lost to immediate further use; the remainder of the withdrawals (72.7 percent) was return flow available for reuse a number of times as the water flowed to the sea. The 1985 freshwater withdrawals were much less than the average 30 inches of precipitation that falls on the conterminous States each year; consumptive use accounted for only 7 percent of the estimated annual runoff of 1,230,000 Mgal/d. Nonetheless, as the State summaries on water supply and use clearly show, water is not always available when and where it is needed. Balancing water demands with available water supplies constitutes one of the major resource allocation issues that will face the United States in the coming decade.Of the 1985 freshwater withdrawals, 78.3 percent (265,000 Mgal/d) came from surface-water sources (streams and lakes), and 21.7 percent (73,300 Mgal/d) came from ground water. Surface water provided drinking water for about 47 percent of the Nation's total population. It was the source of 59.9 percent of the Nation's public-supply systems. For self-supplied withdrawals, surface water accounted for 1.6 percent of the domestic and commercial uses; 64.0 percent of the industrial and mining use; 99.4 percent of the thermoelectric generation withdrawals, mainly for cooling water; and 65.6 percent of the agricultural withdrawals. Eight States accounted for 43 percent of the surface-water use; California, Colorado, and Idaho used surface water primarily for irrigation, and Dlinois, Michigan, Ohio, Pennsylvania, and Texas used surface-water primarily for cooling condensers or reactors in thermoelectric plants.Ground water provided drinking water for 53 percent of the Nation's total

  15. determinants of residential per capita water demand of makurdi

    African Journals Online (AJOL)

    user

    regression analysis for developing a consumption model. Seven variables were ... other non-governmental organizations have indicated that water supply in not ... 90% of rural areas and 60% of urban areas face water related problems [6].

  16. 76 FR 49787 - Rural Water Supply Program Approved Appraisal Reports; Availability

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Rural Water Supply Program Approved Appraisal...: Reclamation provides assistance for appraisal investigations and feasibility studies for rural water supply... the findings and conclusions of the appraisal investigations that identified the water supply problems...

  17. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  18. Occupational radiation exposure in upper Austrian water supplies and Spas

    International Nuclear Information System (INIS)

    Ringer, W.; Simader, M.; Bernreiter, M.; Aspek, W.; Kaineder, H.

    2006-01-01

    The Council Directive 96/29/EURATOM lays down the basic safety standards for the protection of the workers and the general public against the dangers arising from ionising radiation, including natural radiation. Based on the directive and on the corresponding Austrian legislation a comprehensive study was conducted to determine the occupational radiation exposure in Upper Austrian water supplies and spas. The study comprises 45 water supplies and 3 spas, one of them being a radon spa. Most measurements taken were to determine the radon concentration in air at different workplaces (n = 184), but also measurements of the dose rate at dehumidifiers (n = 7) and gamma spectrometric measurements of back washing water (n = 4) were conducted. To determine the maximum occupational radon exposure in a water supply measurements were carried out in all water purification buildings and in at least half o f the drinking water reservoirs of the water supply. The results were combined with the respective working times in these locations (these data having been collected by means of a questionnaire). Where the calculated exposure was greater than 1 MBq h/m then all drinking water reservoirs of the concerned water suppl y were measured for their radon concentration to ensure a reliable assessment of the exposure. The results show that the radon concentrations in the water supplies were lower as expected, being in 55% of all measurement sites below 1000 Bq/m in 91% below 5000 Bq/m and with a maximum value of 38700 Bq/m.This leads to exposures that are below 2 MBq h/m (corresponding to approx. 6 mSv/a) in 42 water supplies. However, for the remaining three water supplies maximal occupational exposures due to radon of 2.8 MBq h/m (∼ 10 mSv/a), 15 MBq h/m (∼ 50 mSv/a), and 17 MBq h/m ( ∼ 56 mSv/a), respectively, were determined. In these water supplies remediation measures were proposed, based mainly on improved ventilation of and/or reduction of working time in the building

  19. On-plot drinking water supplies and health: A systematic review.

    Science.gov (United States)

    Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie

    2016-07-01

    Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  1. Barcelona's water supply, 1867–1967 : the transition to a modern system

    OpenAIRE

    Guàrdia Bassols, Manuel; Rosselló i Nicolau, Maribel; Garriga Bosch, Sergi

    2013-01-01

    Barcelona's water supply since 14th century to 1867, the Eixample's water supply problem the development of modern water supply since 1867 to 1967 the new sanitation system impact on water consumption water's slow entry into the domestic sphere from post-war restrictions to widespread water consumption. Peer Reviewed

  2. Specific features of auxiliary water supply at underground NPPs

    International Nuclear Information System (INIS)

    Pergamenshchik, B.K.; Pavlov, A.S.

    1991-01-01

    Specific features of auxiliary water supply systems for underground NPPs related to peculiarities of NPP basis equipment arrangement, are considered. Circulation water supply scheme, in which water cooling storage basin (cooling towers) with operational area corresponding to NPP power is on the surface and has traditional design, is proposed. Sufficiently high efficiency of the arrangement proposed is proved

  3. The SmartH2O project: a platform supporting residential water management through smart meters and data intensive modeling

    Science.gov (United States)

    Cominola, A.; Nanda, R.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A. E.; Maziotis, A.; Garrone, P.; Harou, J. J.

    2014-12-01

    Designing effective urban water demand management strategies at the household level does require a deep understanding of the determinants of users' consumption. Low resolution data on residential water consumption, as traditionally metered, can only be used to model consumers' behavior at an aggregate level whereas end uses breakdown and the motivations and individual attitudes of consumers are hidden. The recent advent of smart meters allows gathering high frequency consumption data that can be used both to provide instantaneous information to water utilities on the state of the network and continuously inform the users on their consumption and savings. Smart metered data also allow for the characterization of water end uses: this information, coupled with users' psychographic variables, constitutes the knowledge basis for developing individual and multi users models, through which water utilities can test the impact of different management strategies. SmartH2O is an EU funded project which aims at creating an ICT platform able to (i) capture and store quasi real time, high resolution residential water usage data measured with smart meters, (ii) infer the main determinants of residential water end uses and build customers' behavioral models and (iii) predict how the customer behavior can be influenced by various water demand management strategies, spanning from dynamic water pricing schemes to social awareness campaigns. The project exploits a social computing approach for raising users' awareness about water consumption and pursuing water savings in the residential sector. In this work, we first present the SmartH2O platform and data collection, storage and analysis components. We then introduce some preliminary models and results on total water consumption disaggregation into end uses and single user behaviors using innovative fully automated algorithms and overcoming the need of invasive metering campaigns at the fixture level.

  4. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI ...

    Science.gov (United States)

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central Oklahoma aquifer, which supplies drinking water to numerous communities in central Oklahoma. Concentrations as high as 230 µg/L have been reported in some drinking water supply wells from this aquifer. The city of Norman, like most other affected cities, is actively seeking a cost-effective solution to the arsenic problem. Only six of the city’s 32 wells exceeded the old MCL of 50 µg/L. With implementation of the new MCL this year, 18 of the 32 wells exceed the allowable concentration of arsenic. Arsenic-bearing shaly sandstones appear to be the source of the arsenic. It may be possible to isolate these arsenic-bearing zones from water supply wells, enabling production of water that complies with drinking water standards. It is hypothesized that geologic mapping together with detailed hydrogeochemical investigations will yield correlations which predict high arsenic occurrence for the siting of new drinking water production wells. More data and methods to assess the specific distribution, speciation, and mode of transport of arsenic in aquifers are needed to improve our predictions for arsenic occurrence in water supply wells. Research is also needed to assess whether we can ret

  5. Socioeconomic impacts of climate change on U.S. water supplies

    Science.gov (United States)

    Frederick, K.D.; Schwarz, G.E.

    1999-01-01

    A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.

  6. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  7. Water Loss Reduction as the Basis of Good Water Supply Companies’ Management

    Directory of Open Access Journals (Sweden)

    Ociepa-Kubicka Agnieszka

    2017-01-01

    Full Text Available Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK. The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI, as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  8. Water Loss Reduction as the Basis of Good Water Supply Companies' Management

    Science.gov (United States)

    Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof

    2017-10-01

    Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  9. Study of the Thermal Behaviour of Water for Residential Use in Tanks of Concrete and Polyethylene in Humid Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Diego-Ayala Ulises

    2015-09-01

    Full Text Available This article presents a comparative study of the thermal behavior of residential water tanks of polyethylene and concrete exposed to the sun over a year in the state of Yucatan. The energy for radiation and their corresponding temperatures in each system were measured. Daily patterns of elevation and reduction of temperature were identified and the amount of energy acquired during the day as well as the heat dissipated overnight were determined, aiming to determine the possibility of using residential water tanks as a source of hot water in residential homes in the Yucatan region. Based on this study it has been found that the periods of the day with hot water temperature for showering with comfort is limited and that, interestingly, both systems show similar temperatures at the bottom of the tanks throughout the year.

  10. SOLAR SYSTEMS FOR RESIDENTIAL BUILDINGS IN ACCORDANCE WITH OPERATING CONDITIONS OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. A. Rutkowski

    2017-01-01

    Full Text Available Solar systems are actively applied for heat supply of buildings in Europe. Usage of solar energy for heat supply of residential buildings is considered as rather efficient for the Republic of Belarus because total amount of direct and scattered solar radiation entering horizontal surface is equivalent to an average European index for the climate of Belarus. The paper analyzes an existing dependence on determination of solar system efficiency and proposes an amended formula for calculations while designing solar consumption systems and its legitimacy has been experimentally proved. A scheme of an experimental unit with explanations and a brief description for execution of experiments and main results of the completed investigations have been presented in the paper. Experiments have been carried out for solar systems with natural and forced coolant circulation. Attention has been paid to obtaining maximum possible temperature potential of the coolant during operation of the solar system within periods of high and low solar radiation intensity. Recommendations on practical application of solar systems for multi-storey residential buildings houses and mansion-type houses have been given in the paper. The paper presents technological principles of constructing “passive” solar heating devices. A comparison of traditionally applied and proposed alternative solar systems has been made for operational conditions in Belarus. The paper proposes a solar system for hot water supply of multi-storey buildings. The proposed system has found its first realization in the Republic while designing and constructing an energy-efficient demonstration 10-storey residential building in Mogilev within the framework of the UN Development Program project and Global Environment Fund “Improvement of energy efficiency for residential buildings in the Republic of Belarus”

  11. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Science.gov (United States)

    2010-07-01

    ... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and... § 125.61. (b) Impact of discharge on public water supplies. (1) The applicant's modified discharge must...

  12. Basic Study on Term of Warranty Liability for Water Supply, Drainage, and Sanitation Arrangement Work Defect in Apartment Building

    Science.gov (United States)

    Park, Junmo; Seo, DeokSeok

    2017-06-01

    The defect lawsuit of the apartment which is the representative residential style of Korea continues and becomes a social problem. In the defect lawsuit, the term of warranty liability is a period that can demand the defect repair according to defect occurrence, and the exclusion period of the exercise of rights. However, the term of warranty liability stipulated in relevant laws such as Enforcement Decree of the Housing Act is being changed arbitrarily, without any established grounds. Therefore, a reasonable standard for establishing the term of warranty liability is required. In this study, the defects of water supply, drainage and sanitation arrangement work were studied. As a result of analyzing the number of defect occurrence in the apartment, it was shown that the defects in water supply, drainage and sanitation arrangement work occurred more than 80% in the 1st ∼ 2nd year after completion. However, the occurrence of defects from the 3rd year was extremely slight. On the other hand, it was confirmed that the defect occurrence continued until fairly late point of time as the end point of time of the defects was in the 7th to 9th years.

  13. Using an Integrated Hydrologic-Economic Model to Develop Minimum Cost Water Supply Portfolios and Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.; Ramsey, J.

    2004-12-01

    Water scarcity has become a reality in many areas as a result of population growth, fewer available sources, and reduced tolerance for the environmental impacts of developing the new supplies that do exist. As a result, successfully managing future water supply risk will become more dependent on coordinating the use of existing resources. Toward that end, flexible supply strategies that can rapidly respond to hydrologic variability will provide communities with increasing economic advantages, particularly if the frequency of more extreme events (e.g., drought) increases due to global climate change. Markets for established commodities (e.g., oil, gas) often provide a framework for efficiently responding to changes in supply and demand. Water markets, however, have remained relatively crude, with most transactions involving permanent transfers and long regulatory processes. Recently, interest in the use of flexible short-term transfers (e.g., leases, options) has begun to motivate consideration of more sophisticated strategies for managing supply risk, strategies similar to those used in more mature markets. In this case, communities can benefit from some of the advantages that water enjoys over other commodities, in particular, the ability to accurately characterize the stochastic nature of supply and demand through hydrologic modeling. Hydrologic-economic models are developed for two different water scarce regions supporting active water markets: Edward Aquifer and Lower Rio Grande Valley. These models are used to construct portfolios of water supply transfers (e.g., permanent transfers, options, and spot leases) that minimize the cost of meeting a probabilistic reliability constraint. Real and simulated spot price distributions allow each type of transfer to be priced in a manner consistent with financial theory (e.g., Black-Scholes). Market simulations are integrated with hydrologic models such that variability in supply and demand are linked with price behavior

  14. Natural radioactivity in water supplies

    International Nuclear Information System (INIS)

    Horner, J.K.

    1985-01-01

    This book outlines the scientific aspects of the control of natural radioactivity in water supplies, as well as the labyrinthine uncertainties in water quality regulation concerning natural radiocontamination of water. The author provides an introduction to the theory of natural radioactivity; addresses risk assessment, sources of natural radiocontamination of water, radiobiology of natural radioactivity in water, and federal water law concerning natural radiocontamination. It presents an account of how one city dealt with the perplexes that mark the rapidly evolving area of water quality regulation. The contents include: radioactivity and risk; an introduction to the atomic theory; an introduction to natural radioactivity; risk assessment; uranium and radium contamination of water; radiobiology of uranium and radium in water. Determination of risk from exposure to uranium and radium in water; the legal milieu; one city's experience; and summary: the determinants of evolving regulation

  15. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen

    2010-01-01

    depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard......, Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading...... to an increase in water age in the distribution network. Investigations carried on a real network showed that water age is greatly affected when rainwater supplies more than 30% of the overall water demand. In urban water utilities planning, rainwater supply systems may however be profitable for the community...

  16. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost

  17. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    Science.gov (United States)

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  18. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.; Danser, Philip Alexander; Amy, Gary L.; Pankratz, Tom M.

    2014-01-01

    decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling

  19. Pressure: the politechnics of water supply in Mumbai.

    Science.gov (United States)

    Anand, Nikhil

    2011-01-01

    In Mumbai, most all residents are delivered their daily supply of water for a few hours every day, on a water supply schedule. Subject to a more precarious supply than the city's upper-class residents, the city's settlers have to consistently demand that their water come on “time” and with “pressure.” Taking pressure seriously as both a social and natural force, in this article I focus on the ways in which settlers mobilize the pressures of politics, pumps, and pipes to get water. I show how these practices not only allow settlers to live in the city, but also produce what I call hydraulic citizenship—a form of belonging to the city made by effective political and technical connections to the city's infrastructure. Yet, not all settlers are able to get water from the city water department. The outcomes of settlers' efforts to access water depend on a complex matrix of socionatural relations that settlers make with city engineers and their hydraulic infrastructure. I show how these arrangements describe and produce the cultural politics of water in Mumbai. By focusing on the ways in which residents in a predominantly Muslim settlement draw water despite the state's neglect, I conclude by pointing to the indeterminacy of water, and the ways in which its seepage and leakage make different kinds of politics and publics possible in the city.

  20. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  1. Fluorine level in some city water supplies of Bangladesh

    International Nuclear Information System (INIS)

    Hoque, A.K.M.F.; Abedin, M.J.; Rahman, M.M.; Mia, M. Y.; Tarafder, M.S.A.; Khaliquzzaman, M.; Hossain, M.D.; Khan, A.H.

    2003-01-01

    Nuclear reaction based Proton Induced Gamma Emission (PIGE) analytical method was employed for the quantitative measurement of fluorine in the city water supplies of the major cities of Bangladesh. 102 water samples collected from 14 city supplies were analyzed and these samples contain fluorine in the range of 0.03 to 1.10 mg/L with a mean of 0.33 ± 0.21 mg/L. It was also observed that except the samples of Barisal, Dinajpur and Rajshahi, all other water samples analyzed contain a much lower amount of fluorine than the maximum permissible value for Bangladesh in drinking water, which is 1 mg/L. The mean concentration of fluorine in the samples of Barisal, Dinajpur and Rajshahi are respectively 0.79±0.01, 0.71±0.13 and 0.92±0.18 mg/L. For the 55 samples of Dhaka city supply the mean fluorine concentration is 0.31±0.17 mg/L and that of 9 samples from Chittagong city supply is 0.19±0.10 mg/L, which is the lowest among the 14 city supply samples analyzed in this study

  2. Implementations of Riga city water supply system founded on groundwater sources

    Science.gov (United States)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  3. Bulawayo water supplies: Sustainable alternatives for the next decade

    Science.gov (United States)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    Bulawayo is the second largest city in Zimbabwe with a population of nearly one million people. It is located on the watershed of Umzingwane and Gwayi catchments. The former is part of the Limpopo basin, while the latter drains into the Zambezi basin. Bulawayo has a good potential of economic development but has been stymied by lack of sufficient water. The city currently relies on five surface sources in the Umzingwane catchment where it has to compete with evaporation. The well field from the Nyamandlovu aquifer in the Gwayi catchment, which was constructed as an emergency measure during the 1992 drought, is currently not operational. Alternative water supply sources are far and expensive. A multilinear regression model was developed to analyse and quantify the factors affecting water consumption. It was found that per capita water consumption is very low, indicating suppressed demand. Water rationing, tariffs, rainfall, population growth and gross domestic product are the main factors influencing water consumption in Bulawayo. Assuming that these factors will continue to be influential, future water consumption was projected for intensive, regular and slack water demand management. Future water consumption was then compared with the current water supply capacity in order to determine the date by which the next water supply source is required. With slack demand management, the Nyamandlovu well field should have been operational by 2003, while by the year 2007 an additional source of water is required. With intensive demand management and assuming low population growth, current capacities may suffice to satisfy the suppressed demand until the year 2015, by which time Nyamandlovu wells should be operational again. The additional water supply sources that are currently being considered for Bulawayo (namely the Zambezi water pipeline; Gwayi Shangani dam; Mtshabezi dam; Lower Tuli dam; and Glass block dam) were then compared with an alternative water source not yet

  4. Integrated Supply Network Maturity Model: Water Scarcity Perspective

    Directory of Open Access Journals (Sweden)

    Ekaterina Yatskovskaya

    2018-03-01

    Full Text Available Today’s supply chains (SCs are more than ever prone to disruptions caused by natural and man-made events with water scarcity identified as one of the highest impact events among these. Leading businesses, understanding that natural resource scarcity (NRS has become a critical supply chain risk factor, extensively incorporate sustainable water management programmes into their corporate social responsibility and environmental management agenda. The question of how industries can efficiently evaluate the progress of these water scarcity mitigation practices, however, remains open. In order to address this question, the present study proposes a conceptual maturity model. The model is rooted in strategies for water scarcity mitigation using a framework developed by Yatskovskaya and Srai and develops an extensive literature review of recent publications on maturity frameworks in the fields of sustainability and operations management. In order to test the proposed proposed, model an exploratory case study with a leading pharmaceutical company was conducted. The proposed maturity model presents an evaluation tool that allows systematic assessment and visualisation of organisational routines and practices relevant to sustainable manufacturing in the context of water scarcity. This model was designed to help illustrate mitigation capabilities evolution over time, where future state desired capabilities were considered through alternative supply network (SN configurations, network structure, process flow, product architecture, and supply partnerships.

  5. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What is the Reclamation Rural Water Supply... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply Program? This program addresses domestic, municipal, and industrial water...

  6. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  7. Dealing with uncertainty in modeling intermittent water supply

    Science.gov (United States)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  8. Reduction of radon from household water supplies

    International Nuclear Information System (INIS)

    Shapiro, P.S.; Sorg, T.J.

    1988-01-01

    Groundwater can be a major source of indoor radon in homes that use individual wells or are served by very small community water supply systems. In the United States, several wells have been found to contain more than 37,000,000 Bq.m -3 of radon dissolved in the water. This radon can be released in the indoor air in the course of using water for normal household activities. A measurement of the radon in the drinking water can be made when an indoor radon problem is suspected. While ventilation may reduce indoor radon levels that result from household water usage, the most common control technique presently applied is removing the radon from the water using a granular activated carbon (GAC) treatment system. Aeration methods are also effective and have been proven to be economical for small community water supplies. Some of the issues faced in using GAC are sizing and maintaining the unit and shielding and disposing of the GAC to prevent exposure from gamma radiation. (author)

  9. POTABLE WATER SUPPLY IN OWERRI METROPOLIS: A ...

    African Journals Online (AJOL)

    address the problems of water supply and management. These include: ..... total replacement of under-laid water pipes has not been done, and there is no modern way .... If the present trend continues, the vast majority of these people will be living ... maintenance and management of water facilities and other logistics.

  10. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  11. Effect of type of water supply on water quality in a developing community in South Africa

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1997-01-01

    Full Text Available Efforts to provide water to developing communities in South Africa have resulted in various types of water supplies being used. This study examined the relationship between the type of water supply and the quality of water used. Source (communal...

  12. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  13. The Canadian heavy water supply program

    International Nuclear Information System (INIS)

    Dahlinger, A.; McNally, P.J.

    1976-06-01

    The performance to date of individual Canadian heavy water plants is described in detail as are the current plant construction plans. These data, when related to the long-term electricity demand indicate that heavy water supply and demand are in reasonable balance and that the CANDU program will not be inhibited because of shortages of the commodity. (author)

  14. China's water shortage could shake world food security.

    Science.gov (United States)

    Brown, L R; Halweil, B

    1998-01-01

    This report indicates the global concern about China's water shortages and describes basin supplies, global availability of grain, and reasons for water losses. There is little precise data on how land productivity will be affected by declines in irrigation. Reports from the "China Daily" indicate that the 1995 grain harvest in Shandong province declined by 2.7 million tons (food for 9 million people) due to water failures of the Yellow River. A delegate at the 1998 National People's Congress pointed out that rural villages nationwide had shortages of 30 billion cu. m and losses of 20 million tons of grain production. About 70% of grain harvests rely on irrigation. Water demand for residential use and industrial use is likely to increase and compete with farm use. One unlikely option is to divert irrigation water to cities as needed and import grain. The entire agricultural, energy, and industrial economies need to be made more water efficient. Agriculture will need to produce more water efficient crops and livestock products and less water intensive energy supplies. Another alternative is to divert water from one location to another. Water pricing could reinforce efficiency of use. Use of composting toilets could reduce human residential water demand. Urban capacity building should rely on separate industrial and residential wastewater systems. Investing in technologies for industry can reduce water demand among paper and steel producers. The fastest growing grain market is in North Africa and the Middle East. Trends in principal grain exporting countries with 85% of global exports indicate no growth in grain production for export since 1980.

  15. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  16. Implementation of DMAs in Intermittent Water Supply Networks Based on Equity Criteria

    OpenAIRE

    Amilkar E. Ilaya-Ayza; Carlos Martins; Enrique Campbell; Joaquín Izquierdo

    2017-01-01

    Intermittent supply is a common way of delivering water in many developing countries. Limitations on water and economic resources, in addition to poor management and population growth, limit the possibilities of delivering water 24 h a day. Intermittent water supply networks are usually designed and managed in an empirical manner, or using tools and criteria devised for continuous supply systems, and this approach can produce supply inequity. In this paper, an approach based on the hydraulic ...

  17. Implementation of DMAs in Intermittent Water Supply Networks Based on Equity Criteria

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza

    2017-11-01

    Full Text Available Intermittent supply is a common way of delivering water in many developing countries. Limitations on water and economic resources, in addition to poor management and population growth, limit the possibilities of delivering water 24 h a day. Intermittent water supply networks are usually designed and managed in an empirical manner, or using tools and criteria devised for continuous supply systems, and this approach can produce supply inequity. In this paper, an approach based on the hydraulic capacity concept, which uses soft computing tools of graph theory and cluster analysis, is developed to define sectors, also called district metered areas (DMAs, to produce an equitable water supply. Moreover, this approach helps determine the supply time for each sector, which depends on each sector’s hydraulic characteristics. This process also includes the opinions of water company experts, the individuals who are best acquainted with the intricacies of the network.

  18. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  19. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  20. Geolocation Support for Water Supply and Sewerage Projects in Azerbaijan

    Science.gov (United States)

    Qocamanov, M. H.; Gurbanov, Ch. Z.

    2016-10-01

    Drinking water supply and sewerage system designing and reconstruction projects are being extensively conducted in Azerbaijan Republic. During implementation of such projects, collecting large amount of information about the area and detailed investigations are crucial. Joint use of the aerospace monitoring and GIS play an essential role for the studies of the impact of environmental factors, development of the analytical information systems and others, while achieving the reliable performance of the existing and designed major water supply pipelines, as well as construction and exploitation of the technical installations. With our participation the GIS has been created in "Azersu" OJSC that includes systematic database of the drinking water supply and sewerage system, and rain water networks to carry out necessary geo information analysis. GIScreated based on "Microstation" platform and aerospace data. Should be mentioned that, in the country, specifically in large cities (i.e. Baku, Ganja, Sumqait, etc.,) drinking water supply pipelines cross regions with different physico-geographical conditions, geo-morphological compositions and seismotectonics.Mains water supply lines in many accidents occur during the operation, it also creates problems with drinking water consumers. In some cases the damage is caused by large-scale accidents. Long-term experience gives reason to say that the elimination of the consequences of accidents is a major cost. Therefore, to avoid such events and to prevent their exploitation and geodetic monitoring system to improve the rules on key issues. Therefore, constant control of the plan-height positioning, geodetic measurements for the detailed examination of the dynamics, repetition of the geodetic measurements for certain time intervals, or in other words regular monitoring is very important. During geodetic monitoring using the GIS has special significance. Given that, collecting geodetic monitoring measurements of the main pipelines

  1. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  2. The Economics of Groundwater Replenishment for Reliable Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2014-06-01

    Full Text Available This paper explores the potential economic benefits of water banking in aquifers to meet drought and emergency supplies for cities where the population is growing and changing climate has reduced the availability of water. A simplified case study based on the city of Perth, Australia was used to estimate the savings that could be achieved by water banking. Scenarios for investment in seawater desalination plants and groundwater replenishment were considered over a 20 year period of growing demand, using a Monte Carlo analysis that embedded the Markov model. An optimisation algorithm identified the minimum cost solutions that met specified criteria for supply reliability. The impact of depreciation of recharge credits was explored. The results revealed savings of more than A$1B (~US$1B or 37% to 33% of supply augmentation costs by including water banking in aquifers for 95% and 99.5% reliability of supply respectively. When the hypothetically assumed recharge credit depreciation rate was increased from 1% p.a. to 10% p.a. savings were still 33% to 31% for the same reliabilities. These preliminary results show that water banking in aquifers has potential to offer a highly attractive solution for efficiently increasing the security of urban water supplies where aquifers are suitable.

  3. Rapid evaluation of water supply project feasibility in Kolkata, India

    Directory of Open Access Journals (Sweden)

    K. Dutta Roy

    2010-03-01

    Full Text Available Mega cities in developing countries are mostly dependent on external funding for improving the civic infrastructures like water supply. International and sometimes national agencies stipulate financial justifications for infrastructure funding. Expansion of drinking water network with external funding therefore requires explicit economic estimates. A methodology suitable for local condition has been developed in this study. Relevant field data were collected for estimating the cost of supply. The artificial neural network technique has been used for cost estimate. The willingness to pay survey has been used for estimating the benefits. Cost and benefit have been compared with consideration of time value of money. The risk and uncertainty have been investigated by Monte Carlo's simulation and sensitivity analysis. The results in this case indicated that consumers were willing to pay for supply of drinking water. It has been also found that supply up to 20 km from the treatment plant is economical after which new plants should be considered. The study would help to plan for economically optimal improvement of water supply. It could be also used for estimating the water tariff structure for the city.

  4. Irrigation, risk aversion, and water right priority under water supply uncertainty

    Science.gov (United States)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  5. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  6. Central Park Water - a league of its own

    International Nuclear Information System (INIS)

    Wallace, Paula

    2013-01-01

    Central Park Water (CPW) is leading Australia with a unique water re-use approach at the massive Central Park mixed-use development on the Sydney CBD fringe. It is an integrated water cycle management solution, harvesting multiple water sources (from residential and commercial customers) and purifying these using world's best technologies. The eight-step purification process includes anaerobic and aerobic processes, chemical addition, membrane bioreactors, reverse osmosis, ultraviolet and chlorine addition. It meets the highest Australian standards and the recycled water is sold to customers within the precinct and outside to neighbouring communities. It results in an increased efficiency of infrastructure and easy management of peak or unexpected water demands. CPW is the first private utility to supply drinking water to commercial and residential customers under an agreement with Sydney Water.

  7. The Geographical Distribution of Water Supply in Ekiti

    African Journals Online (AJOL)

    FIRST LADY

    Indexed African Journals Online: www.ajol.info. An International ... time spent for water collection, the rating of water supply, and problems associated ... The people were asked to indicate how long it would take them to get good quality water ...

  8. Study on Utilization of an Artesian Well as a Source of Water Supply at Raw Water Backup System (GBA01)

    International Nuclear Information System (INIS)

    Santosa Pujiarta; Yuyut Suraniyanto; Amril; Setyo Budi Utomo

    2012-01-01

    Raw water supply system (GBA01) is a unit of ponds used as a provider of raw water for secondary cooling system and free mineral water production systems. Source of raw water pond has been supplied from PAM Puspiptek with water conductivity between 126-310 μS / cm and a pH of 6 to 8, and this condition is maintained because there is no other source that is used to supply water to the reactor cooling water supply. This conductivity is always unstable, if during the dry season the conductivity is low trend, but in the rainy season the conductivity will be increase because the water contains a lot of mud. And one more problem that is important is if the PAM Puspiptek failed to supply fresh water to the reactor. So to handling and anticipate these things, necessary to optimize the deep well former Interatom legacy as a backup water supply for raw water supply system of the reactor. With a conductivity of 136 μS / cm, pH 7,4 and total hardness 37 ppm, the water from deep wells can be used as a backup supply of secondary raw water cooling system. (author)

  9. Chemical, physical, and radiological quality of selected public water supplies in Florida, January-May 1979. Water-resources investigations

    International Nuclear Information System (INIS)

    Franks, B.J.; Irwin, G.A.

    1980-01-01

    Most public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. This conclusion is based on a water quality reconnaissance of 131 raw and treated public supplies throughout the State during the period January through May 1979. In a few public supplies, primary drinking water regulation maximum contaminant levels were exceeded for mercury, turbidity, and gross alpha particle activity. Secondary drinking water regulations were also occasionally exceeded in some public supplies for such parameters as chloride, pH, color, dissolved solids, iron, and manganese

  10. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  11. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  12. Public supply and domestic water use in the United States, 2015

    Science.gov (United States)

    Dieter, Cheryl A.; Maupin, Molly A.

    2017-10-30

    IntroductionThe U.S. Geological Survey (USGS) National Water Use Science Project (NWUSP), part of the USGS Water Availability and Use Science Program (WAUSP), has estimated water use in the United States every 5 years since 1950. This report provides an overview of total population, public-supply use, including the population that is served by public-supply systems and the domestic deliveries to those users, and self-supplied domestic water use in the United States for 2015, continuing the task of estimating water use in the United States every 5 years. In this report, estimates for the United States include the 50 States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands (hereafter referred to as “states” for brevity).County-level data for total population, public-supply withdrawals and the population served by public-supply systems, and domestic withdrawals for 2015 were published in a data release in an effort to provide data to the public in a timely manner. Data in the current version (1.0) of Dieter and others (2017) contains county-level total withdrawals from groundwater and surface-water sources (both fresh and saline) for public-water supply, the deliveries from those suppliers to domestic users, and the quantities of water from groundwater and surface-water sources for self-supplied domestic users, and total population. Methods used to estimate the various data elements for the public-supply and domestic use categories at the county level are described by Bradley (2017).This Open-File Report is an interim report summarizing the data published in Dieter and others (2017) at the state and national level. This report includes discussions on the total population, totals for public-supply withdrawals and population served, total domestic withdrawals, and provides comparisons of the 2015 estimates to 2010 estimates (Maupin and others, 2014). Total domestic water use, as described in this report, represents the summation of deliveries from

  13. Shared Urban Greywater Recycling Systems: Water Resource Savings and Economic Investment

    Directory of Open Access Journals (Sweden)

    Dexter V.L. Hunt

    2013-07-01

    Full Text Available The water industry is becoming increasingly aware of the risks associated with urban supplies not meeting demands by 2050. Greywater (GW recycling for non-potable uses (e.g., urinal and toilet flushing provides an urban water management strategy to help alleviate this risk by reducing main water demands. This paper proposes an innovative cross connected system that collects GW from residential buildings and recycles it for toilet/urinal flushing in both residential and office buildings. The capital cost (CAPEX, operational cost (OPEX and water saving potential are calculated for individual and shared residential and office buildings in an urban mixed-use regeneration area in the UK, assuming two different treatment processes; a membrane bioreactor (MBR and a vertical flow constructed wetland (VFCW. The Net Present Value (NPV method was used to compare the financial performance of each considered scenario, from where it was found that a shared GW recycling system (MBR was the most economically viable option. The sensitivity of this financial model was assessed, considering four parameters (i.e., water supply and sewerage charges, discount rate(s, service life and improved technological efficiency, e.g., low flush toilets, low shower heads, etc., from where it was found that shared GW systems performed best in the long-term.

  14. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  15. Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response

    International Nuclear Information System (INIS)

    Gyamfi, Samuel; Krumdieck, Susan

    2011-01-01

    Peak demand on electricity grids is a growing problem that increases costs and risks to supply security. Residential sector loads often contribute significantly to seasonal and daily peak demand. Demand response projects aim to manage peak demand by applying price signals and automated load shedding technologies. This research investigates voluntary load shedding in response to information about the security of supply, the emission profile and the cost of meeting critical peak demand in the customers' network. Customer willingness to change behaviour in response to this information was explored through mail-back survey. The diversified demand modelling method was used along with energy audit data to estimate the potential peak load reduction resulting from the voluntary demand response. A case study was conducted in a suburb of Christchurch, New Zealand, where electricity is the main source for water and space heating. On this network, all water heating cylinders have ripple-control technology and about 50% of the households subscribe to differential day/night pricing plan. The survey results show that the sensitivity to supply security is on par with price, with the emission sensitivity being slightly weaker. The modelling results show potential 10% reduction in critical peak load for aggregate voluntary demand response. - Highlights: → Multiple-factor behaviour intervention is necessarily for effective residential demand response. → Security signals can achieve result comparable to price. → The modelling results show potential 10% reduction in critical peak load for aggregate voluntary demand response. → New Zealand's energy policy should include innovation and development of VDR programmes and technologies.

  16. Pb-Sr isotopic and geochemical constraints on sources and processes of lead contamination in well waters and soil from former fruit orchards, Pennsylvania, USA: A legacy of anthropogenic activities

    Science.gov (United States)

    Ayuso, Robert A.; Foley, Nora K.

    2016-01-01

    Isotopic discrimination can be an effective tool in establishing a direct link between sources of Pb contamination and the presence of anomalously high concentrations of Pb in waters, soils, and organisms. Residential wells supplying water containing up to 1600 ppb Pb to houses built on the former Mohr orchards commercial site, near Allentown, PA, were evaluated to discern anthropogenic from geogenic sources. Pb (n = 144) and Sr (n = 40) isotopic data and REE (n = 29) data were determined for waters from residential wells, test wells (drilled for this study), and surface waters from pond and creeks. Local soils, sediments, bedrock, Zn-Pb mineralization and coal were also analyzed (n = 94), together with locally used Pb-As pesticide (n = 5). Waters from residential and test wells show overlapping values of 206Pb/207Pb, 208Pb/207Pb and 87Sr/86Sr. Larger negative Ce anomalies (Ce/Ce*) distinguish residential wells from test wells. Results show that residential and test well waters, sediments from residential water filters in water tanks, and surface waters display broad linear trends in Pb isotope plots. Pb isotope data for soils, bedrock, and pesticides have contrasting ranges and overlapping trends. Contributions of Pb from soils to residential well waters are limited and implicated primarily in wells having shallow water-bearing zones and carrying high sediment contents. Pb isotope data for residential wells, test wells, and surface waters show substantial overlap with Pb data reflecting anthropogenic actions (e.g., burning fossil fuels, industrial and urban processing activities). Limited contributions of Pb from bedrock, soils, and pesticides are evident. High Pb concentrations in the residential waters are likely related to sediment build up in residential water tanks. Redox reactions, triggered by influx of groundwater via wells into the residential water systems and leading to subtle changes in pH, are implicated in precipitation of Fe oxyhydroxides

  17. Developing the Water Supply System for Travel to Mars

    Science.gov (United States)

    Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.

    2016-01-01

    What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.

  18. Modeling and Optimization for Management of Intermittent Water Supply

    Science.gov (United States)

    Lieb, A. M.; Wilkening, J.; Rycroft, C.

    2014-12-01

    In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.

  19. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Karst aquifer in Galichica and possibilities for water supply to Ohrid with ground -water

    International Nuclear Information System (INIS)

    Mirchovski, Vojo; Kekich, Aleksandar; Spasovski, Orce; Mirchovski, Vlado

    2009-01-01

    In this paper are presented some hydrogeological features of the karst aquifer in Mt Galichica, which contains important quantities of ground-water that can to used for the water supply of the town Ohrid. Based on the hydrogeological data are given three solutions that be can to used for water supply of Ohrid, the first one is to drill of deep wells, combination of deep and shallow wells, as well as construction of horizontal galleries.

  1. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  2. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    Science.gov (United States)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  3. Adoption of irrigation water policies to guarantee water supply: A choice experiment

    NARCIS (Netherlands)

    Alcon, F.; Tapsuwan, S.; Brouwer, R.; de Miguel, M.D.

    2014-01-01

    More efficient and sustainable use of water is increasingly becoming an urgency in drought prone parts of the world. In particular, in water scarce regions such as the Mediterranean, water supply is expected to become more uncertain because of climate change. Consequently, pro-active policy

  4. THE ANALYSIS OF THE TIME-SERIES FLUCTUATION OF WATER DEMAND FOR THE SMALL WATER SUPPLY BLOCK

    Science.gov (United States)

    Koizumi, Akira; Suehiro, Miki; Arai, Yasuhiro; Inakazu, Toyono; Masuko, Atushi; Tamura, Satoshi; Ashida, Hiroshi

    The purpose of this study is to define one apartment complex as "the water supply block" and to show the relationship between the amount of water supply for an apartment house and its time series fluctuation. We examined the observation data which were collected from 33 apartment houses. The water meters were installed at individual observation points for about 20 days in Tokyo. This study used Fourier analysis in order to grasp the irregularity in a time series data. As a result, this paper demonstrated that the smaller the amount of water supply became, the larger irregularity the time series fluctuation had. We also found that it was difficult to describe the daily cyclical pattern for a small apartment house using the dominant periodic components which were obtained from a Fourier spectrum. Our research give useful information about the design for a directional water supply system, as to making estimates of the hourly fluctuation and the maximum daily water demand.

  5. Water supply and needs for West Texas

    Science.gov (United States)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  6. Green Residential Demolitions: Case Study of Vacant Land Reuse in Storm Water Management in Cleveland

    Science.gov (United States)

    The demolition process impacts how vacant land might be reused for storm water management. For five residential demolition sites (Cleveland, Ohio), an enhanced green demolition process was observed in 2012, and soil physical and hydrologic characteristics were measured predemolit...

  7. Mitigating Corporate Water Risk: Financial Market Tools and Supply Management Strategies

    Directory of Open Access Journals (Sweden)

    Wendy M. Larson

    2012-10-01

    Full Text Available A decision framework for business water-risk response is proposed that considers financial instruments and supply management strategies. Based on available and emergent programmes, companies in the agricultural, commodities, and energy sectors may choose to hedge against financial risks by purchasing futures contracts or insurance products. These strategies address financial impacts such as revenue protection due to scarcity and disruption of direct operations or in the supply chain, but they do not directly serve to maintain available supplies to continue production. In contrast, companies can undertake actions in the watershed to enhance supply reliability and/or they can reduce demand to mitigate risk. Intermediate strategies such as purchasing of water rights or water trading involving financial transactions change the allocation of water but do not reduce overall watershed demand or increase water supply. The financial services industry is playing an increasingly important role, by considering how water risks impact decision making on corporate growth and market valuation, corporate creditworthiness, and bond rating. Risk assessment informed by Conditional Value-at-Risk (CVaR measures is described, and the role of the financial services industry is characterised. A corporate decision framework is discussed in the context of water resources management strategies under complex uncertainties.

  8. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    International Nuclear Information System (INIS)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N.

    2000-01-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed

  9. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-08-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed.

  10. Bacterial indicators of faecal pollution of water supplies and public ...

    African Journals Online (AJOL)

    Bacterial indicators of faecal pollution of water supplies and their significance to public health are reviewed in this paper, to highlight their levels of general acceptability and suitability as safeguards against health hazards associated with water supplies. Regular bacteriological analysis with the sole aim of detecting faecal ...

  11. [Comparison of different types automatic water-supply system for mouse rearing (author's transl)].

    Science.gov (United States)

    Kikuchi, S; Suzuki, M; Tagashira, Y

    1979-04-01

    Rearing and breeding scores were compared between groups of mice (JCL : ICR and ddN strains) raised with two different types of automatic water-supply systems; the Japanese type and the American type, using manual water-supply system as control. The mice raised with the manual water-supply system were superior in body weight gain as compared to those with two automatic water-supply systems. As to the survival rate, however, the m; anual water-supply system and the Japanese type gave better results than the American type. As to weanling rate in the breeding test, the manual water-supply system gave somewhat better result than either of the two automatic types. Accidental water leaks, which are serious problems of automatic systems, occurred frequently only when the American type was used. Only one defect of the Japanese type revealed was that it was unfavorable for mice with smaller size (e.g., young ddN mice), resulting in lower body weight gain as well as lower breeding scores.

  12. Long term assurance of supply of heavy water

    International Nuclear Information System (INIS)

    1978-01-01

    The answer of Switzerland and Great Britain to a number of questions concerning the long-term assurance of the supply of heavy water are presented. The original problems are seen in the wider context of raw materials supply and its assurance in general. Non-proliferation aspects are touched

  13. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2013-01-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  14. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  15. Electricity price and Southern California's water supply options

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry [Lawrence Berkeley National Laboratory, Camilla Dunham Whitehead, Andre Fargeix, Golden Gate Economics, 1 Cycltron Road, Berkeley, CA 94720 (United States)

    2004-11-01

    This paper evaluates the impact of fluctuating electricity prices on the cost of five options to increase the water supply to urban areas in Southern California-new surface storage, water purchases, desalination, wastewater recycling, and conservation.We show that the price of electricity required to produce and transport water influences the cost of water supply options and may alter the decision makers economic ranking of these options. When electricity prices are low, water purchase is the cost effective option. When prices exceed US$ 86/MWh, conservation of electricity and water through installation of high efficiency clothes washers is the most effective option.

  16. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  17. Water supply network district metering theory and case study

    CERN Document Server

    Di Nardo, Armando; Di Mauro, Anna

    2013-01-01

    The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.

  18. Gas-heating alternatives to the residential electric heat pump. Gas Appliance Technology Center 1987 program. Topical report for Work Area 1.1, October 1989-March 1990

    International Nuclear Information System (INIS)

    Haas, C.

    1990-05-01

    The characteristics of electric heat pumps are described. Options are defined and assessed for utilizing gas heating in conjunction with existing residential electric heat pumps. These options include gas heat introduced into the refrigeration circuit, a flue gas-heated tube bank in the air supply duct, and a hot-water-to-air coil in the supply duct. Economics are presented for conversion of a residence's total space and water heating from electric to gas in New York City and Atlanta. Potential marketing strategies are discussed, and potential gas sales volumes from conversions are estimated. The study concludes that the use of gas water heating coupled with a hydronic coil in the supply ductwork from the air handler is the most advantageous option for the gas industry

  19. Water supply and management concepts

    Science.gov (United States)

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  20. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ping; Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Spitler, Jeffrey D. [School of Mechanical Engineering, Oklahoma State University (United States); Fang, Zhaohong [Ground Source Heat Pump Research Center, Shandong University of Architecture and Engineering, Jinan (China)

    2008-07-01

    A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong. (author)

  1. Accessibility levels to potable Water Supply in Rural Areas of Akwa ...

    African Journals Online (AJOL)

    ... of 50 rural communities were sampled using table of random numbers. Community heads or their spokesmen/women in the sampled areas were target respondents and data on major sources of water supply, distance to the nearest major source of water supply and the number of water boreholes in the communities were ...

  2. Voluntary Management of Residential Water Demand in Low and Middle-Low Income Households: Case Study of Soacha (colombia)

    Science.gov (United States)

    Acosta, R.; Rodriguez, J. P.

    2016-12-01

    Water resources availability is a global concern due to increasing demands, decreasing quality and uncertain spatio-temporal variability (United Nations, 2009). In urban contexts research on efficient water use is a priority to cope with the future vulnerability of water supplies as a result of the impacts of climate change (Bates et al, 2008). Following the proposed methodologies of He and Kua (2013) for implementing programs to promote sustainable energy consumption, we focused on the use of educational strategies to promote a voluntary rationalization of residential water demand. We collaborated with three schools in Soacha (Colombia) where students ranging from 12 to 15 years participated in the project as promoters of educational campaigns inside their families, covering 120 low and middle-low income households. Three intervention or treatment strategies (i.e. e-learning, in-person active learning activities and graphical learning tools) were carried out over a period of 5 months. We analyzed the effects of the treatments strategies in reducing water consumption rates and the dependence of this variable on socio-demographic, economic, environmental, and life quality factors by using personal interviews and self reported water saving technics. The results showed that educational campaigns have a positive effect on reducing consumption in the households. Graphical learning tools accounted for the highest reduction in water consumption. Moreover, the results of the study suggests that socio-economic factors such as type of house, social level, income, and life quality variables significantly affect the variability in water consumption, which is an important fact to consider in similar cases where communities face difficult socio-economic conditions, displacement or high rates of urban growth.

  3. Water and Fisheries: The Sensitivity of Water Supply in the Tana River Basin to Climate Change

    International Nuclear Information System (INIS)

    Inima, A.K.

    1998-01-01

    Wether climatic change would cause water supply in the dry areas of the earth to diminish or not is a major question. The main objective of this study was to determine wether the water supply in the Tana river Basin of Kenya would diminish in quality as a result of climate change. The Tana River Basin is the immense economic importance to Kenya and is the lifeline of Kenya's electricity supply, accounting for about 70% of the country's electricity supply. The basin houses about 30% of the country's population and 38% of the total irrigable land. A diminished water supply in this content would, therefore, hamper the economic development of the country.Kenya receives, on average, an annual rainfall of 600 mm, and hence classified as arid to semi-arid. This makes it vulnerable to adverse effects of climate change

  4. Use of the water supply system of special purpose in buildings

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    Full Text Available A water supply system of a special purpose is a necessary element in hot and cold shops of the industrial enterprises, office buildings and the medical centers, and also other rooms. The water supply systems of a special purpose, which give subsalty, sparkling water and water sated with oxygen, allow people to prevent, for example, strong dehydration of an organism, which is possible at big losses of water, especially in case of the people working in hot shops. Various elements of special drinking water supply system are given in the article, their main functions are described. Different types of the water folding devices pumping water to consumers, one of which is drinking fountain, are considered. Possible systems of water filtration, which can be established for quality improvement, are transferred. Among them the great role is played by membrane technologies and the return osmosis, which is widely applied now. Today there is a possibility of construction, both the centralized water supply system of a special purpose, and local. Besides, the least is a more preferable option taking into account capital expenditure for construction and operation, and also it can lead to solid resource-saving as a result of the electric energy saving going for water heating in heaters. Automatic machines of drinking water for a local water supply system of a special purpose have indisputable advantages. They are capable to carry out several functions at the same time, and also to distribute water to consumers. It allows placing all the necessary equipment, which will be well in harmony with the environment in their small and compact case, and will fit into any difficult interior of the room. Also they are very easily connected to the systems of an internal water supply system by means of a propylene tube that allows to change their sposition in space and to transfer to any place of the room with fast installation of equipment. Also the ecological effect was

  5. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    Science.gov (United States)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  6. Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Rygaard, Martin; Godskesen, Berit; Jørgensen, C.

    2013-01-01

    Nordhavn, a former industrial harbour area is under development into an integrated part of Copenhagen City. All infrastructures will be updated to accommodate 40,000 inhabitants and 40,000 jobs in the future. Our project assesses the potential for establishing a secondary water supply to relieve...... the pressure on the primary and conventional groundwater based drinking water supply. Four alternative water resources for a secondary water supply have been considered: 1) polluted groundwater for use in toilets and laundry, 2) desalinated brackish water for use in toilets, laundry, and dishwashers, 3...... assessment method for use in alternative water supplies and an evaluation of the four suggested concepts for alternative water supply in Copenhagen....

  7. Water Supply and Sanitation Facility Accessibility in Off-Campus ...

    African Journals Online (AJOL)

    Water Supply and Sanitation Facility Accessibility in Off-Campus Houses ... on drinking water source, rate of illness, type and usage of sanitation facilities. ... wells, unprotected dug wells; while others during the wet season harvest rain water.

  8. Nationwide occurrence of radon and other natural radioactivity in public water supplies

    Energy Technology Data Exchange (ETDEWEB)

    Horton, T. R.

    1985-10-01

    The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water, to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supplies. Samples from more than 2500 public water supplies representing 35 states were collected. Although we sampled only about five percent of the total number of groundwater supplies in the 48 contiguous states of the US, those samples represent nearly 45 percent of the water consumed by US groundwater users in the 48 contiguous states. Sample results are summarized by arithmetic mean, geometric mean, and population weighted arithmetic mean for each state and the entire US. Results include radon, gross alpha, gross beta, Ra-226, Ra-228, total Ra, U-234, U-238, total U, and U-234/U-238 ratios. Individual public water supply results are found in the appendices. 24 refs., 91 figs., 51 tabs.

  9. Game theory competition analysis of reservoir water supply and hydropower generation

    Science.gov (United States)

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  10. Evaluating the potential of improving residential water balance at building scale.

    Science.gov (United States)

    Agudelo-Vera, Claudia M; Keesman, Karel J; Mels, Adriaan R; Rijnaarts, Huub H M

    2013-12-15

    Earlier results indicated that, for an average household, self-sufficiency in water supply can be achieved by following the Urban harvest Approach (UHA), in a combination of demand minimization, cascading and multi-sourcing. To achieve these results, it was assumed that all available local resources can be harvested. In reality, however, temporal, spatial and location-bound factors pose limitations to this harvest and, thus, to self-sufficiency. This article investigates potential spatial and temporal limitations to harvest local water resources at building level for the Netherlands, with a focus on indoor demand. Two building types were studied, a free standing house (one four-people household) and a mid-rise apartment flat (28 two-person households). To be able to model yearly water balances, daily patterns considering household occupancy and presence of water using appliances were defined per building type. Three strategies were defined. The strategies include demand minimization, light grey water (LGW) recycling, and rainwater harvesting (multi-sourcing). Recycling and multi-sourcing cater for toilet flushing and laundry machine. Results showed that water saving devices may reduce 30% of the conventional demand. Recycling of LGW can supply 100% of second quality water (DQ2) which represents 36% of the conventional demand or up to 20% of the minimized demand. Rainwater harvesting may supply approximately 80% of the minimized demand in case of the apartment flat and 60% in case of the free standing house. To harvest these potentials, different system specifications, related to the household type, are required. Two constraints to recycle and multi-source were identified, namely i) limitations in the grey water production and available rainfall; and ii) the potential to harvest water as determined by the temporal pattern in water availability, water use, and storage and treatment capacities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  12. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  13. How to control water supply costs

    Energy Technology Data Exchange (ETDEWEB)

    Hornby, D M

    1965-05-17

    Exploring for water can be as expensive as exploring for oil, a factor which is likely to become increasingly clear. Basic essentials of any water-supply study require an understanding and knowledge of the limiting conditions of quality, quantity, cost, and reliability. A logical 10-step program is outlined. The initial steps are as follows: (1) analyze the acutal water demand for flood requirements; (2) select the logical and apparent sources of supply; (3) collect and assess all availabe pertinent information; and (4) formulate a plan of analysis and attack for the study. The intermediate steps are as follows: (5) use this plan in making field and office investigations: (6) having determined the alternatives and preliminary costs, prepare a written assessment; and (7) using the brain-storming technique within the company or unit, utilize the assessment to devise a master action plan and budget for anticipated expenditures. The final steps are as follows: (8) complete other required investigations based upon the master plan and budget; (9) prepare detailed design, specifications and estimates; and (10) call tenders or negotiate the most favorable arrangements with respect to construction time and price.

  14. Defining regulatory requirements for water supply systems in Vietnam

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgiyevich

    2014-01-01

    Full Text Available In the article the authors offer their suggestions for improving the reliability of the standardization requirements for water supply facilities in Vietnam, as an analog of building regulations of Russia 31.13330.2012. In Russia and other advanced countries the reliability of the designed water supply systems is usual to assess quantitatively. Guidelines on the reliability assessment of water supply systems and facilities have been offered by many researchers, but these proposals are not officially approved. Some methods for assessing the reliability of water supply facilities are informally used in practice when describing their quality. These evaluation methods are simple and useful. However, the given estimations defy common sense and regulatory requirements used by all the organizations, ministries and departments, for example, of Russia, in the process of allowances for restoration and repair of water supply facilities. Inadequacy of the water supply facilities assessment is shown on the example of assessing the reliability of pipeline system. If we take MTBF of specific length of the pipeline as reliability index for a pipeline system, for example, 5 km, a pipeline of the similar gauge, material and working conditions with the length of 5 m, according to the estimation on the basis of non-official approach, must have a value of MTBF 1000 times greater than with the length of 5 km. This conclusion runs counter to common sense, for the reason that all the pipes in the area of 5 km are identical, have the same load and rate of wear (corrosion, fouling, deformation, etc.. It was theoretically and practically proved that products of the same type in the same operating conditions (excluding determined impact of a person, work as an entity, which MTBF is equal to the average lifetime. It is proposed to take the average service life as a reliability indicator of a pipeline. Durability, but not failsafety of the pipe guarantees pipeline functioning

  15. Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water

    Directory of Open Access Journals (Sweden)

    Christian Klassert

    2015-07-01

    Full Text Available Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 m3 per year significantly below the absolute scarcity threshold of 500 m3, and strong population growth, especially due to the Syrian refugee crisis. A transition to more sustainable water consumption patterns will likely require Jordan’s water authorities to rely more strongly on water demand management in the future. We conduct a case study of the effects of pricing policies, using an agent-based model of household water consumption in Jordan’s capital Amman, in order to analyze the distribution of burdens imposed by demand-side policies across society. Amman’s households face highly intermittent piped water supply, leading them to supplement it with water from storage tanks and informal private tanker operators. Using a detailed data set of the distribution of supply durations across Amman, our model can derive the demand for additional tanker water. We find that integrating these different supply sources into our model causes demand-side policies to have strongly heterogeneous effects across districts and income groups. This highlights the importance of a disaggregated perspective on water policy impacts in order to identify and potentially mitigate excessive burdens.

  16. Optimum contracted-for water supply for hotels in arid coastal regions.

    Science.gov (United States)

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area).

  17. Strontium Concentrations in Corrosion Products from Residential Drinking Water Distribution Systems

    Science.gov (United States)

    2013-04-22

    compounds are Sr2+SO4 (celestite) and Sr 2+ CO3 (strontianite). Naturally occurring Sr2+ compounds are highly soluble in water; consequently, Sr2+ is readily...and one from Utility C (UC) were collected from single 30 cm long sections of 15 cm id unlined cast iron residential mains. Two iron corrosion...in top-up mode at 7 GeV and a ring current of 101 mA. A 0.5 mm premonochromator slit width and a Si(111) double crystal monochromator detuned by 10

  18. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    Science.gov (United States)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  19. Life cycle environmental implications of residential swimming pools.

    Science.gov (United States)

    Forrest, Nigel; Williams, Eric

    2010-07-15

    Ownership of private swimming pools in the U.S. grew 2 to 4% per annum from 1997 to 2007. The environmental implications of pool ownership are analyzed by hybrid life cycle assessment (LCA) for nine U.S. cities. An operational model is constructed estimating consumption of chemicals, water, and energy for a typical residential pool. The model incorporates geographical climatic variations and upstream water and energy use from electricity and water supply networks. Results vary considerably by city: a factor of 5-6 for both water and energy use. Water use is driven by aridness and length of the swimming season, while energy use is mainly driven by length of the swimming season. Water and energy impacts of pools are significant, particularly in arid climates. In Phoenix for example pools account for 22% and 13% of a household's electricity and water use, respectively. Measures to reduce water and energy use in pools such as optimizing the pump schedule and covering the pool in winter can realize greater savings than many common household efficiency improvements. Private versus community pools are also compared. Community pools in Phoenix use 60% less swimming pool water and energy per household than subdivisions without community pools.

  20. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  1. [Arsenic levels in drinking water supplies from underground sources in the community of Madrid].

    Science.gov (United States)

    Aragonés Sanz, N; Palacios Diez, M; Avello de Miguel, A; Gómez Rodríguez, P; Martínez Cortés, M; Rodríguez Bernabeu, M J

    2001-01-01

    In 1998, arsenic concentrations of more than 50 micrograms/l were detected in some drinking water supplies from underground sources in the Autonomous Community of Madrid, which is the maximum permissible concentration for drinking water in Spain. These two facts have meant the getting under way of a specific plan for monitoring arsenic in the drinking water in the Autonomous Community of Madrid. The results of the first two sampling processes conducted in the arsenic level monitoring plan set out are presented. In the initial phase, water samples from 353 water supplies comprised within the census of the Public Health Administration of the Autonomous Community of Madrid were analyzed. A water supply risk classification was made based on these initial results. In a second phase, six months later, the analyses were repeated on those 35 water supplies which were considered to possibly pose a risk to public health. Seventy-four percent (74%) of the water supplies studied in the initial phase were revealed to have an arsenic concentration of less than 10 micrograms/l, 22.6% containing levels of 10 micrograms/l-50 micrograms/l, and 3.7% over 50 micrograms/l. Most of the water supplies showing arsenic levels of more than 10 micrograms/l are located in the same geographical area. In the second sampling process (six months later), the 35 water supplies classified as posing a risk were included. Twenty-six (26) of these supplies were revealed to have the same arsenic level ((10-50 micrograms/l), and nine changed category, six of which had less than 10 micrograms/l and three more than 50 micrograms/l. In the Autonomous Community of Madrid, less than 2% of the population drinks water coming from supplies which are from underground sources. The regular water quality monitoring conducted by the Public Health Administration has led to detecting the presence of more than 50 micrograms/l of arsenic in sixteen drinking water supplies from underground sources, which is the maximum

  2. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  3. Calibration of Water Supply Systems Based on Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Faghfoor Maghrebi

    2013-03-01

    Full Text Available Leakage is one of the main problems in the water supply systems and due to the limitations in water supply and its costly process, reduction of leak in water distribution networks can be considered as one of the main goals of the water supply authorities. One of the leak detection techniques in water distribution system is the usage of the recorded node pressures at some locations to calibrate the whole system node pressures. Calibration process is accomplished by the optimization of a constrained objective function. Therefore, in addition to performing a hydraulic analysis of the network, application of an optimization technique is needed. In the current paper, a comparsion between the ant colony and genetic algorithm methodes, in calibration of the node pressures and leak detections was investigated. To examine the workability and the way of leak detection, analysis of the network with an assumed leak was carried out. The results showed that the effectiveness of the ant colony optimization in the detection of the position and magnitude of leak in a water network.

  4. FEATURES OF SCIENTIFIC INVESTIGATIONS CONDUCTED IN THE LABORATORIES OF THE DEPARTMENT OF WATER SUPPLY OF MGSU

    Directory of Open Access Journals (Sweden)

    Nikitina Irina Nikolaevna

    2016-03-01

    Full Text Available The article focuses on the work of the laboratories of the Department of Water Supply of MGSU. The laboratory of pipe-lines, pumping equipment and sanitary equipment operates in MGSU affiliated to the department of water supply. A hydraulic stand for testing and defining the the hydraulic characteristics of pressure and free-flow pipelines of water supply and sewerage systems is installed there. There are also stands for investigating the sanitary equipment of the buildings, the fire and hot water supply systems. The main research directions of the department of water supply are diverse: hydraulics of water supply systems, recon-struction of pipelines using trenchless technologies, reliable water supply and distribution systems, purification of natural water for drinking and industrial water supply, post-treatment of natural water for domestic water supply, resource conservation in domes-tic water supply systems, etc. The laboratory also has a computer lab, able to simultane-ously hold up to 30 students. In collaboration with the laboratory there operates a scien-tific circle for students and Master students, which provides a lot of interesting and useful information on the latest developments.

  5. Development of datamining software for the city water supply company

    Science.gov (United States)

    Orlinskaya, O. G.; Boiko, E. V.

    2018-05-01

    The article considers issues of datamining software development for city water supply enterprises. Main stages of OLAP and datamining systems development are proposed. The system will allow water supply companies analyse accumulated data. Accordingly, improving the quality of data analysis would improve the manageability of the company and help to make the right managerial decisions by executives of various levels.

  6. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Science.gov (United States)

    2010-10-01

    ... the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.58 Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply with...

  7. Low-level arsenic in drinking water and risk of incident myocardial infarction

    DEFF Research Database (Denmark)

    Monrad, Maria; Ersbøll, Annette Kjær; Sørensen, Mette

    2017-01-01

    to end of follow-up in February 2012. Cohort participants were enrolled in the Copenhagen and Aarhus areas. We geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water supply areas. Arsenic in tap water at each cohort members address from...

  8. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  9. Evaluating the electricity intensity of evolving water supply mixes: the case of California’s water network

    Science.gov (United States)

    Stokes-Draut, Jennifer; Taptich, Michael; Kavvada, Olga; Horvath, Arpad

    2017-11-01

    Climate change is making water supply less predictable, even unreliable, in parts of the world. Urban water providers, especially in already arid areas, will need to diversify their water resources by switching to alternative sources and negotiating trading agreements to create more resilient and interdependent networks. The increasing complexity of these networks will likely require more operational electricity. The ability to document, visualize, and analyze water-energy relationships will be critical to future water planning, especially as data needed to conduct the analyses become increasingly available. We have developed a network model and decision-support tool, WESTNet, to perform these tasks. Herein, WESTNet was used to analyze a model of California’s 2010 urban water network as well as the projected system for 2020 and 2030. Results for California’s ten hydrologic regions show that the average number of water sources per utility and total electricity consumption for supplying water will increase in spite of decreasing per-capita water consumption. Electricity intensity (kWh m-3) will increase in arid regions of the state due to shifts to alternative water sources such as indirect potable water reuse, desalination, and water transfers. In wetter, typically less populated, regions, reduced water demand for electricity-intensive supplies will decrease the electricity intensity of the water supply mix, though total electricity consumption will increase due to urban population growth. The results of this study provide a baseline for comparing current and potential innovations to California’s water system. The WESTNet tool can be applied to diverse water systems in any geographic region at a variety of scales to evaluate an array of network-dependent water-energy parameters.

  10. How Do Households Respond to Unreliable Water Supplies? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Batsirai Majuru

    2016-12-01

    Full Text Available Although the Millennium Development Goal (MDG target for drinking water was met, in many developing countries water supplies are unreliable. This paper reviews how households in developing countries cope with unreliable water supplies, including coping costs, the distribution of coping costs across socio-economic groups, and effectiveness of coping strategies in meeting household water needs. Structured searches were conducted in peer-reviewed and grey literature in electronic databases and search engines, and 28 studies were selected for review, out of 1643 potentially relevant references. Studies were included if they reported on strategies to cope with unreliable household water supplies and were based on empirical research in developing countries. Common coping strategies include drilling wells, storing water, and collecting water from alternative sources. The choice of coping strategies is influenced by income, level of education, land tenure and extent of unreliability. The findings of this review highlight that low-income households bear a disproportionate coping burden, as they often engage in coping strategies such as collecting water from alternative sources, which is labour and time-intensive, and yields smaller quantities of water. Such alternative sources may be of lower water quality, and pose health risks. In the absence of dramatic improvements in the reliability of water supplies, a point of critical avenue of enquiry should be what coping strategies are effective and can be readily adopted by low income households.

  11. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  12. Fragmented landscapes of water supply in suburban Hanoi

    NARCIS (Netherlands)

    Wright-Contreras, Lucia; March, Hug; Schramm, S.

    2017-01-01

    Facing the challenges of city planning in the frame of rapid urbanization in the Global South, this study addresses the relationship between the urban development of Hanoi, Vietnam, and water supply including users’ perception of water accessibility and satisfaction of coverage, quality, and cost.

  13. Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Rygaard, Martin; Godskesen, B.; Jørgensen, C.

    2014-01-01

    Increasing stress on water resources is driving urban water utilities to establish new concepts for water supply. This paper presents the consequences of proposed alternative water supply options using a unique combination of quantitative and qualitative methods from different research fields....... A former industrial harbor area in Copenhagen, Denmark, is currently under development and all infrastructure will be updated to accommodate 40,000 inhabitants and 40,000 jobs in the future. To reduce stress on water resources it has been proposed to establish a secondarywater supply in the area...... as an alternative to the conventional groundwater-based drinking water supply. Four alternative concepts for a secondarywater supply have been considered: 1) slightly polluted groundwater for use in toilets and laundry, 2) desalinated brackish water for use in toilets, laundry, and dishwashers, 3) desalinated...

  14. Towards risk-based drought management in the Netherlands: making water supply levels transparent to water users

    Science.gov (United States)

    Maat Judith, Ter; Marjolein, Mens; Vuren Saskia, Van; der Vat Marnix, Van

    2016-04-01

    To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, assessed the impact of climate change and socio-economic development, and explored strategies to deal with these impacts. The Programme initiated a joint approach to water supply management with stakeholders and developed a national adaptation plan that is able to adapt to future uncertain conditions. The adaptation plan consists of a set of preferred policy pathways - sequences of possible actions and measures through time - to achieve targets while responding in a flexible manner to uncertain developments over time, allowing room to respond to new opportunities and insights. With regard to fresh water allocation, the Delta Programme stated that supplying water of sufficient quality is a shared responsibility that requires cohesive efforts among users in the main and regional water system. The national and local authorities and water users involved agreed that the water availability and, where relevant, the water quality should be as transparent and predictable as possible under normal, dry and extremely dry conditions. They therefore introduced the concept of "water supply service levels", which should describe water availability and quality that can be delivered with a certain return period, for all regions and all relevant water users in the Netherlands. The service levels form an addition to the present policy and should be decided on by 2021. At present water allocation during periods of (expected) water shortage occurs according to a prearranged ranking system (a water hierarchy scheme based on a list of priorities), if water availability drops below a critical low level. The aim is to have supply levels available that are based on the probability of occurrence and economic impact of water shortage, and that are transparent for all water users in the regional water systems and the main water system. As part of the European project

  15. Heat supply systems using natural gas in the residential sector: The case of the agglomeration of Seoul

    International Nuclear Information System (INIS)

    Park, Hi-Chun; Kim, Hoseok

    2008-01-01

    Combined heat and power (CHP) and district heating (DH) promotion policies are based on the assumption of high energy efficiencies. In the last two decades, however, there has been a big increase in energy efficiencies of combined-cycle gas power plants (CCs) including CHPs and gas-condensing boilers. This study tries to verify the validity of the assumption of high energy efficiency of DH. The experience in the agglomeration of Seoul shows that DH in combination with large modern CHPs is not more energy efficient but substantially more expensive compared to individual gas heating by efficient condensing boilers in combination with CCs. We argue that the Korean government should review its CHP/DH support programs and abandon the so-called heat supply monopoly for DH operators in newly developed residential areas. Such a policy intervention only distorts the space heating market and wastes valuable financial resources. Furthermore, the public should be properly informed on energy efficiency as well as energy- and system-related costs of various heat supply systems. In the light of the present improvements in the performance of gas-condensing boilers and CCs, the validity of the assumption of high energy efficiency of CHP/DH in other countries has to be reviewed

  16. Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems

    Science.gov (United States)

    de Neufville, R.; Galelli, S.; Tian, X.

    2017-12-01

    This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.

  17. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion

    Science.gov (United States)

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  18. Residential Pre-Cooling: Mechanical Cooling and Air-Side Economizers:

    OpenAIRE

    Turner, William J.N; Walker, Iain S.; Roux, Jordan

    2012-01-01

    This study used an advanced airflow, energy and humidity modeling tool to evaluate residential air-side economizers and mechanical pre-cooling strategies using the air conditioner, in all US DOE Climate Zones for a typical new home with ASHRAE Standard 62.2 compliant ventilation. A residential air-side economizer is a large supply fan used for night ventilation. Mechanical pre-cooling used the building air conditioner operating at lower than usual set before the peak demand period. The simula...

  19. Radon exposed workplaces in Bavarian public water supplies

    International Nuclear Information System (INIS)

    Heinrich, T.; Huebel, K.; Schindlmeier, W.

    1998-01-01

    From April 1996 to July 1996 a radon-screening in 112 Bavarian water supplies was carried out to determine the radon concentration in workplaces. In some regions with granit or gneiss stones as underground a considerable radiation exposure to the employees in public water supplies can be expected. The median of the measured radon concentration in relevant workplaces is found to be 4000 Bq/m 3 in the areas with granite or gneiss. This is approximately the fourfold of the median measured in a reference area with sandstone as underground. In some workplaces radon concentrations of more than 100000 Bq/m 3 can be found. (orig.) [de

  20. Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050

    Science.gov (United States)

    Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.

    2009-01-01

    Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American

  1. Margins of the law pertaining to water supplies and waterways

    International Nuclear Information System (INIS)

    Bickel, C.

    1981-01-01

    The author examines legal questions coming from points of contact of the law pertaining to water supplies and waterways on the one hand with the Waste Management Law, the Atomic Energy Law and Criminal Law on the other hand. He tries to find ways for solving the practical problems which arise with the execution of the law pertaining to water supplies and waterways. (HSCH) [de

  2. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for new residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of devices for solar energy systems for air conditioning and hot water supply, in order to commercialize innovative systems for economic air conditioning and hot water supply for new residential buildings. The research items are (1) development of materials for the devices (e.g., heat collectors and absorption refrigerators), (2) operation of the systems in the test building, and measurement (methods for measurement and evaluation of the systems in the test building, instrumentation systems and operation thereof, and analysis of the measured data), and (3) system analysis (system simulation, comparison of the simulated results with the observed results, and system variations). The item (1) studies economic efficiency, durability and stability of the vacuum glass tube type collectors. The item (2) studies a dripping type generator, refrigerant recycling type generator and generator with a built-in auxiliary heat source for the absorption refrigerators. These types have their own advantages and disadvantages, and it is necessary to establish how these results are to be included in the products. The item (3) changes the collector arrangement, based on the observed data, and improves heat-collecting pump starting/stopping conditions, refrigerator operating conditions and insulation around the primary heat-storage tank. It is necessary to analyze the improved systems. (NEDO)

  3. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  4. Radiological assessment of private water supplies in Dolgellau, North Wales

    International Nuclear Information System (INIS)

    Green, D.; McReddie, R.; Holland, B.

    1993-01-01

    Water samples from 100 private water supplies in the Meirionnydd District Council area of Dolgellau, North Wales have been analysed for natural and artificial radionuclides and the elements Calcium and Strontium. In addition 20 of the 100 supplies were specifically sampled for the measurement of radon-222. Of the 100 supplies tested all total alpha and beta values were within the WHO guideline values. An assessment of the radiological significance of the analytical data has been carried out by calculating the committed effective dose equivalent to a hypothetical critical group which would arise from the consumption of water during a single year. The maximum adult annual committed effective dose equivalent for artificial and total radionuclides measured during this programme of monitoring was found to be 3.2 and 560 μSv, respectively. (author)

  5. Implications of bulk water transfer on local water management institutions: A case study of the Melamchi Water Supply Project in Nepal

    OpenAIRE

    Pant, Dhruba; Bhattarai, Madhusudan; Basnet, Govinda

    2008-01-01

    "To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implic...

  6. Forests, Water and People: Drinking water supply and forest lands in the Northeast and Midwest United States, June 2009

    Science.gov (United States)

    Martina Barnes; Albert Todd; Rebecca Whitney Lilja; Paul Barten

    2009-01-01

    Forests are critically important to the supply of clean drinking water in the Northeast and Midwest portion of the United States. In this part of the country more than 52 million people depend on surface water supplies that are protected in large part by forested lands. The public is generally unaware of the threats to their water supplies or the connection between...

  7. Does Clean Water Make You Dirty? Water Supply and Sanitation in the Philippines

    Science.gov (United States)

    Bennett, Daniel

    2012-01-01

    Water supply investments in developing countries may inadvertently worsen sanitation if clean water and sanitation are substitutes. This paper examines the negative correlation between the provision of piped water and household sanitary behavior in Cebu, the Philippines. In a model of household sanitation, a local externality leads to a sanitation…

  8. About economy of fuel and energy resources in the hot water supply system

    Science.gov (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.

    2017-11-01

    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  9. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  10. Radiological assessment of private water supplies in Berwick-upon-Tweed, England

    International Nuclear Information System (INIS)

    Green, D.; McReddie, R.; Holland, B.

    1993-01-01

    Water samples from 95 private water supplies and 5 main supplies in the Berwick-Upon-Tweed area of England have been analysed for natural and artificial radionuclides and the elements Calcium and Strontium. In addition 20 of the 100 supplies were specifically sampled for the measurement of Radon-222. Of the 100 supplies tested, all total alpha and beta values were within the WHO guideline values. An assessment of the radiological significance of the analytical data has been carried out by calculating the committed effective dose equivalent to a hypothetical ''Critical'' group which would arise from the consumption of water during a single year. The maximum infant annual committed effective dose equivalent for artificial and total radionuclides measured during this programme of monitoring was found to be 0.5 μSv and 2290μSv respectively. (Author)

  11. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  12. A methodology for the design of photovoltaic water supply systems

    International Nuclear Information System (INIS)

    Vilela, O.C.; Fraidenraich, N.

    2001-01-01

    Photovoltaic pumping systems are used nowadays as a valuable alternative to supply water to communities living in remote rural areas. Owing to the seasonal variation and the stochastic behavior of solar radiation, at certain times the supply of water may not be able to meet demand. A study has been made of the relationship between water pumping capacity, reservoir size and water demand, for a given water deficit. As a result, curves of equal water deficit (iso-deficit lines) can be obtained for various combinations of PV pumping capacity and reservoir size. A methodology to generate those curves is described, using as its main tool the characteristic curve of the system, that is, the relationship between water flow and collected solar radiation. The characteristic curve represents the combined behavior of the water pumping system and the well. The influence of the minimum collected solar radiation level, necessary to start the system's operation (the critical radiation level I C ). is also analyzed. Results show that PV pumping systems with different characteristic curves, but with the same critical levels, yield the same set of iso-deficit lines. This drastically reduces the number of necessary solutions to those corresponding to a few values of I C . Iso-deficit lines, calculated for the locality of Recife (PE), Brazil, are used to illustrate the sizing procedure PV water supply systems. (author)

  13. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    Science.gov (United States)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  14. The Effects of Intermittent Drinking Water Supply in Arraiján, Panama

    OpenAIRE

    Erickson, John Joseph

    2016-01-01

    Over three hundred million people throughout the world receive supply from piped drinking water distribution networks that operate intermittently. This dissertation evaluates the effects of intermittent supply on water quality, pipe damage and service reliability in four study zones (one continuous and three intermittent) in a peri-urban drinking water distribution network in Arraiján, Panama. Normal water quality in all zones was good, with 97% of routine water quality grab samples from the ...

  15. Economies of scale and firm size optimum in rural water supply

    Science.gov (United States)

    Sauer, Johannes

    2005-11-01

    This article is focused on modeling and analyzing the cost structure of water-supplying companies. A cross-sectional data set was collected with respect to water firms in rural areas of former East and West Germany. The empirical data are analyzed by applying a symmetric generalized McFadden (SGM) functional form. This flexible functional form allows for testing the concavity required by microeconomic theory as well as the global imposition of such curvature restrictions without any loss of flexibility. The original specification of the SGM cost function is modified to incorporate fixed factors of water production and supply as, for example, groundwater intake or the number of connections supplied. The estimated flexible and global curvature correct cost function is then used to derive scale elasticities as well as the optimal firm size. The results show that no water supplier in the sample produces at constant returns to scale. The optimal firm size was found to be on average about three times larger than the existing one. These findings deliver evidence for the hypothesis that the legally set supplying areas, oriented at public administrative criteria as well as local characteristics of water resources, are economically inefficient. Hence structural inefficiency in the rural water sector is confirmed to be policy induced.

  16. Assessment of domestic water supply situation in rural communities ...

    African Journals Online (AJOL)

    Water is needed by man for the sustenance of life and it is the second most important natural resource used by man after the air were breathe. Man survives longer without food than without water. The socio-economic development of man is determined partly by the availability of water. The supply of safe pipe-borne water in ...

  17. How war, drought, and management impact water supply in the Tigris/Euphrates

    Science.gov (United States)

    Hasan, M.; Moody, A.; Benninger, L. K.

    2017-12-01

    The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region, particularly on structures such as Mosul and Haditha dams, and the Ramadi and Falluja Barrages, all of which have experienced threats or changes in sovereignty. Water supply is also under pressure from upstream dam management and drought. In this research, we use the normalized difference water index (NDWI) applied to Landsat imagery in order to monitor changes in the extent of various water bodies (1985-present). We looked to see if significant anomalies from expected surface area were best explained by conflict, drought, or dam management. Conflict (though not every conflict) produced the greatest sudden changes in water supply; drought produced the greatest absolute changes, but at a gentle pace. Drought impacts are strongest in the furthest downstream reservoirs. Conflict-driven changes were tied to very specific human manipulations in water supply in order to either advance military objectives, "punish" civilians on the wrong side of the fight, or to prevent humanitarian catastrophe. Satellite images allow for an objective analysis of how strong these manipulations were. The information may not be as exact as on-the-ground information, but when the flow of information is disrupted by war, satellite data can be an alternative source of insights into water supply changes.

  18. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    Science.gov (United States)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  19. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Science.gov (United States)

    2010-04-01

    ... determined to meet local or state quality standards for drinking water. If neither state nor local standards... acceptable for human consumption. The notification to the mortgagor must identify specific contaminants in... maintaining. I undertstand that the individual water supply is unsafe for consumption unless the system is...

  20. A Holistic ICT Solution to Improve Matching between Supply and Demand over the Water Supply Distribution Chain

    Directory of Open Access Journals (Sweden)

    Gabriel Anzaldi

    2014-12-01

    Full Text Available While many water management tools exist, these systems are not usually interconnected and therefore cannot communicate between one another, preventing Integrated Water Resources Management to be fully achieved. This paper presents the solution proposed by WatERP project* where a novel solution enables better matching between water supply and demand from holistic perspective. Subsystems that control the production, management and consumption of water will be interconnected through both information architecture and intelligent infrastructure. The main outcome will consist of, a web-based Open Management Platform integrating near real-time knowledge on water supplies and demand, from sources to users, across geographic and organizational scales and supported by a knowledge base where information will be structured in water management ontology to ensure interoperability and maximize usability. WatERP will thus provide a major contribution to: 1 Improve coordination among actors, 2 Foster behavioural change, 3 Reduce water and energy consumption, 4 Optimize water accountability.

  1. Assessing rural small community water supply in Limpopo, South Africa: water service benchmarks and reliability.

    Science.gov (United States)

    Majuru, Batsirai; Jagals, Paul; Hunter, Paul R

    2012-10-01

    Although a number of studies have reported on water supply improvements, few have simultaneously taken into account the reliability of the water services. The study aimed to assess whether upgrading water supply systems in small rural communities improved access, availability and potability of water by assessing the water services against selected benchmarks from the World Health Organisation and South African Department of Water Affairs, and to determine the impact of unreliability on the services. These benchmarks were applied in three rural communities in Limpopo, South Africa where rudimentary water supply services were being upgraded to basic services. Data were collected through structured interviews, observations and measurement, and multi-level linear regression models were used to assess the impact of water service upgrades on key outcome measures of distance to source, daily per capita water quantity and Escherichia coli count. When the basic system was operational, 72% of households met the minimum benchmarks for distance and water quantity, but only 8% met both enhanced benchmarks. During non-operational periods of the basic service, daily per capita water consumption decreased by 5.19l (pwater sources were 639 m further (p ≤ 0.001, 95% CI 560-718). Although both rudimentary and basic systems delivered water that met potability criteria at the sources, the quality of stored water sampled in the home was still unacceptable throughout the various service levels. These results show that basic water services can make substantial improvements to water access, availability, potability, but only if such services are reliable. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The main microelements and phosphorus content of sediments formed in a drinking water supply system

    Directory of Open Access Journals (Sweden)

    Marina Valentukeviciene

    2016-11-01

    Full Text Available Groundwater is the only source for drinking water supply in Lithuania. Twenty water intakes exploiting Quaternary aquifers are operating in Vilnius City. The main aim of this study was to characterize the heavy metal content of internal pipeline sediments in the water supply network. It also provides a new insight into the accumulation of phosphorus and its variation in pipeline sediments in the study area. The results of this research reflect the level of heavy metals that accumulated during the water supply process. The main microelements detected were lead, nickel, zinc and copper. The research results will be useful for conducting preliminary evaluations of possible microelement accumulation in other similar water supply systems. The evaluation of water supply sediments is considered as one of the most important activities associated with a water safety approach. The results of this research indicate the dependence between phosphorus accumulation and Pb, Cr, Zn, Ni and Cu quantities in the internal sediments of water supply pipelines.

  3. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Simulation study on reduction of peak power demand and energy consumption in residential houses with solar thermal and PV systems; Taiyo energy riyo jutaku no fuka heijunka oyobi energy sakugen koka no simulation ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Endo, T. [Yokohama City Office, Yokohama (Japan); Udagawa, M. [Kogakuin Univ., Tokyo (Japan). Faculty of Engineering

    1995-11-20

    In this study, taking the all factors involved in the energy consumption in residential houses as subjects, the effectiveness of the solar PV system and solar thermal utilizing system in residential houses has been studied by simulating a model residential house considering the improvement of the residual environment in the future. Therefore, a model residual house is assumed, 18 kinds of combinations of construction style, cooling and heating type and solar energy utilizing form are assumed and year round simulation is carried out. The conclusions obtained by the simulation are as follows. The energy consumption in residential houses may decrease greatly by using a solar hot water supplying system. If combined with a solar PV system, the energy consumption in one year is about 8.7 to 9.7 MWh. The combined use of a solar thermal utilizing system and a PV system is more effective to reduce the second-time energy in comparison with the PV system only. 36% of the space heating energy consumption may be decreased by using the solar space heating system, but the decrease effect of the energy consumption of the solar space heating system is smaller than the solar hot water supplying system. 12 refs., 26 figs., 3 tabs.

  5. Determination of aluminium and physicochemical parameters in the palm oil estates water supply at Johor, Malaysia.

    Science.gov (United States)

    Siti Farizwana, M R; Mazrura, S; Zurahanim Fasha, A; Ahmad Rohi, G

    2010-01-01

    The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.

  6. The Ambiguity of Community: Debating Alternatives to Private-Sector Provision of Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Karen Bakker

    2008-10-01

    Full Text Available The concept of community has become increasingly important in debates over alternatives to privatisation, and is invoked by both proponents and opponents of private sector provision of water supply. This paper presents a critique of the concept of community water supply when it is invoked as an alternative to privatisation. The analysis presents a typology of proposals for community ownership and governance of water supply, and proceeds to critique some of the flawed assumptions in the concepts of community deployed in these proposals, together with references to more general debates about the viability of the 'commons' as enacted through community-controlled water supply systems. The paper closes with a brief discussion of the future evolution of the debate over 'community' alternatives to privatisation, focusing on water supply.

  7. Water Supply. Fire Service Certification Series. Unit FSCS-FF-9-80.

    Science.gov (United States)

    Pribyl, Paul F.

    This training unit on water supply is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 4-hour unit is to assist the firefighter in the proper use of water supplies and the understanding of the…

  8. A case study on the status of water supply for domestic purposes in ...

    African Journals Online (AJOL)

    Domestic water supply is a daily necessity and key factor in human health and well being. Without water, life cannot be sustained and lack of access to adequate water supplies leads to wide spread of diseases with children bearing the greatest health burden associated with poor water quality and sanitation. The WHO ...

  9. Village-level supply reliability of surface water irrigation in rural China: effects of climate change

    Science.gov (United States)

    Li, Yanrong; Wang, Jinxia

    2018-06-01

    Surface water, as the largest part of water resources, plays an important role on China's agricultural production and food security. And surface water is vulnerable to climate change. This paper aims to examine the status of the supply reliability of surface water irrigation, and discusses how it is affected by climate change in rural China. The field data we used in this study was collected from a nine-province field survey during 2012 and 2013. Climate data are offered by China's National Meteorological Information Center which contains temperature and precipitation in the past 30 years. A Tobit model (or censored regression model) was used to estimate the influence of climate change on supply reliability of surface water irrigation. Descriptive results showed that, surface water supply reliability was 74 % in the past 3 years. Econometric results revealed that climate variables significantly influenced the supply reliability of surface water irrigation. Specifically, temperature is negatively related with the supply reliability of surface water irrigation; but precipitation positively influences the supply reliability of surface water irrigation. Besides, climate influence differs by seasons. In a word, this paper improves our understanding of the impact of climate change on agriculture irrigation and water supply reliability in the micro scale, and provides a scientific basis for relevant policy making.

  10. Chemical, physical, and radiological quality of selected public water supplies in Florida, November 1977-February 1978. Water-resources investigations

    International Nuclear Information System (INIS)

    Irwin, G.A.; Hull, R.W.

    1979-04-01

    Virtually all treated public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 129 treated public supplies throughout the State during the period November 1977 through February 1978. While primary drinking water regulation exceedences were infrequent, lead, selenium, and gross alpha radioactivity in a very few water supplies were above established maximum contaminant levels. Additionally, the secondary drinking water regulation parameters--dissolved solids, chloride, sulfate, iron, color, and pH--were occasionally detected in excess of the proposed Federal regulations. The secondary regulations, however, pertain mainly to the aesthetic quality of drinking water and not directly to public health aspects

  11. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  12. Metabolic modelling to support long term strategic decisions on water supply systems

    Science.gov (United States)

    Ciriello, Valentina; Felisa, Giada; Lauriola, Ilaria; Pomanti, Flavio; Di Federico, Vittorio

    2017-04-01

    Water resources are essential for the economic development and sustenance of anthropic activities belonging to the civil, agricultural and industrial sectors. Nevertheless, availability of water resources is not uniformly distributed in space and time. Moreover, the increasing water demand, mainly due to population growth and expansion of agricultural crops, may cause increasing water stress conditions, if combined with the effects of climate change. Under these circumstances, it is necessary to improve the resilience of water supply systems both in terms of infrastructures and environmental compliance. Metabolic modelling approaches represent a flexible tool able to provide support to decision making in the long term, based on sustainability criteria. These approaches mimic the water supply network through a set of material and energy fluxes that interact and influence each other. By analyzing these fluxes, a suite of key performance indicators is evaluated in order to identify which kind of interventions may be applied to increase the sustainability of the system. Here, we adopt these concepts to analyze the water supply network of Reggio-Emilia (Italy) which is supported by water withdrawals from both surface water and groundwater bodies. We analyze different scenarios, including possible reduction of water withdrawals from one of the different sources as a consequence of a decrease in water availability under present and future scenarios. On these basis, we identify preventive strategies for a dynamic management of the water supply system.

  13. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  14. M&R Holdings, LLC d/b/a Brandon’s Reserve Residential Development - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against M&R Holdings, LLC d/b/a Brandon’s Reserve Residential Development, a business located at 15602 Wilden Drive, Urbandale,

  15. A review of formal institutions affecting water supply and access in Botswana

    Science.gov (United States)

    Mogomotsi, Patricia K.; Mogomotsi, Goemeone E. J.; Matlhola, Dimpho M.

    2018-06-01

    Over the years, many countries across the world have increasingly experienced the collapse of their ecosystems, leading to an elevated increase on the demand for freshwater resources. Botswana is not an exception. The problem of disrupted potable water supply is widespread across the country. However, the physical shortage of water in the country is arguably coupled by lack of effective and efficient water supply and management institutions and water infrastructure. Most of the research on water scarcity in Botswana is mostly inclined towards physical water scarcity, while little is investigated on how the design of institutions for water management in developing countries leads to water scarcity. Furthermore, the premises of most research is neoclassical economics ideas, thereby offering solutions as developing and/or reforming water markets and water pricing mechanisms, among other findings. This paper analyses potable water supply and access in Botswana within a new institutional economics paradigm. The study examines key features of water institutions in Botswana on how they affect water supply and access, applying new institutional economics fundamentals. The study extensively uses various secondary data sources including weather and climate reports, policy documents, maps and charts and survey data, among others. The paper argues that to achieve effective water allocation in Botswana, there is a need to balance social and environmental water resource needs through water policies and other statutory enactments, as well as the crafting of practical management strategies. The country, therefore, requires not only a swift institutional transformation in the water sector, but also needs practical governance structure necessary for implementing integrated water resources management and driving water resources towards sustainability.

  16. Threat to the New York City water supply - plutonium

    International Nuclear Information System (INIS)

    Bogen, D.C.; Krey, P.W.; Volchok, H.L.; Feldstein, J.; Calderon, G.

    1988-01-01

    The mayor of the City of New York received an anonymous letter on April 1st 1985 threatening to contaminate the water supply with plutonium unless all criminal charges against Mr Bernhard Goetz, the suspect in a dramatic subway shooting incident, were dismissed by April 11th 1985. The Environmental Measurements Laboratory, EML, was requested to analyse a composite, large volume (∼ 175 litres) drinking water sample collected on April 16th 1985. The concentration measured was 21 fCi/l which was a factor of 100 greater than previously observed results in the EML data base, and the mass isotopic content of the plutonium was very unusual. Additional samples were collected one to three months later at various distribution points in the water supply system. The plutonium concentrations were much lower and comparable to EML's earlier data. Mass isotopic analysis of these samples provided more reasonable compositions but with high uncertainties due to very low plutonium concentration. Due to the inability to confirm the elevated plutonium concentration value for the composite sample, it is impossible to conclude whether the threat to contaminate the New York City water supply was actually carried out or whether the sample was contaminated prior to receipt at EML. 5 refs.; 1 figure; 5 tabs

  17. Radioactivity levels in well water supplies within the greater Chicago area

    International Nuclear Information System (INIS)

    Kristoff, L.M.; Lordi, D.T.; Lue-Hing, C.

    1976-01-01

    The radiological analysis of well water supplies within the geographical boundaries of the Metropolitan Sanitary District of Greater Chicago was prompted by the relatively high total alpha levels encountered in wastewaters of a MSDGC water reclamation plant as compared to the wastewaters of the other waste treatment plants. Consequently, 87 wells constituting 42 water supplies were sampled and analyzed for total alpha and beta radioactivity. The wells were grouped according to depth. In general, both total alpha and total beta radioactivity concentrations were found to be a function of well depth. The relatively higher total alpha and beta activities in the wastewaters to one of the treatment plants was attributed to the higher levels found in the well water supply. Comparison with the USEPA's Drinking Water Regulations for Radionuclides (July 9, 1976) showed the maximum total alpha level of 15 pCi/liter was exceeded in 3 wells and 32 of the deep well waters had total alpha level greater than 5 pCi/liter. The total beta level of 50 pCi/liter was exceeded in 8 wells

  18. Analysis of PAEs contaminants in water sources for agriculture, industrial and residential areas from local city district

    Science.gov (United States)

    Chen, Qidan; Chen, Qixian; Wu, Fei; Liao, Jia; Zhao, Xi

    2018-02-01

    The technology of DEHP and DBP detection by high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV) was developed and applied in analysis of local water sources from agriculture, industrial and residential areas. Under the optimized sample pretreatment and detection conditions, DEHP and DBP were well separated and detected in 4 mins. The detection limit of DBP was 0.002 mg/L and DEHP was 0.006 mg/L, and it meets the Chinese National Standard limitations for drinking water quality. The linear correlation coefficient of DBP and DEHP standard calibration curves was 0.9998 and 0.9995. The linear range of DBP was 0.020 mg/L ∼20.0 mg/L, with the standard deviation of 0.560% ∼5.07%, and the linear range of DEHP was 0.060 mg/L ∼15.0 mg/L, with the standard deviation of 0.546% ∼5.74%. Ten water samples from Jinwan district of Zhuhai in Guangdong province of China were analyzed. However, the PAEs amounts found in the water sources from industrial areas were higher than the agriculture and residential areas, industries grow incredibly fast in the district in recently years and more attention should be paid to the increasing risks of water sources pollution.

  19. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  20. Estimation of European Union residential sector space cooling potential

    International Nuclear Information System (INIS)

    Jakubcionis, Mindaugas; Carlsson, Johan

    2017-01-01

    Data on European residential space cooling demands are scarce and often of poor quality. This can be concluded from a review of the Comprehensive Assessments on the energy efficiency potential in the heating and cooling sector performed by European Union Member States under Art. 14 of the Energy Efficiency Directive. This article estimates the potential space cooling demands in the residential sector of the EU and the resulting impact on electricity generation and supply systems using the United States as a proxy. A georeferenced approach was used to establish the potential residential space cooling demand in NUTS-3 regions of EU. The total potential space cooling demand of the EU was estimated to be 292 TW h for the residential sector in an average year. The additional electrical capacity needed was estimated to 79 GW. With proper energy system development strategies, e.g. matching capacity of solar PV with cooling demand, or introduction of district cooling, the stresses on electricity system from increasing cooling demand can be mitigated. The estimated potential of space cooling demand, identified in this paper for all EU Members States, could be used while preparing the next iteration of EU MS Comprehensive Assessments or other energy related studies. - Highlights: • An estimation of EU space cooling demand potential in residential sector is presented. • An estimate of space cooling demand potential is based on using USA data as a proxy. • Significant cooling demand increase can be expected. • Cooling demand increase would lead to increased stress in energy supply systems. • Proper policies and strategies might measurably decrease the impact on energy systems.

  1. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Can the water supply for the... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or...

  2. Water supply at Los Alamos during 1996. Progress report

    International Nuclear Information System (INIS)

    McLin, S.G.; Purtymun, W.D.; Maes, M.N.; Longmire, P.A.

    1997-12-01

    Production of potable municipal water supplies during 1996 totaled about 1,368.1 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from either the spring gallery in Water Canyon or from Guaje Reservoir during 1996. About 2.6 million gallons of water from Los Alamos Reservoir was used for lawn irrigation. The total water usage in 1996 was about 1,370.7 million gallons, or about 131 gallons per day per person living in Los Alamos County. Groundwater pumpage was up about 12.0 million gallons in 1996 compared with the pumpage in 1995. This report fulfills requirements specified in US Department of Energy (DOE) Order 5400.1 (Groundwater Protection Management Program), which requires the Los Alamos National Laboratory (LANL) to monitor and document groundwater conditions below Pajarito Plateau and to protect the regional aquifer from contamination associated with Laboratory operations. Furthermore, this report also fulfills special conditions by providing information on hydrologic characteristics of the regional aquifer, including operating conditions of the municipal water supply system

  3. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis.

    Science.gov (United States)

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie

    2015-12-01

    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  4. Water Footprint of Cities: A Review and Suggestions for Future Research

    Directory of Open Access Journals (Sweden)

    Willa Paterson

    2015-06-01

    Full Text Available Cities are hotspots of commodity consumption, with implications for both local and systemic water resources. Water flows “virtually” into and out of cities through the extensive cross-boundary exchange of goods and services. Both virtual and real water flows are affected by water supply investments and urban planning decisions, which influence residential, commercial, and industrial development. This form of water “teleconnection” is being increasingly recognized as an important aspect of water decision-making. The role of trade and virtual water flows as an alternative to expanding a city’s “real” water supply is rarely acknowledged, with an emphasis placed instead on monotonic expansion of engineering potable water supplies. We perform a literature review of water footprint studies to evaluate the potential and importance of taking virtual flows into account in urban planning and policy. We compare and contrast current methods to assess virtual water flows. We also identify and discuss priorities for future research in urban water footprint analysis.

  5. Application for Planning and Improvement of Public Water Supply in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    The study applied the tool of GIS in the planning and improvement of water ... proffer an acceptable solution to the problems of water supply in the study area. Primary data generated ..... Tropical Hydrology and Water. Resources. Iloeje, N.P. ...

  6. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  7. Exploring geophysical processes influencing U.S. West Coast precipitation and water supply

    Science.gov (United States)

    Ralph, F.M.; Prather, K.; Cayan, D.

    2011-01-01

    CalWater Science Workshop; La Jolla, California, 8-10 June 2011 CalWater is a multiyear, multiagency research project with two primary research themes: the effects of changing climate on atmospheric rivers (ARs) and associated extreme events, and the potential role of aerosols in modulating cloud properties and precipitation, especially regarding orographic precipitation and water supply. Advances made in CalWater have implications for both water supply and flood control in California and other West Coast areas, both in the near term and in a changing climate.

  8. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Directory of Open Access Journals (Sweden)

    Tarja Pitkänen

    2015-08-01

    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  9. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    Science.gov (United States)

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education).

  10. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    Directory of Open Access Journals (Sweden)

    Liangxin Fan

    Full Text Available Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use and cultural backgrounds (age, education.

  11. Study of the radioactive contents in Barcelona's water supply during 1986

    International Nuclear Information System (INIS)

    Ortega, X.; Valles, I.

    1988-01-01

    Throughout 1986 several determinations were carried out of the contents in α and β radioactivity transmitters of different samples of the Barcelona water supply. It could be verified that beta radioactivity was ten times higher in the waters collected in the basin of Llobregat river than water from Ter river. Both rivers are the main sources of Barcelona supply. The reason for this unbalanced result is the high potassic content of the first river, coming from the mining exploitation of the basin. On the other hand, the contamination that could be measured in May, due to the Chernobyl nuclear accident, showed that the supply system from Llobregat river was more sensitive to the incorporation of contaminants carried down by the rain, whereas in the case of Ter river, owing to the presence of impounding regulation, a higher retention time of these waters was obtained. (author)

  12. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza

    2016-03-01

    Full Text Available Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how network expansion carried out throughout the network life span typically reduces network capacity, thus transforming a system originally designed to work with continuous supply into a system with intermittent supply. A method is proposed to expand the network capacity in an environment of economic scarcity through a greedy algorithm that enables the definition of a schedule for pipe modification stages, and thus efficiently expands the network capacity. This method is, at the same time, an important step in the process of changing a water system from intermittent back to continuous supply—an achievement that remains one of the main challenges related to water and health in developing countries.

  13. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  14. Residential water demand and water consumption: an econometric analysis on municipal panel data

    International Nuclear Information System (INIS)

    Musolesi, Antonio; Nosvelli, Mario

    2005-01-01

    This paper focuses on residential water demand estimation, a rather neglected issue in the Italian environmental economics literature as compared to other European countries and the USA. This may depend on the difficulties in gathering proper data and, most of all, panel data. In some cases statistical information are not suitably collected, while in other cases legal privacy ties put some obstacles to data set transfer. Our panel data set refers to 102 municipalities in Lombardy (Italy) for the period 1998-2002. When estimating the effect of water price, we control for other relevant variables such as: income, households demographical variables - (age structure, number of component for each family) number of firms in tertiary sector, water system length. In the considered period, the data show both an increase in population (1,5 %) and in the number of water consumers (7%) associated, on aggregate, with a slight reduction in water consumption (-1,1 %). Water demand models are estimated both in a static and in a dynamic framework. In the former, the emphasis is set on the sources of endogeneity in the average price by estimating a system of simultaneous equations and relevant variables for assessing consumer behaviour - such as socio demographic ones - are incorporated in the model. In the latter, econometric methods especially designed for endogeneity in panel data models (Arellano e Bond, 1991), are employed in order to estimate the long run elasticity of water demand with respect to average price. We find evidence both that consumers significantly respond to average price only in the long run with an elasticity of about - 0,3-0,4 and that income and demographic variables are crucial in explaining consumers' behaviour. Furthermore, water consumption presents a strong auto-regressive component, showing the emergence of inertia and path dependency in consumption habits. Such results suggest important implications for water policy planning. On one side demographic

  15. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    Science.gov (United States)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  16. Assessment of Water Supply Quality in Awka, Anambra State, Nigeria

    African Journals Online (AJOL)

    The patronage of water of questionable qualities in the study area due to the failure of the Anambra State Water Corporation to provide potable water supply in Awka and environs prompted this research work. Various water sources patronized in the study area were collected and subjected to physical, chemical and ...

  17. Mining residential water and electricity demand data in Southern California to inform demand management strategies

    Science.gov (United States)

    Cominola, A.; Spang, E. S.; Giuliani, M.; Castelletti, A.; Loge, F. J.; Lund, J. R.

    2016-12-01

    Demand side management strategies are key to meet future water and energy demands in urban contexts, promote water and energy efficiency in the residential sector, provide customized services and communications to consumers, and reduce utilities' costs. Smart metering technologies allow gathering high temporal and spatial resolution water and energy consumption data and support the development of data-driven models of consumers' behavior. Modelling and predicting resource consumption behavior is essential to inform demand management. Yet, analyzing big, smart metered, databases requires proper data mining and modelling techniques, in order to extract useful information supporting decision makers to spot end uses towards which water and energy efficiency or conservation efforts should be prioritized. In this study, we consider the following research questions: (i) how is it possible to extract representative consumers' personalities out of big smart metered water and energy data? (ii) are residential water and energy consumption profiles interconnected? (iii) Can we design customized water and energy demand management strategies based on the knowledge of water- energy demand profiles and other user-specific psychographic information? To address the above research questions, we contribute a data-driven approach to identify and model routines in water and energy consumers' behavior. We propose a novel customer segmentation procedure based on data-mining techniques. Our procedure consists of three steps: (i) extraction of typical water-energy consumption profiles for each household, (ii) profiles clustering based on their similarity, and (iii) evaluation of the influence of candidate explanatory variables on the identified clusters. The approach is tested onto a dataset of smart metered water and energy consumption data from over 1000 households in South California. Our methodology allows identifying heterogeneous groups of consumers from the studied sample, as well as

  18. A triangular fuzzy TOPSIS-based approach for the application of water technologies in different emergency water supply scenarios.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; Yu, Huan; You, Hong

    2016-09-01

    Because of the increasing frequency and intensity of unexpected natural disasters, providing safe drinking water for the affected population following a disaster has become a global challenge of growing concern. An onsite water supply technology that is portable, mobile, or modular is a more suitable and sustainable solution for the victims than transporting bottled water. In recent years, various water techniques, such as membrane-assisted technologies, have been proposed and successfully implemented in many places. Given the diversity of techniques available, the current challenge is how to scientifically identify the optimum options for different disaster scenarios. Hence, a fuzzy triangular-based multi-criteria, group decision-making tool was developed in this research. The approach was then applied to the selection of the most appropriate water technologies corresponding to the different emergency water supply scenarios. The results show this tool capable of facilitating scientific analysis in the evaluation and selection of emergency water technologies for enduring security drinking water supply in disaster relief.

  19. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  20. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  1. Water Supply or ‘Beautiful Latrines’? Microcredit for Rural Water Supply and Sanitation in the Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Nadine Reis

    2012-01-01

    Full Text Available Around half of the Mekong Delta’s rural population lacks year-round access to clean water. In combination with inadequate hygiene and poor sanitation this creates a high risk of diseases. Microcredit schemes are a popular element in addressing such problems on the global policy level. The present paper analyses the contradictory results of such a microcredit programme for rural water supply and sanitation in the context of the Mekong Delta, Vietnam, through a qualitative study primarily based on semi-structured interviews in rural communes of Can Tho City. We come to the conclusion that the programme has a positive effect regarding the safer disposal of human excreta as well as surface water quality, but a marginal impact on poverty reduction as it only reaches better-off households already having access to clean water. The paper shows how the outcome of rural water supply and sanitation policies are strongly influenced by the local ecological, technological, and social settings, in particular by stakeholders’ interests. The authors challenge the assumption that water supply and sanitation should be integrated into the same policy in all circumstances. ----- Etwa die Hälfte der ländlichen Bevölkerung des Mekong-Deltas hat nicht das ganze Jahr über Zugang zu sauberem Wasser. Zusammen mit unzureichender Hygiene und mangelnder sanitärer Grundversorgung erhöht diese Situation das Krankheitsrisiko. Auf globaler Ebene sind Mikrokreditprogramme eine gefragte Strategie, um diese Probleme zu behandeln. Der vorliegende Artikel analysiert die widersprüchlichen Ergebnisse eines solchen Mikrokreditprogramms für ländliche Wasser- und sanitäre Grundversorgung im Mekong-Delta in Vietnam im Rahmen einer qualitativen Studie, die auf halbstrukturierten Interviews im Raum Can Tho City basiert. Die Studie kommt zu dem Schluss, dass das Programm eine positive Wirkung in Bezug auf die sichere Entsorgung von Fäkalien und die Qualität des Regenwassers

  2. Rational use of supply air in residential buildings

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Svendsen, Svend

    2009-01-01

    The ventilation rate influences the air quality by determining the intensity of pollution sources. This paper compared the intensity of the sensory pollution during occupied hours in an apartment ventilated by a constant air volume system and demand controlled ventilation systems controlled by oc...... by occupancy. The systems supplied the same total volume of air daily. It was found that the supply air could be used more rationally by redistributing it according to occupancy compared to maintaining a constant ventilation rate during all hours....

  3. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems

    Science.gov (United States)

    Slocum, Alexander H.; Whittle, Andrew J.

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers’ homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%. PMID:29775462

  4. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems.

    Science.gov (United States)

    Taylor, David D J; Slocum, Alexander H; Whittle, Andrew J

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers' homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%.

  5. External control of the public water supply in 29 Brazilian cities

    Directory of Open Access Journals (Sweden)

    Suzely Adas Saliba Moimaz

    2012-02-01

    Full Text Available The fluoridation of public water supplies is considered the most efficient public health measure for dental caries prevention. However, fluoride levels in the public water supply must be kept constant and adequate for the population to gain preventive benefit. The aim of this study was to analyze fluoride levels in the public water supply of 29 Brazilian municipalities during a 48-month period from November 2004 to October 2008. Three collection sites were defined for each source of municipal public water supply. Water samples were collected monthly and analyzed at the Research Laboratory of the Nucleus for Public Health (NEPESCO, Public Health Postgraduate Program, Araçatuba Dental School (UNESP. Of the 6862 samples analyzed, the fluoride levels of 53.5% (n = 3671 were within the recommended parameters, those of 30.4% (n = 2084 were below these parameters, and those of 16.1% (n = 1107 were above recommended values. Samples from the same collection site showed temporal variability in fluoride levels. Variation was also observed among samples from collection sites with different sources within the same municipality. Although 53.5% of the samples contained the recommended fluoride levels, these findings reinforce the importance of monitoring to minimize the risk of dental fluorosis and to achieve the maximum benefit in the prevention of dental caries.

  6. Decision-making under surprise and uncertainty: Arsenic contamination of water supplies

    Science.gov (United States)

    Randhir, Timothy O.; Mozumder, Pallab; Halim, Nafisa

    2018-05-01

    With ignorance and potential surprise dominating decision making in water resources, a framework for dealing with such uncertainty is a critical need in hydrology. We operationalize the 'potential surprise' criterion proposed by Shackle, Vickers, and Katzner (SVK) to derive decision rules to manage water resources under uncertainty and ignorance. We apply this framework to managing water supply systems in Bangladesh that face severe, naturally occurring arsenic contamination. The uncertainty involved with arsenic in water supplies makes the application of conventional analysis of decision-making ineffective. Given the uncertainty and surprise involved in such cases, we find that optimal decisions tend to favor actions that avoid irreversible outcomes instead of conventional cost-effective actions. We observe that a diversification of the water supply system also emerges as a robust strategy to avert unintended outcomes of water contamination. Shallow wells had a slight higher optimal level (36%) compare to deep wells and surface treatment which had allocation levels of roughly 32% under each. The approach can be applied in a variety of other cases that involve decision making under uncertainty and surprise, a frequent situation in natural resources management.

  7. Designing water supplies: Optimizing drinking water composition for maximum economic benefit

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Bath, A.

    2011-01-01

    to water quality aspects, costs of water production, fresh water abstraction and CO2-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.......3 ± 0.2 per delivered m3 for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water...... includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition...

  8. Public health risk status of the water supply frame work at Kwame ...

    African Journals Online (AJOL)

    The aim of the study is to assess the public health risk status of the potable water supply framework at the Kwame Nkurumah Postgraduate Residence (PG) Hall, University of Nigeria, Nsukka, (UNN), Enugu State, Nigeria, and environs. Four potable water supply frame-works at the PG Hall, UNN, and exposed stagnant ...

  9. [Waterborne outbreak of gastroenteritis transmitted through the public water supply].

    Science.gov (United States)

    Godoy, P; Borrull, C; Palà, M; Caubet, I; Bach, P; Nuín, C; Espinet, L; Torres, J; Mirada, G

    2003-01-01

    The chlorination of public water supplies has led researchers to largely discard drinking water as a potential source of gastroenteritis outbreaks. The aim of this study was to investigate an outbreak of waterborne disease associated with drinking water from public supplies. A historical cohort study was carried out following notification of a gastroenteritis outbreak in Baqueira (Valle de Arán, Spain). We used systematic sampling to select 87 individuals staying at hotels and 67 staying in apartments in the target area. Information was gathered on four factors (consumption of water from the public water supply, sandwiches, water and food in the ski resorts) as well as on symptoms. We assessed residual chlorine in drinking water, analyzed samples of drinking water, and studied stool cultures from 4 patients. The risk associated with each water source and food type was assessed by means of relative risk (RR) and 95% confidence intervals (CI). The overall attack rate was 51.0% (76/149). The main symptoms were diarrhea 87.5%, abdominal pain 80.0%, nausea 50.7%, vomiting 30.3%, and fever 27.0%. The only factor associated with a statistically significant risk of disease was consumption of drinking water (RR = 11.0; 95% CI, 1.6-74.7). No residual chlorine was detected in the drinking water, which was judged acceptable. A problem associated with the location of the chlorinator was observed and corrected. We also recommended an increase in chlorine levels, which was followed by a reduction in the number of cases. The results of stool cultures of the four patients were negative for enterobacteria. This study highlights the potential importance of waterborne outbreaks of gastroenteritis transmitted through drinking water considered acceptable and suggests the need to improve microbiological research into these outbreaks (viruses and protozoa detection).

  10. 77 FR 42486 - Intent To Prepare an Integrated Water Supply Storage Reallocation Report; Environmental Impact...

    Science.gov (United States)

    2012-07-19

    ... Water Supply Storage Reallocation Report; Environmental Impact Statement for Missouri River Municipal... Policy Act of 1969 (NEPA), as amended and the 1958 Water Supply Act, as amended, the U.S. Army Corps of... purpose of the study is to determine if changes to the current allocation of storage for M&I water supply...

  11. INTEGRATION OF MANAGEMENT SYSTEM QMS/EMS/OHSAS/FMS/LMS IN WATER SUPPLY ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2007-12-01

    Full Text Available Level of difficulties arises when goes up number of integrated management systems (IMS. In this paper are given model and empirical research which provide the details of an integrated management system with five component subsystems in area of water supply. Presented model addresses the issues of scope and carracterisctics based on process approach and is tested in water supply organization in Kragujevac, Serbia. Testing in the proposed model is accomplish through realization project of design and implementation of IMS in regional water supply organization in Kragujevac.

  12. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  13. Localizing the strategy for achieving rural water supply and ...

    African Journals Online (AJOL)

    Water is essential for sustenance of life and determines the overall socio- economic development of any nation. In Nigeria, so many programmes to improve water supply and sanitation situation had been put in place by different administrations. Despite this, the hope of meeting the UN Millennium Development Goals ...

  14. Water conservation, recycling, and reuse: US northeast

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.

    1984-10-01

    This paper focuses upon present and future possibilities for water conservation, recycling, and reuse in New England and Middle Atlantic states. Telephone interviews and questionnaires sent to trade associations, public utility commissions, federal, state and other agencies were used to supplement information gathered in the literature. Water intake and consumptive demands in 1980 were calculated for industrial, electric utility, agricultural, and residential sectors. Corresponding information for the year 2000 were estimated using data from utilities, public utility commissions, and the US Bureau of Economic Affairs. Water supplies were estimated using the concept of safe yield. Assuming reductions in water use by industries, agriculture and by private residences in the year 2000, it was found that many users, particularly the electric utility sector, would still experience serious water supply shortfalls in several industrialized states. 20 references, 14 tables.

  15. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  16. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  17. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2006-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  18. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2007-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  19. Spatial analysis of private tanker water markets in Jordan: Using a hydroeconomic multi-agent model to simulate non-observed water transfers

    Science.gov (United States)

    Klassert, Christian; Yoon, Jim; Gawel, Erik; Sigel, Katja; Klauer, Bernd; Talozi, Samer; Lachaut, Thibaut; Selby, Philip; Knox, Stephen; Gorelick, Steven; Tilmant, Amaury; Harou, Julien; Mustafa, Daanish; Medellin-Azuara, Josue; Rajsekhar, Deepthi; Avisse, Nicolas; Zhang, Hua

    2017-04-01

    The country of Jordan is characterized by severe water scarcity and deficient public water supply networks. To address these issues, Jordan's water sector authorities have adopted a water rationing scheme implemented by interrupting piped water supply for several days per week. As in many arid countries around the world, this has led to the emergence of private markets of small-scale providers, delivering water via tanker trucks. On the one hand, these markets play a crucial role in meeting residential and commercial water demands by balancing the shortcomings of the public supply system. On the other hand, providers partially rely on illegal abstractions from rural ground and surface water sources, thereby circumventing regulatory efforts to conserve these resources. Private tanker water markets, therefore, provide a substantial contribution to consumer welfare while jeopardizing freshwater resource sustainability. Thus, a better understanding of these markets is of great importance for the formulation of policy interventions pursuing freshwater sustainability in a socially acceptable manner. Direct assessments of the size of these markets or their responses to policy interventions are, however, impeded by their partially illegal nature and the resulting lack of available information. To overcome this data collection challenge, we use a hydroeconomic multi-agent model developed in the Jordan Water Project to indirectly simulate country-wide tanker water market activities on the basis of demand and supply estimates. The demand for tanker water is conceptualized as a residual demand, remaining after a water user has depleted all available cheap and qualitatively reliable piped water. It is derived from residential and commercial demand functions on the basis of survey data. Tanker water supply is determined by farm simulation models calculating the groundwater pumping cost and the agricultural opportunity cost of tanker water. Finally, a spatial market algorithm

  20. Integration of environmental aspects in modelling and optimisation of water supply chains.

    Science.gov (United States)

    Koleva, Mariya N; Calderón, Andrés J; Zhang, Di; Styan, Craig A; Papageorgiou, Lazaros G

    2018-04-26

    Climate change becomes increasingly more relevant in the context of water systems planning. Tools are necessary to provide the most economic investment option considering the reliability of the infrastructure from technical and environmental perspectives. Accordingly, in this work, an optimisation approach, formulated as a spatially-explicit multi-period Mixed Integer Linear Programming (MILP) model, is proposed for the design of water supply chains at regional and national scales. The optimisation framework encompasses decisions such as installation of new purification plants, capacity expansion, and raw water trading schemes. The objective is to minimise the total cost incurring from capital and operating expenditures. Assessment of available resources for withdrawal is performed based on hydrological balances, governmental rules and sustainable limits. In the light of the increasing importance of reliability of water supply, a second objective, seeking to maximise the reliability of the supply chains, is introduced. The epsilon-constraint method is used as a solution procedure for the multi-objective formulation. Nash bargaining approach is applied to investigate the fair trade-offs between the two objectives and find the Pareto optimality. The models' capability is addressed through a case study based on Australia. The impact of variability in key input parameters is tackled through the implementation of a rigorous global sensitivity analysis (GSA). The findings suggest that variations in water demand can be more disruptive for the water supply chain than scenarios in which rainfalls are reduced. The frameworks can facilitate governmental multi-aspect decision making processes for the adequate and strategic investments of regional water supply infrastructure. Copyright © 2018. Published by Elsevier B.V.

  1. Energy and air emission effects of water supply.

    Science.gov (United States)

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  2. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  3. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  4. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  5. Managed groundwater development for water-supply security in Sub ...

    African Journals Online (AJOL)

    What is the scope for promoting much increased groundwater use for irrigated agriculture, and how might the investment risks be reduced and sustainable outcomes ensured? • How can the demand to expand urban groundwater use, for both further supplementing municipal water-supply systems and for direct in situ water ...

  6. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  7. Contextualising Water Use in Residential Settings: A Survey of Non-Intrusive Techniques and Approaches

    Directory of Open Access Journals (Sweden)

    Davide Carboni

    2016-05-01

    Full Text Available Water monitoring in households is important to ensure the sustainability of fresh water reserves on our planet. It provides stakeholders with the statistics required to formulate optimal strategies in residential water management. However, this should not be prohibitive and appliance-level water monitoring cannot practically be achieved by deploying sensors on every faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine learning and data mining techniques are promising techniques to analyse monitored data to obtain non-intrusive water usage disaggregation. This is because they can discern water usage from the aggregated data acquired from a single point of observation. This paper provides an overview of water usage disaggregation systems and related techniques adopted for water event classification. The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a discussion on the prominent challenges and future research are also included.

  8. DEVELOPMENT OF TECHNICAL DECISIONS FOR HEAT SUPPLY WITH TUBULAR GAS HEATERS

    Directory of Open Access Journals (Sweden)

    IRODOV V. F.

    2017-05-01

    Full Text Available Annotation. Problems formulation. The problem that is solved is the development of autonomous heat supply systems that reduce the capital costs of construction and increase the efficiency of the use of energy resources. One of the ways to solve this problem is the use of tubular gas heaters. For this, it is necessary to develop new technical solutions for heat supply with tubular gas heaters, as well as scientific and methodological support for the development, construction and operation of heat supply systems with tubular gas heaters. Analysis of recent research. Preliminary studies of infrared tubular gas heaters are considered, which were used to heat industrial enterprises with sufficiently high premises. The task was to extend the principles of heat supply by means of tubular heaters for heating air, water and heating medium in relatively low rooms. Goal and tasks. To lay out the development of technical solutions for heat supply with tubular gas heaters, which increase the efficiency and reliability of heat supply systems and extend the use of tubular gas heaters in heat supply. Results. Technical solutions for heat supply with tubular gas heaters have made it possible to extend their applications for heating air, water and heating medium in relatively low rooms. Scientific novelty. New technical solutions for heat supply with tubular gas heaters increase the efficiency of using fuel and energy resources at low capital costs. Practical significance. Technical solutions for heat supply using tubular heaters have the potential for wide application in the heat supply of industrial, public and residential facilities. Conclusions. For two decades, new technical solutions for heat supply with tubular gas heaters have been developed, which increase the efficiency and reliability of heat supply systems and can be widely used for autonomous heating.

  9. 43 CFR 404.51 - Are proposed projects under the Rural Water Supply Program reviewed by the Administration?

    Science.gov (United States)

    2010-10-01

    ... Water Supply Program reviewed by the Administration? 404.51 Section 404.51 Public Lands: Interior... SUPPLY PROGRAM Feasibility Studies § 404.51 Are proposed projects under the Rural Water Supply Program... the Reclamation's Rural Water Supply Program. This includes review under Executive Order 12322 to...

  10. 78 FR 42945 - Public Water Supply Supervision Program; Program Revision for the State of Oregon

    Science.gov (United States)

    2013-07-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9834-9] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Oregon has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; Ground Water...

  11. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together

    Science.gov (United States)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana

    2014-11-01

    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of

  12. Public Health Practice Report: water supply and sanitation in Chukotka and Yakutia, Russian Arctic.

    Science.gov (United States)

    Dudarev, Alexey A

    2018-12-01

    Information from 2013-2015 have been analysed on water accessibility, types of water service to households, use of water pretreatment, availability of sewerage, use of sewage treatment in Chukotka Autonomous Okrug and Yakutia Republic, based on evaluation information accessible in open sources, such as regional statistics and sanitary-epidemiologic reports. The main causes of the poor state of water supply and sanitation in the study regions include: very limited access to in-home running water (one-quarter of settlements in Chukotka and half of settlements in Yakutia have no regular water supply) and lack of centralised sewerage (78% and 94% of settlements correspondingly have no sewerage); lack of water pretreatment and sewage treatment, outdated technologies and systems; serious deterioration of facilities and networks, frequent accidents; secondary pollution of drinking water. Lack of open objective information on Russian Arctic water supply and sanitation in the materials of the regional and federal statistics hampers the assessment of the real state of affairs. The situation for water and sanitation supply in these Russian Arctic regions remains steadily unfavourable. A comprehensive intervention from national and regional governmental levels is urgently needed.

  13. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    Science.gov (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Vulnerability Assessment of Water Supply Systems: Status, Gaps and Opportunities

    Science.gov (United States)

    Wheater, H. S.

    2015-12-01

    Conventional frameworks for assessing the impacts of climate change on water resource systems use cascades of climate and hydrological models to provide 'top-down' projections of future water availability, but these are subject to high uncertainty and are model and scenario-specific. Hence there has been recent interest in 'bottom-up' frameworks, which aim to evaluate system vulnerability to change in the context of possible future climate and/or hydrological conditions. Such vulnerability assessments are generic, and can be combined with updated information from top-down assessments as they become available. While some vulnerability methods use hydrological models to estimate water availability, fully bottom-up schemes have recently been proposed that directly map system vulnerability as a function of feasible changes in water supply characteristics. These use stochastic algorithms, based on reconstruction or reshuffling methods, by which multiple water supply realizations can be generated under feasible ranges of change in water supply conditions. The paper reports recent successes, and points to areas of future improvement. Advances in stochastic modeling and optimization can address some technical limitations in flow reconstruction, while various data mining and system identification techniques can provide possibilities to better condition realizations for consistency with top-down scenarios. Finally, we show that probabilistic and Bayesian frameworks together can provide a potential basis to combine information obtained from fully bottom-up analyses with projections available from climate and/or hydrological models in a fully integrated risk assessment framework for deep uncertainty.

  15. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    Energy Technology Data Exchange (ETDEWEB)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  16. Economic Valuation of Sufficient and Guaranteed Irrigation Water Supply for Paddy Farms of Guilan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Kavoosi Kalashami

    2014-08-01

    Full Text Available Cultivation of the strategic crop of rice highly depends to the existence of sufficient and guaranteed irrigation water, and water shortage stresses have irreparable effects on yield and quality of productions. Decrease of the Sefidrud river inflow in Guilan province which is the main source of supplying irrigation water for 171 thousand hectares under rice cropping area of this province, has been challenged sufficient and guaranteed irrigation water supply in many regions of mentioned province. Hence, in present study estimating the value that paddy farmers place on sufficient and guaranteed irrigation water supply has been considered. Economic valuation of sufficient and guaranteed irrigation water supply improves water resource management policies in demand side. Requested data set were obtained on the base of a survey and are collected from 224 paddy farms in rural regions that faced with irrigation water shortages. Then, using open-ended valuation approach and estimation of Tobit model via ML and two stages Heckman approach, eliciting paddy farmers' willingness to pay for sufficient and guaranteed irrigation water supply has been accomplished. Results revealed that farmers in investigated regions willing to pay 26.49 percent more than present costs of providing irrigation water in order to have sufficient and guaranteed irrigation water.

  17. 77 FR 33456 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2012-06-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9682-4] Public Water Supply Supervision Program; Program... State Public Water Supply Supervision Primacy Program. Washington has adopted regulations analogous to... of Health--Office of Drinking Water, [[Page 33457

  18. Risk Assessment for Water Supply Systems in Iran During Crises Using the RAMCAP Method

    Directory of Open Access Journals (Sweden)

    Jalal Nakhaei

    2017-09-01

    Full Text Available Heavy damages might be inflicted upon national infrastructure due to a variety of disasters caused by natural events or human activities. One example of such vital infrastructure at risk is the water supply system. At the time of crises, the water supply system is expected to continue supplying water to citizens, or the crisis will be augmented. This warrants the potential threats and their effects on the system to be identified and evaluated in an attempt to determine the vulnerable systems and sites toward proper solutions. In this study, the assets and the associated threats of the water supply are identified followed by a vulnerability analysis. The RAMCAP method is then employed to determine values for the risks associated with each of the assets including dams, water storage systems, pumping stations, treatment plants, water wells, and building units. Methods are proposed to reduce these risks before a crisis occurs. In addition, basic threats due to air-missile and Cyber attacks are also considered.

  19. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  20. 76 FR 366 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9247-4] Public Water Supply Supervision Program; Program... State Public Water Supply Supervision Primacy Program. Washington has adopted a definition for public water system that is analogous to EPA's definition of public water system, and has adopted regulations...

  1. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan

    Science.gov (United States)

    Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2017-01-01

    ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population. PMID:28591260

  2. Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Abubakar Yousuf

    Full Text Available ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65% were positive for Acanthamoeba spp., and one (5% was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.

  3. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  4. Potable water supply in owerri metropolis: a challenge to mdgs ...

    African Journals Online (AJOL)

    The results of the analysis were related directly to the affected MDG targets to reveal that the Otamiri Water Scheme that supplies water to Owerri urban is not functioning effectively. Also, the water distribution facilities are inadequate, overused and worn-out. They generally wear a poor state as evidenced from blockages, ...

  5. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  6. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  7. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    OpenAIRE

    Ilaya-Ayza, Amilkar Ernesto; Campbell-Gonzalez, Enrique; Pérez García, Rafael; Izquierdo Sebastián, Joaquín

    2016-01-01

    [EN] Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how...

  8. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris

    2006-06-01

    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  9. Perceived Impact of Private Sector Involvement In Water Supply on ...

    African Journals Online (AJOL)

    Perceived Impact of Private Sector Involvement In Water Supply on the Urban Poor in Dar es Salaam. ... Tanzania Journal of Development Studies ... Dar es Salaam is not perceived to be a panacea to the water problems facing the urban poor.

  10. The Geographical Distribution of Water Supply in Ekiti State ...

    African Journals Online (AJOL)

    The provision of potable water to every nock and crannies of the state must be pursed vigorously. To achieve this task in Ekiti State, the problems militating against the supply of clean water need to be tackled effectively. For this reason, the rehabilitation of existing dams provision of funds, completion of the 132 KVA ...

  11. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health.

    Science.gov (United States)

    Kravitz, J D; Nyaphisi, M; Mandel, R; Petersen, E

    1999-01-01

    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of total coliforms, which is a nonspecific bacterial indicator of water quality, all unimproved and semi-improved water sources would be considered as not potable. Escherichia coli, a more precise indicator of faecal pollution, was absent (P water sources. Among 588 queried households, only 38% had access to an "improved" water supply. Sanitation was a serious problem, e.g. fewer than 5% of villagers used latrines and 18% of under-5-year-olds had suffered a recent diarrhoeal illness. The study demonstrates that protection of water sources can improve the hygienic quality of rural water supplies, where disinfection is not feasible. Our findings support the WHO recommendation that E. coli should be the principal microbial indicator for portability of untreated water. Strategies for developing safe water and sanitation systems must include public health education in hygiene and water source protection, practical methods and standards for water quality monitoring, and a resource centre for project information to facilitate programme evaluation and planning.

  12. Well Head Protection Areas For Public Non-Community Water Supply Wells In New Jersey

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Well Head Protection Area for a Public Non-Community Water Supply Well (PNCWS) in New Jersey is a map area calculated around a Public Non-Community Water Supply...

  13. A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems

    Directory of Open Access Journals (Sweden)

    Géssica Maria Cambrainha

    2018-02-01

    Full Text Available Abstract Paper aims this paper proposes a model to aid a group of decision makers to establish a portfolio of feasible actions (alternatives that are able to balance water supply-demand strategies. Originality Long periods of water shortages cause problems in semi-arid region of northeast Brazil, which affects different sectors such as food, public health, among others. This problem situation is intensified by population growth. Therefore, this type of decision making is complex, and it needs to be solving by a structured model. Research method The model is based on a problem structuring method (PSM and a multi-criteria decision making (MCDM method. Main findings Due to society and government influences, the proposed model showed appropriate to conduct a robust and well-structured decision making. Implications for theory and practice The main contributions were the study in regions suffering from drought and water scarcity, as well as the combination of PSM and MCDM methods to aid in this problem.

  14. Water supply and disposal in the City of Kiev following the accident at Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Tzarik, N.

    1990-01-01

    Kiev is the capital of the Ukrainian Soviet Socialist Republic, and is the USSR's third largest city, with a population of 2.7 million people. The city water supply is dependent on three sources; two surface ones, i.e. the rivers Dniepr and Desna, and one underground one. The average total water consumption of the city amounts to 1.5 x 10 6 m 3 /day. The Chernobyl Power Plant accident posed a threat to the normal operation of the Kiev water supply system. In the circumstances, it became necessary to adopt the most urgent measures aimed at ensuring a continuous delivery of potable water to the city under conditions of the potential radioactive contamination of water supply sources. Round-the-clock monitoring of the radioactivity of the water source has taken place, including the control of water quality at various treatment stages, the variation of radioactivity of different filter loading materials and the radioactivity of waste waters, sludge and silt. The main concern was the threat of contamination of the Kiev reservoir. However the concentration of radionuclides in the drinking water supply has not exceeded the permissible limits. Various requirements for the water supply in the face of radioactive contamination are mentioned such as several water supplies, one of which is preferably an underground source, flexible conditions of water treatment and continuous radiation monitoring of the water supply (UK)

  15. Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean.

    Science.gov (United States)

    Valster, Rinske M; Wullings, Bart A; van den Berg, Riemsdijk; van der Kooij, Dick

    2011-10-01

    The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter(-1).

  16. Impacts of multiple stresses on water demand and supply across the southeastern United States

    Science.gov (United States)

    Ge Sun; Steven G. McNulty; Jennifer A. Moore Myers; Erika C. Cohen

    2008-01-01

    Assessment of long-term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ) evapotranspiration + groundwater supply + return flow...

  17. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  18. Diarrhoeal Health Risks Attributable to Water-Borne-Pathogens in Arsenic-Mitigated Drinking Water in West Bengal are Largely Independent of the Microbiological Quality of the Supplied Water

    Directory of Open Access Journals (Sweden)

    Debapriya Mondal

    2014-04-01

    Full Text Available There is a growing discussion about the possibility of arsenic mitigation measures in Bengal and similar areas leading to undesirable substitution of water-borne-pathogen attributable risks pathogens for risks attributable to arsenic, in part because of uncertainties in relative pathogen concentrations in supplied and end-use water. We try to resolve this discussion, by assessing the relative contributions of water supply and end-user practices to water-borne-pathogen-attributable risks for arsenic mitigation options in a groundwater arsenic impacted area of West Bengal. Paired supplied arsenic-mitigated water and end-use drinking water samples from 102 households were collected and analyzed for arsenic and thermally tolerant coliforms [TTC], used as a proxy for microbiological water quality, We then estimated the DALYs related to key sequelae, diarrheal diseases and cancers, arising from water-borne pathogens and arsenic respectively. We found [TTC] in end-use drinking water to depend only weakly on [TTC] in source-water. End-user practices far outweighed the microbiological quality of supplied water in determining diarrheal disease burden. [TTC] in source water was calculated to contribute <1% of total diarrheal disease burden. No substantial demonstrable pathogen-for-arsenic risk substitution attributable to specific arsenic mitigation of supplied waters was observed, illustrating the benefits of arsenic mitigation measures in the area studied.

  19. Neighbourhood effects and household responses to water supply problems in Nigerian cities

    Directory of Open Access Journals (Sweden)

    Charisma Acey

    2008-04-01

    Full Text Available Between 1990 and 2004, Nigeria’s urban population jumped to nearly half the national population, while access to improved sources of water in urban areas dropped by nearly 15 per cent during the same period. This paper presents preliminary results on the relationship between water supply, neighbourhood characteristics, and household strategies in response to dissatisfaction with water provision as reported by 389 respondents in 10 neighbourhoods in Lagos and Benin City, Nigeria between October 2007 and February 2008. In this paper, a conceptual model of consumer demand for water is used, based upon Hirschman’s exit, voice and loyalty (EVL framework. The model explicitly factors in the quality of water provision and variables at the household and neighbourhood levels that could affect perceptions about quality and the strategies that households use to cope with inadequate public services. Preliminary results show that reported household strategies to secure water are affected by community-level factors such as the range, cost, and quality of water supply alternatives, as well as neighbourhood composition. Furthermore, the percentage of urban migrants and households that live in rented flats in a neighbourhood seems to be associated with the use of exit strategies (as opposed to voice in response to problems with their primary water supply.

  20. Global costs and benefits of reaching universal coverage of sanitation and drinking-water supply.

    Science.gov (United States)

    Hutton, Guy

    2013-03-01

    Economic evidence on the cost and benefits of sanitation and drinking-water supply supports higher allocation of resources and selection of efficient and affordable interventions. The study aim is to estimate global and regional costs and benefits of sanitation and drinking-water supply interventions to meet the Millennium Development Goal (MDG) target in 2015, as well as to attain universal coverage. Input data on costs and benefits from reviewed literature were combined in an economic model to estimate the costs and benefits, and benefit-cost ratios (BCRs). Benefits included health and access time savings. Global BCRs (Dollar return per Dollar invested) were 5.5 for sanitation, 2.0 for water supply and 4.3 for combined sanitation and water supply. Globally, the costs of universal access amount to US$ 35 billion per year for sanitation and US$ 17.5 billion for drinking-water, over the 5-year period 2010-2015 (billion defined as 10(9) here and throughout). The regions accounting for the major share of costs and benefits are South Asia, East Asia and sub-Saharan Africa. Improved sanitation and drinking-water supply deliver significant economic returns to society, especially sanitation. Economic evidence should further feed into advocacy efforts to raise funding from governments, households and the private sector.

  1. Multi-objective analysis of the conjunctive use of surface water and groundwater in a multisource water supply system

    Science.gov (United States)

    Vieira, João; da Conceição Cunha, Maria

    2017-04-01

    A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from

  2. Understanding the influence of climate change on the embodied energy of water supply.

    Science.gov (United States)

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling the resilience of urban water supply using the capital portfolio approach

    Science.gov (United States)

    Krueger, E. H.; Klammler, H.; Borchardt, D.; Frank, K.; Jawitz, J. W.; Rao, P. S.

    2017-12-01

    The dynamics of global change challenge the resilience of cities in a multitude of ways, including pressures resulting from population and consumption changes, production patterns, climate and landuse change, as well as environmental hazards. Responses to these challenges aim to improve urban resilience, but lack an adequate understanding of 1) the elements and processes that lead to the resilience of coupled natural-human-engineered systems, 2) the complex dynamics emerging from the interaction of these elements, including the availability of natural resources, infrastructure, and social capital, which may lead to 3) unintended consequences resulting from management responses. We propose a new model that simulates the coupled dynamics of five types of capitals (water resources, infrastructure, finances, political capital /management, and social adaptive capacity) that are necessary for the provision of water supply to urban residents. We parameterize the model based on data for a case study city, which is limited by constraints in water availability, financial resources, and faced with degrading infrastructure, as well as population increase, which challenge the urban management institutions. Our model analyzes the stability of the coupled system, and produces time series of the capital dynamics to quantify its resilience as a result of the portfolio of capitals available to usher adaptive capacity and to secure water supply subjected to multiple recurring shocks. We apply our model to one real urban water supply system located in an arid environment, as well as a wide range of hypothetical case studies, which demonstrates its applicability to various types of cities, and its ability to quantify and compare water supply resilience. The analysis of a range of urban water systems provides valuable insights into guiding more sustainable responses for maintaining the resilience of urban water supply around the globe, by showing how unsustainable responses risk the

  4. Effect of Rainfall Variability on Water Supply in Ikeduru L.G.A. of Imo ...

    African Journals Online (AJOL)

    User

    alternatives, which are that there is a strong relationship between rural water supply in ... Rainfall is a renewable resource, highly variable in space and time and ..... Due to the total dependence on the immediate environment for water supply,.

  5. Conflicts in Coalitions: A Stability Analysis of Robust Multi-City Regional Water Supply Portfolios

    Science.gov (United States)

    Gold, D.; Trindade, B. C.; Reed, P. M.; Characklis, G. W.

    2017-12-01

    Regional cooperation among water utilities can improve the robustness of urban water supply portfolios to deeply uncertain future conditions such as those caused by climate change or population growth. Coordination mechanisms such as water transfers, coordinated demand management, and shared infrastructure, can improve the efficiency of resource allocation and delay the need for new infrastructure investments. Regionalization does however come at a cost. Regionally coordinated water supply plans may be vulnerable to any emerging instabilities in the regional coalition. If one or more regional actors does not cooperate or follow the required regional actions in a time of crisis, the overall system performance may degrade. Furthermore, when crafting regional water supply portfolios, decision makers must choose a framework for measuring the performance of regional policies based on the evaluation of the objective values for each individual actor. Regional evaluations may inherently favor one actor's interests over those of another. This work focuses on four interconnected water utilities in the Research Triangle region of North Carolina for which robust regional water supply portfolios have previously been designed using multi-objective optimization to maximize the robustness of the worst performing utility across several objectives. This study 1) examines the sensitivity of portfolio performance to deviations from prescribed actions by individual utilities, 2) quantifies the implications of the regional formulation used to evaluate robustness for the portfolio performance of each individual utility and 3) elucidates the inherent regional tensions and conflicts that exist between utilities under this regionalization scheme through visual diagnostics of the system under simulated drought scenarios. Results of this analysis will help inform the creation of future regional water supply portfolios and provide insight into the nature of multi-actor water supply systems.

  6. Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2016-06-01

    Full Text Available This study proposes a hedging rule model which is composed of a two-period reservior operation model considering the damage depth and hedging rule parameter optimization model. The former solves hedging rules based on a given poriod’s water supply weighting factor and carryover storage target, while the latter optimization model is used to optimize the weighting factor and carryover storage target based on the hedging rules. The coupling model gives the optimal poriod’s water supply weighting factor and carryover storage target to guide release. The conclusions achieved from this study as follows: (1 the water supply weighting factor and carryover storage target have a direct impact on the three elements of the hedging rule; (2 parameters can guide reservoirs to supply water reasonably after optimization of the simulation and optimization model; and (3 in order to verify the utility of the hedging rule, the Heiquan reservoir is used as a case study and particle swarm optimization algorithm with a simulation model is adopted for optimizing the parameter. The results show that the proposed hedging rule can improve the operation performances of the water supply reservoir.

  7. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  8. The supply of steam from Candu reactors for heavy water production

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1975-09-01

    By 1980, Canada's energy needs for D 2 O production will be 420 MW of electrical energy and 3600 MW of thermal energy (as steam). The nature of the process demands that this energy supply be exceptionally stable. Today, production plants are located at or close to nuclear electricity generating sites where advantage can be taken of the low cost of both the electricity and steam produced by nuclear reactors. Reliability of energy supply is achieved by dividing the load between the multiple units which comprise the sites. The present and proposed means of energy supply to the production sites at the Bruce Heavy Water Plant in Ontario and the La Prade Heavy Water Plant in Quebec are described. (author)

  9. Optimal load scheduling in commercial and residential microgrids

    Science.gov (United States)

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  10. Domestic rainwater harvesting to improve water supply in rural South Africa

    Science.gov (United States)

    Mwenge Kahinda, Jean-marc; Taigbenu, Akpofure E.; Boroto, Jean R.

    Halving the proportion of people without sustainable access to safe drinking water and basic sanitation, is one of the targets of the 7th Millennium Development Goals (MDGs). In South Africa, with its mix of developed and developing regions, 9.7 million (20%) of the people do not have access to adequate water supply and 16 million (33%) lack proper sanitation services. Domestic Rainwater Harvesting (DRWH), which provides water directly to households enables a number of small-scale productive activities, has the potential to supply water even in rural and peri-urban areas that conventional technologies cannot supply. As part of the effort to achieve the MDGs, the South African government has committed itself to provide financial assistance to poor households for the capital cost of rainwater storage tanks and related works in the rural areas. Despite this financial assistance, the legal status of DRWH remains unclear and DRWH is in fact illegal by strict application of the water legislations. Beyond the cost of installation, maintenance and proper use of the DRWH system to ensure its sustainability, there is risk of waterborne diseases. This paper explores challenges to sustainable implementation of DRWH and proposes some interventions which the South African government could implement to overcome them.

  11. Comparative study of water quality of rivers used for raw water supply and ex-mining lakes in Perak, Malaysia

    International Nuclear Information System (INIS)

    Orji, K U; Sapari, N; Yusof, K W; Asadpour, R; Olisa, E

    2013-01-01

    Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO 4 2− COD, Cl − Na + Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 μs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl − 0.483 to 3.339mg/l, SO 4 2− 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

  12. 76 FR 5157 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-01-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9259-6] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; and Lead and...

  13. 76 FR 45253 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-07-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9444-8] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to the EPA's Ground Water Rule. The EPA has determined that these revisions are no less stringent than the corresponding...

  14. Analysis of the Possible Use of Solar Photovoltaic Energy in Urban Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Bojan Đurin

    2014-05-01

    Full Text Available Because of the importance of water supply for the sustainability of urban areas, and due to the significant consumption of energy with prices increasing every day, an alternative solution for sustainable energy supply should be sought in the field of Renewable Energy Sources (RES. An innovative solution as presented in this paper has until now not been comprehensively analyzed. This work presents the solution with the application of a (Photovoltaic PV generator. The main technological features, in addition to the designing methodology and case study are presented in this paper. The critical period approach has been used for the first time for system sizing. The application of this sizing method provides a high reliability of the proposed system. The obtained results confirm the assumption that the PV generator is a promising energy sustainable solution for urban water supply systems. The service reservoir, which acts as water and energy storage for the proposed system, provides the basis for a sustainable solution of water and energy supply. In accordance with the proposed, the reliability of such system is high. This concept of energy supply operation does not generate any atmospheric emission of greenhouse gases, which contributes significantly to the reduction of the impacts of climate changes. The proposed solution and designing methodology are widely applicable and in accordance with the characteristics of the water supply system and climate.

  15. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation

  16. Occurrence of Cryptosporidium oocysts and Giardia cysts in water supplies of San Pedro Sula, Honduras

    Directory of Open Access Journals (Sweden)

    Solo-Gabriele Helena María

    1998-01-01

    Full Text Available During June 1996, water supplies of the city of San Pedro Sula, Honduras, were sampled to obtain an assessment of Cryptosporidium oocyst and Giardia cyst concentrations. Each sample was concentrated and stained with an indirect immunofluorescent antibody, and parasites were counted through microscopic analysis. In three surface water supplies, Cryptosporidium oocyst concentrations ranged from 58 to 260 oocysts per 100 L, and Giardia cysts were present in concentrations ranging from 380 to 2100 cysts per 100 L. Unlike the surface water samples, groundwater had a higher concentration of Cryptosporidium oocysts (26/100 L than Giardia cysts (6/100 L, suggesting that the groundwater aquifer protects the water supply more effectively from larger Giardia cysts. Cryptosporidium oocyst concentrations are within the typical range for surface water supplies in North America whereas Giardia cyst concentrations are elevated. Efforts should be made to protect raw water from sources of contamination.

  17. Storage and security of supply

    International Nuclear Information System (INIS)

    Svensson, B.R.

    1990-01-01

    The paper considers the relationship between energy security and the consumption, supply and storage of natural gas, as agreed between the IEA Member countries. Additional supplies of natural gas should be obtained from as diverse sources as possible with emphasis on indigenous OECD sources. Instruments for coping with supply disruptions, such as underground storage of gas, interruptible gas sales, and dual-fired capabilities should be strengthened. These instruments, however, in combination with contractual swing factors, are also used to cope with fluctuations in demand for natural gas. The future demand and supply of natural gas in OECD Europe and North America is discussed. In OECD Europe the growth in residential and commercial demand is expected to be sustained, and, in both OECD Europe and North America, there is a further potential demand for gas for electricity generation. As residential and commercial demand (which is very temperature-dependent) grows, the need for storage facilities, interruptible sales contracts, dual-fired capabilities and swing factors in contracts will increase in order to balance the load. An expansion of gas demand for baseload electricity generation could, however, increase the load factor. Figures for the size of the storage capacity in 1987 and plans for future increases show that storage capacity is increasing. It is concluded that new underground storage represents an important contribution to the strengthening of each country's ability both to balance loads and to deal with supply disruptions. The IEA countries rely on the gas utilities to provide storage and other instruments for both purposes. (author). 2 figs, 3 tabs

  18. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy.

    Science.gov (United States)

    D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto

    2012-05-01

    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).

  19. Intrauterine growth retardation in Iowa communities with herbicide-contaminated drinking water supplies

    Science.gov (United States)

    Munger, R.; Isacson, P.; Hu, S.; Burns, T.; Hanson, J.; Lynch, C.F.; Cherryholmes, K.; Van Dorpe, P.; Hausler, W.J.

    1997-01-01

    In a statewide survey of 856 Iowa municipal drinking water supplies in 1986-1987 the Rathbun rural water system was found to contain elevated levels of triazine herbicides. Rates of low birth weight, prematurity, and intrauterine growth retardation (IUGR) in live singleton births during the period 1984-1990 by women living in 13 communities served by the Rathbun water system were compared to other communities of similar size in the same Iowa counties. The Rathbun communities had a greater risk of IUGR than southern Iowa communities with other surface sources of drinking water (relative risk = 1.8; 95% CI = 1.3, 2.7). Multiple linear regression analyses revealed that levels of the herbicides atrazine, metolachlor, and cyanazine were each significant predictors of community IUGR rates in southern Iowa after controlling for several potentially confounding factors including maternal smoking and socioeconomic variables. The association with IUGR was strongest for atrazine, but all three herbicides were intercorrelated and the independent contributions of each to IUGR risk could not be determined. We conclude that communities in southern Iowa with drinking water supplies contaminated with herbicides have elevated rates of IUGR compared to neighboring communities with different water supplies. Because of the limitations of the ecologic design of this study, including aggregate rather than individual measures of exposure and limited ability to control for confounding factors related to source of drinking water and risk of IUGR, a strong causal relationship between any specific water contaminant and risk of IUGR cannot yet be inferred. The association between the water supplied to the Rathbun communities and the increased risk of IUGR should be considered a preliminary finding that needs to be verified by more detailed epidemiologic studies.

  20. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  1. Energy efficiency in a water supply system:Energy consumption and CO2 emission

    Institute of Scientific and Technical Information of China (English)

    Helena M.RAMOS; Filipe VIEIRA; Didia I.C.COVAS

    2010-01-01

    This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources.A model of multi-criteria optimization for energy efficiency based on water and environmental management policies,including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution,was developed and applied to a water supply system.The methodology developed includes three solutions:(1)the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed,(2)the optimization of pumping operation according to the electricity tariff and water demand,and(3)the use of other renewable energy sources,including a wind turbine,to supply energy to the pumping station,with the remaining energy being sold to the national electric grid.The use of an integrated solution(water and energy)proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power,and the use of a wind source allows for the reduction of energy consumption in pumping stations,as well as of the CO2 emission to the atmosphere.

  2. Alfalfa response to irrigation from limited water supplies

    Science.gov (United States)

    A five-year field study (2007-2011) of irrigated alfalfa production with a limited water supply was conducted in southwest Kansas with two years of above-average precipitation, one year of average precipitation, and two years of below-average precipitation. The irrigation treatments were designed to...

  3. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  4. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  5. Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach

    International Nuclear Information System (INIS)

    Okadera, Tomohiro; Geng, Yong; Fujita, Tsuyoshi; Dong, Huijuan; Liu, Zhu; Yoshida, Noboru; Kanazawa, Takaaki

    2015-01-01

    Water and energy are important resources for regional economies and are inextricably and reciprocally linked. Global water and energy demand will increase significantly by 2030 while climate change will worsen water availability. Thus, it is important to ensure a sustainable energy supply despite the increasing severity of water resource constraints. Numerous studies have analyzed water requirements to produce energy from production perspectives. However, energy is generally supplied by both internal and external producers. Thus, it is necessary to consider the availability of water to produce energy from consumption perspectives also. We evaluate the water footprint of the energy supply of Liaoning Province, China. We apply the standard top-down approach using an input–output framework. We estimate the water footprint of the energy supply of Liaoning Province at 854 million m 3 in 2002, with 47% of water used for electricity and heating. Our results reveal that energy supply could depend on water resources in neighboring provinces; external producers met 80% of the water footprint of energy supply, although only 35% of energy supply was imported. If Liaoning Province decreased its external dependency, withdrawal of available water resources within the province would increase from 86% to 91%. To guarantee future regional energy security, it is important to manage water resources effectively through water-efficient electricity generation and by allocating water resources among sectors. - Highlights: • We assess the water footprint of energy supply (WFES) for Liaoning Province, China. • The WFES for 2002 was 854 million m 3 , with 47% used for electricity and heating. • External sources accounted for 80% of the WFES and 47% of the energy supply. • Without energy imports, water resource withdrawal would increase from 86% to 91%. • Effective water resource management is important for regional energy security

  6. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  7. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  8. [Public water supply fluoridation in Brazil according to health sector leaders].

    Science.gov (United States)

    Ferreira, Regina Glaucia Lucena Aguiar; Bógus, Cláudia Maria; Marques, Regina Auxiliadora de Amorim; Menezes, Léa Maria Bezerra de; Narvai, Paulo Capel

    2014-09-01

    Various groups have opposed water supply fluoridation in Brazil, while others have supported the measure based on scientific evidence. This article describes the perceptions of delegates to the 13th National Health Conference on mandatory fluoridation of the country's public water supply. Interviews were processed using collective subject discourse analysis. A certain degree of misinformation persists regarding basic characteristics of water fluoridation, which is frequently confused with chlorination. The delegates' discourses showed a continuing need for public awareness-raising regarding fluoridation and the delegates' desire that the National Congress not take measures impacting public health without consulting society's stakeholders. However, most of the interviewees agreed that to repeal mandatory water fluoridation or loosen the control of its implementation could increase the incidence of tooth decay in the population.

  9. Rural water supply and sanitation (RWSS) coverage in Swaziland: Toward achieving millennium development goals

    Science.gov (United States)

    Mwendera, E. J.

    An assessment of rural water supply and sanitation (RWSS) coverage in Swaziland was conducted in 2004/2005 as part of the Rural Water Supply and Sanitation Initiative (RWSSI). The initiative was developed by the African Development Bank with the aim of implementing it in the Regional Member Countries (RMCs), including Swaziland. Information on the RWSS sector programmes, costs, financial requirements and other related activities was obtained from a wide range of national documents, including sector papers and project files and progress reports. Interviews were held with staff from the central offices and field stations of Government of Swaziland (GOS) ministries and departments, non-governmental organizations (NGOs), bilateral and multilateral external support agencies, and private sector individuals and firms with some connection to the sector and/or its programmes. The assessment also involved field visits to various regions in order to obtain first hand information about the various technologies and institutional structures used in the provision of water supplies and sanitation services in the rural areas of the country. The results showed that the RWSS sector has made significant progress towards meeting the national targets of providing water and sanitation to the entire rural population by the year 2022. The assessment indicated that rural water supply coverage was 56% in 2004 while sanitation coverage was 63% in the same year. The results showed that there is some decline in the incidence of water-related diseases, such as diarrhoeal diseases, probably due to improved water supply and sanitation coverage. The study also showed that, with adequate financial resources, Swaziland is likely to achieve 100% coverage of both water supply and sanitation by the year 2022. It was concluded that in achieving its own national goals Swaziland will exceed the Millennium Development Goals (MDGs). However, such achievement is subject to adequate financial resources being

  10. Sustainability of Rainwater Harvesting System in terms of Water Quality

    Directory of Open Access Journals (Sweden)

    Sadia Rahman

    2014-01-01

    Full Text Available Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  11. Greenhouse gas emissions accounting of urban residential consumption: a household survey based approach.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    Full Text Available Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China.

  12. Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach

    Science.gov (United States)

    Lin, Tao; Yu, Yunjun; Bai, Xuemei; Feng, Ling; Wang, Jin

    2013-01-01

    Devising policies for a low carbon city requires a careful understanding of the characteristics of urban residential lifestyle and consumption. The production-based accounting approach based on top-down statistical data has a limited ability to reflect the total greenhouse gas (GHG) emissions from residential consumption. In this paper, we present a survey-based GHG emissions accounting methodology for urban residential consumption, and apply it in Xiamen City, a rapidly urbanizing coastal city in southeast China. Based on this, the main influencing factors determining residential GHG emissions at the household and community scale are identified, and the typical profiles of low, medium and high GHG emission households and communities are identified. Up to 70% of household GHG emissions are from regional and national activities that support household consumption including the supply of energy and building materials, while 17% are from urban level basic services and supplies such as sewage treatment and solid waste management, and only 13% are direct emissions from household consumption. Housing area and household size are the two main factors determining GHG emissions from residential consumption at the household scale, while average housing area and building height were the main factors at the community scale. Our results show a large disparity in GHG emissions profiles among different households, with high GHG emissions households emitting about five times more than low GHG emissions households. Emissions from high GHG emissions communities are about twice as high as from low GHG emissions communities. Our findings can contribute to better tailored and targeted policies aimed at reducing household GHG emissions, and developing low GHG emissions residential communities in China. PMID:23405187

  13. Water supply facility damage and water resource operation at disaster base hospitals in miyagi prefecture in the wake of the Great East Japan Earthquake.

    Science.gov (United States)

    Matsumura, Takashi; Osaki, Shizuka; Kudo, Daisuke; Furukawa, Hajime; Nakagawa, Atsuhiro; Abe, Yoshiko; Yamanouchi, Satoshi; Egawa, Shinichi; Tominaga, Teiji; Kushimoto, Shigeki

    2015-04-01

    The aim of this study was to shed light on damage to water supply facilities and the state of water resource operation at disaster base hospitals in Miyagi Prefecture (Japan) in the wake of the Great East Japan Earthquake (2011), in order to identify issues concerning the operational continuity of hospitals in the event of a disaster. In addition to interview and written questionnaire surveys to 14 disaster base hospitals in Miyagi Prefecture, a number of key elements relating to the damage done to water supply facilities and the operation of water resources were identified from the chronological record of events following the Great East Japan Earthquake. Nine of the 14 hospitals experienced cuts to their water supplies, with a median value of three days (range=one to 20 days) for service recovery time. The hospitals that could utilize well water during the time that water supply was interrupted were able to obtain water in quantities similar to their normal volumes. Hospitals that could not use well water during the period of interruption, and hospitals whose water supply facilities were damaged, experienced significant disruption to dialysis, sterilization equipment, meal services, sanitation, and outpatient care services, though the extent of disruption varied considerably among hospitals. None of the hospitals had determined the amount of water used for different purposes during normal service or formulated a plan for allocation of limited water in the event of a disaster. The present survey showed that it is possible to minimize the disruption and reduction of hospital functions in the event of a disaster by proper maintenance of water supply facilities and by ensuring alternative water resources, such as well water. It is also clear that it is desirable to conclude water supply agreements and formulate strategic water allocation plans in preparation for the eventuality of a long-term interruption to water services.

  14. The Effects of Extended Water Supply Disruptions on the Operations ...

    African Journals Online (AJOL)

    kirstam

    or extended water supply disruptions on the operations of small and medium enterprises ... negatively affected. The results of this study give a better perspective ... water scarcity, which has a detrimental impact on livelihoods and business. 2The incidence of ...... to make contingency plans for their production. Planning for ...

  15. Public Perception of Potable Water Supply in Abeokuta South west ...

    African Journals Online (AJOL)

    Well-structured interviewer administered questionnaire were distributed across the city through the stratified random sampling method using the network distribution map obtained from the Ogun State Water Corporation as guide. Sixty – eight per cent of the respondents attested that the quality of the water supplied was ...

  16. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  17. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  18. Evaluation of Alternative Technologies to Supply Drinking Water to Marines in Forward Deployed Locations

    Science.gov (United States)

    2010-03-01

    Afghanistan.” 2009. http://www.coleparmer.com/techinfo/techinfo.asp?htmlfile= water - afghanistan.htm&ID=964. Christ- wasser . “RO, EDI and optional UF...Cover, Single-Author Thesis EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED...AFIT/GES/ENV/10-M02 EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED

  19. On site power generation protects water supply for Ajax, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Mohamed

    2011-01-15

    The Ajax water supply plant treats and distribute water for the town of Ajax and the nearby City of Pickering and the operations staff manages two other treatment plants supplying the City of Oshawa and the Town of Whitby, and a dozen pumping stations, reservoirs and elevated tanks. The plant requires around 2 MW of continuous power to supply its 150,000 customers. Although local utility power is reliable, standby generators are mandated by the Ontario Ministry of the Environment. When power goes out problems can result in the plant and system. To avoid these, the Ajax plant staff selected Cummins Power Generation who delivered one 350 kW and two 1500 kW generator sets with automatic transfer switches and paralleling switchgear. These digital systems parallel and synchronize the generator sets with each other and with the utility, which allows the plant to provide continuous service. The plant is designed for twice its current capacity and is ready to handle future requirements.

  20. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-01

    This report presents a technical review of international minimum energy performance standards (MEPS), voluntary and mandatory energy efficiency labels and test procedures for five products being considered for new or revised MEPS in China: copy machines, external power supply, LED displays, residential gas cooktops and flat-screen televisions. For each product, an overview of the scope of existing international standards and labeling programs, energy values and energy performance metrics and description and detailed summary table of criteria and procedures in major test standards are presented.

  1. Opportunities for renewable energy technologies in water supply in developing country villages

    Energy Technology Data Exchange (ETDEWEB)

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P. [Water for People, Denver, CO (United States)

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  2. Identifying water price and population criteria for meeting future urban water demand targets

    Science.gov (United States)

    Ashoori, Negin; Dzombak, David A.; Small, Mitchell J.

    2017-12-01

    Predictive models for urban water demand can help identify the set of factors that must be satisfied in order to meet future targets for water demand. Some of the explanatory variables used in such models, such as service area population and changing temperature and rainfall rates, are outside the immediate control of water planners and managers. Others, such as water pricing and the intensity of voluntary water conservation efforts, are subject to decisions and programs implemented by the water utility. In order to understand this relationship, a multiple regression model fit to 44 years of monthly demand data (1970-2014) for Los Angeles, California was applied to predict possible future demand through 2050 under alternative scenarios for the explanatory variables: population, price, voluntary conservation efforts, and temperature and precipitation outcomes predicted by four global climate models with two CO2 emission scenarios. Future residential water demand in Los Angeles is projected to be largely driven by price and population rather than climate change and conservation. A median projection for the year 2050 indicates that residential water demand in Los Angeles will increase by approximately 36 percent, to a level of 620 million m3 per year. The Monte Carlo simulations of the fitted model for water demand were then used to find the set of conditions in the future for which water demand is predicted to be above or below the Los Angeles Department of Water and Power 2035 goal to reduce residential water demand by 25%. Results indicate that increases in price can not ensure that the 2035 water demand target can be met when population increases. Los Angeles must rely on furthering their conservation initiatives and increasing their use of stormwater capture, recycled water, and expanding their groundwater storage. The forecasting approach developed in this study can be utilized by other cities to understand the future of water demand in water-stressed areas

  3. Location sites for nuclear power plants and the public drinking water supplies

    International Nuclear Information System (INIS)

    1987-05-01

    This report presents the results of a study by the Dutch RIWA- Working Group Nuclear Power Plants, of the possible effects of a nuclear-reactor melt-down accident upon the drinking-water supply in the Netherlands which is dependent on surface waters. The aim of this report is to contribute to the 're-consideration with regard to siting of nuclear power plants' of the Dutch government. In the case of a nuclear-reactor melt-down accident in the Netherlands or directly adjacent countries, surface waters destined for drinking-water production may be contaminated severely. The amount of contamination depends, among other things, upon the distance, wind direction, dry as well as wet deposition and the features of the place yielding drinking water. From calculations of contamination of surface waters in the case of open- supply build up it appears that the derived norm of the radionuclide cocktail may be exceeded for a period of weeks up to several months or even years. There are reasons to draw the same conclusion for supply build up in the dunes by means of surface infiltration in the dunes. A melt-down accident can cause very severe contamination. Also here it can be stated that, in the case of a calamity in the Netherlands or directly adjacent countries, a norm transgression may occur for weeks up to years. In view of the risks which nuclear power plants can hold for the drinking-water supply which depends upon surface-waters as basis element. Severe objections should be made with respect to the siting of nuclear power plants in the Netherlands unless the occurrence of melt-down accidents could be excluded. 11 refs.; 4 figs.; 7 tabs

  4. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-27

    ... Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...-acre reservoir; (4) a turnout to supply project effluent water to an existing irrigation system; (5) a...,000 megawatt-hours. Applicant Contact: Bart M. O'Keeffe, West Maui Pumped Storage Water Supply, LLC, P...

  5. Relationships between Free-Living Protozoa, Cultivable Legionella spp., and Water Quality Characteristics in Three Drinking Water Supplies in the Caribbean▿†

    Science.gov (United States)

    Valster, Rinske M.; Wullings, Bart A.; van den Berg, Riemsdijk; van der Kooij, Dick

    2011-01-01

    The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter−1. PMID:21873489

  6. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  7. Risk Assessment of Aluminum in Drinking Water between Two Residential Areas

    Directory of Open Access Journals (Sweden)

    Aizat I. Syazwan

    2011-09-01

    Full Text Available A cross-sectional study was conducted at Sungai Lembing (SL and Bukit Ubi (BU, Kuantan, Malaysia. The main objectives of this epidemiological study were to determine the aluminum concentration in drinking water, to compare with the government standard and to perform health risk assessment prediction among respondents from these two residential areas. A total of 100 respondents were selected from the study areas based on a few inclusive and exclusive criteria. Two duplicates of treated water samples were taken from each respondent's house using a 200 mL high-density polyethylene (HDPE bottle and 0.4 mL (69% pure concentrated nitric acid added as preservative. Aluminum concentrations were analyzed using Lambda 25 UV/V spectrophotometer. The result showed that the mean concentration of aluminum in drinking water from SL was 0.11 ± 0.0634 mg/L and 0.12 ± 0.0462 mg/L for BU. The mean value of Chronic Daily Intake (CDI in SL (0.0035 ± 0.0028 mg/kg/day was lower compared to BU (0.0037 ± 0.0021 mg/kg/day. The Hazard Index (HI calculation showed all respondents had HI less than 1. In conclusion, there was unlikely potential for adverse health effects from aluminum intake in drinking water. However, it was necessary for some action to be taken in order to reduce aluminum levels found in drinking water in both locations.

  8. Contingency interim measure for the public water supply at Barnes, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2009-07-09

    This document presents a conceptual design for a contingency interim measure (IM) for treatment of the public water supply system at Barnes, Kansas, should this become necessary. The aquifer that serves the public water supply system at Barnes has been affected by trace to low concentrations of carbon tetrachloride and its degradation product, chloroform. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2008a) have demonstrated that groundwater at the Barnes site is contaminated with carbon tetrachloride at concentrations exceeding the Kansas Tier 2 risk-based screening level (RBSL) and the EPA maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) formerly operated a grain storage facility in Barnes, approximately 800 ft east-southeast of the public water supply wells. Carbon tetrachloride was used in the treatment of grain. Another potential source identified in an investigation conducted for the KDHE (PRC 1996) is the site of a former agriculture building owned by the local school district (USD 223). This building is located immediately east of well PWS3. The potential contingency IM options evaluated in this report include the treatment of groundwater at the public water supply wellheads and the provision of an alternate water supply via Washington County Rural Water District No.2 (RWD 2). This document was developed in accordance with KDHE Bureau of Environmental Remediation (BER) Policy No.BER-RS-029 (Revised) (KDHE 2006a), supplemented by guidance from the KDHE project manager. Upon the approval of this contingency IM conceptual design by the KDHE, the CCC/USDA will prepare a treatment system design document that will contain the following elements: (1) Description of the approved contingency IM treatment method; (2) Drawings and/or schematics provided by the contractor and/or manufacturer of the approved technology; (3) A

  9. Water supply as a constraint on transmission expansion planning in the Western interconnection

    Science.gov (United States)

    Tidwell, Vincent C.; Bailey, Michael; Zemlick, Katie M.; Moreland, Barbara D.

    2016-12-01

    Consideration of water supply in transmission expansion planning (TEP) provides a valuable means of managing impacts of thermoelectric generation on limited water resources. Toward this opportunity, thermoelectric water intensity factors and water supply availability (fresh and non-fresh sources) were incorporated into a recent TEP exercise conducted for the electric interconnection in the Western United States. The goal was to inform the placement of new thermoelectric generation so as to minimize issues related to water availability. Although freshwater availability is limited in the West, few instances across five TEP planning scenarios were encountered where water availability impacted the development of new generation. This unexpected result was related to planning decisions that favored the development of low water use generation that was geographically dispersed across the West. These planning decisions were not made because of their favorable influence on thermoelectric water demand; rather, on the basis of assumed future fuel and technology costs, policy drivers and the topology of electricity demand. Results also projected that interconnection-wide thermoelectric water consumption would increase by 31% under the business-as-usual case, while consumption would decrease by 42% under a scenario assuming a low-carbon future. Except in a few instances, new thermoelectric water consumption could be accommodated with less than 10% of the local available water supply; however, limited freshwater supplies and state-level policies could increase use of non-fresh water sources for new thermoelectric generation. Results could have been considerably different if scenarios favoring higher-intensity water use generation technology or potential impacts of climate change had been explored. Conduct of this exercise highlighted the importance of integrating water into all phases of TEP, particularly joint management of decisions that are both directly (e.g., water

  10. Mechanisms of post-supply contamination of drinking water in Bagamoyo, Tanzania.

    Science.gov (United States)

    Harris, Angela R; Davis, Jennifer; Boehm, Alexandria B

    2013-09-01

    Access to household water connections remains low in sub-Saharan Africa, representing a public health concern. Previous studies have shown water stored in the home to be more contaminated than water at the source; however, the mechanisms of post-supply contamination remain unclear. Using water quality measurements and structured observations of households in Bagamoyo, Tanzania, this study elucidates the causal mechanisms of the microbial contamination of drinking water after collection from a communal water source. The study identifies statistically significant loadings of fecal indicator bacteria (FIB) occurring immediately after filling the storage container at the source and after extraction of the water from the container in the home. Statistically significant loadings of FIB also occur with various water extraction methods, including decanting from the container and use of a cup or ladle. Additionally, pathogenic genes of Escherichia coli were detected in stored drinking water but not in the source from which it was collected, highlighting the potential health risks of post-supply contamination. The results of the study confirm that storage containers and extraction utensils introduce microbial contamination into stored drinking water, and suggest that further research is needed to identify methods of water extraction that prevent microbial contamination of drinking water.

  11. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Science.gov (United States)

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  12. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-13

    ... Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting... Act (FPA), proposing to study the feasibility of the East Maui Pumped Storage Water Supply Project to.... Bart M. O'Keeffe, East Maui Pumped Storage Water Supply LLC; P.O. Box 1916; Discovery Bay, CA 94505...

  13. Energy supply waste water treatment plant West Brabant

    Energy Technology Data Exchange (ETDEWEB)

    Poldervaart, A; Schouten, G J

    1983-09-01

    For the energy supply for the waste water treatment plant (rwzi-Bath) of the Hoogheemraadschap West-Brabant three energy sources are used: biogas of the digesters, natural gas and electricity delivered by the PZEM. For a good balance between heat/power demand and production a heat/power plant is installed. By using this system a high efficiency for the use of energy will be obtained. To save energy the oxygen concentration in the aerationtanks is automatically controlled by means of regulating the position of the air supply control valves and the capacity and number of the turbocompressors. For the oxygen controlsystem a Siemens PLC is used.

  14. The impact of forest thinning on the reliability of water supply in central Arizona.

    Directory of Open Access Journals (Sweden)

    Silvio Simonit

    Full Text Available Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation.

  15. The Impact of Forest Thinning on the Reliability of Water Supply in Central Arizona

    Science.gov (United States)

    Simonit, Silvio; Connors, John P.; Yoo, James; Kinzig, Ann; Perrings, Charles

    2015-01-01

    Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI) will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover) are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation. PMID:25835003

  16. Blue Water Footprint Management in a UK Poultry Supply Chain under Environmental Regulatory Constraints

    Directory of Open Access Journals (Sweden)

    Naoum Tsolakis

    2018-02-01

    Full Text Available Chicken is the most consumed meat in the UK, accounting for 40% of meat consumption, while national production sufficiency reaches about 80%. As a farmed animal product, chicken meat is responsible for significant freshwater appropriation volumes during its production cycle. In this context, this research aims at exploring freshwater dynamics in the UK processed poultry industry. Specifically, we develop a System Dynamics model to capture the blue water footprint, as a key sustainability performance indicator of a poultry supply chain, in the case that relevant environmental and regulatory constraints are applied. The model contributes towards investigating the impact of two potential policy-making scenarios, namely, the “water penalty” and the “water tax”, on the nexus between profitability and water usage across the poultry supply chain. Responding to the regulatory constraints, the food processor either reconfigures the supply chain through rethinking desired inventory levels or implements a water management intervention. The results indicate that investing in water-friendly production technologies could offer a greater advantage to sustainable supply chains in terms of blue water efficiency and profitability, compared to employing inventory management strategies. Overall, our analysis highlights that effective policy-making and technology-driven interventions could provide potential towards ensuring economic growth and environmental sustainability of the UK poultry sector.

  17. The inter-relationships between urban dynamics and water resource and supply based on multitemporal analysis

    Science.gov (United States)

    Aldea, Alexandru; Aldea, Mihaela

    2016-08-01

    The growth and concentration of population, housing and industry in urban and suburban areas in the continuous evolution of a city over time causes complex social, economic, and physical challenges. The population and its relationship with the use and development of the land and water is a critical issue of urban growth, and since ancient times land, water and man were directly involved in the human populations' survival. Nevertheless the current potential of study over this relationship between urban growth, water supply, drainage and water resources conditions becomes more and more attractive due to the possibility to make use of the broader variety of information sources and technologies readily available in recent years, with emphasis on the open data and on the big data as primary sources. In this regard we present some new possibilities of analyses over the demographics, land use/land cover and water supply and conservation based on a study over a Romanian region of development (Bucharest-Ilfov). As urban development usually outgrows the existing water supply systems, the resolution consists in drilling new and deeper wells, building new water distribution pipelines, building longer aqueducts and larger reservoirs, or finding new sources and constructing completely new water supply systems, water supplies may evolve this way from a result into a cause and driver of urban growth. The evolution trends of the studied area was estimated based on the open satellite time-series imagery and remote sensing techniques by land use/land cover extraction and the identification of the changes in urbanization. The survey is mainly focused on the expansion of the water network in terms of areal, total length and number of connections correlated with the amount of water produced, consumed and lost within a supply zone. Some urban human activities including the industrial ones alter water resource by pollution, over pumping of groundwater, construction of dams and reservoirs

  18. Energy efficiency in a water supply system: Energy consumption and CO2 emission

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos

    2010-09-01

    Full Text Available This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources. A model of multi-criteria optimization for energy efficiency based on water and environmental management policies, including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution, was developed and applied to a water supply system. The methodology developed includes three solutions: (1 the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed, (2 the optimization of pumping operation according to the electricity tariff and water demand, and (3 the use of other renewable energy sources, including a wind turbine, to supply energy to the pumping station, with the remaining energy being sold to the national electric grid. The use of an integrated solution (water and energy proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power, and the use of a wind source allows for the reduction of energy consumption in pumping stations, as well as of the CO2 emission to the atmosphere.

  19. An Assessment of Factors Having Impact on Water Quality in Water Supply Pipelines

    Directory of Open Access Journals (Sweden)

    Auksė Amosenkienė

    2011-04-01

    Full Text Available Water samples were collected from Vilnius drinking water distribution system fed by treated and different groundwater. Parameters related to bacterial growth have been measured considering these samples: temperature, concentration of free residual chlorine, ammonium, nitrates and nitrites. Results showed that treated groundwater was less susceptible to favour bacterial growth in the pipelines. The obtained results also showed that the potential growth induced by the distribution of treated water could be reduced if: ammonium levels were below 0.5 mg/l at the outlet of the water treatment plant; biological ammonium removal treatment implementation should reduce the levels of the nitrates and nitrites of the treated supplied water. Article in Lithuanian

  20. Gaming Change: A Many-objective Analysis of Water Supply Portfolios under Uncertainty

    Science.gov (United States)

    Reed, P. M.; Kasprzyk, J.; Characklis, G.; Kirsch, B.

    2008-12-01

    This study explores the uncertainty and tradeoffs associated with up to six conflicting water supply portfolio planning objectives. A ten-year Monte Carlo simulation model is used to evaluate water supply portfolios blending permanent rights, adaptive options contracts, and spot leases for a single city in the Lower Rio Grande Valley. Historical records of reservoir mass balance, lease pricing, and demand serve as the source data for the Monte Carlo simulation. Portfolio planning decisions include the initial volume and annual increases of permanent rights, thresholds for an adaptive options contract, and anticipatory decision rules for purchasing leases and exercising options. Our work distinguishes three cases: (1) permanent rights as the sole source of supply, (2) permanent rights and adaptive options, and (3) a combination of permanent rights, adaptive options, and leases. The problems have been formulated such that cases 1 and 2 are sub-spaces of the six objective formulation used for case 3. Our solution sets provide the tradeoff surfaces between portfolios' expected values for cost, cost variability, reliability, frequency of purchasing permanent rights increases, frequency of using leases, and dropped (or unused) transfers of water. The tradeoff surfaces for the three cases show that options and leases have a dramatic impact on the marginal costs associated with improving the efficiency and reliability of urban water supplies. Moreover, our many-objective analysis permits the discovery of a broad range of high quality portfolio strategies. We differentiate the value of adaptive options versus leases by testing a representative subset of optimal portfolios' abilities to effectively address regional increases in demand during drought periods. These results provide insights into the tradeoffs inherent to a more flexible, portfolio-style approach to urban water resources management, an approach that should become increasingly attractive in an environment of