WorldWideScience

Sample records for residential solar energy

  1. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  2. Residential Solar Design Review: A Manual on Community Architectural Controls and Solar Energy Use.

    Science.gov (United States)

    Jaffe, Martin; Erley, Duncan

    Presented are architectural design issues associated with solar energy use, and procedures for design review committees to consider in examining residential solar installation in light of existing aesthetic goals for their communities. Recommended design review criteria include the type of solar system being used and the ways in which the system…

  3. Solar Adoption and Energy Consumption in the Residential Sector

    Science.gov (United States)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To

  4. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  5. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  6. Beyond the EPBD: The low energy residential settlement Borgo Solare

    International Nuclear Information System (INIS)

    Aste, Niccolo; Adhikari, R.S.; Buzzetti, Michela

    2010-01-01

    The European Directive on Energy Performance of Buildings (EPBD) imposes the adoption of measures for improving the energy efficiency in buildings. These measures should take into account the local weather conditions as well as internal thermal environment and cost-effectiveness. In this respect, Italy is a very interesting benchmark. For Northern Italy, the climatic context is particularly difficult to deal with cold winters and hot summers. The legislations are changing very rapidly, but has not fully adapted to the local context. The considered methodology still involves winter heating while summer cooling is addressed in incomplete and inadequate ways. The energy issue is addressed only partially as final energy consumption, but with little attention to LCA. Moreover, the belief that the buildings with high energy savings are too expensive, and therefore not attractive from economic point of view. For these reasons, it is very important to develop case studies to demonstrate the effectiveness of sustainable energy in architecture, according to a holistic approach. This paper describes a detailed techno-economic analysis for Borgo Solare project, an extremely advanced and innovative residential settlement designed on sustainable architecture concepts. One of the most innovative aspects of the project is that it is not just an experimental operation but Borgo Solare is a real urban district, which will be built without public funds and should be inhabited by common people. Excellent energy performance, therefore, must be accompanied by affordable market prices. The energy and economical analysis is presented taking into account also the embodied energy of the building. The results on the performance of a sample building (case study) of this settlement are reported, according to different construction standards: prior to EPBD, present from the EPBD and more efficient developed specifically for the project. It has been shown that using the better design practices

  7. Solar power and policy powerlessness − perceptions of persuasion in distributed residential solar energy policy development

    Directory of Open Access Journals (Sweden)

    Simpson Genevieve

    2017-01-01

    Full Text Available Distributed residential solar energy (photovoltaic technologies have been praised as a mechanism to not only increase the penetration of renewable energy but engage the community in a clean energy revolution. In spite of this it is unclear how much potential there is for stakeholders to influence processes around the adoption of solar energy, including policy development and regulation. As part of a wider research project assessing the social acceptance of residential solar energy in Western Australia a variety of stakeholders, including public servants, network operators, Members of Parliament, energy advocates, renewable energy industry members and community members, were asked whether they thought they had the potential to influence solar policy. The objective of this research was to highlight positions of influence over policy development. In total 23 interviews with regional Western Australian householders and 32 interviews with members of industry and government were undertaken between May and October 2015. Most respondents believed that they had previously, or could in future, influence solar policy by taking advantage of networks of influence. However, stakeholders perceived as having policy influence did not necessarily demonstrate the capacity to influence policy beyond providing information to decision-makers, namely Cabinet members. Instead, networks of renewable energy advocates, industry and community members could apply political pressure through petitions, media coverage and liaising with parliamentarians to develop support for policy changes. Furthermore, while policies for the promotion of solar energy, and renewable energy more generally, could be implemented at various levels of government, only those policies delivered at the state level could address socio-political barriers to renewable energy adoption. These barriers include: a lack of political will and funding to overcome technical issues with network connection

  8. Energy-Independent Architectural Models for Residential Complex Plans through Solar Energy in Daegu Metropolitan City, South Korea

    Directory of Open Access Journals (Sweden)

    Sung-Yul Kim

    2018-02-01

    Full Text Available This study suggests energy-independent architectural models for residential complexes through the production of solar-energy-based renewable energy. Daegu Metropolitan City, South Korea, was selected as the target area for the residential complex. An optimal location in the area was selected to maximize the production of solar-energy-based renewable energy. Then, several architectural design models were developed. Next, after analyzing the energy-use patterns of each design model, economic analyses were conducted considering the profits generated from renewable-energy use. In this way, the optimum residential building model was identified. For this site, optimal solar power generation efficiency was obtained when solar panels were installed at 25° angles. Thus, the sloped roof angles were set to 25°, and the average height of the internal space of the highest floor was set to 1.8 m. Based on this model, analyses were performed regarding energy self-sufficiency improvement and economics. It was verified that connecting solar power generation capacity from a zero-energy perspective considering the consumer’s amount of power consumption was more effective than connecting maximum solar power generation capacity according to building structure. Moreover, it was verified that selecting a subsidizable solar power generation capacity according to the residential solar power facility connection can maximize operational benefits.

  9. Residential solar energy users: a review of empirical research and related literature

    Energy Technology Data Exchange (ETDEWEB)

    Unseld, C.T.; Crews, R.

    1979-12-01

    This report reviews 15 empirical studies of residential solar energy users and related literature on residential solar energy use. The purpose of the review is to summarize and analyze the experiences of residential solar users for helping formulate policies concerning the accelerated commercialization of solar technologies. Four of the studies employed case histories or focus group techniques. The 11 questionnaire studies represented interviews with over 1,600 owners of solar systems. The demographic characteristics of samples are listed and compared; research findings and conclusions are presented. Findings on user satisfaction and system performance, possible reasons for evidence of lacking correlation between them, and implications for consumer protection and future research are discussed. General findings are: (1) systematic research on the experiences of solar users is lacking - much research remains to be done; (2) the reported overall experiences of users has been very positive; (3) user reports indicate that system performance is generally good but there is some evidence that user reports are not accurate measures of actual performance; (4) a need exists for adequate consumer protection; (5) design or installation problems are evidenced in significant numbers of early solar installations; and (6) these problems evidently are resolvable. An annotated bibliography describes 10 other studies in progress.

  10. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  11. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  12. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, J.; Jadraque, E.; Alegre, J.; Martinez, G. [Department of Civil Engineering, University of Granada (Spain)

    2010-09-15

    Fossil fuel energy resources are becoming increasingly scarce. Given the negative environmental impacts (e.g. greenhouse gas emissions) that accompany their use, it is hardly surprising that the development of renewable energies has become a major priority in the world today. Andalusia, with a mean solar radiation of 4.75 kWh/m{sup 2} per day and a surface area of 87,597 km{sup 2}, is the region in Europe with the highest solar energy potential. This research study determined the solar energy potential in Andalusia for grid-connected photovoltaic systems installed on residential rooftops. A methodology was developed for this purpose, which first involved a description of building characteristics, followed by the calculation of the useful roof surface area where photovoltaic arrays could be installed. In the next phase of the study, the mean solar irradiation characteristics were defined as well as the technical parameters of the photovoltaic systems. All of these factors allowed us to estimate the amount of electricity that could be potentially generated per year by solar panels. (author)

  13. Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential

    International Nuclear Information System (INIS)

    Burns, John Edward; Kang, Jin-Su

    2012-01-01

    Numerous studies and market reports suggest that the solar photovoltaic markets rely heavily, if not entirely, upon governmental support policies at present. Unlike in other countries where these policies are enacted at a national level, the 50 states in the US pursue different policies in an attempt to foster the growth of renewable energy, and specifically solar photovoltaics. This paper provides an economic and financial analysis of the US federal and state level policies in states with solar-targeted policies that have markets. After putting a value on SRECs, this study further compares solar carve-outs with other incentives including the federal tax credit, net metering, and state personal tax credits. Our findings show that SREC markets can certainly be strong, with New Jersey, Delaware, and Massachusetts having the most potential. Despite their strong potential as effective renewable policies, the lack of a guaranteed minimum and the uncertainty attached are major drawbacks of SREC markets. However, the leveraging of this high value offers hope that the policies will indeed stimulate residential solar photovoltaic markets. - Highlights: ► We measure solar support incentives in eight US states with set-asides that include SREC policies. ► Compare each financial incentive using DCF, NPV, IRR, and Present Value/Watt-capacity. ► Most US SREC markets have strong potential to stimulate solar photovoltaics. ► SREC success requires price floors to alleviate uncertainty issues. ► Private financial entities can leverage SRECs to provide necessary price floors.

  14. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  15. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhen

    2018-01-01

    Full Text Available In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  16. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  17. Analysis of potential energy, economic and environmental savings in residential buildings: Solar collectors combined with microturbines

    International Nuclear Information System (INIS)

    Suárez, I.; Prieto, M.M.; Fernández, F.J.

    2013-01-01

    Highlights: ► Centralization of energy systems for a group of buildings improves profitability. ► Thermal solar systems are economically interesting even in low radiation locations. ► Regulations currently in force determine the feasibility of high efficiency energy systems. - Abstract: This paper presents an analysis of a combined solar-cogeneration installation for providing energy services in a set of four residential buildings. Different configurations as regards the number of collectors and their orientation, the number of buildings grouped together, the type of microturbines used in the cogeneration system and their daily and annual operating period are studied from the legal, economic and environmental perspectives. The installation that fulfils the minimum requirements of the solar system coverage and the cogeneration system efficiency currently in force, and simultaneously leads to the highest energy, economic and environmental savings is the one that integrates both technologies and centralises the installation for the four buildings together. A payback period lower than 8 years is obtained that makes this investment recommendable, but it is also concluded that maintaining the existing subsidies for these technologies and lowering the costs of the equipment, are essential factors to ensure the feasibility of this type of installations

  18. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Jeff; Murphy, Sean

    2018-04-04

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which use private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV

  19. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, Kristen; O' Shaughnessy, Eric; Fu, Ran; McClurg, Chris; Huneycutt, Joshua; Margolis, Robert

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quarter of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.

  20. Architectural design of passive solar residential building

    Directory of Open Access Journals (Sweden)

    Ma Jing

    2015-01-01

    Full Text Available This paper studies thermal environment of closed balconies that commonly exist in residential buildings, and designs a passive solar residential building. The design optimizes the architectural details of the house and passive utilization of solar energy to provide auxiliary heating for house in winter and cooling in summer. This design might provide a more sufficient and reasonable modification for microclimate in the house.

  1. Residential Energy Performance Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Wright

    2010-06-01

    Full Text Available Techniques for residential energy monitoring are an emerging field that is currently drawing significant attention. This paper is a description of the current efforts to monitor and compare the performance of three solar powered homes built at Missouri University of Science and Technology. The homes are outfitted with an array of sensors and a data logger system to measure and record electricity production, system energy use, internal home temperature and humidity, hot water production, and exterior ambient conditions the houses are experiencing. Data is being collected to measure the performance of the houses, compare to energy modeling programs, design and develop cost effective sensor systems for energy monitoring, and produce a cost effective home control system.

  2. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  3. Adoption of residential solar power under uncertainty: Implications for renewable energy incentives

    International Nuclear Information System (INIS)

    Bauner, Christoph; Crago, Christine L.

    2015-01-01

    Many incentives at the state and federal level exist for household adoption of renewable energy like solar photovoltaic (PV) panels. Despite generous financial incentives the adoption rate is low. We use the option value framework, which takes into account the benefit of delaying investment in response to uncertainty, to examine the decision by households to invest in solar PV. Using a simulation model, we determine optimal adoption times, critical values of discounted benefits, and adoption rates over time for solar PV investments using data from Massachusetts. We find that the option value multiplier is 1.6, which implies that the discounted value of benefits from solar PV needs to exceed installation cost by 60% for investment to occur. Without any policies, median adoption time is eight years longer under the option value decision rule compared to the net present value decision rule where households equate discounted benefits to installation cost. Rebates and other financial incentives decrease adoption time, but their effect is attenuated if households apply the option value decision rule to solar PV investments. Results suggest that policies that reduce the uncertainty in returns from solar PV investments would be most effective at incentivizing adoption. - Highlights: • We examine household adoption of solar PV using the option value framework. • Uncertainty in benefits and costs leads to delay in investment timing. • Discounted benefits from solar PV have to exceed investment cost by 60% to trigger investment. • Policy incentives that reduce uncertainty in returns from solar PV are most effective.

  4. Solar Ray Tracing Analysis to Determine Energy Availability in a CPC Designed for Use as a Residential Water Heater

    Directory of Open Access Journals (Sweden)

    Miguel Terrón-Hernández

    2018-01-01

    Full Text Available Compound parabolic concentrators are relevant systems used in solar thermal technology. With adequate tailoring, they can be used as an efficient and low-cost alternative in residential water heating applications. This work presents a simulation study using a ray tracing analysis. With this technique, we simulate the interaction between solar rays and solar concentrator to quantify the amount of energy that impinges on the receiver at a particular time. Energy availability is evaluated in a comparison of two configurations throughout the year: static setup at 21° and multi-position setup; tilted with respect to the horizontal, depending on three seasonal positions: 0° for summer, 16° for spring/autumn, and 32° for winter, with the aim to evaluate the amount of available energy in each season. The fact that a tracking system can be dispensed with also represents an economical option for the proposed application. The results showed that at 21°, the proposed solar Compound Parabolic Concentrator (CPC works satisfactorily; however, by carrying out the selected angular adjustments, the overall energy availability increased by 22%, resulting in a more efficient option. The most effective design was also built and analyzed outdoors. The obtained thermal efficiency was of ~43%. The optical design and its evaluation developed herein proved to be a valuable tool for prototype design and performance evaluation.

  5. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  6. Simulation study on reduction of peak power demand and energy consumption in residential houses with solar thermal and PV systems; Taiyo energy riyo jutaku no fuka heijunka oyobi energy sakugen koka no simulation ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Endo, T. [Yokohama City Office, Yokohama (Japan); Udagawa, M. [Kogakuin Univ., Tokyo (Japan). Faculty of Engineering

    1995-11-20

    In this study, taking the all factors involved in the energy consumption in residential houses as subjects, the effectiveness of the solar PV system and solar thermal utilizing system in residential houses has been studied by simulating a model residential house considering the improvement of the residual environment in the future. Therefore, a model residual house is assumed, 18 kinds of combinations of construction style, cooling and heating type and solar energy utilizing form are assumed and year round simulation is carried out. The conclusions obtained by the simulation are as follows. The energy consumption in residential houses may decrease greatly by using a solar hot water supplying system. If combined with a solar PV system, the energy consumption in one year is about 8.7 to 9.7 MWh. The combined use of a solar thermal utilizing system and a PV system is more effective to reduce the second-time energy in comparison with the PV system only. 36% of the space heating energy consumption may be decreased by using the solar space heating system, but the decrease effect of the energy consumption of the solar space heating system is smaller than the solar hot water supplying system. 12 refs., 26 figs., 3 tabs.

  7. The use of solar energy for residential buildings in the capital city

    Science.gov (United States)

    Velkin, V.; Shcheklein, S.; Danilov, V.

    2017-06-01

    Taking into account the conditions of sharply continental climate of Russia the implementation of the project of heating for an apartment house can be structured on the basis of solar vacuum collectors. A diagram of the operation of the vacuum solar collectors can be considered for heating and hot water. The calculations of effective angle of solar collectors also vary for stationary use in winter and summer. Consumption of centralized heat in the spring and autumn is reduced by 30 % due to the use of solar collectors. In summer the main problem of application of solar collectors is to protect the tubes from overheating. In winter, the use of solar heating is able to provide not more than 25 % of the needs regarding the utility and the results of experimental exploitation. It is shown that the main problem of using solar energy in Russia relies not in technology, but in the legislative field. The use of a vacuum manifold in Russia will be widely implemented in areas with a cold climate and in the modern houses after solving the issues of legislative support from the state and municipal authorities.

  8. Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Cao, Sunliang; Hasan, Ala; Sirén, Kai

    2015-01-01

    The objective of this study was to examine the effect of production-based support schemes on the economic feasibility of residential-scale PV systems (1–10 kW) in Finland. This was done by calculating the payback time for various sizes of newly installed PV systems for a Finnish detached house with district heating. Three types of economic support schemes (guaranteed selling price, fixed premiums and self-consumption incentives) were tested in an hourly simulation. The load of the building was based on real-life measurements, while PV output was simulated with TRNSYS software. The energy results were post-processed with economic data in MATLAB to find the payback time. Hourly electricity prices from the Nordic energy market were used with PV system prices from Finnish companies. Unsubsidised residential PV systems in Finland had payback times of more than 40 years. The production-based support for PV generation needs to be two to three times the buying price of electricity, to make it possible to pay back the initial investment in 20 years. Low capacity systems with more than 50% self-consumption (under 3 kW) were favoured by self-consumption incentives, while high capacity systems with less than 40% self-consumption (over 5 kW) were favoured by the FIT-type support schemes. - Highlights: • Unsubsidised residential PV is uneconomical in Finland. • Support rate must be 2 times the electricity price for reasonable payback time. • Even using all electricity on-site is not profitable enough without support. • Assumed real interest rate had great influence on payback time. • Hourly electricity prices are much lower than average values from Finnish statistics

  9. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  10. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  11. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  12. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Energy Technology Data Exchange (ETDEWEB)

    Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)

    2016-07-25

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  13. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    International Nuclear Information System (INIS)

    Derrouazin, A.; Aillerie, M.; Charles, J. P.; Mekkakia-Maaza, N.

    2016-01-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  14. Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system

    International Nuclear Information System (INIS)

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J.-P.

    2017-01-01

    Highlights: • We present a fuzzy smart controller for hybrid renewable and conventional energy system. • The rules are based on human intelligence and implemented in the smart controller. • Efficient tracking capability of the proposed controller is proofed in this paper by an example. • Excess produced renewable energy is converted to hydrogen for household use . • Considerable electric grid energy saving is highlighted in the proposed controller system. - Abstract: This study concerns the conception and development of an efficient multi input-output fuzzy logic smart controller, to manage the energy flux of a sustainable hybrid power system, based on renewable power sources, integrating solar panels and a wind turbine associated with storage, applied to a typical residential habitat. In the suggested topology, the energy surplus is redirected to an electrolysis system to produce hydrogen suitable for household utilities. To assume a constant access to electricity in case of consumption peak, connection to the grid is also considered as an exceptional rescue resource. The objective of the presented controller is to exploit instantaneously the produced renewable electric energy and insure savings of electric grid energy. The proposed multi input-output fuzzy logic smart controller has been achieved and verified, outcome switches command signals are discussed and the renewable energy system integration ratio is highlighted.

  15. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  16. Augmenting natural ventilation using solar heat and free cool energy for residential buildings

    Directory of Open Access Journals (Sweden)

    N. B. Geetha

    2014-03-01

    Full Text Available In many urban buildings ventilation is not sufficient that will increase the temperature and also create unhealthy atmosphere inside the room. In such buildings artificially induced ventilation through freely available energy promote comfort conditions by reducing the temperature by 2 to 3°C and also creating good circulation of fresh air inside the room. In the present work the concept of improving the ventilation by excess hot energy available during summer days from the solar flat plate collector and by storing cool energy available during the early morning hour in the Phase Change Material (PCM based storage system is attempted. An experimental setup is made to study the effect of improvement in natural ventilation and the results are reported. A visible reduction in temperature is observed through circulation of air from the bottom side of the room to the roof of the house using the stored hot and cool energy. A CFD analysis is also carried out using ANSYS-CFX software to simulate and evaluate the mass flow of air at the inlet and at the selected RTD location by matching the transient temperature profile of the simulated result with the experimental results at the selected RTD location.

  17. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  18. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  19. Costs of Residential Solar PV Plants in Distribution Grid Networks

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Yang, Guangya; Ipsen, Hans Henrik

    2015-01-01

    In this article we investigate the impact of residential solar PV plants on energy losses in distribution networks and their impact on distribution transformers lifetime. Current guidelines in Denmark states that distribution transformers should not be loaded with more than 67% solar PV power...

  20. Residential energy demand in Brazil

    International Nuclear Information System (INIS)

    Arouca, M.; Gomes, F.M.; Rosa, L.P.

    1981-01-01

    The energy demand in Brazilian residential sector is studied, discussing the methodology for analyzing this demand from some ideas suggested, for developing an adequate method to brazilian characteristics. The residential energy consumption of several fuels in Brazil is also presented, including a comparative evaluation with the United States and France. (author)

  1. ENERGY STAR Certified Residential Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Residential Dishwashers that are effective as of...

  2. ENERGY STAR Certified Residential Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  3. ENERGY STAR Certified Residential Refrigerators

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  4. The solar energy in Israel

    International Nuclear Information System (INIS)

    Bocquet, L.

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  5. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  6. NREL Benchmarks the Installed Cost of Residential Solar Photovoltaics with Energy Storage for the First Time

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-13

    Fact sheet summarizing technical report TP-7A40-67474. New National Renewable Energy Laboratory research fills a gap in the existing knowledge about barriers to PV-plus-storage systems by providing detailed component- and system-level installed cost benchmarks for systems in the first quarter of 2016. The report is meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede PV-plus-storage deployment.

  7. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    OpenAIRE

    Abbasi, Yasser; Baniasadi, Ehsan; Ahmadikia, Hossein

    2016-01-01

    This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground sour...

  8. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  9. Using Machine Learning and Data Analysis to Improve Customer Acquisition and Marketing in Residential Solar

    Energy Technology Data Exchange (ETDEWEB)

    Sigrin, Benjamin O [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    High customer acquisition costs remain a persistent challenge in the U.S. residential solar industry. Effective customer acquisition in the residential solar market is increasingly achieved with the help of data analysis and machine learning, whether that means more targeted advertising, understanding customer motivations, or responding to competitors. New research by the National Renewable Energy Laboratory, Sandia National Laboratories, Vanderbilt University, University of Pennsylvania, and the California Center for Sustainable Energy and funded through the U.S. Department of Energy's Solar Energy Evolution and Diffusion (SEEDS) program demonstrates novel computational methods that can help drive down costs in the residential solar industry.

  10. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    Science.gov (United States)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  11. Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio

    KAUST Repository

    Sabry, Hanan

    2014-05-01

    Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance of clear skies.The daylighting and energy performance of solar screens is affected by many parameters. These include screen perforation, depth, reflectivity and color, aspect ratio of openings, shape, tilt angle and rotation. Changing some of these parameters can improve the daylighting performance drastically. However, this can result in increased energy consumption. A balanced solution must be sought, where acceptable daylighting performance would be achieved at minimum energy consumption.This paper aims at defining solar screen designs that achieve visual comfort and at the same time minimum energy consumption in residential desert settings. The study focused on the effect of changing the solar screen axial rotation and the aspect ratio of its openings under the desert clear-sky. The individual and combined effects of changing these parameters were studied.Results of this study demonstrated that a non-rotated solar screen that has wide horizontal openings (aspect ratio of 18:1) proved to be successful in the north and south orientations. Its performance in the east/west orientations was also superior. In contrast, the screen that was rotated along its vertical axis while having small size openings (aspect ratio of 1:1) proved to be more successful in the east/west orientations. Its performance in the north orientation was also good. These solutions enhanced daylighting performance, while maintaining the energy consumption at a minimum.Moreover, it was observed that combining two screen parameters which proved useful in previous studies on daylighting or thermal performance does not add up to better solutions. The combined solutions that were tested in this study did not prove successful in satisfying daylighting and thermal

  12. Tribal Renewable Energy Report - Final Report: Bishop Paiute Tribe Residential Solar Program. Phase 1 (DOE Award # DE-EE0006949)

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Brian [Bishop Paiute Tribe; Castilone, Lisa

    2018-03-30

    The objective of the project was to provide affordable renewable energy to 22 low income reservation homeowners; provide job training to tribal members and reduce air pollution by equivalent carbon offsets. The project exceeded grant objectives installing 66kW of rooftop solar on 22 low income single family homes and providing hands-on PV rooftop solar installation training to 24 tribal individuals (four more than planned). The project was a phased installment of an on-going partnership between the Tribe and GRID that was initiated in 2013 whereby 62 rooftop solar units were installed prior to this funded effort. The reported work in this report describes the funded effort where US Department of Energy provided partial funding through grant award IE0006949 and marks the first phase of an effort matching California Solar SASH Initiative funding with DOE Office of Indian Energy Funding and brings the total for the program to 84 installed systems (running total of 271 Kw installed) and the end of the project. Tribal workforce development was a key aspect of the project and trained 24tribal members for a total 1168 cumulative on-job training hours. The solar installations and training efforts were fully completed by September of 2016 with 66.6 kW installed - 8 kW more than the original estimate stated in the grant application.

  13. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  14. Impact of Rooftop Solar PV on Residential Distribution Network

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    Increased environmental awareness in recent years has encouraged rapid growth of renewable energy sources especially solar PV and wind. Among them, small scale solar PV has been gaining more momentum especially at residential level. Even today moderate penetration of grid tied rooftop solar PV has...... become reality in many countries. In spite of various benefits, higher penetration of rooftop PVs might come up with number of detrimental effects, with power quality and overcurrent protection being the major ones. Therefore, it is reasonable to quantify both drawback and benefits of rooftop PV...

  15. Solar Energy

    Science.gov (United States)

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  16. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  17. Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |

    Science.gov (United States)

    NREL Studies Webinars Solar Energy Evolution and Diffusion Studies Webinars These webinars . Department of Energy's Solar Energy Evolution and Diffusion Studies (SEEDS) program. SEEDS 2017-2019 Study Residential Solar July 20, 2017 Presenters: Kiran Lakkaraju, Sandia National Laboratories Yevgeniy Vorobeychik

  18. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  19. Solar energy storage and utilization

    Science.gov (United States)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  20. Evaluation of Factors that Influence Residential Solar Panel Installations

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M. [ORNL; Omitaomu, Olufemi A. [ORNL; Kotikot, Susan M. [ORNL; Held, Elizabeth L. [ORNL; Bhaduri, Budhendra L. [ORNL

    2018-03-01

    Though rooftop photovoltaic (PV) systems are the fastest growing source of distributed generation, detailed information about where they are located and who their owners are is often known only to installers and utility companies. This lack of detailed information is a barrier to policy and financial assessment of solar energy generation and use. To bridge the described data gap, Oak Ridge National Laboratory (ORNL) was sponsored by the Department of Energy (DOE) Office of Energy Policy and Systems Analysis (EPSA) to create an automated approach for detecting and characterizing buildings with installed solar panels using high-resolution overhead imagery. Additionally, ORNL was tasked with using machine learning techniques to classify parcels on which solar panels were automatically detected in the Washington, DC, and Boston areas as commercial or residential, and then providing a list of recommended variables and modeling techniques that could be combined with these results to identify attributes that motivate the installation of residential solar panels. This technical report describes the methodology, results, and recommendations in greater detail, including lessons learned and future work.

  1. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  2. Profits or preferences? Assessing the adoption of residential solar thermal technologies

    International Nuclear Information System (INIS)

    Mills, Bradford F.; Schleich, Joachim

    2009-01-01

    Solar thermal technologies offer the potential to meet a substantial share of residential water and space heating needs in the EU, but current levels of adoption are low. This paper uses data from a large sample of German households to assess the effects of geographic, residence, and household characteristics on the adoption of solar thermal water and space heating technologies. In addition, the impact of solar thermal technology adoption on household energy expenditures is estimated after controlling for observed household heterogeneity in geographic, residential, and household characteristics. While evidence is found of moderate household energy expenditure savings from combined solar water and space heating systems, the findings generally confirm that low in-home energy cost savings and fixed housing stocks limit the diffusion of residential solar thermal technologies. Little evidence is found of differential adoption by distinct socio-economic groups.

  3. Solar low energy dwellings

    International Nuclear Information System (INIS)

    Hestnes, Anne Grete

    2000-01-01

    By now, a lot has been learnt about how to reduce energy use in dwellings using solar and low energy technologies, and many good examples can be found throughout Europe. Still, they are not quite the common feature we would expect them to be, i.e. they have not really penetrated the market. The reason for this is in part a result of the fact that the designers and developers of these buildings have not looked at what the market wants and needs, but rather at how to use a set of given technologies. The buildings are the result of a technology push rather than a market pull and have therefore, often, been detached or semidetached dwellings with different solar technologies added on in less than optimal ways. In order to increase market penetration, it is time to look at the market trends and relate to these. Fortunately, quite a few European architects have realized this and have started designing somewhat different residential buildings. The paper focuses on examples of the new trends in solar residential architecture and by that, hopefully, it shows that we are on the right track. (au)

  4. A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids

    Directory of Open Access Journals (Sweden)

    Most Nahida Akter

    2017-12-01

    Full Text Available This paper presents an analytical framework to develop a hierarchical energy management system (EMS for energy sharing among neighbouring households in residential microgrids. The houses in residential microgrids are categorized into three different types, traditional, proactive and enthusiastic, based on the inclusion of solar photovoltaic (PV systems and battery energy storage systems (BESSs. Each of these three houses has an individual EMS, which is defined as the primary EMS. Two other EMSs (secondary and tertiary are also considered in the proposed hierarchical energy management framework for the purpose of effective energy sharing. The intelligences of each EMS are presented in this paper for the purpose of energy sharing in a residential microgrid along with the priorities. The effectiveness of the proposed hierarchical framework is evaluated on a residential microgrid in Australia. The analytical results clearly reflect that the proposed scheme effectively and efficiently shares the energy among neighbouring houses in a residential microgrid.

  5. Canadian energy standards : residential energy code requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, K. [SAR Engineering Ltd., Burnaby, BC (Canada)

    2006-09-15

    A survey of residential energy code requirements was discussed. New housing is approximately 13 per cent more efficient than housing built 15 years ago, and more stringent energy efficiency requirements in building codes have contributed to decreased energy use and greenhouse gas (GHG) emissions. However, a survey of residential energy codes across Canada has determined that explicit demands for energy efficiency are currently only present in British Columbia (BC), Manitoba, Ontario and Quebec. The survey evaluated more than 4300 single-detached homes built between 2000 and 2005 using data from the EnerGuide for Houses (EGH) database. House area, volume, airtightness and construction characteristics were reviewed to create archetypes for 8 geographic areas. The survey indicated that in Quebec and the Maritimes, 90 per cent of houses comply with ventilation system requirements of the National Building Code, while compliance in the rest of Canada is much lower. Heat recovery ventilation use is predominant in the Atlantic provinces. Direct-vent or condensing furnaces constitute the majority of installed systems in provinces where natural gas is the primary space heating fuel. Details of Insulation levels for walls, double-glazed windows, and building code insulation standards were also reviewed. It was concluded that if R-2000 levels of energy efficiency were applied, total average energy consumption would be reduced by 36 per cent in Canada. 2 tabs.

  6. Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio

    KAUST Repository

    Sabry, Hanan; Sherif, Ahmed; Gadelhak, Mahmoud; Aly, Mohamed

    2014-01-01

    Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance

  7. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  8. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  9. R&D of Thermochemical reactor concepts to enable seasonal heat storage of solar energy in residential houses

    NARCIS (Netherlands)

    Zondag, H.A.; Bakker, M.; Schuitema, R.; Bleijendaal, L.P.J.; Cot Gores, J.; Essen, van V.M.; Helden, van W.G.J.

    2009-01-01

    About 30% of the energy consumption in the Netherlands is taken up by residences and offices. Most of this energy is used for heating purposes. In order to reduce the consumption of fossil fuels, it is necessary to reduce this energy use as much as possible by means of insulation and heat recovery.

  10. Solar access of residential rooftops in four California cities

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin

    2010-05-14

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S+SW+W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about two to four hours after sunrise and about two to four hours before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss results from shading by trees and buildings in neighboring parcels.

  11. Cheap type solar bioclimatic individual houses for residential areas

    Directory of Open Access Journals (Sweden)

    Mihailescu Teofil

    2016-01-01

    Full Text Available In the Romanian architectural practice for individual houses in residential areas, designing the architectural object in order to function together with the nature is neglected in the majority of the situations. This happens despite of a great variety of the solar bioclimatic solutions materialized in the traditional houses of all the Romanian geographical regions in a history of over 2000 years of traditional architecture. Unfortunately, in the local real estate realities, other choices are preferred in instead those of the solar bioclimatic architecture. The approach starts with a historical approach, analyzing several examples of traditional houses from all the regions of Romania, in order to identify the traditional bioclimatic solutions used to better adapt to the environment. This constitutes the source of inspiration for the modern cheap type solar bioclimatic houses presented. But a way of thinking should be changed for it, with the help of the Romanian state transformed in financial and legislative realities. These cheap type solar bioclimatic individual houses are destined for the middle class families and involve minimum costs for building and living, creating the best premises to efficiently use one or all of the complementary systems for producing, storage and/or transforming the energy from the environment (using solar, wind, water and/or earth energy.

  12. Long-term energy storage tanks for dwellings and solar house architecture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The design and installation of hot water storage tanks as accumulators of solar energy is presented. Solar house architecture which maximizes roof, solar collector energy absorption potential is then considered. Proposals for residential areas which include solar houses are made.

  13. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  14. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  15. Solar energy. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Benseman, R.

    1977-10-15

    The potential for solar space heating and solar water heating in New Zealand is discussed. Available solar energy in New Zealand is indicated, and the economics of solar space and water heating is considered. (WHK)

  16. Solar Energy Basics | NREL

    Science.gov (United States)

    Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the technologies convert sunlight to usable energy for buildings. The most commonly used solar technologies for

  17. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  18. SOLAR SYSTEMS FOR RESIDENTIAL BUILDINGS IN ACCORDANCE WITH OPERATING CONDITIONS OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. A. Rutkowski

    2017-01-01

    Full Text Available Solar systems are actively applied for heat supply of buildings in Europe. Usage of solar energy for heat supply of residential buildings is considered as rather efficient for the Republic of Belarus because total amount of direct and scattered solar radiation entering horizontal surface is equivalent to an average European index for the climate of Belarus. The paper analyzes an existing dependence on determination of solar system efficiency and proposes an amended formula for calculations while designing solar consumption systems and its legitimacy has been experimentally proved. A scheme of an experimental unit with explanations and a brief description for execution of experiments and main results of the completed investigations have been presented in the paper. Experiments have been carried out for solar systems with natural and forced coolant circulation. Attention has been paid to obtaining maximum possible temperature potential of the coolant during operation of the solar system within periods of high and low solar radiation intensity. Recommendations on practical application of solar systems for multi-storey residential buildings houses and mansion-type houses have been given in the paper. The paper presents technological principles of constructing “passive” solar heating devices. A comparison of traditionally applied and proposed alternative solar systems has been made for operational conditions in Belarus. The paper proposes a solar system for hot water supply of multi-storey buildings. The proposed system has found its first realization in the Republic while designing and constructing an energy-efficient demonstration 10-storey residential building in Mogilev within the framework of the UN Development Program project and Global Environment Fund “Improvement of energy efficiency for residential buildings in the Republic of Belarus”

  19. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  20. Solar 92: The 1992 American Solar Energy Society annual conference

    International Nuclear Information System (INIS)

    Burley, S.; Arden, M.E.

    1992-01-01

    The purpose of this symposium is to document the lessons learned from federal and state policies and programs in the late 1970's and 1980's aimed at promoting consumer use of solar energy. During this period the primary emphasis was on solar thermal technologies and passive solar design that could be used at the residential level, though there was also some information on stand-alone photovoltaic systems as well

  1. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    Science.gov (United States)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  2. DESIGN EXPERIMENT WITH SOLAR ENERGY IN THE ELABORATION OF 25-STOREY RESIDENTIAL COMPLEX FOR THE CRIMEA DISTRICT OF THE SEVASTOPOL CITY

    Directory of Open Access Journals (Sweden)

    Kovaleva Alesya Sergeevna

    2016-09-01

    Full Text Available The scientific project examines the issues of energy efficiency, renewable energy sources, as well as ecology. In today's world the ecological issues are more current than ever. Some of them are ozone holes, disappearance of many species of animals and plants, exhaustible fuel reserves. Ecology is a huge problem of our civilization, which may be solved by paying more attention to energy efficiency in the process of urban development. In the implementation of energy efficiency experiments it is necessary to involve the efforts of scientists, politicians, non-governmental organizations, but first and foremost — of inventors, architects and designers. Energy efficiency in civil construction is presented in the article as an area allowing us to find design solutions basing on renewable energy sources, in particular photocell energy. Project experiment data on a residential high-rise complex in the city of Sevastopol is considered. The author presents design calculations and the comparison of the variants of design decisions on the use of photovoltaic cells producing energy to illuminate the underground car park of a residential high-rise complex. In the future, the use of photovoltaic cells as cladding structures may change the energy characteristics of buildings in case of transition to production scale implementation of the technology. This makes it possible to consider the prospects of urban development growth and improvement of the economy of the construction of expensive facilities. However, subsequent design experiments should be based mostly on other types of facilities and should take into account the impact of wind and aerodynamic performance of buildings in case of application of photovoltaic cells on roofs and facades. The results of the design experiment allow initially investigating the regularities of urban conditions and the amount of energy produced by building surfaces. Thus, the provided concept and the design experiment can be

  3. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  4. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  5. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  6. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  7. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  8. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  9. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Prediction of residential building energy consumption: A neural network approach

    International Nuclear Information System (INIS)

    Biswas, M.A. Rafe; Robinson, Melvin D.; Fumo, Nelson

    2016-01-01

    Some of the challenges to predict energy utilization has gained recognition in the residential sector due to the significant energy consumption in recent decades. However, the modeling of residential building energy consumption is still underdeveloped for optimal and robust solutions while this research area has become of greater relevance with significant advances in computation and simulation. Such advances include the advent of artificial intelligence research in statistical model development. Artificial neural network has emerged as a key method to address the issue of nonlinearity of building energy data and the robust calculation of large and dynamic data. The development and validation of such models on one of the TxAIRE Research houses has been demonstrated in this paper. The TxAIRE houses have been designed to serve as realistic test facilities for demonstrating new technologies. The input variables used from the house data include number of days, outdoor temperature and solar radiation while the output variables are house and heat pump energy consumption. The models based on Levenberg-Marquardt and OWO-Newton algorithms had promising results of coefficients of determination within 0.87–0.91, which is comparable to prior literature. Further work will be explored to develop a robust model for residential building application. - Highlights: • A TxAIRE research house energy consumption data was collected in model development. • Neural network models developed using Levenberg–Marquardt or OWO-Newton algorithms. • Model results match well with data and statistically consistent with literature.

  8. Residential heating costs: A comparison of geothermal solar and conventional resources

    Science.gov (United States)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  9. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  10. Hydrogen from solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The long-range options of energy sources are the breeding reactor, nuclear fusion, and solar energy. Concerning solar energy three systems are being developed: First the photovoltaic cells which are almost ready for industrial production, but which are still too expensive - at least today. Secondly the thermal utilization of solar radiation. Compared to these, thirdly, the photobiological and photochemical possibilities of solar energy utilization have been somewhat neglected so far. However, the photolysis of water by solar energy is a very promising option for future energy demands. This can be done by making use of the photo-synthetic splitting of water in technical facilities or with semiconductors.

  11. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  12. The Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives and Rebates

    OpenAIRE

    Severin Borenstein

    2015-01-01

    With dramatic declines in the cost of solar PV technology over the last 5 years, the electricity industry is in the midst of discussions about whether to use this low-polluting renewable energy source in grid-scale generation or in distributed generation (DG), mostly with rooftop solar PV. California has led the growth in DG solar in the U.S. I use 2007 to early 2014 residential data from Pacific Gas & Electric – the utility with largest number of residential solar customers in the U.S. – to ...

  13. Residential Energy Consumption Survey: Quality Profile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  14. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  15. Energy saving innovations in residential buildings. Energiesparende Innovationen im Eigenheim

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, E; Meyer, T

    1983-01-01

    Socio-economic studies have been carried out in the course of the ''Landstuhl demonstration project'' with the aim of evaluating supporting and hampering factors for the realization of energy saving measures, especially for the use of innovation techniques and the use of passive solar energy in residential buildings. The results of two opinion polls have been presented by means of standardized personal interviews with building-owners (in the whole Federal Republic and in the demonstration area) and with building experts (264 persons questioned). The evaluations of the results of the opinion poll show that energy conservation plays an important but not a dominant part in the planning of residential buildings. In the ''Landstuhl area'' energy saving investments took an above-average high position (large impact of the demonstration project). The building-owners and experts most frequently wanted and recommended increased conventional measures. It could be shown that the imagination of the building-owners was asked too much when taking measures for the use of passive solar energy.

  16. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  17. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  18. Solar energy guide

    International Nuclear Information System (INIS)

    Lentz, A.; Winter, R.

    1993-07-01

    Many aspects with regard to the practical use of solar energy are discussed. This guide is aimed at informing local and regional administrators, committee members of housing corporations and public utilities and public relations officers on the possibilities to use solar energy. In chapter one an overview is given of the use of solar energy in the housing sector, the recreational sector, agricultural sector, industry, trade and other sectors. In the chapters two, three and four attention is paid to passive solar energy, active thermal solar energy and photovoltaic energy respectively. In the chapters five and six aspects concerning the implementation of solar energy systems in practice are discussed. First an outline of the parties involved in implementing solar energy is given: the municipality, the energy utility, the province, local authorities, advisors, housing constructors and the occupants of the buildings. Then attention is paid to the consequences of implementing solar energy for the building inspection and regulations, the finances, energy savings and the environment. In chapter seven an overview is given of the subsidy regulations of the European Community, the Dutch national and local governments. Chapter contains addresses of solar thermal systems, photovoltaic systems and other institutes operating in the field of solar energy, as well as the titles of a number of brochures and courses. 51 figs., 7 tabs., 86 refs

  19. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  20. Residential building envelope heat gain and cooling energy requirements

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Tsang, C.L.; Li, Danny H.W.; Cheung, S.O.

    2005-01-01

    We present the energy use situation in Hong Kong from 1979 to 2001. The primary energy requirement (PER) nearly tripled during the 23-year period, rising from 195,405 TJ to 572,684 TJ. Most of the PER was used for electricity generation, and the electricity use in residential buildings rose from 7556 TJ (2099 GWh) to 32,799 TJ (9111 GWh), an increase of 334%. Air-conditioning accounted for about 40% of the total residential sector electricity consumption. A total of 144 buildings completed in the month of June during 1992-2001 were surveyed. Energy performance of the building envelopes was investigated in terms of the overall thermal transfer value (OTTV). To develop the appropriated parameters used in OTTV calculation, long-term measured weather data such as ambient temperature (1960-2001), horizontal global solar radiation (1992-2001) and global solar radiation on vertical surfaces (1996-2001) were examined. The OTTV found varied from 27 to 44 W/m 2 with a mean value of 37.7 W/m 2 . Building energy simulation technique using DOE-2.1E was employed to determine the cooling requirements and hence electricity use for building envelope designs with different OTTVs. It was found that cooling loads and electricity use could be expressed in terms of a simple two-parameter linear regression equation involving OTTV

  1. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  2. The solar energy in Israel; L'energie solaire en Israel

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, L

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  3. The value of price transparency in residential solar photovoltaic markets

    Energy Technology Data Exchange (ETDEWEB)

    O’Shaughnessy, Eric; Margolis, Robert

    2018-06-01

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results show that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.

  4. Reliability and durability in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-10-01

    The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)

  5. Energetic, exergetic and economic analysis of an innovative Solar CombiSystem (SCS) producing thermal and electric energies: Application in residential and tertiary households

    International Nuclear Information System (INIS)

    Hazami, Majdi; Mehdaoui, Farah; Naili, Nabiha; Noro, Marco; Lazzarin, Renato; Guizani, AmenAllah

    2017-01-01

    Highlights: • The present work studies the potential of using innovative SCS in Tunisia. • In cold months the SCS provide about 50–75% of the total exergy provides. • The SCS produces between 70–150% of electric energy needs. • The SCS payback period (Pb) based on electric water heater was 10.2 years. • The SCS payback period (Pb) based on gas/gas town was about and 8.7 years. - Abstract: The endeavor of this paper is to study of the potential offered by the expenditure of an innovative Solar CombiSystem, SCS, used for the space heating load, the domestic hot water supply and the electric energy production. The investigation achieved in this work was based on an experimental and a simulation studies. A TRNSYS simulation program was achieved in order to evaluate the SCS monthly/annual thermal and electric performances. It was found that the proposed SCS covered between 20 and 45% of the SH energy needs by considering only solar energy. The result shows also that the SCS provided from 40 to 70% of the total DHW needs. It was also found that the SCS electric production ranged between 32 and 225 MJ/m 2 with a gain factor varying between 49 and 125%. An economic appraisal was also achieved to appraise the SCS feasibility. The results of the economic analysis show that the annual energy saved (ARE) and the payback period (Pb) based on electric water heater were respectively equal to 7618.3 kW h/year and 10.2 years. It was found that ARE and Pb based on gas/gas town were about 5825 m 3 and 8.7 years, respectively. The results of the economic analysis shows that the adoption of the SCS saves about 48% of electric energy and about 46% of gas/gas town kept back by the conventional system.

  6. Solar energy in Israel

    International Nuclear Information System (INIS)

    Zvirin, Y.; Zamkow, S.

    1993-01-01

    The state of Israel has been a pioneer in the solar energy development and utilization since it was founded. In the 50's solar domestic home heaters became commercially available. At the same time research work has been started in different areas of solar energy, which led to more advanced solar systems for additional applications. The presentation includes some details of commercial utilization of solar energy and a brief description of the main Research and Development projects in industry, universities and research institutes. (authors)

  7. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  8. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  9. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  10. Solar energy promises realized?

    International Nuclear Information System (INIS)

    Oudshoff, B.

    2010-01-01

    The US market for solar cells grew 36% in 2009. Thousands of new jobs were created, many millions are invested and new businesses see new opportunities. Optimism among investors, incentivising government policy and new technological developments all contribute to these positive developments. This article provides an update of the incentive measures and their effects and a brief overview of the three solar energy technologies: photovoltaic (PV), solar thermal and concentrated solar power (CSP) [nl

  11. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  12. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  13. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  14. Energy conservation and the residential and commercial sector

    Science.gov (United States)

    1975-01-01

    A detailed analysis of energy conservation actions relevant to the residential and commercial sector has led to the conclusion that the potential for savings is great. The task will not be easy, however, since many of the actions require significant life style changes that are difficult to accomplish. Furthermore, many of the conservation actions cited as instant solutions to the energy crisis are those with only mid to long term potential, such as solar energy or heat pumps. Three significant conservation approaches are viable: adjusting price structure, mandating actions, and educating consumers. The first two appear to be the most feasible. But they are not without a price. Higher utility bills adversely affect the poor and the elderly on fixed incomes. Likewise, strict mandatory measures can be quite distasteful. But the effect of alternatives, such as voluntary savings accomplished through education processes, is minimal in a nation without a true conservation ethic.

  15. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Nangle, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simon, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  16. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  17. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  18. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  19. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  20. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  1. Here comes the sun. Solar energy technology in the USA

    International Nuclear Information System (INIS)

    Van der Wees, G.

    1998-01-01

    An overview is given of the energy policy in the USA with respect to solar energy technology and the marketing of solar energy applications. In particular, attention is paid to the Million Solar Roofs programme, small-scale and medium-scale photovoltaic (PV) systems (Residential PV and Utility Scale PV), solar thermal systems (Parabolic Trough, Power tower, and Solar Dish/Engine). Also examples of passive solar systems are given. Finally, a number of aspects with regard to market implementation, e.g. net-metering. 9 refs

  2. Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes

    Science.gov (United States)

    Kananda, Kiki; Nazir, Refdinal

    2017-12-01

    One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.

  3. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  4. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  5. Integration of Solar Photovoltaics and Electric Vehicles in Residential Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2013-01-01

    In the last few years, there is an increased penetration of solar photovoltaic (SPV) units in low voltage (LV) distribution grids. Also electric vehicles (EVs) are introduced to these LV networks. This has caused the distribution networks to be more active and complex as these local generation...... and load units are characterised by unpredictable and diverse operating characteristics. This paper analyses the combined effect of SPVs and EVs in LV Danish residential grids. The EVs charging needs based on typical driving patterns of passenger cars and SPV power profiles during winter/summer days...

  6. Solar energy in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, H.

    1981-12-01

    The past, present, and future of Peru is discussed in terms of solar energy development and the social, economic, climatic, and technical factors involved. It is pointed out that there are 3 geographical divisions in Peru including: (1) the foggy coastal strip where rain is infrequent, insolation is low and population is high; (2) the mountainous Andes region with high insolation and many populated high mountain valleys; and (3) the rainy, Amazon basin covered with jungle, and sparcely populated with high but inconsistent insolation. Since there is little competition with other forms of energy, solar energy shows promise. Passive solar heating of buildings, particularly in the Andes region, is described, as well as the use of solar water heaters. Prototypes are described and illustrated. Industrial use of solar heated water in the wool industry as well as solar food drying and solar desalination are discussed. High temperature applications (electrical generators and refrigeration) as well as photovoltaic systems are discussed briefly. It is concluded that social and political factors are holding back the development of solar energy but a start (in the form of prototypes and demonstration programs) is being made. (MJJ)

  7. The Solar Energy Notebook.

    Science.gov (United States)

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  8. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  9. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  10. Potential energy savings by using direct current for residential applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...

  11. Solar energy policy review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-17

    A number of memoranda and reports are collected which deal with evaluations of solar energy policy options, including direct and indirect labor impacts and costs of different options and consumer protection. (LEW)

  12. The drivers to adopt renewable energy among residential users.

    Science.gov (United States)

    Rahman, Zahari Abdul; Elinda, Esa

    2016-03-01

    This study aims to examine the drivers to adopt renewable energy (RE) among residential users in Malaysia. Based on the theoretical framework of a consumer’s decision making process, an empirical study of the adoption of RE was conducted. A total of 501 residential users were used in this study. This study proved that perceived utility of new technology, perceived utility of new service, and perceived benefit of new technology are the drivers to adopt RE among residential users. These factors are knowing crucial to RE suppliers and producers because it will generates more demand from the residential users and the percentage of energy mix from RE sources can be increase.

  13. Enact legislation supporting residential property assessed clean energy financing (PACE)

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Devashree

    2012-11-15

    Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nation’s states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nation’s state and metropolitan areas.

  14. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  15. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  16. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  17. The Energy Crisis and Solar Energy

    Science.gov (United States)

    Bockris, J. O'M.

    1974-01-01

    Examines the status of the energy crisis in Australia. Outlines energy alternatives for the 1990's and describes the present status of solar energy research and the economics of solar energy systems. (GS)

  18. Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2014-12-01

    Full Text Available This paper addresses an economic study of the installation of photovoltaic (PV solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels’ surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.

  19. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  20. Study on reduction of consumption and peak demand of electric power used in residential houses with solar heating and PV systems; Solar house no fuka heijunka to energy sakugen koka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M.; Endo, T. [Kogakuin University, Tokyo (Japan)

    1994-12-08

    A model house was simulated to reduce the consumption and peak demand for the photovoltaic power generation system, and solar heat air heating and hot water supply system in the solar house. As a type of construction, both wooden construction and reinforced concrete (RC) construction were selected with a total floor area of 125m{sup 2}. All the rooms were equipped with an air conditioner by heat pump from the air thermal source. A solar heat floor heater was simultaneously installed on the first floor. The hot water supply load was 4.8MWh per year. A commercial grid-connected on-site system was applied to the photovoltaic power generation with a 20m{sup 2} wide monocrystalline Si solar cell panel. As for the fluctuation in power load, the peak at the time of rising is more reduced in the RC house than in the wooden house, because the former is smaller in temperature fluctuation than the latter during the intermittence of air conditioning (as per the specified operational schedule). Therefore, the power is more leveled off in the former than in the latter. Between both, difference was hardly made in energy consumption per year. The ratio of dependency was 47% upon the photovoltaic power generation system, while it was 50% and 77%, under the air heating power load and hot water supply power load, respectively, upon the solar heat air heating and hot water supply system, so that both systems were considerably effective in saving the energy. 5 refs., 7 figs., 1 tab.

  1. Residential Energy Efficiency Research Planning Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  2. Bright Idea: Solar Energy Primer.

    Science.gov (United States)

    Missouri State Dept. of Natural Resources, Jefferson City.

    This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)

  3. Solar energy in practice

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1996-01-01

    One of the Dutch energy distribution companies (REMU) applies integrated passive, thermal and photovoltaic solar energy systems in fifty newly built dwellings in Amersfoort, Netherlands. The houses are equipped with a combi-boiler (solar energy and natural gas) and 22.5m 2 photovoltaic panels to produce electricity. Six houses are equipped with an electric heat pump, while the other 44 houses have a high-efficiency low-NO x combi-boiler. The experiences with the project so-far are outlined. 6 figs., 1 tab., 10 refs

  4. Solar Energy Demonstrations

    Science.gov (United States)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  5. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  6. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  7. Public perceptions and information gaps in solar energy in Texas

    Science.gov (United States)

    Rai, Varun; Beck, Ariane L.

    2015-07-01

    Studying the behavioral aspects of the individual decision-making process is important in identifying and addressing barriers in the adoption of residential solar photovoltaic (PV). However, there is little systematic research focusing on these aspects of residential PV in Texas, an important, large, populous state, with a range of challenges in the electricity sector including increasing demand, shrinking reserve margins, constrained water supply, and challenging emissions reduction targets under proposed federal regulations. This paper aims to address this gap through an empirical investigation of a new survey-based dataset collected in Texas on solar energy perceptions and behavior. The results of this analysis offer insights into the perceptions and motivations influencing intentions and behavior toward solar energy in a relatively untapped market and help identify information gaps that could be targeted to alleviate key barriers to adopting solar, thereby enabling significant emissions reductions in the residential sector in Texas.

  8. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  9. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  10. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed [GE Global Research Center, Niskayuna, NY (United States)

    2015-10-27

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiring and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.

  11. Energy literacy, awareness, and conservation behavior of residential households

    International Nuclear Information System (INIS)

    Brounen, Dirk; Kok, Nils; Quigley, John M.

    2013-01-01

    The residential sector accounts for one-fifth of global energy consumption, resulting from the requirements to heat, cool, and light residential dwellings. It is therefore not surprising that energy efficiency in the residential market has gained importance in recent years. In this paper, we examine awareness, literacy and behavior of households with respect to their residential energy expenditures. Using a detailed survey of 1721 Dutch households, we measure the extent to which consumers are aware of their energy consumption and whether they have taken measures to reduce their energy costs. Our results show that “energy literacy” and awareness among respondents is low: just 56% of the respondents are aware of their monthly charges for energy consumption, and 40% do not appropriately evaluate investment decisions in energy efficient equipment. We document that demographics and consumer attitudes towards energy conservation, but not energy literacy and awareness, have direct effects on behavior regarding heating and cooling of the home. The impact of a moderating factor, measured by thermostat settings, ultimately results in strong variation in the energy consumption of private consumers. - Highlights: • We use a detailed survey of 1,721 Dutch households to measure awareness and conservation behavior in energy consumption. • Energy literacy and awareness among residential households is low. • 40 percent of the sample does not appropriately evaluate investment decisions in energy efficient equipment • Demographics and consumer attitudes affect behavior regarding heating and cooling of a home

  12. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  13. Energy Performance of Three Residential College Buildings in University of Malaya Campus, Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Adi Ainurzaman Jamaludin

    2011-12-01

    Full Text Available Three residential colleges located in Kuala Lumpur, Malaysia, were selected for energy performance analysis in regards to its implementation of bioclimatic design strategies. Specifically, passive design strategies on daylighting and natural ventilation were examined. In Malaysia, the residential college or hostel is a multi-residential building providing accommodation to university students. The three residential colleges in this study, namely C1, C2 and C3, were built in different years with different designs and forms, particularly with regards to enclosure and facade design, solar control devices, passive daylight concepts, and natural ventilation strategies. The building designs were carefully studied and an electric consumption analysis was carried out in each residential college. This study revealed that the wide-scale implementation of bioclimatic design strategies in college C2 help reduced the annual energy consumption. The building bioclimatic design features that are accountable to reduce energy consumption are the internal courtyard and balconies on each unit of floor area, as shown in C3.Results from this study highly recommend internal courtyard and balcony building combination for multi residential building design, especially in tropical urban regions.

  14. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  15. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  16. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    Science.gov (United States)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  17. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  18. Distributed demand-side management optimisation for multi-residential users with energy production and storage strategies

    Directory of Open Access Journals (Sweden)

    Emmanuel Chifuel Manasseh

    2014-12-01

    Full Text Available This study considers load control in a multi-residential setup where energy scheduler (ES devices installed in smart meters are employed for demand-side management (DSM. Several residential end-users share the same energy source and each residential user has non-adjustable loads and adjustable loads. In addition, residential users may have storage devices and renewable energy sources such as wind turbines or solar as well as dispatchable generators. The ES devices exchange information automatically by executing an iterative distributed algorithm to locate the optimal energy schedule for each end-user. This will reduce the total energy cost and the peak-to-average ratio (PAR in energy demand in the electric power distribution. Users possessing storage devices and dispatchable generators strategically utilise their resources to minimise the total energy cost together with the PAR. Simulation results are provided to evaluate the performance of the proposed game theoretic-based distributed DSM technique.

  19. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  20. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    The paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  1. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun. 11 references.

  2. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  3. Solar energy for Europe

    International Nuclear Information System (INIS)

    Berkmann, Rainer

    1998-01-01

    The virtues of solar energy are extolled. The greenhouse gas aspect is mentioned but the main thrust of the paper is the technology and applications such as domestic water heating, combined water and space heating, swimming pools, industrial heating and air conditioning. Statistical data for the present European market, sales and installed collector area are given. (UK)

  4. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  5. Solar Energy Now.

    Science.gov (United States)

    Rose, Harvey, Ed.

    Twenty articles addressing different aspects of solar energy are compiled in this book. They represent the views of different governmental and non-governmental organizations, members of congress, and other individuals including, for example, Barry Commoner and Amory Lovins. Topics discussed include the need for federal support, passive solar…

  6. The aging US population and residential energy demand

    International Nuclear Information System (INIS)

    Tonn, Bruce; Eisenberg, Joel

    2007-01-01

    This piece explores the relationships between a rapidly aging U.S. population and the demand for residential energy. Data indicate that elderly persons use more residential energy than younger persons. In this time of steeply rising energy costs, energy is an especially important financial issue for the elderly with low and/or fixed incomes. As the absolute number of elderly as well as their proportion of the total US population both continue to increase, energy and the elderly population looms as another energy policy challenge

  7. Solar energy: a UK assessment

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A panel convened by UK-ISES to analyze all aspects of solar energy systems and to assess the potential for solar energy utilization and research and development needs in the UK and for export is reported. Topics covered include: solar energy in relation to other energy sources; international solar energy research and development program; the physical nature of solar energy and its availability in the UK and other countries; thermal collection, storage, and low-temperature applications; solar energy and architecture; solar thermal power systems; solar cells; agricultural and biological systems; photochemical systems; social, legal, and political considerations with particular reference to the UK; and future policy on solar research and development for the UK. (WDM)

  8. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  9. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-25

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  10. Incentive Pass-through for Residential Solar Systems in California

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C. G. [Univ. of Texas, Austin, TX (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2014-10-01

    The deployment of solar photovoltaic (PV) systems has grown rapidly over the last decade, partly because of various government incentives. In the United States, among the largest and longest-running incentives have been those established in California. Building on past research, this report addresses the still-unanswered question: to what degree have the direct PV incentives in California been passed through from installers to consumers? This report helps address this question by carefully examining the residential PV market in California (excluding a certain class of third-party-owned PV systems) and applying both a structural-modeling approach and a reduced-form regression analysis to estimate the incentive pass-through rate. The results suggest an average pass-through rate of direct incentives of nearly 100%, though with regional differences among California counties. While these results could have multiple explanations, they suggest a relatively competitive market and well-functioning subsidy program. Further analysis is required to determine whether similar results broadly apply to other states, to other customer segments, to all third-party-owned PV systems, or to all forms of financial incentives for solar (considering not only direct state subsidies, but also utility electric bill savings and federal tax incentives).

  11. Residential solar photovoltaic market stimulation: Japanese and Australian lessons for Canada

    International Nuclear Information System (INIS)

    Parker, Paul

    2008-01-01

    Canada is a leading electricity consumer, yet lags behind other industrial countries (14th out of 20 reporting IEA countries) in the installation of solar photovoltaic systems. The factors (environmental benefits, health benefits, network benefits, need for new production capacity, etc.) promoting solar or other renewable sources of electricity in other countries are also present in Canada, but effective policy mechanisms to stimulate Canada's photovoltaic industry are only starting to appear. Discussions of policy options focused initially on renewable portfolio standards and then on feed-in tariffs. This paper reviews the Japanese and Australian experience with capital incentives to stimulate the residential market for photovoltaics. It demonstrates the ability of a market-sensitive program to stimulate industrial growth, achieve unit cost reductions and shift the market to include a large grid-tied share. Residential respondents to surveys report high costs as their primary barrier to installing photovoltaic systems and state a strong preference for capital incentives to reduce their investment costs. The Canadian government needs a market stimulation policy if it is to join those countries where a decentralized photovoltaic generation system strengthens the electricity supply system. A balanced solar energy market stimulation program is proposed that combines a feed-in tariff with a declining capital incentive. (author)

  12. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  13. Residential energy consumption: A convergence analysis across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.; Aller, Carlos; Ordóñez, Javier

    2017-01-01

    The process of urbanization and the raise of living standards in China have led an increasing trend in the patterns of residential consumption. Projections for the population growth rate in urban areas do not paint a very optimistic picture for energy conservation policies. In addition, the concentration of economic activities around coastal areas calls for new prospects to be formulated for energy policy. In this context, the objective of this paper is twofold. First, we analyse the effect of the urbanization process of the Chinese economy in terms of the long-run patterns of residential energy consumption at national level. By using the concept of club convergence, we examine whether electricity and coal consumption in rural and urban areas converge to the same long-run equilibrium or whether in fact they diverge. Second, the impact of the regional concentration of the economic activity on energy consumption patterns is also assessed by source of energy across Chinese regions from 1995 to 2011. Our results suggest that the process of urbanization has led to coal being replaced by electricity in urban residential energy consumption. In rural areas, the evidence is mixed. The club convergence analysis confirms that rural and urban residential energy consumption converge to different steady-states. At the regional level, we also confirm the effect of the regional concentration of economic activity on residential energy consumption. The existence of these regional clusters converging to different equilibrium levels is indicative of the need of regional-tailored set of energy policies in China.

  14. Innovative Sustainable Water Management Practices in Solar Residential Design

    Directory of Open Access Journals (Sweden)

    C. Jason Mabry

    2012-11-01

    Full Text Available This paper communicates the results of an architectural research project which sought innovative design strategies for achieving energy and resource efficiencies in water management systems traditionally used in single-family housing. It describes the engineering of an efficient, multifaceted, and fully integrated water management system for a domesticenvironment of 800 sq. ft., entirely powered by solar energy. The four innovations whose details are conveyed include the use of alternate materials for piping distribution and collection, the use of water in solar energy generation, the design of a building skin which capitalizes on water’s capacity to store heat as well as the design of a ecological groundscape which re-usesand filters waste water and rain water.Keywords: energy, plumbing, home design

  15. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  16. Solar energy in Amersfoort, Netherlands

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1997-01-01

    For the first time in the world a newly to be built housing area (Nieuwland in Amersfoort, Netherlands) will be constructed, exclusively on the basis of sustainability. First, the use of three forms of solar energy conversion techniques (thermal solar energy, passive solar energy and photovoltaic energy) is going to be integrated in 50 rental houses. At the end of this century 10,000 m 2 of solar cells will be installed with a capacity of 1 MWp. 2 figs

  17. Control of energy flow in residential buildings; Energieflussregelung in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martin

    2011-07-01

    Energy systems in residential buildings are changing from monovalent, combustion based systems to multivalent systems containing technologies such as solar collectors, pellet boilers, heat pumps, CHP and multiple storages. Multivalent heat and electricity generation and additional storages raise the number of possible control signals in the system. This creates additional degrees of freedom regarding the choice of the energy converter and the instant of time for energy conversion. New functionality of controllers such as prioritisation of energy producers, optimization of electric self consumption and control of storages and energy feed-in are required. Within the scope of this thesis, new approaches for demand-driven optimal control of energy flows in multivalent building energy systems are developed and evaluated. The approaches are evaluated by means of system energy costs and operating emissions. For parametrisation of the controllers an easily understandable operating concept is developed. The energy flow controllers are implemented as a multi agent system (MAS) and a nonlinear model predictive controller (MPC). Proper functionality and stability are demonstrated in simulations of two example energy systems. In both example systems the MPC controller achieves less energy costs and operating emissions due to system wide global optimization and the more detailed system model within the controller. The multi agent approach turns out to perform better for systems with a huge number of components, e.g. in home automation and energy management systems. Due to the good performance of the reference control strategies, a significant reduction of energy costs and operating emissions is only possible with limitations. Systems for heat generation show only an especially low potential for optimization because of marginal variation ins heat production costs. The adaptation of the operation mode to user priorities, changing utilization characteristics and dynamic energy

  18. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  19. Promoting Residential Renewable Energy via Peer-to-Peer Learning

    Science.gov (United States)

    Heiskanen, Eva; Nissilä, Heli; Tainio, Pasi

    2017-01-01

    Peer-to-peer learning is gaining increasing attention in nonformal community-based environmental education. This article evaluates a novel modification of a concept for peer-to-peer learning about residential energy solutions (Open Homes). We organized collective "Energy Walks" visiting several homes with novel energy solutions and…

  20. Compliance Verification Paths for Residential and Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  1. Residential consumer behavior during and after an energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Neto, Raymundo [International Institute for Energy Conservation, Rio de Janeiro, RJ (Brazil)]. E-mail: raragao@iiec.org; Javaroni, Mario Cesar [ECOLUZ Consultores Associados, Rio de Janeiro, RJ (Brazil)]. E-mail: javaroni@ecoluz.com.br

    2004-07-01

    Brazil faced a severe energy crisis during 2001 and 2002 that reflected in all sectors including residential, and obliged to reduce in 20 per cent consumption, considering 2000 basis. New products were largely used, and domestic customs changed. This paper evaluates how residential behaviour has changed during the crisis period, and one year later what initiatives (habits, appliances) remained, considering a survey with 240 consumers. (author)

  2. The structure of residential energy demand in Greece

    International Nuclear Information System (INIS)

    Rapanos, Vassilis T.; Polemis, Michael L.

    2006-01-01

    This paper attempts to shed light on the determinants of residential energy demand in Greece, and to compare it with some other OECD countries. From the estimates of the short-run and long-run elasticities of energy demand for the period 1965-1999, we find that residential energy demand appears to be price inelastic. Also, we do not find evidence of a structural change probably because of the low efficiency of the energy sector. We find, however, that the magnitude of the income elasticity varies substantially between Greece and other OECD countries

  3. Solar Energy Development PEIS Information Center

    Science.gov (United States)

    skip navigation Solar Energy Development Programmatic EIS Home About the EIS Public Involvement Solar Energy Solar Energy Zones Maps Documents secondary menu News Frequently Asked Questions Glossary E the Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern

  4. Influence of India’s transformation on residential energy demand

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2015-01-01

    Highlights: • The middle income group emerges as the dominant segment by 2030. • Commercial residential energy demand increases 3–4 folds compared to 2010. • Electricity and LPG demand grows above 6% per year in the reference scenario. • India faces the potential of displacing the domination of biomass by 2030. - Abstract: India’s recent macro-economic and structural changes are transforming the economy and bringing significant changes to energy demand behaviour. Life-style and consumption behaviour are evolving rapidly due to accelerated economic growth in recent times. The population structure is changing, thereby offering the country with the potential to reap the population dividend. The country is also urbanising rapidly, and the fast-growing middle class segment of the population is fuelling consumerism by mimicking international life-styles. These changes are likely to have significant implications for energy demand in the future, particularly in the residential sector. Using the end-use approach of demand analysis, this paper analyses how residential energy demand is likely to evolve as a consequence of India’s transformation and finds that by 2030, India’s commercial energy demand in the residential sector can quadruple in the high scenario compared to the demand in 2010. Demand for modern fuels like electricity and liquefied petroleum gas is likely to grow at a faster rate. However, there is a window of opportunity to better manage the evolution of residential demand in India through energy efficiency improvement

  5. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  6. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool... heating equipment and pool heaters. Table I.1--Amended Energy Conservation Standards for Residential Water... for national energy and water conservation; and 7. Other factors the Secretary of Energy (Secretary...

  7. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  8. Public Policies of Solar Energy

    International Nuclear Information System (INIS)

    Bouvier, Yves; Pehlivanian, Sophie; Teissier, Pierre; Chauvin-Michel, Marion; Forget, Marie; Raymond, Roland; Hyun Jin Yu, Julie; Popiolek, Nathalie; Guthleben, Denis

    2013-01-01

    This dossier about the Public Policies of Solar Energy brings together the presentations given in June 2013 at a colloquium organised by the Savoie university of Chambery (France): Introduction (Yves Bouvier, Sophie Pehlivanian); Passive solar energy in the shade of the French energy policy, 1945-1986 (Pierre Teissier); Solar architectures and energy policies in France: from oil crisis to solar crisis (Marion Chauvin-Michel); Sun in media, between promotion and contestation (Sophie Pehlivanian); Public policies of solar energy and territorial jurisdictions: the example of village photovoltaic power plants (Marie Forget); Energy social system and ordinary creative movement (Roland Raymond); The Historical Evolution of South Korea's Solar PV Policies since the 1970's (Julie Hyun Jin Yu, Nathalie Popiolek); Research on solar energy from yesterday to the present day: an historical project (Denis Guthleben); Photovoltaic power: public policies and economical consequences. The French choices in the international context - 1973-2013 (Alain Ricaud)

  9. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  10. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, L.; Sawyer, A.; Grove, J.

    2011-02-01

    This handbook is intended as a road map for project planners and solar advocates who want to convert interest into action, to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The handbook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  11. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  12. A review of residential computer oriented energy control systems

    Energy Technology Data Exchange (ETDEWEB)

    North, Greg

    2000-07-01

    The purpose of this report is to bring together as much information on Residential Computer Oriented Energy Control Systems as possible within a single document. This report identifies the main elements of the system and is intended to provide many technical options for the design and implementation of various energy related services.

  13. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  14. Solar energy receiver

    Science.gov (United States)

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  15. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  16. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  17. A Method for Determining Optimal Residential Energy Efficiency Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gestwick, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bianchi, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  18. SOLAR ENERGY AND ITS APPLICATIONS IN NIGERIA: Short ...

    African Journals Online (AJOL)

    ... make to our lives and economy, most especially during this time of erratic power supply by the National Electric Power Authority (NEPA). Some of the applications of solar energy in Nigeria are in Village electrification, residential / commercial building, water pumping and purification, agricultural utilization, heating sources, ...

  19. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  20. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  1. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  2. Solar energy implementation in Nigeria

    OpenAIRE

    Museckaite, Rasa; Kevelaitis, Karolis; Obialo, Gaisva R.; Raudonis, Vytautas

    2009-01-01

    This research focuses on energy sector in Nigeria, more precisely, the electricity sector. The current situation in the Nigeria is that energy supply is not covering the energy demand. We made a research to investigate if solar energy could be a solution for the present situation in the mentioned country acting as a supportive energy supply. We analyzed both economical and environmental costs/benefits of implementation of solar energy system. We analyzed environmental aspect by comparing sola...

  3. Solar energy perspectives in France

    International Nuclear Information System (INIS)

    2008-01-01

    In a context combining climate change, energy supply crisis, an increased interest in solar energy, a strongly increasing market of solar installations, new technologies, a promotion of the development of the use solar energy in France and a fast development of the water heater and photovoltaic generator markets in France, this report proposes a wide overview of the past, present and future development of solar energy. It discusses the evolution of the French national energy policy and of the solar energy within this policy. It presents and discusses the solar energy resources, their strengths and weaknesses, their geographical and time distribution. It describes the various uses and applications of solar energy in buildings, discusses different aspects of this market (actors, economical data, evolutions, public incentives, perspectives). Then, it describes and discusses technical and economical aspects of two important technologies, the photovoltaic solar energy and the thermodynamic conversion of solar energy. Public incentives, laws and regulations, technical and economic aspects of the connection to the distribution network are then discussed. Some recommendations and ideas are formulated concerning research activities, industrial development, quality of equipment and facilities, personnel education, investment needs

  4. Price sensitivity of residential energy consumption in Norway

    International Nuclear Information System (INIS)

    Nesbakken, R.

    1999-01-01

    The main aim of this paper is to test the stability of the results of a model which focus on the relationship between the choice of heating equipment and the residential energy consumption. The results for the income and energy price variables are of special interest. Stability in the time dimension is tested by applying the model on micro data for each of the years 1993-1995. The parameter estimates are stable within a 95% confidence interval. However, the estimated impact of the energy price variable on energy consumption was considerably weaker in 1994 than in 1993 and 1995. The results for two different income groups in the pooled data set are also subject to stability testing. The energy price sensitivity in residential energy consumption is found to be higher for high-income households than for low-income households. 19 refs

  5. Technology change and energy consumption: A comparison of residential subdivisions

    Science.gov (United States)

    Nieves, L. A.; Nieves, A. L.

    The energy savings in residential buildings likely to result from implementation of the building energy performance standards (BEPS) were assessed. The goals were to: compare energy use in new homes designed to meet or exceed BEPS levels of energy efficiency with that in similar but older homes designed to meet conventional building codes, and to survey the home owners regarding their energy conservation attitudes and behaviors and to ascertain the degree to which conservation attitudes and behaviors are related to residential energy use. The consumer demand theory which provides the framework for the empirical analysis is presented. The sample residences are described and the data collection method discussed. The definition and measurement of major variables are presented.

  6. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  7. Feasibility Study of Residential Grid-Connected Solar Photovoltaic Systems in the State of Indiana

    Science.gov (United States)

    Al-Odeh, Mahmoud

    This study aims to measure the financial viability of installing and using a residential grid-connected PV system in the State of Indiana while predicting its performance in eighteen geographical locations within the state over the system's expected lifetime. The null hypothesis of the study is that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. Using a systematic approach consisting of six steps, data regarding the use of renewable energy in the State of Indiana was collected from the website of the US Department of Energy to perform feasibility analysis of the installation and use of a standard-sized residential PV system. The researcher was not able to reject the null hypothesis that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. This study found that the standard PV system does not produce a positive project balance and does not pay for itself within 25 years (the life time of the system) assuming the average cost of a system. The government incentive programs are not enough to offset the cost of installing the system against the cost of the electricity that would not be purchased from the utility company. It can be concluded that the cost of solar PV is higher than the market valuation of the power it produces; thus, solar PV did not compete on the cost basis with the traditional competitive energy sources. Reducing the capital cost will make the standard PV system economically viable in Indiana. The study found that the capital cost for the system should be reduced by 15% - 56%.

  8. Land use and environmental impacts of decentralized solar energy use

    Energy Technology Data Exchange (ETDEWEB)

    Twiss, R.H.; Smith, P.L.; Gatzke, A.E.; McCreary, S.T.

    1980-01-01

    The physical, spatial and land-use impacts of decentralized solar technologies applied at the community level by the year 2000 are examined. The results of the study are intended to provide a basis for evaluating the way in which a shift toward reliance on decentralized energy technologies may eventually alter community form. Six land-use types representative of those found in most US cities are analyzed according to solar penetration levels identified in the maximum solar scenario for the year 2000. The scenario is translated into shares of end use demand in the residential, commercial and industrial sectors. These proportions become the scenario goals to be met by the use of decentralized solar energy systems. The percentage of total energy demand is assumed to be 36.5 percent, 18.8 percent and 22.6 percent in the residential, commercial and industrial sectors respectively. The community level scenario stipulated that a certain percentage of the total demand be met by on-site solar collection, i.e. photovoltaic and thermal collectors, and by passive design. This on-site solar goal is 31.9 percent (residential), 16.8 percent (commercial) and 13.1 percent (industrial).

  9. Support for solar energy collectors

    Science.gov (United States)

    Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren

    2016-11-01

    A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.

  10. When the solar energy pays

    International Nuclear Information System (INIS)

    Laramee, V.

    1997-01-01

    In the californian desert of Mojave, the three biggest solar power plants in the world produce 90% of world solar electric power. They have been operating for ten years, and their managers go on to improve them. These installations beat the productivity record every year, proving that the thermal solar energy can be competitive. (N.C.)

  11. Renewable Energy and Energy Efficiency Technologies in Residential Building Codes: June 15, 1998 to September 15, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, D.; Echo-Hawk, L.

    2005-02-01

    This report is an attempt to describe the building code requirements and impediments to the application of EE and RE technologies in residential buildings. Several modern model building codes were reviewed. These are representative of the codes that will be adopted by most locations in the coming years. The codes reviewed for this report include: International Residential Code, First Draft, April 1998; International Energy Conservation Code, 1998; International Mechanical Code, 1998; International Plumbing Code, 1997; International Fuel Gas Code, 1997; National Electrical Code, 1996. These codes were reviewed as to their application to (1) PV systems in buildings and building-integrated PV systems and (2) active solar domestic hot water and space-heating systems. A discussion of general code issues that impact these technologies is also included. Examples of this are solar access and sustainability.

  12. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  13. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  14. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  15. 75 FR 12144 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2010-03-15

    .... 1. Consensus Agreement On January 26, 2010, the Air-Conditioning, Heating and Refrigeration... subsections. B. History of the Standards Rulemaking for Residential Furnaces 1. Background Energy conservation... recommending minimum energy conservation standards for residential central air conditioners, heat pumps, and...

  16. 76 FR 22324 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2011-04-21

    ... standards, the current standards for room air conditioners and clothes dryers, and the history of the... Residential Clothes Dryers and Room Air Conditioners AGENCY: Office of Energy Efficiency and Renewable Energy... equipment, including residential clothes dryers and room air conditioners. EPCA also requires the U.S...

  17. An innovative educational program for residential energy efficiency. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laquatra, J.; Chi, P.S.K.

    1996-09-01

    Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

  18. Modular Energy Management System Applicable to Residential Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2016-01-01

    In this paper, an energy management system is defined as a flexible architecture. This proposal can be applied to home and residential areas when they include generation units. The system has been integrated and tested in a grid-connected microgrid prototype, where optimal power generation profiles...

  19. Developing solar energy in France

    International Nuclear Information System (INIS)

    Alary-Grall, L.

    2003-01-01

    3 years ago the 'Soleil' program was launched and today 660.000 m 2 of solar cells have been installed which has made France to rank 4 behind Germany, Greece and Austria in terms of the use of solar energy. The 'Soleil' program, that will end in 2006, aims at developing solar energy in France and is composed of 4 axis: 1) the contribution to the funding of solar equipment through enticing financial helps, 2) the implementation of a quality plan for the installers of solar equipment, 3) the setting of a quality label for innovative and efficient solar equipment and 4) the promoting of solar energy to the professionals of the construction sector. (A.C.)

  20. ENERGY STAR Certified Residential Clothes Washers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 8.0 ENERGY STAR Program Requirements for Clothes Washers that are effective as of...

  1. ENERGY STAR Certified Residential Clothes Dryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Clothes Dryers that are effective as of January...

  2. Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options

    Energy Technology Data Exchange (ETDEWEB)

    Speer, B.

    2012-10-01

    This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

  3. Residential Energy Efficiency Potential: South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by West Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: New York

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New York single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New Mexico single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Jersey single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Hampshire single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Rhode Island single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Solar energy enters the market

    International Nuclear Information System (INIS)

    Coehoorn, M.; Sinke, W.C.

    1995-11-01

    Everybody agrees that there is a bright future for solar energy. After two decades of research and development, the market introduction of solar hot water systems is now taking off. In several countries, including the Netherlands, preparations are also underway for the large-scale introduction of photovoltaic systems. Although the share of thermal and photovoltaic solar energy in the energy supply sector in the Netherlands is very small (0.1 PJ) there are signs of imminent change. According to the Follow-up Policy Document on Energy Conservation, the share of solar energy should increase to 7 PJ by the year 2010. After years of concentrating on research and development, it is now generally recognised that it is time to introduce these technologies onto the market in order to realize the long-term objectives. In this respect, thermal solar energy is ahead of photovoltaics. 4 ills

  14. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  15. Life Cycle Multi-Criteria Analysis Of Alternative Energy Supply Systems For A Residential Building

    Directory of Open Access Journals (Sweden)

    Artur Rogoža

    2013-12-01

    Full Text Available The article analyses energy supply alternatives for a partially renovated residential building. In addition to the existing district heating (base case alternative systems, gas boilers, heat pumps (air-water and ground-water, solar collectors, solar cells, and combinations of these systems have been examined. Actual heat consumption of the building and electricity demand determined by the statistical method are used for simulating the systems. The process of simulation is performed using EnergyPro software. In order to select an optimal energy supply option, the life cycle analysis of all systems has been carried out throughout a life span of the building, and the estimated results of energy, environmental and economic evaluation have been converted into non-dimensional variables (3E using multi–criteria analysis.Article in Lithuanian

  16. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  17. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.; Sabry, Hanan M.; Gadelhak, Mahmoud I.

    2012-01-01

    usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space

  18. Residential Photovoltaic/Thermal Energy System

    Science.gov (United States)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  19. Local Energy Matters: Solar Development in Duluth, Minnesota Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slick, Jodi Lyn [Ecolibrium3

    2018-03-30

    The Local Energy Matters project advanced solar deployment in the City of Duluth, MN- a cold-climate community of 86,000. At the beginning of the project, Duluth had 254.57 kW installed solar capacity with an average cost of $5.04/watt installed in 2014. The project worked with cross-sector stakeholders to benchmark the current market, implement best practices for solar deployment and soft cost reduction, develop pilot deployment programs in residential rooftop, community solar, and commercial/industrial sectors, work with the City of Duluth to determine appropriate sites for utility scale developments, and demonstrate solar pus storage. Over the three years of the project, Duluth’s installed residential and commercial solar capacity grew by 344% to 875.9 kW with an additional 702 kW solar garden capacity subscribed by Duluth residents, businesses, and institutions. Installation costs dropped 48% over this timeframe to $4.08/watt installed (exclusive of solar garden construction). This report documents the process used to identify levers for increased solar installation and cost reductions in a nascent cold-climate solar market.

  20. Nudging and residential energy use. Its potential for the EPC

    OpenAIRE

    Taranu, Victoria; Verbeeck, Griet

    2015-01-01

    The implications of nudging in reducing residential energy demand and its potential for the EPC. Recently there is an increasing interest among policy makers, researchers and social marketing activists towards nudging. This approach takes into account the heuristic thinking of the individuals, who do not always act according to utility maximization principles. Current policies aiming the reduction of energy consumption include soft policies of libertarian pa...

  1. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J...

  2. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    Science.gov (United States)

    Carlson, Derrick R.

    While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity

  3. Energy and exergy utilizations of the Chinese urban residential sector

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Li, Yang; Wang, Dengjia; Liu, Jiaping

    2014-01-01

    Highlights: • The energy and exergy use in China’s urban residential sector between 2002 and 2011 are analyzed. • The primary locations and causes of energy and exergy losses in the CURS are identified. • The large gap between the energy and exergy efficiencies implies great potential for energy saving. • The exergy utilization can be improved by using appropriate technology, management and policy. - Abstract: In this paper, the energy and exergy utilizations in the Chinese urban residential sector (CURS) are analyzed by considering the energy and exergy flows for the years between 2002 and 2011. The energy and exergy efficiencies of this sector are calculated to examine the potential for advancing the ‘true’ energy efficiency and determine the real energy losses. The results demonstrate large differences between the overall energy efficiencies (62.8–70.2%) and the exergy efficiencies (11.0–12.2%) for the years analyzed. The sizable gap between the energy and exergy efficiencies implies a high potential for energy savings in the CURS. Future energy saving strategies should pay more attention to the improvement in exergy efficiencies. Moreover, it is found that direct fuel use constituted the primary exergy losses of the CURS; coal-fired boiler heating systems cause approximately 35% of the total exergy losses. Gas stoves, cogeneration systems, coal stoves and gas water heaters constitute 15.3%, 15%, 5.5% and 4.9% of the total exergy losses, respectively

  4. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  5. Profitability Analysis of Residential Wind Turbines with Battery Energy Storage

    Science.gov (United States)

    She, Ying; Erdem, Ergin; Shi, Jing

    Residential wind turbines are often accompanied by an energy storage system for the off-the-grid users, instead of the on-the-grid users, to reduce the risk of black-out. In this paper, we argue that residential wind turbines with battery energy storage could actually be beneficial to the on-the-grid users as well in terms of monetary gain from differential pricing for buying electricity from the grid and the ability to sell electricity back to the grid. We develop a mixed-integer linear programming model to maximize the profit of a residential wind turbine system while meeting the daily household electricity consumption. A case study is designed to investigate the effects of differential pricing schemes and sell-back schemes on the economic output of a 2-kW wind turbine with lithium battery storage. Overall, based on the current settings in California, a residential wind turbine with battery storage carries more economical benefits than the wind turbine alone.

  6. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  7. Assessment of Emerging Renewable Energy-based Cogeneration Systemsfor nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads P.

    2016-01-01

    Net Zero Energy Buildings (nZEB) imply reduced consumption by means of good insulation, passive strategies and highly efficient energy supply systems. Among others, micro cogeneration systems are considered as one of the system solutions with the highest potential to enable nZEB.These systems...... entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in smallscale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...

  8. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for existing residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-05-31

    As part of the research and development of the solar energy systems for air conditioning and hot water supply for existing residential buildings, the following efforts are made: (1) system analysis, (2) studies on devices and materials, and (3) installation and operation of the facilities in test buildings, and collection of the data. For the item (1), the sensible heat type heat-accumulating tank is replaced by the latent heat type to reduce heat losses and auxiliary power requirements by improving heat-accumulating tank efficiency and revising the control procedure. For the item (2), the devices installed in the test buildings are tested to improve their performance and reliability, in which, e.g., results of operation, under commercial conditions, of the Rankine cycle refrigerator installed in the test building are taken into consideration. The empirical correlation {eta} 0.66 - 1.7{delta}T/I is obtained for instantaneous heat-collecting efficiency of a vacuum collector, made on a trial basis. Its heat loss is sufficiently small, which is in agreement with the results of the nighttime heat release tests. For the latent heat type heat-accumulating tank, stability of the materials therefor are investigated. For the Rankine cycle refrigerator, development of its parts is continued. For the item (3), the facilities are tested for around 7 months, and problems involved in each device are clarified. (NEDO)

  9. Residential dual energy programs: Tariffs and incentives

    International Nuclear Information System (INIS)

    Doucet, J.A.

    1992-01-01

    The problem of efficiently pricing electricity has been of concern to economists and policy makers for some time. A natural solution to variable demand is tariffs to smooth demand and reduce the need for excessive reserve margins. An alternative approach is dual energy programs whereby electric space heating systems are equipped with a secondary system (usually oil) which is used during periods of peak demand. Comments are presented on two previous papers (Bergeron and Bernard, 1991; Sollows et al., 1991) published in Energy Studies Review, applying them to Hydro Quebec tariff structure and dual energy programs. The role of tariffs in demand-side management needs to be considered more fully. Hydro-Quebec's bi-energy tariff structure could be modified by using positive incentives to make use of bi-energy attractive below -12 C to give the following benefits. The modified tariff would be easier for consumers to understand, corrects the misallocation problem due to differential pricing in the current tariff, transfers the risk related to price fluctuations of the alternative energy source from the consumer to the utility, and corrects the potential avoidance problem due to the negative incentive of the current tariff. 21 refs

  10. Critical analysis about solutions and models of solar shades in non-residential buildings from tropical regions.

    Science.gov (United States)

    Castañon, J A B; Caldeira, L F D; Gervásio, M F; Brum, F M

    2012-01-01

    Whereas the non-residential buildings consume a significant percentage of the total energy produced by the city, is important that these buildings have for such consumption is reduced or consumed in a conscious way. To do so, using concepts of energy efficiency, this work is to explain passive strategies with the use of flexible solar shades that help to get a favorable outcome with respect to the performance of the building right in the initial stages of planning and design. Once initial gains can be obtained and the architecture constants that value at the same time provide better working conditions and indoor comfort.

  11. Residential Energy Use and Conservation. Economics, Demographics, and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Brounen, D. [Department of Financial Management, Erasmus University Rotterdam, Rotterdam (Netherlands); Kok, N. [Limburg Institute of Financial Economics LIFE, Maastricht University, Maastricht (Netherlands); Quigley, J.M. [Department of Economics, University of California, Berkeley, CA (United States)

    2011-03-15

    Energy consumption in the residential sector offers an important opportunity for conserving resources. However, much of the current debate regarding energy efficiency in the housing market focuses on the physical and technical determinants of energy consumption, neglecting the role of the economic behavior of resident households. In this paper, we analyze the extent to which the use of gas and electricity is determined by the technical specifications of the dwelling as compared to the demographic characteristics of the occupying household, using a unique set of microeconomic data for a sample of more than 300,000 Dutch homes. The results show that residential gas consumption is determined principally by structural dwelling characteristics, such as the vintage, building type and quality of the home, while electricity consumption varies more directly with household composition, in particular income and family composition. Combining these results with projections on future economic and demographic trends, we find that, absent price increases for residential energy, the aging of the population and their increasing wealth will mostly offset improvements in the energy efficiency of the building stock resulting from policy interventions and natural revitalization.

  12. Solar Energy Technologies Office Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-13

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  13. Masterplan Solar Energy; Masterplan Zonne-energie

    Energy Technology Data Exchange (ETDEWEB)

    Van Amerongen, G. [vAConsult, Rotterdam (Netherlands); Verkaik, P. [BDA Dak- en Gevelopleidingen, Gorinchem (Netherlands); Derksen, A. [ISSO, Rotterdam (Netherlands); Gramsbergen, E. [Gramsbergen Solar, Veldhoven (Netherlands); Cromwijk, J. [DWA installatie- en energieadvies, Bodegraven (Netherlands)

    2009-10-15

    The demand for solar energy installations is increasing. The quality of the offered products and services must therefore be safeguarded. This master plan addresses that need and contributes to a structural improvement of the quality of installed solar energy systems. [Dutch] De vraag naar zonne-energie installaties groeit. De kwaliteit van de aangeboden producten en diensten moet dan ook goed gewaarborgd blijven. Dit masterplan voorziet daarin en draagt bij aan een structurele verbetering van de kwaliteit van geinstalleerde zonne-energiesystemen.

  14. Solar energy - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. [PA Energy A/S, Malling (Denmark)

    2007-05-15

    Solar energy in terms of thermal Solar Hot Water systems and electricity producing Photovoltaics contribute at present only to the global energy supply at a fraction of 1 %. However, the potential for solar energy is immense: the earth receives in 1 hour from the sun the equivalent of the present annual global energy supply. Solar energy is one of the emerging renewable energy technologies still not competitive, but exhibiting both technical and economic potential to be so inside 10-15 years. There is basically no necessary 'technology jumps' as prerequisites, but such a development will demand a favorable political climate. Growing political awareness, driven partly by environmental concerns partly by concerns about security of energy supply, of the need to promote solar energy and renewables, e.g. on global level spurred on by the recent UN/IPCC report and on an EU level by the EC commitment to reach 20 % renewables in the electricity supply by 2010 and 20 % renewables in the overall energy production by 2020, appears to ensure the necessary future political support for renewables, but not necessarily for solar energy technologies, in particular photovoltaics's, which is still not yet competitive to other renewables although exhibiting a tremendous potential. (au)

  15. The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,

    Science.gov (United States)

    and Tribal Governments | NREL The Solar Energy Trifecta: Solar + Storage + Net Metering The Solar Energy Trifecta: Solar + Storage + Net Metering February 12, 2018 by Benjamin Mow Massachusetts (DPU) seeking an advisory ruling on the eligibility of pairing solar-plus-storage systems with current

  16. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-01

    This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  17. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  18. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  19. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  20. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  1. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2010-09-03

    ... is the orientation that points the most window area toward a westerly direction, maximizing solar... 2003 IECC, the heating degree-days can still be used to determine the requirements, but additionally... energy is provided by solar heat from the sun striking the pool surface. There was one particular issue...

  2. Protocol Monitoring Passive Solar Energy

    International Nuclear Information System (INIS)

    Van den Ham, E.R.; Bosselaar, L.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The contribution was 57 PJ in 1990 and also 57 PJ in 1995. The efficiency of passive solar energy systems increased from -31.5% to -28.1% in the period 1990-1995, mainly as a result of the use of extra insulating glazing. As a result of the reduction of energy consumption for heating in houses it is expected that the extra contribution of 2 PJ will not be realized in the year 2010. It is suggested that the method to determine the absolute contribution of passive solar energy to the energy demand of dwellings is to be included in the protocol monitoring renewable energy. For the method to be included in the energy statistics of Statistics Netherlands (CBS) it can be considered only to take into account the difference compared to 1990. 11 refs

  3. Residential energy consumption in urban China: A decomposition analysis

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Na; Ma, Chunbo

    2012-01-01

    Residential energy consumption (REC) is the second largest energy use category (10%) in China and urban residents account for 63% of the REC. Understanding the underlying drivers of variations of urban REC thus helps to identify challenges and opportunities and provide advices for future policy measures. This paper applies the LMDI method to a decomposition of China's urban REC during the period of 1998–2007 at disaggregated product/activity level using data collected from a wide range of sources. Our results have shown an extensive structure change towards a more energy-intensive household consumption structure as well as an intensive structure change towards high-quality and cleaner energy such as electricity, oil, and natural gas, which reflects a changing lifestyle and consumption mode in pursuit of a higher level of comfort, convenience and environmental protection. We have also found that China's price reforms in the energy sector have contributed to a reduction of REC while scale factors including increased urban population and income levels have played a key role in the rapid growth of REC. We suggest that further deregulation in energy prices and regulatory as well as voluntary energy efficiency and conservation policies in the residential sector should be promoted. - Highlights: ► We examine china's residential energy consumption (REC) at detailed product level. ► Results show significant extensive and intensive structure changed. ► Price deregulation in the energy sector has contributed a reduction of REC. ► Growth of population and income played a key role in REC rapid growth. ► We provide policy suggestions to promote REC saving.

  4. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  5. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  6. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-03-01

    Full Text Available In recent years there has been a growing interest in the development and thermal-energy analysis of passive solutions for reducing building cooling needs and thus improving indoor thermal comfort conditions. In this view, several studies were carried out about cool roofs and cool coatings, producing acknowledged mitigation effects on urban heat island phenomenon. The purpose of this work is to investigate the thermal-energy performance of cool louvers of shutters, usually installed in residential buildings, compared to dark color traditional shading systems. To this aim, two full-scale prototype buildings were continuously monitored under summer conditions and the role of the cool shutter in reducing the overheating of the shading system and the energy requirements for cooling was analyzed. After an in-lab optical analysis of the cool coating, showing a huge solar reflectance increase with respect to the traditional configuration, i.e., by about 75%, field monitoring results showed that the cool shutter is able to decrease the indoor air temperature up to 2 °C under free floating conditions. The corresponding energy saving was about 25%, with even much higher peaks during very hot summer conditions.

  7. Priority to solar energy

    International Nuclear Information System (INIS)

    Berner, Joachim

    2011-01-01

    There are many different combinations of solar heating systems and heat pumps in the market; some of them differ considerably in terms of the design concept, control management and storage technology. One thing they all have in common is that solar heating comes first.

  8. An Economic Analysis of Residential Photovoltaic Systems with and without Energy Storage

    Science.gov (United States)

    Kizito, Rodney

    Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of high solar supply but low consumption. This allows the investor to use the stored energy when the cost of conventional utility power is high, while also allowing for excess stored energy to be sold back to the grid. This paper aims to investigate the overall returns for investor's investing in solely PV and ES-based PV systems by using a return of investment (ROI) economic analysis. The analysis is carried out over three scenarios: (1) residence without a PV system or ES, (2) residence with just a PV system, and (3) residence with both a PV system and ES. Due to the variation in solar exposure across the regions of the United States, this paper performs an analysis for eight of the top solar market states separately, accounting for the specific solar generation capabilities of each state. A Microsoft Excel tool is provided for computation of the ROI in scenario 2 and 3. A benefit-cost ration (BCR) is used to depict the annual economic performance of the PV system (scenario 2) and PV + ES system (scenario 3). The tool allows the user to adjust the variables and parameters to satisfy the users' specific investment situation.

  9. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimization problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity......’s objectives, the effectiveness and applicability of the proposed model is studied and validated compared to the existing residential EMSs. The simulation results demonstrate that the proposed EMS has the capability not only to conserve energy in sustainable homes and microgrid system and to reduce energy...

  10. 78 FR 20842 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and...

    Science.gov (United States)

    2013-04-08

    ... DeLonghi); energy and environmental advocates (American Council for an Energy Efficient Economy (ACEEE... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2013-BT-STD-0020] RIN 1904-AC98 Energy Conservation Program: Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners...

  11. Price and income elasticities of residential energy demand in Germany

    International Nuclear Information System (INIS)

    Schulte, Isabella; Heindl, Peter

    2017-01-01

    We apply a quadratic expenditure system to estimate price and expenditure elasticities of residential energy demand (electricity and heating) in Germany. Using official expenditure data from 1993 to 2008, we estimate an expenditure elasticity for electricity of 0.3988 and of 0.4055 for space heating. The own price elasticity for electricity is −0.4310 and −0.5008 in the case of space heating. Disaggregation of households by expenditure and socio-economic composition reveals that the behavioural response to energy price changes is weaker (stronger) for low-income (top-income) households. There are considerable economies of scale in residential energy use but scale effects are not well approximated by the new OECD equivalence scale. Real increases in energy prices show a regressive pattern of incidence, implying that the welfare consequences of direct energy taxation are larger for low income households. The application of zero-elasticities in assessments of welfare consequences of energy taxation strongly underestimates potential welfare effects. The increase in inequality is 22% smaller when compared to the application of disaggregated price and income elasticities as estimated in this paper. - Highlights: • We estimate price, income, and expenditure elasticities for residential energy demand in Germany. • We differentiate elasticities by income groups and household type. • Electricity and space heating are necessary goods since the expenditure elasticities are smaller than unity. • Low-income households show a weaker reaction to changing prices when compared to high-income households. • Direct energy taxation has regressive effects, meaning that larger burdens fall upon low-income households.

  12. Development of a solar-powered residential air conditioner. Program review

    Science.gov (United States)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  13. Limitation of solar energy and wind energy

    International Nuclear Information System (INIS)

    White, R. S.

    2008-01-01

    Wind turbines, solar energy collectors and photovoltaic cells have been popular sources of electricity since the oil crisis in the late seventies, and they are increasingly favored by many scientists and much of the public as methods for reducing global warming. The older wind farms in California are outdated. New wind turbines have not followed, primarily because of competition from lower-cost natural gas. The Times urges increased federal and state subsidies for the wind and solar industries. The primary reason that wind and solar energies have not made inroads in the past, and will never supply more than a few percentage points of the world's electrical energy, is their unpredictable variations in time and their constant need for back-ups. The only non-carbon-dioxide-emitting generator capable of backing up wind and solar energy and replacing coal and gas generators is nuclear fission. Nuclear power may be the practical solution to global warming, after all.

  14. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schwarzburger, Heiko

    2017-01-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [de

  15. Solar energy demonstration zones in the Dalmatian region

    Energy Technology Data Exchange (ETDEWEB)

    Hrastnik, B. [Energy Institute, Zagreb (Croatia); Frankovic, B. [University of Rijeka (Croatia). Faculty of Engineering

    2001-11-01

    The energy consumption in the Dalmatian region was estimated for residential and public sector, tourism, commercial sector and industry. The national energy program for the use of solar energy, SUNEN, assessed solar energy potential in Croatia. Energy from fossil fuels and electricity consumption in the region, which is mostly used in households for preparing hot water and space heating, could be economically substituted by renewable energy. The situation is most promising for the islands of the Adriatic, where solar thermal collectors, PV modules and wind generators could substitute conventional energy sources in satisfying the present thermal and electric demand. The Dalmatian Islands, characterised by a small density of energy consumption, are proposed as unique candidates in Europe for renewable zones, which could demonstrate the full potential of the renewable energy option. As a practical demonstration, the island of Lastovo and the planned tourist village and yacht marina in the Bay of Jurjeva Luka are proposed as a first solar demonstration project on the islands. Technical, economic, legal and institutional barriers, as well as shortages of financing the project identification process produced hereto an adverse environment for solar applications in Croatia. This paper is an initiative for eliminating the barriers and intensify the solar energy use in Croatia providing the clean environment and activation of indigenous energy resources in the region. (author)

  16. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  17. US residential energy demand and energy efficiency: A stochastic demand frontier approach

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2012-01-01

    This paper estimates a US frontier residential aggregate energy demand function using panel data for 48 ‘states’ over the period 1995 to 2007 using stochastic frontier analysis (SFA). Utilizing an econometric energy demand model, the (in)efficiency of each state is modeled and it is argued that this represents a measure of the inefficient use of residential energy in each state (i.e. ‘waste energy’). This underlying efficiency for the US is therefore observed for each state as well as the relative efficiency across the states. Moreover, the analysis suggests that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controlling for a range of economic and other factors, the measure of energy efficiency obtained via this approach is. This is a novel approach to model residential energy demand and efficiency and it is arguably particularly relevant given current US energy policy discussions related to energy efficiency.

  18. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  19. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish; Bakr, Osman; Ramasamy, Karthik; Malik, Mohammad A.

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance

  20. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  1. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  2. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  3. Solar energy. Inexhaustible, clean, profitable

    International Nuclear Information System (INIS)

    Colombo, S.

    2001-01-01

    The growth of US dollar together with the crisis of euro are producing a strong increase in the cost of traditional energy sources: oil and natural gas. Therefore, it is the ideal situation for boosting the alternative energy sources, above all the solar energy which is the most promising [it

  4. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  5. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  6. A low energy solar town

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Balocco, Carla

    1998-12-31

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m{sup 2}/year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs.

  7. A low energy solar town

    International Nuclear Information System (INIS)

    Svendsen, Svend; Balocco, Carla

    1998-01-01

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m 2 /year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs

  8. The impact of weather variation on energy consumption in residential houses

    International Nuclear Information System (INIS)

    Fikru, Mahelet G.; Gautier, Luis

    2015-01-01

    Highlights: • There is evidence for significant intraday variation of energy use. • The sensitivity of energy use to weather variation falls via efficiency features. • The sensitivity of energy use to weather depends on the specific time of day/night. • High frequency data helps to accurately model the energy use-weather relationship. - Abstract: This paper studies the impact of weather variation on energy use by using 5-minutes interval weather–energy data obtained from two residential houses: house 1 is a conventional house with advanced efficiency features and house 2 is a net-zero solar house with relatively more advanced efficiency features. Our result suggests that energy consumption in house 2 is not as sensitive to changes in weather variables as the conventional house. On average, we find that a one unit increase in heating and cooling degree minutes increases energy use by about 9% and 5% respectively for house 1 and 5% and 4% respectively for house 2. In addition, our findings suggest that non-temperature variables such as solar radiation and humidity affect energy use where the sensitivity rates for house 2 are consistently lower than that of house 1. Furthermore our result suggests that the sensitivity of energy use to weather depends on the season and specific time of the day/night

  9. Public acceptance of residential solar photovoltaic technology in Malaysia

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2017-11-01

    Full Text Available Purpose – Gaining independence from fossil fuels and combating climate change are the main factors to increase the generation of electricity from renewable fuels. Amongst the renewable technologies, solar photovoltaic (PV is believed to have the largest potential. However, the number of people adopting solar PV technologies is still relatively low. Therefore, the purpose of this paper is to examine the household consumers’ acceptance of solar PV technology being installed on their premises. Design/methodology/approach – To examine the solar PV technology acceptance, this study uses technology acceptance model (TAM as a reference framework. A survey was conducted to gather data and to validate the research model. Out of 780 questionnaires distributed across Malaysia, 663 were returned and validated. Findings – The analysis revealed that perceived ease of use, perceived usefulness and attitude to use significantly influenced behavioural intention to use solar PV technology. Research limitations/implications – This study contributes by extending the understanding of public inclination towards the adoption of solar PV technology. Also, this study contributes in identifying the areas which need to be examined further. However, collecting data from urban peninsular Malaysian respondents only limits the generalization of the results. Practical implications – On the policy front, this study reveals that governmental support is needed to trigger PV acceptance. Originality/value – This paper uses TAM to analyse the uptake of solar PV technology in Malaysian context.

  10. Conservation and solar energy program: congressional budget request, FY 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

  11. Northeast Solar Energy Market Coalition (NESEMC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, Karl R. [Pace Energy and Climate Center Pace University School of Law

    2018-03-31

    The Northeast Solar Energy Market Coalition (NESEMC) brought together solar energy business associations and other stakeholders in the Northeast to harmonize regional solar energy policy and advance the solar energy market. The Coalition was managed by the Pace Energy and Climate Center, a project of the Pace University Elisabeth Haub School of Law. The NESEMC was funded by the U.S. Department of Energy SunShot Initiative as a cooperative agreement through 2017 as part of Solar Market Pathways.

  12. Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty

    International Nuclear Information System (INIS)

    Alafita, T.; Pearce, J.M.

    2014-01-01

    Limited access to low-cost financing is an impediment to high-velocity technological diffusion and high grid penetration of solar photovoltaic (PV) technology. Securitization of solar assets provides a potential solution to this problem. This paper assesses the viability of solar asset-backed securities (ABS) as a lower cost financing mechanism and identifies policies that could facilitate implementation of securitization. First, traditional solar financing is examined to provide a baseline for cost comparisons. Next, the securitization process is modeled. The model enables identification of several junctures at which risk and uncertainty influence costs. Next, parameter values are assigned and used to generate cost estimates. Results show that, under reasonable assumptions, securitization of solar power purchase agreements (PPA) can significantly reduce project financing costs, suggesting that securitization is a viable mechanism for improving the financing of PV projects. The clear impediment to the successful launch of a solar ABS is measuring and understanding the riskiness of underlying assets. This study identifies three classes of policy intervention that lower the cost of ABS by reducing risk or by improving the measurement of risk: (i) standardization of contracts and the contracting process, (ii) improved access to contract and equipment performance data, and (iii) geographic diversification. - Highlights: • Limited access to low-cost financing is hampering penetration of solar PV. • Solar asset-backed securities (ABS) provide a low cost financing mechanism. • Results for securitization of solar leases and power purchase agreements (PPA). • Securitization can significantly reduce project financing costs. • Identifies policy intervention that lower cost of ABS by reducing risk

  13. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

  14. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    Science.gov (United States)

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…

  15. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  16. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance and having low toxicity. Developing methods for the combination of the elements to produce binary, ternary and quaternary compounds has dominated research in the field. This chapter will provide the most recent developments (from year 2012 onwards) for the synthesis and use of colloidal nanocrystal inks for solar cell applications. © The Royal Society of Chemistry 2014.

  17. The importance of engaging residential energy customers' hearts and minds

    International Nuclear Information System (INIS)

    Olaniyan, Monisola J.; Evans, Joanne

    2014-01-01

    In an attempt to reduce the contribution of residential greenhouse gas emissions the EU has implemented a variety of policy measures. The focus has been to promote domestic energy efficiency and ultimately a reduction in residential energy demand. In this study we estimate residential energy demand using Underlying Energy Demand Trend (UEDT) and Asymmetric Price Responses for 14 European OECD countries between 1978 and 2008. Our results support the conclusion that policies to reduce residential energy consumption and the consequent emissions need to account for behavioural, lifestyle and cultural factors in order to be effective. - Highlights: • Residential energy demand is estimated for 14 European OECD countries between 1978 and 2008. • Investigate the relative contributions of Underlying Energy Demand Trend (UEDT) which captures exogenous technical progress. • The most effective policies target behavioural, lifestyle and cultural factors to reduce residential energy consumption

  18. The adoption of residential solar photovoltaic systems in the presence of a financial incentive: A case study of consumer experiences with the Renewable Energy Standard Offer Program in Ontario (Canada)

    Science.gov (United States)

    Adachi, Christopher William Junji

    2009-12-01

    Traditionally, high initial capital costs and lengthy payback periods have been identified as the most significant barriers that limit the diffusion of solar photovoltaic (PV) systems. In response, the Ontario Government, through the Ontario Power Authority (OPA), introduced the Renewable Energy Standard Offer Program (RESOP) in November, 2006. The RESOP offers owners of solar PV systems with a generation capacity under 10MW a 20 year contract to sell electricity back to the grid at a guaranteed rate of $0.42/kWh. While it is the intent of incentive programs such as the RESOP to begin to lower financial barriers in order to increase the uptake of solar PV systems, there is no guarantee that the level of participation will in fact rise. The "on-the-ground" manner in which consumers interact with such an incentive program ultimately determines its effectiveness. The purpose of this thesis is to analyze the relationship between the RESOP and solar PV system consumers. To act on this purpose, the experiences of current RESOP participants are presented, wherein the factors that are either hindering or promoting utilization of the RESOP and the adoption of solar PV systems are identified. This thesis was conducted in three phases--a literature review, preliminary key informant interviews, and primary RESOP participant interviews--with each phase informing the scope and design of the subsequent stage. First, a literature survey was completed to identify and to understand the potential drivers and barriers to the adoption of a solar PV system from the perspective of a consumer. Second, nine key informant interviews were completed to gain further understanding regarding the specific intricacies of the drivers and barriers in the case of Ontario, as well as the overall adoption system in the province. These interviews were conducted between July and September, 2008. Third, interviews with 24 RESOP participants were conducted; they constitute the primary data set. These

  19. Energy policy instruments and technical change in the residential building sector

    International Nuclear Information System (INIS)

    Beerepoot, W.M.C.

    2007-01-01

    The passing by the European Parliament of the Energy Performance of Buildings Directive (EPBD) in 2003 obliges all European member states to implement energy regulations for buildings based on the concept of energy performance by the year 2009 ultimately. Given the importance of the development of innovations in energy technology, and a transition to a sustainable energy supply system, it is necessary that policy instruments for energy conservation in the building sector stimulate the development and diffusion of innovations. This thesis contributes to knowledge about the content of energy performance policy and concludes that the effect of Dutch energy performance policy in encouraging innovation is limited. Energy efficiency improvements, by energy performance policy, seem to have come from the overall optimisation of all the energy related features of residential buildings. Insulation levels improved, although not spectacular. Efficiencies of heating technology improved, although this seems partly to be a result of the ongoing development that started in the 1980s. The efficiency of fans used for ventilation improved, as did the efficiency of all sorts of auxiliary devices needed in heating technology, as well as the efficiency of heat recovery in balanced ventilation systems. Although energy performance policy seems to have contributed to the optimisation of all energy related features of residential buildings, it did not cause a breakthrough of innovative technology such as solar thermal systems or heat pumps. The study of the innovation system of the Dutch construction industry identifies how the project-based nature of the construction industry is an obstacle to 'learning-rich' collaboration between the various stakeholders. The study contributes to the discussion about the impact of government policy for energy conservation in the building sector, in the context of climate change policy.

  20. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  1. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... necessary for residential water heaters, because the existing test procedures for those products already...

  2. PHOTOELECTROCHEMICAL SOLAR ENERGY CONVERSION ...

    African Journals Online (AJOL)

    Preferred Customer

    on indium-doped tin oxide (ITO) used as a photoactive electrode; amorphous ... The polymer electrolyte was prepared by dissolving 309 mg of POMOE in 25 mL .... The VOC of Bulk heterojunction (BHJ) based solar cells is strongly correlated ...

  3. Environmental and solar energy techniques

    International Nuclear Information System (INIS)

    Zaidi, Z.I.

    2003-01-01

    Technologies for fossil fuel extraction, transportation, processing and their use have harmful impact on the environment which cause direct and indirect negative impact on human heath, animals, crops and structure etc. The end use of all the fossil fuels is combustion irrespective of the final purpose i.e. heating, electricity production and motive power for transportation. The main constituents of fossil fuels are carbon and hydrogen but some other ingredients, which are originally in the fuel e.g. sulfur or are added during refining e.g. lead, alcohol etc. Combustion of the fossil fuel produces various gases (CO/sub x/, SO/sub x/ NO/sub x/, CH,), soot, ash, droplets of tar and other organic compounds, which are all released into the atmosphere. High rate of population growth and industrialization in the developing countries are causing unsustainable use of forest resources and fossil fuels, hence, are serious hurdles in environmental improvement. The situation in Pakistan is even worse as it has very limited fossil fuels and 40% of its commercial energy requirement are to be imported every year. Renewable energy technologies on the other hand, can play a vital role in improving the environmental condition globally. Pakistan Council of Renewable Energy Technologies (PCRET) is working in the field of renewable energy technologies. The Council has developed solar modules and solar thermal devices including solar cookers, solar dryers, solar stills and solar water heaters. The paper describes these devices and contribution they can make towards the improvement of environment. (author)

  4. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  5. A DFuzzy-DAHP Decision-Making Model for Evaluating Energy-Saving Design Strategies for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Yu-Lung Chen

    2012-11-01

    Full Text Available The construction industry is a high-pollution and high-energy-consumption industry. Energy-saving designs for residential buildings not only reduce the energy consumed during construction, but also reduce long-term energy consumption in completed residential buildings. Because building design affects investment costs, designs are often influenced by investors’ decisions. A set of appropriate decision-support tools for residential buildings are required to examine how building design influences corporations externally and internally. From the perspective of energy savings and environmental protection, we combined three methods to develop a unique model for evaluating the energy-saving design of residential buildings. Among these methods, the Delphi group decision-making method provides a co-design feature, the analytical hierarchy process (AHP includes multi-criteria decision-making techniques, and fuzzy logic theory can simplify complex internal and external factors into easy-to-understand numbers or ratios that facilitate decisions. The results of this study show that incorporating solar building materials, double-skin facades, and green roof designs can effectively provide high energy-saving building designs.

  6. Impacts of US federal energy efficiency standards for residential appliances

    International Nuclear Information System (INIS)

    Meyers, S.; McMahon, J.E.; McNeil, M.; Liu, X.

    2003-01-01

    This study estimated energy, environmental, and consumer impacts of US federal residential energy efficiency standards taking effect in the 1988-2007 period. These standards have been the subject of in-depth analyses conducted as part of the US Department of Energy's (DOE's) standards rulemaking process. This study drew on those analyses, but updated key data and developed a common framework and assumptions for all of the products. We estimate that the considered standards will reduce residential primary energy consumption and carbon dioxide (CO 2 ) emissions by 8-9% in 2020 compared to the levels expected without any standards. The standards will save a cumulative total of 26-32 EJ (25-30 quads) by the year 2015, and 63 EJ (60 quads) by 2030. The estimated cumulative net present value of consumer benefit amounts to nearly US$80 billion by 2015, and grows to US$130 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts in the 1987-2050 period is 2.75:1. The cumulative cost of the DOE's program to establish and implement the standards is in the range of US$200-US$250 million. (author)

  7. Energy data sourcebook for the US residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  8. An overview of solar energy applications in buildings in Greece

    Science.gov (United States)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  9. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  10. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  11. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  12. Solar Energy Measurement Using Arduino

    OpenAIRE

    Jumaat Siti Amely; Othman Mohamad Hilmi

    2018-01-01

    This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR) sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was...

  13. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  14. Action dependent heuristic dynamic programming based residential energy scheduling with home energy inter-exchange

    International Nuclear Information System (INIS)

    Xu, Yancai; Liu, Derong; Wei, Qinglai

    2015-01-01

    Highlights: • The algorithm is developed in the two-household energy management environment. • We develop the absent energy penalty cost for the first time. • The algorithm has ability to keep adapting in real-time operations. • Its application can lower total costs and achieve better load balancing. - Abstract: Residential energy scheduling is a hot topic nowadays in the background of energy saving and environmental protection worldwide. To achieve this objective, a new residential energy scheduling algorithm is developed for energy management, based on action dependent heuristic dynamic programming. The algorithm works under the circumstance of residential real-time pricing and two adjacent housing units with energy inter-exchange, which can reduce the overall cost and enhance renewable energy efficiency after long-term operation. It is designed to obtain the optimal control policy to manage the directions and amounts of electricity energy flux. The algorithm’s architecture is mainly constructed based on neural networks, denoting the learned characteristics in the linkage of layers. To get close to real situations, many constraints such as maximum charging/discharging power of batteries are taken into account. The absent energy penalty cost is developed for the first time as a part of the performance index function. When the environment changes, the residential energy scheduling algorithm gains new features and keeps adapting in real-time operations. Simulation results show that the developed algorithm is beneficial to energy conversation

  15. Sample design for the residential energy consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  16. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  17. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  18. Solar Energy - It's Growth, Development, and Use

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Resources with Additional Information Solar has played a major role in solar energy development through previous research and ongoing activities . As a result of research and development, the "cost of solar energy has been reduced 100-fold

  19. Deep influence of passive low energy consumption multi-storey residential building in cold region

    Science.gov (United States)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  20. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  1. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R. N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  2. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  3. Solar Energy-An Everyday Occurrence

    Science.gov (United States)

    Keister, Carole; Cornell, Lu Beth

    1978-01-01

    Describes a solar energy research project sponsored by the Energy Research and Development Administration and conducted at Timonium School in Maryland. Elementary student involvement in solar energy studies resulting from the project is noted. (MDR)

  4. The performance of energy efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G.

    1996-08-01

    The adequacy and durability of residential building envelope systems under actual field conditions were evaluated. A building envelope offers protection from cold, heat, moisture, wind and noise. However, they are exposed to thermal, structural, and moisture stresses and their performance can degrade over time. Envelope performance was evaluated at 20 energy efficient and four conventional, detached modern homes in Winnipeg, Canada. The three complementary measurement tools were wood moisture content (WMC) of framing members, thermographic examinations, and airtightness tests. As expected, energy efficient building envelope systems performed better than the conventional systems. No evidence of envelope degradation was found in any of the energy efficient houses. The building envelopes using polyethylene air barriers performed slightly better than those which used the airtight drywall approach, although both were considered satisfactory. WMC levels were a bit lower in the polyethylene-clad house. 1 ref., 1 tab.

  5. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  6. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  7. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  8. An Exploration of the Relationship between Improvements in Energy Efficiency and Life-Cycle Energy and Carbon Emissions using the BIRDS Low-Energy Residential Database.

    Science.gov (United States)

    Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney

    2018-02-01

    To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.

  9. Introductory guide to solar energy

    CSIR Research Space (South Africa)

    Cawood, WN

    1976-01-01

    Full Text Available amount of solar energy. It is one thing for environmentalists to advocate a dramatic change over to solar energy but quite another to implement this, as it would obviously be unthinkable to scrap all fossil fuel technology unless a global catastrophe... is one built in New Mexico to suit a climate which is considerably more extreme than that found on the highveld. (See illustration, which applies to the northern hemisphere.) Instead of simply filling the sub-floor level of this home with soil...

  10. A survey of some solar energy retrofits.

    Science.gov (United States)

    1981-01-01

    The report briefly describes a survey of some solar energy retrofits, such as solar heaters and Trombe walls, that can be easily adapted into existing buildings belonging to the Department. With their relatively high cost, commercial solar heaters ha...

  11. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-19

    We use residential solar photovoltaic (PV) quote data to study the role of firm size in PV installer pricing. We find that large installers (those that installed more than 1,000 PV systems in any year from 2013 to 2015) quote higher prices for customer-owned systems, on average, than do other installers. The results suggest that low prices are not the primary value proposition of large installers.

  12. Solar Energy for Rural Egypt

    Science.gov (United States)

    Abdelsalam, Tarek I.; Darwish, Ziad; Hatem, Tarek M.

    Egypt is currently experiencing the symptoms of an energy crisis, such as electricity outage and high deficit, due to increasing rates of fossil fuels consumption. Conversely, Egypt has a high solar availability of more than 18.5 MJ daily. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and Sinai Peninsula, which both represent more than 96.5 % of the nation's total land area. Therefore, solar energy is one of the promising solutions for the energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning large-scaled solar power projects, not only in terms of space availability, but also of availability of high quality silicon (sand) required for manufacturing silicon wafers used in photovoltaic (PV) modules. Also, rural Egypt is considered market a gap for investors, due to low local competition, and numerous remote areas that are not connected to the national electricity grid. Nevertheless, there are some obstacles that hinder the progress of solar energy in Egypt; for instance, the lack of local manufacturing capabilities, security, and turbulent market in addition to other challenges. This paper exhibits an experience of the authors designing and installing decentralized PV solar systems, with a total rated power of about 11 kW, installed at two rural villages in at the suburbs of Fayoum city, in addition to a conceptual design of a utility scale, 2 MW, PV power plant to be installed in Kuraymat. The outcomes of this experience asserted that solar PV systems can be a more technically and economically feasible solution for the energy problem in rural villages.

  13. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  14. Does energy labelling on residential housing cause energy savings?

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2009-07-01

    Danish households use more than 30% of the total amount of energy being used in Denmark. More than 80% of this energy is dedicated to space heating. The same relation is seen in many OECD countries. The corresponding energy savings potential was recently estimated at 30% of the energy used in buildings. Energy labelling is seen as an important instrument to target these potential energy savings. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using real metered natural gas consumption and a very wide range of register data describing the houses and households. The study did not find significant energy savings due to the Danish Energy Labelling Scheme, but more research would be needed to complement this conclusion

  15. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    Wouters, Carmen; Fraga, Eric S.; James, Adrian M.

    2015-01-01

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  16. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.

    2012-11-01

    In desert sunny clear-sky regions solar penetration can become excessive. This can cause non-uniform daylight distribution, glare and high solar heat gain, affecting both visual and thermal comfort. Shading devices, such as solar screens, were usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space under the desert sunny clear-sky. The larger aim is to arrive at efficient solar screen designs that suit the different orientations.The study was divided into three consecutive phases. In phase one, the effect of the two parameters on Daylight Availability was tested. The solar screen was axially rotated by three different angles at 10° increments. Also, the aspect ratio of the screen opening in both horizontal and vertical directions was changed systematically. Simulation was conducted using the annual Daylight Dynamic Performance Metrics (DDPMs). In phase two, the Annual Daylight Glare Probability (DGP) metric was evaluated for the cases that were found adequate in phase one. In the third phase, the annual solar energy transmittance through the screen was calculated for the cases that achieved acceptable performance in the two previous phases in order to identify the more energy efficient screens.Solar screens with openings having horizontal aspect ratios were found to be the most effective, while those with vertical aspect ratios were achieved the lowest performance. In the North orientation, since almost all the cases that were tested in this research provided acceptable daylighting performance, the designer now have a variety of options to choose from. Preference should be given to screen openings of horizontal aspect ratios, especially the 12:1 and 18:1 (H:V) screens that achieved the best performance where 92% of the space was " daylit" in comparison with only 53

  17. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' including residential water... final rule revising energy conservation standards for residential water heaters, direct heating.... EERE-2009-BT-TP-0013] RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures...

  18. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  19. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  20. 77 FR 49063 - Energy Conservation Program: Test Procedures for Residential Dishwashers and Cooking Products

    Science.gov (United States)

    2012-08-15

    ... Energy Conservation Program: Test Procedures for Residential Dishwashers and Cooking Products; Proposed...-AC01 Energy Conservation Program: Test Procedures for Residential Dishwashers and Cooking Products... procedures for both dishwashers and conventional cooking products for the measurement of energy use in fan...

  1. Solar energy operated still

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F A

    1977-03-31

    A silicon membrane that is permeable to the vapour of a liquid to be distilled, is seeded with a light-absorbing pigment, and used in conjunction with a light-transparent material in one of three configurations as a solar powered still. In the first configuration, the membrane is in the form of a corrugated surface welded to the transparent material along the corrugations, forming a series of channel-like air chambers. This assembly floats on the liquid, the transparent side being on top and exposed to the sun. Vapour condensing in the channels is collected. In the second configuration, the liquid is contained between a sheet of transparent material on top, and a sheet of membrane material underneath. Vapour condenses in a chamber beneath. In the third configuration, membrane material is in the form of a pipe containing the liquid. A second concentral pipe of transparent material surrounds it and ensures collection of the condensate.

  2. Energy situation and perspectives of using solar energy in Crimea

    International Nuclear Information System (INIS)

    Stoyanova, I.I.; Mashkara, O.G.; Vikhorev, Yu.A.; Sokolovskaya, N.I.

    1997-01-01

    The article presents the talk on the energy situation and perspectives of the use of solar energy in Crimea, Ukraine, given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. The main use of solar energy is solar energy heating systems developed and produced in Crimea. The project of 100 MWt solar power plant is proposed for construction in Crimea and will improve ecological situation in resort area. (A.A.D.)

  3. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Ketoff, A.; Meyers, S.

    1981-05-01

    This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

  4. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  5. Passive and Hybrid Solar Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The background and scope of the program is presented in general terms. The Program Plan is summarized describing how individual projects are categorized into mission-oriented tasks according to market sector categories. The individual projects funded by DOE are presented as follows: residential buildings, commercial buildings, solar products, solar cities and towns, and agricultural buildings. A summary list of projects by institution (contractors) and indexed by market application area is included. (MHR)

  6. Nuclear energy + solar energy, why not?

    International Nuclear Information System (INIS)

    Hernandez C, I.; Nelson E, P.

    2016-09-01

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  7. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  8. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  9. Energy Release in Solar Flares,

    Science.gov (United States)

    1982-10-01

    Plasma Research, Stanford University P. Kaufmanu CRAA/CNPq -Conseiho lacional de Desenvolvimento Cientifico e Tecnologico, Slo Paulo, SP, Brasil D.F...three phases of energy release in solar flares (Sturrock, 1980). However, a recent article by Feldman e a.. (1982) points to a significant

  10. Steam generation from solar energy

    International Nuclear Information System (INIS)

    Gozzi, M.

    2001-01-01

    The vapor for thermoelectric use is one of the most promoted methods for electric power generation from solar energy. The new plants are becoming more and more safe, and anyway in some cases the natural gas makes easy the production of electricity [it

  11. Cooled solar PV panels for output energy efficiency optimisation

    International Nuclear Information System (INIS)

    Peng, Zhijun; Herfatmanesh, Mohammad R.; Liu, Yiming

    2017-01-01

    Highlights: • Effects of cooling on solar PV performance have been experimentally investigated. • As a solar panel is cooled down, the electric output can have significant increase. • A cooled solar PV system has been proposed for resident application. • Life cycle assessment suggests the cost payback time of cooled PV can be reduced. - Abstract: As working temperature plays a critical role in influencing solar PV’s electrical output and efficacy, it is necessary to examine possible way for maintaining the appropriate temperature for solar panels. This research is aiming to investigate practical effects of solar PV surface temperature on output performance, in particular efficiency. Experimental works were carried out under different radiation condition for exploring the variation of the output voltage, current, output power and efficiency. After that, the cooling test was conducted to find how much efficiency improvement can be achieved with the cooling condition. As test results show the efficiency of solar PV can have an increasing rate of 47% with the cooled condition, a cooling system is proposed for possible system setup of residential solar PV application. The system performance and life cycle assessment suggest that the annual PV electric output efficiencies can increase up to 35%, and the annual total system energy efficiency including electric output and hot water energy output can increase up to 107%. The cost payback time can be reduced to 12.1 years, compared to 15 years of the baseline of a similar system without cooling sub-system.

  12. Solar energy in Uruguay. Increase the use of solar panels

    International Nuclear Information System (INIS)

    Matos, V.

    2010-01-01

    This article is about the future of the solar energy in Uruguay. The main aspects of this kind of energy are solar thermic which is used for cooking food and heating water through solar collectors as well as the photovoltaics which allows the generation of electricity

  13. Building and occupant characteristics as determinants of residential energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  14. Solar energy and the aeronautics industry. Thesis

    Science.gov (United States)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  15. Villa Design and Solar Energy Utilization

    OpenAIRE

    Olofsson, Martin

    2013-01-01

    This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the real estate that I have drawn for the thesis work. Solar energy is a renewable source of energy from the Sun's light. Energy can be used to produce both heat and electricity through solar collectors and solar cells. Some of the benefits of solar energy is that it is completely free to extract, environmentally friendly and virtually maintenance-free. Disadvantages are that th...

  16. Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil

    International Nuclear Information System (INIS)

    Mitscher, Martin; Rüther, Ricardo

    2012-01-01

    We analyze the economic competitiveness of grid-connected, distributed solar photovoltaic generation through small-scale rooftop installations in five Brazilian state-capitals. The locations represent a comprehensive set of the two essential parameters for the economic viability of PV—solar irradiation and local electricity tariffs. Levelized electricity costs (LEC) for PV generation and net present values (NPV) for a specific PV system are presented. The analysis comprises three different interest rate scenarios reflecting different conditions for capital acquisition to finance the generators; subsidized, mature market and country-specific risk-adjusted interest. In the NPV analysis, revenue flow is modeled by the sale of PV electricity at current residential tariffs assuming net metering. Using subsidized interest rates, the analysis shows that solar PV electricity is already competitive in Brazil, while in the country-specific risk-adjusted rate, the declining, but still high capital costs of PV make it economically unfeasible. At a mature market interest rate, PV competitiveness is largely dependent on the residential tariff. Economic competitiveness in this scenario is given for locations with high residential tariffs. We demonstrate the high potential of distributed generation with photovoltaic installations in Brazil, and show that under certain conditions, grid-connected PV can be economically competitive in a developing country. - Highlights: ► Debt financed grid-connected PV on Brazilian rooftops can be economically feasible since 2011. ► The cost of capital in Brazil is the decisive parameter in PV competitiveness with conventional generation sources. ► Low-cost, long-term financing is an essential requirement for PV to become an economically justifiable generation alternative. ► The Brazilian market holds huge potential for distributed, residential rooftop PV systems of small size.

  17. Cost-effectiveness of solar energy in energy-efficient buildings

    International Nuclear Information System (INIS)

    Kessler, S.; Iten, R.; Vettori, A.; Haller, A.; Ochs, M.; Keller, L.

    2005-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that examined the potentials and restraints with respect to the use of solar energy in the new construction and refurbishment of residential buildings in Switzerland. The method used is based on a 'learning-curve' technique. The first part of the report deals with the development of prices for solar-collector installations from 1990 until now. The second part deals with today's costs and future developments up to the year 2030. A reference building is used as the basis for the comparison of eight system variants. A further eight variants combine solar technology with traditional heating installations such as oil, gas and wood boilers and heat-pumps. Scenarios for the market situation for solar energy in 2030 are discussed

  18. Solar-assisted low energy dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  19. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  20. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  1. Modeling temporal variations in global residential energy consumption and pollutant emissions

    International Nuclear Information System (INIS)

    Chen, Han; Huang, Ye; Shen, Huizhong; Chen, Yilin; Ru, Muye; Chen, Yuanchen; Lin, Nan; Su, Shu; Zhuo, Shaojie; Zhong, Qirui; Wang, Xilong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2016-01-01

    Highlights: • Space-for-time substitution was tested for seasonality of residential energy. • Regression models were developed to simulate global residential energy consumption. • Factors affecting the temporal trend in residential energy use were identified. • Climate warming will induce changes in residential energy use and emissions. - Abstract: Energy data are often reported on an annual basis. To address the climate and health impacts of greenhouse gases and air pollutants, seasonally resolved emissions inventories are needed. The seasonality of energy consumption is most affected by consumption in the residential sector. In this study, a set of regression models were developed based on temperature-related variables and a series of socioeconomic parameters to quantify global electricity and fuel consumption for the residential sector. The models were evaluated against observations and applied to simulate monthly changes in residential energy consumption and the resultant emissions of air pollutants. Changes in energy consumption are strongly affected by economic prosperity and population growth. Climate change, electricity prices, and urbanization also affect energy use. Climate warming will cause a net increase in electricity consumption and a decrease in fuel consumption by the residential sector. Consequently, emissions of CO_2, SO_2, and Hg are predicted to decrease, while emissions of incomplete combustion products are expected to increase. These changes vary regionally.

  2. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  3. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  4. The marketing of solar energy

    International Nuclear Information System (INIS)

    Coehoorn, M.; Sinke, W.C.

    1994-01-01

    After two decades of research and development the market introduction of solar water heaters finally is developing rapidly. In a number of progressive countries, amongst which the Netherlands, preparations are made for the large-scale introduction of photovoltaic (PV) power systems. A brief overview is given of market introduction activities with regard to solar energy applications in several countries. Also attention is paid to new technological developments for the improvement of solar boilers: the Integrated Collector Storage system, the integration of the storage tank in the solar water heater (combi-boiler), and the new principle for a combined system for the production of hot tap water and space heating, the so-called solar-gas-combi. The Dutch-developed boilers, however, must compete with the the foreign thermosyphon boilers, although these boilers probably require more maintenance than the Dutch boilers. The market for PV-systems is still in its infancy. The marketing efforts and research activities in Japan, USA and European countries for PV-systems are briefly discussed. Although financial incentives from the national governments are still necessary contributions from other market parties for the development of PV-systems are expected. 4 ills

  5. An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future

    International Nuclear Information System (INIS)

    Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Abu-Bakar, Siti Hawa; McMeekin, Scott G.; Stewart, Brian G.

    2011-01-01

    This paper examines solar energy development in Malaysia, particularly in relation to the installation of solar Photovoltaic (PV) in residential houses. It analyzes the past activities related to solar energy in Malaysia, in terms of research and developments (R and Ds), the implementations used as well as the national policies for the past 20 years which have pushed the installation of PV in the country. The Feed-In Tariff (FiT) scheme is discussed, showing comparative cost-benefit analysis between the PV installation in houses in the United Kingdom (UK) and Malaysia, and with other investment schemes available in Malaysia. To investigate the awareness of renewable energy policies and incentives, a preliminary survey of the public opinion in Malaysia has been carried out, and an evaluation of public willingness to invest in the FiT scheme by installing the PV on their houses is presented. The cost-benefit analysis shows that the proposed FiT programme is capable of generating good return on investment as compared to the one in the UK, but the return is lower than other investment tools. The survey suggests that most Malaysians are unaware of the government’s incentives and policies towards renewable energies, and are not willing to invest in the FiT scheme. - Highlights: ► Past activities related to solar energy is evaluated and FIT scheme is discussed. ► Financial analysis is presented; public perspective is evaluated. ► The FIT scheme generates higher return for PV installation in Malaysia than in the UK. ► The scheme, however, produces lower return than most investment schemes. ► Malaysians’ awareness levels are low and are not willing to invest in the FIT scheme.

  6. Solar Energy in the Home. Revised.

    Science.gov (United States)

    Roeder, Allen A.; Woodland, James A.

    Recommended for grades 10-12 physical, earth, or general science classes, this 5-7 day unit is designed to give students a general understanding of solar energy and its use as a viable alternative to present energy sources. Along with this technology, students examine several factors of solar energy which influence the choice of solar home site…

  7. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  8. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  9. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  10. Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model

    International Nuclear Information System (INIS)

    Shimoda, Yoshiyuki; Yamaguchi, Yukio; Okamura, Tomo; Taniguchi, Ayako; Yamaguchi, Yohei

    2010-01-01

    A model is developed that simulates nationwide energy consumption of the residential sector by considering the diversity of household and building types. Since this model can simulate the energy consumption for each household and building category by dynamic energy use based on the schedule of the occupants' activities and a heating and cooling load calculation model, various kinds of energy-saving policies can be evaluated with considerable accuracy. In addition, the average energy efficiency of major electric appliances used in the residential sector and the percentages of housing insulation levels of existing houses is predicted by the 'stock transition model.' In this paper, energy consumption and CO 2 emissions in the Japanese residential sector until 2025 are predicted. For example, as a business - as-usual (BAU) case, CO 2 emissions will be reduced by 7% from the 1990 level. Also evaluated are mitigation measures such as the energy efficiency standard for home electric appliances, thermal insulation code, reduction of standby power, high-efficiency water heaters, energy-efficient behavior of occupants, and dissemination of photovoltaic panels.

  11. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  12. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    The vast majority of U.S. residential solar PV installers are small local-scale companies, however the industry is relatively concentrated in a few large national-scale installers. We develop a novel approach using solar PV quote data to study the price behavior of large solar PV installers in the United States. Through a paired differences approach, we find that large installer quotes are about higher, on average, than non-large installer quotes made to the same customer. The difference is statistically significant and robust after controlling for factors such as system size, equipment quality, and time effects. The results suggest that low prices are not the primary value proposition of large installer systems. We explore several hypotheses for this finding, including that large installers are able to exercise some market power and/or earn returns from reputations.

  13. Building and household X-factors and energy consumption at the residential sector

    International Nuclear Information System (INIS)

    Estiri, Hossein

    2014-01-01

    Energy use in residential buildings is one of the major sources of greenhouse gas emission production from cities. Using microdata from the 2009 Residential Energy Consumption Survey (RECS), this study applies structural equation modeling to analyze the direct, indirect, and total impacts of household and building characteristics on residential energy consumption. Results demonstrate that the direct impact of household characteristics on residential energy consumption is significantly smaller than the corresponding impact from the buildings. However, accounting for the indirect impact of household characteristics on energy consumption, through choice of the housing unit characteristics, the total impact of households on energy consumption is just slightly smaller than that of buildings. Outcomes of this paper call for smart policies to incorporate housing choice processes in managing residential energy consumption. - Highlights: • Households indirectly influence residential energy use through housing choice. • Households' total impact on energy use is comparable to that of buildings. • Understanding households' indirect impact will enhance residential energy policy. • Smart energy policies are needed to target both direct and indirect effects

  14. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    Energy Technology Data Exchange (ETDEWEB)

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  15. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  16. Predicting residential energy and water demand using publicly available data

    International Nuclear Information System (INIS)

    Hoşgör, Enes; Fischbeck, Paul S.

    2015-01-01

    Highlights: • We built regression models using publicly available data as independent variables. • These models were used to predict monthly utility usage. • Such models can empower demand-side management program design, implementation and evaluation. • As well as planning for changes in energy and water demand. - Abstract: The overarching objective behind this work is to merge publicly available data with utility consumption histories and extract statistically significant insight on utility usage for a group of houses (n = 7022) in Gainesville, USA. This study investigates the statistical descriptive power of publicly available information for modeling utility usage. We first examine the deviations that arise from monthly utility usage reading dates as reading dates tend to shift and reading periods tend to vary across different months. Then we run regression models for individual months which in turn we compare to a yearly regression model which accounts for months as a dummy variable to understand whether a monthly model or a yearly model has a larger statistical power. It is shown that publicly available data can be used to model residential utility usage in the absence of highly private utility data. The obtained results are helpful for utilities for two reasons: (1) using the models to predict the monthly changes in demand; and (2) predicting utility usage can be translated into energy-use intensity as a first-cut metric for energy efficiency targeting in their service territory to meet their state demand reduction targets

  17. Energy statistics for non-residential premises in 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The dominating heating system in premises is district heating, 56 per cent of the surface area is heated that way. Oil is used for heating in 9 per cent of the surface area and about the same area is heated by electricity only. The total surface area for premises is about 138 million square metres in 2001. Since the beginning of the 1980s the surface area of offices has been increasing and is now about 33 million square metres. As an average the energy use is: 15.5 litres of oil/m 2 ; 139 kWh/m 2 district heating; 148 kWh/m 2 electricity. All together the use is: 309,000 m 3 oil, 12.4 TWh district heating; 3.5 TWh electricity; 0.5 TWh natural gas/gaswork gas; 0.4 TWh o ther furnace ; 0.4 TWh biofuel or peat. This survey covers non-residential premises in Sweden. It is based on a sample of 8228 properties built before 2001 and on a total survey of properties owned by some of the major owners in the country (about 1700 properties). The survey was carried out in February 2002 as a mail survey. The property owners were asked to give information about type of premises, type of heating system, deliveries of energy for heating, etc. The presentation gives data on deliveries of energy, heated surface area, average consumption, etc., for the total population and for various subdivisions

  18. Retrofit energy conservation in residential buildings in southern California

    Science.gov (United States)

    Turner, R. H.; Birur, G. C.; Daksla, C.

    1982-01-01

    The common energy conservation techniques (ECTs) that can be retrofit-installed into residential buildings are surveyed. The quantity of saved energy for heating and cooling attributable to each ECT is evaluated for three common modes of heating: natural gas heating at 60/therm; heating via heat pump at $1.20/therm; and electric resistance heating at $2.40/therm. In every case, a life cycle cost comparison is made between the long term revenue due to energy conservation and a safe and conventional alternative investment that might be available to the prudent homeowner. The comparison between investment in an ECT and the alternative investment is brought into perspective using the life cycle payback period and an economic Figure of Merit (FOM). The FOM allows for relative ranking between candidate ECTs. Because the entire spectrum of winter heating climates in California is surveyed, the decision maker can determine whether or not a considered ECT is recommended in a given climate, and under what conditions an ECT investment becomes attractive.

  19. Solar Energy: Potential Powerhouse for Jobs

    Science.gov (United States)

    McCallion, Tom

    1976-01-01

    Components of solar energy systems are described, the development of the solar industry discussed, and implications are drawn for employment opportunities in industries (which may expand into new, solar-related areas) and in the professions, from law to sales, upon the advent of solar heating. (AJ)

  20. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  1. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  2. Exploring efficacy of residential energy efficiency programs in Florida

    Science.gov (United States)

    Taylor, Nicholas Wade

    Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale

  3. Solar energy utilization by solar cells and superblack absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D; Selders, M

    1975-10-31

    A review is presented of the physical principles responsible for the characteristics of solar cells, with particular reference to Si homojunction and CdS--Cu/sub 2/S thin film devices. Electric power generation from solar cells still appears uncompetitive economically except in special circumstances, but heating from solar energy using selective absorbers with low reemission is more promising.

  4. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  5. The export of Dutch solar energy technology

    International Nuclear Information System (INIS)

    2000-01-01

    The use of solar energy technology is on the up. In 1997 circa 8000 solar energy systems were installed in the Netherlands, compared to 100 systems in 1988. Solar energy installations, manufactured in the Netherlands, are also sold and installed in other European countries. The market grows by 55% per year. An overview is given of the principles and components of installed and exported solar heating systems, with special attention for the drain-back system

  6. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A; Nueesch, P; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  7. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  8. How tax incentives affect the economics of solar energy equipment in the state of North Carolina

    International Nuclear Information System (INIS)

    McGuffey, B.; Brooks, B.; Shirley, L.

    1998-01-01

    To promote and encourage the use of solar energy, the state of North Carolina has put in place one of the most favorable corporate energy tax credit packages in the country. The capital cost of solar energy systems can be reduced 50 to 70% by state and federal tax incentives. The available incentives for solar equipment installation are (1) a 35% state tax credit, up to a one year maximum of $25,000, from North Carolina; (2) a 10% unlimited federal tax credit; and (3) a 5-year federal accelerated depreciation schedule. To promote residential solar systems, the state has provided a residential credit of 40% up to a one year maximum of $1,500

  9. The Price-Concentration Relationship in Early Residential Solar Third-Party Markets

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Jacquelyn [Univ. of Oxford (United Kingdom); Langheim, Ria [Center for Sustainable Energy, San Francisco, CA (United States); Machak, Christina [Center for Sustainable Energy, San Francisco, CA (United States); Hellow, Henar [Center for Sustainable Energy, San Francisco, CA (United States); Sigrin, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The market for residential solar photovoltaic (PV) systems in the United States has experienced tremendous growth over the past decade, with installed capacity more than doubling between 2014 and 2016 alone (SEIA, 2016). As the residential market continues to grow, it prompts new questions about the nature of competition between solar installers and how this competition, or lack thereof, affects the prices consumers are paying. It is often assumed that more competition leads to lower prices, but this is not universally true. For example, some studies have shown that factors such as brand loyalty could lead to a negative relationship between concentration and price in imperfectly competitive markets (Borenstein, 1985; Holmes, 1989). As such, the relationship between prices and market concentration is an open empirical question since theory could predict either a positive or negative relationship. Determining a relationship between prices and market concentration is challenging for several reasons. Most significantly, prices and market structure are simultaneously determined by each other -- the amount of competition a seller faces influences the price they can command, and prices determine a seller's market share. Previous studies have examined recent PV pricing trends over time and between markets (Davidson et al., 2015a; Davidson and Margolis 2015b; Nemet et al., 2016; Gillingham et al., 2014; Barbose and Darghouth 2015). While these studies of solar PV pricing are able to determine correlations between prices and market factors, they have not satisfactorily proven causation. Thus, to the best of our knowledge, there is little work to date that focuses on identifying the causal relationship between market structure and the prices paid by consumers. We use a unique dataset on third-party owned contract terms for the residential solar PV market in the San Diego Gas and Electricity service territory to better understand this relationship. Surprisingly, we find

  10. Solar Community Organizations and active peer effects in the adoption of residential PV

    International Nuclear Information System (INIS)

    Noll, Daniel; Dawes, Colleen; Rai, Varun

    2014-01-01

    Solar Community Organizations (SCOs) are formal or informal organizations and citizen groups that help to reduce the barriers to the adoption of residential solar photovoltaic (PV) by (1) providing access to credible and transparent information about the localized benefits of residential PV and (2) actively campaigning to encourage adoption within their operational boundaries. We study the peer effect, or social interaction, process catalyzed by SCOs to understand the impact of these organizations on the residential PV market. Using a standardized search methodology across spatial scales (state; city; neighborhoods), we identify and characterize the operations of 228 SCOs formed in the U.S. between 1970 and 2012. We also present case studies of four successful SCOs and find that a common thread of why these SCOs are successful involves effectively leveraging trusted community networks combined with putting together a complete information and financial-tools package for use by interested communities. Finally, our findings suggest that empirical studies that attempt statistical identification and estimation of peer effects should pay close attention to the role of SCOs, as the social interactions engendered by SCOs may be correlated both with the level of social learning and the socio-demographic characteristics of the communities of interest. - Highlights: • New dataset on Solar Community Organizations (SCOs) in the U.S. during 1970–2012. • Shock events catalyze formation of SCOs. • SCOs-driven peer effects found to positively impact PV adoption. • Leveraging trust networks is crucial for the success of SCOs. • In addition to information provision, financing options also key for SCOs' success

  11. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  12. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-22

    Market structure refers to the number of firms and the distribution of market shares among firms within an industry. In The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016, we examine market structure in the context of residential solar PV. We find that over 8,000 companies have installed at least one residential PV system, with about 2,900 companies active in 2016. The majority of residential PV installers are relatively small companies, with about half of installers installing fewer than five systems. At the same time, a subset of high-volume installers accumulated market share, especially beginning around 2010 with the emergence of alternative customer financing options.

  13. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    Directory of Open Access Journals (Sweden)

    Vanya Zhivkova

    2013-06-01

    Full Text Available Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  14. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    OpenAIRE

    Vanya Zhivkova

    2013-01-01

    Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  15. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

  16. Observatory of photovoltaic solar energy in France - 20. edition

    International Nuclear Information System (INIS)

    2016-12-01

    After an overview of important events in the World regarding the development of photovoltaic solar energy in 2016, and predictions regarding new connected installations in 2016, this document present graphs and figures which illustrate the evolution of the photovoltaic fleet in the World, the comparison of production costs of new electric power generation capacities, the evolution of the French photovoltaic power production since 2009, the evolution of the distribution of the French fleet in terms of installation power (from large projects to residential), of connections to the grid, of number of connections and purchase tariffs for the different types of installations (residential, medium roofs, large roofs, very large roofs, very large ground-based or roof-based projects) and for queuing projects, in terms of evolution of purchase tariffs since 2011, and of evolution of impact on the CSPE financing system

  17. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis

    International Nuclear Information System (INIS)

    Moghadam, Ramin Shabanpour; Sayyaadi, Hoseyn; Hosseinzade, Hadi

    2013-01-01

    Highlights: • 3E analysis was performed on solar CHP systems. • Significant primary energy saving and greenhouse gas reduction were obtained. • The engine was sized so that it had the best economic sound. • Various criteria at different weathers were used for sizing the engine. - Abstract: A solar dish Stirling cogeneration system is considered to provide energy demands of a residential building. As energy demands of the building and output power of the engine are functions of weather condition and solar irradiation flux, the benchmark building was considered to be located in five different cities in Iran with diverse climatic and solar irradiation conditions. The proposed solar dish Stirling micro-CHP system was analyzed based on 3E analysis. The 3E analysis evaluated primary energy saving analysis (energy analysis), carbon dioxide emission reduction (environmental analysis) and payback period for return of investment (economic analysis) and was compared to a reference building that utilized primary energy carriers for its demands. Three scenarios were considered for assessment and sizing the solar dish Stirling engine. In the first scenario, size of the solar dish Stirling engine was selected based on the lowest annual electric power demand while, in second, the highest annual electric power consumption was considered to specify size of the engine. In the third scenario, a solar dish Stirling engine with constant output capacity was considered for the five locations. It was shown that implementing the solar dish Stirling micro-CHP system had good potential in primary energy saving and carbon dioxide emission reduction in all scenarios and acceptable payback period for return of the investment in some scenarios. Finally, the best scenario for selecting size of the engine in each city was introduced using the TOPSIS decision making method. It was demonstrated that, for dry weather, the first scenario was the best while, for hot and humid cities and

  18. Solar energy in the United States

    International Nuclear Information System (INIS)

    Ochoa, D.; Slaoui, A.; Soler, R.; Bermudez, V.

    2009-01-01

    Written by a group of five French experts who visited several research centres, innovating companies and solar power stations in the United States, this report first proposes an overview of solar energy in the United States, indicating and commenting the respective shares of different renewable energies in the production, focusing on the photovoltaic energy production and its RD sector. The second part presents industrial and research activities in the solar sector, and more specifically photovoltaic technologies (silicon and thin layer technology) and solar concentrators (thermal solar concentrators, photovoltaic concentrators). The last chapter presents the academic research activities in different universities (California Tech Beckman Institute, Stanford, National Renewable Energy Laboratory, Colorado School of Mines)

  19. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics LLC., Haddonfield, NJ (United States)

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  20. Preliminary investigation into the use of solar PV systems for residential application in Bandar Sri Iskandar, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dimas, F.A.; Gillani, S.I.; Ans, M.S. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    In the near future, Malaysia is expected to be a net importer of oil, and the nation will have to face issues related to the security of supply and economic consequences. It is also anticipated that the energy demand for the country will increase with the increase in population and GDP. Realizing the situation, it is important that further emphasis is given into the diversification of energy resources. One method is the exploitation of renewable energy to minimize the effects of global warming. Photovoltaic technology is widely used around the world in locations with scarce power generation options. It is used for various applications and Building Integrated Photovoltaic (BIPV) system is one of them. However, photovoltaic is still expensive compared to conventional methods of generating electricity. So a careful design of the system is required to ensure economic viability. This study describes a preliminary investigation of a solar PV system for residential applications in Bandar Sri Iskandar. Sizing procedures based on the peak sun hour concept is described for a Malaysian typical terraced house. Current and voltage measurements of the solar panel were carried out to predict the output under actual conditions at the site.

  1. Public participation in energy saving retrofitting of residential buildings in China

    NARCIS (Netherlands)

    Liu Wenling, Wenling; Zhang, J.; Bluemling, B.; Mol, A.P.J.; Wang, C.

    2015-01-01

    Retrofitting existing residential buildings has been claimed as one crucial way to reduce energy consumption and greenhouse gas emissions within the Chinese residential sector. In China’s government-dominated retrofitting projects, the participation of residents is often neglected. The objective of

  2. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  3. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  4. Summary of reports on 1979 result of Sunshine Project. Solar energy; 1979 nendo sunshine keikaku seika hokokusho gaiyoshu. Taiyo energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    This report is a compilation of all outlines of the results concerning 'solar energy' for which R and D was carried out as a part of Sunshine Project in fiscal 1979. The research subjects (items of the studies) are written below. 1. Solar energy system (measurement of spectral irradiance, utilization system, and meteorological investigation); 2. Solar thermal power generation system; 3. Photovoltaic power generation system (basic research on solar cells, silicon vertical ribbon crystal, silicon horizontal ribbon crystal, particle non-acceleration growth type thin film silicon crystal, particle acceleration growth type thin film silicon crystal, new type solar cells, secondary to quaternary compound semiconductor solar cells, and photovoltaic power generation system); 4. Solar cooling, heating and hot water supply system (evaluation system, newly-built private residential system, existing private residential system, multiple dwelling system, large building system, synthetic resin materials, glass based materials, and metallic materials); 5. Solar energy new utilization method (new power generation system and materials); 6. R and D on solar thermal power generation plant (R and D on pilot plant, experimental research for developing plant on curved surface converging method, and experimental research for developing plant on tower converging method). (NEDO)

  5. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  6. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  7. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for new residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of devices for solar energy systems for air conditioning and hot water supply, in order to commercialize innovative systems for economic air conditioning and hot water supply for new residential buildings. The research items are (1) development of materials for the devices (e.g., heat collectors and absorption refrigerators), (2) operation of the systems in the test building, and measurement (methods for measurement and evaluation of the systems in the test building, instrumentation systems and operation thereof, and analysis of the measured data), and (3) system analysis (system simulation, comparison of the simulated results with the observed results, and system variations). The item (1) studies economic efficiency, durability and stability of the vacuum glass tube type collectors. The item (2) studies a dripping type generator, refrigerant recycling type generator and generator with a built-in auxiliary heat source for the absorption refrigerators. These types have their own advantages and disadvantages, and it is necessary to establish how these results are to be included in the products. The item (3) changes the collector arrangement, based on the observed data, and improves heat-collecting pump starting/stopping conditions, refrigerator operating conditions and insulation around the primary heat-storage tank. It is necessary to analyze the improved systems. (NEDO)

  8. Energy and exergy utilization efficiencies in the Japanese residential/commercial sectors

    International Nuclear Information System (INIS)

    Kondo, Kumiko

    2009-01-01

    Unlike the manufacturing sector, the residential/commercial sectors of Japan struggle to meet their environmental requirements. For instance, their CO 2 emission levels have increased tremendously since 1990. This research estimates energy and 'exergy (available energy)' efficiencies in Japan's residential/commercial sectors during the period 1990-2006. Since an exergy analysis reveals 'available energy losses', it is an effective tool to achieve sustainable societies. The primary objective of this paper is to examine the potential for advancing the 'true' energy efficiency in Japan's residential/commercial sectors-by observing energy and exergy efficiency disparities. The results show large differences between the overall energy and exergy efficiencies in the residential (60.12%, 6.33%)/commercial sectors (51.78%, 5.74%) in 2006. This implies great potential for energy savings in both sectors. Furthermore, this research suggests that the residential sector may face more difficulties than the commercial sector, although the latter appears to be less energy-efficient, according to recent statistics. This is because the disparity between energy and exergy efficiencies has expanded in the residential sector since 2000. This study illustrates the importance of exergy analyses in promoting sustainable energy policies and new adaptation strategies.

  9. Employment impacts of solar energy in Turkey

    International Nuclear Information System (INIS)

    Cetin, Muejgan; Egrican, Niluefer

    2011-01-01

    Solar energy is considered a key source for the future, not only for Turkey, also for all of the world. Therefore the development and usage of solar energy technologies are increasingly becoming vital for sustainable economic development. The main objective of this study is investigating the employment effects of solar energy industry in Turkey. Some independent reports and studies, which analyze the economic and employment impacts of solar energy industry in the world have been reviewed. A wide range of methods have been used in those studies in order to calculate and to predict the employment effects. Using the capacity targets of the photovoltaic (PV) and concentrated solar power (CSP) plants in the solar Roadmap of Turkey, the prediction of the direct and indirect employment impacts to Turkey's economy is possible. As a result, solar energy in Turkey would be the primary source of energy demand and would have a big employment effects on the economics. That can only be achieved with the support of governmental feed-in tariff policies of solar energy and by increasing research-development funds. - Highlights: → The objective of the study, is investigating employment effects of solar energy. → Using the capacity targets of the PV and CSP plants in solar roadmap of Turkey. → Direct employment has been calculated by constructing of the solar power plant. → If multiplier effect is accepted as 2, total employment will be doubled. → Validity of the figures depends on the government's policies.

  10. Energy statistics for non-residential premises in 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The dominating heating system in premises is distant heating, 52 per cent of the surface area is heated that way. Oil is used for heating in 34 per cent of the surface area and the use of oil is decreasing. Today oil is used in about 9 per cent of the premises compared to 43 per cent in 1981. Natural gas can so far only be used in the southwestern parts of Sweden and is heating 2.6 million of square metres. The total surface area for premises is about 139 million square metres in 1999. Since the beginning of the 1980s the surface area of offices has been increasing and is now about 30 million square metres, or 22 per cent of the premises. The total use of energy in premises is about the same 1999 as in 1998. Still the average consumption has decreased because of an increase of the surface area of premises. Surface area heated merely by heat pumps is almost three times as big as in 1998 which means that the average consumption has considerably decreased. This survey covers non-residential premises in Sweden. It is based on a sample of 7961 properties built before 1999 and on a total survey of properties owned by some of the major owners in the country (about 2000 properties). The survey was carried out in February 2000 as a mail survey. The property owners were asked to give information about type of premises, type of heating system, deliveries of energy for heating, etc. The presentation gives data on deliveries of energy, heated surface area, average consumption, etc., for the total population and for various subdivisions

  11. Energy statistics for non-residential premises in 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The dominating heating system in premises is district heating, 55 per cent of the surface area is heated that way. Oil is used for heating in 19 per cent of the surface area and the use of oil is decreasing. Today oil is used in about 8 per cent of the premises compared to 43 per cent in 1981. Natural gas can so far only be used in the southwestern parts of Sweden and is heating 1.8 million of square metres. The total surface area for premises is about 149 million square metres in 2000. Since the beginning of the 1980s the surface area of offices has been increasing and is now about 44 million square metres, or 30 per cent of the premises. The total use of energy in premises has increased by nearly 400 GWh compared to 1999. Still the average consumption has decreased because of an increase of the surface area of premises. The year 2000 was also warmer than 1999. This survey covers non-residential premises in Sweden. It is based on a sample of 8154 properties built before 2000 and on a total survey of properties owned by some of the major owners in the country (about 1500 properties). The survey was carried out in February 2001 as a mail survey. The property owners were asked to give information about type of premises, type of heating system, deliveries of energy for heating, etc. The presentation gives data on deliveries of energy, heated surface area, average consumption, etc., for the total population and for various subdivisions

  12. Residential energy contracts and the 28 day rule

    International Nuclear Information System (INIS)

    Littlechild, Stephen

    2006-01-01

    What measures are needed to protect customers when a utility market is first opened to competition? In the UK, residential (domestic) customers must be able to terminate energy contracts at 28 days' notice. This rule was introduced as a transitional protection for customers and for competition. However, the regulatory justification for the rule seems to have evolved over time. Removing the rule could have a number of advantages, including the development of fixed-price fixed-term contracts. The advantages of retaining the rule are questionable. In other retail sectors there is no regulatory concern or requirement of this kind. UK electricity suppliers have begun to offer capped prices for specified periods of time, suggesting that there is a growing customer demand for this. Fixed-price fixed-term contracts are a common form of competition in Scandinavia. The 28 day rule no longer seems necessary to protect customers and is more likely to distort than to protect competition. In retrospect, it would have been preferable not to introduce the rule in the first place. (author)

  13. Using Radio Irregularity for Increasing Residential Energy Awareness

    Directory of Open Access Journals (Sweden)

    A. Miljković

    2012-06-01

    Full Text Available Radio irregularity phenomenon is often considered as a shortcoming of wireless networks. In this paper, the method of using radio irregularity as an efficient human presence detection sensor in smart homes is presented. The method is mainly based on monitoring variations of the received signal strength indicator (RSSI within the messages used for the communication between wireless smart power outlets. The radio signals used for the inter-outlets communication can be absorbed, diffracted or reflected by objects in their propagation paths. When a human enters the existing radio communication field, the variation of the signal strength at the receiver is even more expressed. Based on the detected changes and compared to the initial thresholds set during the initialization phase, the system detects human presence. The proposed solution increases user awareness and automates the power control in households, with the primary goal to contribute in residential energy savings. Compared to conventional sensor networks, this approach preserves the sensorial intelligence, simplicity and low installation costs, without the need for additional sensors integration.

  14. Solar Energy Measurement Using Arduino

    Directory of Open Access Journals (Sweden)

    Jumaat Siti Amely

    2018-01-01

    Full Text Available This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was measured using the current sensor module that can sense the current generated by the solar panel. These parameters as the input value for the Arduino and the output was display at the Liquid Crystal Display (LCD screen. The LCD screen display output of the temperature, the light intensity, the voltage and the current value. The purpose of Arduino to convert the analog input of parameter to the digital output and display via LCD screen. Other than that, this project also involve with a design to ensure that device case are easy to be carry around.

  15. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    OpenAIRE

    Zhang, Tao; Siebers, Peer-Olaf; Aickelin, Uwe

    2012-01-01

    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential\\ud energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of...

  16. Solar energy. Usage of the solar energy in other forms of energy

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. After a brief description of the solar energy usage, the theory, technology and applications of photovoltaic cells are presented

  17. Solar energy after Fukushima: the new deal

    International Nuclear Information System (INIS)

    Boisgibault, Louis

    2011-01-01

    This document contains a brief presentation, the preface, and the table of contents of a book which addresses the major technological, regulatory and geostrategic challenges for solar energy in the current energy context. The author outlines the strong emergence of China in this sector, but also that of new opportunities in Africa, and the need for France to strengthen European-Mediterranean collaborations in order not to definitely loose a leadership position. While referring to the environmental context, to practical examples and installations, the author explains the difficult taking off of solar energy before March 2011, why the Fukushima is a turning point for solar energy, and why solar energy will prevail

  18. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  19. Use of solar energy in agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Nordaunet, L.; Vassbotn, T.; Naavik, G.; Lillevik, O.

    1982-04-01

    The report discusses some materials for utilization of solar energy in agriculture. Accessible data on solar radiation are prepared with a view to practical use in different parts of the country. Physical conditions regarding the mode of operation of different solar collectors are examined, and some methods of transitory storage of solar energy are described. Fields in which practical use of solar energy can be urgent are discussed. These are: water heating and drying of hay and grain. Some practical examples are given. 53 drawings, 9 tables.

  20. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  1. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  2. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-16

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  3. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings

    International Nuclear Information System (INIS)

    Gaglia, Athina G.; Balaras, Constantinos A.; Mirasgedis, Sevastianos; Georgopoulou, Elena; Sarafidis, Yiannis; Lalas, Dimitris P.

    2007-01-01

    Comprehensive information and detailed data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector. This paper elaborates the approach used to determine the potential energy conservation in the Hellenic NR building stock. A major obstacle that had to be overcome was the need to make suitable assumptions for missing detailed primary data. A qualitative and quantitative assessment of scattered national data resulted in a realistic assessment of the existing NR building stock and energy consumption. Different energy conservation scenarios and their impact on the reduction of CO 2 emissions were evaluated. Accordingly, the most effective energy conservation measures are: addition of thermal insulation of exposed external walls, primarily in hotels and hospitals; installation of energy efficient lamps; installation of solar collectors for sanitary hot water production, primarily in hotels and health care; installation of building management systems in office/commercial and hotel buildings; replacement of old inefficient boilers; and regular maintenance of central heating boilers

  4. Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector

    International Nuclear Information System (INIS)

    Dineen, D.; Ó Gallachóir, B.P.

    2017-01-01

    This paper estimates the potential energy savings in the Irish residential sector by 2020 due to the introduction of an ambitious retrofit programme. We estimate the technical energy savings potential of retrofit measures targeting energy efficiency of the space and water heating end uses of the 2011 stock of residential dwellings between 2012 and 2020. We build eight separate scenarios, varying the number of dwellings retrofitted and the depth of retrofit carried out in order to investigate the range of energy savings possible. In 2020 the estimated technical savings potential lies in the range from 1713 GWh to 10,817 GWh, but is more likely to fall within the lower end of this range, i.e. between 1700 and 4360 GWh. When rebound effects are taken into account this reduces further to 1100 GWh and 2800 GWh per annum. The purpose of this paper was to test the robustness of the NEEAP target savings for residential retrofit, i.e. 3000 GWh by 2020. We conclude that this target is technically feasible but very challenging and unlikely to be achieved based on progress to date. It will require a significant shift towards deeper retrofit measures compared to what has been achieved by previous schemes. - Highlights: • Paper estimates range of energy savings likely from Irish residential retrofit. • Achieving NEEAP target savings of 3000 GWh by 2020 is feasible but very challenging. • Likely savings of 1100–2800 GWh per annum in 2020, including rebound. • NEEAP target unlikely to be achieved based on current trends.

  5. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    generation characteristics, heat transfer and thermal dynamics of sustainable residential buildings and load scheduling potentials of household appliances with associated constraints. Through various simulation studies under different working scenarios with real data, different system constraints and user...

  6. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  7. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  8. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  9. External perforated Solar Screens for daylighting in residential desert buildings: Identification of minimum perforation percentages

    KAUST Repository

    Sherif, Ahmed

    2012-06-01

    The desert climate is endowed by clear sky conditions, providing an excellent opportunity for optimum utilization of natural light in daylighting building indoor spaces. However, the sunny conditions of the desert skies, in countries like Egypt and Saudi Arabia, result in the admittance of direct solar radiation, which leads to thermal discomfort and the incidence of undesired glare. One type of shading systems that is used to permit daylight while controlling solar penetration is " Solar Screens" Very little research work addressed different design aspects of external Solar Screens and their influence on daylighting performance, especially in desert conditions, although these screens proved their effectiveness in controlling solar radiation in traditional buildings throughout history.This paper reports on the outcomes of an investigation that studied the influence of perforation percentage of Solar Screens on daylighting performance in a typical residential living room of a building in a desert location. The objective was to identify minimum perforation percentage of screen openings that provides adequate illuminance levels in design-specific cases and all-year-round.Research work was divided into three stages. Stage one focused on the analysis of daylighting illuminance levels in specific dates and times, while the second stage was built on the results of the first stage, and addressed year round performance using Dynamic Daylight Performance Metrics (DDPMs). The third stage addressed the possibility of incidence of glare in specific cases where illuminance levels where found very high in some specific points during the analysis of first stage. The research examined the daylighting performance in an indoor space with a number of assumed fixed experimentation parameters that were chosen to represent the principal features of a typical residential living room located in a desert environment setting.Stage one experiments demonstrated that the screens fulfilled the

  10. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  11. Scenarios of application of energy certification procedure for residential buildings in Lebanon

    International Nuclear Information System (INIS)

    Cantin, R.; Mourtada, A.; Guarracino, G.; Adra, N.; Nasser, M.; Maamari, F.

    2007-01-01

    This paper describes the results of a French-Lebanese scientific cooperation, between 2001 and 2005, about 'Rational use of energy in the residential buildings in Lebanon and adaptation of an energy certification procedure'. The aim of this project is to promote the energy efficiency in the existing residential buildings in Lebanon, using an energy certification procedure, and to evaluate the energy certification foresight with prospective methods. The paper first describes an energy investigation in Lebanese residential buildings, and the energy certification procedure. It presents the foresight methodology implemented to identify the key variables and the actors. Finally, the paper exposes the morphological method which allows to elaborate three scenarios of energy performance certification. These scenarios are presented in order to provide a decision making for the actors of the Lebanese energy policy

  12. The thermodynamic solar energy; Le solaire thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivoire, B. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Perpignan (France)

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  13. Teaching Children to Value Solar Energy

    Science.gov (United States)

    Hugerat, Muhamad; Saker, Salem; Odeh, Saeed; Agbaria, Adnan

    2011-01-01

    In this educational initiative, we suggest to build a real model of solar village inside the school, which uses only solar energy. These educational initiatives emphasize the importance of energy for a technological society and the advantage of alternative energy sources. In this scientific educational initiative, the pupils in three elementary…

  14. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  15. Organoruthenium Complexes for Solar Energy Harvesting

    NARCIS (Netherlands)

    Wadman, S.H.|info:eu-repo/dai/nl/304834084

    2008-01-01

    One of the greatest challenges of this time is providing the world with the energy it needs to sustain human kind's current standard of living. Solar energy is the most abundant and ubiquitous renewable energy source available, and as such it holds great promises. Traditionally, the field of solar

  16. Solar energy in Primorskiy Krai

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, O.P.; Volkov, A.V. [Inst. of Marine Technology Problems Far Eastern Branch Russian Academic Science (IMTP FEB RAS), Vladivostok (Russian Federation)

    2004-07-01

    In 1979 in the Pacific Oceanological Institute of FESC there were started investigations in the field of renewable energy sources (the group of ocean power-engineering was organized) which have been continued till present time in the laboratory of non-traditional energetics of IMTP FEB RAS. During this time the following expeditions were carried out by research workers: in Tugursky Bay (1981) and in Pendzinky Lip (1982, 1983) for investigations of tidal mode in the places which are promising for building tidal power stations; marine expeditions (1985, 1987) for investigating power resources in the Seychelles area, and an expedition to Cape Shmidt - for carrying out experimental freezing of seawater layers on particular parts of an icy moorage of a sea port in the course of its restoration. Now theoretical and experimental researches in the field of using solar energy, energy due to salinity gradients, biomass energy etc., are being carried out at the laboratory. Experimental installations for transformation of these types of energy were created which were tested both in laboratory and in natural conditions. (orig.)

  17. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community

    International Nuclear Information System (INIS)

    Wu, Raphael; Mavromatidis, Georgios; Orehounig, Kristina; Carmeliet, Jan

    2017-01-01

    Highlights: • Simultaneous optimisation of building envelope retrofit and energy systems. • Retrofit and energy systems change interact and should be considered simultaneously. • Case study quantifies cost-GHG emission tradeoffs for different retrofit options. - Abstract: In this paper, a method for a multi-objective and simultaneous optimisation of building energy systems and retrofit is presented. Tailored to be suitable for the diverse range of existing buildings in terms of age, size, and use, it combines dynamic energy demand simulation to explore individual retrofit scenarios with an energy hub optimisation. Implemented as an epsilon-constrained mixed integer linear program (MILP), the optimisation matches envelope retrofit with renewable and high efficiency energy supply technologies such as biomass boilers, heat pumps, photovoltaic and solar thermal panels to minimise life cycle cost and greenhouse gas (GHG) emissions. Due to its multi-objective, integrated assessment of building transformation options and its ability to capture both individual building characteristics and trends within a neighbourhood, this method is aimed to provide developers, neighbourhood and town policy makers with the necessary information to make adequate decisions. Our method is deployed in a case study of typical residential buildings in the Swiss village of Zernez, simulating energy demands in EnergyPlus and solving the optimisation problem with CPLEX. Although common trade-offs in energy system and retrofit choice can be observed, optimisation results suggest that the diversity in building age and size leads to optimal strategies for retrofitting and building system solutions, which are specific to different categories. With this method, GHG emissions of the entire community can be reduced by up to 76% at a cost increase of 3% compared to the current emission levels, if an optimised solution is selected for each building category.

  18. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  19. Energy statistics for non-residential premises 2012; Energistatistik foer lokaler 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents data on a number of non-residential premises, heated floor area, use of energy (totals and averages) and use of fuels (totals and averages) for the total population and for various subDivs.

  20. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  1. Residential consumers’ experiences in the adoption and use of solar PV

    International Nuclear Information System (INIS)

    Sommerfeld, Jeff; Buys, Laurie; Vine, Desley

    2017-01-01

    Public policy in many nations is seeking to transition energy generation towards renewable sources such as solar photovoltaic (PV). Reviews of past policy aimed at increasing consumer acceptance of renewable energy sources have identified that policy implementation may not align with policy objectives of energy professionals. The research and analysis of consumers and their interaction with solar PV policy is important in assessing policy outcomes and how these can be better delivered or adapted. This paper reports on an in depth qualitative analysis of 22 persons under different feed-in tariff (FiT) policy settings to explore consumer experiences in acquiring solar PV and their energy use behaviour. The responses of participants indicate there were different motivations and energy use behaviour that were based on the policy in which solar PV was acquired and these may provide insight into policy development or follow up studies. - Highlights: • Consumer acceptance of renewable energy sources (RES) are vital to GHG mitigation. • Different policy settings have encouraged consumer uptake of solar PV. • Qualitative study examines two cohorts of consumers under different solar feed-in tariff (FiT) settings. • Level of FiT identified as linked to behaviours that can alter policy outcomes.

  2. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  3. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  4. Solar Energy for Pacific Northwest Buildings.

    Science.gov (United States)

    Reynolds, John S.

    Data presented in this report indicate that solar space and water heating are possible in the Pacific Northwest. The first section of the report contains solar records from several stations in the region illustrating space heating needs that could be met, on an average daily basis, by solar energy. The data are summarized, and some preliminary…

  5. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    International Nuclear Information System (INIS)

    Zhang Tao; Siebers, Peer-Olaf; Aickelin, Uwe

    2012-01-01

    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e., economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of residential energy consumers in the UK have been identified. They are: pioneer greens, follower greens, concerned greens, home stayers, unconscientious wasters, regular wasters, daytime wasters, and disengaged wasters. Using a case study, these archetypes of residential energy consumers demonstrate the robustness of the 3-D model in aiding local energy policy/intervention design in the UK. - Highlights: ► This paper reviews the three traditional lines of research in residential energy consumption in the UK. ► Based on the literature review, the paper proposes a 3-D conceptual model for archetyping UK residential energy consumers. ► The 3-D archetype model can aid local energy policy/intervention design in the UK.

  6. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Polly, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  7. Solar energy; Product information. Zonne-energie; Produktinformatie

    Energy Technology Data Exchange (ETDEWEB)

    Kruisheer, N

    1992-03-20

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills.

  8. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  9. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  10. The necessity of solar energy

    International Nuclear Information System (INIS)

    Lovejoy, D.

    1996-01-01

    The idea of limits to growth has, understandably, achieved notoriety since the days of Malthus and, more recently, the Club of Rome. However, there must be some limits to the ability of the Earth to sustain a growing population. Fortunately, population models suggest that the world's population will probably level out at about two to three times the present numbers over the next hundred years. The question is whether the Earth's resources are sufficient to sustain that population at a high standard of living for all. In this the key issue is energy. It is clear that present trends in energy consumption, especially oil, cannot be sustained much longer. Regardless of this, however, prudence demands a drastic reduction in fossil fuel consumption, in view of the possibility of global warming. It can be shown that, combined with greatly improved energy efficiency, a transition to a solar (renewable) energy based economy capable of sustaining the anticipated growth in the world economy, is possible, but the constraints are extremely tight. (Author)

  11. Design, architecture and implementation of a residential energy box management tool in a SmartGrid

    International Nuclear Information System (INIS)

    Ioakimidis, Christos S.; Oliveira, Luís J.; Genikomsakis, Konstantinos N.; Dallas, Panagiotis I.

    2014-01-01

    This paper presents the EB (energy box) concept in the context of the V2G (vehicle-to-grid) technology to address the energy management needs of a modern residence, considering that the available infrastructure includes micro-renewable energy sources in the form of solar and wind power, the electricity loads consist of “smart” and conventional household appliances, while the battery of an EV (electric vehicle) plays the role of local storage. The problem is formulated as a multi-objective DSP (dynamic stochastic programming) model in order to maximize comfort and lifestyle preferences and minimize cost. Combining the DSP model that controls the EB operation with a neural network based approach for simulating the thermal model of a building, a set of scenarios are examined to exemplify the applicability of the proposed energy management tool. The EB is capable of working under real-time tariff and placing bids in electricity markets both as a stand-alone option and integrated in a SmartGrid paradigm, where a number of EBs are managed by an aggregator. The results obtained for the Portuguese tertiary electricity market indicate that this approach has the potential to compete as an ancillary service and sustain business with benefits for both the microgrid and residence occupants. - Highlights: • The energy box is a residential energy management tool in the context of V2G (vehicle-to-grid). • Multi-objective dynamic stochastic programming is used to model the energy box. • The energy box is working under real-time electricity pricing. • The proposed implementation is capable of placing bids in electricity markets. • The results indicate its potential to compete in the Portuguese tertiary market

  12. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  13. Solar energy application, economics, and public perception

    CERN Document Server

    Adaramola, Muyiwa

    2015-01-01

    Due to climate change, the rise in energy demand, and issues of energy security, more countries are being forced to reexamine their energy policies and consider more renewable sources of energy. Solar power is expected to play a significant role in the changing face of energy economies, due in a large part to the recent technological advances in the field and the significant decrease in cost. This book describes these advances and examines the current state of solar power from a variety of angles. The various sections of the book cover the following topics: an overview of hybrid solar energy s

  14. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  15. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  16. Photovoltaic solar energy: State of the art

    International Nuclear Information System (INIS)

    Van Sark, W.G.J.H.M.; Sinke, W.C.

    1993-03-01

    Attention is paid to developments in the Netherlands of all aspects of photovoltaic (PV) energy: solar cells, components, PV-systems and all kinds of applications. Efficiencies of the present solar cell types still increase, varying from more than 10% for organic/TiO 2 solar cells to 33% for GaAs/GaSb concentrator tandem solar cells. 3 figs., 2 ills., 1 tab

  17. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  18. Residential energy use: an international perspective on long-term trends in Denmark, Norway and Sweden

    International Nuclear Information System (INIS)

    Unander, Fridtjof; Ettestoel, Ingunn; Ting, Mike; Schipper, Lee

    2004-01-01

    This paper examines residential energy use in the Scandinavian countries: Denmark, Norway and Sweden, over the period 1973-1999. The paper uses a decomposition approach to investigate differences in residential energy demand structure and end-use intensities and discusses both differences in absolute levels of energy use and differences over time. Comparisons are also made to other countries that have been analysed in the IEA energy efficiency indicator project. The analysis shows that, in contrast to Denmark and Sweden, Norway saw a growth in total residential energy use between 1973 and 1999. This can be partially explained by the fact that Norway started from a lower per capita income level in the early 1970s but has since then enjoyed a rapid income growth that drove up house area and consequently put a pressure on energy use. But the analysis also shows that Denmark and Sweden achieved significant reductions of residential energy intensities between 1973 and 1990, while the reductions in Norway were negligible. After 1990, the picture changed; there was a strong decline in residential energy intensities in Norway and a high rate of energy savings compared to most other countries analysed by the IEA, while energy savings in Denmark and Sweden more or less came to a halt

  19. Modeling and analysis of long term energy demands in residential sector of pakistan

    International Nuclear Information System (INIS)

    Rashid, T.; Sahir, M.H.

    2015-01-01

    Residential sector is the core among the energy demand sectors in Pakistan. Currently, various techniques are being used worldwide to assess future energy demands including integrated system modeling (ISM). Therefore, the current study is focused on implementation of ISM approach for future energy demand analysis of Pakistan's residential sector in terms of increase in population, rapid urbanization, household size and type, and increase/decrease in GDP. A detailed business-as-usual (BAU) model is formulated in TIMES energy modeling framework using different factors like growth in future energy services, end-use technology characterization, and restricted fuel supplies. Additionally, the developed model is capable to compare the projected energy demand under different scenarios e.g. strong economy, weak economy and energy efficiency. The implementation of ISM proved a viable approach to predict the future energy demands of Pakistan's residential sector. Furthermore, the analysis shows that the energy consumption in the residential sector would be 46.5 Mtoe (Million Ton of Oil Equivalent) in 2040 compared to 23 Mtoe of the base year (2007) along with 600% increase in electricity demands. The study further maps the potential residential energy policies to congregate the future demands. (author)

  20. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available An attractive and cheaper alternative to siliconbased photovoltaic (PV) cells for the conversion of solar light into electrical energy is to utilise dyeadsorbed, large-band-gap metal oxide materials such as TiO2 to absorb the solar light...