WorldWideScience

Sample records for residential warm-air heating

  1. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    Science.gov (United States)

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  2. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment...... floor heating system was simulated, the cooler ventilation air introduced to the room mixed well and created uniform conditions with a ventilation effectiveness of about 1.......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices...

  3. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  4. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  5. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  6. Heating great residential units with combustion-motor heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, W

    1982-10-01

    Economic usage of combustion-motor heat pumps requires: reliable technology and delivery of the heat pump; design and operation. The heat pump must be integrated perfectly into the heating system. This contributions is based on a three-year operational experience with over 150 heat pumps used mainly in residential and administrative buildings (plus commercial buildings, swimming pools, sport centres etc.). These are heat pumps operating on the compression principle with natural gas, liquid gas, or fuel oil.

  7. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  8. Economic aspects of possible residential heating conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hopkowicz, M.; Szul, A. [Technical Univ., Cracow (Poland)

    1995-12-31

    The paper presents methods of evaluation of energy and economy related effects of different actions aimed at conservation in residential buildings. It identifies also the method of selecting the most effective way of distribution funds assigned to weatherization as well as necessary improvements to be implemented within the heating node and the internal heating system of the building. The analysis of data gathered for four 11-stories high residential buildings of {open_quotes}Zeran{close_quotes} type being subject of the Conservation Demonstrative Project, included a differentiated scope of weatherization efforts and various actions aimed at system upgrading. Basing upon the discussion of the split of heat losses in a building as well as the established energy savings for numerous options of upgrading works, the main problem has been defined. It consists in optimal distribution of financial means for the discussed measures if the total amount of funds assigned for modifications is defined. The method based upon the principle of relative increments has been suggested. The economical and energy specifications of the building and its components, required for this method have also been elaborated. The application of this method allowed to define the suggested optimal scope of actions within the entire fund assigned for the comprehensive weatherization.

  9. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  10. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  11. Engineering economic assessment of residential wood heating in NY

    Science.gov (United States)

    We provide insight into the recent resurgence in residential wood heating in New York by: (i) examining the lifetime costs of outdoor wood hydronic heaters (OWHHs) and other whole-house residential wood heat devices,(ii) comparing these lifetime costs with those of competing tech...

  12. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  13. Heat wave vulnerability classification of residential buildings

    NARCIS (Netherlands)

    Heijden, van der M.G.M.; Blocken, B.J.E.; Hensen, J.L.M.

    2012-01-01

    General circulation models of climate change predict that the intensity and frequency of heat waves will increase, which are a significant threat to public health (Luber and McGeehin 2008). The effect of heat waves on the public health became apparent during the 2003 heat wave in France, where

  14. ON REASONABLE ESTIMATE OF ENERGY PERFORMANCE OF THE RESIDENTIAL BUILDINGS SUSTENANCE WITH CENTRALIZED HEAT-SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2016-01-01

    Full Text Available As consisted with Directive No 3 of President of the Republic of Belarus of June, 14th 2007 ‘Economy and Husbandry – the Major Factors of Economic Security of the Republic of Belarus’, saving fuel-and-energy resources over the republic in 2010–2015 should amount to 7,1–8,9 MIO tons of fuel equivalent including 1,00–1,25 MIO tons of fuel equivalent at the expense of heat-supply optimization and 0,25–0,40 MIO tons of fuel equivalent at the expense of increasing enclosing structures heat resistance of the buildings, facilities and housing stock. It means, where it is expected to obtain around 18 % of general thermal resources economy in the process of heat-supply optimization, then by means of enhancing the cladding structure heat resistance of the buildings and constructions of various applications – only about 3–5 % and even a bit less so of the housing stock. Till 1994, in residential sector of the Republic of Belarus, the annual heat consumption of the heating and ventilation averaged more than 130 kW×h/(m2×year (~56 %, of the hot-water supply – around 100 kW×h/(m2×year (~44 %. In residential houses, built from 1994 to 2009, heat consumption of the heating and ventilation is already 90 kW×h/(m2×year, of the hot-water supply – around 70 kW×h/(m2×year. In buildings of modern mainstream construction, they expend 60 kW×h/(m2×year (~46 % on heating and ventilation and 70 kW×h/(m2×year (~54 % on hot-water supply. In some modern residential buildings with the exhausted warm air secondary energy resource utilization, the heating and ventilation takes around 30–40 kW×h/(m2×year of heat. Raising energy performance of the residential buildings by means of reducing heat expenses on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy performance process are producing heat and transporting it over the main lines and outside distribution networks. In

  15. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    Science.gov (United States)

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  16. Electric heat-pumps in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Since the end of 1979 every other day an electrically operated heat-pump has started operation in Berlin (West). Pros and cons of heat-pumps are a much discussed subject. But what is the opinion of the user. As it is not known the BEWAG carried out a written customer inquiry in the summer 1982. The aim of the inquiry was to improve the advisory service by means of the answers obtained, to obtain information about the reliability or liability to defects of the heat pump, the mechanism they operate on and to know how big the oil substitution potential is. Customer satisfaction with the heat pumps was a further point of interest.

  17. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Science.gov (United States)

    2010-03-25

    ... Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public Meeting and Availability... conservation standards for residential central air conditioners and heat pumps; the analytical framework..., Mailstop EE-2J, Public Meeting for Residential Central Air Conditioners and Heat Pumps, EERE-2008-BT- STD...

  18. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  19. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    Demand response (DR) is considered as a potentially effective tool to compensate generation intermittency imposed by renewable sources. Further, DR can instigate to offer optimum asset utilization and to avoid or delay the need for new infrastructure investment. Being a sizable load together...... with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...

  20. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    OpenAIRE

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  1. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  2. Experimental study including subjective evaluations of mixing and displacement ventilation combined with radiant floor heating/cooling system

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2013-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation systems and radiant heating/cooling systems. In the first two tests, the simulated residential room was equipped either by a mixing ventilation system supplying warm air for space heat...

  3. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  4. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  5. Meeting residential space heating demand with wind-generated electricity

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  6. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred

    2011-01-01

    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  7. Stochastic analysis of residential micro combined heat and power system

    DEFF Research Database (Denmark)

    Karami, H.; Sanjari, M. J.; Gooi, H. B.

    2017-01-01

    In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm...... algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected...

  8. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  9. Stochastic analysis of residential micro combined heat and power system

    International Nuclear Information System (INIS)

    Karami, H.; Sanjari, M.J.; Gooi, H.B.; Gharehpetian, G.B.; Guerrero, J.M.

    2017-01-01

    Highlights: • Applying colonial competitive algorithm to the problem of optimal dispatching. • Economic modeling of the residential integrated energy system. • Investigating differences of stand-alone and system-connected modes of fuel cell operation. • Considering uncertainty on the electrical load. • The effects of battery capacity and its efficiency on the system is investigated. - Abstract: In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm is adopted to the hybrid energy system scheduling problem and different energy resources are optimally scheduled to have optimal operating cost of hybrid energy system. In order to show the effectiveness of the colonial competitive algorithm, the results are compared with the results of the harmony search algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected to be used effectively in a real hybrid energy system.

  10. Michigan residential heating oil and propane price survey: 1995-1996 heating season. Final report

    International Nuclear Information System (INIS)

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan's Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy's (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply

  11. Forecasting the adoption of residential ductless heat pumps

    International Nuclear Information System (INIS)

    Hlavinka, Alexander N.; Mjelde, James W.; Dharmasena, Senarath; Holland, Christine

    2016-01-01

    Energy-efficient technologies have the potential to provide savings to households and utilities, but consumers do not always adopt these innovations over traditional technologies. The ductless heat pump (DHP) is one such technology designed to increase energy efficiency and comfort in space conditioning. DHP adoption by single-family residences in the Pacific Northwest of the United States is investigated by quantifying the effects of utility-provided rebates and expenditures on activities such as advertising and installer training on the number of installations and forecasting installations through 2018. The number of installations is elastic with respect to net installation costs and inelastic with respect to expenditures. Given the proposed rebate budgets, doubling the current rebate is necessary to maximize installations through 2018. - Highlights: • The ductless heat pump (DHP) is an energy-efficient form of space conditioning. • Rebate and marketing programs designed to increase adoptions of DHPs are examined. • Residential adoption of DHPs is sensitive to rebates and tax credits. • Advertising and training have a smaller effect on adoption than rebates.

  12. Clustering-based analysis for residential district heating data

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Liu, Xiufeng; Heller, Alfred

    2018-01-01

    The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze r....... These findings will be valuable for district heating utilities and energy planners to optimize their operations, design demand-side management strategies, and develop targeting energy-efficiency programs or policies.......The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze...... residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also...

  13. An engineering economic assessment of whole-house residential wood heating in New York

    Science.gov (United States)

    Wood devices are being selected increasingly for residential space heating by households in New York State. Motivations for their use include energy independence, mitigating climate change, stimulating local economic development, and reducing exposure to high and variable fuel c...

  14. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Science.gov (United States)

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  15. 10 CFR 431.72 - Definitions concerning commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial warm air furnaces. 431... CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces § 431.72 Definitions concerning commercial warm air furnaces. The following definitions apply for purposes of this subpart D, and of subparts...

  16. The demand function for residential heat through district heating system and its consumption benefits in Korea

    International Nuclear Information System (INIS)

    Lim, Seul-Ye; Kim, Hyo-Jin; Yoo, Seung-Hoon

    2016-01-01

    The demand for residential heat (RH) through a district heating system (DHS) has been and will be expanded in Korea due to its better performance in energy efficiency and the abatement of greenhouse gas emissions than decentralized boilers. The purposes of this paper are two-fold. The first is to obtain the demand function for DHS-based RH in Korea and investigate the price and income elasticities of the demand employing the quarterly data covering the period 1988–2013. The short-run price and income elasticities are estimated as −0.700 and 0.918, respectively. Moreover, the long-run elasticities are −1.253 and 1.642, respectively. The second purpose is to measure the consumption benefits of DHS-based-RH employing the economic theory that they are the sum of the actual payment and consumer surplus for the consumption. Considering that the average price and estimated consumer surplus of the DHS-based RH use in 2013 are computed to be KRW 87,870 (USD 84.1) and KRW 62,764 (USD 60.1) per Gcal, the consumption benefits of the DHS-based RH are calculated to be KRW 150,634 (USD 144.2) per Gcal. This information can be beneficially utilized to conduct an economic feasibility study for a new DHS project related to RH supply. - Highlights: • Demand for residential heat (RH) from district heating system (DHS) is expanding. • We estimate the demand function for and consumption benefits of DHS-based RH. • Short-run price and income elasticities are −0.700 and 0.918, respectively. • Long-run price and income elasticities are −1.253 and 1.642, respectively. • Consumption benefits of DHS-based RH are KRW 150,634 (USD 144.2) per Gcal.

  17. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  18. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)

    2010-04-15

    Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)

  19. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  20. Survey of residential heat pump owner experience in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, J

    1985-11-11

    Heat pump owners in 7 Canadian cities were surveyed to establish installation costs, repair costs and frequencies, and customer satisfaction with heat pump systems as a function of region, installing contractor, manufacturer, model, year of installation and system type. The following summarizes the major findings of the study. Most Canadian heat pumps are retrofit installations in existing homes. The majority of these heat pumps have either supplemented or replaced an oil furnace. The average age of heat pumps is 2.5 years. The median size of heat pumps installed is 2.5 tons. The three most popular brands by order of prevalence are York, Carrier and General Electric. Only about one-fifth of heat pump owners have purchased service contracts. Two-thirds of the heat pumps have never needed repairs. Eighty-three percent of heat pump owners have never incurred any repair costs; and of those that have, about half spent $100 or less. The most frequent repair problems are refrigerant leaks followed by relays and controls. Corrective actions average about 0.3 per unit year. The owners' evaluation of comfort from their heat pump is generally favourable. About 12% of the owners find the outdoor unit noisy and 10% feel maintenance costs are at a disadvantage. Overall, only 7% of heat pump owners indicated that they would not install a heat pump in their next house. Most heat pump owners are satisfied with their heat pump brand and installer. Owners with systems installed in newer homes are more satisfied with their heat pumps than those who have installed heat pumps in older homes. 3 figs., 93 tabs.

  1. Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels

    International Nuclear Information System (INIS)

    Kelly, J. Andrew; Fu, Miao; Clinch, J. Peter

    2016-01-01

    International commitments on greenhouse gases, renewables and air quality warrant consideration of alternative residential heating technologies. The residential sector in Ireland accounts for approximately 25% of primary energy demand with roughly half of primary home heating fuelled by oil and 11% by solid fuels. Displacing oil and solid fuel usage with air source heat pump (ASHP) technology could offer household cost savings, reductions in emissions, and reduced health impacts. An economic analysis estimates that 60% of homes using oil, have the potential to deliver savings in the region of €600 per annum when considering both running and annualised capital costs. Scenario analysis estimates that a grant of €2400 could increase the potential market uptake of oil users by up to 17% points, whilst a higher oil price, similar to 2013, could further increase uptake from heating oil users by 24% points. Under a combined oil-price and grant scenario, CO_2 emissions reduce by over 4 million tonnes per annum and residential PM_2_._5 and NO_X emissions from oil and peat reduce close to zero. Corresponding health and environmental benefits are estimated in the region of €100m per annum. Sensitivity analyses are presented assessing the impact of alternate discount rates and technology performance. This research confirms the potential for ASHP technology and identifies and informs policy design considerations with regard to oil price trends, access to capital, targeting of grants, and addressing transactions costs. - Highlights: • Air Source Heat Pumps can offer substantial savings over oil fired central heating. • Significant residential air and climate emission reductions are possible. • Associated health and environmental benefits are estimated up to €100m per annum. • Results can inform policy interventions in the residential market to support change.

  2. Numerical analysis of a magnetocaloric heat pump implementation into a residential building

    DEFF Research Database (Denmark)

    Johra, Hicham

    of the magneto-caloric heat pump in a single hydronic loop coupling directly the heat source and the heat sink without additional heat exchangers. Moreover, several parameters can be controlled in order to perform efficient part load power generation. The objective of this work is to understand how to integrate...... a magneto-caloric heat pump into a residential building and establish a control strategy for such device. A numerical model of a single family house with water based under-floor heating and horizontal ground source heat exchanger is created. It is used to demonstrate the feasibility and the advantages...... of the integrated magneto-caloric heat pump system is compared with conventional heat pumps one....

  3. Selected cost considerations for geothermal district heating in existing single-family residential areas

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    1996-06-01

    In the past, district heating (geothermal or conventionally fueled) has not been widely applied to the single-family residential sector. Low-heat load density is the commonly cited reason for this. Although it's true that load density in these areas is much lower than for downtown business districts, other frequently overlooked factors may compensate for load density. In particular, costs for distribution system installation can be substantially lower in some residential areas due to a variety of factors. This reduced development cost may partially compensate for the reduced revenue resulting from low-load density. This report examines cost associated with the overall design of the system (direct or indirect system design), distribution piping installation, and customer branch lines. It concludes with a comparison of the costs for system development and the revenue from an example residential area.

  4. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    OpenAIRE

    Traynor, Laura; Lange, Ian A.; Moro, Mirko

    2012-01-01

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though ...

  5. Residential building envelope heat gain and cooling energy requirements

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Tsang, C.L.; Li, Danny H.W.; Cheung, S.O.

    2005-01-01

    We present the energy use situation in Hong Kong from 1979 to 2001. The primary energy requirement (PER) nearly tripled during the 23-year period, rising from 195,405 TJ to 572,684 TJ. Most of the PER was used for electricity generation, and the electricity use in residential buildings rose from 7556 TJ (2099 GWh) to 32,799 TJ (9111 GWh), an increase of 334%. Air-conditioning accounted for about 40% of the total residential sector electricity consumption. A total of 144 buildings completed in the month of June during 1992-2001 were surveyed. Energy performance of the building envelopes was investigated in terms of the overall thermal transfer value (OTTV). To develop the appropriated parameters used in OTTV calculation, long-term measured weather data such as ambient temperature (1960-2001), horizontal global solar radiation (1992-2001) and global solar radiation on vertical surfaces (1996-2001) were examined. The OTTV found varied from 27 to 44 W/m 2 with a mean value of 37.7 W/m 2 . Building energy simulation technique using DOE-2.1E was employed to determine the cooling requirements and hence electricity use for building envelope designs with different OTTVs. It was found that cooling loads and electricity use could be expressed in terms of a simple two-parameter linear regression equation involving OTTV

  6. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  7. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  8. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    Science.gov (United States)

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  9. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  10. Role of fuel upgrading for industry and residential heating

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.W. [Western Research Inst., Laramie, WY (United States); Gentile, R.H. [KFx Atlantic Partners, Arlington, VA (United States)

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  11. Determinants of residential space heating expenditures in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Helena [Department of Economics, University of Hamburg, Von Melle Park 5, 20146 Hamburg (Germany); Rehdanz, Katrin [Department of Economics, University of Kiel, Olshausenstrasse 40, 24118 Kiel (Germany)

    2010-09-15

    In Great Britain, several policy measures have been implemented in order to increase energy efficiency and reduce carbon emissions. In the domestic sector, this could, for example, be achieved by improving space heating efficiency and thus decreasing heating expenditure. However, in order to efficiently design and implement such policy measures, a better understanding of the determinants affecting heating expenditure is needed. In this paper we examine the following determinants: socio-economic factors, building characteristics, heating technologies and weather conditions. In contrast to most other studies we use panel data to investigate household demand for heating in Great Britain. Our data sample is the result of an annual set of interviews with more than 5000 households, starting in 1991 and ending in 2005. The sample represents a total of 64,000 observations over the fifteen-year period. Our aim is to derive price and income elasticities both for Britain as a whole and for different types of household. Our results suggest that differences exist between owner-occupied and renter households. These households react differently to changes in income and prices. Our results also imply that a number of socio-economic criteria have a significant influence on heating expenditure, independently of the fuel used for heating. Understanding the impacts of different factors on heating expenditure and impact differences between types of household is helpful in designing target-oriented policy measures. (author)

  12. Heating and cooling distribution in residential and non-residential premises; Distribution av kyla och vaerme i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Jardeby, Aasa; Soleimani-Mohseni, Mohsen; Axell, Monica

    2009-08-15

    The building sector accounts for approximately 40% of energy use in Europe, and about the same ratio applies to Sweden. Distribution systems for heating and cooling are an important part of the building's heating and cooling systems. The desired indoor climate can not be achieved without a properly sized distribution system. The aim of this report is to highlight the opportunities for energy efficiency with a properly designed distribution system by identifying and comparing different system solutions for the distribution of heating and cooling in residential and non-residential premises. The report presents which affect various factors have on the system as a whole, such as media selection, sizing of the piping system, heat transfer surface and regulation and control strategies. It also gives a picture of the possibilities and limitations of different needs and requirements of indoor environment (such as requirements for the thermal environment, air quality, noise, space, etc.). By having a systems perspective at the heating and/or cooling, energy efficiency is achieved. There are possibilities of big gains with a systems approach, since the choices made in designing a distribution system, affects many other parts of the system and there is a risk of poor optimization. A first step in reducing the energy use is to reduce the cooling and heating loads in the building. A heating and cooling systems should be designed properly so as not to consume excessive energy. There are other strategies to reduce energy consumption, e.g. by allowing more variations in temperature. However, it is important that it is not at the expense of the needs and requirements of the building. If the building has a cooling requirement that can be covered by the air flow required for ventilation it is recommended to provide under tempered air. In addition, the air can be cooled by free cooling from outside over large parts of the year. If the building has greater cooling requirements

  13. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  14. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  15. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Residential fuelwood assessment, state of Minnesota, 2007-2008 heating season

    Science.gov (United States)

    Mimi Barzen; Ronald Piva; Chun Yi Wy; Rich. Dahlman

    2009-01-01

    During the spring and summer of 2008, the cooperating partners conducted a survey to determine the volume of residential fuelwood burned during the 2007-2008 heating season. Similar surveys were conducted for the 1960, 1969-1970, 1979-1980, 1984-1985, 1988-1989, 1995-1996, and 2002-2003 heating seasons. These surveys are part of a long-term effort to monitor trends in...

  17. Future Services for District Heating Solutions in Residential Districts

    Directory of Open Access Journals (Sweden)

    Hannele Ahvenniemi

    2014-06-01

    Full Text Available The underlying assumption of this study is that in order to retain the competitiveness while reaching for the EU targets regarding low-energy construction, district heating companies need to develop new business and service models. How district heating companies could broaden their perspective and switch to a more service-oriented way of thinking is a key interest of our research. The used methods in our study are house builder interviews and a questionnaire. With the help of these methods we discussed the potential interest in heating related services acquiring a comprehensive understanding of the customer needs. The results indicate the importance of certain criteria when choosing the heating system in households: easiness, comfort and affordability seem to dominate the house builders’ preferences. Also environmental awareness seems to be for many an important factor when making a decision about the heating of the house. Altogether, based on the results of this study, we suggest that the prospects of district heating could benefit from highlighting certain aspects and strengths in the future. District heating companies need to increase flexibility, readiness to adopt new services, to invest in new marketing strategies and improving the communication skills.

  18. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  19. SOME FEATURES OF THE POWER SUPPLY OF RESIDENTIAL BUILDINGS DURING THE HEATING SEASON

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available A large proportion of consumption of different types of energy by the residential sector, especially in the heating period, makes the energy efficiency of buildings without considering the loss of fuel with a significant reduction in hourly load on the generators, especially at night, already insufficient for real energy savings. Therefore in Belarus, in order to attract the consumer, electricity tariff for heating at night hours (from 11 p.m. to 6.00 a.m. is three times cheaper than at any other time. Significant increase of the electricity consumption of at night could be achieved by using heat accumulators for heating and hot water supply to the residential sector. Particularly effective are water accumulators of heat and accumulators of underfloor heating that enable to use a coolant with a temperature of 40 оC and to increase the useful supply of heat. The use of heat accumulators for daily heating, ventilation and hot water supply of buildings significantly reduces the cost of creating the infrastructure of the territory under construction by eliminating the necessity of running the distribution network of heat or gas supply. The use of the heat accumulators is necessary due to the increase of the time-weighted average outdoor temperature. The mentioned increase in the City of Minsk in the heating season is of about 0.1 °C per year in average, and as for the last 20 years, the increase has led to a reduction of the required heat load on the premises by about 10 %. Research and project work on choosing the most effective options for the arrangement and use the heat accumulators in buildings of the various functions ought to be fulfilled in order to make the application of heat accumulators successful. In this respect civil and power engineers as well as operators should work together so to determine the chronological, technical and economic conditions of charging and use of heat accumulators.

  20. Smart electric storage heating and potential for residential demand response

    OpenAIRE

    Darby, S

    2017-01-01

    Low-carbon transition plans for temperate and sub-polar regions typically involve some electrification of space heating. This poses challenges to electricity system operation and market design, as it increases overall demand and alters the temporal patterns of that demand. One response to the challenge is to ‘smarten’ electrical heating, enabling it to respond to network conditions by storing energy at times of plentiful supply, releasing it in response to customer demands and offering rapid-...

  1. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  2. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  3. Parametric analysis of geothermal residential heating and cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Sagia, Zoi N.; Stegou, Athina B.; Rakopoulos, Constantinos D. [National Technical University of Athens, School of Mechanical Engineering, Department of Thermal Engineering, Heroon Polytechniou 9, 15780, Zografou, Attiki (Greece)

    2012-07-01

    A study is carried out to evaluate the efficiency of a Ground Source Heat Pump (GSHP) system with vertical heat exchangers applied to a three-storey terraced building, with total heated area 271.56 m2, standing on Hellinikon, Athens. The estimation of building loads is made with TRNSYS 16.1 using climatic data calculated by Meteonorm 6.1. The GSHP system is modeled with two other packages GLD 2009 and GLHEPRO 4.0. A comparison of the mean fluid temperature (fluid temperature in the borehole calculated as the average of exiting and entering fluid temperature), computed by above software, shows how close the results are. In addition, a parametric analysis is done to examine the influence of undisturbed ground temperature, ground heat exchanger (GHE) length and borehole separation distance to system’s operational characteristics so as to cover building loads. Finally, a 2D transient simulation is performed by means of COMSOL Multiphysics 4.0a. The carrier fluid in the borehole is modeled as a solid with extremely high thermal conductivity, extracting from and injecting to the ground the hourly load profile calculated by TRNSYS. The mean fluid temperature and the borehole wall temperature are computed for an entire year and compared with the values calculated by GLD.

  4. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  5. The performance of a residential heat pump operating with a nonazeotropic binary refrigerant mixture

    Science.gov (United States)

    Didion, D.; Mulroy, W.

    Results of laboratory measurement of the performance change of a substantially unmodified residential heat pump designed for 222 when charged with a non azeotropic, binary mixture of R1381 and R152a is presented. Results are presented for various sizes of fixed expansion devices. The effect of gliding temperature in the saturation zone was found to be small. The effect of compositions shift by flash distillation in the accumulator was found to measurably improve low temperature heating performance. It was further observed that some system modification (such as the addition of a receiver) could have further enhanced this low temperature heating performance improvement.

  6. Decomposing final energy use for heating in the residential sector in Austria

    International Nuclear Information System (INIS)

    Holzmann, Angela; Adensam, Heidelinde; Kratena, Kurt; Schmid, Erwin

    2013-01-01

    In Austria a considerable number of measures have been implemented to reduce final energy use for residential heating since the 1990s. The aim of this analysis is to investigate, why – despite these implemented measures – final energy use for heating has not decreased in the expected way. The impact of eight factors on final energy use for heating is quantified by applying the Logarithmic Mean Divisia Index (LMDI I) method. The dataset covers the sector of private households in Austria for the period from 1993 to 2009. The main findings of the analysis are: (1) while technical improvements reduce final energy use for heating significantly, rising comfort needs nearly outweigh these savings. (2) Consumer behaviour reduces calculated final energy use considerably. (3) The extent of this reduction is declining significantly in the period observed. (4) The growing share of single-family houses has increased energy demand for heating in the observed period, though a reversal of this trend is detected from 2007 onwards. (5) The impact of growing floor space per person is the major effect revealed by the analysis. (6) Weather conditions have a major impact on annual fluctuations of energy consumption. -- Highlights: •We did an Index decomposition analysis of the Austrian residential heating demand. •Eight impact factors on heating demand have been identified. •Rising comfort needs outweigh savings caused by technical improvements. •Consumer behaviour has a major impact on residential final energy use for heating. •Weather changes play a major role when analysing annual changes in energy use

  7. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  8. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  9. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  10. Possibility of heat recovery from gray water in residential building

    Directory of Open Access Journals (Sweden)

    Mazur Aleksandra

    2017-12-01

    Full Text Available Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  11. Possibility of heat recovery from gray water in residential building

    Science.gov (United States)

    Mazur, Aleksandra; Słyś, Daniel

    2017-12-01

    Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  12. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  13. Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Bargach, Youssef [Navigant Consulting, Burlington, MA (United States)

    2016-11-01

    DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reduce household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.

  14. Analysis of heat source selection for residential buildings in rural areas

    OpenAIRE

    Szul Tomasz

    2018-01-01

    The research aiming to check whether the output of currently installed boilers matches the use requirements together with estimation of their energy efficiency was carried out on a group of 84 single-family residential buildings located in rural areas. Heating and hot water energy needs were calculated for each building in order to determine the use requirements. This enabled verification whether the currently installed boilers match the actual use requirements in the buildings. Based on the ...

  15. Estimation of Residential Heat Pump Consumption for Flexibility Market Applications

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Tan, Zheng-Hua; Bak-Jensen, Birgitte

    2015-01-01

    load of a flexible device, namely a Heat Pump (HP), out of the aggregated energy consumption of a house. The main idea for accomplishing this, is a comparison of the flexible consumer with electrically similar non-flexible consumers. The methodology is based on machine learning techniques, probability...... theory and statistics. After presenting this methodology, the general trend of the HP consumption is estimated and an hour-ahead forecast is conducted by employing Seasonal Autoregressive Integrated Moving Average modeling. In this manner, the flexible consumption is predicted, establishing the basis......Recent technological advancements have facilitated the evolution of traditional distribution grids to smart grids. In a smart grid scenario, flexible devices are expected to aid the system in balancing the electric power in a technically and economically efficient way. To achieve this, the flexible...

  16. Residential bioenergy heating: A study of consumer perceptions of improved woodstoves

    International Nuclear Information System (INIS)

    Nyrud, Anders Q.; Roos, Anders; Sande, Jon Bingen

    2008-01-01

    Consumers' choices play a key role for the development of biomass heating in the residential sector. The city of Oslo has granted subsidies to households who change to new, improved low-emission woodstoves. The purpose of this study is to expand the knowledge about users' experiences and attitudes to residential biomass heating. An adapted model of the Theory of Planned Behavior was used to model households' inclination to continue using their woodstoves for heating. More than 800 questionnaires were collected from households that recently had invested in an improved woodstove. The respondents were satisfied with the new woodstoves. The respondents also considered themselves competent to use and maintain the stove and few had problems acquiring fuelwood. Further analyses showed that the intention to continue to use the new woodstove depends on economic benefits, heating performance, perceived time and effort to operate the stove, environmental effects of heating as well as perceived subjective norm. The results imply that when marketing a modern technology for bioenergy heating, both public authorities and producers should consider issues related to the users' perception of subjective norm, such as perceived status of using bioenergy or environmental concerns, when designing campaigns to promote the use of woodstoves

  17. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  18. Electric heating guidelines: power smart home; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Guidelines, for use by B. C. Hydro, were established for proper planning and design of an electric heating system for residential buildings. The guidebook is divided into five sections: (1) comfort and electric heating systems, (2) contractors` guide to heat loss calculation, (3) imperial heat loss factors, (4) metric heat loss factors, and (5) installation guidelines for electric heating systems. Individual topics discussed include heat loss and the human body, heating systems and comfort, heat loss design, air leakage, and soil conductivity factors. Design considerations and equipment standards were described for the following electric heating systems: electric resistance baseboard systems, forced flow unitary heaters, electric radiant cable in-floor systems, radiant ceiling systems, forced warm air heating systems, furnaces, and heat pumps. 68 tabs., 29 figs.

  19. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  20. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  1. Configuring a fuel cell based residential combined heat and power system

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  2. Efficiency Analysis of Independent and Centralized Heating Systems for Residential Buildings in Northern Italy

    Directory of Open Access Journals (Sweden)

    Fabio Rinaldi

    2011-11-01

    Full Text Available The primary energy consumption in residential buildings is determined by the envelope thermal characteristics, air change, outside climatic data, users’ behaviour and the adopted heating system and its control. The new Italian regulations strongly suggest the installation of centralized boilers in renovated buildings with more than four apartments. This work aims to investigate the differences in primary energy consumption and efficiency among several independent and centralized heating systems installed in Northern Italy. The analysis is carried out through the following approach: firstly building heating loads are evaluated using the software TRNSYS® and, then, heating system performances are estimated through a simplified model based on the European Standard EN 15316. Several heating systems have been analyzed, evaluating: independent and centralized configurations, condensing and traditional boilers, radiator and radiant floor emitters and solar plant integration. The heating systems are applied to four buildings dating back to 2010, 2006, 1960s and 1930s. All the combinations of heating systems and buildings are analyzed in detail, evaluating efficiency and primary energy consumption. In most of the cases the choice between centralized and independent heating systems has minor effects on primary energy consumption, less than 3%: the introduction of condensing technology and the integration with solar heating plant can reduce energy consumption by 11% and 29%, respectively.

  3. ENERGY-EFFICIENT REGIMES FOR HEATING-SUPPLY OF THE RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Rise in comfort and inhabitation safety is one of the main requirements of the general maintenance, reconstruction of the old and construction of the new residential houses. One of the essential factors of it is substitution in the household hot-water preparing sources: from the individual domestic gas  water-heaters to  the common  entire-building hot-water supply at the expense of the centralized heat supply. Extremely erratic hot-water daily consumption by tenants leads to the necessity of sharp increase in central heat-supply level during a few hours of the day, which requires a significant increase of the source heat-power. On that score, the authors propose to direct a significant part (up to 50 % of the centralized heating and ventilation heat power-consumption to the hot water preparation during the period of short-term hot water consumption peak.Substitution  of  the  individual  domestic  gas  water-heaters  with  the  common  entirebuilding hot-water supply releases a huge amount of natural gas which can be utilized not only for production of the necessary heat power but as well for electric power producing. This substitution is especially advantageous if heat-power is delivered to the residential area from a НРС where significant part of heat especially in a relatively warm season of the year is thrown out into the air. The content of the article is based on several patents received earlier.

  4. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  5. Market Assessment for Residential Refrigerator-Freezer with Novel Rotating Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [CSRA International, Inc., Fairfax, VA (United States); Blackburn, Julia [CSRA International, Inc., Fairfax, VA (United States); Grubbs, Tyler [CSRA International, Inc., Fairfax, VA (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    Despite a steady record of energy efficiency improvements in residential refrigerators and freezers over recent decades, these products still account for 4% of the site energy consumption for the average U.S. household. The Oak Ridge National Laboratory (ORNL) – along with partners Sandia National Laboratories (SNL) and the University of Maryland – are pursuing further efficiency improvements in this market sector by using a novel/prototype rotating heat exchanger (RHX) based on a Sandia Cooler technology as an evaporator in a residential refrigerator-freezer. The purpose of this study is to investigate the market potential of refrigerator-freezer products equipped with RHX evaporators in the United States, including projections of maximum annual market share and unit shipments and maximum direct and indirect job creation.

  6. Modernizing residential heating in Russia: End-use practices, legal developments, and future prospects

    International Nuclear Information System (INIS)

    Korppoo, Anna; Korobova, Nina

    2012-01-01

    This article explores the significance of modernization policies concerning Russia’s technically obsolete but socially important residential heating sector, focusing on the 2009 energy efficiency framework law and its prospects for implementation. Ownership and control structures are in flux throughout the heating sector chain. Inefficiencies, causing low service quality and rising prices, have already started eroding the market share of district heating, despite its potential benefits. End-use management practices – such as lack of metering, communal billing, and low prices that do not cover production costs – reduce consumer incentives to cut consumption. The diversity of end-users adds to the complexity of focused measures like energy-saving contracts. However, end-use sector reforms such as mandatory meter installation and increasing prices – even if socially acceptable and fully implemented – cannot alone provide the massive investments required. More appropriate is sector-wide reform with the government’s financial participation – especially if consumer efforts can yield better service quality. - Highlights: ► We analyze Russia’s energy efficiency policy on residential heating sector. ► Institutional structures and practices reduce incentives to cut consumption. ► Meter installation and increasing prices cannot deliver investments required. ► Government led sector-wide reform is required, linked to better service quality.

  7. Modeling hourly consumption of electricity and district heat in non-residential buildings

    International Nuclear Information System (INIS)

    Kipping, A.; Trømborg, E.

    2017-01-01

    Models for hourly consumption of heat and electricity in different consumer groups on a regional level can yield important data for energy system planning and management. In this study hourly meter data, combined with cross-sectional data derived from the Norwegian energy label database, is used to model hourly consumption of both district heat and electrical energy in office buildings and schools which either use direct electric heating (DEH) or non-electric hydronic heating (OHH). The results of the study show that modeled hourly total energy consumption in buildings with DEH and in buildings with OHH (supplied by district heat) exhibits differences, e.g. due to differences in heat distribution and control systems. In a normal year, in office buildings with OHH the main part of total modeled energy consumption is used for electric appliances, while in schools with OHH the main part is used for heating. In buildings with OHH the share of modeled annual heating energy is higher than in buildings with DEH. Although based on small samples our regression results indicate that the presented method can be used for modeling hourly energy consumption in non-residential buildings, but also that larger samples and additional cross-sectional information could yield improved models and more reliable results. - Highlights: • Schools with district heating (DH) tend to use less night-setback. • DH in office buildings tends to start earlier than direct electric heating (DEH). • In schools with DH the main part of annual energy consumption is used for heating. • In office buildings with DH the main part is used for electric appliances. • Buildings with DH use a larger share of energy for heating than buildings with DEH.

  8. Greenhouse gas abatement cost curves of the residential heating market. A microeconomic approach

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline; Hecking, Harald

    2012-01-01

    In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. By accounting for household behavior, we find that welfare-based abatement costs are generally higher than pure technical equipment costs. Our results are based on a microsimulation of private households' investment decision for heating systems until 2030. The households' investment behavior in the simulation is derived from a discrete choice estimation which allows investigating the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We simulate greenhouse gas abatements and welfare costs of carbon taxes and subsidies on heating system investments until 2030 to deduce abatement curves. Given utility maximizing households, our results suggest a carbon tax to be the welfare efficient policy. Assuming behavioral misperceptions instead, a subsidy on investments might have lower marginal greenhouse gas abatement costs than a carbon tax.

  9. Warm homes: Drivers of the demand for heating in the residential sector in New Zealand

    International Nuclear Information System (INIS)

    Howden-Chapman, Philippa; Viggers, Helen; Chapman, Ralph; O'Dea, Des; Free, Sarah; O'Sullivan, Kimberley

    2009-01-01

    New Zealand houses are large, often poorly constructed and heated, by OECD standards, and consequently are colder and damper indoors than recommended by the World Health Organisation. This affects both the energy consumption and the health of households. The traditional New Zealand household pattern of only heating one room of the house has been unchanged for decades, although there has been substantial market penetration of unflued gas heaters and more recently heat pumps. This paper describes the residential sector and the results of two community-based trials of housing and heating interventions that have been designed to measure the impact of (1) retrofitting insulation and (2) replacing unflued gas heaters and electric resistance heaters with heat pumps, wood pellet burners and flued gas heaters. The paper describes findings on the rebound effect or 'take-back'-the extent to which households take the gains from insulation and heating improvements as comfort (higher temperatures) rather than energy savings, and compares energy-saving patterns with those suggested by an earlier study. Findings on these aspects of household space heating are discussed in the context of the New Zealand government's policy drive for a more sustainable energy system, and the implications for climate change policy.

  10. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  11. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schwarzburger, Heiko

    2017-01-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [de

  12. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    Zmeureanu, Radu; Yu Wu, Xin

    2007-01-01

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  13. Residential heating costs: A comparison of geothermal solar and conventional resources

    Science.gov (United States)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  14. The trigger matters: The decision-making process for heating systems in the residential building sector

    International Nuclear Information System (INIS)

    Hecher, Maria; Hatzl, Stefanie; Knoeri, Christof; Posch, Alfred

    2017-01-01

    As heat demand of buildings accounts for a significant amount of final energy use and related carbon emissions, it’s important to gain insights into the homeowners’ decision-making processes and to identify factors determining the choice of heating systems. In this study, data was collected in an online survey carried out in 2015, from private homeowners of existing and newly built single and double-family houses in Austria who had invested in a new heating system within the last ten years (N=484). In contrast to previous studies, this study specifically investigates the triggers behind homeowner decisions to invest in a new heating system (e.g. problem, opportunity, or new building situation). Results of binary logistic regression analysis show that subsidies for heating system tabinvestments and infrastructural adjustments reveal to be most effective for homeowners in problem situations to foster alternative heating systems. For homeowners in opportunity situations (e.g. building refurbishment), in addition operational convenience appears to be important. For new buildings, the main barriers for alternative heating system adoption were found in the positive perception of fuel supply security and feasibility of fossil systems. Thus, the use of trigger-specific policy measures is proposed to foster alternative heating systems in the residential building sector. - Highlights: • Homeowners’ triggers determine heating system adoption decisions. • It is crucial to reach homeowners early enough to avoid problem situations. • For problem-triggered homeowners, subsidies are most effective. • Opportunity-triggered homeowners prefer alternative heating systems. • Opportunity-triggered homeowners need solid decision basis for technology comparison.

  15. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  16. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  17. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  18. Residential wood heating: The forest, the atmosphere and the public consciousness

    International Nuclear Information System (INIS)

    Gulland, J.F.; Hendrickson, O.Q.

    1993-01-01

    It is generally agreed by both energy and forestry scientists that, provided harvesting is conducted in a sustainable manner, the combustion of wood for energy production is essentially carbon dioxide neutral when the normal forest regeneration period is considered. When wood combustion replaces the consumption of fossil fuels, however, the net reduction in carbon dioxide release is almost immediate. In addition to the requirement of sustainable forestry practices, the maintenance of site biodiversity must also be considered. A preliminary review of the literature reveals that periodic selective harvesting can actually have a positive impact on the biodiversity of the forest. Despite the fact that the harvesting, processing and transportation of wood fuel invariably consumes fossil fuels, it has been shown in case studies that the energy return on investment can easily exceed a ratio of 25:1. Approximately 20 percent of the single family dwellings in Canada are heated to some extent with wood and the potential exists for an increasing contribution of wood fuel to residential energy requirements. However, there is evidence of confusion among the public regarding the environmental impact of woodburning, particularly as it relates to CO 2 emissions and carbon storage in forests. The confusion could impede the increased use of wood for residential heating because it calls into question the appropriateness of using wood for energy purposes. The forms of residential wood energy use that have evolved in rural North America provide important but neglected models of sustainable development. This could serve as the central theme of public information program to clarify the role of wood energy in the reduction of greenhouse gas emissions

  19. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  20. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  1. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  2. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  3. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  4. Research highlights : study of the noise generated by heat pumps in residential areas

    International Nuclear Information System (INIS)

    Rousseau, J.

    2000-01-01

    Rising energy costs and aggressive marketing played a major role in the substantial increase in the number of domestic heat pumps installed. As a rule, heat pumps are connected to the heating and ventilation systems on the outside of the house. Whether the heat pump is equipped with an integrated compressor or not, it creates noise. The noise is generated by the powerful fan designed to cool all the coils, and also by the compressor itself and the circulation of the refrigerant gas. Some municipalities received so many complaints on this topic that they are considering adopting noise bylaws. The first objective of the research undertaken by Canada Mortgage and Housing Corporation on heat pumps in residential areas was to analyze the noise pollution mode of commonly used heat pumps. A study of a simple noise reduction device was performed, and the extent to which it should be used. Finally, there had to be no reduction of the thermal capacities of the pumps. Phase 1 of the study took place between May and August 1990, in the area of Quebec City. A total of 125 heat pumps were identified. The four major manufacturers were Trane, Carrier, York, and Lennox. Initial sound pressure levels measurements were made at one metre from the unit, for 80 such units, respecting the ratio by brands in the sample of 125. A detailed global noise measurement determined the sound power of each pump. A detailed muffler feasibility study was then conducted, using a Trane heat pump. The results of the study indicated that heat pumps were a major source of continuous noise in low and mid-density areas. It was discovered that a noise attenuation device could always be built around heat pumps, which needed to be installed as close as possible to the casing of the heat pump. It is not possible to design a device to fit each and every heat pump, the design is specific to the dimensions and characteristics of each model of heat pump. The thermal performance of the pumps will not be affected by

  5. Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany

    International Nuclear Information System (INIS)

    Michelsen, Carl Christian; Madlener, Reinhard

    2013-01-01

    Heating demand accounts for a large fraction of the overall energy demand of private households in Germany. A better understanding of the adoption and diffusion of energy-efficient and renewables-based residential heating systems (RHS) is of high policy relevance, particularly against the background of climate change, security of energy supply and increasing energy prices. In this paper, we explore the multi-dimensionality of the homeowners’ motivation to decide between competing RHS. A questionnaire survey (N=2440) conducted in 2010 among homeowners who had recently installed a RHS provides the empirical foundation. Principal component analysis shows that 25 items capturing different adoption motivations can be grouped around six dimensions: (1) cost aspects, (2) general attitude towards the RHS, (3) government grant, (4) reactions to external threats (i.e., environmental or energy supply security considerations), (5) comfort considerations, and (6) influence of peers. Moreover, a cluster analysis with the identified motivational factors as segmentation variables reveals three adopter types: (1) the convenience-oriented, (2) the consequences-aware, and (3) the multilaterally-motivated RHS adopter. Finally, we show that the influence of the motivational factors on the adoption decision also differs by certain characteristics of the homeowner and features of the home. - Highlights: ► Study of the multi-dimensionality of the motivation to adopt residential heating systems (RHS). ► Principal component and cluster analysis are applied to representative survey data for Germany. ► Motivation has six dimensions, including rational decision-making and emotional factors. ► Adoption motivation differs by certain characteristics of the homeowner and of the home. ► Many adopters are driven by existing habits and perceptions about the convenience of the RHS

  6. Achievements and suggestions of heat metering and energy efficiency retrofit for existing residential buildings in northern heating regions of China

    International Nuclear Information System (INIS)

    Yan Ding; Zhe Tian; Yong Wu; Neng Zhu

    2011-01-01

    In order to promote energy efficiency and emission reduction, the importance of improving building energy efficiency received sufficient attention from Chinese Government. The heat metering and energy efficiency retrofit for existing residential buildings of 0.15 billion m 2 in northern heating regions of China was initiated in 2007 and completed successfully at the end of 2010. This article introduced the background and outline of the retrofit project during the period of 11th five-year plan. Numerous achievements that received by retrofit such as environmental protection effect, improvement of indoor environment, improvement of heating system, investment guidance effect, promotion of relevant industries and increasing chances of employment were concluded. Valuable experience that acquired from the retrofit project during the period of 11th five-year plan was also summarized in this article. By analyzing the main problems emerged in the past, pertinent suggestions were put forward to promote a larger scale and more efficient retrofit project in the period of 12th five-year plan. - Highlights: →Successful implementation of a retrofit project in China is introduced. → Significance of the project contributing to emission reduction is analyzed. →Achievements are summarized and future suggestions are put forward.

  7. Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China

    International Nuclear Information System (INIS)

    Zhong, Y.; Cai, W.G.; Wu, Y.; Ren, H.

    2009-01-01

    Starting with analyzing the investigation results by Ministry of Housing and Urban-Rural Development of China in 2005, more than half of the 10,236 participants are willing to improve the residential building energy efficiency and accept an additional cost of less than 10% of the total cost, the authors illustrate that incenting actions are necessary to improve building energy efficiency and build a central government-local government-market model. As a result of the model analysis, to pursue good execution effects brought by the incentive policies, the executors are required to distinguish the differences of incentive objects' economic activities and strongly respect the incenting on the energy conservation performance. A case study on the incentive policies of existing residential building energy efficiency improvement in heating zones in North China is given as well. Finally, it is strongly recommended to give the first priority to performance-based incentives so that to reduce the lazy behaviors of the incented objects and ensure the targets to be achieved.

  8. An emerging market in fuel cells? Residential combined heat and power in four countries

    International Nuclear Information System (INIS)

    Brown, J.E.; Hendry, C.N.; Harborne, P.

    2007-01-01

    Global concerns about fossil fuel stocks and security of supply have stimulated governments and industry to explore the development of alternative sources of energy. This has led to the emergence of liberalised markets for energy and the growth of de-centralised generation and distribution systems. Within this context, the use of a sustainable technology, such as fuel cells, as a generator of heat and electricity for the residential market, is a significant market opportunity. Using a set of framework conditions to explain the diffusion of renewable energy technologies, this paper analyses recent developments in four leading industrial countries, and concludes that Japan and Germany are competing to be the lead country for the introduction of this technology. In the process, we highlight the impact of government and the extent to which the development of a fuel cell industry is being driven by incumbent large firms acting independently or in collaboration with a range of other companies across the value chain. [Author

  9. An emerging market in fuel cells? Residential combined heat and power in four countries

    International Nuclear Information System (INIS)

    Brown, James E.; Hendry, Chris N.; Harborne, Paul

    2007-01-01

    Global concerns about fossil fuel stocks and security of supply have stimulated governments and industry to explore the development of alternative sources of energy. This has led to the emergence of liberalised markets for energy and the growth of de-centralised generation and distribution systems. Within this context, the use of a sustainable technology, such as fuel cells, as a generator of heat and electricity for the residential market, is a significant market opportunity. Using a set of framework conditions to explain the diffusion of renewable energy technologies, this paper analyses recent developments in four leading industrial countries, and concludes that Japan and Germany are competing to be the lead country for the introduction of this technology. In the process, we highlight the impact of government and the extent to which the development of a fuel cell industry is being driven by incumbent large firms acting independently or in collaboration with a range of other companies across the value chain

  10. Performance of a residential heat pump operating in the cooling mode with single faults imposed

    International Nuclear Information System (INIS)

    Kim, Minsung; Payne, W. Vance; Domanski, Piotr A.; Yoon, Seok Ho; Hermes, Christian J.L.

    2009-01-01

    The system behavior of a R410A residential unitary split heat pump operating in the cooling mode was investigated. Seven artificial faults were implemented: compressor/reversing valve leakage, improper outdoor air flow, improper indoor air flow, liquid line restriction, refrigerant undercharge, refrigerant overcharge, and presence of non-condensable gas in the refrigerant. This study monitored eight fault detection features and identified the most sensitive features for each fault. The effect of the various fault levels on energy efficiency ratio (EER) was also estimated. Since the studied system employed a thermostatic expansion valve (TXV) as an expansion device, it could adapt to some faults making the fault less detectable. The distinctiveness of the fault depended on the TXV status (fully open or not)

  11. Unleashing Flexibility from Electric Boilers and Heat Pumps in Danish Residential Distribution Network

    DEFF Research Database (Denmark)

    Sinha, Rakesh; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2018-01-01

    and thereby improving its techno-economic efficiency. The data used for the evaluation are also from the real household sites in Denmark provided by the district heating utility. Focus is on the low-voltage grid, and that’s very relevant since many doesn’t expect any flexibility from that voltage level. Study...... this model is compared to responses from an average model of the hot water storage tank to evaluate the benefit of the more detailed model. Finally, analysis on consumption patterns of electrical and thermal loads in residential buildings in Northern Jutland, Denmark, are used for analysis of the system...... and use of thermal units as flexible consumer loads in the low voltage (LV) distribution network grid. The models of EB and HP with storage tank are briefly discussed in relation to the actual control and flexibility based on grid condition and status of storage tank temperature or position...

  12. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Messmer, Craig S. [Unico, Inc., Arnold, MO (United States)

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series. Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.

  13. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  14. Impacts of global warming on residential heating and cooling degree-days in the United States.

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-08-04

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981-2010) and future (2080-2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making.

  15. Impacts of global warming on residential heating and cooling degree-days in the United States

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-01-01

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981–2010) and future (2080–2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making. PMID:26238673

  16. Combined heat and power and thermally insulating measures in residential housing stock; Kraft-Waerme-Kopplung und Daemmmassnahmen im Wohngebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Buller, Michael [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-02-15

    The author of the contribution under consideration reports on the economic, ecologic and primary energetic potential of micro-combined heat and power (micro-CHP) in the residential housing stock under consideration of possible correlations between CHP and thermally insulating measures.

  17. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing hea...... for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. © 2014 Elsevier Ltd. All Rights reserved......The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing...

  18. Experiences with field tests: Ground coupled heat pumps in small residential buildings; Feldtesterfahrungen. Erdgekoppelte Waermepumpen in kleineren Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Wapler, Jeannette; Guenther, Danny; Miara, Marek [Fraunhofer-Institut fuer Solare Energiesysteme ISE/Thermal Systems and Buildings, Freiburg (Germany)

    2012-07-01

    In the context of two research projects, the Fraunhofer Institute for Solar Energy Systems (Freiburg, Federal Republic of Germany) has surveyed a large number of heat pumps in actual application. In particular, heat pumps in small residential buildings (single-family houses) were examined for new and existing buildings. In addition to the achieved performance factors the temperature profile of the heat sink and heat source was recorded. This temperature profile was evaluated separately for systems with geothermal collectors and systems with geothermal probes. The theoretical assumptions could be confirmed. Influences during the installation, commissioning and operation are identified.

  19. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  20. Mitigation of Short-Lived Climate Pollutants from Residential Coal Heating and Combined Heating/Cooking Stoves: Impacts on the Cryosphere, Policy Options, and Co-benefits

    Science.gov (United States)

    Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.

    2017-12-01

    Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model

  1. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ...) Measurement of flue CO 2 (carbon dioxide) for oil-fired commercial warm air furnaces. In addition to the flue... commercial warm air furnace. The test procedure for the measurement of the condensate from the flue gas under... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy...

  2. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro......-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system...

  3. Technology line and case analysis of heat metering and energy efficiency retrofit of existing residential buildings in Northern heating areas of China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    The building area in northern heating areas accounting for 70% of the total land area in China is 6,500,000,000 m 2 . The average heating energy consumption in northern China is 100-200% times more than developed countries in the same latitude. This paper introduced firstly the heat metering and energy efficiency retrofit background of existing residential buildings in northern heating areas of China organized by mohurd and MOF, and then put forward the total principle and contents of retrofit. Through analyzing some retrofit cases in Germany, Poland and China, some technological experiences were summarized and finally a technology line suitable for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China which involved retrofit for heat metering and temperature regulation of heating systems, heat balance of heat source and network, and building envelope was described to provide a systematic, scientific, technological guide for the retrofit projects of 0.15 billion m 2 in 'the Eleventh Five-Year Plan' period.

  4. Comparative analysis of greenhouse gas emissions of various residential heating systems in the Canadian provinces

    International Nuclear Information System (INIS)

    Pare, D.

    2010-04-01

    The Kyoto Protocol compels signatory countries to reduce their greenhouse gas emissions by at least 5 percent by 2010 as compared to 1990 levels. In Canada, however, questions remain regarding the effects of greenhouse gases as they relate to the adoption of geoexchange systems in certain provinces because of the sources of electricity. This report presented a comprehensive analysis of the specific and strategic role of geoexchange technology, and ground source heat pumps in particular. The purpose was to compare, on a common basis, the greenhouse gas emissions of different residential heating systems utilized in the Canadian provinces. Comparisons were conducted from an environmental standpoint, and excluded the exergy and economic aspect, or other related issues. The report discussed the methodology and hypotheses of the study and presented the results for Canada, and for each province. It was concluded that according to the hypotheses employed for the purposes of this study, geoexchange systems offer a solution for greenhouse gas reduction and climatic change in all of the analyzed scenarios, with few exceptions and for a specific scenario. 32 refs., 37 tabs., 12 figs., 4 appendices.

  5. The impact of consumer behavior on residential energy demand for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Haas, R.; Auer, H.; Biermayr, P. [Vienna Univ. of Technology (Austria). Inst. of Energy Economics

    1998-04-01

    Besides technical parameters, consumer behavior is the most important issue with respect to energy consumption in households. In this paper, the results of a cross-section analysis of Austrian households are presented. The impact of the following parameters on residential energy demand for space heating have been investigated: (i) thermal quality of buildings; (ii) consumer behavior; (iii) heating degree days; (iv) building type (single- or multi-family dwellings). The result of this investigation provides evidence of a rebound-effect of about 15 to 30% due to building retrofit. This leads to the conclusion that energy savings achieved in practice (and straightforward the reduction in CO{sub 2} emissions) due to energy conservation measures will be lower than those calculated in engineering conservation studies. Straightforward, the most important conclusions for energy policy makers are: (i) Standards, building codes, respectively, are important tools to increase the thermal quality of new buildings; and (ii) Due to prevailing low energy prices, a triggering tool has to be implemented which may be rebates or loans. (orig.)

  6. Effect of warm air supplied facially on occupants' comfort

    DEFF Research Database (Denmark)

    Kaczmarczyk, J.; Melikov, Arsen Krikor; Sliva,, D.

    2010-01-01

    was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K...... (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity...... and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend...

  7. The potential demand for bioenergy in residential heating applications (bio-heat) in the UK based on a market segment analysis

    International Nuclear Information System (INIS)

    Jablonski, S.; Pantaleo, A.; Bauen, A.; Pearson, P.; Panoutsou, C.; Slade, R.

    2008-01-01

    How large is the potential demand for bio-heat in the UK? Whilst most research has focused on the supply of biomass for energy production, an understanding of the potential demand is crucial to the uptake of heat from bioenergy. We have designed a systematic framework utilising market segmentation techniques to assess the potential demand for biomass heat in the UK. First, the heat market is divided into relevant segments, characterised in terms of their final energy consumption, technological and fuel supply options. Second, the key technical, economic and organisational factors that affect the uptake of bioenergy in each heat segment are identified, classified and then analysed to reveal which could be strong barriers, which could be surmounted easily, and for which bioenergy heat represents an improvement compared to alternatives. The defined framework is applied to the UK residential sector. We identify provisionally the most promising market segments for bioenergy heat, and their current levels of energy demand. We find that, depending on the assumptions, the present potential demand for bio-heat in the UK residential sector ranges between 3% (conservative estimate) and 31% (optimistic estimate) of the total energy consumed in the heat market. (author)

  8. Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.N.

    1997-11-01

    This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

  9. Gas-heating alternatives to the residential electric heat pump. Gas Appliance Technology Center 1987 program. Topical report for Work Area 1.1, October 1989-March 1990

    International Nuclear Information System (INIS)

    Haas, C.

    1990-05-01

    The characteristics of electric heat pumps are described. Options are defined and assessed for utilizing gas heating in conjunction with existing residential electric heat pumps. These options include gas heat introduced into the refrigeration circuit, a flue gas-heated tube bank in the air supply duct, and a hot-water-to-air coil in the supply duct. Economics are presented for conversion of a residence's total space and water heating from electric to gas in New York City and Atlanta. Potential marketing strategies are discussed, and potential gas sales volumes from conversions are estimated. The study concludes that the use of gas water heating coupled with a hydronic coil in the supply ductwork from the air handler is the most advantageous option for the gas industry

  10. Roadmaps to Transition Countries to 100% Clean, Renewable Energy for All Purposes to Curtail Global Warming, Air Pollution, and Energy Risk

    Science.gov (United States)

    Jacobson, Mark Z.

    2017-10-01

    Solving the problems of global warming, air pollution, and energy security requires a massive effort by individuals, communities, businesses, nonprofits, and policy makers around the world. The first step in that process is to have a plan. To that end, roadmaps to transition 139 countries of the world to 100% clean, renewable wind, water, and solar power for all energy purposes (electricity, transportation, heating, cooling, industry, agriculture, forestry, and fishing) by 2050, with 80% by 2030, have been developed. The evolution, characteristics, and impacts to date of these plans are briefly described.

  11. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  12. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  13. Simulation and optimisation of a ground source heat pump with different ground heat exchanger configurations for a single-family residential house

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low-temperature h....... For the studied geographical location, passive cooling by bypassing the heat pump and using only the ground heat exchanger can provide acceptable room temperatures.......In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low......-temperature heating and high-temperature cooling system. The present work evaluates the performance in relation to thermal comfort and energy consumption of a GSHP with different GHE concepts. The different configurations are analyzed being part of the energy supply system of a low-energy residential house...

  14. Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency

    International Nuclear Information System (INIS)

    Reames, Tony Gerard

    2016-01-01

    Fuel poverty, the inability of households to afford adequate energy services, such as heating, is a major energy justice concern. Increasing residential energy efficiency is a strategic fuel poverty intervention. However, the absence of easily accessible household energy data impedes effective targeting of energy efficiency programs. This paper uses publicly available data, bottom-up modeling and small-area estimation techniques to predict the mean census block group residential heating energy use intensity (EUI), an energy efficiency proxy, in Kansas City, Missouri. Results mapped using geographic information systems (GIS) and statistical analysis, show disparities in the relationship between heating EUI and spatial, racial/ethnic, and socioeconomic block group characteristics. Block groups with lower median incomes, a greater percentage of households below poverty, a greater percentage of racial/ethnic minority headed-households, and a larger percentage of adults with less than a high school education were, on average, less energy efficient (higher EUIs). Results also imply that racial segregation, which continues to influence urban housing choices, exposes Black and Hispanic households to increased fuel poverty vulnerability. Lastly, the spatial concentration and demographics of vulnerable block groups suggest proactive, area- and community-based targeting of energy efficiency assistance programs may be more effective than existing self-referral approaches. - Highlights: • Develops statistical model to predict block group (BG) residential heating energy use intensity (EUI), an energy efficiency proxy. • Bivariate and multivariate analyses explore racial/ethnic and socioeconomic relationships with heating EUI. • BGs with more racial/ethnic minority households had higher heating EUI. • BGs with lower socioeconomics had higher heating EUI. • Mapping heating EUI can facilitate effective energy efficiency intervention targeting.

  15. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  16. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  17. Analysis of heat source selection for residential buildings in rural areas

    Directory of Open Access Journals (Sweden)

    Szul Tomasz

    2018-01-01

    Full Text Available The research aiming to check whether the output of currently installed boilers matches the use requirements together with estimation of their energy efficiency was carried out on a group of 84 single-family residential buildings located in rural areas. Heating and hot water energy needs were calculated for each building in order to determine the use requirements. This enabled verification whether the currently installed boilers match the actual use requirements in the buildings. Based on the calculations it was determined that the designed average boiler output in the group of buildings subject to analysis is 15.7 kW, whereas the mean rated output capacity of boilers installed therein is 25.4 kW. On average, the output capacity of the installed boilers exceeds the use requirements for the buildings by 60%. To calculate the energy efficiency of boilers, the mean annual boiler output capacity use coefficient was determined. For boilers selected on the basis of standard calculations, the mean coefficient is 0.47. For boilers currently in use it is 0.31, less than the above figure. The above calculations show that if boilers were correctly selected in compliance to the building needs, then the average estimated seasonal efficiency of 65% would be feasible. However, in the current state the achievable efficiency is approx. 55%.

  18. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  19. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  20. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  1. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  2. MICROBIOLOGICAL CHARACTERISTICS OF THE AIR BLOWN BY WARM AIR HAND DRYERS

    Directory of Open Access Journals (Sweden)

    Recai OÐUR; Omer Faruk TEKBAS; Osman HANCI; Umut OZCAN

    2005-02-01

    Full Text Available The aim of the study was to determine the microbiological characteristics of air blown from warm air hand dryers, and to compare findings with the microbiological characteristics of indoor air in which the dryer settled. Air samples was taken from different public places (shopping centers, restaurants and hospitals and investigated for total viable counts, coagulase negative Staphylococcus, E. Coli, Staphylococcus aureus and enteric pathogens. There were differences between sampling indoor places for some of the microorganisms, but all of the air samples taken from dryers contained more microorganisms than indoor air, and the differences between hand dryers and indoor air were statistically significant (p<0.05 except for enteric pathogens. As a result it could be said that warm air hand dryers could be microbiological contamination sources in restrooms or the other places that they are used. [TAF Prev Med Bull 2005; 4(1.000: 1-7

  3. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  4. Effect of Air Cleaning Technologies in Conjunction With the Use of Rotary Heat Exchangers in Residential Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Bergsøe, Niels Christian; Ekberg, Lars

    2013-01-01

    This study is part of a research project concerning the possibilities of applying efficient air cleaning technologies using rotary heat exchanger in residential buildings. The purpose of this project was to identify and adapt new air-cleaning technologies for implementation in HVAC systems...... with rotary air-to-air heat exchangers. For this purpose, a mechanical filter with low pressure drop and a 4 cm thick activated carbon filter were selected for testing in a laboratory environment. The measurements included testing of the filters, separately and combined, in a ductwork to study the efficiency...

  5. Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications

    International Nuclear Information System (INIS)

    Cappa, Francesco; Facci, Andrea Luigi; Ubertini, Stefano

    2015-01-01

    In this paper we compare the technical and economical performances of a high temperature proton exchange membrane fuel cell with those of an internal combustion engine for a 10 kW combined heat and power residential application. In a view of social innovation, this solution will create new partnerships of cooperating families aiming to reduce the energy consumption and costs. The energy system is simulated through a lumped model. We compare, in the Italian context, the total daily operating cost and energy savings of each system with respect to the separate purchase of electricity from the grid and production of the thermal energy through a standard boiler. The analysis is carried out with the energy systems operating with both the standard thermal tracking and an optimized management. The latter is retrieved through an optimization methodology based on the graph theory. We show that the internal combustion engine is much more affected by the choice of the operating strategy with respect to the fuel cell, in terms long term profitability. Then we conduct a net present value analysis with the aim of evidencing the convenience of using a high temperature proton exchange membrane fuel cell for cogeneration in residential applications. - Highlights: • Fuel cells are a feasible and economically convenient solution for residential CHP. • Control strategy is fundamental for the economical performance of a residential CHP. • Flexibility is a major strength of the fuel cell CHP.

  6. Heating and cooling energy demand and related emissions of the German residential building stock under climate change

    International Nuclear Information System (INIS)

    Olonscheck, Mady; Holsten, Anne; Kropp, Juergen P.

    2011-01-01

    The housing sector is a major consumer of energy. Studies on the future energy demand under climate change which also take into account future changes of the building stock, renovation measures and heating systems are still lacking. We provide the first analysis of the combined effect of these four influencing factors on the future energy demand for room conditioning of residential buildings and resulting greenhouse gas (GHG) emissions in Germany until 2060. We show that the heating energy demand will decrease substantially in the future. This shift will mainly depend on the number of renovated buildings and climate change scenarios and only slightly on demographic changes. The future cooling energy demand will remain low in the future unless the amount of air conditioners strongly increases. As a strong change in the German energy mix is not expected, the future GHG emissions caused by heating will mainly depend on the energy demand for future heating. - Highlights: → The future heating energy demand of German residential buildings strongly decreases. → Extent of these changes mainly depends on the number of renovated buildings. → Demographic changes will only play a minor role. → Cooling energy demand will remain low in future but with large insecurities. → Germany's 2050 emission targets for the building stock are ambitious.

  7. Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: Key economic drivers

    Science.gov (United States)

    Hawkes, Adam; Leach, Matthew

    The ability of combined heat and power (CHP) to meet residential heat and power demands efficiently offers potentially significant financial and environmental advantages over centralised power generation and heat-provision through natural-gas fired boilers. A solid oxide fuel cell (SOFC) can operate at high overall efficiencies (heat and power) of 80-90%, offering an improvement over centralised generation, which is often unable to utilise waste heat. This paper applies an equivalent annual cost (EAC) minimisation model to a residential solid oxide fuel cell CHP system to determine what the driving factors are behind investment in this technology. We explore the performance of a hypothetical SOFC system—representing expectations of near to medium term technology development—under present UK market conditions. We find that households with small to average energy demands do not benefit from installation of a SOFC micro-CHP system, but larger energy demands do benefit under these conditions. However, this result is sensitive to a number of factors including stack capital cost, energy import and export prices, and plant lifetime. The results for small and average dwellings are shown to reverse under an observed change in energy import prices, an increase in electricity export price, a decrease in stack capital costs, or an improvement in stack lifetime.

  8. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  9. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  10. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  11. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    Science.gov (United States)

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.

  12. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  13. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  14. The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels

    Energy Technology Data Exchange (ETDEWEB)

    Harkreader, S.A.; Hattrup, M.P.

    1988-09-01

    In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

  15. Heat Release Rate of an Open Kitchen Fire of Small Residential Units in Tall Buildings

    OpenAIRE

    Chow, W.K.

    2014-01-01

    Many small units of area less than 30 m2 in residential buildings over 200 m tall are equipped with open kitchens in Asia, including Hong Kong. Fire safety provisions of these kitchens are determined by performance-based design (PBD). In most PBD projects, only the spread of smoke from the kitchen on fire to the outside was commonly studied. However, a fire load survey in Hong Kong indicated large quantities of combustibles are stored in residential units. Cooking oil was found to be ignited ...

  16. Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties

    International Nuclear Information System (INIS)

    Protopapadaki, Christina; Saelens, Dirk

    2017-01-01

    Highlights: • Comprehensive method includes variability in building and feeder characteristics. • Detailed, 10-min, Modelica-based simulation of buildings, heat pumps and networks. • Overloading and voltage issues appear from 30% heat pumps in rural Belgian feeders. • Analysis of load profiles reveals great impact of heat pump back-up heaters. • High correlation of building neighborhood properties with grid impact indicators. - Abstract: Heating electrification powered by distributed renewable energy generation is considered among potential solutions towards mitigation of greenhouse gas emissions. Roadmaps propose a wide deployment of heat pumps and photovoltaics in the residential sector. Since current distribution grids are not designed to accommodate these loads, potential benefits of such policies might be compromised. However, in large-scale analyses, often grid constraints are neglected. On the other hand, grid impact of heat pumps and photovoltaics has been investigated without considering the influence of building characteristics. This paper aims to assess and quantify in a probabilistic way the impact of these technologies on the low-voltage distribution grid, as a function of building and district properties. The Monte Carlo approach is used to simulate an assortment of Belgian residential feeders, with varying size, cable type, heat pump and PV penetration rates, and buildings of different geometry and insulation quality. Modelica-based models simulate the dynamic behavior of both buildings and heating systems, as well as three-phase unbalanced loading of the network. Additionally, stochastic occupant behavior is taken into account. Analysis of neighborhood load profiles puts into perspective the importance of demand diversity in terms of building characteristics and load simultaneity, highlighting the crucial role of back-up electrical loads. It is shown that air-source heat pumps have a greater impact on the studied feeders than PV, in terms

  17. Heat supply systems using natural gas in the residential sector: The case of the agglomeration of Seoul

    International Nuclear Information System (INIS)

    Park, Hi-Chun; Kim, Hoseok

    2008-01-01

    Combined heat and power (CHP) and district heating (DH) promotion policies are based on the assumption of high energy efficiencies. In the last two decades, however, there has been a big increase in energy efficiencies of combined-cycle gas power plants (CCs) including CHPs and gas-condensing boilers. This study tries to verify the validity of the assumption of high energy efficiency of DH. The experience in the agglomeration of Seoul shows that DH in combination with large modern CHPs is not more energy efficient but substantially more expensive compared to individual gas heating by efficient condensing boilers in combination with CCs. We argue that the Korean government should review its CHP/DH support programs and abandon the so-called heat supply monopoly for DH operators in newly developed residential areas. Such a policy intervention only distorts the space heating market and wastes valuable financial resources. Furthermore, the public should be properly informed on energy efficiency as well as energy- and system-related costs of various heat supply systems. In the light of the present improvements in the performance of gas-condensing boilers and CCs, the validity of the assumption of high energy efficiency of CHP/DH in other countries has to be reviewed

  18. Energy flexibility of residential buildings using short term heat storage in the thermal mass

    DEFF Research Database (Denmark)

    Dreau, Jerome Le; Heiselberg, Per Kvols

    2016-01-01

    Highlights •Two residential buildings (80's and passive house) with two emitters (radiator, UH). •Different modulations of the set-point (upward/downward, duration, starting time). •Large differences between the 80s and the passive house, influence of the emitter. •Evaluation of the flexibility...

  19. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  20. Fiscal and tax policy support for energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Li Dongyan

    2009-01-01

    Energy efficiency retrofit for existing residential buildings (EERERB) in China's northern heating region is an important component of the national energy strategy. The main content and related subject in EERERB performance is the basis of understanding and developing targeted policies. So, this paper designed the content system of EERERB. And then, provided a cost-benefit analysis on related subjects, assessed the government's function in EERERB, and come to the conclusion that the Chinese government should increase fiscal fund investment and implement more fiscal and tax incentive policies. Moreover, in view of China's current policy, which lacks long-term mechanism and flexibility, this paper proposed specific policy recommendations, including clarifying the government's corresponding responsibilities at all levels and increasing the intensity of the central government's transfer payments. It further proposed targeted financial and tax policies for supporting and encouraging heating enterprises and owners, as well as policies to cultivate energy-saving service markets and to support the ESCO.

  1. Pattern analysis and suggestion of energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Lv Shilei; Wu Yong; Sun Jinying

    2009-01-01

    In China, Energy Efficiency Retrofit for Existing Residential Buildings (EERFERB) is faced with a fast development status. The Central Government decided to prompt the retrofit of 1.5x10 8 m 2 existing residential buildings in China's northern heating region during the '11th Five-Years Plan'. But, at present, the relative incentive policies and measurements are very insufficient. Especially, on the aspect of the retrofit pattern about the organization, retrofit content, investing and financing mode, the policy and management and other factors, no existing successful one can be spreaded into the whole northern heating region. This research not only analyzed the foreign advanced methods, drew lessons from their retrofit in Germany and Poland, but contrasted and analyzed energy efficiency retrofit demonstrations from Harbin, Tianjin, Tangshan and Baotou in China to get our domestic successful patterns and experience. Finally, some recommended retrofit patterns are presented, which can be applied for the instruction and decision-making for the Chinese local governments.

  2. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  3. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  4. Use of residential wood heating in a context of climate change: a population survey in Québec (Canada

    Directory of Open Access Journals (Sweden)

    Valois Pierre

    2008-05-01

    Full Text Available Abstract Background Wood heating is recommended in several countries as a climate change (CC adaptation measure, mainly to increase the autonomy of households during power outages due to extreme climatic events. The aim of this study was to examine various perceptions and individual characteristics associated with wood heating through a survey about CC adaptations. Methods A telephone survey (n = 2,545 of adults living in the southern part of the province of Québec (Canada was conducted in the early fall season of 2005. The questionnaire used closed questions and measured the respondents' beliefs and current adaptations about CC. Calibration weighting was used to adjust the data analysis for the respondent's age and language under stratified sampling based on health regions. Results More than three out of four respondents had access to a single source of energy at home, which was mainly electricity; 22.2% combined two sources or more; 18.5% heated with wood occasionally or daily during the winter. The prevalence of wood heating was higher in the peripheral regions than in the more urban regions, where there was a higher proportion of respondents living in apartments. The prevalence was also higher with participants completely disagreeing (38.5% with the eventual prohibition of wood heating when there is smog in winter, compared to respondents somewhat disagreeing (24.2% or agreeing (somewhat: 17.5%; completely: 10.4% with the adoption of this strategy. It appears that the perception of living in a region susceptible to winter smog, smog warnings in the media, or the belief in the human contribution to CC, did not influence significantly wood heating practices. Conclusion Increased residential wood heating could very well become a maladaptation to climate change, given its known consequences on winter smog and respiratory health. It would thus be appropriate to implement a long-term national program on improved and controlled residential wood

  5. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  6. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhen

    2018-01-01

    Full Text Available In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  7. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  8. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  9. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  10. Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building

    Energy Technology Data Exchange (ETDEWEB)

    Thiers, Stephane; Aoun, Bernard; Peuportier, Bruno [MINES ParisTech, CEP - Centre Energetique et Procedes, 60 Boulevard St Michel, 75272 Paris Cedex 06 (France)

    2010-06-15

    Cogeneration provides heat and power in a more efficient way than separate production. Micro-cogeneration (micro-CHP) is an emerging solution for the improvement of energy and environmental assessments of residential buildings. A wood pellet Stirling engine micro-CHP unit has been studied in order to characterize its annual performance when integrated to a building. First, through a test bench experiment, both transient and steady state behaviors of the micro-CHP unit have been characterized and modeled. Then a more complete model representing a hot water and heating system including the micro-CHP unit and a stratified storage tank has been carried out. This model has been coupled to a building model. A sensitivity analysis by simulation shows that the dimensioning of different elements of the system strongly influences its global energy performance. (author)

  11. Addressing Global Warming, Air Pollution, Energy Security, and Jobs with Roadmaps for Changing the All-Purpose Energy Infrastructure of the 50 United States

    Science.gov (United States)

    Jacobson, M. Z.

    2014-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of the 50 United States to those powered by 100% wind, water, and sunlight (WWS) for all purposes, namely electricity, transportation, industry, and heating/cooling, after energy efficiency measures have been accounted for. The plans call for all new energy to be WWS by 2020, ~80% conversion of existing energy by 2030, and 100% by 2050 through aggressive policy measures and natural transition. Resource availability, footprint and spacing areas required, jobs created versus lost, energy costs, avoided costs from air pollution mortality and morbidity and climate damage, and methods of ensuring reliability of the grid are discussed. Please see http://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html

  12. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Science.gov (United States)

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  13. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  14. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    International Nuclear Information System (INIS)

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys

  15. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  16. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  17. Decreasing of energy consumption for space heating in existing residential buildings

    International Nuclear Information System (INIS)

    Stamov, S.; Zlateva, M.; Gechkov, N.

    2000-01-01

    An analysis is for the technical possibilities for reducing the energy consumption in existing buildings by means of the heat control and measurement. The basic performances of the heat capacity control methods, of the hierarchy structure of the control and of the heat measurement technologies are presented. This paper also presents the results from the long-term investigation of energy consumption for heating. The results area consist of three typical and uniform buildings in the city of Kazanlak (Bulgaria). The outcome of the investigation provides a valuable basis for future decisions to be made concerning reconstruction of heating installations and enables the results to be transferred. (Authors)

  18. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham

    2018-01-01

    The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible...... heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84....... magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...... numerical study, this article demonstrates for the first time the possibility to utilize this novel heat pump in a building. This device can be integrated in a single hydronic loop including a ground source heat exchanger and a radiant under-floor heating system. At maximum capacity, this magnetocaloric...

  19. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  20. Physical principle and engineering features of the deep pool reactor for residential heating

    International Nuclear Information System (INIS)

    Shi Gong; Zhao Zhaoyi; Guo Jingren; Tian Jiafu

    1999-01-01

    The use of nuclear energy for low temperature heating is confronted with challenges of safety and economy. The deep pool reactor, a low temperature heating reactor based on novel design principles, has been studied in detail. Results show that it has excellent safety and economic features, and is very suitable for low temperature heating purposes. The whole heating system including the nuclear reactor will be a simple and easy engineering system with the characteristics of reliability, safety and economy because the system and all its devices are based on low temperature and ordinary pressure

  1. The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples

    Czech Academy of Sciences Publication Activity Database

    Franková, A.; Šmíd, J.; Bernardos, A.; Finkousová, A.; Maršík, Petr; Novotný, D.; Legarová, V.; Půlkrábek, J.; Klouček, P.

    2016-01-01

    Roč. 68, OCT (2016), s. 62-68 ISSN 0956-7135 R&D Projects: GA MŠk(CZ) LD13013 Institutional support: RVO:61389030 Keywords : Essential oil vapor phase * Antifungal * Warm air flow Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.496, year: 2016

  2. Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2009-01-01

    In this study, thermodynamic performance of R432A and HCFC22 is measured in a heat pump bench tester under both air-conditioning and heat pumping conditions. R432A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R432A also offers a similar vapor pressure to HCFC22 for 'drop-in' replacement. Test results showed that the coefficient of performance and capacity of R432A are 8.5-8.7% and 1.9-6.4% higher than those of HCFC22 for both conditions. The compressor discharge temperature of R432A is 14.1-17.3 deg. C lower than that of HCFC22 while the amount of charge for R432A is 50% lower than that of HCFC22 due to its low density. Overall, R432A is a good long term 'drop-in' environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties

  3. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2008-01-01

    In this study, thermodynamic performance of R433A and HCFC22 is measured in a heat pump bench tester under air-conditioning and heat pumping conditions. R433A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R433A also offers a similar vapor pressure to HCFC22 for possible 'drop-in' replacement. Test results showed that the coefficient of performance of R433A is 4.9-7.6% higher than that of HCFC22 while the capacity of R433A is 1.0-5.5% lower than that of HCFC22 for both conditions. The compressor discharge temperature of R433A is 22.6-27.9 deg. C lower than that of HCFC22 while the amount of charge for R433A is 57.0-57.7% lower than that of HCFC22 due to its low density. Overall, R433A is a good long term environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties with minor adjustments

  4. Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany

    International Nuclear Information System (INIS)

    Michelsen, Carl Christian; Madlener, Reinhard

    2016-01-01

    The replacement of outdated and inefficient fossil fuel residential heating systems (RHS) by more efficient and less CO_2-intensive appliances primarily based on renewable energy sources is an important pillar for the transition to a cleaner and more sustainable energy system. This paper empirically investigates drivers and barriers behind homeowners' decisions to switch from a fossil fuel to a renewable RHS in Germany. For this purpose, we draw on data from a 2010 questionnaire survey among owners of existing single-family and duplex houses in Germany that had received a financial grant to install an RHS (i.e. condensing boiler with solar thermal support, heat pump or wood pellet boiler). We show that environmental protection, a lower dependency on fossil fuels, and a higher degree of RHS-related knowledge are key drivers. In contrast, the perceived difficulty of getting used to the system and a misunderstanding of its principal functioning are obstacles for the heat pump. For the wood pellet boiler, perceived barriers include the low usability, the labor-intensive operation, and the systems' fault liability. Hence, a higher replacement rate requires the willingness to relinquish old habits and perceptions of how an RHS works and operates. - Highlights: • Homeowners' decisions to switch from a fossil fuel to a renewable RHS. • Data from a questionnaire survey among owners of existing homes in Germany. • Environmental protection, lower dependency on fossil fuels, and knowledge as drivers. • Old habits and perceptions of how an RHS works and operates as principal barriers.

  5. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  6. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...... for space heating without insulation over the lifespan of a building. When the energy sources for insulation production are similar to the energy mix that supplies heat, this logic is valid to very high level of insulation. However, in Denmark, as well as many other countries this assumption is becoming...... increasingly incorrect. Given the generally long service life of buildings, the significance of future energy mixes, which are expected/intended to have a smaller environmental impact, can be great. In this paper, a reference house is used to assess the life cycle environmental impacts of mineral wool...

  7. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  8. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  9. Cluster analysis of residential heat load profiles and the role of technical and household characteristics

    DEFF Research Database (Denmark)

    Carmo, Carolina; Christensen, Toke Haunstrup

    2016-01-01

    of the temporality of the energy demand is needed. This paper contributes to this by focusing on the daily load profiles of energy demand for heating of Danish dwellings with heat pumps. Based on hourly recordings from 139 dwellings and employing cluster and regression analysis, the paper explores patterns...... (typologies) in daily heating load profiles and how these relate to socio-economic and technical characteristics of the included households. The study shows that the load profiles vary according to the external load conditions. Two main clusters were identified for both weekdays and weekends and across load...

  10. Check and evaluation system on heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of china based on multi-index comprehensive evaluation method

    International Nuclear Information System (INIS)

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    Heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China is organized and implemented in a large scale by local government in 15 provinces of North China with the unified guidance and control of central government. Firstly, this paper introduced the target of energy-saving reformation of existing residential buildings in North China and the importance of check and evaluation on this target, then pointed out the necessity of building up an evaluation system for energy-saving retrofit. According to the analytical hierarchy process (AHP), three-grade evaluation system was built up for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China. Also, based on multi-index comprehensive evaluation method combined with life cycle assessment (LCA) theory, post-evaluation thought and successful degree evaluation method, a mathematical model was established. Finally, a set of scientific method for evaluating heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China systematically, scientifically, comprehensively and objectively was created.

  11. Field evaluation and assessment of thermal energy storage for residential space heating

    Science.gov (United States)

    Hersh, H. N.

    1982-02-01

    A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.

  12. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  13. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  14. BPM Motors in Residential Gas Furnaces: What are the Savings?

    OpenAIRE

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This p...

  15. Influence of occupant's heating set-point preferences on indoor environmental quality and heating demand in residential buildings

    DEFF Research Database (Denmark)

    Fabi, Valentina; Corgnati, Stefano Paolo; Andersen, Rune Korsholm

    2013-01-01

    of energy consumption. The aim was to compare the obtained results with a traditional deterministic use of the simulation program. Based on heating set-point behavior of 13 Danish dwellings, logistic regression was used to infer the probability of adjusting the set-point of thermostatic radiator valves...

  16. Impacts of residential heating intervention measures on air quality and progress towards targets in Christchurch and Timaru, New Zealand

    Science.gov (United States)

    Scott, Angelique J.; Scarrott, Carl

    2011-06-01

    Elevated wintertime particulate concentrations in the New Zealand cities of Christchurch and Timaru are mostly attributed to the burning of wood and coal for residential heating. A carrot-and-stick approach was adopted for managing air quality in Christchurch, where strict intervention measures were introduced together with a residential heater replacement programme to encourage householders to change to cleaner forms of heating. A similar approach was only recently implemented for Timaru. This paper presents the results of a partial accountability analysis, where the impact of these measures on the target source, PM 10 emissions, and PM 10 concentrations are quantified. A statistical model was developed to estimate trends in the concentrations, which were tested for significance after accounting for meteorological effects, and to estimate the probability of meeting air quality targets. Results for Christchurch and Timaru are compared to illustrate the impacts of differing levels of intervention on air quality. In Christchurch, approximately 34,000 (76%) open fires and old solid fuel burners were replaced with cleaner heating technology from 2002 to 2009, and total open fires and solid fuel burner numbers decreased by 45%. Over the same time period, estimated PM 10 emissions reduced by 71% and PM 10 concentrations by 52% (maxima), 36% (winter mean), 26% (winter median) and 41% (meteorology-adjusted winter means). In Timaru, just 3000 (50%) open fires and old solid fuel burners were replaced from 2001 to 2008, with total open fire and solid fuel burner numbers reduced by 24%. PM 10 emissions declined by 32%, with low reductions in the PM 10 concentrations (maxima decreased by 7%, winter means by 11% and winter medians by 3%). These findings, supported by the results of the meteorology corrected trend analysis for Christchurch, strongly indicate that the combination of stringent intervention measures and financial incentives has led to substantial air quality

  17. Impact of Urban Heat Island under the Hanoi Master Plan 2030 on Cooling Loads in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Tran Hoang Hai Nam

    2015-01-01

    Full Text Available This study aims to evaluate the influence of urban heat island (UHI under the Hanoi Master Plan 2030 on the energy consumption for space cooling in residential buildings. The weather conditions under the current and future status (master plan condition simulated in the previous study (Trihamdani et al., 2014 were used and cooling loads in all the residential buildings in Hanoi over the hottest month were estimated under the simulated current and future conditions by using the building simulation program, TRNSYS (v17. Three most typical housing types in the city were selected for the simulation. The cooling loads of respective housing types were obtained in each of the districts in Hanoi. The results show that the total cooling loads over June 2010 is approximately 683 Terajoule (TJ under the current status, but it is predicted to increase to 903 TJ under the master plan condition. The increment is largely due to the increase in number of households (203 TJ or 92%, but partially due to the increase in urban temperature, i.e. UHI effect (17 TJ or 8%. The increments in new built-up areas were found to be larger than those in existing built-up areas. The cooling load in apartment is approximately half of that in detached house, which is approximately half of that in row house. Moreover, it was seen that although sensible cooling loads increased with the increase in outdoor temperature, the latent cooling loads decreased due to the decrease in absolute humidity and the increase in air temperature.

  18. Analysis and proposal of implementation effects of heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China in “the 11th Five-Year Plan” period

    International Nuclear Information System (INIS)

    Bao Lingling; Zhao Jing; Zhu Neng

    2012-01-01

    In China, northern heating region contains approximately 6.5 billion m 2 residential building areas accounting for 15% of the total residential living areas of urban and rural. About 70% of the urban residential buildings in north China are high energy consumption buildings. The task of heat metering and energy efficiency retrofit of 0.15 billion m 2 existing residential buildings in northern heating areas of China in “the 11th Five-Year Plan” period was proposed by the Ministry of Housing and Urban–Rural Development (MOHURD) in 2007 and completed in 2010. This paper introduced both central and local governments' efforts on organization, implementation and finance, etc. Then several retrofitting effects involving improving the people's livelihood, mobilizing the enthusiasm of residents for the retrofit and driving the development of relevant industries were presented. Finally, on the basis of analyzing the issues encountered in the progress of the retrofit in the past 4 years, the paper gave some policy proposals on organization system, financing models, reward mechanism, and heating system reformation to help to promote the energy efficiency retrofit in “the 12th Five-Year Plan” period. - Highlights: ► Specific approaches of heat metering and energy efficiency retrofit (HMEER) at central and local level are introduced. ► Main HMEER effects are presented. ► Analyzing several issues encountered in the progress of the HMEER. ► Corresponding proposals are provided.

  19. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  20. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  1. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  2. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham; Filonenko, Konstantin; Heiselberg, Per

    2018-01-01

    magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...

  3. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  4. State of Maine residential heating oil survey: 1995--1996 season summary

    International Nuclear Information System (INIS)

    Elder, B.

    1996-05-01

    In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years' relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine's prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other

  5. Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees.

    Science.gov (United States)

    Dadvand, Payam; Ostro, Bart; Figueras, Francesc; Foraster, Maria; Basagaña, Xavier; Valentín, Antònia; Martinez, David; Beelen, Rob; Cirach, Marta; Hoek, Gerard; Jerrett, Michael; Brunekreef, Bert; Nieuwenhuijsen, Mark J

    2014-07-01

    Maternal residential proximity to roads has been associated with adverse pregnancy outcomes. However, there is no study investigating mediators or buffering effects of road-adjacent trees on this association. We investigated the association between mothers' residential proximity to major roads and term low birth weight (LBW), while exploring possible mediating roles of air pollution (PM(2.5), PM(2.5-10), PM(10), PM(2.5) absorbance, nitrogen dioxide, and nitrogen oxides), heat, and noise and buffering effect of road-adjacent trees on this association. This cohort study was based on 6438 singleton term births in Barcelona, Spain (2001-2005). Road proximity was measured as both continuous distance to and living within 200 m from a major road. We assessed individual exposures to air pollution, noise, and heat using, respectively, temporally adjusted land-use regression models, annual averages of 24-hour noise levels across 50 m and 250 m, and average of satellite-derived land-surface temperature in a 50-m buffer around each residential address. We used vegetation continuous fields to abstract tree coverage in a 200-m buffer around major roads. Living within 200 m of major roads was associated with a 46% increase in term LBW risk; an interquartile range increase in heat exposure with an 18% increase; and third-trimester exposure to PM(2.5), PM(2.5-10), and PM10 with 24%, 25%, and 26% increases, respectively. Air pollution and heat exposures together explained about one-third of the association between residential proximity to major roads and term LBW. Our observations on the buffering of this association by road-adjacent trees were not consistent between our 2 measures of proximity to major roads. An increased risk of term LBW associated with proximity to major roads was partly mediated by air pollution and heat exposures.

  6. Passive Residential Houses with the Accumulation Properties of Ground as a Heat Storage Medium

    Science.gov (United States)

    Ochab, Piotr; Kokoszka, Wanda; Kogut, Janusz; Skrzypczak, Izabela; Szyszka, Jerzy; Starakiewicz, Aleksander

    2017-12-01

    Solar radiation is the primary source of life energy on Earth. The irradiance of the upper atmosphere is about 1360 W/m2, and it is estimated that about 1000 W/m2 reaches the ground. Long-term storage of heat energy is related to the use of a suitable thermal energy carrier. It may be either artificial or natural water tank, or artificial gravel-water tank, or aquifer or soil. It is justified to store the generated energy in large heating systems due to the nature of solar thermal energy. Typically, in such a solution storage space is a large solar collector farm. The reason for this is the proportionally small unit profits, which only in the case of large number of units provides sufficient energy that can be accumulated. It should be noted that Poland, a country located in a temperate and less harsh climate such as Scandinavia and Canada, has a relatively high potential for solar revenue. In the last decade, it has caused mainly small and individual heating installations. However, much of the municipal and industrial economy continues to rely on energy from non-renewable resources. This is due not only to the lack of a high-efficiency alternative to non-renewable energy resources, but also to the thermal state of buildings throughout the country, where old buildings require thermomodernization. This has the effect of both polluting the environment and the occurrence of smog, as well as pollutants in water and soil. This directly affects the occurrence of civilization diseases and other societal health problems. Therefore, the surplus of thermal clean energy that occurs during the spring and summer period should not only be used on a regular basis, but also stored for later winter use. The paper presents the concept of housing estate, which consists of 32 twin housing units. The solid character of buildings consistently refers to passive construction, and the materials meet the requirements for the passive buildings.

  7. Design, construction, and testing of a residential solar heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.S.; Loef, G.O.G.

    1976-06-01

    The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

  8. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  9. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    Science.gov (United States)

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  10. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  11. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  12. Life cycle cost analysis of solar heating and DHW systems in residential buildings

    International Nuclear Information System (INIS)

    Colombo, R.; Gilliaert, D.

    1992-01-01

    Economic Life Cycle Cost Analysis (ELCCA) is an easy and friendly computer program, IBM compatible for economic evaluation of solar energy system which involves comparison of the capital and operating costs of a conventional system. In this section we would like to suggest the ELCCA-PC program as a new tools using life cycle cost analysis for annual and cumulative cash flow methodology that take into account all future expenses. ELCCA-PC program considers fixed and changeable items that are involved in installing the equipment such as interest of money borrowed, property and income taxes, current energy cost for electricity operating system, maintenance, insurance and fuel costs and other economic operating expenses. Moreover fraction of annual heating load supplied from solar system is considered in this analysis. ECC-PC program determines the yearly outflow of money over the period of an economic analysis that can be converted to a series of equal payments in today's money

  13. Experimental study of air distribution and ventilation effectiveness in a room heated by warm air and/or floor heating

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.; Krajčík, Michal

    2010-01-01

    The levels of required ventilation depend on the criteria for indoor air quality in existing standards and guidelines. On top of that, the resulting ventilation in air changes per hour is depending on the ventilation effectiveness. In the standard CR 1752 the recommended values for ventilation ef...

  14. Micro combined heat and power operating on renewable energy for residential building

    International Nuclear Information System (INIS)

    Aoun, Bernard

    2008-01-01

    The building sector consumes more than 43% of the total national energy consumption in France leading to more than 25% of CO 2 emissions associated to this energy consumption. A large number of options exist to limit CO 2 emissions and to improve the performance of buildings. One of these options is developed in this thesis, the use of renewable energies (solar and biomass) in combined production of heat and power. Conventional systems of combined heat and power production are briefly analyzed. The major part of this work has been focused on the development of a micro-CHP system based on an organic Rankine cycle operating on renewable energies intermittent and non-intermittent (solar and wood). The working fluids have been analyzed to allow reaching high thermodynamic performance. The different promising technologies, for each components of the system are identified, depending on the working fluid. A special test bench has been designed and realized to test and characterize an oil-free vapor scroll expander suitable for our application. The different components have been sized using computerized tools developed for the modeling of the Organic Rankine cycle. A dynamic simulation tool has been developed to simulate the annual performance of the micro-CHP system operating under different climate conditions and thermal loads. Results show that the micro-CHP system could save more than 40% of the primary energy consumption and up to 60% of CO 2 emissions. The Levelized electricity cost has been calculated using economic analysis; results show that the electricity cost (50 c-euros/kWhel) is still high compared to other technologies. (author)

  15. Two-story residence with solar heating--Newman, Georgia

    Science.gov (United States)

    1981-01-01

    Report evaluates performance of warm-air collector system for 11 month period and provides operation and maintenance information. System consists of 14 warm air collectors, rock-storage bin, air handler, heat exchangers, hot-water preheat tank, associated controls, plumbing, and air ducting. Average building temperature was maintained at 72 F (22 C); solar equipment provided 47 percent of space-heating requirement.

  16. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and

  17. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the

  18. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  19. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Deniz, E-mail: deniz.sari@tubitak.gov.tr [TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470 Kocaeli (Turkey); Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey)

    2014-08-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO{sub 2}), nitrogen dioxides (NO{sub 2}), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO{sub 2}), nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model.

  20. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    International Nuclear Information System (INIS)

    Sari, Deniz; Bayram, Abdurrahman

    2014-01-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO 2 ), nitrogen dioxides (NO 2 ), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO 2 ), nitrous oxide (N 2 O) and methane (CH 4 ) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model

  1. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  2. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  3. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  4. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency

    Science.gov (United States)

    Bertrand, Amelie; Stefenelli, Giulia; Bruns, Emily A.; Pieber, Simone M.; Temime-Roussel, Brice; Slowik, Jay G.; Prévôt, André S. H.; Wortham, Henri; El Haddad, Imad; Marchand, Nicolas

    2017-11-01

    To reduce the influence of biomass burning on air quality, consumers are encouraged to replace their old woodstove with new and cleaner appliances. While their primary emissions have been extensively investigated, the impact of atmospheric aging on these emissions, including secondary organic aerosol (SOA) formation, remains unknown. Here, using an atmospheric smog chamber, we aim at understanding the chemical nature and quantify the emission factors of the primary organic aerosols (POA) from three types of appliances for residential heating, and to assess the influence of aging thereon. Two, old and modern, logwood stoves and one pellet burner were operated under typical conditions. Emissions from an entire burning cycle (past the start-up operation) were injected, including the smoldering and flaming phases, resulting in highly variable emission factors. The stoves emitted a significant fraction of POA (up to 80%) and black carbon. After ageing, the total mass concentration of organic aerosol (OA) increased on average by a factor of 5. For the pellet stove, flaming conditions were maintained throughout the combustion. The aerosol was dominated by black carbon (over 90% of the primary emission) and amounted to the same quantity of primary aerosol emitted by the old logwood stove. However, after ageing, the OA mass was increased by a factor of 1.7 only, thus rendering OA emissions by the pellet stove almost negligible compared to the other two stoves tested. Therefore, the pellet stove was the most reliable and least polluting appliance out of the three stoves tested. The spectral signatures of the POA and aged emissions by a High Resolution - Time of Flight - Aerosol Mass Spectrometer (Electron Ionization (EI) at 70 eV) were also investigated. The m/z 44 (CO2+) and high molecular weight fragments (m/z 115 (C9H7+), 137 (C8H9O2+), 167 (C9H11O3+) and 181 (C9H9O4+, C14H13+)) correlate with the modified combustion efficiency (MCE) allowing us to discriminate further

  5. Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area

    Directory of Open Access Journals (Sweden)

    Jukka Heinonen

    2015-08-01

    Full Text Available The purpose of this paper is to compare, from an urban planning perspective, the choice between combined heat and power (CHP and a ground-source heat pump (HP as the energy systems of a new residential area in the light of the uncertainty related to the assessments. There has been a strong push globally for CHP due to its climate mitigation potential compared to separate production, and consequently it is often prioritized in planning without questioning. However, the uncertainties in assessing the emissions from CHP and alternative options in a certain planning situation make it very difficult to give robust decision guidelines. In addition, even the order of magnitude of the climate impact of a certain plan is actually difficult to assess robustly. With a case study of the new residential development of Härmälänranta in Tampere, Finland, we show how strongly the uncertainties related to (1 utilizing average or marginal electricity as the reference; (2 assigning emissions intensities for the production; and (3 allocating the emissions from CHP to heat and electricity affect the results and lead to varying decision guidelines. We also depict how a rather rarely utilized method in assigning the emissions from CHP is the most robust for planning support.

  6. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...

  7. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  8. Determining of the optimal design of a closed loop solar dual source heat pump system coupled with a residential building application

    International Nuclear Information System (INIS)

    Chargui, Ridha; Awani, Sami

    2017-01-01

    Graphical abstract: Operation of the system in heating mode. - Highlights: • We examine the control function in the level of heat pump and collector. • We examine the temporal evolution of the temperature and energy in the all components of the system. • A better system with a significant energy saving was achieved. • The system gives good results in all operating states. - Abstract: This work highlights the results on the coupling of a flat plate collector coupled with a dual source heat pump system and a heat exchanger for building application. The novelty point of this work is to integrate a heat exchanger in the floor and in the interstitial space of the residential house roof in order to minimize the consumed electric power. This technology defining the operational state of the system has been developed and adapted in the present investigation by adopting the Tunisian climate. The dimensioning of this installation for different component makes it possible to operate the hot water heating systems ecologically. Hence, our objective is to ameliorate the performance of the system using the solar radiation converted to the thermal energy in the level of the flat plate collector and the heat pump. A several experimental data have been added for realizing a numerical model based on TRNSYS software. From this point of view, a numerical model was improved in building application using a 150 m 2 as surface area of the building which consists of two floor zones. The dual source heat pump was coupled with a ground heat exchanger (GHE) with 0.2 m of depth. The distance between two consecutive tubes is 0.3 m and the surface area of the solar collector is 8 m 2 . The simulation results have been obtained for 48 h operation in January and all inputs data of the system have been predicted during 48 h and 6 months of heating in Tunisia. It was demonstrated that the COP of the dual source heat pump was enhanced with the increase of the solar radiation during the typical

  9. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2008-01-01

    Innovation and diffusion of renewable energy technologies play a major role in mitigation of climate change. In Sweden replacing electric and oil heating systems with innovative heating systems such as district heating, heat pumps and wood pellet boilers in detached homes is a significant mitigation option. Using an adopter-centric approach, we analyzed the influence of investment subsidy on conversion of resistance heaters and oil boilers, and the variation in diffusion pattern of district heating, heat pumps and pellet boilers in Swedish detached homes. Results from questionnaire surveys of 1500 randomly selected homeowners in September 2004 and January 2007 showed that more than 80% of the respondents did not intend to install a new heating system. Hence, about 37% of the homeowners still have electric and oil heating systems. The government investment subsidy was important for conversion from a resistance heater, but not from an oil boiler. This is because homeowners currently replacing their oil boilers are the laggards, while those replacing resistance heaters are the 'early adopters'. Economic aspects and functional reliability were the most important factors for the homeowners when considering a new heating system. There is a variation in the perceived advantages associated with each of the innovative heating systems and therefore, the diffusion patterns of such systems vary. Installers and interpersonal sources were the most important communication channels for information on heating systems

  10. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2008-02-15

    Innovation and diffusion of renewable energy technologies play a major role in mitigation of climate change. In Sweden replacing electric and oil heating systems with innovative heating systems such as district heating, heat pumps and wood pellet boilers in detached homes is a significant mitigation option. Using an adopter-centric approach, we analyzed the influence of investment subsidy on conversion of resistance heaters and oil boilers, and the variation in diffusion pattern of district heating, heat pumps and pellet boilers in Swedish detached homes. Results from questionnaire surveys of 1500 randomly selected homeowners in September 2004 and January 2007 showed that more than 80% of the respondents did not intend to install a new heating system. Hence, about 37% of the homeowners still have electric and oil heating systems. The government investment subsidy was important for conversion from a resistance heater, but not from an oil boiler. This is because homeowners currently replacing their oil boilers are the laggards, while those replacing resistance heaters are the 'early adopters'. Economic aspects and functional reliability were the most important factors for the homeowners when considering a new heating system. There is a variation in the perceived advantages associated with each of the innovative heating systems and therefore, the diffusion patterns of such systems vary. Installers and interpersonal sources were the most important communication channels for information on heating systems. (author)

  11. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    Energy Technology Data Exchange (ETDEWEB)

    Shilei, Lv [School of Environment Science and Technology, Tianjin University, Tianjin 300072 (China); Yong, Wu [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5 x 10{sup 8} m{sup 2} of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested. (author)

  12. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Shilei, Lv; Wu Yong

    2009-01-01

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5x10 8 m 2 of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested.

  13. Impact Analysis of Window-Wall Ratio on Heating and Cooling Energy Consumption of Residential Buildings in Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Qiaoxia Yang

    2015-01-01

    Full Text Available In order to assess the optimal window-wall ratio and the proper glazing type in different air conditioning system operation modes of residential buildings for each orientation in three typical cities in hot summer and cold winter zone: Chongqing, Shanghai, and Wuhan simulation models were built and analyzed using Designer’s Simulation Toolkit (DeST. The study analyzed the variation of annual heating energy demand, annual cooling energy demand, and the annual total energy consumption in different conditions, including different orientations, patterns of utilization of air conditioning system, window-wall ratio, and types of windows. The results show that the total energy consumption increased when the window-wall ratio is also increased. It appears more obvious when the window orientation is east or west. Furthermore, in terms of energy efficiency, low-emissivity (Low-E glass performs better than hollow glass. From this study, it can be concluded that the influence and sensitivity of window-wall ratio on the total energy consumption are related to the operation mode of air conditioning system, the orientation of outside window, and the glazing types of window. The influence of the factors can be regarded as reference mode for the window-wall ratio when designing residential buildings.

  14. The effect of warm air-blowing on the microtensile bond strength of one-step self-etch adhesives to root canal dentin.

    Science.gov (United States)

    Taguchi, Keita; Hosaka, Keiichi; Ikeda, Masaomi; Kishikawa, Ryuzo; Foxton, Richard; Nakajima, Masatoshi; Tagami, Junji

    2018-02-01

    The use of warm air-blowing to evaporate solvents of one-step self-etch adhesive systems (1-SEAs) has been reported to be a useful method. The purpose of this study was to evaluate the effect of warm air-blowing on root canal dentin. Four 1-SEAs (Clearfil Bond SE ONE, Unifil Core EM self-etch bond, Estelink, BeautiDualbond EX) were used. Each 1-SEA was applied to root canal dentin according to the manufacturers' instructions. After the adhesives were applied, solvent was evaporated using either normal air (23±1°C) or warm air (80±1°C) for 20s, and resin composite was placed in the post spaces. The air from the dryer, which could be used in normal- or hot-air-mode, was applied at a distance of 5cm above the root canal cavity in the direction of tooth axis. The temperature of the stream of air from the dryer in the hot-air-mode was 80±1°C, and in the normal mode, 23±1°C. After water storage of the specimens for 24h, the μTBS were evaluated at the coronal and apical regions. The μTBSs were statistically analyzed using three-way ANOVA and Student's t-test with Bonferroni correction (α=0.05). The warm air-blowing significantly increased the μTBS of all 1-SEAs at the apical regions, and also significantly increased the μTBS of two adhesives (Estelink and BeautiDualBond EX) at coronal regions. The μTBS of 1-SEAs to root canal dentin was improved by using warm air-blowing. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    Science.gov (United States)

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  16. R&D of Thermochemical reactor concepts to enable seasonal heat storage of solar energy in residential houses

    NARCIS (Netherlands)

    Zondag, H.A.; Bakker, M.; Schuitema, R.; Bleijendaal, L.P.J.; Cot Gores, J.; Essen, van V.M.; Helden, van W.G.J.

    2009-01-01

    About 30% of the energy consumption in the Netherlands is taken up by residences and offices. Most of this energy is used for heating purposes. In order to reduce the consumption of fossil fuels, it is necessary to reduce this energy use as much as possible by means of insulation and heat recovery.

  17. Effect of warm air supplied facially on occupants' comfort

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, J. [Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Konarskiego 20, PL-44-101 Gliwice (Poland); Melikov, A.; Sliva, D. [Department of Civil Engineering, Technical University of Denmark, International Centre for Indoor Environment and Energy, Nils Koppels Alle, DTU, Building 402, 2800 Lyngby (Denmark)

    2010-04-15

    Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 C and at 26 C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants. (author)

  18. Passive annual heat storage principles in earth sheltered housing, a supplementary energy saving system in residential housing

    Energy Technology Data Exchange (ETDEWEB)

    Anselm, Akubue Jideofor [Green Architecture Department, School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-07-01

    This paper looks through the many benefits of earth not only as a building element in its natural form but as a building mass, energy pack and spatial enclosure which characterized by location, unique physical terrain and climatic factors can be utilized in developing housing units that will provide the needed benefits of comfort alongside the seasons. Firstly the study identifies existing sunken earth houses in the North-west of China together with identifying the characters that formed the ideas behind the choice of going below the ground. Secondly, the study examines the pattern of heat exchange, heat gains and losses as to identify the principles that makes building in earth significant as an energy conservation system. The objective of this, is to relate the ideas of sunken earth home design with such principles as the passive annual heat storage systems (PAHS) in producing houses that will serve as units used to collect free solar heat all summer and cools passively while heating the earth around it and also keeping warm in winter by retrieving heat from the soil while utilizing the free solar heat stored throughout the summer as a year-round natural thermal resource. (author)

  19. Design and engineering of a gas-engine driven heat pump heating station including heat distribution system and utilization of waste heat from an ice rink for the residential area Dorsten - Maria Lindenhof. Planung eines Gasmotor-Waermepumpenheizwerkes mit angeschlossenem Waermeverteilungsnetz und Abwaermenutzung einer Eisenbahn fuer das zentralstaedtische Gebiet 'Maria-Lindenhof' in Dorsten

    Energy Technology Data Exchange (ETDEWEB)

    Huelsemann, R.

    1984-05-01

    A gas-engine driven heat pump heating station including the required heat destribution system and utilization of waste heat from an ice rink to be realized in the residential area Dorsten - Maria Lindenhof. The total heat capacity was to be reached in two stages, corresponding to the progress of the building and housing structure in this specific area: First stage of construction 5,6 MW, final stage of construction 7,6 MW. With regard to the final stage of construction only a relatively small part of the buildings is provided with heating systems designed for supply and return temperatures of 90/70/sup 0/C respectively. The old people's home built in 1980 was already equipped with low temperature heating systems and all buildings still to be built shall be provided with low-temperature systems. As far as old heating systems are concerned, the required measures must be taken to reduce the temperature in the return lines.

  20. The Solutions Project: Educating the Public and Policy Makers About Solutions to Global Warming, Air Pollution, and Energy Security

    Science.gov (United States)

    Jacobson, M. Z.

    2015-12-01

    Three major global problems of our times are global warming, air pollution mortality and morbidity, and energy insecurity. Whereas, policy makers with the support of the public must implement solutions to these problems, it is scientists and engineers who are best equipped to evaluate technically sound, optimal, and efficient solutions. Yet, a disconnect exists between information provided by scientists and engineers and policies implemented. Part of the reason is that scientific information provided to policy makers and the public is swamped out by information provided by lobbyists and another part is the difficulty in providing information to the hundreds of millions of people who need it rather than to just a few thousand. What other ways are available, aside from issuing press releases on scientific papers, for scientists to disseminate information? Three growing methods are through social media, creative media, and storytelling. The Solutions Project is a non-profit non-governmental organization whose goal is to bring forth scientific information about 100% clean, renewable energy plans to the public, businesses, and policy makers using these and related tools. Through the use of social media, the development of engaging internet and video content, and storytelling, the group hopes to increase the dissemination of information for social good. This talk discusses the history and impacts to date of this group and its methods. Please see www.thesolutionsproject.org and 100.org for more information.

  1. Residential space heating with wood burning stoves. Energy efficiency and indoor climate; Boligopvarmning ved braendefyring. Energieffektivitet og indeklima

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Ole Michael; Afshari, A.; Bergsoee, N.C.; Carvalho, R. [Miljoestyrelsen, Copenhagen (Denmark); Aalborg Univ.. Statens Byggeforskningsinstitut, Aalborg (Denmark))

    2012-11-01

    Two issues turn up concerning how to use wood-burning stoves in modern homes. The first is whether wood-burning stoves in future may still act as a genuine heat source, given that new and refurbished single-family houses retain the heat much better than older ones and therefore need less and less energy for space heating. The second issue is whether it will still be possible to use wood-burning stoves in modern houses where the air exchange is controlled by mechanical ventilation or possibly heat recovery. It is a question whether firing techniques can be developed that will work in airtight houses with mechanical ventilation and negative pressure, so that harmful particle emissions can be avoided. To illustrate the first issue, a field study was designed to look carefully at seven modern wood-burning stoves that were set up in six new houses and one older house and investigated, both in terms of firing and heat release. As a background for this part of the study, a heat balance calculation was made for each house. The question is, whether wood-burning stoves will also in the future have a role to play as a heating source. Modern houses grow ever tighter and only need to be supplied with a small quantity of heat. The new Danish Buildings Requirement, 2010 has resulted in a further reduction of 25 % of the energy demand, including the energy supply for heating. However, the new requirements imply that the heating season eventually become so short that a traditional central heating installation becomes superfluous. This means that by using the small amounts of wood cut in gardens and hedgerows of the neighbourhood, a wood-burning stove will, in principle, cover the heating demand. Therefore, the question is rather whether a wood-burning stove is manufactured that can successfully be adapted to new houses. As a consequence of this development, future stoves must be further scaled down in order to meet the heating demand of a modern low-energy house and the stoves must

  2. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    Science.gov (United States)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic

  3. Financial analysis on the proposed renewable heat incentive for residential houses in the United Kingdom: A case study on the solar thermal system

    International Nuclear Information System (INIS)

    Abu-Bakar, Siti Hawa; Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Mallick, Tapas Kumar; McLennan, Campbell; Abdul Rahim, Ruzairi

    2014-01-01

    This short communication paper focuses on the renewable heat incentive (RHI) scheme in the United Kingdom (UK); and in particular, on its implication on domestic installations of solar thermal systems (STSs). First, a short review on the STS in the UK is provided. Then, a detailed description of the RHI is discussed. A financial analysis is presented afterwards, analysing the impact of the RHI scheme on the applicants, in terms of the net present value and the internal rate of return. From the financial analysis it has been found that the RHI scheme for domestic installations is only attractive if a longer period of RHI payment, i.e. 17 years, or a higher RHI rate i.e. £0.32 per kW h is implemented. The current proposal from the UK government is not financially viable, and as a result, it may hinder the penetration of domestic solar thermal systems in the residential sector in the UK. - Highlights: • A short review on solar thermal system (STS) is presented. • The renewable heat incentive (RHI) scheme is discussed. • A financial analysis is evaluated under the RHI scheme in the UK. • The analysis indicates the current proposal is not desirable to consumers

  4. Heat pipes. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The bibliography contains citations concerning the theory, design, fabrication, testing, and operation of heat pipes. Applications include heat rejection devices in spacecraft, use in passive solar heating systems and warm air furnaces, and electronic circuit cooling. Heat recovery operations, and materials considerations are also discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Residential Care

    Science.gov (United States)

    ... Kids For Teens For Parents & Teachers Resolving Family Conflicts The Holidays and Alzheimer's Glossary Virtual Library Online ... longer an option Costs Choosing a care setting Types of residential care A good long-term care ...

  6. Lifecycle cost and CO2 emissions of residential heat and electricity prosumers in Finland and the Netherlands

    NARCIS (Netherlands)

    Manrique Delgado, B.; Kotireddy, R.R.; Cao, S.; Hasan, A.; Hoes, P.-J.; Hensen, J.L.M.; Sirén, K.

    2018-01-01

    The complexity of finding solutions to reach energy sustainability in the built environment poses a significant challenge. Therefore, there is interest in adequate management of the generation, conversion, storage, use and exchange of heat and electricity. The novelty of this study exists in

  7. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  8. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  9. The role of the design and operation of individual heating systems for the energy retrofits of residential buildings

    International Nuclear Information System (INIS)

    Terés-Zubiaga, J.; Campos-Celador, A.; González-Pino, I.; Diarce, G.

    2016-01-01

    Highlights: • Thermal renovation of buildings is analysed by dynamic simulation. • Different envelope and individual heating options are considered. • Temperature set point plays the most important role in the energy consumption. • Condensing boilers increase 10% the energy savings compared to regular ones. • The rebound effect can cause significant differences on energy consumption. - Abstract: The feasibility of individual natural gas fired boiler-based heating systems in the retrofitting of buildings constructed in the 50–60 s in Bilbao (northern Spain) is evaluated in this paper. A holistic approach through dynamic simulations using TRNSYS is employed for the purpose. An existing dwelling previously monitored and used to validate the model applied is selected as a case study. 54 different scenarios are evaluated, which arise from the combination of 3 different envelope options, 2 types of heat production units, 3 heat production temperatures and 3 comfort temperature set-points. The cases are evaluated in terms of energy results, economic aspects, and the influence of user behaviour. Regarding the latter, the influence of the potential rebound effect is also evaluated. The results show energy savings nearby 10% when condensing boilers are compared with high efficiency boilers. In relation to hot water production temperature, energy savings between 5 and 10% are found when the temperature is lowered from 60 to 50 °C. The greatest impact on energy consumption is related to the occupants’ behaviour: reductions up to 89% are achieved if the indoor temperature set-point is lowered 2 °C. This is reinforced with the results related to the rebound effect, which show significant differences on energy consumption values. These evidences demonstrate that the user behaviour is an essential feature to be considered in studies regarding buildings energy performance. As a consequence, the holistic approach herein employed emerges as a key tool to be applied in

  10. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  11. Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong

    International Nuclear Information System (INIS)

    Chow, T.T.; Fong, K.F.; Chan, A.L.S.; Lin, Z.

    2006-01-01

    There is a growing, government-led trend of applying renewable energy in Hong Kong. One area of interest lies in the wider use of solar-energy systems. The worldwide fast development of building-integrated solar technology has prompted the design alternative of fixing the solar panels on the external facades of buildings. In Hong Kong, high-rise buildings are found everywhere in the urban districts. How to make full use of the vertical facades of these buildings to capture the most solar radiation can be an important area in the technology promotion. In this numerical study, the potential application of a centralized solar water-heating system in high-rise residence was evaluated. Arrays of solar thermal collectors, that occupied the top two-third of the south and west facades of a hypothetical high-rise residence, were proposed for supporting the domestic hot-water system. Based on typical meteorological data, it was found that the annual efficiency of the vertical solar collectors could reach 38.4% on average, giving a solar fraction of 53.4% and a payback period of 9.2 years. Since the solar collectors were able to reduce the heat transmission through the building envelope, the payback was in fact even shorter if the energy saving in air-conditioner operation was considered

  12. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  13. 关于住宅建筑太阳能热水系统设计的探讨%Design of Solar Water Heating System in Residential Buildings

    Institute of Scientific and Technical Information of China (English)

    王彬

    2015-01-01

    太阳能系统建筑一体化设计,在住宅建筑实践中已被广泛应用,且收效良好。结合本刊刊发的某篇关于太阳能热水系统设计的论述,对其重点提出的“集中集热-分户使用的热水系统”加以再分析。本着严谨的技术适用性分析态度,现提出住宅建筑太阳能热水系统在一般条件下的首选方案,即采取独立分户系统;以及在不同建筑高度、建筑朝向、日照条件等情况下,综合利用建筑平、立面进行立体布局;特殊情况下,甚至可利用太阳能光伏系统进行补充,从而促进和鼓励系统使用效率,实现系统最大化节能减排作用。%Building integrated solar system has been widely used in residential construction with good effect. A paper was issued in this Journal about solar hot water system, and the related analysis on centralized heat water systems for household use is reviewed. In a rigorous analysis of the technical suitability, the preferred solution is proposed for the residential building’s solar hot water systems in general terms, which is the independent household system; three-dimensional layout of the facade shall be utilized in the case of different building heights, building orientation and sunshine conditions; the solar photovoltaic system even shall be supplemented in special circumstances, to promote system using efficiency and achieve the maximized energy efficiency and emission reduction effect.

  14. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.; Energie im Wohngebaeude. Strom, Waerme, E-Mobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzburger, Heiko

    2017-11-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [German] Photovoltaik, Waermepumpen und Brennstoffzellen bieten enormes Potenzial, die Energieversorgung im Wohngebaeude nachhaltig zu gestalten. In der Sanierung spielen auch Solarthermie und Holzfeuerungen eine wichtige Rolle. Aufgrund der vielfaeltigen Kombinationsmoeglichkeiten lassen sich die Wuensche der Bauherren und Hausbesitzer nach einem oekologisch und oekonomisch individuell angepassten Energiekonzept

  15. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  16. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  17. Heading towards the nZEB through CHP+HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings

    International Nuclear Information System (INIS)

    Salata, Ferdinando; Golasi, Iacopo; Domestico, Umberto; Banditelli, Matteo; Lo Basso, Gianluigi; Nastasi, Benedetto; Lieto Vollaro, Andrea de

    2017-01-01

    Highlights: • Energy optimization measures to increase the energy class of buildings. • Analysis of the demands related to the space-heating season and the production of annual DHW. • Case study related to a residential building of medium size located in Rome (Italy). • Improvements on building envelope and on systems (traditional technologies or CHP+HP). • Energy and economic analysis to achieve the performance of a nZEB. - Abstract: Optimizing consumptions in the field of civil construction led to define energy labels for residential buildings. To calculate the building energy demand the EPgl was determined, i.e. the annual consumption per m"2 of primary energy. This paper examines the technical solutions useful to optimize the energy demands for heating during space-heating season and domestic hot water production (thanks to energy analysis softwares as MC11300 and TRNSYS) and, at the same time, to take into account the financial issues those interventions implied. The total inside heated surface of the building case study is 1204.00 m"2, hence the inside heated volume is about 3250.80 m"3. Besides the more traditional interventions concerning the building envelope and its systems, the paper examined the performance of a system obtained through the combination of a cogenerator (CHP) and a heat pump (HP), thus, substituting the conventional boilers of the buildings. CHP+HP solution increases the most the energy label of the building (from a D class with EPgl = 59.62 kW h m"−"2 year"−"1, to an A class, with EPgl = 25.64 kW h m"−"2 year"−"1), determining an annual energy cost saving of 3,114 € year"−"1, allowing to amortize installation costs (54,560 €) in a reasonable payback period, i.e. 15.4 years. This innovative solution in the residential sector can be realized through retrofit interventions on existing buildings, hence it leads the current dwelling towards nZEB with a remarkable benefits for the environment.

  18. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    Science.gov (United States)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  19. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... necessary for residential water heaters, because the existing test procedures for those products already...

  20. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... proposed to amend, where appropriate, its test procedures for residential water heaters, direct heating... notes that the test procedure and metric for residential water heaters currently address and incorporate...

  1. Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A novel proposal for the modeling and operation of a micro-CHP (combined-heat-and-power) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology is described and analyzed to investigate its commercialization prospects. An HT-PEMFC operates at elevated...... temperatures, as compared to Nafion-based PEMFCs and therefore can be a significant candidate for cogeneration residential systems. The proposed system can provide electric power, hot water, and space heating for a typical Danish single-family household. A complete fuel processing subsystem, with all necessary...

  2. Architectural design of passive solar residential building

    Directory of Open Access Journals (Sweden)

    Ma Jing

    2015-01-01

    Full Text Available This paper studies thermal environment of closed balconies that commonly exist in residential buildings, and designs a passive solar residential building. The design optimizes the architectural details of the house and passive utilization of solar energy to provide auxiliary heating for house in winter and cooling in summer. This design might provide a more sufficient and reasonable modification for microclimate in the house.

  3. 76 FR 37407 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Science.gov (United States)

    2011-06-27

    .... Background 1. Current Standards a. Furnaces b. Central Air Conditioners and Heat Pumps 2. History of... Compliance Requirements a. Central Air Conditioning and Heat Pumps b. Residential Furnaces 3. Duplication... residential central air conditioners and central air conditioning heat pumps (air conditioners and heat pumps...

  4. Research on the evaluation system for heat metering and existing residential building retrofits in northern regions of China for the 12th five-year period

    International Nuclear Information System (INIS)

    Xin, Liu; Yan, Ding; Yujia, Tong; Neng, Zhu; Zhe, Tian

    2014-01-01

    On the basis of ERBR (existing residential building retrofit) work in the 11th five-year period, energy efficiency retrofits for old residential buildings have been further promoted in northern regions of China during the 12th five-year period. ERBR projects are capable of not only achieving energy conservation and emissions reductions but also providing warmer rooms for residents during cold winters. Therefore, this project should be continued in northern regions of China following a long-term management mode. With the aim of exploring methods and mechanisms for the evaluation of the retrofit effect, an evaluation method was established with the application of the multi-level expert evaluation method. The evaluation indexes cover the aspects of policy mechanisms, financing modes and technical measures. A rewards and punishment mechanism according to the evaluation system was also suggested. Such an evaluation system can be used as a valuable reference for future implementation of energy efficiency retrofit work. - Highlights: • With the AHPD method, the evaluation system of the ERBR was set up to complete. • There are 29 indicators, including policies, financings and technologies. • Rewards and punishment mechanisms are offered to the ERBR. • For weight value more than 0.06, long-term practice and accumulation are needed

  5. Motier church - refurbishment of heating system; Kirche Motier Sanierung der Raumheizung

    Energy Technology Data Exchange (ETDEWEB)

    Grizzetti, V.

    2003-07-01

    This final report for the Swiss Federal Office for Energy describes the refurbishment of the space heating system of the historical church in Motier, Switzerland. The 50-year old, inefficient electrical direct heating system of the church, which is a listed building, and the new, heat pump-based system are described. Heating energy is distributed via a warm-air system, geothermal energy provides the primary heat source for the heat pump. Technical details of the heating characteristics and energy consumption of the old and new heating systems are presented in the form of tables and diagrams. The maintenance of the heating system's ventilation unit is also discussed.

  6. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system......Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  7. STAR Measurements and Modeling for Quantifying Air Quality and Climatic Impacts of Residential Biomass or Coal Combustion for Cooking, Heating and Lighting Kick-off Meeting

    Science.gov (United States)

    STAR grantees and EPA scientists will discuss progress on their projects which aim to quantify the extent to which interventions for cleaner cooking, heating, or lighting can impact air quality and climate, which in turn affect human health and welfare

  8. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  9. The energy-related services are the major sales promotion. Customized electricity and district heat supply technology and services for the newly developed residential area Boerkhauser Feld at Solingen-Aufderhoehe; Die Dienstleistung bringt den (Verkaufs-)Erfolg. Strom- und Waermeversorgung fuer Wohngebiet Boerkhauser Feld in Solingen-Aufderhoehe

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-06-01

    The firm COMUNA-metall, Herford, is the contractor and service provider for installation and operation of the electricity and district heat supply systems based on a modular cogeneration plant (CHP system). The residential area will eventually encompass about 450 residential units, all buildings are low-energy houses. The article explains the systems and gives an initial performance report covering 100 existing residential units. (orig./CB) [German] Die Firma COMUNA-metall, Herford, hat als Dienstleister die Erstellung und den Betrieb einer Strom- und Nahwaermeversorgung mit Kraft-Waerme-Kopplung fuer das Wohngebiet uebernommen, das nach Fertigstellung ca. 450 Wohneinheiten in Niedrigenergiebauweise umfassen wird. Der Beitrag schildert die technischen Einrichtungen und eine erste Leistungsbilanz im Bauabschnitt mit 100 Wohneinheiten. (orig./CB)

  10. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy

    International Nuclear Information System (INIS)

    Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-01-01

    Highlights: • Exergy and energy analysis of a vertical-bore ground source heat pump over a 12-month period is presented. • The ground provided more than 75% of the heating energy. • Performance metrics are presented. • Sources of systemic inefficiency are identified and prioritized using Exergy analysis. • Understanding performance metrics is vital for judicial use of renewable energy. - Abstract: This twelve-month field study analyzes the performance of a 7.56 W (2.16-ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kW h at summer and winter thermostat set points of 24.4 °C and 21.7 °C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work, are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources

  11. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    generation characteristics, heat transfer and thermal dynamics of sustainable residential buildings and load scheduling potentials of household appliances with associated constraints. Through various simulation studies under different working scenarios with real data, different system constraints and user...

  12. Residential and Light Commercial HVAC. Teacher Edition.

    Science.gov (United States)

    Stephenson, David; Fulkerson, Dan, Ed.

    This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…

  13. Retailing residential electricity : A concept that makes sense?

    International Nuclear Information System (INIS)

    MacDonald, C.

    2003-07-01

    A heated debate centres around the deregulation of the electricity industry and the retailing of residential electricity. An assessment of the current situation in the industry was provided in this paper to provide a basis for discussion. The experience gained both in Alberta and Texas in residential retail was examined. The main issue of concern is whether residential customers will benefit from deregulation of the electricity sector. The Retail Energy Deregulation (RED) Index provides a benchmark for those jurisdictions considering the residential options. Deregulation has not led to significant benefits to residential customers in most jurisdictions. The electricity industry will always require a central dispatch/market process that will have to designed, governed, regulated, modified regularly. The benefits to residential consumers are not expected for a very long time. Standard market design is an issue that will require attention. refs., 7 figs

  14. AGA predicts winter jump in residential gas price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The American Gas Association predicts the average heating bill for residential gas consumers could increase by as much as 18% this winter. AGA Pres. Mike Baly said, Last year's winter was warmer than normal. If the 1992-93 winter is similar, AGA projects that residential natural gas heating bills will go up about 6%. If we see a return to normal winter weather, our projection show the average bill could rise by almost 18%

  15. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Science.gov (United States)

    Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  16. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Directory of Open Access Journals (Sweden)

    Jian-Hua Du

    Full Text Available The characteristics of a series direct current (DC arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  17. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  18. The 1986 residential occupant survey

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, D.L.; Alley, P.K.

    1987-04-01

    In 1986, Pacific Northwest Laboratory developed the Residential Occupant Survey-Spring '86, which was implemented. The overall purpose of the study was to collect demographic, attitudinal, and behavioral data related to the use and conservation of electricity in dwellings participating in the Bonneville Power Administration's End-Use Load and Conservation Assessment Program (ELCAP). Information was collected on the respondents' perceptions of the energy efficiency of their dwelling, temperature the dwelling was kept when people were at home and awake during the last heating season, which rooms, if any, were not heated during the last heating season, number of times the dwelling was unoccupied for at least one week, number of times pets were let out of the dwelling per day, attitudes toward energy use and conservation and several socio-demographic variables such as age, sex, and total household income. The results of the data analyses showed age to be an important factor for reported indoor temperature and perceived energy efficiency of the dwelling. The results also showed that almost 60% of the ELCAP occupants do not heat one or more rooms during the heating season, and almost 45% of the ELCAP dwellings were unoccupied for at least one week during the reporting period. In terms of the reported allocation of household income for household energy expenses, the results showed that the reported dollar amount spent for the expenses remained relatively constant over income levels.

  19. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  20. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool... heating equipment and pool heaters. Table I.1--Amended Energy Conservation Standards for Residential Water... for national energy and water conservation; and 7. Other factors the Secretary of Energy (Secretary...

  1. 75 FR 12144 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2010-03-15

    .... 1. Consensus Agreement On January 26, 2010, the Air-Conditioning, Heating and Refrigeration... subsections. B. History of the Standards Rulemaking for Residential Furnaces 1. Background Energy conservation... recommending minimum energy conservation standards for residential central air conditioners, heat pumps, and...

  2. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  3. Method of defining heating and cooling period for residential buildings in hot summer and cold winter zone%夏热冬冷地区采暖空调计算期确定方法

    Institute of Scientific and Technical Information of China (English)

    傅新; 钱晓倩; 钱匡亮; 董凯; 阮方

    2017-01-01

    基于1971年至2003年的大量实测气象数据,通过对夏热冬冷地区20个典型城市的气候条件分析,揭示了各城市在最冷(热)月平均温度及日较差、日均温度≤5 ℃(≥25 ℃)的天数和采暖、空调度日数等方面存在巨大差异.探讨现有标准规定的3套计算期的合理性,基于实测气象数据和离散性分析,提出新的计算期确定方法.采用Design Builder软件对居住建筑的能耗模拟结果表明,不同计算期不仅影响采暖、空调能耗的总量,而且改变了两者之间的比例关系.%Large amounts of actual measured meteorological data of 20 typical cities in hot summer and cold winter zone in China between 1971 and 2003 were analyzed.There exist wide differences in climatic conditions among cities in this climate region, as reflected in many aspects like the average temperature and diurnal range in coldest(hottest) month, the number of days in which the daily average temperature was less than or equal to 5 ℃ (higher than or equal to 25 ℃), the heating and cooling degree day, etc.The reasonability of calculation periods set by three existing relevant standards in China was investigated, and a new defining method of calculation period was proposed based on actual measured meteorological data and discreteness analysis.The results of energy consumption simulation for residential buildings with the Design Builder software indicate that different calculation periods not only affect the total heating and cooling consumption simulation result, but also change the ratio of them.

  4. Residential Electricity Consumption in Poland

    Directory of Open Access Journals (Sweden)

    Edyta Ropuszyńska-Surma

    2016-01-01

    Full Text Available Key factors influencing electricity consumption in the residential sector in Poland have been identified. A fixed-effects model was used, which includes time effects, and a set of covariates, based on the model developed by Houthakker et al. This model estimates electricity demand by using lagged values of the dependent variable along with current and lagged values of electricity prices, and other variables that affect electricity demand such as: population, economic growth, income per capita, price of related goods, etc. The model has been identified according to the research results of the authors and those obtained by Bentzen and Engsted. The set of covariates was extended to the lagged electricity price given by a tariff (taken from two years previous to the time of interest and heating degree days index, a very important factor in European Union countries, where the climate is temperate. The authors propose four models of residential electricity demand, for which a confidence interval of 95% has been assumed. Estimation was based on Polish quarterly data for the years 2003-2013. (original abstract

  5. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  6. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  7. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  8. Solar Process Heat Basics | NREL

    Science.gov (United States)

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be

  9. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    Science.gov (United States)

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of

  10. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2010-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  11. Deep influence of passive low energy consumption multi-storey residential building in cold region

    Science.gov (United States)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  12. Family ties and residential locations

    NARCIS (Netherlands)

    Mulder, C.H.; Cooke, T.J.

    2009-01-01

    In this paper, and in the Special Issue it introduces, the focus is on the role of family ties in residential location choice and, conversely, the role of residential locations in maintaining family ties. Not only do events in the nuclear family trigger residential relocations, but nearby family

  13. GREEN RETROFITTING RESIDENTIAL BUILDINGS

    Science.gov (United States)

    When compared with the rest of the world, the United States consumes a disproportionately large amount of energy and is a major source of greenhouse gases from fossil fuel combustion. As much as two thirds of U.S. electricity production is consumed by residential and commerci...

  14. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, a. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  15. Cold local heating. Agrothermal heat supply of an ecovillage; Kalt Nahwaerme. Agrothermische Waermeversorgung einer Plusenergiesiedlung

    Energy Technology Data Exchange (ETDEWEB)

    Pietruschka, Dirk [Hochschule fuer Technik Stuttgart (Germany). Forschungszentrum fuer Nachhaltige Energietechnik; Kluge, Juergen [Doppelacker GmbH, Petershagen-Eggersdorf (Germany)

    2013-03-01

    An ecovillage with highly efficient residential buildings is arisen in the Swabian community Wuestenrot. The power generation in these residential buildings by means of photovoltaic power plants is greater than the energy consumption. Decentralized heat plants supply thermal energy for the space heating and industrial waste. Central agrothermal collectors provide the necessary low-temperature heat for the effective operation of heat pumps over a so-called cold heat grid.

  16. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' including residential water... final rule revising energy conservation standards for residential water heaters, direct heating.... EERE-2009-BT-TP-0013] RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures...

  17. Energy literacy, awareness, and conservation behavior of residential households

    International Nuclear Information System (INIS)

    Brounen, Dirk; Kok, Nils; Quigley, John M.

    2013-01-01

    The residential sector accounts for one-fifth of global energy consumption, resulting from the requirements to heat, cool, and light residential dwellings. It is therefore not surprising that energy efficiency in the residential market has gained importance in recent years. In this paper, we examine awareness, literacy and behavior of households with respect to their residential energy expenditures. Using a detailed survey of 1721 Dutch households, we measure the extent to which consumers are aware of their energy consumption and whether they have taken measures to reduce their energy costs. Our results show that “energy literacy” and awareness among respondents is low: just 56% of the respondents are aware of their monthly charges for energy consumption, and 40% do not appropriately evaluate investment decisions in energy efficient equipment. We document that demographics and consumer attitudes towards energy conservation, but not energy literacy and awareness, have direct effects on behavior regarding heating and cooling of the home. The impact of a moderating factor, measured by thermostat settings, ultimately results in strong variation in the energy consumption of private consumers. - Highlights: • We use a detailed survey of 1,721 Dutch households to measure awareness and conservation behavior in energy consumption. • Energy literacy and awareness among residential households is low. • 40 percent of the sample does not appropriately evaluate investment decisions in energy efficient equipment • Demographics and consumer attitudes affect behavior regarding heating and cooling of a home

  18. Guidelines for residential commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to

  19. Subjective evaluation of different ventilation concepts combined with radiant heating and cooling

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2012-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation and radiant heating/cooling systems. Two test setups simulated a room in a low energy building with a single occupant during winter. The room was equipped either by a ventilation system...... supplying warm air space heating or by a combination of radiant floor heating and mixing ventilation system. Next two test setups simulated an office room with two occupants during summer, ventilated and cooled by a single displacement ventilation system or by a radiant floor cooling combined...

  20. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  1. Energy statistics for non-residential premises 2012; Energistatistik foer lokaler 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents data on a number of non-residential premises, heated floor area, use of energy (totals and averages) and use of fuels (totals and averages) for the total population and for various subDivs.

  2. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heat...

  3. Unbalanced Voltage Compensation in Low Voltage Residential AC Grids

    DEFF Research Database (Denmark)

    Trintis, Ionut; Douglass, Philip; Munk-Nielsen, Stig

    2016-01-01

    This paper describes the design and test of a control algorithm for active front-end rectifiers that draw power from a residential AC grid to feed heat pump loads. The control algorithm is able to control the phase to neutral or phase to phase RMS voltages at the point of common coupling...

  4. Re-thinking residential mobility

    Science.gov (United States)

    van Ham, Maarten; Findlay, Allan M.

    2015-01-01

    While researchers are increasingly re-conceptualizing international migration, far less attention has been devoted to re-thinking short-distance residential mobility and immobility. In this paper we harness the life course approach to propose a new conceptual framework for residential mobility research. We contend that residential mobility and immobility should be re-conceptualized as relational practices that link lives through time and space while connecting people to structural conditions. Re-thinking and re-assessing residential mobility by exploiting new developments in longitudinal analysis will allow geographers to understand, critique and address pressing societal challenges. PMID:27330243

  5. Large-Scale Residential Demolition

    Science.gov (United States)

    The EPA provides resources for handling residential demolitions or renovations. This includes planning, handling harmful materials, recycling, funding, compliance assistance, good practices and regulations.

  6. Applying power electronics to residential HVAC

    International Nuclear Information System (INIS)

    Sulfstede, L.

    1991-01-01

    This paper outlines several of the market and application issues bearing on the economics residential variable speed air conditioners and heat pumps. Technical details of capacity modulized systems have been avoided, along with design issues and tradeoffs involving power semiconductors, motor torque and speed control strategies- and silicon integration for these applications. The intention is to provoke new creative technical solutions but perhaps more importantly, to involve new marketing strategies that will develop the mature potential of air conditioning products containing power electronics to enable them to generate the tough HVAC market, competing successfully against conventional systems

  7. Residential firewood use in the United States.

    Science.gov (United States)

    Lipfert, F W; Dungan, J L

    1983-03-25

    An empirical relation between residential firewood use and population density was developed from survey data for 64 counties in New England and was corroborated by data from other states. The results indicate that usage is concentrated in urbanized areas of the Northeast and north central states and that about 9.0 to 11.0 percent of U.S. space heating input is from firewood. No constraints due to the supply of wood were apparent in 1978-1979. These findings have implications for effects on air quality.

  8. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  9. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  10. Development Of Economic Techniques For Residential Thermography

    Science.gov (United States)

    Allen, Lee R.; Allen, Sharon

    1983-03-01

    Infrared thermography has proven to be a valuable tool in the detection of heat loss in both commercial and residential buildings. The field of residential thermography has needed a simple method with which to report the deficiencies found during an infrared scan. Two major obstacles hindering the cost effectiveness of residential thermography have been 1) the ability to quickly transport some high resolution imaging system equipment from job site to job site without having to totally dismount the instruments at each area, and 2) the lack of a standard form with which to report the findings of the survey to the customer. Since the industry has yet to provide us with either, we believed it necessary to develop our own. Through trial and error, we have come up with a system that makes interior residential thermography a profitable venture at a price the homeowner can afford. Insulation voids, or defects can be instantly spotted with the use of a thermal imaging system under the proper conditions. A special hand-held device was developed that enables the thermographer to carry the equipment from house to house without the need to dismantle and set up at each stop. All the necessary components are attached for a total weight of about 40 pounds. The findings are then conveyed to a form we have developed. The form is simple enough that the client without special training in thermography can understand. The client is then able to locate the problems and take corrective measures or give it to a con-tractor to do the work.

  11. Users of electric heating rewarded

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M. [ed.

    1998-07-01

    When the building industry plunged into the deep recession of the early 1990s this did not paralyse research and development work on electric heating. In fact, IVO and power companies launched the `Electrically Heated Homes in the New Millennium` project in 1992. Its purpose was to verify the efficiency, energy economy and residential comfort of model systems using state-of-the-art electric heating technology. The research project launched six years ago is now nearing completion. Its findings indicate that electricity brings ever more unparalleled benefits when it is used for heating. These benefits involve residential comfort, ease of use and economy

  12. Optimizing Hydronic System Performance in Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Faakye, O.

    2013-10-01

    Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

  13. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, Alea [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI); Hoeschele, Marc [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI)

    2014-12-01

    Residential air conditioning (AC) represents a challenging load for many electric utilities with poor load factors. Mechanical precooling improves the load factor by shifting cooling operation from on-peak to off-peak hours. This provides benefits to utilities and the electricity grid, as well as to occupants who can take advantage of time-of-use (TOU) electricity rates. Performance benefits stem from reduced compressor cycling, and shifting condensing unit operation to earlier periods of the day when outdoor temperatures are more favorable to operational efficiency. Finding solutions that save energy and reduce demand on the electricity grid is an important national objective and supports key Building America goals. The Alliance for Residential Building Innovation team evaluated mechanical AC precooling strategies in homes throughout the United States. EnergyPlus modeling was used to evaluate two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes. A successful off-peak AC strategy offers the potential for increased efficiency and improved occupant comfort, and promotes a more reliable and robust electricity grid. Demand response capabilities and further integration with photovoltaic TOU generation patterns provide additional opportunities to flatten loads and optimize grid impacts.

  14. Residential energy demand in Brazil

    International Nuclear Information System (INIS)

    Arouca, M.; Gomes, F.M.; Rosa, L.P.

    1981-01-01

    The energy demand in Brazilian residential sector is studied, discussing the methodology for analyzing this demand from some ideas suggested, for developing an adequate method to brazilian characteristics. The residential energy consumption of several fuels in Brazil is also presented, including a comparative evaluation with the United States and France. (author)

  15. FY 1997 report on the survey on the current residential waste treatment and integrated utilization of waste including heat supply in Shanghai city; 1997 nendo chosa hokokusho (Shanghai shi ni okeru seikatsu gomi shori no genjo narabini kyonetsunado wo fukumu sogo riyo ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Survey was made on residential waste treatment in Shanghai city. Shanghai city with nearly 13 million registered residents produces on average 10,000-11,000 tons/day residential solid wastes. Such wastes are basically disposed by land filling. A landfill site has a current disposal capacity of 7,500 tons/day, and is scheduled to be expanded up to 9,000 tons/day. Problems of waste disposal in Shanghai city are as follows: transportation of wastes collected in the city by trucks, transportation through transit stations to the landfill site by ships, and high disposal cost. Shanghai Environmental Sanitation Bureau is pursuing researches on recycling of wastes, reduction of wastes and harmless treatment in place of conventional land filling. As the survey result, adoption of complete separate collection of wastes is basically important, and application of the latest technologies such as combustion treatment for every waste, heat use, gasification fusion furnace, and RDF (refuse derived fuel) for coal-firing boilers should be considered. 86 figs., 18 tabs.

  16. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  17. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  18. Residential fuelwood consumption in the southeastern U.S

    International Nuclear Information System (INIS)

    Christiansen, E.H.; Larsen, M.D.; Rejda, Karen; Bliss, J.C.; Nepal, S.K.

    1993-01-01

    A telephone survey of households in 13 states in the southeastern U.S. determined residential fuelwood acquisition and use for heating during the 1991 heating season. Although wood burning accounted for only 10% of the total household heat requirement of the region, it accounted for 51% of the total heat requirements of wood-burning households. One-quarter (25%) of the households burned wood, consuming almost 9 million standard cords. Three-quarters (77%) of wood-burning households reported that wood burning contributed to household heating requirements. Wood as a source of home heating was particularly important to low income households, both rural and urban. Wood is the sole source of home heating for 17% of the wood-burning households in the regions. (Author)

  19. Quebec residential electricity demand: a microeconometric approach

    International Nuclear Information System (INIS)

    Bernard, J.T.; Bolduc, D.; Belanger, D.

    1996-01-01

    An economic analysis of Quebec residential electricity demand was studied by micro-simulation models. These structural models describe all components which lead to decisions upon durable holdings and electric appliance usage. The demand for space and water heating systems was evaluated. Recent price change in favour of energy sources other than electricity were taken into account. Price and income elasticity ratios were found to be low, as expected when estimating short term use. The role played by socio-economic variables on the choice of space-water heating systems and electricity use was also examined. Recent conversions have indicated a trend toward preference by households in favour of natural gas or oil over electricity. 18 refs., 5 tabs., 1 fig

  20. Canadian energy standards : residential energy code requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, K. [SAR Engineering Ltd., Burnaby, BC (Canada)

    2006-09-15

    A survey of residential energy code requirements was discussed. New housing is approximately 13 per cent more efficient than housing built 15 years ago, and more stringent energy efficiency requirements in building codes have contributed to decreased energy use and greenhouse gas (GHG) emissions. However, a survey of residential energy codes across Canada has determined that explicit demands for energy efficiency are currently only present in British Columbia (BC), Manitoba, Ontario and Quebec. The survey evaluated more than 4300 single-detached homes built between 2000 and 2005 using data from the EnerGuide for Houses (EGH) database. House area, volume, airtightness and construction characteristics were reviewed to create archetypes for 8 geographic areas. The survey indicated that in Quebec and the Maritimes, 90 per cent of houses comply with ventilation system requirements of the National Building Code, while compliance in the rest of Canada is much lower. Heat recovery ventilation use is predominant in the Atlantic provinces. Direct-vent or condensing furnaces constitute the majority of installed systems in provinces where natural gas is the primary space heating fuel. Details of Insulation levels for walls, double-glazed windows, and building code insulation standards were also reviewed. It was concluded that if R-2000 levels of energy efficiency were applied, total average energy consumption would be reduced by 36 per cent in Canada. 2 tabs.

  1. Residential Energy Performance Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Wright

    2010-06-01

    Full Text Available Techniques for residential energy monitoring are an emerging field that is currently drawing significant attention. This paper is a description of the current efforts to monitor and compare the performance of three solar powered homes built at Missouri University of Science and Technology. The homes are outfitted with an array of sensors and a data logger system to measure and record electricity production, system energy use, internal home temperature and humidity, hot water production, and exterior ambient conditions the houses are experiencing. Data is being collected to measure the performance of the houses, compare to energy modeling programs, design and develop cost effective sensor systems for energy monitoring, and produce a cost effective home control system.

  2. Pulse-width modulation for small heat pump installations - Phase 2: implementation in a commercial controller and tests in a residential building; Pulsbreitenmodulation fuer Kleinwaermepumpenanlagen. Phase 2: Implementierung in handelsuebliche Regler und Erprobung in einem Wohnhaus

    Energy Technology Data Exchange (ETDEWEB)

    Gabathuler, H.R.; Mayer, H. [Gabathuler AG, Diessenhofen (Switzerland); Shafai, E.; Wimmer, R. [Eidgenoessische Technische Hochschule, Institut fuer Mess- und Regeltechnik, Zuerich (Switzerland); Frei, R. [Satag Thermotechnik AG, Arbon (Switzerland); Illi, B.; Sidler, F. [Siemens Building Technologies AG, Zug (Switzerland)

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project in which a new type of controller for small heat pumps used to heat single-family houses was developed. Instead of the two-point controller normally used to control flow or return temperatures in the heating system, three new approaches are described that deliver the heating energy required for a whole day in portions according to prevailing weather conditions and the thermal characteristics of the house and the heat pump. Electricity tariffs are also taken into account and peak-rate periods avoided. The results of the investigations show that all three variants can be implemented using commercially available controllers. Further investigations, including a complete and representative comparison of the three concepts and a conventional control system are foreseen in phase 3 of the project.

  3. Post-Retrofit Residential Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be

  4. ENERGY STAR Certified Residential Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Residential Dishwashers that are effective as of...

  5. ENERGY STAR Certified Residential Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  6. ENERGY STAR Certified Residential Refrigerators

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  7. Historic trends in the residential sector

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the OECD countries, income-driven growth in equipment ownership (heating, appliances) and home size drove household energy use up, but higher energy prices and conservation programs had a restraining effect. The results were mixed, with consumption per capita significantly lower in a few countries (United States, France), but higher in others. There was a significant decline in the intensity of space heating (30-40%) and a small decline in the intensity of electric applicances. Changes in the size and features of many appliances offset much of the improvement in technical energy efficiency. Not all of the decline in heating intensity was a result of technical change; the author estimates that about 25% was caused by change in heating behavior. In all, there were significant improvements in efficiency, but these were offset somewhat by structural change. In the Former East Bloc, there is far less residential space and amenity than in OECD countries, and efficiency of space heating and water heating is low, in part due to lake of energy pricing. Electric appliances are simple and relatively inefficient. Unlike in the OECD countries, there is little sign of improved efficiency in the 1970s and 1980s. In the LDCs, patterns of energy use, and changes in them, are very different in rural and urban areas, and vary among regions as well. Biomass is still the dominant fuel in rural areas. In urban areas, Western-like patterns of electricity (and even gas) use have emerged for appliances, cooking, and water heating among the affluent, and TV and refrigerators have become more common among the less-affluent. In many countries, especially in Southeast Asia, there has been very rapid growth in ownership of appliances. Most appliances are cheaply made and inefficient compared to similar appliances sold in the OECD countries, though there are signs of some improvement in the past decade. 16 refs., 11 figs., 9 figs

  8. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  9. Global design of a reversible air/water heat pump with variable power for the residential sector; Conception globale d'une pompe a chaleur air/eau inversable a puissance variable pour le secteur residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Flach-Malaspina, N.

    2004-10-15

    Variable power is one of the means to improve the seasonal energy efficiency of heat pump space heating systems. The dual compressors technology is energetically efficient and is available in Europe. The main results of this work are: 1 - the identification of the origin of cycling losses in heating and cooling mode of existing mono-compressor air/water systems. The standby consumption of the heat pump is the only element which can efficiently contribute to reduce the energy losses at partial load. 2 - The quantification of the energy gains by adapting the dual compressors technology to a prototype of reference heat pump. 3 - A dynamic model of calculation of the seasonal coefficient of performance has been developed. 4 - The optimization of compressors operation and of the unfreezing system has permitted to increase the seasonal coefficient of performance from 14.7% to 18.6% with respect to the outdoor temperature. To carry out this study, design, experimental and modeling works have been done. The design of a heat pump fitted with two compressors has required the development of a new partial load testing bench. The several experimental and standardized tests have permitted to characterize an existing heat pump and a dual compressor heat pump whatever the operation mode and the outdoor climate. The dynamical model obtained has permitted to optimize the energy efficiency of the system thanks to a better management of the unfreezing system and to a proper regulation of the compressors. Some ways of improvement concern the dimensioning of compressors and the management of exchangers flow rates for an additional improvement of seasonal coefficients of performance. (J.S.)

  10. Study on reduction of consumption and peak demand of electric power used in residential houses with solar heating and PV systems; Solar house no fuka heijunka to energy sakugen koka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M.; Endo, T. [Kogakuin University, Tokyo (Japan)

    1994-12-08

    A model house was simulated to reduce the consumption and peak demand for the photovoltaic power generation system, and solar heat air heating and hot water supply system in the solar house. As a type of construction, both wooden construction and reinforced concrete (RC) construction were selected with a total floor area of 125m{sup 2}. All the rooms were equipped with an air conditioner by heat pump from the air thermal source. A solar heat floor heater was simultaneously installed on the first floor. The hot water supply load was 4.8MWh per year. A commercial grid-connected on-site system was applied to the photovoltaic power generation with a 20m{sup 2} wide monocrystalline Si solar cell panel. As for the fluctuation in power load, the peak at the time of rising is more reduced in the RC house than in the wooden house, because the former is smaller in temperature fluctuation than the latter during the intermittence of air conditioning (as per the specified operational schedule). Therefore, the power is more leveled off in the former than in the latter. Between both, difference was hardly made in energy consumption per year. The ratio of dependency was 47% upon the photovoltaic power generation system, while it was 50% and 77%, under the air heating power load and hot water supply power load, respectively, upon the solar heat air heating and hot water supply system, so that both systems were considerably effective in saving the energy. 5 refs., 7 figs., 1 tab.

  11. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    Energy Technology Data Exchange (ETDEWEB)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  12. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC......). The HT-PEMFC (based on PBI-membrane technology) operates at temperatures near 200oC, and this can be an ideal match for cogeneration residential systems. The proposed system provides electric power, hot water, and space heating for a typical household (1-5 kWe, 5-10 kWth). The micro-CHP system...

  13. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  14. 76 FR 18105 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Central Air...

    Science.gov (United States)

    2011-04-01

    ... the lab-added transformer. Id. Under this proposal, the instrument used to measure the electrical... the low-voltage transformer used when testing coil-only residential central air conditioners and heat... the Low-Voltage Transformer Used When Testing Coil- Only Central Air Conditioners and Heat Pumps and...

  15. Micro-CHP systems for residential applications

    International Nuclear Information System (INIS)

    Paepe, Michel de; D'Herdt, Peter; Mertens, David

    2006-01-01

    Micro-CHP systems are now emerging on the market. In this paper, a thorough analysis is made of the operational parameters of 3 types of micro-CHP systems for residential use. Two types of houses (detached and terraced) are compared with a two storey apartment. For each building type, the energy demands for electricity and heat are dynamically determined. Using these load profiles, several CHP systems are designed for each building type. Data were obtained for two commercially available gas engines, two Stirling engines and a fuel cell. Using a dynamic simulation, including start up times, these five system types are compared to the separate energy system of a natural gas boiler and buying electricity from the grid. All CHP systems, if well sized, result in a reduction of primary energy use, though different technologies have very different impacts. Gas engines seem to have the best performance. The economic analysis shows that fuel cells are still too expensive and that even the gas engines only have a small internal rate of return (<5%), and this only occurs in favourable economic circumstances. It can, therefore, be concluded that although the different technologies are technically mature, installation costs should at least be reduced by 50% before CHP systems become interesting for residential use. Condensing gas boilers, now very popular in new homes, prove to be economically more interesting and also have a modest effect on primary energy consumption

  16. Competitivity of biofuels in heating

    International Nuclear Information System (INIS)

    Flyktman, M.

    1996-01-01

    The competitivity of indigenous fuels in heating of residential houses in comparison with imported fuels, and both electricity and district heating, has been studied in this research, ordered by the Finnish Ministry of Trade and Industry. Heating plants of residential house scale (20-1000 kW) have been investigated in the research. Only the new heating plants are included in the investigation. The heat generation calculations concerning the residential heating plants have been made for following indigenous fuels: sod peat, fuel-chips, peat and wood pellets, firewood and straw. In addition to these, the calculations have been made for light fuel-oil, electric heating, district heating and natural gas. The local energy tariffs have to be taken into account in electric heating, district heating and natural gas heating. A calculation model, based on flowsheet calculation, forms the main result of the project. By using the model it is possible to update the competitivity data rapidly. Of all the indigenous fuels, sod peat and fuel-chips appeared to be competitive with electric and district heating costs in nearly all scales investigated. The construction of the heat generation costs of solid indigenous fuels differs remarkably from those of electric and district heating. The main part of the heating costs of wood chips and sod peat is formed of fixed costs; i.e. of investment costs and of the costs of heating and control work. The energy costs are the highest costs items in electric an district heating, as well as in the oil heating. It is possible to improve the competitivity of biofuels by developing cheaper boilers and fuel processing and storage devices

  17. State energy price projections for the residential sector, 1992--1993

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this report, State Energy Price Projections for the Residential Sector, 1992--1993, is to provide projections of State-level residential prices for 1992 and 1993 for the following fuels: electricity, natural gas, heating oil, liquefied petroleum gas (LPG), kerosene, and coal. Prices for 1991 are also included for comparison purposes. This report also explains the methodology used to produce these estimates and the limitations

  18. Nebraska residential propane survey, Winter 1991/92

    International Nuclear Information System (INIS)

    Kinyon, L.

    1992-01-01

    This report summarizes information on propane prices for the October 1991/March 1992 heating season in Nebraska. From October through March participating propane distributors were contacted twice monthly by the Nebraska Energy Office to obtain their current residential (retail) prices of propane. This information was faxed to the US Department of Energy, Energy Information Administration (DOE/EIA) biweekly in report format as prepared by the PEDRO system

  19. Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O

    NARCIS (Netherlands)

    Ferchaud, C.; Scherpenborg, R.A.A.; Zondag, H.A.; Boer, de R.

    2013-01-01

    An interesting thermochemical material for compact seasonal heat storage is magnesium sulfate heptahydrate MgSO4.7H2O. Previous studies in the field showed that this material presents a storage energy density of 1 GJ/m3 when the material is built in a TC storage system with a 50% porosity packed bed

  20. Thermal study of a residential water solar heating system with two different absorbing surface configurations; Estudo termico de um sistema solar de aquecimento de agua residencial para duas configuracoes de superficie absorvedora

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Rivaldo Ferreira

    2009-10-15

    A solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly is presented. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, it is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint fiat black for better absorption of sunlight. The system worked on a thermosyphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. The most efficient configuration for the connect purpose was determined. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied. (author)

  1. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    .... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  2. Residential cogeneration systems: review of the current technology

    International Nuclear Information System (INIS)

    Onovwiona, H.I.; Ugursal, V.I.

    2006-01-01

    There is a growing potential for the use of micro-cogeneration systems in the residential sector because they have the ability to produce both useful thermal energy and electricity from a single source of fuel such as oil or natural gas. In cogeneration systems, the efficiency of energy conversion increases to over 80% as compared to an average of 30-35% for conventional fossil fuel fired electricity generation systems. This increase in energy efficiency can result in lower costs and reduction in greenhouse gas emissions when compared to the conventional methods of generating heat and electricity separately. Cogeneration systems and equipment suitable for residential and small-scale commercial applications like hospitals, hotels or institutional buildings are available, and many new systems are under development. These products are used or aimed for meeting the electrical and thermal demands of a building for space and domestic hot water heating, and potentially, absorption cooling. The aim of this paper is to provide an up-to-date review of the various cogeneration technologies suitable for residential applications. The paper considers the various technologies available and under development for residential, i.e. single-family ( e ) and multi-family (10-30kW t ) applications, with focus on single-family applications. Technologies suitable for residential cogeneration systems include reciprocating internal combustion engine, micro-turbine, fuel cell, and reciprocating external combustion Stirling engine based cogeneration systems. The paper discusses the state of development and the performance, environmental benefits, and costs of these technologies. (author)

  3. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  4. Potential use of solar water heating systems in residential areas of the city of Piracicaba; Potencial da utilizacao de coletores solares no aquecimento de agua residencial na cidade de Piracicaba

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rafel Deleo e; Vieira Junior, Jose Carlos de Melo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], Emails: rafael.deleo.oliveira@usp.br, jcarlos@sc.usp.br

    2010-10-15

    Solar collector is a device that uses solar energy for heating fluid (both liquid and gaseous) which can then be used to generate energy. This study is based on the method of calculating the global solar radiation incident on the inclined plane using data from the city of Piracicaba, state of Sao Paulo. As a result of the study it can be seen that for the city of Piracicaba the collecting area of 4.62 M{sup 2} presents solar fraction varying between 87.27% and 97.79% for heating 300 liters of water and 200 liters of water daily, respectively. Based on the results one can conclude that the savings would be about 47.74 GWh, if a collection area of 360 thousand m{sup 2} (0.36 km{sup 2}) were fully exploited, which represents savings of approximately R$ 15.86 million per year for the municipality. (author)

  5. Evaluation of fuel-switching opportunities in the residential sector

    OpenAIRE

    Almeida, Aníbal T. de; Lopes, Ana; Carvalho, Anabela; Mariano, Jorge; Nunes, Catarina

    2004-01-01

    The aim of this paper is to analyse the impact of different natural gas and electricity end-use technologies in the residential sector, which compete among themselves in terms of energy consumption and carbon emissions. The analysis of 17 different technology options, which were chosen in order to match the consumption behaviour of a typical Portuguese family, has shown that the use of electric heat pumps, both for space and water-heating, combined with the use of a natural gas cooker, leads ...

  6. Energy statistics for non-residential premises in 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The dominating heating system in premises is district heating, 56 per cent of the surface area is heated that way. Oil is used for heating in 9 per cent of the surface area and about the same area is heated by electricity only. The total surface area for premises is about 138 million square metres in 2001. Since the beginning of the 1980s the surface area of offices has been increasing and is now about 33 million square metres. As an average the energy use is: 15.5 litres of oil/m 2 ; 139 kWh/m 2 district heating; 148 kWh/m 2 electricity. All together the use is: 309,000 m 3 oil, 12.4 TWh district heating; 3.5 TWh electricity; 0.5 TWh natural gas/gaswork gas; 0.4 TWh o ther furnace ; 0.4 TWh biofuel or peat. This survey covers non-residential premises in Sweden. It is based on a sample of 8228 properties built before 2001 and on a total survey of properties owned by some of the major owners in the country (about 1700 properties). The survey was carried out in February 2002 as a mail survey. The property owners were asked to give information about type of premises, type of heating system, deliveries of energy for heating, etc. The presentation gives data on deliveries of energy, heated surface area, average consumption, etc., for the total population and for various subdivisions

  7. Residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Furbo, S.

    2012-11-15

    Low-energy buildings can make a major contribution to general sustainable development by providing a solution to problems related to the use of fossil fuels. The EPBD (EU Directive on Energy Performance of Buildings) requirements that by 2020 new building shall be constructed to use nearly zero energy, and no fossil fuels, can be accomplished by combining low-energy buildings with renewable energy via low-temperature district heating in cities and suburbs, and via heat pumps for low-density settlements. Based on experience with passive houses, low-energy buildings meeting the energy performance requirements of 2020 are expected to cost only a few percent more than conventional buildings. The very large and rapid changes needed in the energy performance of buildings is a challenge for the building sector, but one that can be overcome by better methods of developing products and designing, constructing and operating buildings. Simulation-based analysis and optimisation, and considerations of durability, will be important here. Building may thus be transformed from an experience-based sector to one based on knowledge and research, with high-quality sustainable products and good business opportunities. (Author)

  8. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  9. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  10. Profits or preferences? Assessing the adoption of residential solar thermal technologies

    International Nuclear Information System (INIS)

    Mills, Bradford F.; Schleich, Joachim

    2009-01-01

    Solar thermal technologies offer the potential to meet a substantial share of residential water and space heating needs in the EU, but current levels of adoption are low. This paper uses data from a large sample of German households to assess the effects of geographic, residence, and household characteristics on the adoption of solar thermal water and space heating technologies. In addition, the impact of solar thermal technology adoption on household energy expenditures is estimated after controlling for observed household heterogeneity in geographic, residential, and household characteristics. While evidence is found of moderate household energy expenditure savings from combined solar water and space heating systems, the findings generally confirm that low in-home energy cost savings and fixed housing stocks limit the diffusion of residential solar thermal technologies. Little evidence is found of differential adoption by distinct socio-economic groups.

  11. Understanding Residential Polarization in a Globalizing City

    Directory of Open Access Journals (Sweden)

    Ibrahim Rotimi Aliu

    2013-12-01

    Full Text Available This study examines the spatial polarization that characterizes the dwellings in the African leading megacity of Lagos. Data were collected through an extensive housing survey carried out on 1,485 household residences in 56 wards within 12 administrative units in Lagos megacity. The spatial dimension of residential density in the city generates three unique residential patterns which are low residential density (LRD, medium residential density (MRD, and high residential density (HRD areas. Descriptive and multivariate inferential statistics were used to render explanations for the spatial variations in the residential quality variables in the study area. Findings indicated that a clear difference exists in the residential quality within the three residential density areas of Lagos. High correlations exist among the residential quality indicators and housing type. The principal component analysis shows that residential polarizations that occur in the LRD, MRD, and HRD are based on the location, dwelling facility, interior and exterior quality, neighborhood integrity, social bond, barrier to entry, and security. The practical implications of residential polarizations along the residential density areas are explicitly expressed.

  12. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    Directory of Open Access Journals (Sweden)

    E. W. Butt

    2016-01-01

    Full Text Available Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC and organic carbon (OC mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5 concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (>  30 years of age premature mortality (due to both cardiopulmonary disease and lung cancer to be 308 000 (113 300–497 000, 5th to 95th percentile uncertainty range for monthly varying residential emissions and 517 000 (192 000–827 000 when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between −66 and +21 mW m−2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between −52 and −16 mW m−2, which is sensitive to the

  13. Technical Problems of Residential Construction

    Science.gov (United States)

    Nowogońska, Beata; Cibis, Jerzy

    2017-10-01

    Beauty, utility, durability - these are the features of good architecture and should also be the distinguishing qualities of every residential building. But do beauty and utility remain along with the passing of time? Performance characteristics are an indicator of both, the technical as well as aesthetic state of buildings. Aesthetic needs are in disagreement with the merciless aging process. The beauty of a city is formed not only by the original forms of new residential buildings, but also by existing tenement housing; thus preserving their aesthetics becomes a necessity. Time is continuously passing and along with it, aging intensifies. The aging process is a natural phenomenon for every material. The life expectancy of building materials is also limited. Along with the passing of time, the technical state of residential buildings continuously deteriorates. With the passing of time, the aesthetic values and preferences of users of flats change and the usability of the building decreases. The permanence of buildings, including residential buildings, is shaped not only by the forces of nature but also by activities of humans. A long lifespan is ensured by carrying out ongoing, systematic renovation-repair works. It is thanks to them that buildings derived from past centuries are still being used, and their market attractiveness is not decreasing.

  14. Main challenges of residential areas

    Directory of Open Access Journals (Sweden)

    Oana Luca

    2017-06-01

    Full Text Available The present article is a position paper aiming to initiate a professional debate related to the aspects related to the urban dysfunctions leading to the wear of the residential areas. The paper proposes a definition of the wear process, identify the main causes leading to its occurrence and propose a number of solutions to neutralise the dysfunctions. The three wearing phases of residential areas components are emphasized, exploring their lifecycle. In order to perform the study of urban wear, the status of the residential areas components can be established and monitored, and also the variables of the function that can mathematically model the specific wear process may be considered. The paper is considered a first step for the model adjustment, to be tested and validated in the following steps. Based on the mathematical method and model, there can be created, in a potential future research, the possibility of determining the precarity degree for residential areas/neighbourhoods and cities, by minimising the subjective component of the analyses preceding the decision for renovation or regeneration.

  15. Convergence of Residential Gateway Technology

    NARCIS (Netherlands)

    Hartog, F.T.H. den; Balm, M.; Jong, C.M. de; Kwaaitaal, J.J.B.

    2004-01-01

    A new OSI-based model is described that can be used for the classification of residential gateways. It is applied to analyze current gateway solutions and draw evolutionary paths for the medium to long term. From this it is concluded that particularly set-top boxes and broadband modems, as opposed

  16. Convergence of residential gateway technology

    NARCIS (Netherlands)

    Hartog, den F.T.H.; Balm, M.; Jong, de C.M.; Kwaaitaal, J.J.B.

    2004-01-01

    A new OSI-based model is described that can be used for the classification of residential gateways. It is applied to analyze current gateway solutions and draw evolutionary paths for the medium to long term. From this it is concluded that particularly set-top boxes and broadband modems, as opposed

  17. Trends of Sustainable Residential Architecture

    OpenAIRE

    Narvydas, A

    2014-01-01

    The article is based on Master’s research conducted during Scottish Housing Expo 2010. The aim of the research was to determine the prevailing trends in sustainable residential architecture. Each trend can be described by features detected during visual and technical observation of project data. Based on that architects may predict possible problems related to a specific trend.

  18. Reduce tax on residential mobility

    NARCIS (Netherlands)

    van Ewijk, C.; van Leuvensteijn, M.

    2010-01-01

    How can Europe increase structural growth? This column argues that labour market flexibility is key. As a major barrier to labour movement is rigidity in the housing market, abolishing transfer taxes on residential property could result in gains of up to 0.4% of GDP.

  19. Zones 30 : urban residential areas.

    NARCIS (Netherlands)

    2006-01-01

    Sustainable Safety uses a road categorization in which through traffic is concentrated on motorways and other main roads. In residential areas, which have a living, shopping, or work function, through traffic is discouraged by setting a speed limit of 30 km/h, and by speed reducing measures such as

  20. Characteristics of residential energy consumption in China: Findings from a household survey

    International Nuclear Information System (INIS)

    Zheng, Xinye; Wei, Chu; Qin, Ping; Guo, Jin; Yu, Yihua; Song, Feng; Chen, Zhanming

    2014-01-01

    A comprehensive survey of 1450 households in 26 Chinese provinces was undertaken in 2012 to identify the characteristics and potential driving forces of residential energy consumption in China. The survey covers six areas: household characteristics, dwelling characteristics, kitchen and home appliances, space heating and cooling, residential transportation, and electricity billing, metering, and pricing options. The results show that a typical Chinese household in 2012 consumed 1426 kilograms standard coal equivalent, which is approximately 44 percent of the 2009 level in the United States and 38 percent of the 2008 level in the EU-27. District heating, natural gas, and electricity are three major residential energy sources, while space heating, cooking, and water heating are three major end-use activities. Moreover, the results suggest a large urban–rural gap in terms of energy sources and purpose of usage. Commercial energy is used mainly for space heating in urban areas, while biomass dominates mainly for cooking purpose in rural areas. The survey results can help decision makers and scholars identify energy conservation opportunities, and evaluate the effectiveness of energy policies. - Highlights: • We develop the first comprehensive survey of residential energy consumption in China. • A typical Chinese household in 2012 consumed 1426 kilograms coal equivalent. • Space heating accounts for half of energy demand. • A large rural–urban gap exists in terms of energy sources and end-use activities. • Results reveal challenges and opportunities for China's energy policy

  1. High Performance Residential Housing Units at U.S. Coast Guard Base Kodiak: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.; Hickey, J.

    2013-10-01

    The United States Coast Guard (USCG) constructs residential housing throughout the country using a basic template that must meet the minimum Leadership in Energy and Environmental Design (LEED) Silver criteria or better for the units. In Kodiak, Alaska, USCG is procuring between 24 and 100 residential multi-family housing units. Priorities for the Kodiak project were to reduce overall energyconsumption by at least 20% over existing units, improve envelope construction, and evaluate space heating options. USCG is challenged with maintaining similar existing units that have complicated residential diesel boilers. Additionally, fuel and material costs are high in Kodiak. While USCG has worked to optimize the performance of the housing units with principles of improved buildingenvelope, the engineers realize there are still opportunities for improvement, especially within the heating, ventilation, and air conditioning (HVAC) system and different envelope measures. USCG staff also desires to balance higher upfront project costs for significantly reduced life-cycle costs of the residential units that have an expected lifetime of 50 or more years. To answer thesequestions, this analysis used the residential modeling tool BEoptE+ to examine potential energy- saving opportunities for the climate. The results suggest criteria for achieving optimized housing performance at the lowest cost. USCG will integrate the criteria into their procurement process. To achieve greater than 50% energy savings, USCG will need to specify full 2x 6 wood stud R-21 insulationwith two 2 inches of exterior foam, R-38 ceiling insulation or even wall insulation in the crawl space, and R-49 fiberglass batts in a the vented attic. The air barrier should be improved to ensure a tight envelope with minimal infiltration to the goal of 2.0 ACH50. With the implementation of an air source heat pump for space heating requirements, the combination of HVAC and envelope savings inthe residential unit can save

  2. Estimating U.S. residential demand for fuelwood in the presence of selectivity

    Science.gov (United States)

    Daly, Ryan Michael

    Residential energy consumers have options for home heating. With many applications, appliances, and fuel types, fuelwood used for heating faces stiff competition in modern society from other fuels. This study estimates demand for domestic fuelwood. It also examines whether evidence of bias exists from residential homes choosing to use fuelwood. The use of OLS as an estimator will yield biased results if such selectivity exists. Selectivity is addressed with a Heckman (1979) two-step procedure; bias in fuelwood demand estimation using OLS is reduced. Non-wood energy prices and income are major determinants of fuelwood demand. Geographical regions and urbanization confirm results from prior studies.

  3. Heat protection in summer for wooden residential buildings - Measurements on 'Minergie' single-family homes; Sommerlicher Waermeschutz bei Wohngebaeuden in Holzbauweise - Messungen in acht MINERGIE Einfamilienhaeusern - Entwurf Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Menard, M.; Nutt, M. [Lemon Consult GmbH, Zuerich (Switzerland); Keller, P. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland)

    2008-07-01

    This draft final report for the Swiss Federal Office of Energy (SFOE) presents the results obtained from measurements made in eight single-family homes built to the Swiss 'Minergie' standard. The project served to validate partly simplified simulations concerning the summertime thermal behaviour of low energy consumption buildings built of wood. The eight various 'Minergie' houses are described, as is the measurement concept chosen. The results obtained and the conclusions drawn are presented in detail and discussed, as is the implementation of measures derived from the project. Heat storage effects in the various building components are discussed. The results of the measurements are compared with the theoretical values obtained from calculations. Recommendations are presented. The report is augmented with a comprehensive appendix which includes the detailed measurement results for the buildings examined.

  4. Human Thermal Comfort In Residential House Buildings Of Jimma Town Southwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Chali Yadeta

    2015-08-01

    Full Text Available Indoor human thermal comfort is an important factor in indoor air quality assessment. Thermal comfort affects human health work efficiency and overall wellbeing. Thermal discomfort in indoors lowers the emotional and physical health of the occupants. This paper targets to explore human thermal comfort in residential house buildings of Jimma town and state some possible mechanisms to improve the existing thermal discomfort in large number the houses. For the study 303 structured questionnaires were distributed to the residential houses in thirteen places of the town based on predetermined criteria. The study reveals that human thermal discomfort in residential houses Jimma town are mainly from poor architectural design and improper use of heat generating appliances in indoors. The uses architectural design that suites the present climatic conditions and use of materials that facilitates ventilations will enhance the realization of the required human thermal comfort in residential houses of the study area.

  5. Estimation of European Union residential sector space cooling potential

    International Nuclear Information System (INIS)

    Jakubcionis, Mindaugas; Carlsson, Johan

    2017-01-01

    Data on European residential space cooling demands are scarce and often of poor quality. This can be concluded from a review of the Comprehensive Assessments on the energy efficiency potential in the heating and cooling sector performed by European Union Member States under Art. 14 of the Energy Efficiency Directive. This article estimates the potential space cooling demands in the residential sector of the EU and the resulting impact on electricity generation and supply systems using the United States as a proxy. A georeferenced approach was used to establish the potential residential space cooling demand in NUTS-3 regions of EU. The total potential space cooling demand of the EU was estimated to be 292 TW h for the residential sector in an average year. The additional electrical capacity needed was estimated to 79 GW. With proper energy system development strategies, e.g. matching capacity of solar PV with cooling demand, or introduction of district cooling, the stresses on electricity system from increasing cooling demand can be mitigated. The estimated potential of space cooling demand, identified in this paper for all EU Members States, could be used while preparing the next iteration of EU MS Comprehensive Assessments or other energy related studies. - Highlights: • An estimation of EU space cooling demand potential in residential sector is presented. • An estimate of space cooling demand potential is based on using USA data as a proxy. • Significant cooling demand increase can be expected. • Cooling demand increase would lead to increased stress in energy supply systems. • Proper policies and strategies might measurably decrease the impact on energy systems.

  6. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    housing typologies. This indicates a higher potential for integrating cogeneration systems in sustainable communities.Keywords: cogeneration; residential & mixed use communities; energy efficiency; district heating

  7. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  8. Price sensitivity of residential energy consumption in Norway

    International Nuclear Information System (INIS)

    Nesbakken, R.

    1999-01-01

    The main aim of this paper is to test the stability of the results of a model which focus on the relationship between the choice of heating equipment and the residential energy consumption. The results for the income and energy price variables are of special interest. Stability in the time dimension is tested by applying the model on micro data for each of the years 1993-1995. The parameter estimates are stable within a 95% confidence interval. However, the estimated impact of the energy price variable on energy consumption was considerably weaker in 1994 than in 1993 and 1995. The results for two different income groups in the pooled data set are also subject to stability testing. The energy price sensitivity in residential energy consumption is found to be higher for high-income households than for low-income households. 19 refs

  9. Indoor Air Quality of Residential Building Before and After Renovation

    Science.gov (United States)

    Sánka, Imrich; Földváry, Veronika

    2017-06-01

    This study investigates the impact of energy renovation on the indoor air quality of an apartment building during the heating season. The study was performed in one residential building before and after its renovation. An evaluation of the indoor air quality was performed using objective measurements and a subjective survey. The concentration of CO2 was measured in the bedrooms, and a sampling of the total volatile compounds (TVOC) was performed in the living rooms of the selected apartments. Higher concentrations of CO2 and TVOC were observed in the residential building after its renovation. The concentrations of CO2, and TVOC in some of the cases exceeded the recommended maximum limits, especially after implementing energy-saving measures on the building. The average air exchange rate was visibly higher before the renovation of the building. The current study indicates that large-scale renovations may reduce the quality of an indoor environment in many apartments, especially in the winter season.

  10. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  11. Price and income elasticities of residential energy demand in Germany

    International Nuclear Information System (INIS)

    Schulte, Isabella; Heindl, Peter

    2017-01-01

    We apply a quadratic expenditure system to estimate price and expenditure elasticities of residential energy demand (electricity and heating) in Germany. Using official expenditure data from 1993 to 2008, we estimate an expenditure elasticity for electricity of 0.3988 and of 0.4055 for space heating. The own price elasticity for electricity is −0.4310 and −0.5008 in the case of space heating. Disaggregation of households by expenditure and socio-economic composition reveals that the behavioural response to energy price changes is weaker (stronger) for low-income (top-income) households. There are considerable economies of scale in residential energy use but scale effects are not well approximated by the new OECD equivalence scale. Real increases in energy prices show a regressive pattern of incidence, implying that the welfare consequences of direct energy taxation are larger for low income households. The application of zero-elasticities in assessments of welfare consequences of energy taxation strongly underestimates potential welfare effects. The increase in inequality is 22% smaller when compared to the application of disaggregated price and income elasticities as estimated in this paper. - Highlights: • We estimate price, income, and expenditure elasticities for residential energy demand in Germany. • We differentiate elasticities by income groups and household type. • Electricity and space heating are necessary goods since the expenditure elasticities are smaller than unity. • Low-income households show a weaker reaction to changing prices when compared to high-income households. • Direct energy taxation has regressive effects, meaning that larger burdens fall upon low-income households.

  12. Restructuring and the retail residential market for power in Pennsylvania

    International Nuclear Information System (INIS)

    Kleit, Andrew N.; Shcherbakova, Anastasia V.; Chen Xu

    2012-01-01

    In January 2010 electricity retail residential rate caps expired in a large part of Pennsylvania, allowing consumers to shop for electricity in the retail market. In this paper we employ customer-level data from the relevant territory to analyze what residential customer and community characteristics impacted the decision of whether or not to switch to an alternative electricity provider, and when to make the switch. Results show that customers with higher usage levels (especially around the time of the program's introduction), electric heating, and those living in more urban and more educated communities with lower unemployment rates and higher median household incomes were both more likely to switch, and more likely to do so faster. Lower switching rates and a slower switching response was observed from customers with more variable month to month usage (perhaps this made them unsure of future benefits from switching), those on alternative residential electricity rates (time-of-day and thermal storage programs), and those new to the relevant area (perhaps due to lack of information about the residential choice program). Critics of retail electricity competition have suggested that it disadvantages poor and elderly ratepayers. Our results do not support this contention. Customers living in communities with higher poverty rates were actually more likely to switch (and do so faster) than middle-income consumers. Communities with higher shares of senior population were not found to have lower switching rates from younger communities. - Highlights: ► We analyze introduction of retail competition in Pennsylvania's electricity sector. ► We evaluate what characteristics influence consumers to switch electric providers. ► Higher usage and electric heat influence customers to switch and to do so faster. ► More variable usage and being new to service area deter switching. ► High poverty rates induce switching; older communities no less likely to switch.

  13. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  14. PEM - fuel cell system for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Britz, P. [Viessmann Werke GmbH and Co KG, 35107 Allendorf (Germany); Zartenar, N.

    2004-12-01

    Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam-reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  15. Residential mobility and childhood leukemia.

    Science.gov (United States)

    Amoon, A T; Oksuzyan, S; Crespi, C M; Arah, O A; Cockburn, M; Vergara, X; Kheifets, L

    2018-07-01

    Studies of environmental exposures and childhood leukemia studies do not usually account for residential mobility. Yet, in addition to being a potential risk factor, mobility can induce selection bias, confounding, or measurement error in such studies. Using data collected for California Powerline Study (CAPS), we attempt to disentangle the effect of mobility. We analyzed data from a population-based case-control study of childhood leukemia using cases who were born in California and diagnosed between 1988 and 2008 and birth certificate controls. We used stratified logistic regression, case-only analysis, and propensity-score adjustments to assess predictors of residential mobility between birth and diagnosis, and account for potential confounding due to residential mobility. Children who moved tended to be older, lived in housing other than single-family homes, had younger mothers and fewer siblings, and were of lower socioeconomic status. Odds ratios for leukemia among non-movers living mobility, including dwelling type, increased odds ratios for leukemia to 2.61 (95% CI: 1.76-3.86) for living mobility of childhood leukemia cases varied by several sociodemographic characteristics, but not by the distance to the nearest power line or calculated magnetic fields. Mobility appears to be an unlikely explanation for the associations observed between power lines exposure and childhood leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. RESIDENTIAL MORTGAGE IN MODERN RUSSIA

    Directory of Open Access Journals (Sweden)

    Dementiev N. P.

    2015-03-01

    Full Text Available The article presents a comparative analysis of residential mortgages in Russia and the United States. The primary ways of mortgage refinancing are outlined. Predominance of the elements of two-level refinancing system of residential mortgage in Russia and the United States is shown. The activity of the Agency for Housing Mortgage Lending (AHML, the basic tool of the Russian government’s mortgage policy, is described in detail. In its objectives and functions the AHML is similar to the American mortgage agencies Ginnie Mae, Fannie Mae and Freddie Mac. Similarities were identified in the Russian and US residential mortgages in the pre-crisis period (high rates of mortgage growth, favourable economic conjuncture, low interest rates, large increase in house prices, speculative housing demand. During the mortgage crisis, the policies of the Russian and US governments and monetary authorities had also much in common (monetary policy easing, cheap central banks loans, extended facilities of mortgage refinancing on the part of state agencies, mortgage rescue scheme, social mortgage programs. But the scope of mortgage in Russia is enormously narrow as compared to the US mortgage. The most important reason for that - low incomes of the Russian population.

  17. Regionalised tertiary psychiatric residential facilities.

    Science.gov (United States)

    Lesage, Alain; Groden, David; Goldner, Elliot M; Gelinas, Daniel; Arnold, Leslie M

    2008-01-01

    Psychiatric hospitals remain the main venue for long-term mental health care and, despite widespread closures and downsizing, no country that built asylums in the last century has done away with them entirely--with the recent exception of Italy. Differentiated community-based residential alternatives have been developed over the past decades, with staffing levels that range from full-time professional, to daytime only, to part-time/on-call. This paper reviews the characteristics of community-based psychiatric residential care facilities as an alternative to long-term care in psychiatric hospitals. It describes five factors decision makers should consider: 1. number of residential places needed; 2. staffing levels; 3. physical setting; 4. programming; and 5. governance and financing. In Italy, facilities with full-time professional staff have been developed since the mid-1990s to accommodate the last cohorts of patients discharged from psychiatric hospitals. In the United Kingdom, experiments with hostel wards since the 1980s have shown that home-like, small-scale facilities with intensive treatment and rehabilitation programming can be effective for the most difficult-to-place patients. More recently in Australia, Community Care Units (CCUs) have been applying this concept. In the Canadian province of British Columbia (BC), Tertiary Psychiatric Residential Facilities (TPRFs) have been developed as part of an effort to regionalise health and social services and downsize and ultimately close its only psychiatric hospital. This type of service must be further developed in addition to the need for forensic, acute-care and intermediate-level beds, as well as for community-based care such as assertive community treatment and intensive case management. All these types of services, together with long-term community-based residential care, constitute the elements of a balanced mental health care system. As part of a region's balanced mental health care plan, these Tertiary

  18. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  19. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  20. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  1. Retrofit energy conservation in residential buildings in southern California

    Science.gov (United States)

    Turner, R. H.; Birur, G. C.; Daksla, C.

    1982-01-01

    The common energy conservation techniques (ECTs) that can be retrofit-installed into residential buildings are surveyed. The quantity of saved energy for heating and cooling attributable to each ECT is evaluated for three common modes of heating: natural gas heating at 60/therm; heating via heat pump at $1.20/therm; and electric resistance heating at $2.40/therm. In every case, a life cycle cost comparison is made between the long term revenue due to energy conservation and a safe and conventional alternative investment that might be available to the prudent homeowner. The comparison between investment in an ECT and the alternative investment is brought into perspective using the life cycle payback period and an economic Figure of Merit (FOM). The FOM allows for relative ranking between candidate ECTs. Because the entire spectrum of winter heating climates in California is surveyed, the decision maker can determine whether or not a considered ECT is recommended in a given climate, and under what conditions an ECT investment becomes attractive.

  2. Residential care : Dutch and Italian residents of residential care facilities compared

    NARCIS (Netherlands)

    de Heer-Wunderink, Charlotte; Caro-Nienhuis, Annemarie D.; Sytema, Sjoerd; Wiersma, Durk

    2008-01-01

    Aims - Characteristics of patients living in residential care facilities and the availability of mental hospital- and residential beds in Italy and The Netherlands were compared to assess whether differences in the process of deinstitutionalisation have influenced the composition of their

  3. The relation between residential property and its surroundings and day- and night-time residential burglary

    NARCIS (Netherlands)

    Montoya, Lorena; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  4. The Relation Between Residential Property and its Surroundings and Day- and Night-Time Residential Burglary

    NARCIS (Netherlands)

    Montoya, L.; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  5. Novel approaches for an enhanced geothermal development of residential sites

    Science.gov (United States)

    Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.

  6. In-home performance of residential cordwood stoves

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.

    1991-01-01

    The air quality impacts of residential cordwood stoves have been of concern to regulators, energy planners, and members of the woodstove industry. In addition, the reliability of laboratory certification emission values in predicting 'real world' emissions has been questioned. In response to these concerns, particulate emissions from residential cordwood stoves under actual in-home use have been measured for 5 heating seasons as part of 12 separate studies in Oregon, New York, Vermont, and the Yukon Territory. Monitoring was conducted using an automated emission sampler (AES) system. The system has been deployed in nearly 100 individual homes. Typically, emissions from several 1-week-long integrated sampling periods over the course of the heating season were measured with the AES system at each home. Particulate emission rates in grams of particles per hour of stove operation, grams of particles per kilogram of dry wood burned, and grams of particles per million Joules were calculated. Ancillary data provided by the studies included wood burn rates, homeowner wood loading patterns, wood moisture content and species, hours of operation of auxiliary heating appliances in the study homes, room ambient, flue gas, catalyst, and pre-catalyst temperatures, and hours of catalyst operation. Conventional stoves, high-technology non-catalytic stoves, catalytic stoves, and stoves equipped with retrofit catalytic devices have been studied. In addition to the 12 cordwood stove studies, the AES system has been used in 2 pellet stove studies and 1 fireplace study

  7. Performance of alternative refrigerants for residential air-conditioning applications

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Seo, Taebeom; Jung, Dongsoo

    2007-01-01

    In this study, performances of two pure hydrocarbons and seven mixtures composed of propylene, propane, HFC152a, and dimethylether were measured to substitute for HCFC22 in residential air-conditioners and heat pumps. Thermodynamic cycle analysis was carried out to determine the optimum compositions before testing and actual tests were performed in a breadboard-type laboratory heat pump/air-conditioner at the evaporation and condensation temperatures of 7 and 45 deg. C, respectively. Test results show that the coefficient of performance of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed a 11.5% reduction in capacity, most of the fluids had a similar capacity to that of HCFC22. For these fluids, compressor-discharge temperatures were reduced by 11-17 deg. C. For all fluids tested, the amount of charge was reduced by up to 55% as compared to HCFC22. Overall, these fluids provide good performances with reasonable energy-savings without any environmental problem and thus can be used as long-term alternatives for residential air-conditioning and heat-pumping applications

  8. THE PHYSICAL AND CHEMICAL CHARACTERIZATION OF THE EMISSIONS FROM A RESIDENTIAL OIL BOILER

    Science.gov (United States)

    The toxicity of emissions from the combustion of home heating oil and the use of residential oil boilers (ROB) is an important health concern. Yet scant physical and chemical information about the emissions from this source are available for dispersion, climate, and source-recep...

  9. 78 FR 64067 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-10-25

    .... Inverter Controls for PSC Motors c. High-Efficiency Motors d. Multi-Stage or Modulating Heating Controls e... MPC b. Inverter-Driven PSC Costs c. Furnace Fan Motor MPC d. Motor Control Costs e. Backward-Inclined... savings is measured for the lifetime of residential furnace fans shipped in 2019-2048. The SCC values, on...

  10. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  11. Assessing the potential of residential HVAC systems for demand-side management

    NARCIS (Netherlands)

    van der Klauw, Thijs; Hoogsteen, Gerwin; Gerards, Marco Egbertus Theodorus; Hurink, Johann L.; Feng, Xianyong; Hebner, Robert E.

    This paper investigates the potential of residential heating, ventilation and air conditioning systems to contribute to dynamic demand-side management. Thermal models for seven houses in Austin, Texas are developed with the goal of using them in a planning based demand-side management methodology.

  12. A Case Study in Market Transformation for Residential Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2017-09-01

    This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.

  13. 77 FR 40530 - Energy Conservation Standards for Residential Furnace Fans: Public Meeting and Availability of...

    Science.gov (United States)

    2012-07-10

    ... heating, ventilation, and air-conditioning (HVAC) systems for the purpose of circulating air through duct... INFORMATION: Table of Contents I. Authority II. History of Energy Conservation Standards Rulemaking for... circulating air through duct work, hereinafter referred to as ``residential furnace fans'' or simply ``furnace...

  14. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Science.gov (United States)

    2013-01-11

    ... corresponded to the levels in the American Society of Heating, Refrigerating and Air Conditioning Engineers... provides a brief history of DOE's more recent test procedure rulemakings related to residential water... performance (e.g., such as ambient air temperature, ambient relative humidity, and inlet water temperature...

  15. Optimized Energy Management of a Single-House Residential Micro-Grid With Automated Demand Response

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Monsef, Hassan; Rahimi-Kian, Ashkan

    2015-01-01

    In this paper, an intelligent multi-objective energy management system (MOEMS) is proposed for applications in residential LVAC micro-grids where households are equipped with smart appliances, such as washing machine, dishwasher, tumble dryer and electric heating and they have the capability...

  16. Residential and Light Commercial HVAC. Teacher Edition and Student Edition. Second Edition.

    Science.gov (United States)

    Stephenson, David

    This package contains teacher and student editions of a residential and light commercial heating, ventilation, and air conditioning (HVAC) course of study. The teacher edition contains information on the following: using the publication; national competencies; competency profile; related academic and workplace skills list; tools, equipment, and…

  17. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01

    based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems

  18. ECOLO-HOUSE in the heavy snow-fall region. Study of the ventilating function that the heat collecting system of the air duct utilizing attic has; Yukiguni ECOLO-HOUSE. Kison kaoku no yaneura wo riyoshita duct shunetsu system kanki kino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H; Hirosawa, K [Yamagata University, Yamagata (Japan)

    1997-11-25

    This paper reports a duct heat collecting system installed in the ECOLO-HOUSE for snow countries. This system is an air heat collecting system of the outside air introducing type utilizing as a solar heat collector the single pitch roof often seen in snow countries. Outside air is introduced from below eaves into a heat collecting duct made by nailing plywoods onto rafters from the attic side to collect heat on the roof. Operating a sirocco fan connected to the induction duct located on the high-floor foundation sucks outside air from an air intake opening under the eaves into the heat collecting duct. Air which has absorbed heat on the roof and been warmed in the heat collecting duct by insolation goes into a heat collecting chamber. The air is sent into the high-floor foundation through the induction duct laid from the heat collecting chamber. Air is exchanged 8.7 times by the fan when it is operated all day continuously. Condensation in the fuel chamber floor and walls during the rainy season has disappeared, and so has odor at the same time. As a result of the humidity measurement, a location into which warm air is sent has difference in humidity as great as 15% from a location where no warm air is sent. 2 refs., 6 figs., 2 tabs.

  19. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  20. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimization problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity......’s objectives, the effectiveness and applicability of the proposed model is studied and validated compared to the existing residential EMSs. The simulation results demonstrate that the proposed EMS has the capability not only to conserve energy in sustainable homes and microgrid system and to reduce energy...

  1. Evaluation of flow hood measurements for residential register flows; TOPICAL

    International Nuclear Information System (INIS)

    Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

    2001-01-01

    Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large-on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue

  2. Calculating residential carbon dioxide emissions - a new approach

    International Nuclear Information System (INIS)

    Hughes, Larry; Bohan, Kathleen; Good, Joel; Jafapur, Khosrow

    2005-01-01

    All Annex 1 Parties are required to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate Change using the common report format. The inventory is to include a sectoral report for energy, listing different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane, and nitrous oxide). The sectors and their associated emissions can be used as a benchmark to show changes in emissions over time. In certain cases, these changes can be misleading, since an apparent emission reduction in one sector can result in a significant increase in the emissions of another, typically electricity production. Applying the emissions to the sector responsible for the final energy demand (as opposed to the sector that generates the energy) allows researchers and policy makers to develop reduction strategies that are targeted to the demand. This paper demonstrates this by removing the equivalent residential emissions from category A.1.a (Public Electricity and Heat Production) and applying them to category A.4.b (Residential) in Nova Scotia, a Canadian province that relies heavily on fossil fuels for electrical generation. The shift in emissions changes an apparent 4.1 percent decrease in Nova Scotia's residential emissions between 1991 and 2001 to an 8.2 percent increase. (Author)

  3. Prediction of residential building energy consumption: A neural network approach

    International Nuclear Information System (INIS)

    Biswas, M.A. Rafe; Robinson, Melvin D.; Fumo, Nelson

    2016-01-01

    Some of the challenges to predict energy utilization has gained recognition in the residential sector due to the significant energy consumption in recent decades. However, the modeling of residential building energy consumption is still underdeveloped for optimal and robust solutions while this research area has become of greater relevance with significant advances in computation and simulation. Such advances include the advent of artificial intelligence research in statistical model development. Artificial neural network has emerged as a key method to address the issue of nonlinearity of building energy data and the robust calculation of large and dynamic data. The development and validation of such models on one of the TxAIRE Research houses has been demonstrated in this paper. The TxAIRE houses have been designed to serve as realistic test facilities for demonstrating new technologies. The input variables used from the house data include number of days, outdoor temperature and solar radiation while the output variables are house and heat pump energy consumption. The models based on Levenberg-Marquardt and OWO-Newton algorithms had promising results of coefficients of determination within 0.87–0.91, which is comparable to prior literature. Further work will be explored to develop a robust model for residential building application. - Highlights: • A TxAIRE research house energy consumption data was collected in model development. • Neural network models developed using Levenberg–Marquardt or OWO-Newton algorithms. • Model results match well with data and statistically consistent with literature.

  4. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  5. Comparison of economic instruments to reduce PM_2_._5 from industrial and residential sources

    International Nuclear Information System (INIS)

    Mardones, Cristian; Saavedra, Andrés

    2016-01-01

    In the literature, it is possible to find different studies that compare economic instruments performance applied to the industrial sources regulation; however, evidence about pollution from residential sources is scarce. For this reason, the present study simulates and compares an emission permit system (EPS) and an ambient permit system (APS) when fine particulate matter pollution (PM_2_._5) is generated from industrial and residential sources. Thus, this research contributes to the spatial, economic and environmental assessment of industrial and residential emissions. The options to reduce pollution include replacement of heating devices in residential sources and installing end-of-pipe technologies in industrial sources. The results in terms of total cost and technological chosen options are similar under an APS and EPS for targets lesser to 80%. This is explained because it is more cost-effective to reduce emissions in residential sources than in industrial sources, and additionally, residential pollution has only local impact. However, some industrial sources should install abatement technologies for more demanding targets; in this case as industrial pollution are scattered in different areas, the total cost of an APS are lower than the total cost of an EPS. - Highlights: • The impact of wood burning on air quality can be significant in urban areas. • Residential and industrial sources in regulatory schemes to PM_2_._5 are analyzed. • Wood smoke pollution can be reduced by changing to more efficient heating devices. • Wood heater replacement is more cost-effective than abatement technologies. • The results are similar under APS and EPS for targets lesser to 80%.

  6. 10 CFR 434.518 - Service water heating.

    Science.gov (United States)

    2010-01-01

    ... buildings. The same service water heating load assumptions shall be made in calculating Design Energy... 1110 Restaurant 390 Health 135 Multi-family High Rise Residential 2 1700 1 This value is the number to...

  7. Energy statistics for non-residential premises in 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The dominating heating system in premises is distant heating, 52 per cent of the surface area is heated that way. Oil is used for heating in 34 per cent of the surface area and the use of oil is decreasing. Today oil is used in about 9 per cent of the premises compared to 43 per cent in 1981. Natural gas can so far only be used in the southwestern parts of Sweden and is heating 2.6 million of square metres. The total surface area for premises is about 139 million square metres in 1999. Since the beginning of the 1980s the surface area of offices has been increasing and is now about 30 million square metres, or 22 per cent of the premises. The total use of energy in premises is about the same 1999 as in 1998. Still the average consumption has decreased because of an increase of the surface area of premises. Surface area heated merely by heat pumps is almost three times as big as in 1998 which means that the average consumption has considerably decreased. This survey covers non-residential premises in Sweden. It is based on a sample of 7961 properties built before 1999 and on a total survey of properties owned by some of the major owners in the country (about 2000 properties). The survey was carried out in February 2000 as a mail survey. The property owners were asked to give information about type of premises, type of heating system, deliveries of energy for heating, etc. The presentation gives data on deliveries of energy, heated surface area, average consumption, etc., for the total population and for various subdivisions

  8. District heating grid of the Daqing Nuclear Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Changwen, Ma [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The Daqing Nuclear Heating Plant is the first commercial heating plant to be built in China. The plant is planned to be used as the main heat resource of one residential quarter of Daqing city. The main parameters of the heating plant are summarized in the paper. The load curve shows that the capacity of the NHP is about 69% of total capacity of the grid. The 12 existing boilers can be used as reserve and peak load heat resources. Two patterns of load following have have been considered and tested on the 5MW Test Heating Reactor. Experiment shows load of heat grid is changed slowly, so automatic load following is not necessary. (author). 9 figs, 1 tab.

  9. Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model

    International Nuclear Information System (INIS)

    Shimoda, Yoshiyuki; Yamaguchi, Yukio; Okamura, Tomo; Taniguchi, Ayako; Yamaguchi, Yohei

    2010-01-01

    A model is developed that simulates nationwide energy consumption of the residential sector by considering the diversity of household and building types. Since this model can simulate the energy consumption for each household and building category by dynamic energy use based on the schedule of the occupants' activities and a heating and cooling load calculation model, various kinds of energy-saving policies can be evaluated with considerable accuracy. In addition, the average energy efficiency of major electric appliances used in the residential sector and the percentages of housing insulation levels of existing houses is predicted by the 'stock transition model.' In this paper, energy consumption and CO 2 emissions in the Japanese residential sector until 2025 are predicted. For example, as a business - as-usual (BAU) case, CO 2 emissions will be reduced by 7% from the 1990 level. Also evaluated are mitigation measures such as the energy efficiency standard for home electric appliances, thermal insulation code, reduction of standby power, high-efficiency water heaters, energy-efficient behavior of occupants, and dissemination of photovoltaic panels.

  10. PCMs for Residential Building Applications: A Short Review Focused on Disadvantages and Proposals for Future Development

    Directory of Open Access Journals (Sweden)

    Ashley Bland

    2017-08-01

    Full Text Available Phase change materials (PCMs offer great potential as a latent heat energy storage technique to provide energy efficient systems in new and existing residential buildings. Due to their unique characteristic of high storage densities and latent heat properties, PCMs provide opportunities for greater energy storage in many applications for residential buildings. These applications include, but are not limited to, solar water heating, space heating/cooling, and waste heat recovery. This study reviews PCM systems in residential building applications, with a focus on their major disadvantages and concludes with proposals for future development. Several disadvantages of PCM use in the given application have been identified and include; super cooling, low thermal conductivity, phase segregation, fire safety, and cost. The issues caused by super cooling and phase segregation lead to thermal cycling degradation, limiting the useful lifecycle of the material. These issues could limit their potential in building applications, which require systems of a long lifespan. Low thermal conductivities can slow down the rate at which heat is distributed or absorbed from the building, which affect the occupants comfort and as well as the efficiency of the system. Ideas based on the current research on ways to limit these disadvantages are included in the study. This study also identifies that further research is required on novel maintenance ways for the PCM systems after they have been installed.

  11. Optimal load scheduling in commercial and residential microgrids

    Science.gov (United States)

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  12. Residential ventilation standards scoping study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  13. Integration of motor traffic in residential areas.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1977-01-01

    In stead of banning the cars from residential areas, the plan is to integrate them in such a way that they can still be used, but that they will loose their predominant position. The areas where this integration is to take place are called residential yards. This paper concentrates on the lighting

  14. Particle Emission Characteristics of Modern and Old-Type Residential Boilers Fired with Wood Logs and Wood Pellets

    International Nuclear Information System (INIS)

    Johansson, L.S.; Gustavsson, L.; Tullin, C.; Potter, A.; Leckner, B.

    2005-01-01

    Residential biofuel combustion for heating can be performed in two ways: in a stove heating the surrounding room, or in a boiler heating water to be circulated through a piping system to heat an entire house. In contrast to stoves, wood boilers can be connected to heat storage tanks, which is an advantage from an emission point of view. The present work focuses on comparing emissions from old-type and modern boilers by means of systematic variation of combustion device, fuel quality, firing behaviour, and the influence of heat storage tank. User habits are simulated in a schematic way. The purpose of the comparison is to determine the emission differences between old-type and modern residential biofuel boilers and to quantify emission characteristics of different kind of biofuel combustion

  15. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  16. Therapeutic Residential Care for Children and Youth:

    DEFF Research Database (Denmark)

    Whittaker, James K.; Holmes, Lisa; del Valle, Jorge F.

    2016-01-01

    so in closer collaboration with their families and in closer proximity to their home communities; and, (3) with the hope of reducing the high costs often associated with group residential provision. In some jurisdictions, efforts to reduce residential care resources in the absence of sufficient...... alternatives to serve high-resource needing youth has had unintended and negative consequences. It is within this context that a working group international experts representing research, policy, service delivery and families (International Work Group for Therapeutic Residential Care) convened at the Centre...... for Child and Family Research, Loughborough University in the U.K. for a Summit meeting on therapeutic residential care for children and youth funded by the Sir Halley Stewart Trust (UK). The focus centered on what is known about therapeutic residential care and what key questions should inform a priority...

  17. ENERGY PRODUCTION AND RESIDENTIAL HEATING: TAXATION, SUBSIDIES, AND COMPARATIVE COSTS

    Science.gov (United States)

    This analysis is in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. It examines the effect of economic incentives on public and private decisions affecting energy production and us...

  18. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heating...... of the building in time. This way the thermal mass of the building can be used to absorb energy from renewable energy source when available and postpone heating in periods with lack of renewable energy generation. The model is used in a model predictive controller to ensure the residential comfort over a given...

  19. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  20. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  1. Residential carbon dioxide emissions in Canada. Impact of efficiency improvements and fuel substitution

    International Nuclear Information System (INIS)

    Ugursal, V.I.; FUng, A.S.

    1998-01-01

    The effect of improving house envelope, heating system and appliance efficiencies, and fuel substitution on the atmospheric emissions of carbon dioxide in the Canadian residential sector is studied based on simulation studies. The findings clearly indicate that improving appliance efficiency reduces the overall end-use energy consumption in the residential sector as well as the associated carbon dioxide emissions. However, the magnitude of the reduction in carbon dioxide emissions as a result of improving only appliance efficiencies is quite small. Significantly larger reductions can be obtained by improving house envelopes and heating/cooling systems in addition to improving appliance efficiencies. Fuel substitution for space and domestic hot water heating can also present a potential to reduce carbon dioxide emissions depending on the fuel substitution scenario adopted. (author)

  2. Residential electricity demand in Singapore

    International Nuclear Information System (INIS)

    Ang, B.W.; Goh, T.N.; Liu, X.Q.

    1992-01-01

    Residential electricity consumption in Singapore increased at a rate of 8.8% per year between 1972 and 1990. Estimates of the long-run income and price elasticities are 1.0 and -0.35, respectively. The energy-conservation campaigns that have been launched are found to have marginal effects on consumption. A statistical analysis shows that the consumption is sensitive to small changes in climatic variables, particularly the temperature, which is closely linked to the growing diffusion of electric appliances for environmental controls. There has been a temporal increase in the ownership levels of appliances associated with increasing household incomes. However, other factors were involved since the ownership levels would also increase over time after the elimination of the income effect. A large part of the future growth in electricity demand will arise from the growing need for air-conditioning, which will lead to increasingly large seasonal variations in electricity use. (author)

  3. Residential radon survey in Finland

    International Nuclear Information System (INIS)

    Arvela, H.; Maekelaeinen, I.; Castren, O.

    1993-02-01

    The study measured the indoor radon concentration in the dwellings of 3074 persons, selected randomly from the central population register of Finland. Alpha track detectors and two consecutive half year measuring periods were used. The national mean of indoor radon concentration for persons living in low-rise residential buildings as well as blocks of flats was 145 and 82 Bq/m 3 , respectively. The mean for the total population was 123 Bq/m 3 . Based on the decision of the Ministry of Social Affairs and Health in 1992, the indoor radon concentration should not exceed 400 Bq/m 3 in already existing houses, the target for new construction being less than 200 Bq/m 3 . According to the study, the percentage of the Finnish population living in houses with an indoor radon concentration exceeding 200, 400 and 800 Bq/m 3 was 12.3 %, 3.6 % and 1.0 %

  4. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, it was to be fuel- blind''). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.

  5. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  6. Energy statistics for non-residential premises in 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The dominating heating system in premises is district heating, 55 per cent of the surface area is heated that way. Oil is used for heating in 19 per cent of the surface area and the use of oil is decreasing. Today oil is used in about 8 per cent of the premises compared to 43 per cent in 1981. Natural gas can so far only be used in the southwestern parts of Sweden and is heating 1.8 million of square metres. The total surface area for premises is about 149 million square metres in 2000. Since the beginning of the 1980s the surface area of offices has been increasing and is now about 44 million square metres, or 30 per cent of the premises. The total use of energy in premises has increased by nearly 400 GWh compared to 1999. Still the average consumption has decreased because of an increase of the surface area of premises. The year 2000 was also warmer than 1999. This survey covers non-residential premises in Sweden. It is based on a sample of 8154 properties built before 2000 and on a total survey of properties owned by some of the major owners in the country (about 1500 properties). The survey was carried out in February 2001 as a mail survey. The property owners were asked to give information about type of premises, type of heating system, deliveries of energy for heating, etc. The presentation gives data on deliveries of energy, heated surface area, average consumption, etc., for the total population and for various subdivisions

  7. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  8. 12 CFR 541.23 - Residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Residential real estate. 541.23 Section 541.23... AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.23 Residential real estate. The terms residential real estate... home used in part for business); (c) Other real estate used for primarily residential purposes other...

  9. 12 CFR 541.16 - Improved residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Improved residential real estate. 541.16... REGULATIONS AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.16 Improved residential real estate. The term improved residential real estate means residential real estate containing offsite or other improvements...

  10. Evaluation of an earth heat storage system in a solar energy greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Langrell, J.; Boris, R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering

    2010-07-01

    Greenhouses store solar energy in the walls and floors during the daytime and release the stored energy back to the greenhouse at night. In this study, an earth heat storage system was constructed and tested in a solar energy greenhouse in order to enhance energy storage. The system consisted of a network of perforated pipes buried in the soil at depths from 0.3 to 1 m. The warm air near the greenhouse ceiling was drawn to the buried pipes. Soil and air temperatures were recorded at various locations by a network of thermocouples. The energy balance was analyzed in order to evaluate the effectiveness of the earth heat storage system. The temperature profiles in the soil were used to determine the summer recharge and winter energy depletion behaviour of the system.

  11. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  12. Development of Residential SOFC Cogeneration System

    Science.gov (United States)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  13. Development of Residential SOFC Cogeneration System

    International Nuclear Information System (INIS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-01-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the 'Demonstrative Research on Solid Oxide Fuel Cells' Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  14. Forecasting residential electricity demand in provincial China.

    Science.gov (United States)

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  15. Influence of Macroeconomic Factors on Residential Property ...

    African Journals Online (AJOL)

    Sultan

    exerted by macroeconomic factors on residential property returns in Abuja. The backward .... explanatory power and positive influence of employment and ...... Project. Management In Property Development: the Nigeria experience. Ibadan:.

  16. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  17. Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector

    International Nuclear Information System (INIS)

    Siller, Thomas; Kost, Michael; Imboden, Dieter

    2007-01-01

    The aim of this paper is to explore the possibilities to reach two long-term targets regarding energy consumption and greenhouse gas emissions of the Swiss residential building stock: a reduction of the final energy consumption by a factor of 3 and of CO 2 emissions by a factor of 5 until 2050. A model is constructed to describe the dynamics of the energy-relevant properties of the residential building stock. Appropriate scenarios are discussed in terms of decisions made during construction or renovation of residential buildings which affect heat demand and determine the energy carriers used for heating and hot water generation. We show that both targets could be reached, although ambitious efforts are necessary. The central element of a successful strategy is to reduce the specific heat demand of existing buildings during renovation and to substitute the heating and hot water systems by less carbon intensive ones. Our results suggest that there is more flexibility to reach the emission target than the energy reduction target

  18. Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch

    International Nuclear Information System (INIS)

    Gu, Wei; Lu, Shuai; Wu, Zhi; Zhang, Xuesong; Zhou, Jinhui; Zhao, Bo; Wang, Jun

    2017-01-01

    Highlights: •A bilateral transaction mode for the residential CCHP microgrid is proposed. •An energy pricing strategy for the residential CCHP system is proposed. •A novel integrated demand response for the residential loads is proposed. •Two-stage operation optimization model for the CCHP microgrid is proposed. •Operations of typical days and annual scale of the CCHP microgrid are studied. -- Abstract: As the global energy crisis, environmental pollution, and global warming grow in intensity, increasing attention is being paid to combined cooling, heating, and power (CCHP) systems that realize high-efficiency cascade utilization of energy. This paper proposes a bilateral transaction mechanism between a residential CCHP system and a load aggregator (LA). The variable energy cost of the CCHP system is analyzed, based on which an energy pricing strategy for the CCHP system is proposed. Under this pricing strategy, the electricity price is constant, while the heat/cool price is ladder-shaped and dependent on the relationship between the electrical, heat, and cool loads. For the LA, an integrated demand response program is proposed that combines electricity-load shifting and a flexible heating/cooling supply, in which a thermodynamic model of buildings is used to determine the appropriate range of heating/cooling supply. Subsequently, a two-stage optimal dispatch model is proposed for the energy system that comprises the CCHP system and the LA. Case studies consisting of three scenarios (winter, summer, and excessive seasons) are delivered to demonstrate the effectiveness of the proposed approach, and the performance of the proposed pricing strategy is also evaluated by annual operation simulations.

  19. Impact of wood combustion on particle levels in a residential area in Denmark

    DEFF Research Database (Denmark)

    Glasius, M.; Ketzel, M.; Wåhlin, P.

    2006-01-01

    The influence of residential wood-combustion on local air quality was studied during two periods in 2002 and 2003/04 in a small rural town with widespread use of wood combustion for heating. During one 6-week winter period, particle levels (PM2.5) in the residential area were about 4 μg m-3 higher...... than at a nearby background site. This was comparable to the local traffic contribution observed at a busy street (about 70,000 vehicles per day) in the city of Copenhagen. The diurnal variation in the residential area showed increased particle levels (PM2.5) in the evening and night as expected from...... local heating sources. Particle size distributions showed highest volume concentrations of particles with diameters of 400-500 nm, and the diurnal variation of particle volume was similar to PM2.5. The particle measurements were supported by measurements of combustion gases in both the residential area...

  20. Exploring variance in residential electricity consumption: Household features and building properties

    International Nuclear Information System (INIS)

    Bartusch, Cajsa; Odlare, Monica; Wallin, Fredrik; Wester, Lars

    2012-01-01

    Highlights: ► Statistical analysis of variance are of considerable value in identifying key indicators for policy update. ► Variance in residential electricity use is partly explained by household features. ► Variance in residential electricity use is partly explained by building properties. ► Household behavior has a profound impact on individual electricity use. -- Abstract: Improved means of controlling electricity consumption plays an important part in boosting energy efficiency in the Swedish power market. Developing policy instruments to that end requires more in-depth statistics on electricity use in the residential sector, among other things. The aim of the study has accordingly been to assess the extent of variance in annual electricity consumption in single-family homes as well as to estimate the impact of household features and building properties in this respect using independent samples t-tests and one-way as well as univariate independent samples analyses of variance. Statistically significant variances associated with geographic area, heating system, number of family members, family composition, year of construction, electric water heater and electric underfloor heating have been established. The overall result of the analyses is nevertheless that variance in residential electricity consumption cannot be fully explained by independent variables related to household and building characteristics alone. As for the methodological approach, the results further suggest that methods for statistical analysis of variance are of considerable value in indentifying key indicators for policy update and development.

  1. Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

    Science.gov (United States)

    Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.

    2018-01-01

    The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

  2. Optimization of heat pump using fuzzy logic and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-12-15

    Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)

  3. Differences between Residential and Non-Residential Fathers on Sexual Socialisation of African American Youth

    Science.gov (United States)

    Sneed, Carl D.; Willis, Leigh A.

    2016-01-01

    This study investigated differences between residential and non-residential fathers on topics discussed during father-child sex communication and factors associated with child sexual socialisation. Young people (N = 159, 53% female) provided self-reports using computer surveys on the role of their fathers on father-child sex communication, general…

  4. Optimal tree design for daylighting in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hongbing, Wang [College of Landscape Architecture, Beijing Forestry University, 35, East Qinghua Rd., Beijing (China); Shanghai Botanical Garden, 1111, Longwu Rd., Shanghai (China); Jun, Qin; Yonghong, Hu [Shanghai Botanical Garden, 1111, Longwu Rd., Shanghai (China); Li, Dong [College of Landscape Architecture, Beijing Forestry University, 35, East Qinghua Rd., Beijing (China)

    2010-12-15

    Urban reforestation is advocated as an efficient countermeasure to the intensification of urban heat islands. The greening and beautification of residential quarters is one of the main concerns of residents, while lighting and ventilation are two main energy-consuming building services. Hence, the tree layout in green space between buildings is important, and it is necessary to determine the relationships between trees and buildings. This study takes Shanghai as a case study to optimize tree design between residential buildings and meet good daylighting requirements. Models were made using software such as AutoCAD and SketchUp. The relationships between maximum tree height and building separation were determined. For the same building layout, there were different tree height limits according to crown shape; the order of decreasing height limits was cylindrical, conical, spherical, and inverted conical crowns. Three cases having different green space between building layouts were studied. Their maximum tree heights differed. Overall, our model helps us realize good daylighting of a building environment. The formula allows us to determine which trees to plant between buildings in that we can predict the effects of future tree growth on building daylighting. (author)

  5. Energy data sourcebook for the US residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  6. Impacts of Residential Biofuel Emissions on Air Quality and Climate

    Science.gov (United States)

    Huang, Y.; Unger, N.; Harper, K.; Storelvmo, T.

    2016-12-01

    The residential biofuel sector is defined as fuelwood, agricultural residues and dung used for household cooking and heating. Aerosol emissions from this human activity play an important role affecting local, regional and global air quality, climate and public health. However, there are only few studies available that evaluate the net impacts and large uncertainties persist. Here we use the Community Atmosphere Model version 5.3 (CAM v5.3) within the Community Earth System Model version 1.2.2, to quantify the impacts of cook-stove biofuel emissions on air quality and climate. The model incorporates a novel advanced treatment of black carbon (BC) effects on mixed-phase/ice clouds. We update the global anthropogenic emission inventory in CAM v5.3 to a state-of-the-art emission inventory from the Greenhouse Gas-Air Pollution Interactions and Synergies integrated assessment model. Global in-situ and aircraft campaign observations for BC and organic carbon are used to evaluate and validate the model performance. Sensitivity simulations are employed to assess the impacts of residential biofuel emissions on regional and global direct and indirect radiative forcings in the contemporary world. We focus the analyses on several key regions including India, China and Sub-Saharan Africa.

  7. Energy and exergy utilizations of the Chinese urban residential sector

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Li, Yang; Wang, Dengjia; Liu, Jiaping

    2014-01-01

    Highlights: • The energy and exergy use in China’s urban residential sector between 2002 and 2011 are analyzed. • The primary locations and causes of energy and exergy losses in the CURS are identified. • The large gap between the energy and exergy efficiencies implies great potential for energy saving. • The exergy utilization can be improved by using appropriate technology, management and policy. - Abstract: In this paper, the energy and exergy utilizations in the Chinese urban residential sector (CURS) are analyzed by considering the energy and exergy flows for the years between 2002 and 2011. The energy and exergy efficiencies of this sector are calculated to examine the potential for advancing the ‘true’ energy efficiency and determine the real energy losses. The results demonstrate large differences between the overall energy efficiencies (62.8–70.2%) and the exergy efficiencies (11.0–12.2%) for the years analyzed. The sizable gap between the energy and exergy efficiencies implies a high potential for energy savings in the CURS. Future energy saving strategies should pay more attention to the improvement in exergy efficiencies. Moreover, it is found that direct fuel use constituted the primary exergy losses of the CURS; coal-fired boiler heating systems cause approximately 35% of the total exergy losses. Gas stoves, cogeneration systems, coal stoves and gas water heaters constitute 15.3%, 15%, 5.5% and 4.9% of the total exergy losses, respectively

  8. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    Science.gov (United States)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  9. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...

  10. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  11. Quantifying the Flexibility of Residential Electricity Demand in 2050: a Bottom-Up Approach

    OpenAIRE

    van Stiphout, Arne; Engels, Jonas; Guldentops, Dries; Deconinck, Geert

    2015-01-01

    This work presents a new method to quantify the flexibility of automatic demand response applied to residential electricity demand using price elasticities. A stochastic bottom-up model of flexible electricity demand in 2050 is presented. Three types of flexible devices are implemented: electrical heating, electric vehicles and wet appliances. Each house schedules its flexible demand w.r.t. a varying price signal, in order to minimize electricity cost. Own- and cross-price elasticities are ob...

  12. Biomass gasification systems for residential application: An integrated simulation approach

    International Nuclear Information System (INIS)

    Prando, Dario; Patuzzi, Francesco; Pernigotto, Giovanni; Gasparella, Andrea; Baratieri, Marco

    2014-01-01

    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  13. Should you get your heating ducts cleaned?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Canada Mortgage and Housing Corporation conducted research into duct cleaning during which time several houses were tested for hot air furnace duct performance before and after cleaning. Duct cleaning is a major industry which claims that cleaning of ducts will provide you with better indoor air quality, reduce household molds and allergens, get rid of house dust, result in more airflow and better delivery of warm air and reduce energy costs. This report does not substantiate those claims. Researchers found little or no discernible differences in the concentrations of house airborne particles or in duct airflows due to duct cleaning. This is because ducts are metal passages that cannot create dust. Most household dusts come from outdoors that has been tracked in or blows through windows and other openings. While duct cleaning may be justifiable personally, it does not change the quality of the air you breathe, nor will it significantly affect airflow or heating costs. Some filters effectively clean the air in the ducts but they do not create a dust-free environment because of the above-mentioned dust sources. The only time that duct cleaning may make sense is if you have water in your ducts that can result in mold growth, if you are moving into a newly constructed house to remove drywall dust, if your are having trouble with furnace airflow, or if you see an accumulation of debris in the return air ducts. It was emphasized that broadcast spraying of biocides within the duct system should not be performed.

  14. Assessment of Japanese variable speed heat pump technology

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji

    1988-01-01

    An analysis of critical component technologies and design methodologies for Japanese variable speed heat pumps are presented. The market for variable speed heat pumps in Japan is predominantly residential split-type, between the fractional to 2.5 ton capacity range. Approximately 1.1 million residential inverter-driven heat pumps were sold in 1987. Based on the market trends, component technology and several advanced features are described. Similarities and differences between Japanese and US system design methodologies are discussed. Finally, the outlook for future technology trends is briefly described. 8 refs., 6 figs., 1 tab.

  15. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  16. North–South debate on district heating: Evidence from a household survey

    International Nuclear Information System (INIS)

    Guo, Jin; Huang, Ying; Wei, Chu

    2015-01-01

    There has been a long debate on whether South China should supply district heating for the residential sector, a system that is widely used in North China. The major concern is that it may further accelerate China's energy demand. Using a unique urban household level dataset, the China Residential Energy Consumption Survey (CRECS), we investigate residential energy consumption for heating and examine the energy intensity and energy cost of distributed heating in South China and district heating in North China during the 2012 heating season. Our results show that the total energy consumption for distributed heating system users in southern cities is significantly lower than for users of district heating systems in northern cities. However, when accounting for the heating area and heating season, the distributed heating households in the South consumed 32% more energy and paid 189% higher cost per unit area and per hour, but had lower comfort than district heating users in the North. These findings suggest promoting the district heating market in appropriate areas in South China. This not only can improve residential welfare, but also can indirectly reduce energy consumption and financial burdens. - Highlights: • The debate on whether Southern China apply district heating is present. • The household data in 2012 is used to compare the energy efficient and cost. • South resident use more energy and higher cost but less comfort than North. • Government should not prevent the district heating market.

  17. Experimental evaluation of air distribution in mechanically ventilated residential rooms

    DEFF Research Database (Denmark)

    Tomasi, R.; Krajčík, M.; Simone, A.

    2013-01-01

    The effect of low ventilation rates (1 or 0.5 air change per hour) on thermal comfort and ventilation effectiveness was experimentally studied in a simulated residential room equipped with radiant floor heating/cooling and mixing ventilation systems. The tests were performed for various positions...... of supply and extract air terminals and different winter and summer boundary conditions. Vertical air temperature, operative temperature and air velocity profiles were measured in different positions in the room, and equivalent temperatures were derived, in order to characterize thermal comfort. Contaminant...... with unconditioned outdoor air supply, i.e. at the supply air temperatures higher than the room air temperature. Moreover, low floor temperatures were needed to maintain the desired reference temperature in the stratified thermal environment. Mainly in cooling conditions the ventilation effectiveness depended...

  18. Energy conservation and the residential and commercial sector

    Science.gov (United States)

    1975-01-01

    A detailed analysis of energy conservation actions relevant to the residential and commercial sector has led to the conclusion that the potential for savings is great. The task will not be easy, however, since many of the actions require significant life style changes that are difficult to accomplish. Furthermore, many of the conservation actions cited as instant solutions to the energy crisis are those with only mid to long term potential, such as solar energy or heat pumps. Three significant conservation approaches are viable: adjusting price structure, mandating actions, and educating consumers. The first two appear to be the most feasible. But they are not without a price. Higher utility bills adversely affect the poor and the elderly on fixed incomes. Likewise, strict mandatory measures can be quite distasteful. But the effect of alternatives, such as voluntary savings accomplished through education processes, is minimal in a nation without a true conservation ethic.

  19. The performance of energy efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G.

    1996-08-01

    The adequacy and durability of residential building envelope systems under actual field conditions were evaluated. A building envelope offers protection from cold, heat, moisture, wind and noise. However, they are exposed to thermal, structural, and moisture stresses and their performance can degrade over time. Envelope performance was evaluated at 20 energy efficient and four conventional, detached modern homes in Winnipeg, Canada. The three complementary measurement tools were wood moisture content (WMC) of framing members, thermographic examinations, and airtightness tests. As expected, energy efficient building envelope systems performed better than the conventional systems. No evidence of envelope degradation was found in any of the energy efficient houses. The building envelopes using polyethylene air barriers performed slightly better than those which used the airtight drywall approach, although both were considered satisfactory. WMC levels were a bit lower in the polyethylene-clad house. 1 ref., 1 tab.

  20. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    OpenAIRE

    Abbasi, Yasser; Baniasadi, Ehsan; Ahmadikia, Hossein

    2016-01-01

    This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground sour...

  1. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  2. Residentialization of Public Spaces: Bratislava Example

    Science.gov (United States)

    Bacová, Andrea; Puškár, Branislav; Vráblová, Edita

    2017-10-01

    The housing estates in Bratislava saturated the housing needs of a large number of inhabitants who come after World War II to the city. Design of public spaces often did not have priority in the process of designing. The solutions for mentioned exterior spaces had been planned after blocks of flat realization, but many of them are not realized to this day. The article analyzes the example of the unrealized public spaces in existing housing estates Devinska Nova Ves and Petržalka (city districts of Bratislava) and offer practical solutions in relation to residencialization method. Residencialization of missing public places is an effective method of adding identities to settlements. It improves the quality of residential environment and public spaces. The main aim is to create better conditions for social activities in public areas, which are missing on the present. The research will be focused on the examination of the urban, cultural and construction potential of the existing residential enviroment in Bratislava. The main aim of residentialization is not only to enhance the quality of spatial and building structures in the selected residential area and maintain long-term sustainability in the pertinent programme area, but mainly to improve the quality of living for the residents. The outputs of the project are proposals and practical procedures developed with regard to planning documents for local municipal authorities and regional organizations. The solutions will have a positive impact on the enhancement of the quality of public spaces, attractive social activities and of a conceptual link - residentialization.

  3. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  4. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  5. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  6. Best practices guide for residential HVAC Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.

    2003-08-11

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various

  7. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  8. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  9. District heating in sequential energy supply

    International Nuclear Information System (INIS)

    Persson, Urban; Werner, Sven

    2012-01-01

    Highlights: ► European excess heat recovery and utilisation by district heat distribution. ► Heat recovery in district heating systems – a structural energy efficiency measure. ► Introduction of new theoretical concepts to express excess heat recovery. ► Fourfold potential for excess heat utilisation in EU27 compared to current levels. ► Large scale excess heat recovery – a collaborative challenge for future Europe. -- Abstract: Increased recovery of excess heat from thermal power generation and industrial processes has great potential to reduce primary energy demands in EU27. In this study, current excess heat utilisation levels by means of district heat distribution are assessed and expressed by concepts such as recovery efficiency, heat recovery rate, and heat utilisation rate. For two chosen excess heat activities, current average EU27 heat recovery levels are compared to currently best Member State practices, whereby future potentials of European excess heat recovery and utilisation are estimated. The principle of sequential energy supply is elaborated to capture the conceptual idea of excess heat recovery in district heating systems as a structural and organisational energy efficiency measure. The general conditions discussed concerning expansion of heat recovery into district heating systems include infrastructure investments in district heating networks, collaboration agreements, maintained value chains, policy support, world market energy prices, allocation of synergy benefits, and local initiatives. The main conclusion from this study is that a future fourfold increase of current EU27 excess heat utilisation by means of district heat distribution to residential and service sectors is conceived as plausible if applying best Member State practice. This estimation is higher than the threefold increase with respect to direct feasible distribution costs estimated by the same authors in a previous study. Hence, no direct barriers appear with

  10. Residential neighbourhoods in Kathmandu: Key design guidelines

    Directory of Open Access Journals (Sweden)

    Bijaya K. Shrestha

    2013-01-01

    Full Text Available Residential neighbourhoods developed using various techniques in Kathmandu by both the public and private sectors have not only provided a poor urban setting and failed to address socio-cultural needs, but are also poor at building a community and creating links to the built environment, with the result that the planned areas lack a sense of place and the inhabitants lack a feeling of home. Although traditional neighbourhoods in the historic core area had many features of a good residential neighbourhood in the past, they are currently undergoing rapid destruction. The residents of these neighbourhoods have little awareness of these issues. The existing legal and institutional frameworks are inadequate and ineffective and cannot address these problems, and so the formulation of design guidelines, their strict implementation, and enhancement of socio-cultural events including social networking are recommended for future residential neighbourhood development.

  11. Gentrification and Residential Mobility in Philadelphia.

    Science.gov (United States)

    Ding, Lei; Hwang, Jackelyn; Divringi, Eileen

    2016-11-01

    Gentrification has provoked considerable controversy surrounding its effects on residential displacement. Using a unique individual-level, longitudinal data set, this study examines mobility rates and residential destinations of residents in gentrifying neighborhoods during the recent housing boom and bust in Philadelphia for various strata of residents and different types of gentrification. We find that vulnerable residents, those with low credit scores and without mortgages, are generally no more likely to move from gentrifying neighborhoods compared with their counterparts in nongentrifying neighborhoods. When they do move, however, they are more likely to move to lower-income neighborhoods. Residents in gentrifying neighborhoods at the aggregate level have slightly higher mobility rates, but these rates are largely driven by more advantaged residents. These findings shed new light on the heterogeneity in mobility patterns across residents in gentrifying neighborhoods and suggest that researchers should focus more attention on the quality of residential moves and nonmoves for less advantaged residents, rather than mobility rates alone.

  12. Expressions of Prayer in Residential Care Homes.

    Science.gov (United States)

    Reimer-Kirkham, Sheryl; Sharma, Sonya; Smith, Brenda; Schutt, Kelly; Janzen, Kyla

    2018-01-01

    Although the value of spiritual care in the care of older adults is supported by research, few studies have focused specifically on prayer in residential care settings. This ethnographic study with fifteen chaplains and administrators in eleven residential care homes involved analyses of walking interviews and research diaries. Findings revealed the spaces in which prayer happens and the forms it takes. The identities of chaplains-their own spiritual practices, religious beliefs, and positioning within the facility-shaped their dis/comfort with prayer and how they located prayer within public and private spaces. Where organizational leadership endorsed the legitimacy of chaplaincy services, prayer was more likely to be offered. Even in these circumstances, however, religious diversity and questions about secularism left chaplains ambivalent about the appropriateness of prayer. The results demonstrate the relevance of religion and spirituality to residential care, and illustrate how prayer functions as an opportunity for connection and understanding.

  13. Service Differentiation in Residential Broadband Networks

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias

    2004-01-01

    As broadband gains widespread adoption with residential users, revenue generating voice- and video-services have not yet taken off. This slow uptake is often attributed to lack of Quality of Service management in residential broadband networks. To resolve this and induce service variety, network...... access providers are implementing service differentiation in their networks where voice and video gets prioritised before data. This paper discusses the role of network access providers in multipurpose packet based networks and the available migration strategies for supporting multimedia services...... in digital subscriber line (DSL) based residential broadband networks. Four possible implementation scenarios and their technical characteristics and effects are described. To conclude, the paper discusses how network access providers can be induced to open their networks for third party service providers....

  14. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  15. Residential air-conditioner usage in China and efficiency standardization

    International Nuclear Information System (INIS)

    Wu, Jianghong; Liu, Chaopeng; Li, Hongqi; Ouyang, Dong; Cheng, Jianhong; Wang, Yuanxia; You, Shaofang

    2017-01-01

    Determining the real energy consumption and usage pattern of a room air-conditioner (RAC) are important issues from the point of view of both RAC design and evaluation of its energy efficiency. An air-conditioner's running time is fundamental data for the calculation of SEER and APF values. Therefore, in 2010, a nationwide investigation of RAC usage was conducted and 400 selected air-conditioning-units were monitored for a full year to obtain data on their cooling and heating usage. Two running time curves (cooling and heating) were obtained for the air-conditioners as a function of outdoor air temperatures using statistical analysis. The results show that the 27–30 °C temperature range accounts for more than 52% of the cooling time. Conversely, the 0–8 °C temperature range is associated with more than 75% of the heating time. The research presented in this paper has significantly contributed to China's new variable-speed RAC efficiency standard (GB21455-2013). It also has far-reaching implications for both the air-conditioner industry and energy policy in China due to its different method of calculating energy efficiency. - Highlights: • A nationwide survey to realize China's residential air-conditions usage behaviors. • Air-conditioner running time-environment temperature curves are obtained. • The peak heating demand and peak cooling demand happen at 28 °C and 4 °C, respectively. • The temperature of 27 °C–30 °C accounts for over 52% refrigeration time. • The temperature of 0 °C–8 °C occupies more than 75% heating time.

  16. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  17. Modelling and forecasting Turkish residential electricity demand

    International Nuclear Information System (INIS)

    Dilaver, Zafer; Hunt, Lester C

    2011-01-01

    This research investigates the relationship between Turkish residential electricity consumption, household total final consumption expenditure and residential electricity prices by applying the structural time series model to annual data over the period from 1960 to 2008. Household total final consumption expenditure, real energy prices and an underlying energy demand trend are found to be important drivers of Turkish residential electricity demand with the estimated short run and the long run total final consumption expenditure elasticities being 0.38 and 1.57, respectively, and the estimated short run and long run price elasticities being -0.09 and -0.38, respectively. Moreover, the estimated underlying energy demand trend, (which, as far as is known, has not been investigated before for the Turkish residential sector) should be of some benefit to Turkish decision makers in terms of energy planning. It provides information about the impact of past policies, the influence of technical progress, the impacts of changes in consumer behaviour and the effects of changes in economic structure. Furthermore, based on the estimated equation, and different forecast assumptions, it is predicted that Turkish residential electricity demand will be somewhere between 48 and 80 TWh by 2020 compared to 40 TWh in 2008. - Research highlights: → Estimated short run and long run expenditure elasticities of 0.38 and 1.57, respectively. → Estimated short run and long run price elasticities of -0.09 and -0.38, respectively. → Estimated UEDT has increasing (i.e. energy using) and decreasing (i.e. energy saving) periods. → Predicted Turkish residential electricity demand between 48 and 80 TWh in 2020.

  18. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  19. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Parker, Danny [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWHs) on space conditioning and water heating energy use in residential applications. Two identical HPWHs, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  20. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States); Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  1. Sustainable residential districts : the residents' role in project success

    NARCIS (Netherlands)

    Abdalla, G.

    2012-01-01

    Sustainable residential districts have been realized worldwide. These districts are promoted to be efficient in the use of natural materials and sustainable energy resources. Realization of sustainable residential districts can strongly contribute to achieve environmental objectives as imposed by

  2. PRN 2011-1: Residential Exposure Joint Venture

    Science.gov (United States)

    This PR Notice is to advise registrants of an industry-wide joint venture, titled the Residential Exposure Joint Venture (REJV), which has developed a national survey regarding residential consumer use/usage data for pesticides.

  3. Steering Angle Function Algorithm of Morphing of Residential Area

    Directory of Open Access Journals (Sweden)

    XIE Tian

    2015-07-01

    Full Text Available A residential area feature morphing method based on steering angle function is presented. To residential area with the same representation under two different scales,transforming the representation of the residential area polygon from vector coordinates to steering angle function,then using the steering angle function to match,and finding out the similarity and the differences between the residential areas under different scale to get the steering angle function of the the residential areas under any middle scale,the final,transforming the middle scale steering angle function to vector coordinates form,and get the middle shape interpolation of the the residential area polygon.Experimental results show:the residential area morphing method by using steering angle function presented can realize the continuous multi-scale representation under the premise of keeping in shape for the residential area with the rectangular boundary features.

  4. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  5. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  6. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  7. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  8. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  9. Predicting summer residential electricity demand across the U.S.A using climate information

    Science.gov (United States)

    Sun, X.; Wang, S.; Lall, U.

    2017-12-01

    We developed a Bayesian Hierarchical model to predict monthly residential per capita electricity consumption at the state level across the USA using climate information. The summer period was selected since cooling requirements may be directly associated with electricity use, while for winter a mix of energy sources may be used to meet heating needs. Historical monthly electricity consumption data from 1990 to 2013 were used to build a predictive model with a set of corresponding climate and non-climate covariates. A clustering analysis was performed first to identify groups of states that had similar temporal patterns for the cooling degree days of each state. Then, a partial pooling model was applied to each cluster to assess the sensitivity of monthly per capita residential electricity demand to each predictor (including cooling-degree-days, gross domestic product (GDP) per capita, per capita electricity demand of previous month and previous year, and the residential electricity price). The sensitivity of residential electricity to cooling-degree-days has an identifiable geographic distribution with higher values in northeastern United States.

  10. The effects of utility cost reduction on residential energy consumption in Hungary – a decomposition analysis

    Directory of Open Access Journals (Sweden)

    Tekla Sebestyén Szép

    2017-01-01

    Full Text Available The residential energy consumption is influenced by a lot of factors. Understanding and calculating these factors is essential to making conscious energy policy decisions and feedbacks. Since 2013 the energy prices for households have been controlled by the government in Hungary and as a result of the utility cost reduction program a sharp decline can be observed in residential electricity, district heating and natural gas prices. This paper applies the LMDI (~Logarithmic Mean Division Index method to decompose the absolute change of the residential energy consumption during the period of 2010-2015. We calculate the price, the intensive structure (it means the change of energy expenditure share on energy sources, the extensive structure (it is in connection with the change of energy expenditure share in total expenditure, expenditure (it is the change of per capita total expenditure and population effect. All of that shows the impact of the specific factor on the residential energy consumption by income deciles. Our results have verified the preliminary expectations: the decreasing energy prices for households have a positive impact on energy use and it has been strengthened by the expenditure effect as well. However, the intensive structure, the extensive structure and the population effect have largely offset it.

  11. Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

    OpenAIRE

    L. L. Ivy-Yap; H. A. Bekhet

    2014-01-01

    As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential secto...

  12. Suggestions on Strengthening Greening Construction of Ecological Residential Areas

    OpenAIRE

    Li, Peng

    2013-01-01

    Greening construction is an important part of the construction of ecological residential areas, but there exist some misunderstandings in greening construction of ecological residential districts at present. Based on the description of functions of green space in ecological residential areas, the summarization of principles of greening design, and the discussion of questions in greening construction of ecological residential districts, some suggestions as well as specific measures for strengt...

  13. SOLAR SYSTEMS FOR RESIDENTIAL BUILDINGS IN ACCORDANCE WITH OPERATING CONDITIONS OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. A. Rutkowski

    2017-01-01

    Full Text Available Solar systems are actively applied for heat supply of buildings in Europe. Usage of solar energy for heat supply of residential buildings is considered as rather efficient for the Republic of Belarus because total amount of direct and scattered solar radiation entering horizontal surface is equivalent to an average European index for the climate of Belarus. The paper analyzes an existing dependence on determination of solar system efficiency and proposes an amended formula for calculations while designing solar consumption systems and its legitimacy has been experimentally proved. A scheme of an experimental unit with explanations and a brief description for execution of experiments and main results of the completed investigations have been presented in the paper. Experiments have been carried out for solar systems with natural and forced coolant circulation. Attention has been paid to obtaining maximum possible temperature potential of the coolant during operation of the solar system within periods of high and low solar radiation intensity. Recommendations on practical application of solar systems for multi-storey residential buildings houses and mansion-type houses have been given in the paper. The paper presents technological principles of constructing “passive” solar heating devices. A comparison of traditionally applied and proposed alternative solar systems has been made for operational conditions in Belarus. The paper proposes a solar system for hot water supply of multi-storey buildings. The proposed system has found its first realization in the Republic while designing and constructing an energy-efficient demonstration 10-storey residential building in Mogilev within the framework of the UN Development Program project and Global Environment Fund “Improvement of energy efficiency for residential buildings in the Republic of Belarus”

  14. 24 CFR 40.2 - Definition of “residential structure”.

    Science.gov (United States)

    2010-04-01

    ... OWNED RESIDENTIAL STRUCTURES § 40.2 Definition of “residential structure”. (a) As used in this part, the term residential structure means a residential structure (other than a privately owned residential structure and a residential structure on a military reservation): (1) Constructed or altered by or on behalf...

  15. Residential Preferences and Moving Behavior: A Family Life Cycle Analysis.

    Science.gov (United States)

    McAuley, William J.; Nutty, Cheri L.

    The relationship of family life cycle changes to housing preferences and residential mobility is examined. Two residential decision-making issues are explored in detail--how family life cycle stages influence what people view as important to their choice of residential setting and what individuals at different family life cycle stages view as the…

  16. 38 CFR 36.4357 - Combination residential and business property.

    Science.gov (United States)

    2010-07-01

    ... Reporting § 36.4357 Combination residential and business property. If otherwise eligible, a loan for the purchase or construction of a combination of residential property and business property which the veteran... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Combination residential...

  17. Family events and the residential mobility of couples

    NARCIS (Netherlands)

    Michielin, F.; Mulder, C.H.

    2008-01-01

    Using data from retrospective surveys carried out in the Netherlands during the early 1990s, we describe how the residential mobility of couples—that is, short-distance moves—is affected by family events and how fertility is affected by residential mobility. The results show that residential moves

  18. Side-by-Side Testing of Water Heating Systems: Results from the 2013-2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Bulding America Partnership for Improved Residential Construction

    2017-07-12

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  19. Hydrological processes at the urban residential scale

    Science.gov (United States)

    Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin

    2007-01-01

    In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...

  20. Does Fall History Influence Residential Adjustments?

    Science.gov (United States)

    Leland, Natalie; Porell, Frank; Murphy, Susan L.

    2011-01-01

    Purpose of the study: To determine whether reported falls at baseline are associated with an older adult's decision to make a residential adjustment (RA) and the type of adjustment made in the subsequent 2 years. Design and Methods: Observations (n = 25,036) were from the Health and Retirement Study, a nationally representative sample of…