WorldWideScience

Sample records for residential solar climate

  1. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  2. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  3. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  4. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis

    International Nuclear Information System (INIS)

    Moghadam, Ramin Shabanpour; Sayyaadi, Hoseyn; Hosseinzade, Hadi

    2013-01-01

    Highlights: • 3E analysis was performed on solar CHP systems. • Significant primary energy saving and greenhouse gas reduction were obtained. • The engine was sized so that it had the best economic sound. • Various criteria at different weathers were used for sizing the engine. - Abstract: A solar dish Stirling cogeneration system is considered to provide energy demands of a residential building. As energy demands of the building and output power of the engine are functions of weather condition and solar irradiation flux, the benchmark building was considered to be located in five different cities in Iran with diverse climatic and solar irradiation conditions. The proposed solar dish Stirling micro-CHP system was analyzed based on 3E analysis. The 3E analysis evaluated primary energy saving analysis (energy analysis), carbon dioxide emission reduction (environmental analysis) and payback period for return of investment (economic analysis) and was compared to a reference building that utilized primary energy carriers for its demands. Three scenarios were considered for assessment and sizing the solar dish Stirling engine. In the first scenario, size of the solar dish Stirling engine was selected based on the lowest annual electric power demand while, in second, the highest annual electric power consumption was considered to specify size of the engine. In the third scenario, a solar dish Stirling engine with constant output capacity was considered for the five locations. It was shown that implementing the solar dish Stirling micro-CHP system had good potential in primary energy saving and carbon dioxide emission reduction in all scenarios and acceptable payback period for return of the investment in some scenarios. Finally, the best scenario for selecting size of the engine in each city was introduced using the TOPSIS decision making method. It was demonstrated that, for dry weather, the first scenario was the best while, for hot and humid cities and

  5. Architectural design of passive solar residential building

    Directory of Open Access Journals (Sweden)

    Ma Jing

    2015-01-01

    Full Text Available This paper studies thermal environment of closed balconies that commonly exist in residential buildings, and designs a passive solar residential building. The design optimizes the architectural details of the house and passive utilization of solar energy to provide auxiliary heating for house in winter and cooling in summer. This design might provide a more sufficient and reasonable modification for microclimate in the house.

  6. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  7. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  8. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  9. Solar Adoption and Energy Consumption in the Residential Sector

    Science.gov (United States)

    McAllister, Joseph Andrew

    the extent increases are present for some solar adopters, the analysis seeks to determine whether there is a "solar rebound" effect analogous to the "rebound" or "take-back" effect that has been observed and studied within the energy efficiency literature. Similarly, to the extent that electric users may decrease overall consumption after installation of a solar system, the study seeks to explore the possibility that solar adoption is part of a continued effort towards clean energy practices more generally, such as energy efficiency and conservation. In this way, the study seeks to determine whether there is a synergistic effect between solar and decreased consumption, for solar adopters generally or for some subsets therein. The assembled data allowed testing of various hypotheses that could help explain observed changes in consumption in different households. One variable that was carefully examined was the sizing of the solar system. As part of the study, analysis of 4,355 systems was conducted to determine how each residential solar system was sized with respect to pre-installation energy consumption. Other potentially interesting or explanatory variables for which information was available include total and net costs of the solar system; age of the home; the climate zone (inland or coastal) where the home is located; the home's pre-installation energy consumption; home characteristics such as assessed value and square footage; and the identity of the solar installation contractor. Aside from extending the literature on the rebound effect to the context of home-based energy generation, this study links to the innovation diffusion literature by focusing on solar "innovators" to understand more about the characteristics that may drive behavior, or conditions under which they also adopt clean energy technologies and practices. The results have clear policy relevance with regard to the development and coordination of policies to promote integration of solar and energy

  10. SOLAR SYSTEMS FOR RESIDENTIAL BUILDINGS IN ACCORDANCE WITH OPERATING CONDITIONS OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. A. Rutkowski

    2017-01-01

    Full Text Available Solar systems are actively applied for heat supply of buildings in Europe. Usage of solar energy for heat supply of residential buildings is considered as rather efficient for the Republic of Belarus because total amount of direct and scattered solar radiation entering horizontal surface is equivalent to an average European index for the climate of Belarus. The paper analyzes an existing dependence on determination of solar system efficiency and proposes an amended formula for calculations while designing solar consumption systems and its legitimacy has been experimentally proved. A scheme of an experimental unit with explanations and a brief description for execution of experiments and main results of the completed investigations have been presented in the paper. Experiments have been carried out for solar systems with natural and forced coolant circulation. Attention has been paid to obtaining maximum possible temperature potential of the coolant during operation of the solar system within periods of high and low solar radiation intensity. Recommendations on practical application of solar systems for multi-storey residential buildings houses and mansion-type houses have been given in the paper. The paper presents technological principles of constructing “passive” solar heating devices. A comparison of traditionally applied and proposed alternative solar systems has been made for operational conditions in Belarus. The paper proposes a solar system for hot water supply of multi-storey buildings. The proposed system has found its first realization in the Republic while designing and constructing an energy-efficient demonstration 10-storey residential building in Mogilev within the framework of the UN Development Program project and Global Environment Fund “Improvement of energy efficiency for residential buildings in the Republic of Belarus”

  11. Costs of Residential Solar PV Plants in Distribution Grid Networks

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Yang, Guangya; Ipsen, Hans Henrik

    2015-01-01

    In this article we investigate the impact of residential solar PV plants on energy losses in distribution networks and their impact on distribution transformers lifetime. Current guidelines in Denmark states that distribution transformers should not be loaded with more than 67% solar PV power...

  12. Effect of Organizational Climate on Youth Outcomes in Residential Treatment

    Science.gov (United States)

    Jordan, Neil; Leon, Scott C.; Epstein, Richard A.; Durkin, Elizabeth; Helgerson, Jena; Lakin-Starr, Brittany L.

    2009-01-01

    This study examined the association between organizational climate and changes in internalizing and externalizing behavior for youth in residential treatment centers (RTCs). The sample included 407 youth and 349 front-line residential treatment staff from 17 RTCs in Illinois. Youth behavior was measured using the Child Functional Assessment Rating…

  13. Residential heating costs: A comparison of geothermal solar and conventional resources

    Science.gov (United States)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  14. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  15. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  16. Swimming pools and intra-city climates: Influences on residential ...

    African Journals Online (AJOL)

    While determinants such as household income, regional climate, water price, property size and household occupancy have been comprehensively studied and modelled, other determinants such as swimming pools and intra-city climates have not. This study examines residential water consumption in the City of Cape Town ...

  17. Residential Solar Design Review: A Manual on Community Architectural Controls and Solar Energy Use.

    Science.gov (United States)

    Jaffe, Martin; Erley, Duncan

    Presented are architectural design issues associated with solar energy use, and procedures for design review committees to consider in examining residential solar installation in light of existing aesthetic goals for their communities. Recommended design review criteria include the type of solar system being used and the ways in which the system…

  18. Impact of Rooftop Solar PV on Residential Distribution Network

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    Increased environmental awareness in recent years has encouraged rapid growth of renewable energy sources especially solar PV and wind. Among them, small scale solar PV has been gaining more momentum especially at residential level. Even today moderate penetration of grid tied rooftop solar PV has...... become reality in many countries. In spite of various benefits, higher penetration of rooftop PVs might come up with number of detrimental effects, with power quality and overcurrent protection being the major ones. Therefore, it is reasonable to quantify both drawback and benefits of rooftop PV...

  19. The value of price transparency in residential solar photovoltaic markets

    Energy Technology Data Exchange (ETDEWEB)

    O’Shaughnessy, Eric; Margolis, Robert

    2018-06-01

    Installed prices for residential solar photovoltaic (PV) systems have declined significantly in recent years. However price dispersion and limited customer access to PV quotes prevents some prospective customers from obtaining low price offers. This study shows that improved customer access to prices - also known as price transparency - is a potential policy lever for further PV price reductions. We use customer search and strategic pricing theory to show that PV installation companies face incentives to offer lower prices in markets with more price transparency. We test this theoretical framework using a unique residential PV quote dataset. Our results show that installers offer lower prices to customers that are expected to receive more quotes. Our study provides a rationale for policies to improve price transparency in residential PV markets.

  20. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  1. Climate hypersensitivity to solar forcing?

    Directory of Open Access Journals (Sweden)

    W. Soon

    2000-05-01

    Full Text Available We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot and solar UV (SUV. The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous · Solar physics · astrophysics · and astronomy (ultraviolet emissions

  2. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  3. Beyond the EPBD: The low energy residential settlement Borgo Solare

    International Nuclear Information System (INIS)

    Aste, Niccolo; Adhikari, R.S.; Buzzetti, Michela

    2010-01-01

    The European Directive on Energy Performance of Buildings (EPBD) imposes the adoption of measures for improving the energy efficiency in buildings. These measures should take into account the local weather conditions as well as internal thermal environment and cost-effectiveness. In this respect, Italy is a very interesting benchmark. For Northern Italy, the climatic context is particularly difficult to deal with cold winters and hot summers. The legislations are changing very rapidly, but has not fully adapted to the local context. The considered methodology still involves winter heating while summer cooling is addressed in incomplete and inadequate ways. The energy issue is addressed only partially as final energy consumption, but with little attention to LCA. Moreover, the belief that the buildings with high energy savings are too expensive, and therefore not attractive from economic point of view. For these reasons, it is very important to develop case studies to demonstrate the effectiveness of sustainable energy in architecture, according to a holistic approach. This paper describes a detailed techno-economic analysis for Borgo Solare project, an extremely advanced and innovative residential settlement designed on sustainable architecture concepts. One of the most innovative aspects of the project is that it is not just an experimental operation but Borgo Solare is a real urban district, which will be built without public funds and should be inhabited by common people. Excellent energy performance, therefore, must be accompanied by affordable market prices. The energy and economical analysis is presented taking into account also the embodied energy of the building. The results on the performance of a sample building (case study) of this settlement are reported, according to different construction standards: prior to EPBD, present from the EPBD and more efficient developed specifically for the project. It has been shown that using the better design practices

  4. Evaluation of Factors that Influence Residential Solar Panel Installations

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M. [ORNL; Omitaomu, Olufemi A. [ORNL; Kotikot, Susan M. [ORNL; Held, Elizabeth L. [ORNL; Bhaduri, Budhendra L. [ORNL

    2018-03-01

    Though rooftop photovoltaic (PV) systems are the fastest growing source of distributed generation, detailed information about where they are located and who their owners are is often known only to installers and utility companies. This lack of detailed information is a barrier to policy and financial assessment of solar energy generation and use. To bridge the described data gap, Oak Ridge National Laboratory (ORNL) was sponsored by the Department of Energy (DOE) Office of Energy Policy and Systems Analysis (EPSA) to create an automated approach for detecting and characterizing buildings with installed solar panels using high-resolution overhead imagery. Additionally, ORNL was tasked with using machine learning techniques to classify parcels on which solar panels were automatically detected in the Washington, DC, and Boston areas as commercial or residential, and then providing a list of recommended variables and modeling techniques that could be combined with these results to identify attributes that motivate the installation of residential solar panels. This technical report describes the methodology, results, and recommendations in greater detail, including lessons learned and future work.

  5. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  6. Solar access of residential rooftops in four California cities

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin

    2010-05-14

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S+SW+W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about two to four hours after sunrise and about two to four hours before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss results from shading by trees and buildings in neighboring parcels.

  7. Integration of Solar Photovoltaics and Electric Vehicles in Residential Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2013-01-01

    In the last few years, there is an increased penetration of solar photovoltaic (SPV) units in low voltage (LV) distribution grids. Also electric vehicles (EVs) are introduced to these LV networks. This has caused the distribution networks to be more active and complex as these local generation...... and load units are characterised by unpredictable and diverse operating characteristics. This paper analyses the combined effect of SPVs and EVs in LV Danish residential grids. The EVs charging needs based on typical driving patterns of passenger cars and SPV power profiles during winter/summer days...

  8. Solar climate getting rougher

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Markus

    2012-07-01

    The bad news for the solar sector keeps coming. High-profile bankruptcies and takeovers are increasingly making the headlines. Some of the more recent examples are the insolvency of the Germany-based company Solon SE whose assets are now sold in a crisis sale, and Sunways, which has been taken over by China-based LDK Solar. Even though the installed PV capacity in Germany again hit a record-setting 7.5 GW in 2011, the industry has been unable to realize its full capacity potential that year. The buzz word in the sector has since been surplus production, forcing the industry representatives to react - or throw in the towel.

  9. Cheap type solar bioclimatic individual houses for residential areas

    Directory of Open Access Journals (Sweden)

    Mihailescu Teofil

    2016-01-01

    Full Text Available In the Romanian architectural practice for individual houses in residential areas, designing the architectural object in order to function together with the nature is neglected in the majority of the situations. This happens despite of a great variety of the solar bioclimatic solutions materialized in the traditional houses of all the Romanian geographical regions in a history of over 2000 years of traditional architecture. Unfortunately, in the local real estate realities, other choices are preferred in instead those of the solar bioclimatic architecture. The approach starts with a historical approach, analyzing several examples of traditional houses from all the regions of Romania, in order to identify the traditional bioclimatic solutions used to better adapt to the environment. This constitutes the source of inspiration for the modern cheap type solar bioclimatic houses presented. But a way of thinking should be changed for it, with the help of the Romanian state transformed in financial and legislative realities. These cheap type solar bioclimatic individual houses are destined for the middle class families and involve minimum costs for building and living, creating the best premises to efficiently use one or all of the complementary systems for producing, storage and/or transforming the energy from the environment (using solar, wind, water and/or earth energy.

  10. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (

  11. Indoor Thermal Environment in Tropical Climate Residential Building

    Directory of Open Access Journals (Sweden)

    Jamaludin Nazhatulzalkis

    2014-01-01

    Full Text Available Indoor thermal environment is one of the criteria in sustainable building. This criterion is important in ensuring a healthy indoor environment for the occupants. The consideration of environmental concerns at the early design stage would effectively integrate the sustainability of the building environment. Global climate changes such as global warming do affect human comfort since people spend most of their time and activities in the building. The increasing of urban population required additional housing for households, as well as places to shop, office and other facilities. Occupants are now more conscious the importance of sustainability for a better quality of life. Good thermal environment is essential for human wellness and comfort. A residential environment will influence residents’ health and safety. The global warming increase the earth’s temperature and greenhouse emission to the atmosphere cause adverse effects to the outdoor environment. Residential developments modify the materials, structure and energy balance in urban climate effects of human economic activities. As an indoor environment is influenced by the outdoor condition, the factors affecting indoor thermal environment are crucial in improving a comfortable and healthy environment in residential building. The microclimatic of a site such as temperature and relative humidity, and wind movement led to the variation of indoor thermal environment in the building.

  12. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  13. Using Machine Learning and Data Analysis to Improve Customer Acquisition and Marketing in Residential Solar

    Energy Technology Data Exchange (ETDEWEB)

    Sigrin, Benjamin O [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    High customer acquisition costs remain a persistent challenge in the U.S. residential solar industry. Effective customer acquisition in the residential solar market is increasingly achieved with the help of data analysis and machine learning, whether that means more targeted advertising, understanding customer motivations, or responding to competitors. New research by the National Renewable Energy Laboratory, Sandia National Laboratories, Vanderbilt University, University of Pennsylvania, and the California Center for Sustainable Energy and funded through the U.S. Department of Energy's Solar Energy Evolution and Diffusion (SEEDS) program demonstrates novel computational methods that can help drive down costs in the residential solar industry.

  14. Public acceptance of residential solar photovoltaic technology in Malaysia

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2017-11-01

    Full Text Available Purpose – Gaining independence from fossil fuels and combating climate change are the main factors to increase the generation of electricity from renewable fuels. Amongst the renewable technologies, solar photovoltaic (PV is believed to have the largest potential. However, the number of people adopting solar PV technologies is still relatively low. Therefore, the purpose of this paper is to examine the household consumers’ acceptance of solar PV technology being installed on their premises. Design/methodology/approach – To examine the solar PV technology acceptance, this study uses technology acceptance model (TAM as a reference framework. A survey was conducted to gather data and to validate the research model. Out of 780 questionnaires distributed across Malaysia, 663 were returned and validated. Findings – The analysis revealed that perceived ease of use, perceived usefulness and attitude to use significantly influenced behavioural intention to use solar PV technology. Research limitations/implications – This study contributes by extending the understanding of public inclination towards the adoption of solar PV technology. Also, this study contributes in identifying the areas which need to be examined further. However, collecting data from urban peninsular Malaysian respondents only limits the generalization of the results. Practical implications – On the policy front, this study reveals that governmental support is needed to trigger PV acceptance. Originality/value – This paper uses TAM to analyse the uptake of solar PV technology in Malaysian context.

  15. Social implications of residential demand response in cool temperate climates

    International Nuclear Information System (INIS)

    Darby, Sarah J.; McKenna, Eoghan

    2012-01-01

    Residential electrical demand response (DR) offers the prospect of reducing the environmental impact of electricity use, and also the supply costs. However, the relatively small loads and numerous actors imply a large effort: response ratio. Residential DR may be an essential part of future smart grids, but how viable is it in the short to medium term? This paper reviews some DR concepts, then evaluates the propositions that households in cool temperate climates will be in a position to contribute to grid flexibility within the next decade, and that that they will allow some automated load control. Examples of demand response from around the world are discussed in order to assess the main considerations for cool climates. Different tariff types and forms of control are assessed in terms of what is being asked of electricity users, with a focus on real-time pricing and direct load control in energy systems with increasingly distributed resources. The literature points to the significance of thermal loads, supply mix, demand-side infrastructure, market regulation, and the framing of risks and opportunities associated with DR. In concentrating on social aspects of residential demand response, the paper complements the body of work on technical and economic potential. - Highlights: ► Demand response implies major change in governance of electricity systems. ► Households in cool temperate climates can be flexible, mainly with thermal loads. ► DR requires simple tariffs, appropriate enabling technology, education, and feedback. ► Need to test consumer acceptance of DR in specific conditions. ► Introduce tariffs with technologies e.g., TOU tariff plus DLC with electric vehicles.

  16. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  17. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  18. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  19. Impacts of Residential Biofuel Emissions on Air Quality and Climate

    Science.gov (United States)

    Huang, Y.; Unger, N.; Harper, K.; Storelvmo, T.

    2016-12-01

    The residential biofuel sector is defined as fuelwood, agricultural residues and dung used for household cooking and heating. Aerosol emissions from this human activity play an important role affecting local, regional and global air quality, climate and public health. However, there are only few studies available that evaluate the net impacts and large uncertainties persist. Here we use the Community Atmosphere Model version 5.3 (CAM v5.3) within the Community Earth System Model version 1.2.2, to quantify the impacts of cook-stove biofuel emissions on air quality and climate. The model incorporates a novel advanced treatment of black carbon (BC) effects on mixed-phase/ice clouds. We update the global anthropogenic emission inventory in CAM v5.3 to a state-of-the-art emission inventory from the Greenhouse Gas-Air Pollution Interactions and Synergies integrated assessment model. Global in-situ and aircraft campaign observations for BC and organic carbon are used to evaluate and validate the model performance. Sensitivity simulations are employed to assess the impacts of residential biofuel emissions on regional and global direct and indirect radiative forcings in the contemporary world. We focus the analyses on several key regions including India, China and Sub-Saharan Africa.

  20. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-25

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  1. Incentive Pass-through for Residential Solar Systems in California

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C. G. [Univ. of Texas, Austin, TX (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2014-10-01

    The deployment of solar photovoltaic (PV) systems has grown rapidly over the last decade, partly because of various government incentives. In the United States, among the largest and longest-running incentives have been those established in California. Building on past research, this report addresses the still-unanswered question: to what degree have the direct PV incentives in California been passed through from installers to consumers? This report helps address this question by carefully examining the residential PV market in California (excluding a certain class of third-party-owned PV systems) and applying both a structural-modeling approach and a reduced-form regression analysis to estimate the incentive pass-through rate. The results suggest an average pass-through rate of direct incentives of nearly 100%, though with regional differences among California counties. While these results could have multiple explanations, they suggest a relatively competitive market and well-functioning subsidy program. Further analysis is required to determine whether similar results broadly apply to other states, to other customer segments, to all third-party-owned PV systems, or to all forms of financial incentives for solar (considering not only direct state subsidies, but also utility electric bill savings and federal tax incentives).

  2. Refining the COPES to Measure Social Climate in Therapeutic Residential Youth Care

    Science.gov (United States)

    Leipoldt, Jonathan D.; Kayed, Nanna S.; Harder, Annemiek T.; Grietens, Hans; Rimehaug, Tormod

    2018-01-01

    Background: Previous studies have shown that social climate in therapeutic residential youth care (TRC) is important to the welfare of residents, staff, and assessing treatment outcomes. The most influential theory on social climate in residential settings is the theory of Moos. The measurement of the concepts and aspects of this theory using the…

  3. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  4. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  5. Solar power and policy powerlessness − perceptions of persuasion in distributed residential solar energy policy development

    Directory of Open Access Journals (Sweden)

    Simpson Genevieve

    2017-01-01

    Full Text Available Distributed residential solar energy (photovoltaic technologies have been praised as a mechanism to not only increase the penetration of renewable energy but engage the community in a clean energy revolution. In spite of this it is unclear how much potential there is for stakeholders to influence processes around the adoption of solar energy, including policy development and regulation. As part of a wider research project assessing the social acceptance of residential solar energy in Western Australia a variety of stakeholders, including public servants, network operators, Members of Parliament, energy advocates, renewable energy industry members and community members, were asked whether they thought they had the potential to influence solar policy. The objective of this research was to highlight positions of influence over policy development. In total 23 interviews with regional Western Australian householders and 32 interviews with members of industry and government were undertaken between May and October 2015. Most respondents believed that they had previously, or could in future, influence solar policy by taking advantage of networks of influence. However, stakeholders perceived as having policy influence did not necessarily demonstrate the capacity to influence policy beyond providing information to decision-makers, namely Cabinet members. Instead, networks of renewable energy advocates, industry and community members could apply political pressure through petitions, media coverage and liaising with parliamentarians to develop support for policy changes. Furthermore, while policies for the promotion of solar energy, and renewable energy more generally, could be implemented at various levels of government, only those policies delivered at the state level could address socio-political barriers to renewable energy adoption. These barriers include: a lack of political will and funding to overcome technical issues with network connection

  6. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, L.; Sawyer, A.; Grove, J.

    2011-02-01

    This handbook is intended as a road map for project planners and solar advocates who want to convert interest into action, to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The handbook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  7. Profits or preferences? Assessing the adoption of residential solar thermal technologies

    International Nuclear Information System (INIS)

    Mills, Bradford F.; Schleich, Joachim

    2009-01-01

    Solar thermal technologies offer the potential to meet a substantial share of residential water and space heating needs in the EU, but current levels of adoption are low. This paper uses data from a large sample of German households to assess the effects of geographic, residence, and household characteristics on the adoption of solar thermal water and space heating technologies. In addition, the impact of solar thermal technology adoption on household energy expenditures is estimated after controlling for observed household heterogeneity in geographic, residential, and household characteristics. While evidence is found of moderate household energy expenditure savings from combined solar water and space heating systems, the findings generally confirm that low in-home energy cost savings and fixed housing stocks limit the diffusion of residential solar thermal technologies. Little evidence is found of differential adoption by distinct socio-economic groups.

  8. External perforated Solar Screens for daylighting in residential desert buildings: Identification of minimum perforation percentages

    KAUST Repository

    Sherif, Ahmed

    2012-06-01

    The desert climate is endowed by clear sky conditions, providing an excellent opportunity for optimum utilization of natural light in daylighting building indoor spaces. However, the sunny conditions of the desert skies, in countries like Egypt and Saudi Arabia, result in the admittance of direct solar radiation, which leads to thermal discomfort and the incidence of undesired glare. One type of shading systems that is used to permit daylight while controlling solar penetration is " Solar Screens" Very little research work addressed different design aspects of external Solar Screens and their influence on daylighting performance, especially in desert conditions, although these screens proved their effectiveness in controlling solar radiation in traditional buildings throughout history.This paper reports on the outcomes of an investigation that studied the influence of perforation percentage of Solar Screens on daylighting performance in a typical residential living room of a building in a desert location. The objective was to identify minimum perforation percentage of screen openings that provides adequate illuminance levels in design-specific cases and all-year-round.Research work was divided into three stages. Stage one focused on the analysis of daylighting illuminance levels in specific dates and times, while the second stage was built on the results of the first stage, and addressed year round performance using Dynamic Daylight Performance Metrics (DDPMs). The third stage addressed the possibility of incidence of glare in specific cases where illuminance levels where found very high in some specific points during the analysis of first stage. The research examined the daylighting performance in an indoor space with a number of assumed fixed experimentation parameters that were chosen to represent the principal features of a typical residential living room located in a desert environment setting.Stage one experiments demonstrated that the screens fulfilled the

  9. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    Science.gov (United States)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  10. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  11. Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options

    Energy Technology Data Exchange (ETDEWEB)

    Speer, B.

    2012-10-01

    This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

  12. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.; Sabry, Hanan M.; Gadelhak, Mahmoud I.

    2012-01-01

    usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space

  13. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  14. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  15. Residential solar energy users: a review of empirical research and related literature

    Energy Technology Data Exchange (ETDEWEB)

    Unseld, C.T.; Crews, R.

    1979-12-01

    This report reviews 15 empirical studies of residential solar energy users and related literature on residential solar energy use. The purpose of the review is to summarize and analyze the experiences of residential solar users for helping formulate policies concerning the accelerated commercialization of solar technologies. Four of the studies employed case histories or focus group techniques. The 11 questionnaire studies represented interviews with over 1,600 owners of solar systems. The demographic characteristics of samples are listed and compared; research findings and conclusions are presented. Findings on user satisfaction and system performance, possible reasons for evidence of lacking correlation between them, and implications for consumer protection and future research are discussed. General findings are: (1) systematic research on the experiences of solar users is lacking - much research remains to be done; (2) the reported overall experiences of users has been very positive; (3) user reports indicate that system performance is generally good but there is some evidence that user reports are not accurate measures of actual performance; (4) a need exists for adequate consumer protection; (5) design or installation problems are evidenced in significant numbers of early solar installations; and (6) these problems evidently are resolvable. An annotated bibliography describes 10 other studies in progress.

  16. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  17. Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-01

    This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

  18. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  19. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Nangle, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simon, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  20. The effects of solar variability on climate

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1990-01-01

    It has been hypothesized for at least a century that some of the observed variance in global temperature records arises from variations in solar output. Theories of solar-variability effects on climate could not be tested directly prior to satellite measurements because uncertainties in ground-based measurements of solar irradiance were larger than the solar variations themselves. Measurements by the Active Cavity Radiometer (ACRIM) onboard the Solar Max satellite and by the Earth Radiation Budget (ERB) instrument onboard Nimbus 6 are now available which indicate solar-constant variations are positively correlated with solar activity over an 11-yr solar cycle, and are of order ± 1.0 W m -2 relative to a mean solar constant of S 0 = 1,367 W m -2 , ΔS/S 0 ∼ ± 0.07%. For a typical climate sensitivity parameter of β = S 0 ∂T/∂S ∼ 100 C, the corresponding variations in radiative equilibrium temperature at the Earth's surface are ΔT e ∼ ± 0.07 C. The realized temperature variations from solar forcing, ΔT, can be significantly smaller because of thermal damping by the ocean. The author considers effects of solar variability on the observed and projected history of the global temperature record in light of this data using an upwelling-diffusion ocean model to assess the effect of ocean thermal inertia on the thermal response. The response to harmonic variations of the 11-yr sunspot cycle is of order ΔT ∼ ± 0.02 C, though the coupling between response and forcing is stronger for long-term variations in the envelope of the solar cycle which more nearly match the thermal response time of the deep ocean

  1. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  2. Development of a solar-powered residential air conditioner. Program review

    Science.gov (United States)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  3. Solar energy, architecture and climate in Colombia

    International Nuclear Information System (INIS)

    Carrillo B, J.

    1983-01-01

    In Colombia, the climatological conditions are such that with a possible serious appropriate technology to use the solar energy in the cities when the electricity rationing increases, for the illumination, the refrigeration, the electricity production, the heating, etc. The use of the solar energy is also been worth to look for a better adaptation between climate and architecture. In this sense, the article exposes some of the existent possibilities of application of the solar energy for the comfort of the habitat, possibilities of high efficiency and low cost that can be easily applicable in Colombia

  4. Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty

    International Nuclear Information System (INIS)

    Alafita, T.; Pearce, J.M.

    2014-01-01

    Limited access to low-cost financing is an impediment to high-velocity technological diffusion and high grid penetration of solar photovoltaic (PV) technology. Securitization of solar assets provides a potential solution to this problem. This paper assesses the viability of solar asset-backed securities (ABS) as a lower cost financing mechanism and identifies policies that could facilitate implementation of securitization. First, traditional solar financing is examined to provide a baseline for cost comparisons. Next, the securitization process is modeled. The model enables identification of several junctures at which risk and uncertainty influence costs. Next, parameter values are assigned and used to generate cost estimates. Results show that, under reasonable assumptions, securitization of solar power purchase agreements (PPA) can significantly reduce project financing costs, suggesting that securitization is a viable mechanism for improving the financing of PV projects. The clear impediment to the successful launch of a solar ABS is measuring and understanding the riskiness of underlying assets. This study identifies three classes of policy intervention that lower the cost of ABS by reducing risk or by improving the measurement of risk: (i) standardization of contracts and the contracting process, (ii) improved access to contract and equipment performance data, and (iii) geographic diversification. - Highlights: • Limited access to low-cost financing is hampering penetration of solar PV. • Solar asset-backed securities (ABS) provide a low cost financing mechanism. • Results for securitization of solar leases and power purchase agreements (PPA). • Securitization can significantly reduce project financing costs. • Identifies policy intervention that lower cost of ABS by reducing risk

  5. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    Directory of Open Access Journals (Sweden)

    E. W. Butt

    2016-01-01

    Full Text Available Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC and organic carbon (OC mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5 concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (>  30 years of age premature mortality (due to both cardiopulmonary disease and lung cancer to be 308 000 (113 300–497 000, 5th to 95th percentile uncertainty range for monthly varying residential emissions and 517 000 (192 000–827 000 when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between −66 and +21 mW m−2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between −52 and −16 mW m−2, which is sensitive to the

  6. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  7. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Jeff; Murphy, Sean

    2018-04-04

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which use private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV

  8. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  9. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  10. Controlling indoor climate. Passive cooling of residential buildings in hot-humid climates in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhiwu, Wang

    1996-10-01

    Overheating is a paramount problem in residential buildings in hot and humid climates in China during summer. This study aims to deal with the overheating problem and the problem of poor air quality in dwellings. The main objective is to improve indoor thermal conditions by passive cooling approaches, climatisation techniques in buildings without auxiliary cooling from air conditioning equipment. This thesis focuses on the study of cross-ventilation in apartments, which is one of the most effective ways of natural cooling in a hot humid climate, but is also one of the least understood parts in controlling indoor climate. The Computational Fluid Dynamics (CFD) technique is used, which is a new approach, since cross-ventilation studies have been conventionally made by wind tunnel tests. The validations of the CFD technique are examined by a comparison between wind tunnel tests and computer simulations. The factors influencing indoor air movement are investigated for a single room. Cross-ventilation in two apartments is studied, and the air change efficiency in a Chinese kitchen is calculated with CFD techniques. The thermal performance of ventilated roofs, a simple and widely used type of roof in the region, is specially addressed by means of a full-scale measurement, wind tunnel tests and computer simulations. An integrated study of passive cooling approaches and factors affecting indoor thermal comfort is carried out through a case study in a southern Chinese city, Guangzhou. This thesis demonstrates that passive cooling measure have a high potential in significantly improving indoor thermal conditions during summer. This study also gives discussions and conclusions on the evaluation of indoor thermal environment; effects influencing cross-ventilation in apartments; design guidelines for ventilated roofs and an integrated study of passive cooling. 111 refs, 83 figs, 65 tabs

  11. Innovative Sustainable Water Management Practices in Solar Residential Design

    Directory of Open Access Journals (Sweden)

    C. Jason Mabry

    2012-11-01

    Full Text Available This paper communicates the results of an architectural research project which sought innovative design strategies for achieving energy and resource efficiencies in water management systems traditionally used in single-family housing. It describes the engineering of an efficient, multifaceted, and fully integrated water management system for a domesticenvironment of 800 sq. ft., entirely powered by solar energy. The four innovations whose details are conveyed include the use of alternate materials for piping distribution and collection, the use of water in solar energy generation, the design of a building skin which capitalizes on water’s capacity to store heat as well as the design of a ecological groundscape which re-usesand filters waste water and rain water.Keywords: energy, plumbing, home design

  12. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-19

    We use residential solar photovoltaic (PV) quote data to study the role of firm size in PV installer pricing. We find that large installers (those that installed more than 1,000 PV systems in any year from 2013 to 2015) quote higher prices for customer-owned systems, on average, than do other installers. The results suggest that low prices are not the primary value proposition of large installers.

  13. The Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives and Rebates

    OpenAIRE

    Severin Borenstein

    2015-01-01

    With dramatic declines in the cost of solar PV technology over the last 5 years, the electricity industry is in the midst of discussions about whether to use this low-polluting renewable energy source in grid-scale generation or in distributed generation (DG), mostly with rooftop solar PV. California has led the growth in DG solar in the U.S. I use 2007 to early 2014 residential data from Pacific Gas & Electric – the utility with largest number of residential solar customers in the U.S. – to ...

  14. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  15. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  16. Predicting summer residential electricity demand across the U.S.A using climate information

    Science.gov (United States)

    Sun, X.; Wang, S.; Lall, U.

    2017-12-01

    We developed a Bayesian Hierarchical model to predict monthly residential per capita electricity consumption at the state level across the USA using climate information. The summer period was selected since cooling requirements may be directly associated with electricity use, while for winter a mix of energy sources may be used to meet heating needs. Historical monthly electricity consumption data from 1990 to 2013 were used to build a predictive model with a set of corresponding climate and non-climate covariates. A clustering analysis was performed first to identify groups of states that had similar temporal patterns for the cooling degree days of each state. Then, a partial pooling model was applied to each cluster to assess the sensitivity of monthly per capita residential electricity demand to each predictor (including cooling-degree-days, gross domestic product (GDP) per capita, per capita electricity demand of previous month and previous year, and the residential electricity price). The sensitivity of residential electricity to cooling-degree-days has an identifiable geographic distribution with higher values in northeastern United States.

  17. Comparative economic analysis of supporting policies for residential solar PV in the United States: Solar Renewable Energy Credit (SREC) potential

    International Nuclear Information System (INIS)

    Burns, John Edward; Kang, Jin-Su

    2012-01-01

    Numerous studies and market reports suggest that the solar photovoltaic markets rely heavily, if not entirely, upon governmental support policies at present. Unlike in other countries where these policies are enacted at a national level, the 50 states in the US pursue different policies in an attempt to foster the growth of renewable energy, and specifically solar photovoltaics. This paper provides an economic and financial analysis of the US federal and state level policies in states with solar-targeted policies that have markets. After putting a value on SRECs, this study further compares solar carve-outs with other incentives including the federal tax credit, net metering, and state personal tax credits. Our findings show that SREC markets can certainly be strong, with New Jersey, Delaware, and Massachusetts having the most potential. Despite their strong potential as effective renewable policies, the lack of a guaranteed minimum and the uncertainty attached are major drawbacks of SREC markets. However, the leveraging of this high value offers hope that the policies will indeed stimulate residential solar photovoltaic markets. - Highlights: ► We measure solar support incentives in eight US states with set-asides that include SREC policies. ► Compare each financial incentive using DCF, NPV, IRR, and Present Value/Watt-capacity. ► Most US SREC markets have strong potential to stimulate solar photovoltaics. ► SREC success requires price floors to alleviate uncertainty issues. ► Private financial entities can leverage SRECs to provide necessary price floors.

  18. Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil

    International Nuclear Information System (INIS)

    Mitscher, Martin; Rüther, Ricardo

    2012-01-01

    We analyze the economic competitiveness of grid-connected, distributed solar photovoltaic generation through small-scale rooftop installations in five Brazilian state-capitals. The locations represent a comprehensive set of the two essential parameters for the economic viability of PV—solar irradiation and local electricity tariffs. Levelized electricity costs (LEC) for PV generation and net present values (NPV) for a specific PV system are presented. The analysis comprises three different interest rate scenarios reflecting different conditions for capital acquisition to finance the generators; subsidized, mature market and country-specific risk-adjusted interest. In the NPV analysis, revenue flow is modeled by the sale of PV electricity at current residential tariffs assuming net metering. Using subsidized interest rates, the analysis shows that solar PV electricity is already competitive in Brazil, while in the country-specific risk-adjusted rate, the declining, but still high capital costs of PV make it economically unfeasible. At a mature market interest rate, PV competitiveness is largely dependent on the residential tariff. Economic competitiveness in this scenario is given for locations with high residential tariffs. We demonstrate the high potential of distributed generation with photovoltaic installations in Brazil, and show that under certain conditions, grid-connected PV can be economically competitive in a developing country. - Highlights: ► Debt financed grid-connected PV on Brazilian rooftops can be economically feasible since 2011. ► The cost of capital in Brazil is the decisive parameter in PV competitiveness with conventional generation sources. ► Low-cost, long-term financing is an essential requirement for PV to become an economically justifiable generation alternative. ► The Brazilian market holds huge potential for distributed, residential rooftop PV systems of small size.

  19. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  20. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  1. Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes

    Science.gov (United States)

    Kananda, Kiki; Nazir, Refdinal

    2017-12-01

    One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.

  2. Assessment Of The Viability Of Kaduna City Climate For Year Round Use Of Direct Solar Thermal Cooking Fuel In Housing

    Directory of Open Access Journals (Sweden)

    Boumann Ephraim Sule

    2017-10-01

    Full Text Available Solar energy obtained from the sun is the world most abundant and cheapest source of energy as a cooking fuel. It comes in two forms Concentrated Solar Thermal direct conversion of solar energy to heat that cooks and Solar Photovoltaic PV a conversion of solar energy to electrical then to heat energy the former technology is simple and far cheaper. Despite all these architectural and engineering researches is yet to capture it for indoor cooking because of inability to cook year round due the claimed hindrances by weather condition such as clouds rainfall wind dusty atmosphere and many others. This paper attempted to look into the possibility of cooking year round in Kaduna city. It collected and analyzed ten years climatic data from three different meteorological stations strategically located round the city this showed a low solar radiation in the month of August. It further compared the result with a literature review of solar cooking carried in the same month the findings showed at the peak of each weather hindrance a another element overrides it to give enough minimum energy for cooking a meals. This paper has therefore pointed the potentials of Kaduna city climate for year round use of concentrated solar thermal as a cooking fuel in residential building and further recommends the architectural collaboration with engineers for the direct capturing of solar rays into residential dwelling as a sustainable cooking fuel.

  3. Energy-Independent Architectural Models for Residential Complex Plans through Solar Energy in Daegu Metropolitan City, South Korea

    Directory of Open Access Journals (Sweden)

    Sung-Yul Kim

    2018-02-01

    Full Text Available This study suggests energy-independent architectural models for residential complexes through the production of solar-energy-based renewable energy. Daegu Metropolitan City, South Korea, was selected as the target area for the residential complex. An optimal location in the area was selected to maximize the production of solar-energy-based renewable energy. Then, several architectural design models were developed. Next, after analyzing the energy-use patterns of each design model, economic analyses were conducted considering the profits generated from renewable-energy use. In this way, the optimum residential building model was identified. For this site, optimal solar power generation efficiency was obtained when solar panels were installed at 25° angles. Thus, the sloped roof angles were set to 25°, and the average height of the internal space of the highest floor was set to 1.8 m. Based on this model, analyses were performed regarding energy self-sufficiency improvement and economics. It was verified that connecting solar power generation capacity from a zero-energy perspective considering the consumer’s amount of power consumption was more effective than connecting maximum solar power generation capacity according to building structure. Moreover, it was verified that selecting a subsidizable solar power generation capacity according to the residential solar power facility connection can maximize operational benefits.

  4. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    The vast majority of U.S. residential solar PV installers are small local-scale companies, however the industry is relatively concentrated in a few large national-scale installers. We develop a novel approach using solar PV quote data to study the price behavior of large solar PV installers in the United States. Through a paired differences approach, we find that large installer quotes are about higher, on average, than non-large installer quotes made to the same customer. The difference is statistically significant and robust after controlling for factors such as system size, equipment quality, and time effects. The results suggest that low prices are not the primary value proposition of large installer systems. We explore several hypotheses for this finding, including that large installers are able to exercise some market power and/or earn returns from reputations.

  5. Climate classification and passive solar design implications in China

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Chris C.S.; Lam, Joseph C. [Building Energy Research Group, Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong (China); Yang, Liu [School of Architecture, Xi' an University of Architecture and Technology, Shaanxi 710055 (China)

    2007-07-15

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K{sub t}, as climatic variable. Five major solar climates were identified with annual average K{sub t} ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed. (author)

  6. Climate classification and passive solar design implications in China

    International Nuclear Information System (INIS)

    Lau, Chris C.S.; Lam, Joseph C.; Yang, Liu

    2007-01-01

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K t , as climatic variable. Five major solar climates were identified with annual average K t ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed

  7. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed [GE Global Research Center, Niskayuna, NY (United States)

    2015-10-27

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiring and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.

  8. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    OpenAIRE

    Abubakar S. Mahmoud; Muhammad Asif; Mohammad A. Hassanain; Mohammad O. Babsail; Muizz O. Sanni-Anibire

    2017-01-01

    Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed...

  9. Residential solar photovoltaic market stimulation: Japanese and Australian lessons for Canada

    International Nuclear Information System (INIS)

    Parker, Paul

    2008-01-01

    Canada is a leading electricity consumer, yet lags behind other industrial countries (14th out of 20 reporting IEA countries) in the installation of solar photovoltaic systems. The factors (environmental benefits, health benefits, network benefits, need for new production capacity, etc.) promoting solar or other renewable sources of electricity in other countries are also present in Canada, but effective policy mechanisms to stimulate Canada's photovoltaic industry are only starting to appear. Discussions of policy options focused initially on renewable portfolio standards and then on feed-in tariffs. This paper reviews the Japanese and Australian experience with capital incentives to stimulate the residential market for photovoltaics. It demonstrates the ability of a market-sensitive program to stimulate industrial growth, achieve unit cost reductions and shift the market to include a large grid-tied share. Residential respondents to surveys report high costs as their primary barrier to installing photovoltaic systems and state a strong preference for capital incentives to reduce their investment costs. The Canadian government needs a market stimulation policy if it is to join those countries where a decentralized photovoltaic generation system strengthens the electricity supply system. A balanced solar energy market stimulation program is proposed that combines a feed-in tariff with a declining capital incentive. (author)

  10. The Price-Concentration Relationship in Early Residential Solar Third-Party Markets

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Jacquelyn [Univ. of Oxford (United Kingdom); Langheim, Ria [Center for Sustainable Energy, San Francisco, CA (United States); Machak, Christina [Center for Sustainable Energy, San Francisco, CA (United States); Hellow, Henar [Center for Sustainable Energy, San Francisco, CA (United States); Sigrin, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The market for residential solar photovoltaic (PV) systems in the United States has experienced tremendous growth over the past decade, with installed capacity more than doubling between 2014 and 2016 alone (SEIA, 2016). As the residential market continues to grow, it prompts new questions about the nature of competition between solar installers and how this competition, or lack thereof, affects the prices consumers are paying. It is often assumed that more competition leads to lower prices, but this is not universally true. For example, some studies have shown that factors such as brand loyalty could lead to a negative relationship between concentration and price in imperfectly competitive markets (Borenstein, 1985; Holmes, 1989). As such, the relationship between prices and market concentration is an open empirical question since theory could predict either a positive or negative relationship. Determining a relationship between prices and market concentration is challenging for several reasons. Most significantly, prices and market structure are simultaneously determined by each other -- the amount of competition a seller faces influences the price they can command, and prices determine a seller's market share. Previous studies have examined recent PV pricing trends over time and between markets (Davidson et al., 2015a; Davidson and Margolis 2015b; Nemet et al., 2016; Gillingham et al., 2014; Barbose and Darghouth 2015). While these studies of solar PV pricing are able to determine correlations between prices and market factors, they have not satisfactorily proven causation. Thus, to the best of our knowledge, there is little work to date that focuses on identifying the causal relationship between market structure and the prices paid by consumers. We use a unique dataset on third-party owned contract terms for the residential solar PV market in the San Diego Gas and Electricity service territory to better understand this relationship. Surprisingly, we find

  11. Solar Community Organizations and active peer effects in the adoption of residential PV

    International Nuclear Information System (INIS)

    Noll, Daniel; Dawes, Colleen; Rai, Varun

    2014-01-01

    Solar Community Organizations (SCOs) are formal or informal organizations and citizen groups that help to reduce the barriers to the adoption of residential solar photovoltaic (PV) by (1) providing access to credible and transparent information about the localized benefits of residential PV and (2) actively campaigning to encourage adoption within their operational boundaries. We study the peer effect, or social interaction, process catalyzed by SCOs to understand the impact of these organizations on the residential PV market. Using a standardized search methodology across spatial scales (state; city; neighborhoods), we identify and characterize the operations of 228 SCOs formed in the U.S. between 1970 and 2012. We also present case studies of four successful SCOs and find that a common thread of why these SCOs are successful involves effectively leveraging trusted community networks combined with putting together a complete information and financial-tools package for use by interested communities. Finally, our findings suggest that empirical studies that attempt statistical identification and estimation of peer effects should pay close attention to the role of SCOs, as the social interactions engendered by SCOs may be correlated both with the level of social learning and the socio-demographic characteristics of the communities of interest. - Highlights: • New dataset on Solar Community Organizations (SCOs) in the U.S. during 1970–2012. • Shock events catalyze formation of SCOs. • SCOs-driven peer effects found to positively impact PV adoption. • Leveraging trust networks is crucial for the success of SCOs. • In addition to information provision, financing options also key for SCOs' success

  12. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-22

    Market structure refers to the number of firms and the distribution of market shares among firms within an industry. In The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016, we examine market structure in the context of residential solar PV. We find that over 8,000 companies have installed at least one residential PV system, with about 2,900 companies active in 2016. The majority of residential PV installers are relatively small companies, with about half of installers installing fewer than five systems. At the same time, a subset of high-volume installers accumulated market share, especially beginning around 2010 with the emergence of alternative customer financing options.

  13. Towards a comprehensive climate impacts assessment of solar geoengineering

    Science.gov (United States)

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.; Gerten, Dieter; Caminade, Cyril; Gosling, Simon N.; Hendy, Erica J.; Kassie, Belay T.; Kissling, W. Daniel; Muri, Helene; Oschlies, Andreas; Smith, Steven J.

    2017-01-01

    Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar-geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.

  14. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    Science.gov (United States)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  15. Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2014-12-01

    Full Text Available This paper addresses an economic study of the installation of photovoltaic (PV solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels’ surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.

  16. Performance evaluation of a solar adsorption chiller under different climatic conditions

    International Nuclear Information System (INIS)

    Alahmer, Ali; Wang, Xiaolin; Al-Rbaihat, Raed; Amanul Alam, K.C.; Saha, B.B.

    2016-01-01

    Highlights: • A solar adsorption cooling system was studied at different climatic conditions. • Effect of hot water temperature and flow rate on system performance was evaluated. • Solar collector area and tilting angle largely affected the system performance. • Economics of the solar adsorption cooling was analysed at real weather conditions. • Adsorption cooling could be potentially applied in cities with good solar radiation. - Abstract: Performance of an adsorption cooling system driven by solar thermal energy was studied under different climatic conditions. The effects of solar collector area, collector slope, hot water temperature and flow rate on the system performance were investigated using the real-time weather data of two cities: Perth, Australia (a representative city in the southern hemisphere) and Amman, Jordan (a representative city in the northern hemisphere). The simulation results showed that the two cities had similar solar radiation during the summer period and that the solar adsorption chiller could reliably provide cooling at a reasonably high system COP. For residential cooling with a total CPC (Compound Parabolic Collector) solar collector area of 36.22 m"2, the average system COP was 0.491 for Perth weather conditions and 0.467 for Amman weather conditions, respectively while the cooling capacity was 10.3 kW for Perth and 8.46 kW for Amman, respectively at peak times. Optimum performance occurred when the system run with the CPC collector slope of around 30°, the solar water storage tank volume of 1.4 m"3, inlet hot water temperature of 80 °C, and a hot water flow rate of 0.33 kg/s. An economic analysis was further investigated and the results showed that the solar driven adsorption cooling system could reduce the electricity consumption for Perth and Amman cities by 34% and 28%, respectively in comparison to a conventional vapour compression cooling system.

  17. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, J.; Jadraque, E.; Alegre, J.; Martinez, G. [Department of Civil Engineering, University of Granada (Spain)

    2010-09-15

    Fossil fuel energy resources are becoming increasingly scarce. Given the negative environmental impacts (e.g. greenhouse gas emissions) that accompany their use, it is hardly surprising that the development of renewable energies has become a major priority in the world today. Andalusia, with a mean solar radiation of 4.75 kWh/m{sup 2} per day and a surface area of 87,597 km{sup 2}, is the region in Europe with the highest solar energy potential. This research study determined the solar energy potential in Andalusia for grid-connected photovoltaic systems installed on residential rooftops. A methodology was developed for this purpose, which first involved a description of building characteristics, followed by the calculation of the useful roof surface area where photovoltaic arrays could be installed. In the next phase of the study, the mean solar irradiation characteristics were defined as well as the technical parameters of the photovoltaic systems. All of these factors allowed us to estimate the amount of electricity that could be potentially generated per year by solar panels. (author)

  18. A First Approach to Natural Thermoventilation of Residential Buildings through Ventilation Chimneys Supplied by Solar Ponds

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-07-01

    Full Text Available The exploitation of natural ventilation is a good solution to improve buildings from an energetic point of view and to fulfill the requirements demanded by the thermohygrometric comfort and the air quality in enclosed spaces. Some past researches demonstrated how some devices, useful to this purpose, follow the principles of solar chimneys and are able to move air masses while exploiting the Archimedes thrust. The natural ventilation must be supplied by a flow moving upward, generated by a heat source performing at temperatures slightly higher than the one present in the environment. To have a minimum energetic effect, the heat can be extracted from solar ponds; solar ponds are able to collect and store solar energy in the geographical regions characterized by sufficient values of solar radiation. Thus it is possible, in summer, to provoke a nocturnal natural ventilation useful for the air change in indoor spaces (in those climatic areas where, during the night, there is a temperature gradient.

  19. The use of solar energy for residential buildings in the capital city

    Science.gov (United States)

    Velkin, V.; Shcheklein, S.; Danilov, V.

    2017-06-01

    Taking into account the conditions of sharply continental climate of Russia the implementation of the project of heating for an apartment house can be structured on the basis of solar vacuum collectors. A diagram of the operation of the vacuum solar collectors can be considered for heating and hot water. The calculations of effective angle of solar collectors also vary for stationary use in winter and summer. Consumption of centralized heat in the spring and autumn is reduced by 30 % due to the use of solar collectors. In summer the main problem of application of solar collectors is to protect the tubes from overheating. In winter, the use of solar heating is able to provide not more than 25 % of the needs regarding the utility and the results of experimental exploitation. It is shown that the main problem of using solar energy in Russia relies not in technology, but in the legislative field. The use of a vacuum manifold in Russia will be widely implemented in areas with a cold climate and in the modern houses after solving the issues of legislative support from the state and municipal authorities.

  20. Dynamic modeling of potentially conflicting energy reduction strategies for residential structures in semi-arid climates.

    Science.gov (United States)

    Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John

    2012-04-30

    Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.

  1. Climatic zones of solar radiation of Galicia; Zonas climaticas de radiacion solar de Galicia

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Izquierdo, P.; Pose, M.; Prado, M. T.; Santos, J.

    2008-07-01

    The paper shows the results of a research on the solar radiation received in Galicia that allows assigning each one of the 315 Galician municipalities to one of the Climatic Zones of solar radiation, defined in the Spanish Building Technical Code (BTC). It is proposed to complete the assignment of climatic Zones in the BTC with a new zone, named Climatic Zone 0, with the objective to differentiate the geographical areas in Galicia with less than 3.4 kWh/m{sup 2}.day of yearly daily average solar radiation. The study is completed with the realization of a map of the Climate Zones of solar radiation of Galicia. (Author)

  2. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-16

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  3. Residential Water Scarcity in Cyprus: Impact of Climate Change and Policy Options

    Directory of Open Access Journals (Sweden)

    Theodoros Zachariadis

    2010-10-01

    Full Text Available This paper presents an assessment of the cost of water scarcity in Cyprus, today and in the next 20 years, taking into account the effect of projected climate change in the region. It focuses on the residential sector, accounting also for tourism and industry. Using a simple demand function, total scarcity costs in Cyprus are computed for the period 2010–2030, and three scenarios of future water demand are presented. The central estimate shows that the present value of total costs due to water shortages will amount to 72 million Euros (at 2009 prices, and, if future water demand increases a little faster, these costs may reach 200 million Euros. Using forecasts of regional climate models, costs are found to be about 20% higher in a “climate change” scenario. Compared to the loss of consumer surplus due to water shortages, desalination is found to be a costly solution, even if environmental damage costs from the operation of desalination plants are not accounted for. Finally, dynamic constrained optimization is employed and shows that efficient residential water prices should include a scarcity price of about 40 Eurocents per cubic meter at  2009 prices; this would constitute a 30–100% increase in current prices faced by residential consumers. Reductions in rainfall due to climate change would raise this price by another 2-3 Eurocents. Such a pricing policy would provide a clear long-term signal to consumers and firms and could substantially contribute to a sustainable use of water resources in the island.

  4. Assessment of Natural Ventilation Potential for Residential Buildings across Different Climate Zones in Australia

    Directory of Open Access Journals (Sweden)

    Zijing Tan

    2017-09-01

    Full Text Available In this study, the natural ventilation potential of residential buildings was numerically investigated based on a typical single-story house in the three most populous climate zones in Australia. Simulations using the commercial simulation software TRNSYS (Transient System Simulation Tool were performed for all seasons in three representative cities, i.e., Darwin for the hot humid summer and warm winter zone, Sydney for the mild temperate zone, and Melbourne for the cool temperate zone. A natural ventilation control strategy was generated by the rule-based decision-tree method based on the local climates. Natural ventilation hour (NVH and satisfied natural ventilation hour (SNVH were employed to evaluate the potential of natural ventilation in each city considering local climate and local indoor thermal comfort requirements, respectively. The numerical results revealed that natural ventilation potential was related to the local climate. The greatest natural ventilation potential for the case study building was observed in Darwin with an annual 4141 SNVH out of 4728 NVH, while the least natural ventilation potential was found in the Melbourne case. Moreover, summer and transition seasons (spring and autumn were found to be the optimal periods to sustain indoor thermal comfort by utilising natural ventilation in Sydney and Melbourne. By contrast, natural ventilation was found applicable over the whole year in Darwin. In addition, the indoor operative temperature results demonstrated that indoor thermal comfort can be maintained only by utilising natural ventilation for all cases during the whole year, except for the non-natural ventilation periods in summer in Darwin and winter in Melbourne. These findings could improve the understanding of natural ventilation potential in different climates, and are beneficial for the climate-conscious design of residential buildings in Australia.

  5. Solar Thermal | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    building can still be designed and constructed to be solar ready with roof exposures and slopes that accept Solar Thermal Solar Thermal Solar thermal applications can be simple, cost effective, and diverse for research campuses. The following links go to sections that describe when and where solar thermal

  6. Solar Climate Engineering and Intellectual Property : Toward a Research Commons

    NARCIS (Netherlands)

    Reynolds, Jesse|info:eu-repo/dai/nl/363244638; Contreras, Jorge L; Sarnoff, Joshua D

    2017-01-01

    Climate change is one of the greatest challenges confronting society today. Solar climate engineering (SCE) has the potential to reduce climate risks substantially. This controversial technology would make the earth more reflective in order to counteract global warming. The science of SCE is still

  7. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  8. Effect of passive cooling strategies on overheating in low energy residential buildings for Danish climate

    DEFF Research Database (Denmark)

    Simone, Angela; Avantaggiato, Marta; de Carli, Michele

    2014-01-01

    creating not negligible thermal discomfort. In the present work the effect of passive strategies, such as solar shading and natural night-time ventilation, are evaluated through computer simulations. The analyses are performed for 1½-storey single-family house in Copenhagen’s climate. The main result......Climate changes have progressively produced an increase of outdoors temperature resulting in tangible warmer summers even in cold climate regions. An increased interest for passive cooling strategies is rising in order to overcome the newly low energy buildings’ overheating issue. The growing level...

  9. Analysis of potential energy, economic and environmental savings in residential buildings: Solar collectors combined with microturbines

    International Nuclear Information System (INIS)

    Suárez, I.; Prieto, M.M.; Fernández, F.J.

    2013-01-01

    Highlights: ► Centralization of energy systems for a group of buildings improves profitability. ► Thermal solar systems are economically interesting even in low radiation locations. ► Regulations currently in force determine the feasibility of high efficiency energy systems. - Abstract: This paper presents an analysis of a combined solar-cogeneration installation for providing energy services in a set of four residential buildings. Different configurations as regards the number of collectors and their orientation, the number of buildings grouped together, the type of microturbines used in the cogeneration system and their daily and annual operating period are studied from the legal, economic and environmental perspectives. The installation that fulfils the minimum requirements of the solar system coverage and the cogeneration system efficiency currently in force, and simultaneously leads to the highest energy, economic and environmental savings is the one that integrates both technologies and centralises the installation for the four buildings together. A payback period lower than 8 years is obtained that makes this investment recommendable, but it is also concluded that maintaining the existing subsidies for these technologies and lowering the costs of the equipment, are essential factors to ensure the feasibility of this type of installations

  10. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra [Portland State Univ., Portland, OR (United States); Ingle, Aaron [Portland State Univ., Portland, OR (United States); Lutzenhiser, Loren [Portland State Univ., Portland, OR (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their ways of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  12. Feasibility Study of Residential Grid-Connected Solar Photovoltaic Systems in the State of Indiana

    Science.gov (United States)

    Al-Odeh, Mahmoud

    This study aims to measure the financial viability of installing and using a residential grid-connected PV system in the State of Indiana while predicting its performance in eighteen geographical locations within the state over the system's expected lifetime. The null hypothesis of the study is that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. Using a systematic approach consisting of six steps, data regarding the use of renewable energy in the State of Indiana was collected from the website of the US Department of Energy to perform feasibility analysis of the installation and use of a standard-sized residential PV system. The researcher was not able to reject the null hypothesis that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. This study found that the standard PV system does not produce a positive project balance and does not pay for itself within 25 years (the life time of the system) assuming the average cost of a system. The government incentive programs are not enough to offset the cost of installing the system against the cost of the electricity that would not be purchased from the utility company. It can be concluded that the cost of solar PV is higher than the market valuation of the power it produces; thus, solar PV did not compete on the cost basis with the traditional competitive energy sources. Reducing the capital cost will make the standard PV system economically viable in Indiana. The study found that the capital cost for the system should be reduced by 15% - 56%.

  13. A New Remote Communications Link to Reduce Residential PV Solar Costs

    Energy Technology Data Exchange (ETDEWEB)

    King, Randy [Operant Solar Corporation,CA (United States); Sugiyama, Rod [Operant Solar Corporation,CA (United States)

    2017-12-11

    Monitoring of PV/DER site production is expensive to install and unreliable. Among third party systems providers, lost communications links are a growing concern. Nearly 20% of links are failing, provisioning is complex, recovery is expensive, production data is lost, and access is fragmented. FleetLink is a new concept in DER system communications, purpose built for lowering the cost of maintaining active contact with residential end user sites and ensuring that production data is reliably available to third party systems providers. Systems providers require accurate, secure system monitoring and reporting of production data and system faults while driving down overall costs to compete effectively. This plug and play, independently operating communications solution lowers the cost of fleet contact from typically .08 dollars-$.12/W down to .02 dollars -.03/W including installation and maintenance expenses. FleetLink establishes a breakthrough in simplicity that facilitates rapid expansion of residential solar by reducing initial capital outlay and lowering installation labor time and skill levels. The solution also facilitates higher DER installation growth rates by driving down maintenance costs and eliminating communications trouble calls. This is accomplished by the FleetLink’s unique network technology that enables dynamic network configuration for fast changes, and active, self-healing DER site contact for uptime assurance. Using an open source network framework with proprietary, application specific enhancements, FleetLink independently manages connectivity, security, recovery, grid control communications, and fleet expansion while presenting a compliant SunSpec interface to the third party operations centers. The net system cost savings of at least .05 dollars/W supports the SunShot cost goals and the flexibility and scalability of the solution accelerates the velocity and ubiquitous adoption of solar.

  14. SOLCOST. Solar Hot Water Handbook. A Simplified Design Method for Sizing and Costing Residential and Commercial Solar Service Hot Water Systems. Second Edition.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet offers a preview of information services available from Solcost, a research and development project. The first section explains that Solcost calculates system and costs performance for solar heated and cooled new and retrofit constructions, such as residential buildings and single zone commercial buildings. For a typical analysis,…

  15. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  16. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  17. Solar shading control strategy for office buildings in cold climate

    DEFF Research Database (Denmark)

    Røseth Karlsen, Line; Heiselberg, Per Kvols; Bryn, Ida

    2016-01-01

    Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated.......Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated....

  18. Development of climatic zones and passive solar design in Madagascar

    International Nuclear Information System (INIS)

    Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z.A.

    2009-01-01

    Climate classification is extremely useful to design buildings for thermal comfort purposes. This paper presents the first work for a climate classification of Madagascar Island. This classification is based on the meteorological data measured in different cities of this country. Three major climatic zones are identified. Psychometric charts for the six urban areas of Madagascar are proposed, and suited passive solar designs related to each climate are briefly discussed. Finally, a total of three passive design zones have been identified and appropriate design strategies such as solar heating, natural ventilation, thermal mass are suggested for each zone. The specificity of this work is that: it is the first published survey on the climate classification and the passive solar designs for this developing country

  19. Characterization of the solar climate in Malawi using NASA's surface ...

    African Journals Online (AJOL)

    user

    Characterization of the solar climate in Malawi using. NASA's surface meteorology and solar energy. (SSE) model. Senganimalunje, T. C.1 and Tenthani, C. M. 2*. 1Malawi Bureau of Standards, Metrology Services Department, Box 946, Blantyre, Malawi. 2Physics and Biochemical Sciences Department, Malawi Polytechnic, ...

  20. Development of a solar-powered residential air conditioner: Screening analysis

    Science.gov (United States)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  1. Energy demand of the German and Dutch residential building stock under climate change

    Science.gov (United States)

    Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.

    2014-05-01

    In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics

  2. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  3. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  4. Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

  5. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, Kristen; O' Shaughnessy, Eric; Fu, Ran; McClurg, Chris; Huneycutt, Joshua; Margolis, Robert

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quarter of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.

  6. Measuring social climate in Norwegian residential youth care : A revision of the community oriented programs environment scale

    NARCIS (Netherlands)

    Leipoldt, Jonathan David; Rimehaug, Tormod; Harder, A.T.; Kayed, Nanna; Grietens, Hans

    2016-01-01

    Introduction and objectives: Social climate is an understudied factor in residential youth care (RYC) institutions. Already in the 1950’s, the World Health Organization stated that “atmosphere” is an important factor in psychiatric treatment, but a very difficult element to measure. Assessing the

  7. Live a life in residential care : The importance of social climate for the well-being of adolescents in care

    NARCIS (Netherlands)

    Leipoldt, Jonathan David; Rimehaug, Tormod; Harder, A.T.; Kayed, Nanna; Grietens, Hans

    2015-01-01

    Troubled youngsters in residential youth care (RYC) institutions live their daily life in and around the institutions with other disturbed youngsters and different staff members. The effect that this emerging social climate has on residents in RYC institutions is not very clear and sometimes

  8. Exergy characteristics of a ceiling-type residential air conditioning system operating under different climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Arif [Dept. of Mechanical Engineering, Ceyhan Engineering Faculty, Cukurova University, Adana (Turkmenistan)

    2016-11-15

    In this study an energy and exergy analysis of a Ceiling-type residential air conditioning (CTRAC) system operating under different climatic conditions have been investigated for provinces within the different geographic regions of Turkey. Primarily, the hourly cooling load capacities of a sample building (Q{sub evap}) during the months of April, May, June, July, August and September were determined. The hourly total heat gain of the sample building was determined using the Hourly analysis program (HAP). The Coefficient of performance (COP), exergy efficiency (η) and exergy destruction (Ex{sub dest}) values for the whole system and for each component were obtained. The results showed that lower atmospheric temperature (T{sub atm}) influenced the performance of the system and each of its components.

  9. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Messmer, Craig S. [Unico, Inc., Arnold, MO (United States)

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series. Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.

  10. Safety climate and workplace violence prevention in state-run residential addiction treatment centers.

    Science.gov (United States)

    Lipscomb, Jane A; London, M; Chen, Y M; Flannery, K; Watt, M; Geiger-Brown, J; Johnson, J V; McPhaul, K

    2012-01-01

    To examine the association between violence prevention safety climate measures and self reported violence toward staff in state-run residential addiction treatment centers. In mid-2006, 409 staff from an Eastern United States state agency that oversees a system of thirteen residential addiction treatment centers (ATCs) completed a self-administered survey as part of a comprehensive risk assessment. The survey was undertaken to identify and measure facility-level risk factors for violence, including staff perceptions of the quality of existing US Occupational Safety and Health Administration (OSHA) program elements, and ultimately to guide violence prevention programming. Key informant interviews and staff focus groups provided researchers with qualitative data with which to understand safety climate and violence prevention efforts within these work settings. The frequency with which staff reported experiencing violent behavior ranged from 37% for "clients raised their voices in a threatening way to you" to 1% for "clients pushed, hit, kicked, or struck you". Findings from the staff survey included the following significant predictors of violence: "client actively resisting program" (OR=2.34, 95% CI=1.35, 4.05), "working with clients for whom the history of violence is unknown" (OR=1.91, 95% CI=1.18, 3.09) and "management commitment to violence prevention" reported as "never/hardly ever" and "seldom or sometimes" (OR=4.30 and OR=2.31 respectively), while controlling for other covariates. We utilized a combination of qualitative and quantitative research methods to begin to describe the risk and potential for violence prevention in this setting. The prevalence of staff physical violence within the agency's treatment facilities was lower than would be predicted. Possible explanations include the voluntary nature of treatment programs; strong policies and consequences for resident behavior and ongoing quality improvement efforts. Quantitative data identified low

  11. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  12. Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Anna Laura Pisello

    2015-03-01

    Full Text Available In recent years there has been a growing interest in the development and thermal-energy analysis of passive solutions for reducing building cooling needs and thus improving indoor thermal comfort conditions. In this view, several studies were carried out about cool roofs and cool coatings, producing acknowledged mitigation effects on urban heat island phenomenon. The purpose of this work is to investigate the thermal-energy performance of cool louvers of shutters, usually installed in residential buildings, compared to dark color traditional shading systems. To this aim, two full-scale prototype buildings were continuously monitored under summer conditions and the role of the cool shutter in reducing the overheating of the shading system and the energy requirements for cooling was analyzed. After an in-lab optical analysis of the cool coating, showing a huge solar reflectance increase with respect to the traditional configuration, i.e., by about 75%, field monitoring results showed that the cool shutter is able to decrease the indoor air temperature up to 2 °C under free floating conditions. The corresponding energy saving was about 25%, with even much higher peaks during very hot summer conditions.

  13. THE TOTAL SOLAR IRRADIANCE CLIMATE DATA RECORD

    Energy Technology Data Exchange (ETDEWEB)

    Dewitte, Steven; Nevens, Stijn [Royal Meteorological Institute of Belgium, Ringlaan 3, B-1180 Brussels (Belgium)

    2016-10-10

    We present the composite measurements of total solar irradiance (TSI) as measured by an ensemble of space instruments. The measurements of the individual instruments are put on a common absolute scale, and their quality is assessed by intercomparison. The composite time series is the average of all available measurements. From 1984 April to the present the TSI shows a variation in phase with the 11 yr solar cycle and no significant changes of the quiet-Sun level in between the three covered solar minima.

  14. Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    Robles-Gil, S.

    1997-01-01

    In view of population growth, industrialization and urbanization which provoked increasing energy demand there has been an increasing interest in developing new technologies that use various renewable energy sources and have less environmental impact, such as solar, wind, tidal and biomass. Solar energy is one of the energy resources with a wide geographical distribution. Nowadays, its contribution to the world's energy supply is very small, but it is considered an important long term option which will satisfy, together with conventional energy sources, the future energy needs of the world. The main objective of this work is to report the actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context. This is to improve the dissemination of information on the application of climate knowledge and data, especially by national meteorological services, with the purpose to improve the planning, design and operation of solar energy systems, as well as facilitate their more widespread use

  15. Solar radiation modelling using ANNs for different climates in China

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Yang, Liu

    2008-01-01

    Artificial neural networks (ANNs) were used to develop prediction models for daily global solar radiation using measured sunshine duration for 40 cities covering nine major thermal climatic zones and sub-zones in China. Coefficients of determination (R 2 ) for all the 40 cities and nine climatic zones/sub-zones are 0.82 or higher, indicating reasonably strong correlation between daily solar radiation and the corresponding sunshine hours. Mean bias error (MBE) varies from -3.3 MJ/m 2 in Ruoqiang (cold climates) to 2.19 MJ/m 2 in Anyang (cold climates). Root mean square error (RMSE) ranges from 1.4 MJ/m 2 in Altay (severe cold climates) to 4.01 MJ/m 2 in Ruoqiang. The three principal statistics (i.e., R 2 , MBE and RMSE) of the climatic zone/sub-zone ANN models are very close to the corresponding zone/sub-zone averages of the individual city ANN models, suggesting that climatic zone ANN models could be used to estimate global solar radiation for locations within the respective zones/sub-zones where only measured sunshine duration data are available. (author)

  16. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  17. Climate impacts on the cost of solar energy

    International Nuclear Information System (INIS)

    Flowers, Mallory E.; Smith, Matthew K.; Parsekian, Ara W.; Boyuk, Dmitriy S.; McGrath, Jenna K.; Yates, Luke

    2016-01-01

    Photovoltaic (PV) Levelized Cost of Energy (LCOE) estimates are widely utilized by decision makers to predict the long-term cost and benefits of solar PV installations, but fail to consider local climate, which impacts PV panel lifetime and performance. Specific types of solar PV panels are known to respond to climate factors differently. Mono-, poly-, and amorphous-silicon (Si) PV technologies are known to exhibit varying degradation rates and instantaneous power losses as a function of operating temperature, humidity, thermal cycling, and panel soiling. We formulate an extended LCOE calculation, which considers PV module performance and lifespan as a function of local climate. The LCOE is then calculated for crystalline and amorphous Si PV technologies across several climates. Finally, we assess the impact of various policy incentives on reducing the firm's cost of solar deployment when controlling for climate. This assessment is the first to quantify tradeoffs between technologies, geographies, and policies in a unified manner. Results suggest crystalline Si solar panels as the most promising candidate for commercial-scale PV systems due to their low degradation rates compared to amorphous technologies. Across technologies, we note the strong ability of investment subsidies in removing uncertainty and reducing the LCOE, compared to production incentives. - Highlights: •We integrate local climate into the Levelized Cost of photovoltaic technology. •Climate dictates panel degradation rates and the impact of temperature on efficiency. •We compare LCOE under policy scenarios for three technologies in four U. S. states. •Degradation is highly variable, increasing costs by shortening panel life in many regions. •Incentives targeting investment are most effective at reducing solar deployment costs.

  18. Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Sanda Budea

    2014-06-01

    Full Text Available Solar air collectors have various applications: on the one hand, they can be used for air heating in cold seasons; on the other hand they can be used in summer to evacuate the warm and polluted air from residential, offices, industrial, and commercial buildings. The paper presents experimental results of a solar collector air, under the climatic conditions of the Southeastern Europe. The relationships between the direct solar irradiation, the resulting heat flow, the air velocity at the outlet, the air flow rate, the nominal regime of the collector and the efficiency of conversion of solar energy into thermal energy are all highlighted. Thus, it was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900–1000 W/m2. The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. The article is completed with case studies, sizing the area to be covered with solar collectors, to ensure ventilation of a house with two floors or for an office building. In addition, the ACH (air change per hour coefficient was calculated and compared.

  19. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    Science.gov (United States)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  20. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2015-01-01

    Full Text Available Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest TRF, Guinea savannah GS, Sahel savannah SHS, Sudan savannah SUS, and Mangrove swamp forest MSF was analyzed. To justify its use, the satellite data was tested for goodness of agreement with ground measured solar radiation data using 26-year mean monthly and daily data over 16 locations in the 5 climatic zones. The well-known R2, RMSE, MBE, and MPE statistical tests were used and good agreement was found. The 25 locations were grouped into the 5 climatic zones. Frequency distribution of global solar irradiance was done for each of the climatic zones. This showed that 46.88%, and 40.6% of the number of days (9794 over TRF and MSF, respectively, had irradiation within the range of 15.01–20.01 MJ/m2/day. For the GS, SHS, and SUS, 46.19%, 55.84% and 58.53% of the days had total irradiation within the range of 20.01–25.01 MJ/m2/day, respectively. Generally, in all the climatic zones, coefficients of variation of solar radiation were high and mean values were low in July and August. Contour maps showed that high and low values of global solar irradiance and clearness index were observed in the Northern and Southern locations of Nigeria, respectively.

  1. Continuing the Total and Spectral Solar Irradiance Climate Data Record

    Science.gov (United States)

    Coddington, O.; Pilewskie, P.; Kopp, G.; Richard, E. C.; Sparn, T.; Woods, T. N.

    2017-12-01

    Radiative energy from the Sun establishes the basic climate of the Earth's surface and atmosphere and defines the terrestrial environment that supports all life on the planet. External solar variability on a wide range of scales ubiquitously affects the Earth system, and combines with internal forcings, including anthropogenic changes in greenhouse gases and aerosols, and natural modes such as ENSO, and volcanic forcing, to define past, present, and future climates. Understanding these effects requires continuous measurements of total and spectrally resolved solar irradiance that meet the stringent requirements of climate-quality accuracy and stability over time. The current uninterrupted 39-year total solar irradiance (TSI) climate data record is the result of several overlapping instruments flown on different missions. Measurement continuity, required to link successive instruments to the existing data record to discern long-term trends makes this important climate data record susceptible to loss in the event of a gap in measurements. While improvements in future instrument accuracy will reduce the risk of a gap, the 2017 launch of TSIS-1 ensures continuity of the solar irradiance record into the next decade. There are scientific and programmatic motivations for addressing the challenges of maintaining the solar irradiance data record beyond TSIS-1. The science rests on well-founded requirements of establishing a trusted climate observing network that can monitor trends in fundamental climate variables. Programmatically, the long-term monitoring of solar irradiance must be balanced within the broader goals of NASA Earth Science. New concepts for a low-risk, cost efficient observing strategy is a priority. New highly capable small spacecraft, low-cost launch vehicles and a multi-decadal plan to provide overlapping TSI and SSI data records are components of a low risk/high reliability plan with lower annual cost than past implementations. This paper provides the

  2. The Impact of Subsidies on the Prevalence of Climate-Sensitive Residential Buildings in Malaysia

    Directory of Open Access Journals (Sweden)

    David T. Tan

    2017-12-01

    Full Text Available Dependence on air-conditioning (AC for residential cooling and ventilation is a health and sustainability challenge. In hot temperatures, climate-sensitive buildings (CSB can complement and/or substitute for AC usage in achieving thermal comfort. Many countries facing such conditions—particularly in tropical climates—are developing quickly, with rising populations and income creating demand for new housing and AC. This presents a window for adoption of CSB but could also result in long term lock-in of AC-dependent buildings. Here, a simple system dynamics model is used to explore the potential and limitations of subsidies to affect futures of housing stock and night-time AC usage in Malaysia. The effectiveness of subsidies in achieving high uptake of CSB and resulting health benefits is highly dependent on homebuyer willingness to pay (WTP. A detailed understanding of WTP in the Malaysian context and factors that can shift WTP is necessary to determine if CSB subsidies can be a good policy mechanism for achieving CSB uptake.

  3. Energy use of US residential refrigerators and freezers. Function derivation based on household and climate characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, J.; Letschert, V. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hopkins, A. [Vermont Department of Public Service, Burlington, VT (United States); Blasnik, M. [Blasnik Consulting, Boston, MA (United States)

    2013-02-15

    Field-metered energy use data for 1,467 refrigerators and 185 freezers from seven studies conducted between 1992 and 2010 were used to calculate usage adjustment factors (UAFs), defined as the ratio of measured to tested annual energy use. Multiple regressions of UAFs against several household and climate variables were then performed to obtain separate predictive functions for primary (most-used) refrigerators, secondary (second most-used) refrigerators, and freezers, and residual differences between observed and modeled UAFs were fit to log normal distributions. These UAF functions were used to project energy use in the more than 4,000 households in the 2005 Residential Energy Consumption Survey, a statistical representation of US homes. These energy use projections formed the basis of calculating lifecycle energy savings for more efficient refrigerators and freezers, as well as national energy and cost savings. Results were compared with previous published work by the Department of Energy, demonstrating how UAFs impact energy and cost savings. Such an approach could be further improved with additional data and adapted for other appliances in future analyses.

  4. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    Directory of Open Access Journals (Sweden)

    Abubakar S. Mahmoud

    2017-03-01

    Full Text Available Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed with the help of DesignBuilder software. The base case model has been validated with the help of 3-month measured data about the energy consumption without a green roof installed. The result shows that the energy consumption for the base case is 169 kWh/m2 while the energy consumption due to the application of a green roof on the entire roof surface is 110 kWh/m2. For the three investigated green roof options, energy saving is found to be in the range of 24% to 35%. The economic evaluation based on the net present value (NPV approach for 40 years with consideration to other environmental advantages indicates that the benefits of the green roof technology are realized towards the end of the life cycle of the building.

  5. Differential effects of air conditioning type on residential endotoxin levels in a semi-arid climate.

    Science.gov (United States)

    Johnston, J D; Kruman, B A; Nelson, M C; Merrill, R M; Graul, R J; Hoybjerg, T G; Tuttle, S C; Myers, S J; Cook, R B; Weber, K S

    2017-09-01

    Residential endotoxin exposure is associated with protective and pathogenic health outcomes. Evaporative coolers, an energy-efficient type of air conditioner used in dry climates, are a potential source of indoor endotoxins; however, this association is largely unstudied. We collected settled dust biannually from four locations in homes with evaporative coolers (n=18) and central air conditioners (n=22) in Utah County, Utah (USA), during winter (Jan-Apr) and summer (Aug-Sept), 2014. Dust samples (n=281) were analyzed by the Limulus amebocyte lysate test. Housing factors were measured by survey, and indoor temperature and relative humidity measures were collected during both seasons. Endotoxin concentrations (EU/mg) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons. Endotoxin surface loads (EU/m 2 ) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons and in upholstered furniture during winter. For the nine significant season-by-location comparisons, EU/mg and EU/m 2 were approximately three to six times greater in homes using evaporative coolers. A plausible explanation for these findings is that evaporative coolers serve as a reservoir and distribution system for Gram-negative bacteria or their cell wall components in homes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Specifying residential retrofit packages for 30 % reductions in energy consumption in hot-humid climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Burgett, J.M.; Chini, A.R.; Oppenheim, P. [University of Florida, 573 Rinker Hall, Newell Drive, Gainesville, FL 32611 (United States)

    2013-08-15

    The purpose of this research was to demonstrate the application of energy simulation as an effective tool for specifying cost-effective residential retrofit packages that will reduce energy consumption by 30 %. Single-family homes in the hot-humid climate type of the Southeastern USA were used to demonstrate the application. US census data from both state and federal studies were used to create 12 computer simulation homes representing the most common characteristics of single-family houses specific to this area. Well-recognized energy efficiency measures (EEMs) were simulated to determine their cumulative energy reduction potential. Detailed cost estimates were created for cost-to-benefit analysis. For each of the 12 simulated homes, 4 packages of EEMs were created. The four packages provided home owners options for reducing their energy by 30 % along with the estimated up-front cost and simple payback periods. The simple payback period was used to determine how cost-effective a measure was. The packages are specific to a geographic area to provide a higher degree of confidence in the projected cost and energy savings. The study provides a generic methodology to create a similar 30 % energy reduction packages for other locations and a detailed description of a case study to serve as an example. The study also highlights the value that computer simulation models can have to develop energy efficiency packages cost-effectively and specific to home owner's location and housing type.

  7. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  8. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhen

    2018-01-01

    Full Text Available In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  9. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  10. Cosmic rays, solar activity and the climate

    International Nuclear Information System (INIS)

    Sloan, T; Wolfendale, A W

    2013-01-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century. (letter)

  11. Modeling and simulation of the energy use in an occupied residential building in cold climate

    International Nuclear Information System (INIS)

    Olofsson, Thomas; Mahlia, T.M.I.

    2012-01-01

    Highlights: ► An overview of the energy-characteristics based on illustrations in graphical figures. ► Figures to support identification and validation energy refurbishment measures. ► Emphasizing energy efficiency measures in early stage of building design. -- Abstract: In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance.

  12. Solar ultraviolet radiation in a changing climate

    Science.gov (United States)

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  13. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  14. External perforated Solar Screens for daylighting in residential desert buildings: Identification of minimum perforation percentages

    KAUST Repository

    Sherif, Ahmed; Sabry, Hanan; Rakha, Tarek

    2012-01-01

    and Saudi Arabia, result in the admittance of direct solar radiation, which leads to thermal discomfort and the incidence of undesired glare. One type of shading systems that is used to permit daylight while controlling solar penetration is " Solar Screens

  15. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  16. Critical analysis about solutions and models of solar shades in non-residential buildings from tropical regions.

    Science.gov (United States)

    Castañon, J A B; Caldeira, L F D; Gervásio, M F; Brum, F M

    2012-01-01

    Whereas the non-residential buildings consume a significant percentage of the total energy produced by the city, is important that these buildings have for such consumption is reduced or consumed in a conscious way. To do so, using concepts of energy efficiency, this work is to explain passive strategies with the use of flexible solar shades that help to get a favorable outcome with respect to the performance of the building right in the initial stages of planning and design. Once initial gains can be obtained and the architecture constants that value at the same time provide better working conditions and indoor comfort.

  17. Design concepts for solar heating in a Mediterranean climate

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Berger, X; Bourdeau, L; Jaffrin, A; Sylvain, J D

    1977-01-01

    Solar heating is often designed in a similar way to classical central heating. The consequence is a very high cost which can only be reduced by using a calorific fluid at a lower temperature than is customary, improved architectural design and a further research into new passive heating methods. The collection area and storage volume necessary to obtain good solar efficiency were computed in a Mediterranean climate. Emphasis is put on large thermal inertia which is best achieved by using the latent heat of materials. The result of an experiment performed with salt hydrates is most promising but many problems of time instability have still to be solved.

  18. Solar variability and climate change: An historical perspective

    Science.gov (United States)

    Feldman, Theodore S.

    There is nothing new about the debate over the Sun's influence on terrestrial climate.As early as the late 18th century, widespread concern for the deterioration of the Earth's climate led to speculation about the Sun's role in climate change [Feldman, 1993; Fleming, 1990]. Drawing analogies with variations in the brightness of stars, the British astronomer William Herschel suggested that greater sunspot activity would result in warmer terrestrial climates. Herschel supported his hypothesis by referring to price series for wheat published in Adam Smiths Wealth of Nations [Hufbauer, 1991]. Later, the eminent American physicist Joseph Henry demonstrated by thermopile measurements that, contrary to Herschel's assumption, sunspots were cooler than the unblemished portions of the solar disk.

  19. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  20. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  1. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.

    2012-11-01

    In desert sunny clear-sky regions solar penetration can become excessive. This can cause non-uniform daylight distribution, glare and high solar heat gain, affecting both visual and thermal comfort. Shading devices, such as solar screens, were usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space under the desert sunny clear-sky. The larger aim is to arrive at efficient solar screen designs that suit the different orientations.The study was divided into three consecutive phases. In phase one, the effect of the two parameters on Daylight Availability was tested. The solar screen was axially rotated by three different angles at 10° increments. Also, the aspect ratio of the screen opening in both horizontal and vertical directions was changed systematically. Simulation was conducted using the annual Daylight Dynamic Performance Metrics (DDPMs). In phase two, the Annual Daylight Glare Probability (DGP) metric was evaluated for the cases that were found adequate in phase one. In the third phase, the annual solar energy transmittance through the screen was calculated for the cases that achieved acceptable performance in the two previous phases in order to identify the more energy efficient screens.Solar screens with openings having horizontal aspect ratios were found to be the most effective, while those with vertical aspect ratios were achieved the lowest performance. In the North orientation, since almost all the cases that were tested in this research provided acceptable daylighting performance, the designer now have a variety of options to choose from. Preference should be given to screen openings of horizontal aspect ratios, especially the 12:1 and 18:1 (H:V) screens that achieved the best performance where 92% of the space was " daylit" in comparison with only 53

  2. Solar Ray Tracing Analysis to Determine Energy Availability in a CPC Designed for Use as a Residential Water Heater

    Directory of Open Access Journals (Sweden)

    Miguel Terrón-Hernández

    2018-01-01

    Full Text Available Compound parabolic concentrators are relevant systems used in solar thermal technology. With adequate tailoring, they can be used as an efficient and low-cost alternative in residential water heating applications. This work presents a simulation study using a ray tracing analysis. With this technique, we simulate the interaction between solar rays and solar concentrator to quantify the amount of energy that impinges on the receiver at a particular time. Energy availability is evaluated in a comparison of two configurations throughout the year: static setup at 21° and multi-position setup; tilted with respect to the horizontal, depending on three seasonal positions: 0° for summer, 16° for spring/autumn, and 32° for winter, with the aim to evaluate the amount of available energy in each season. The fact that a tracking system can be dispensed with also represents an economical option for the proposed application. The results showed that at 21°, the proposed solar Compound Parabolic Concentrator (CPC works satisfactorily; however, by carrying out the selected angular adjustments, the overall energy availability increased by 22%, resulting in a more efficient option. The most effective design was also built and analyzed outdoors. The obtained thermal efficiency was of ~43%. The optical design and its evaluation developed herein proved to be a valuable tool for prototype design and performance evaluation.

  3. Increase of solar radiation due to climate change and its impact on solar energy use

    International Nuclear Information System (INIS)

    Kuhnke, K.; Rahme, A.; Harling, J.; Arensmann, R.

    2008-01-01

    Full text: There is a significant change in solar radiation in Central Europe coinciding with the IPCC climate change model calculations. The increase of yearly solar radiation on the horizontal surface is about 0.38 percent/year. On the other hand, photovoltaic solar modules show an ageing effect of the same order of magnitude, i.e. a reduction of yearly energy yield between 0.3 and 0.5 percent/year. This reduction is normally taken into account in economic calculations such as payback time and internal rate of interest. As the two trends of increase in radiation and ageing of solar modules are in opposite direction to each other, they will - with their uncertainties - neutralize one another to zero. Thus, the energy production of photovoltaic systems can be calculated without any deductions due to ageing in the future. (authors)

  4. On the climate impacts from the volcanic and solar forcings

    Science.gov (United States)

    Varotsos, Costas A.; Lovejoy, Shaun

    2016-04-01

    The observed and the modelled estimations show that the main forcings on the atmosphere are of volcanic and solar origins, which act however in an opposite way. The former can be very strong and decrease at short time scales, whereas, the latter increase with time scale. On the contrary, the observed fluctuations in temperatures increase at long scales (e.g. centennial and millennial), and the solar forcings do increase with scale. The common practice is to reduce forcings to radiative equivalents assuming that their combination is linear. In order to clarify the validity of the linearity assumption and determine its range of validity, we systematically compare the statistical properties of solar only, volcanic only and combined solar and volcanic forcings over the range of time scales from one to 1000 years. Additionally, we attempt to investigate plausible reasons for the discrepancies observed between the measured and modeled anomalies of tropospheric temperatures in the tropics. For this purpose, we analyse tropospheric temperature anomalies for both the measured and modeled time series. The results obtained show that the measured temperature fluctuations reveal white noise behavior, while the modeled ones exhibit long-range power law correlations. We suggest that the persistent signal, should be removed from the modeled values in order to achieve better agreement with observations. Keywords: Scaling, Nonlinear variability, Climate system, Solar radiation

  5. 77 FR 72439 - Residential, Business, and Wind and Solar Resource Leases on Indian Land

    Science.gov (United States)

    2012-12-05

    ... to streamline and expedite the leasing process, advance economic development, and spur renewable... entities; however, many tribes requested clarification regarding other taxation arising in the context of... residential, business, and WSR leasing subparts to subpart A. This section now addresses not only taxation of...

  6. Design, construction, and testing of a residential solar heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.S.; Loef, G.O.G.

    1976-06-01

    The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

  7. Adoption of residential solar power under uncertainty: Implications for renewable energy incentives

    International Nuclear Information System (INIS)

    Bauner, Christoph; Crago, Christine L.

    2015-01-01

    Many incentives at the state and federal level exist for household adoption of renewable energy like solar photovoltaic (PV) panels. Despite generous financial incentives the adoption rate is low. We use the option value framework, which takes into account the benefit of delaying investment in response to uncertainty, to examine the decision by households to invest in solar PV. Using a simulation model, we determine optimal adoption times, critical values of discounted benefits, and adoption rates over time for solar PV investments using data from Massachusetts. We find that the option value multiplier is 1.6, which implies that the discounted value of benefits from solar PV needs to exceed installation cost by 60% for investment to occur. Without any policies, median adoption time is eight years longer under the option value decision rule compared to the net present value decision rule where households equate discounted benefits to installation cost. Rebates and other financial incentives decrease adoption time, but their effect is attenuated if households apply the option value decision rule to solar PV investments. Results suggest that policies that reduce the uncertainty in returns from solar PV investments would be most effective at incentivizing adoption. - Highlights: • We examine household adoption of solar PV using the option value framework. • Uncertainty in benefits and costs leads to delay in investment timing. • Discounted benefits from solar PV have to exceed investment cost by 60% to trigger investment. • Policy incentives that reduce uncertainty in returns from solar PV are most effective.

  8. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  9. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  10. Heating and cooling energy demand and related emissions of the German residential building stock under climate change

    International Nuclear Information System (INIS)

    Olonscheck, Mady; Holsten, Anne; Kropp, Juergen P.

    2011-01-01

    The housing sector is a major consumer of energy. Studies on the future energy demand under climate change which also take into account future changes of the building stock, renovation measures and heating systems are still lacking. We provide the first analysis of the combined effect of these four influencing factors on the future energy demand for room conditioning of residential buildings and resulting greenhouse gas (GHG) emissions in Germany until 2060. We show that the heating energy demand will decrease substantially in the future. This shift will mainly depend on the number of renovated buildings and climate change scenarios and only slightly on demographic changes. The future cooling energy demand will remain low in the future unless the amount of air conditioners strongly increases. As a strong change in the German energy mix is not expected, the future GHG emissions caused by heating will mainly depend on the energy demand for future heating. - Highlights: → The future heating energy demand of German residential buildings strongly decreases. → Extent of these changes mainly depends on the number of renovated buildings. → Demographic changes will only play a minor role. → Cooling energy demand will remain low in future but with large insecurities. → Germany's 2050 emission targets for the building stock are ambitious.

  11. Solar System Chaos and its climatic and biogeochemical consequences

    Science.gov (United States)

    Ikeda, M.; Tada, R.; Ozaki, K.; Olsen, P. E.

    2017-12-01

    Insolation changes caused by changes in Earth's orbital parameters are the main driver of climatic variations, whose pace has been used for astronomically-calibrated geologic time scales of high accuracy to understand Earth system dynamics. However, the astrophysical models beyond several tens of million years ago have large uncertainty due to chaotic behavior of the Solar System, and its impact on amplitude modulation of multi-Myr-scale orbital variations and consequent climate changes has become the subject of debate. Here we show the geologic constraints on the past chaotic behavior of orbital cycles from early Mesozoic monsoon-related records; the 30-Myr-long lake level records of the lacustrine sequence in Newark-Hartford basins (North America) and 70-Myr-long biogenic silica (BSi) burial flux record of pelagic deep-sea chert sequence in Inuyama area (Japan). BSi burial flux of chert could be considered as proportional to the dissolved Si (DSi) input from chemical weathering on timescales longer than the residence time of DSi ( 100 kyr), because chert could represent a major sink for oceanic dissolved silica (Ikeda et al., 2017).These geologic records show multi-Myr cycles with similar frequency modulations of eccentricity solution of astronomical model La2010d (Laskar et al., 2011) compared with other astronomical solutions, but not exactly same. Our geologic records provide convincing evidence for the past chaotic dynamical behaviour of the Solar System and new and challenging additional constraints for astrophysical models. In addition, we find that ˜10 Myr cycle detected in monsoon proxies and their amplitude modulation of ˜2 Myr cycle may be related to the amplitude modulation of ˜2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change. Further impact of multi-Myr orbital cycles on global biogeochemical cycles will be discussed.

  12. Influence of Life Cycle Stage on Family Social Climate and Attitudes Toward the Residential Environment.

    Science.gov (United States)

    Inman, Marjorie

    The existing physical forms of housing are not always compatible with prevalent social patterns. To investigate the relationship between family system characteristics and attitudes about residential space, 64 Indiana families in 4 stages of the family life cycle (early years with no children, crowded years with at least one preschool child, peak…

  13. Determinants and outcomes of social climate in therapeutic residential care : A systematic review

    NARCIS (Netherlands)

    Leipoldt, Jonathan David; Harder, Annemiek T.; Rimehaug, Tormod; Kayed, Nanna S.; Grietens, Hans

    2017-01-01

    Objectives: Residential Youth Care (RYC) is still considered a “black box”. Research continues to focus on the results that are achieved, but more insight is necessary to show how these results are achieved for different groups of residents. We refer to this principle as the “what works for whom”

  14. The underestimated potential of solar energy to mitigate climate change

    Science.gov (United States)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  15. An evaluation of the installation of solar photovoltaic in residential houses in Malaysia: Past, present, and future

    International Nuclear Information System (INIS)

    Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Abu-Bakar, Siti Hawa; McMeekin, Scott G.; Stewart, Brian G.

    2011-01-01

    This paper examines solar energy development in Malaysia, particularly in relation to the installation of solar Photovoltaic (PV) in residential houses. It analyzes the past activities related to solar energy in Malaysia, in terms of research and developments (R and Ds), the implementations used as well as the national policies for the past 20 years which have pushed the installation of PV in the country. The Feed-In Tariff (FiT) scheme is discussed, showing comparative cost-benefit analysis between the PV installation in houses in the United Kingdom (UK) and Malaysia, and with other investment schemes available in Malaysia. To investigate the awareness of renewable energy policies and incentives, a preliminary survey of the public opinion in Malaysia has been carried out, and an evaluation of public willingness to invest in the FiT scheme by installing the PV on their houses is presented. The cost-benefit analysis shows that the proposed FiT programme is capable of generating good return on investment as compared to the one in the UK, but the return is lower than other investment tools. The survey suggests that most Malaysians are unaware of the government’s incentives and policies towards renewable energies, and are not willing to invest in the FiT scheme. - Highlights: ► Past activities related to solar energy is evaluated and FIT scheme is discussed. ► Financial analysis is presented; public perspective is evaluated. ► The FIT scheme generates higher return for PV installation in Malaysia than in the UK. ► The scheme, however, produces lower return than most investment schemes. ► Malaysians’ awareness levels are low and are not willing to invest in the FIT scheme.

  16. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  17. Determining of the optimal design of a closed loop solar dual source heat pump system coupled with a residential building application

    International Nuclear Information System (INIS)

    Chargui, Ridha; Awani, Sami

    2017-01-01

    Graphical abstract: Operation of the system in heating mode. - Highlights: • We examine the control function in the level of heat pump and collector. • We examine the temporal evolution of the temperature and energy in the all components of the system. • A better system with a significant energy saving was achieved. • The system gives good results in all operating states. - Abstract: This work highlights the results on the coupling of a flat plate collector coupled with a dual source heat pump system and a heat exchanger for building application. The novelty point of this work is to integrate a heat exchanger in the floor and in the interstitial space of the residential house roof in order to minimize the consumed electric power. This technology defining the operational state of the system has been developed and adapted in the present investigation by adopting the Tunisian climate. The dimensioning of this installation for different component makes it possible to operate the hot water heating systems ecologically. Hence, our objective is to ameliorate the performance of the system using the solar radiation converted to the thermal energy in the level of the flat plate collector and the heat pump. A several experimental data have been added for realizing a numerical model based on TRNSYS software. From this point of view, a numerical model was improved in building application using a 150 m 2 as surface area of the building which consists of two floor zones. The dual source heat pump was coupled with a ground heat exchanger (GHE) with 0.2 m of depth. The distance between two consecutive tubes is 0.3 m and the surface area of the solar collector is 8 m 2 . The simulation results have been obtained for 48 h operation in January and all inputs data of the system have been predicted during 48 h and 6 months of heating in Tunisia. It was demonstrated that the COP of the dual source heat pump was enhanced with the increase of the solar radiation during the typical

  18. On the nature of the solar influence on climate and its contribution to climate change

    Science.gov (United States)

    Vieira, L. A.; da Silva, L. A.; Guarnieri, F.; Echer, E.; Dal Lago, A.; Wrasse, C. M.; Schuch, N.

    2007-05-01

    The influence of solar magnetic variability on the lower atmospheric regions has been observed on different atmospheric parameters in different time scales, but a plausible mechanism to explain these observations remains unclear. It is also indistinguishable whether or not the variability on the solar-terrestrial coupling drives the present climate change. New observations suggested that the existence of a geomagnetic signal in climate data would support a direct link between solar variability and their effects on climate. Usoskin and colleagues compared 1000-year reconstructions of sunspot numbers and cosmic ray flux, derived from cosmogenic isotope dates, with air temperature history in the Northern hemisphere. They observed higher temperatures during periods of intense solar activity. In addition, they report that three different statistical tests consistently indicate that the long-term trends in the temperature correlate better with cosmic rays than with sunspot numbers. Vieira and Da Silva observed that the clouds effects on the radiative flux in the atmosphere in the southern Pacific are related to the intensity of the geomagnetic field. They have also observed a cosmic rays modulation of the variability of the long wavelength radiative flux in the atmosphere. More recently, Vieira and colleagues reported that a correlation between increasing sea-level pressure in the tropical Pacific, and decreasing magnetic field intensity is observed. This indicates that the physical processes in the magnetosphere, ionosphere and upper atmosphere are mapped downward to the Earth's surface. It was suggested that that the coupling mechanism may be linked to the ozone depletion in the lower mesosphere, and in the upper stratosphere of the auroral region, and/or the southern hemisphere magnetic anomaly region. The depletion is caused by high energy protons produced during solar proton events (SPEs) released during large solar storms. Variations in solar irradiance, and ozone

  19. Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Cao, Sunliang; Hasan, Ala; Sirén, Kai

    2015-01-01

    The objective of this study was to examine the effect of production-based support schemes on the economic feasibility of residential-scale PV systems (1–10 kW) in Finland. This was done by calculating the payback time for various sizes of newly installed PV systems for a Finnish detached house with district heating. Three types of economic support schemes (guaranteed selling price, fixed premiums and self-consumption incentives) were tested in an hourly simulation. The load of the building was based on real-life measurements, while PV output was simulated with TRNSYS software. The energy results were post-processed with economic data in MATLAB to find the payback time. Hourly electricity prices from the Nordic energy market were used with PV system prices from Finnish companies. Unsubsidised residential PV systems in Finland had payback times of more than 40 years. The production-based support for PV generation needs to be two to three times the buying price of electricity, to make it possible to pay back the initial investment in 20 years. Low capacity systems with more than 50% self-consumption (under 3 kW) were favoured by self-consumption incentives, while high capacity systems with less than 40% self-consumption (over 5 kW) were favoured by the FIT-type support schemes. - Highlights: • Unsubsidised residential PV is uneconomical in Finland. • Support rate must be 2 times the electricity price for reasonable payback time. • Even using all electricity on-site is not profitable enough without support. • Assumed real interest rate had great influence on payback time. • Hourly electricity prices are much lower than average values from Finnish statistics

  20. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  1. Homogenization of vegetation structure across residential neighborhoods: effects of climate, urban morphology, and socio-economics

    Science.gov (United States)

    Climate is a key driver regulating vegetation structure across rural ecosystems. In urban ecosystems, multiple interactions between humans and the environment can have homogenizing influences, confounding the relationship between vegetation structure and climate. In fact, vegetat...

  2. Residential consumers’ experiences in the adoption and use of solar PV

    International Nuclear Information System (INIS)

    Sommerfeld, Jeff; Buys, Laurie; Vine, Desley

    2017-01-01

    Public policy in many nations is seeking to transition energy generation towards renewable sources such as solar photovoltaic (PV). Reviews of past policy aimed at increasing consumer acceptance of renewable energy sources have identified that policy implementation may not align with policy objectives of energy professionals. The research and analysis of consumers and their interaction with solar PV policy is important in assessing policy outcomes and how these can be better delivered or adapted. This paper reports on an in depth qualitative analysis of 22 persons under different feed-in tariff (FiT) policy settings to explore consumer experiences in acquiring solar PV and their energy use behaviour. The responses of participants indicate there were different motivations and energy use behaviour that were based on the policy in which solar PV was acquired and these may provide insight into policy development or follow up studies. - Highlights: • Consumer acceptance of renewable energy sources (RES) are vital to GHG mitigation. • Different policy settings have encouraged consumer uptake of solar PV. • Qualitative study examines two cohorts of consumers under different solar feed-in tariff (FiT) settings. • Level of FiT identified as linked to behaviours that can alter policy outcomes.

  3. A solar radiation model for use in climate studies

    Science.gov (United States)

    Chou, Ming-Dah

    1992-01-01

    A solar radiation routine is developed for use in climate studies that includes absorption and scattering due to ozone, water vapor, oxygen, carbon dioxide, clouds, and aerosols. Rayleigh scattering is also included. Broadband parameterization is used to compute the absorption by water vapor in a clear atmosphere, and the k-distribution method is applied to compute fluxes in a scattering atmosphere. The reflectivity and transmissivity of a scattering layer are computed analytically using the delta-four-stream discrete-ordinate approximation. The two-stream adding method is then applied to compute fluxes for a composite of clear and scattering layers. Compared to the results of high spectral resolution and detailed multiple-scattering calculations, fluxes and heating rate are accurately computed to within a few percent. The high accuracy of the flux and heating-rate calculations is achieved with a reasonable amount of computing time. With the UV and visible region grouped into four bands, this solar radiation routine is useful not only for climate studies but also for studies on photolysis in the upper atmosphere and photosynthesis in the biosphere.

  4. Preliminary investigation into the use of solar PV systems for residential application in Bandar Sri Iskandar, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dimas, F.A.; Gillani, S.I.; Ans, M.S. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    In the near future, Malaysia is expected to be a net importer of oil, and the nation will have to face issues related to the security of supply and economic consequences. It is also anticipated that the energy demand for the country will increase with the increase in population and GDP. Realizing the situation, it is important that further emphasis is given into the diversification of energy resources. One method is the exploitation of renewable energy to minimize the effects of global warming. Photovoltaic technology is widely used around the world in locations with scarce power generation options. It is used for various applications and Building Integrated Photovoltaic (BIPV) system is one of them. However, photovoltaic is still expensive compared to conventional methods of generating electricity. So a careful design of the system is required to ensure economic viability. This study describes a preliminary investigation of a solar PV system for residential applications in Bandar Sri Iskandar. Sizing procedures based on the peak sun hour concept is described for a Malaysian typical terraced house. Current and voltage measurements of the solar panel were carried out to predict the output under actual conditions at the site.

  5. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  6. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  7. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    Directory of Open Access Journals (Sweden)

    Engels Stefan

    2012-07-01

    Full Text Available Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth’s climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m−2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity, suggesting that Earth’s climate is sensitive to changes in solar activity on a millennial timescale as well.

  8. Solar forcing of climate during the last millennium recorded in lake sediments from northern Sweden

    DEFF Research Database (Denmark)

    Kokfelt, Ulla; Muscheler, Raimund

    2013-01-01

    century. Periods of low solar activity are associated with minima in minerogenic material and vice versa. A comparison between the sunspot cycle and a long instrumental series of summer precipitation further reveals a link between the 11-year solar cycle and summer precipitation variability since around...... 1960. Solar minima are in this period associated with minima in summer precipitation, whereas the amount of summer precipitation increases during periods with higher solar activity. Our results suggest that the climate responds to both the 11-year solar cycle and to long-term changes in solar activity...... and in particular solar minima, causing dry conditions with resulting decreased runoff....

  9. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    Science.gov (United States)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  10. Development of a solar-powered residential air conditioner: Economic analysis

    Science.gov (United States)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  11. Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, the extent to which different climate scenarios influence overheating risk, energy use and peak loads for space conditioning of district heated multi-storey buildings in Sweden are explored. Furthermore, the effectiveness of different overheating control measures and the implications of different electricity supply options for space cooling and ventilation are investigated. The analysis is based on buildings with different architectural and energy efficiency configurations including a prefab concrete-frame, a massive timber-frame and a light timber-frame building. Thermal performance of the buildings under low and high Representative Concentration Pathway climate scenarios for 2050–2059 and 2090–2099 are analysed and compared to that under historical climate of 1961–1990 and recent climate of 1996–2005. The study is based on a bottom-up methodology and includes detailed hour-by-hour energy balance and systems analyses. The results show significant changes in the buildings’ thermal performance under the future climate scenarios, relative to the historical and recent climates. Heating demand decreased significantly while cooling demand and overheating risk increased considerably with the future climate scenarios, for all buildings. In contrast to the cooling demand, the relative changes in heating demand of the buildings under the future climate scenarios are somewhat similar. The changes in the space conditioning demands and overheating risk vary for the buildings. Overheating risk was found to be slightly higher for the massive-frame building and slightly lower for the light-frame building. - Highlights: • We analysed thermal performance of buildings under different climate scenarios. • Our analysis is based on historical, recent and projected future climate datasets. • The buildings' thermal performance changed notably under future climate scenarios. • The extent of the changes is influenced by the buildings' energy efficiency

  12. Use of residential wood heating in a context of climate change: a population survey in Québec (Canada

    Directory of Open Access Journals (Sweden)

    Valois Pierre

    2008-05-01

    Full Text Available Abstract Background Wood heating is recommended in several countries as a climate change (CC adaptation measure, mainly to increase the autonomy of households during power outages due to extreme climatic events. The aim of this study was to examine various perceptions and individual characteristics associated with wood heating through a survey about CC adaptations. Methods A telephone survey (n = 2,545 of adults living in the southern part of the province of Québec (Canada was conducted in the early fall season of 2005. The questionnaire used closed questions and measured the respondents' beliefs and current adaptations about CC. Calibration weighting was used to adjust the data analysis for the respondent's age and language under stratified sampling based on health regions. Results More than three out of four respondents had access to a single source of energy at home, which was mainly electricity; 22.2% combined two sources or more; 18.5% heated with wood occasionally or daily during the winter. The prevalence of wood heating was higher in the peripheral regions than in the more urban regions, where there was a higher proportion of respondents living in apartments. The prevalence was also higher with participants completely disagreeing (38.5% with the eventual prohibition of wood heating when there is smog in winter, compared to respondents somewhat disagreeing (24.2% or agreeing (somewhat: 17.5%; completely: 10.4% with the adoption of this strategy. It appears that the perception of living in a region susceptible to winter smog, smog warnings in the media, or the belief in the human contribution to CC, did not influence significantly wood heating practices. Conclusion Increased residential wood heating could very well become a maladaptation to climate change, given its known consequences on winter smog and respiratory health. It would thus be appropriate to implement a long-term national program on improved and controlled residential wood

  13. Life cycle cost analysis of solar heating and DHW systems in residential buildings

    International Nuclear Information System (INIS)

    Colombo, R.; Gilliaert, D.

    1992-01-01

    Economic Life Cycle Cost Analysis (ELCCA) is an easy and friendly computer program, IBM compatible for economic evaluation of solar energy system which involves comparison of the capital and operating costs of a conventional system. In this section we would like to suggest the ELCCA-PC program as a new tools using life cycle cost analysis for annual and cumulative cash flow methodology that take into account all future expenses. ELCCA-PC program considers fixed and changeable items that are involved in installing the equipment such as interest of money borrowed, property and income taxes, current energy cost for electricity operating system, maintenance, insurance and fuel costs and other economic operating expenses. Moreover fraction of annual heating load supplied from solar system is considered in this analysis. ECC-PC program determines the yearly outflow of money over the period of an economic analysis that can be converted to a series of equal payments in today's money

  14. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  15. Precambrian cyclic rhythmites: solar-climatic or tidal signatures?

    International Nuclear Information System (INIS)

    Williams, G.E.

    1990-01-01

    For more than 60 years geologists have sought evidence of solar-climatic cyclicity in rhythmically laminated sedimentary rocks, but claims in general have not been persuasive. Three Precambrian rhythmite sequences in Australia that comprise varve-like laminae recently have received attention, however, as their conspicuous cycles of ca. 10-14 and/or 20-25 laminae have been ascribed a sunspot-cycle origin. They are the 2500 Ma old Weeli Wolli Formation, the 1750 Ma old Wollogorang Formation and the 650 Ma old Elatina Formation. New observations for the Weeli Wolli Formation, a siliceous banded iron-formation, suggest a cycle period exceeding the 23 microband couplets proposed by Trendall, casting doubt on the solar interpretation. The Weeli Wolli cyclicity may record Earth-tidal rhythms that modulated the discharge and composition of silica- and iron-bearing fumarolic waters. The structure of the cycles of silty dolomite and mudstone in the Wollogorang Formation does not support a sunspot-cycle origin, and a tidal control on sedimentation should be considered. The Elatina sequence of cyclic sandstone and siltstone laminae displays several empirical similarities to the sunspot series. The discovery of thicker, more complex lamina-cycles in the correlative Reynella Siltstone has, however, caused reappraisal of the solar interpretation of the Elatina rhythmites. The Elatina series may encode unique information on lunar orbital periods and the Earth's palaeorotation: the data indicate ca. 30.5 days per lunar month, 13.1 lunar months and ca. 400 days per year, and lunar apsides and lunar nodal cycles of 9.7 and ca. 19.5 years respectively some 650 Ma ago. (author)

  16. Effects of climate change on residential infiltration and air pollution exposure.

    Science.gov (United States)

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  17. Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system

    International Nuclear Information System (INIS)

    Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J.-P.

    2017-01-01

    Highlights: • We present a fuzzy smart controller for hybrid renewable and conventional energy system. • The rules are based on human intelligence and implemented in the smart controller. • Efficient tracking capability of the proposed controller is proofed in this paper by an example. • Excess produced renewable energy is converted to hydrogen for household use . • Considerable electric grid energy saving is highlighted in the proposed controller system. - Abstract: This study concerns the conception and development of an efficient multi input-output fuzzy logic smart controller, to manage the energy flux of a sustainable hybrid power system, based on renewable power sources, integrating solar panels and a wind turbine associated with storage, applied to a typical residential habitat. In the suggested topology, the energy surplus is redirected to an electrolysis system to produce hydrogen suitable for household utilities. To assume a constant access to electricity in case of consumption peak, connection to the grid is also considered as an exceptional rescue resource. The objective of the presented controller is to exploit instantaneously the produced renewable electric energy and insure savings of electric grid energy. The proposed multi input-output fuzzy logic smart controller has been achieved and verified, outcome switches command signals are discussed and the renewable energy system integration ratio is highlighted.

  18. A framework for investigating the interactions between climate, dust, solar power generation and water desalination processes in Desert Climate

    Science.gov (United States)

    Siam, M. S.; Alqatari, S.; Ibrahim, H. D.; AlAloula, R. A.; Alrished, M.; AlSaati, A.; Eltahir, E. A. B.

    2016-12-01

    Increasing water demand in Saudi Arabia due to rapid population growth has forced the rapid expansion of seawater desalination plants in order to meet both current and future freshwater needs. Saudi Arabia has a huge potential for solar energy, hence, solar-powered desalination plants provide an opportunity to sustainably address the freshwater demand in the kingdom without relying on fossil fuels energy. However, the desert climate of Saudi Arabia and limited access to the open ocean imposes several challenges to the expansion and sustainability of solar-powered desalination plants. For example, the frequent and intense dust storms that occur in the region can degrade solar panels and significantly reduce their efficiency. Moreover, the high salinity Arabian Gulf is both the source of feedwater and sink of hypersaline discharge (brine) for many plants in the east of the Kingdom, and the brine may alter the salinity, temperature and movement of the water thereby reducing the quality of the feedwater to the desalination plants. Here, we propose a framework to investigate the different interactions between climate, dust, solar power generation and seawater desalination in order to identify optimal parameters such as locations of solar panels and seawater intake for sustainable implementation of solar-powered desalination plants. This framework integrates several numerical models including regional climate, hydrodynamics, Photovoltaics (PV) and Photovoltaic-Reverse Osmosis (PV-RO) models that are used to investigate these interactions for a solar-powered desalination plant at AlKhafji on the Northeastern coast of Saudi Arabia.

  19. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    Science.gov (United States)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  20. Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates

    Directory of Open Access Journals (Sweden)

    Y. Agrouaz

    2017-03-01

    Full Text Available The aim of this work is to investigate the energetic performance of a solar cooling system using absorption technology under Moroccan climate. The solar fraction and the coefficient of performance of the solar cooling system were evaluated for various climatic conditions. It is found that the system operating in Errachidia shows the best average annual solar fraction (of 30% and COP (of 0.33 owing to the high solar capabilities of this region. Solar fraction values in other regions varied between 19% and 23%. Moreover, the coefficient of performance values shows in the same regions a significant variation from 0.12 to 0.33 all over the year. A detailed parametric study was as well carried out to evidence the effect of the operating and design parameters on the solar air conditioner performance.

  1. Singular Strategic Project on bio climatic architecture and solar cooling (PSE-ARFRISOL); Proyecto Singular Estrategico sobre arquitectura bioclimatica y frio solar (PSE-ARFRISOL)

    Energy Technology Data Exchange (ETDEWEB)

    Heras Celemin, M. R.

    2008-07-01

    The R and D activities for the scientific-technological singular strategic Project on Bio climatic Architecture and Solar Cooling PSE-ARFRISOL are being carried out from November 2005 to December 2010. This project aims to demonstrate that bio climatic architecture and low-temperature solar energy are the appropriate basic elements for climatization of future buildings. (Author) 12 refs.

  2. Simulation study on reduction of peak power demand and energy consumption in residential houses with solar thermal and PV systems; Taiyo energy riyo jutaku no fuka heijunka oyobi energy sakugen koka no simulation ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Endo, T. [Yokohama City Office, Yokohama (Japan); Udagawa, M. [Kogakuin Univ., Tokyo (Japan). Faculty of Engineering

    1995-11-20

    In this study, taking the all factors involved in the energy consumption in residential houses as subjects, the effectiveness of the solar PV system and solar thermal utilizing system in residential houses has been studied by simulating a model residential house considering the improvement of the residual environment in the future. Therefore, a model residual house is assumed, 18 kinds of combinations of construction style, cooling and heating type and solar energy utilizing form are assumed and year round simulation is carried out. The conclusions obtained by the simulation are as follows. The energy consumption in residential houses may decrease greatly by using a solar hot water supplying system. If combined with a solar PV system, the energy consumption in one year is about 8.7 to 9.7 MWh. The combined use of a solar thermal utilizing system and a PV system is more effective to reduce the second-time energy in comparison with the PV system only. 36% of the space heating energy consumption may be decreased by using the solar space heating system, but the decrease effect of the energy consumption of the solar space heating system is smaller than the solar hot water supplying system. 12 refs., 26 figs., 3 tabs.

  3. The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities

    International Nuclear Information System (INIS)

    Dong, Changgui; Wiser, Ryan

    2013-01-01

    With “soft” costs accounting for well over 50% of the installed price of residential photovoltaic (PV) systems in the United States, this study evaluates the effect of city-level permitting processes on the installed price of residential PV systems and on the time required to develop those systems. The study uses a unique dataset from the U.S. Department of Energy's Rooftop Solar Challenge Program, which includes city-level permitting process “scores,” plus data from the California Solar Initiative and the U.S. Census. Econometric methods are used to quantify the price and development-time effects of city-level permitting processes on more than 3000 PV installations across 44 California cities in 2011. Results suggest that cities with the most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W (4–12% of median PV prices in California) compared with cities with the most onerous permitting practices, depending on the regression model used. Though the empirical models for development times are less robust, results suggest that the most streamlined permitting practices may shorten development times by around 24 days on average (25% of the median development time). These findings illustrate the potential price and development-time benefits of streamlining local permitting procedures for PV systems. - Highlights: • The study uses a unique dataset from the U.S. DOE's Rooftop Solar Challenge Program. • We quantify the price and development-time effects of city-level permitting processes. • Most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W

  4. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    Energy Technology Data Exchange (ETDEWEB)

    Derrouazin, A., E-mail: derrsid@gmail.com [University Hassiba BenBouali of Chlef, LGEER,Chlef (Algeria); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Aillerie, M., E-mail: aillerie@metz.supelec.fr; Charles, J. P. [Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France); CentraleSupélec, LMOPS, 57070 Metz (France); Mekkakia-Maaza, N. [Université des sciences et de la Technologie d’Oran, Mohamed Boudiaf-USTO MB,LMSE, Oran Algérie (Algeria)

    2016-07-25

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  5. Fuzzy logic controller versus classical logic controller for residential hybrid solar-wind-storage energy system

    International Nuclear Information System (INIS)

    Derrouazin, A.; Aillerie, M.; Charles, J. P.; Mekkakia-Maaza, N.

    2016-01-01

    Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.

  6. A tool for design decision making - zero energy residential buildings in hot humid climates

    NARCIS (Netherlands)

    Attia, S.G.

    2012-01-01

    In this thesis, the development and evaluation of a simulation-based decision aid for Net Zero Energy Buildings (NZEBs) design, ZEBO, was explored. The thesis investigates the ability to achieve informed decision making for NZEB design, in hot climate. Four main questions were posed. Firstly, how to

  7. Augmenting natural ventilation using solar heat and free cool energy for residential buildings

    Directory of Open Access Journals (Sweden)

    N. B. Geetha

    2014-03-01

    Full Text Available In many urban buildings ventilation is not sufficient that will increase the temperature and also create unhealthy atmosphere inside the room. In such buildings artificially induced ventilation through freely available energy promote comfort conditions by reducing the temperature by 2 to 3°C and also creating good circulation of fresh air inside the room. In the present work the concept of improving the ventilation by excess hot energy available during summer days from the solar flat plate collector and by storing cool energy available during the early morning hour in the Phase Change Material (PCM based storage system is attempted. An experimental setup is made to study the effect of improvement in natural ventilation and the results are reported. A visible reduction in temperature is observed through circulation of air from the bottom side of the room to the roof of the house using the stored hot and cool energy. A CFD analysis is also carried out using ANSYS-CFX software to simulate and evaluate the mass flow of air at the inlet and at the selected RTD location by matching the transient temperature profile of the simulated result with the experimental results at the selected RTD location.

  8. environmental/climatic effect on stand-alone solar energy supply

    African Journals Online (AJOL)

    This paper investigates the climatic effects and environmental variations on the perfor- mance of a ... inter-connected arrays due to shades from clouds, tress and ... Modeling of Solar Module .... needs. The earth revolves around the sun in an.

  9. NOAA Climate Data Record (CDR) of Total Solar Irradiance (TSI), NRLTSI Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) contains total solar irradiance (TSI) as a function of time created with the Naval Research Laboratory model for spectral and total...

  10. NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) contains solar spectral irradiance (SSI) as a function of time and wavelength created with the Naval Research Laboratory model for...

  11. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  12. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  13. How can nuclear phaseout and climate protection be combined? Sustainable power supply in the residential sector

    International Nuclear Information System (INIS)

    Vallentin, Rainer

    2011-01-01

    The nuclear phaseout and the resulting energy turnaround will bring about changes in the power supply systems, especially if climate protection goals are to be reached. The author presents the example of a housing development in Germany which mirrors the private households sector. It is shown that the only way to achieve sustainable power supply is by consequently enhancing efficiency and by decarbonizing heat and power supply. The next two decades will be decisive.

  14. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  15. Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-08-15

    This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs. We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.

  16. Solar radiation increases suicide rate after adjusting for other climate factors in South Korea.

    Science.gov (United States)

    Jee, Hee-Jung; Cho, Chul-Hyun; Lee, Yu Jin; Choi, Nari; An, Hyonggin; Lee, Heon-Jeong

    2017-03-01

    Previous studies have indicated that suicide rates have significant seasonal variations. There is seasonal discordance between temperature and solar radiation due to the monsoon season in South Korea. We investigated the seasonality of suicide and assessed its association with climate variables in South Korea. Suicide rates were obtained from the National Statistical Office of South Korea, and climatic data were obtained from the Korea Meteorological Administration for the period of 1992-2010. We conducted analyses using a generalized additive model (GAM). First, we explored the seasonality of suicide and climate variables such as mean temperature, daily temperature range, solar radiation, and relative humidity. Next, we identified confounding climate variables associated with suicide rate. To estimate the adjusted effect of solar radiation on the suicide rate, we investigated the confounding variables using a multivariable GAM. Suicide rate showed seasonality with a pattern similar to that of solar radiation. We found that the suicide rate increased 1.008 times when solar radiation increased by 1 MJ/m 2 after adjusting for other confounding climate factors (P Solar radiation has a significant linear relationship with suicide after adjusting for region, other climate variables, and time trends. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  18. The effects of window alternatives on energy efficiency and building economy in high-rise residential buildings in moderate to humid climates

    International Nuclear Information System (INIS)

    Yaşar, Yalçın; Kalfa, Sibel Maçka

    2012-01-01

    Highlights: ► We investigated energy and economy efficiency of window alternatives in Trabzon. ► Energy consumptions of eight window alternatives were simulated and discussed. ► Window alternatives’s life cycle costs were calculated and compared. ► We suggested appropriate energy and economy efficient window alternatives. ► The study defines useful guidelines to select appropriate window alternatives. - Abstract: Currently, focused efforts are being made to determine the influence of windows on the energy consumption and economy of high-rise buildings. Certain window designs and appropriate glazing systems reduce building energy consumption for heating and cooling and contribute to building economy. This paper addresses double-glazed window units that are composed of tinted glass; clear reflective glass; low emissivity (low-e) glass; and smart glass (one surface consists of a high-performance, heat-reflective glass, and other surface has a low-emissivity coated). These materials reduce the heating and cooling loads of buildings by providing solar control and heat conservation. The aim of this study was to investigate the effects of these alternative units, rather than readily available double-glazed units, in two types of flats. The flats have the same construction and operating system, but they have different plan types with regard to building energy consumption and building economy as it relates to life cycle cost analysis. For this study, we selected buildings in Trabzon, in Climate Region II of Turkey, due to its moderate-humid climate. F- and C-type high-rise residential blocks, with flats composed of two to three bedrooms, constructed by the Republic of Turkey’s Prime Ministry Housing Development Administration of Turkey (TOKİ) are used as models for the simulation. The flat plans in these blocks are modeled using DesignBuilder v.1.8 energy simulation software. The simulation results show that smart-glazed units and those with low emissivity

  19. The impact of residential, commercial, and transport energy demand uncertainties in Asia on climate change mitigation

    International Nuclear Information System (INIS)

    Koljonen, Tiina; Lehtilä, Antti

    2012-01-01

    Energy consumption in residential, commercial and transport sectors have been growing rapidly in the non-OECD Asian countries over the last decades, and the trend is expected to continue over the coming decades as well. However, the per capita projections for energy demand in these particular sectors often seem to be very low compared to the OECD average until 2050, and it is clear that the scenario assessments of final energy demands in these sectors include large uncertainties. In this paper, a sensitivity analysis have been carried out to study the impact of higher rates of energy demand growths in the non-OECD Asia on global mitigation costs. The long term energy and emission scenarios for China, India and South-East Asia have been contributed as a part of Asian Modeling Exercise (AME). The scenarios presented have been modeled by using a global TIMES-VTT energy system model, which is based on the IEA-ETSAP TIMES energy system modeling framework and the global ETSAP-TIAM model. Our scenario results indicate that the impacts of accelerated energy demand in the non-OECD Asia has a relatively small impact on the global marginal costs of greenhouse gas abatement. However, with the accelerated demand projections, the average per capita greenhouse gas emissions in the OECD were decreased while China, India, and South-East Asia increased their per capita greenhouse gas emissions. This indicates that the costs of the greenhouse gas abatement would especially increase in the OECD region, if developing Asian countries increase their final energy consumption more rapidly than expected. - Highlights: ► Scenarios of final energy demands in developing Asia include large uncertainties. ► Impact of accelerated Asian energy demand on global mitigation costs is quite low. ► Accelerated Asian energy consumption increases GHG abatement costs in the OECD. ► 3.7 W/m 3 target is feasible in costs even with accelerated Asian energy demands. ► 2.6 W/m 2 target is beyond

  20. Solar Drying in Hot and Dry Climate of Jaipur

    OpenAIRE

    Parikh, Darshit; Agrawal, G. D.

    2016-01-01

    Objective of the present study was to design, develop and to carry out detail experimentation and then analyze solar cabinet dryer. For these various types of solar dryer, their principles and design methods, modeling, drying temperature, efficiency, utilization of dryer and payback period were reviewed. In the present study, solar cabinet dryer is constructed at Mechanical Engineering Department, M.N.I.T, Jaipur, latitude (26.01° N). The measurement of solar intensity, temperatures, relative...

  1. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  2. Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate.

    Science.gov (United States)

    Levasseur, Marie-Eve; Poulin, Patrick; Campagna, Céline; Leclerc, Jean-Marc

    2017-11-25

    A paradigm change in the management of environmental health issues has been observed in recent years: instead of managing specific risks individually, a holistic vision of environmental problems would assure sustainable solutions. However, concrete actions that could help translate these recommendations into interventions are lacking. This review presents the relevance of using an integrated indoor air quality management approach to ensure occupant health and comfort. At the nexus of three basic concepts (reducing contaminants at the source, improving ventilation, and, when relevant, purifying the indoor air), this approach can help maintain and improve indoor air quality and limit exposure to several contaminants. Its application is particularly relevant in a climate change context since the evolving outdoor conditions have to be taken into account during building construction and renovation. The measures presented through this approach target public health players, building managers, owners, occupants, and professionals involved in building design, construction, renovation, and maintenance. The findings of this review will help the various stakeholders initiate a strategic reflection on the importance of indoor air quality and climate change issues for existing and future buildings. Several new avenues and recommendations are presented to set the path for future research activities.

  3. Assessment of technical and economical viability for large-scale conversion of single family residential buildings into zero energy buildings in Brazil: Climatic and cultural considerations

    International Nuclear Information System (INIS)

    Pacheco, Miguel; Lamberts, Roberto

    2013-01-01

    This paper addresses the viability of converting single-family residential buildings in Brazil into zero energy buildings (ZEBs). The European Union and the United States aim ZEBs implementation to address ‘peak oil’ and environmental concerns. However, literature shows no agreement on a consensual definition of ZEB. Seeking a Brazilian ZEB definition, this paper addresses PassivHaus and thermal comfort standards for hot climates, source metrics for ZEB, Brazil′s energy mix, residential energy end uses and Brazilian legal framework for residential photovoltaic (PV) generation. Internal Rate of Return for PV systems in two Brazilian cities is calculated under various scenarios. It shows grid parity was reached from April 2012 to November 2012 assuming residential electric tariffs of that period and the financial conditions given by the Brazilian government for the construction of new dams in the Amazon and the lowest rates offered by Brazilian banks to private individuals. Governmental decision to lower electric residential tariffs in November 2012 reduced the scope of grid parity. Later revocation of a tax exemption in April 2013 ended grid parity in Brazil. It concludes, conversely to developed countries, it is the volatile Brazilian energy policy, instead of economical barriers, the main obstacle for ZEB viability in Brazil. - Highlights: • Critique on super insolated buildings as a good solution for hot climates. • PV parity already reached in some parts of Brazil. • Proposal for a zero energy building definition for Brazil. • Critique of the source metric for energy balance in zero energy buildings. • Average roof area in Brazil enough for PV array to meet average energy consumption

  4. Climatic effects during passage of the solar system through interstellar clouds

    International Nuclear Information System (INIS)

    Talbot, R.J. Jr.; Butler, D.M.; Newman, M.J.

    1976-01-01

    It is thought likely that the solar system passes through regions where there are a large number of dense interstellar clouds. When this occurs several processes may cause significant changes in the climate of the Earth and other planets. Matters here discussed include the influences of compression of the solar wind cavity, accretion of matter by the Sun, and particulate input into the Earth's atmosphere. Gravitational energy released by the accretion of interstellar material by the Sun may enhance the solar luminosity, and considerations of terrestrial heat balance suggest that luminosity enhancements of 1% or more will produce significant variations of climate. Observational evidence suggests that there is some mechanism producing a relationship between solar wind flow and climate. One proposed mechanism is that contemporary solar wind modulation of galactic cosmic rays influences climate, and the fact that the Earth would be outside the solar wind cavity for all or part of the year may have an effect on terrestrial climate. Relatively small variations of solar UV radiation input may have perceptible influences on climate, and if a 1% variation in radiation input to the stratosphere has a significant effect then accretion may have a large impact on terrestrial conditions, even though the change in the total heat balance is negligible.With regard to dust input into the Earth's atmosphere it is estimated that during the lifetime of the solar system the mass of dust grains accreted by the Earth should have been about 10 16 to 10 18 g; the matter of evidence for their presence is discussed. It is concluded that the processes proposed have very complex implications for global weather patterns; and at present it is not possible to evaluate which, if any, will unquestionably affect the Earth's climate. (U.K.)

  5. Environmental/Climatic Effect on Stand-Alone Solar Energy Supply ...

    African Journals Online (AJOL)

    This paper investigates the climatic eects and environmental variations on the performance of a stand-alone photovoltaic system. The eects of partial shading with dierent climate conditions and load resistance variations were examined. A survey of some of the work done in this eld of environmental eect on solar panel was ...

  6. Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Rose, Jørgen; Christen Mørck, Ove

    2016-01-01

    including new facades, new windows, additional insulation, mechanical ventilation with heat recovery and a photovoltaic installation on the roof. The measured energy consumption for heating and domestic hot water before and after renovation was 139.1 kWh/m2/year and 95.6 kWh/m2/year respectively......Denmark is participating in IEA EBC Annex 56 “Cost Effective Energy and Carbon Emissions Optimization in Building Renovation”. This paper presents results from the housing complex Traneparken that was chosen as a Danish case for the project. It has undergone a comprehensive energy retrofit......, and thereby the project has demonstrated that the renovation resulted in significant energy savings. Furthermore, a questionnaire survey was carried out focusing on the tenants’ overall satisfaction with the retrofitting process and the results of the retrofitting, including e.g. perceived indoor climate...

  7. A New Cogeneration Residential System Based on Solid Oxide Fuel Cells for a Northern European Climate

    DEFF Research Database (Denmark)

    Vialetto, Giulio; Rokni, Masoud

    2015-01-01

    of them received subsidies to increase installation and reduce cost. This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) system and heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...... which is a function of the electricity and heat demand of the user, and allows different operation strategies to be considered. The proposal is to maximize the efficiency of the system and to make it profitable, even though technologies with a high purchase cost are considered. Simulations of the system...... are performed under different strategies at a resort located in a northern European climate (Denmark) to cover electricity, space heating and domestic hot water (DHW) demands. The results of these simulations are analyzed with thermodynamic and techno-economic benchmarks, considering different economic...

  8. Solar origins of space weather and space climate

    CERN Document Server

    Komm, Rudolf; Pevtsov, Alexei; Leibacher, John

    2014-01-01

    This topical issue is based on the presentations given at the 26th National Solar Observatory (NSO) Summer Workshop held at the National Solar Observatory/Sacramento Peak, New Mexico, USA from 30 April to 4 May 2012. This unique forum brought together experts in different areas of solar and space physics to help in developing a full picture of the origin of solar phenomena that affect Earth’s technological systems.  The articles include theory, model, and observation research on the origin of the solar activity and its cycle, as well as a discussion on how to incorporate the research into space-weather forecasting tools.  This volume is aimed at graduate students and researchers active in solar physics and space science.  Previously published in Solar Physics, Vol. 289/2, 2014.

  9. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    Science.gov (United States)

    Lee, Kyoung Ok

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak demand be dominated by air conditioning use of residential buildings in the summer time. This extra peak demand caused by the use of air conditioning equipment lasts only a few days out of the year. As a result, unavoidable power outages have occurred when electric supply could not keep up with such electric demand. This thesis proposed a possible solution to this problem by using building thermal mass via phase change materials to reduce peak air conditioning demand loads. This proposed solution was tested via a new wall called Phase Change Frame Wall (PCFW). The PCFW is a typical residential frame wall in which Phase Change Materials (PCMs) were integrated to add thermal mass. The thermal performance of the PCFWs was first evaluated, experimentally, in two test houses, built for this purpose, located in Lawrence, KS and then via computer simulations of residential buildings located in coastal and transitional climates in California. In this thesis, a hydrated salt PCM was used, which was added in concentrations of 10% and 20% by weight of the interior sheathing of the walls. Based on the experimental results, under Lawrence, KS weather, the PCFWs at 10% and 20% of PCM concentrations reduced the peak heat transfer rates by 27.0% and 27.3%, on average, of all four walls, respectively. Simulated results using California climate data indicated that PCFWs would reduce peak heat transfer rates by 8% and 19% at 10% PCM concentration and 12.2% and 27% at 20% PCM concentration for the coastal and transitional climates, respectively. Furthermore, the PCFWs, at 10% PCM concentration, would reduce the space cooling load and the annual energy consumption by 10.4% and 7.2%, on average in both climates, respectively.

  10. A multi-model assessment of regional climate disparities caused by solar geoengineering

    International Nuclear Information System (INIS)

    Kravitz, Ben; Rasch, Philip J; Singh, Balwinder; Yoon, Jin-Ho; MacMartin, Douglas G; Robock, Alan; Ricke, Katharine L; Cole, Jason N S; Curry, Charles L; Irvine, Peter J; Ji, Duoying; Moore, John C; Keith, David W; Egill Kristjánsson, Jón; Muri, Helene; Tilmes, Simone; Watanabe, Shingo; Yang, Shuting

    2014-01-01

    Global-scale solar geoengineering is the deliberate modification of the climate system to offset some amount of anthropogenic climate change by reducing the amount of incident solar radiation at the surface. These changes to the planetary energy budget result in differential regional climate effects. For the first time, we quantitatively evaluate the potential for regional disparities in a multi-model context using results from a model experiment that offsets the forcing from a quadrupling of CO 2 via reduction in solar irradiance. We evaluate temperature and precipitation changes in 22 geographic regions spanning most of Earth's continental area. Moderate amounts of solar reduction (up to 85% of the amount that returns global mean temperatures to preindustrial levels) result in regional temperature values that are closer to preindustrial levels than an un-geoengineered, high CO 2 world for all regions and all models. However, in all but one model, there is at least one region for which no amount of solar reduction can restore precipitation toward its preindustrial value. For most metrics considering simultaneous changes in both variables, temperature and precipitation values in all regions are closer to the preindustrial climate for a moderate amount of solar reduction than for no solar reduction. (letter)

  11. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  12. Solar radiation in forested urban environments with dry climate. Case: Metropolitan Area of Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    Mariela Edith Arboit

    2014-12-01

    Full Text Available The aim of this work is to advance the understanding of the solar potential of urban residential environments which, by their morphology, and the impact of urban trees, present values of irradiance very different from full solar collection. Morphological variables of urban settings and urban trees, a very distinctive feature of the Mendoza Metropolitan Area (MMA, have a fundamental impact on the feasibility of implementing strategies for solar energy utilization in urban environments. The results achieved will contribute to modify and gradually update urban and building legislation to implement higher levels of energy efficiency and minimum environmental impacts.This work proposes to study the potential of solar collection in urban environments, analyzing eleven urban configurations selected according to their building and urban morphological characteristics.Methodologically, we have monitored the global solar irradiance on vertical plane on northern facades, completely sunny and partly sunny, affected by solid masking and arboreal masking. Results obtained so far indicate that solar masking is critical for vertical surfaces, with a reduction of the available solar energy between 2% and 66% in the winter season. However, these drawbacks caused by urban trees are compensated by benefits in the warm season: controlling the intensity of the urban heat island, absorption of pollutants, cooling and humidifying the air through evapotranspiration, reducing thermal loads of buildings, occupancy of public open spaces, and an invaluable contribution to the urban aesthetic.

  13. Solar water heaters: possibilities of using in the climatic conditions of the Russia medium area

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.

    2001-01-01

    On the basis of mathematical simulation of the simplest solar water heating facility using up-to-date software and data of typical meteorological year it was shown that under the real climatic conditions peculiar to Russia central region it is appropriate to use seasonal solar water heaters operating from March up to September. It is shown that to promote solar water heaters in the Russian market one should elaborate engineering approaches and should introduce new materials ensuring reduction of cost of solar water heaters with the availability of high quality and durability [ru

  14. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  15. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    Science.gov (United States)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  16. Mitigation of Short-Lived Climate Pollutants from Residential Coal Heating and Combined Heating/Cooking Stoves: Impacts on the Cryosphere, Policy Options, and Co-benefits

    Science.gov (United States)

    Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.

    2017-12-01

    Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model

  17. Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, N. [University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER), Hessbruehlstr. 49a, 70565 Stuttgart (Germany); Glueck, C. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Schmidt, F.P. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-05-15

    We present a comparison of solar thermal and solar electric cooling for a typical small office building exposed to two different European climates (Freiburg and Madrid). The investigation is based on load series for heating and cooling obtained previously from annual building simulations in TRNSYS. A conventional compression chiller is used as the reference system against which the solar options are evaluated with respect to primary energy savings and additional cost. A parametric study on collector and storage size is carried out for the solar thermal system to reach achieve the minimal cost per unit of primary energy saved. The simulated solar electric system consists of the reference system, equipped with a grid connected photovoltaic module, which can be varied in size. For cost comparison of the two systems, the electric grid is assumed to function as a cost-free storage. A method to include macroeconomic effects in the comparison is presented and discussed. Within the system parameters and assumptions used here, the grid coupled PV system leads to lower costs of primary energy savings than the solar thermal system at both locations. The presumed macroeconomic advantages of the solar thermal system, due to the non-usage of energy during peak demand, can be confirmed for Madrid. (author)

  18. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  19. Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions.

    Science.gov (United States)

    Uctug, Fehmi Gorkem; Azapagic, Adisa

    2018-05-01

    Solar water heating (SWH) systems could help reduce environmental impacts from energy use but their performance and impacts depend on the climate. This paper considers how these vary for residential SWH across four different climatic regions in Turkey, ranging from hot to cold climates. Life cycle assessment was used for these purposes. The results suggest that in the hotter regions, the impacts of SWH are 1.5-2 times lower than those of natural gas boilers. A similar trend was observed in the two colder regions except for acidification, which was four times higher than that of the boiler. The raw materials and electricity required for the manufacturing of the systems were found to be the most important contributors to the impacts. Recycling the major components instead of landfilling reduced human toxicity potential by 50% but had only a small effect (5%) on the other impacts. The impacts were highly sensitive to the type of material used for the construction of the hot storage tank, but were not affected by transport and end-of life recycling. The only exception to the latter is human toxicity potential which decreased significantly with greater recycling. Extrapolating the results at the national level showed that SWH systems could reduce the annual greenhouse gas emissions in Turkey by 790kt CO 2 -eq. and would save the economy $162.5millionperyear through the avoided imports of natural gas. All other impacts would also be reduced significantly (3-32 times), except for acidification which would double. Therefore, SWH systems should be deployed more extensively in Turkey but government incentives may be needed to stimulate the uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of Vernacular Climatic Strategies (VCS on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City

    Directory of Open Access Journals (Sweden)

    Amin Mohammadi

    2017-10-01

    Full Text Available This study aims to use the vernacular climatic strategies (VCS of traditional dwellings in Bushehr, in the common residential buildings of this southern Iranian city (which is characterized by its hot and humid climate, and provide answers to the following question: What effects do VCS have in terms of energy consumption in these buildings? This study has been conducted at three levels. At the first level, three context-based climatic solutions including shading, natural ventilation, and insulation of external walls and roofs were identified and selected based on bibliographic study. At the second level, a case study reflecting the current typology of common residential buildings in Bushehr city was selected. A combination of the mentioned climatic solutions was used in the baseline case to create a developed model. Based on the space layout of the developed model and some design criteria, a series of proposed models was also created and modeled. The selected case study building was also used to establish a local weather station at a height of 12 m based on the roof, collecting local climate data which were then used for simulation to improve simulation accuracy. Finally, all models were simulated with the use of Design Builder software under natural ventilation conditions during moderate climatic periods of the year while split air-conditioning systems were used during hot and humid periods. The results showed reductions of 16% in energy consumption and 22% in CO2 emissions for the developed model, and reductions of 24–26% in energy consumption and 32–34% in CO2 emissions for the proposed models, as compared with the baseline model. Furthermore, all proposed models achieved lower annual energy consumption when compared with a selection of international sustainable low energy standards and domestic energy performance references for the Middle East region. Further studies are also recommended, and there is potential for combining VCS with

  1. Solar activity and terrestrial climate: an analysis of some purported correlations

    DEFF Research Database (Denmark)

    Laut, Peter

    2003-01-01

    claimed to support solar hypotheses. My analyses show that the apparent strong correlations displayed on these graphs have been obtained by an incorrect handling of the physical data. Since the graphs are still widely referred to in the literature and their misleading character has not yet been generally......The last decade has seen a revival of various hypotheses claiming a strong correlation between solar activity and a number of terrestrial climate parameters: Links between cosmic rays and cloud cover, first total cloud cover and then only low clouds, and between solar cycle lengths and Northern...... the existence of important links between solar activity and terrestrial climate. Such links have over the years been demonstrated by many authors. The sole objective of the present analysis is to draw attention to the fact that some of the widely publicized, apparent correlations do not properly reflect...

  2. Regional variations in the health, environmental, and climate benefits of wind and solar generation.

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay

    2013-07-16

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region.

  3. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    2015-03-12

    Mar 12, 2015 ... addition, the concentration of carbon dioxide over Malawi within the same period as temperature and solar radiation data ... plant diseases and pests which may have adverse effects ... object that absorbs and emits radiation).

  4. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  5. Vulnerability of solar energy infrastructure and output to extreme events: Climate change implications (Conference paper)

    OpenAIRE

    Patt, A.; Pfenninger, S.; Lilliestam, J.

    2010-01-01

    This paper explores the potential vulnerability of solar energy systems to future extreme event risks as a consequence of climate change. We describe the three main technologies likely to be used to harness sunlight -- thermal heating, photovoltaic (PV), and concentrating solar power (CSP) -- and identify critical extreme event vulnerabilities for each one. We then compare these vulnerabilities with assessments of future changes in extreme event risk levels. We do not identify any vulnerabili...

  6. Smart Control System to Optimize Time of Use in a Solar-Assisted Air-Conditioning by Ejector for Residential Sector

    Directory of Open Access Journals (Sweden)

    Giovanna Avedian-González

    2018-02-01

    Full Text Available The present work provides a series of theoretical improvements of a control strategy in order to optimize the time of use of solar air-conditioning by an ejector distributed in multiple solar collectors of vacuum tubes for the residential sector, which will allow us to reduce carbon-dioxide emissions, costs and electrical energy consumption. In a solar ejector cooling system, the instability of the solar source of energy causes an operational conflict between the solar thermal system and ejector cooling cycle. A fuzzy control structure for the supervisory ejector cycle and multi-collector control system is developed: the first control is applied to control the mass flow of the generator and the evaporator for different cooling capacities (3, 3.5, 4, 4.5 and 5 kW and set a temperature reference according to the operating conditions; the second is applied to keep a constant temperature power source that feeds the low-grade ejector cooling cycle using R134aas refrigerant. For the present work, the temperature of the generator oscillates between 65 °C and 90 °C, a condenser temperature of 30 °C and an evaporator temperature of 10 °C. For the purpose of optimization, there are different levels of performance for time of use: the Mode 0 (economic gives a performance of 17.55 h, Mode 5 (maximum cooling power 14.86 h and variable mode (variable mode of capacities 16.25 h, on average. Simulations are done in MATLAB-Simulink applying fuzzy logic for a mathematical model of the thermal balance. They are compared with two different types of solar radiation: real radiation and disturbed radiation.

  7. Energy savings solutions: passive solar design in Iranian cold climate

    Energy Technology Data Exchange (ETDEWEB)

    Nassehzadeh Tabriz, Shahram [Department of Architecture, Miyaneh Branch, Islamic Azad University (Iran, Islamic Republic of)], email: sh_nassehzadeh@m-iau.ac.ir; Mahdavi Tabatabaei Fard, Fariborz [SABAT TARH CO. (Iran, Islamic Republic of)], email: sabat_arc@yahoo.com; Aliyev, Fagan [International Eco-energy Academy (Azerbaijan)], email: ie_academy@yahoo.com

    2011-07-01

    In recent years, there has been a significant increase in the cost of fuel gas, fuel oil and electricity and much thought has been given to the use of solar energy. Living in a solar heated house gives peace of mind and body and it makes good sense in mountainous regions. Severe winters in such regions make more energy for standard living activities in buildings necessary. This paper discusses passive solar building design as an energy saving solution. In this type of design, windows, walls and floors act as storage and distribution devices for solar energy in winter and deflect solar heat in summer. Passive solar design techniques influence the choice of building site, design and materials within the general framework of enriching the quality of life of the inhabitants. As a result, natural resources are saved and the environment is conserved for future generations. In conclusion, it is seen that passive design keeps a home cool and comfortable in summer and warm and cozy in winter with minimal heating and cooling requirements.

  8. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  9. Wind and Solar Energy Role in the Achievement of EU Climate Policy After 2020

    International Nuclear Information System (INIS)

    Knezevic, S.

    2016-01-01

    This paper grades the possible role of solar and wind energy in the generation of electricity after 2020. The development of those energy sources will be defined by the climate policy implemented based on the last year's Paris Climate Agreement, but also by the existing initiatives of the European Commission (2030 climate and energy framework and 2050 low-carbon economy). Additionally, electricity generation from RES is observed through the decrease of dependency on the import of fossil fuels outside of the EU. According to the report of the International Renewable Energy Agency (IRENA), the biggest share of RES power plants, after hydro power plants, in EU are wind and solar power plants. Both wind and sun are constantly available resources, but with variable specific power, which makes the maximal generation dependent on the time of day and/or weather (wind, clouds). Future increase of wind and solar energy has to be observed from various perspectives as to properly grade it for the next period, until 2020. Therefore, this paper considers the following, intertwined aspects: Maturity of wind and solar technologies and future trends, Price of electricity generation from wind and solar power plants, with an analysis of price decreasing trends; Possibilities of power energy system and measures for the acceptance of wind and solar power plants; Integrative approach to all forms and transformations of electricity; Market integration of RES - aspirations towards free trade(author).

  10. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering

    Science.gov (United States)

    Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.; Jones, Andy; Guo, Xiaoran; Moore, John C.

    2018-02-01

    The 2015 Paris Agreement aims to limit global warming to well below 2 K above preindustrial levels, and to pursue efforts to limit global warming to 1.5 K, in order to avert dangerous climate change. However, current greenhouse gas emissions targets are more compatible with scenarios exhibiting end-of-century global warming of 2.6-3.1 K, in clear contradiction to the 1.5 K target. In this study, we use a global climate model to investigate the climatic impacts of using solar geoengineering by stratospheric aerosol injection to stabilize global-mean temperature at 1.5 K for the duration of the 21st century against three scenarios spanning the range of plausible greenhouse gas mitigation pathways (RCP2.6, RCP4.5, and RCP8.5). In addition to stabilizing global mean temperature and offsetting both Arctic sea-ice loss and thermosteric sea-level rise, we find that solar geoengineering could effectively counteract enhancements to the frequency of extreme storms in the North Atlantic and heatwaves in Europe, but would be less effective at counteracting hydrological changes in the Amazon basin and North Atlantic storm track displacement. In summary, solar geoengineering may reduce global mean impacts but is an imperfect solution at the regional level, where the effects of climate change are experienced. Our results should galvanize research into the regionality of climate responses to solar geoengineering.

  11. Exploring the impact of permitting and local regulatory processes on residential solar prices in the United States

    International Nuclear Information System (INIS)

    Burkhardt, Jesse; Wiser, Ryan; Darghouth, Naïm; Dong, C.G.; Huneycutt, Joshua

    2015-01-01

    This article statistically isolates the impacts of city-level permitting and other local regulatory processes on residential PV prices in the United States. We combine data from two “scoring” mechanisms that independently capture local regulatory process efficiency with the largest dataset of installed PV prices in the United States. We find that variations in local permitting procedures can lead to differences in average residential PV prices of approximately $0.18/W between the jurisdictions with the least-favorable and most-favorable permitting procedures. Between jurisdictions with scores across the middle 90% of the range (i.e., 5th percentile to 95th percentile), the difference is $0.14/W, equivalent to a $700 (2.2%) difference in system costs for a typical 5-kW residential PV installation. When considering variations not only in permitting practices, but also in other local regulatory procedures, price differences grow to $0.64–$0.93/W between the least-favorable and most-favorable jurisdictions. Between jurisdictions with scores across the middle 90% of the range, the difference is equivalent to a price impact of at least $2500 (8%) for a typical 5-kW residential PV installation. These results highlight the magnitude of cost reduction that might be expected from streamlining local regulatory regimes. - Highlights: • We show local regulatory processes meaningfully affect U.S. residential PV prices. • We use regression analysis and two mechanisms for “scoring” regulatory efficiency. • Local permitting procedure variations can produce PV price differences of $0.18/W. • Broader regulatory variations can produce PV price differences of $0.64–$0.93/W. • The results suggest the cost-reduction potential of streamlining local regulations

  12. Experimental Evaluation of a Flat Plate Solar Collector Under Hail City Climate

    Directory of Open Access Journals (Sweden)

    N. Ben Khedher

    2018-04-01

    Full Text Available Flat plate solar water heaters are widely used for water heating in low-temperature residential applications. In this paper the thermal performance of a solar flat plate water heater under Hail weather conditions (latitude 27°52΄N longitude ‎41°69΄E was experimentally investigated. Fluid was circulated through the imbedded copper tubes in the flat plate collector and inlet and outlet temperatures of the fluid were noted at five minute intervals. The experimental-time was between 9:00AM-15:00PM. A study was carried out experimentally to present the efficiency curves of a flat plate solar collector at different flow rates. ASHRAE standard 93-2003 was followed for calculation of instantaneous efficiency of solar collector. Result shows that the flow rate of the circulating fluid highly influence the thermal efficiency of the solar collector. Optimum flow rate of 2.5L/min leads to maximum collector efficiency.

  13. Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio

    KAUST Repository

    Sabry, Hanan

    2014-05-01

    Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance of clear skies.The daylighting and energy performance of solar screens is affected by many parameters. These include screen perforation, depth, reflectivity and color, aspect ratio of openings, shape, tilt angle and rotation. Changing some of these parameters can improve the daylighting performance drastically. However, this can result in increased energy consumption. A balanced solution must be sought, where acceptable daylighting performance would be achieved at minimum energy consumption.This paper aims at defining solar screen designs that achieve visual comfort and at the same time minimum energy consumption in residential desert settings. The study focused on the effect of changing the solar screen axial rotation and the aspect ratio of its openings under the desert clear-sky. The individual and combined effects of changing these parameters were studied.Results of this study demonstrated that a non-rotated solar screen that has wide horizontal openings (aspect ratio of 18:1) proved to be successful in the north and south orientations. Its performance in the east/west orientations was also superior. In contrast, the screen that was rotated along its vertical axis while having small size openings (aspect ratio of 1:1) proved to be more successful in the east/west orientations. Its performance in the north orientation was also good. These solutions enhanced daylighting performance, while maintaining the energy consumption at a minimum.Moreover, it was observed that combining two screen parameters which proved useful in previous studies on daylighting or thermal performance does not add up to better solutions. The combined solutions that were tested in this study did not prove successful in satisfying daylighting and thermal

  14. A review on factors for maximizing solar fraction under wet climate environment in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Kadir, Mohd Zainal Abidin Ab; Rafeeu, Yaaseen [Alternative and Renewable Energy Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2010-10-15

    Solar energy is the most promising source of clean, renewable energy and it has the greatest potential of any power source to solve the world's energy problems. However, the problem, is how best to harness this vast amount of solar energy. Nevertheless, even if highly efficient Concentrating Solar Power (CSP) could be made cheaply, there would be considerable change in solar power. This technology is expected to be more efficient and to achieve a manufacturing cost of less than $1/W near future. This paper reviews and elaborates the methodology utilized to design and fabricate the solar dish concentrator and outlines the parameters that can be used to increase the efficiency of solar fraction in parabolic dish concentrator under wet climate environment in Malaysia. The study finally provides ideas to the continually increasing ability of these technologies to concentrate and harness solar energy for electricity production and thus eliminate the growing concern over climate change and how it will hurt the region's environment, human health and economy. (author)

  15. A review on factors for maximizing solar fraction under wet climate environment in Malaysia

    International Nuclear Information System (INIS)

    Kadir, Mohd Zainal Abidin Ab; Rafeeu, Yaaseen

    2010-01-01

    Solar energy is the most promising source of clean, renewable energy and it has the greatest potential of any power source to solve the world's energy problems. However, the problem, is how best to harness this vast amount of solar energy. Nevertheless, even if highly efficient Concentrating Solar Power (CSP) could be made cheaply, there would be considerable change in solar power. This technology is expected to be more efficient and to achieve a manufacturing cost of less than $1/W near future. This paper reviews and elaborates the methodology utilized to design and fabricate the solar dish concentrator and outlines the parameters that can be used to increase the efficiency of solar fraction in parabolic dish concentrator under wet climate environment in Malaysia. The study finally provides ideas to the continually increasing ability of these technologies to concentrate and harness solar energy for electricity production and thus eliminate the growing concern over climate change and how it will hurt the region's environment, human health and economy. (author)

  16. Study of the Thermal Behaviour of Water for Residential Use in Tanks of Concrete and Polyethylene in Humid Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Diego-Ayala Ulises

    2015-09-01

    Full Text Available This article presents a comparative study of the thermal behavior of residential water tanks of polyethylene and concrete exposed to the sun over a year in the state of Yucatan. The energy for radiation and their corresponding temperatures in each system were measured. Daily patterns of elevation and reduction of temperature were identified and the amount of energy acquired during the day as well as the heat dissipated overnight were determined, aiming to determine the possibility of using residential water tanks as a source of hot water in residential homes in the Yucatan region. Based on this study it has been found that the periods of the day with hot water temperature for showering with comfort is limited and that, interestingly, both systems show similar temperatures at the bottom of the tanks throughout the year.

  17. Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong

    International Nuclear Information System (INIS)

    Chow, T.T.; Fong, K.F.; Chan, A.L.S.; Lin, Z.

    2006-01-01

    There is a growing, government-led trend of applying renewable energy in Hong Kong. One area of interest lies in the wider use of solar-energy systems. The worldwide fast development of building-integrated solar technology has prompted the design alternative of fixing the solar panels on the external facades of buildings. In Hong Kong, high-rise buildings are found everywhere in the urban districts. How to make full use of the vertical facades of these buildings to capture the most solar radiation can be an important area in the technology promotion. In this numerical study, the potential application of a centralized solar water-heating system in high-rise residence was evaluated. Arrays of solar thermal collectors, that occupied the top two-third of the south and west facades of a hypothetical high-rise residence, were proposed for supporting the domestic hot-water system. Based on typical meteorological data, it was found that the annual efficiency of the vertical solar collectors could reach 38.4% on average, giving a solar fraction of 53.4% and a payback period of 9.2 years. Since the solar collectors were able to reduce the heat transmission through the building envelope, the payback was in fact even shorter if the energy saving in air-conditioner operation was considered

  18. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  19. Financial analysis on the proposed renewable heat incentive for residential houses in the United Kingdom: A case study on the solar thermal system

    International Nuclear Information System (INIS)

    Abu-Bakar, Siti Hawa; Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Mallick, Tapas Kumar; McLennan, Campbell; Abdul Rahim, Ruzairi

    2014-01-01

    This short communication paper focuses on the renewable heat incentive (RHI) scheme in the United Kingdom (UK); and in particular, on its implication on domestic installations of solar thermal systems (STSs). First, a short review on the STS in the UK is provided. Then, a detailed description of the RHI is discussed. A financial analysis is presented afterwards, analysing the impact of the RHI scheme on the applicants, in terms of the net present value and the internal rate of return. From the financial analysis it has been found that the RHI scheme for domestic installations is only attractive if a longer period of RHI payment, i.e. 17 years, or a higher RHI rate i.e. £0.32 per kW h is implemented. The current proposal from the UK government is not financially viable, and as a result, it may hinder the penetration of domestic solar thermal systems in the residential sector in the UK. - Highlights: • A short review on solar thermal system (STS) is presented. • The renewable heat incentive (RHI) scheme is discussed. • A financial analysis is evaluated under the RHI scheme in the UK. • The analysis indicates the current proposal is not desirable to consumers

  20. Factor 4 working group: preparing future is urgent. Energy saving certificates. The tax credit boosts the solar water heater and heat pump sales. Climatic change and energy: the Californian example

    International Nuclear Information System (INIS)

    Laverne, R.; Rabany, B.; Leclercq, M.; Lorec, Ph.; Schweitzer, J.Ph.

    2007-01-01

    This issue of 'Energies et Matieres Premieres' newsletter comprises 4 articles dealing with: the concluding report of the 'Factor 4' working group which expresses 28 recommendations in the form of energy policy proposals necessary to be implemented as soon as possible in order for France to start a society and economy transition and to reach the 2050 goal of dividing the present day greenhouse gas emissions by a factor 4; the energy saving certificates implemented with the July 13, 2005 law of energy policy choices, which targets the diffuse energy saving sources in the residential and tertiary sectors; the success of the tax credit for the use of solar thermal water heaters, wood-fuel space heating appliances and air/water and geothermal heat pumps, in particular in the residential sector; the problem of the links between climatic change and energy and the lessons learnt from the example of the 'new sustainable economy' of California (USA). (J.S.)

  1. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    OpenAIRE

    Abbasi, Yasser; Baniasadi, Ehsan; Ahmadikia, Hossein

    2016-01-01

    This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground sour...

  2. Quantifying uncertainties of climate signals related to the 11-year solar cycle

    Science.gov (United States)

    Kruschke, T.; Kunze, M.; Matthes, K. B.; Langematz, U.; Wahl, S.

    2017-12-01

    Although state-of-the-art reconstructions based on proxies and (semi-)empirical models converge in terms of total solar irradiance, they still significantly differ in terms of spectral solar irradiance (SSI) with respect to the mean spectral distribution of energy input and temporal variability. This study aims at quantifying uncertainties for the Earth's climate related to the 11-year solar cycle by forcing two chemistry-climate models (CCMs) - CESM1(WACCM) and EMAC - with five different SSI reconstructions (NRLSSI1, NRLSSI2, SATIRE-T, SATIRE-S, CMIP6-SSI) and the reference spectrum RSSV1-ATLAS3, derived from observations. We conduct a unique set of timeslice experiments. External forcings and boundary conditions are fixed and identical for all experiments, except for the solar forcing. The set of analyzed simulations consists of one solar minimum simulation, employing RSSV1-ATLAS3 and five solar maximum experiments. The latter are a result of adding the amplitude of solar cycle 22 according to the five reconstructions to RSSV1-ATLAS3. Our results show that the climate response to the 11y solar cycle is generally robust across CCMs and SSI forcings. However, analyzing the variance of the solar maximum ensemble by means of ANOVA-statistics reveals additional information on the uncertainties of the mean climate signals. The annual mean response agrees very well between the two CCMs for most parts of the lower and middle atmosphere. Only the upper mesosphere is subject to significant differences related to the choice of the model. However, the different SSI forcings lead to significant differences in ozone concentrations, shortwave heating rates, and temperature throughout large parts of the mesosphere and upper stratosphere. Regarding the seasonal evolution of the climate signals, our findings for short wave heating rates, and temperature are similar to the annual means with respect to the relative importance of the choice of the model or the SSI forcing for the

  3. Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy

    Directory of Open Access Journals (Sweden)

    Baptiste François

    2018-01-01

    Full Text Available Moving towards energy systems with high variable renewable energy shares requires a good understanding of the impacts of climate change on the energy penetration. To do so, most prior impact studies have considered climate projections available from Global Circulation Models (GCMs. Other studies apply sensitivity analyses on the climate variables that drive the system behavior to inform how much the system changes due to climate change. In the present work, we apply the Decision Scaling approach, a framework merging these two approaches, for analyzing a renewables-only scenario for the electric system of Northern Italy where the main renewable sources are solar and hydropower. Decision Scaling explores the system sensibility to a range of future plausible climate states. GCM projections are considered to estimate probabilities of the future climate states. We focus on the likely future energy mix within the region (25% of solar photovoltaic and 75% of hydropower. We also carry out a sensitivity analysis according to the storage capacity. The results show that run-of-the river power generation from this Alpine area is expected to increase although the average inflow decreases under climate change. They also show that the penetration rate is expected to increase for systems with storage capacity less than one month of average load and inversely for higher storage capacity.

  4. Implications of potential future grand solar minimum for ozone layer and climate

    Science.gov (United States)

    Arsenovic, Pavle; Rozanov, Eugene; Anet, Julien; Stenke, Andrea; Schmutz, Werner; Peter, Thomas

    2018-03-01

    Continued anthropogenic greenhouse gas (GHG) emissions are expected to cause further global warming throughout the 21st century. Understanding the role of natural forcings and their influence on global warming is thus of great interest. Here we investigate the impact of a recently proposed 21st century grand solar minimum on atmospheric chemistry and climate using the SOCOL3-MPIOM chemistry-climate model with an interactive ocean element. We examine five model simulations for the period 2000-2199, following the greenhouse gas concentration scenario RCP4.5 and a range of different solar forcings. The reference simulation is forced by perpetual repetition of solar cycle 23 until the year 2199. This reference is compared with grand solar minimum simulations, assuming a strong decline in solar activity of 3.5 and 6.5 W m-2, respectively, that last either until 2199 or recover in the 22nd century. Decreased solar activity by 6.5 W m-2 is found to yield up to a doubling of the GHG-induced stratospheric and mesospheric cooling. Under the grand solar minimum scenario, tropospheric temperatures are also projected to decrease compared to the reference. On the global scale a reduced solar forcing compensates for at most 15 % of the expected greenhouse warming at the end of the 21st and around 25 % at the end of the 22nd century. The regional effects are predicted to be significant, in particular in northern high-latitude winter. In the stratosphere, the reduction of around 15 % of incoming ultraviolet radiation leads to a decrease in ozone production by up to 8 %, which overcompensates for the anticipated ozone increase due to reduced stratospheric temperatures and an acceleration of the Brewer-Dobson circulation. This, in turn, leads to a delay in total ozone column recovery from anthropogenic halogen-induced depletion, with a global ozone recovery to the pre-ozone hole values happening only upon completion of the grand solar minimum.

  5. A preliminary impact assessment of typhoon wind risk of residential buildings in Japan under future climate change

    DEFF Research Database (Denmark)

    Nishijima, Kazuyoshi; Maruyama, Takashi; Graf, Mathias

    2012-01-01

    are that in the future (2075–2099) at most locations of Japan: (1) extreme wind events (10-minute sustained wind speed exceeding 30 m/s) are more likely to occur; (2) the median of the annual maximum wind speed decreases; (3) the expected number of damaged residential buildings decreases, assuming that the profile...

  6. Generation of typical solar radiation data for different climates of China

    International Nuclear Information System (INIS)

    Zang, Haixiang; Xu, Qingshan; Bian, Haihong

    2012-01-01

    In this study, typical solar radiation data are generated from both measured data and synthetic generation for 35 stations in six different climatic zones of China. (1) By applying the measured weather data during at least 10 years from 1994 to 2009, typical meteorological years (TMYs) for 35 cities are generated using the Finkelstein–Schafer statistical method. The cumulative distribution function (CDF) of daily global solar radiation (DGSR) for each year is compared with the CDF of DGSR for the long-term years in six different climatic stations (Sanya, Shanghai, Zhengzhou, Harbin, Mohe and Lhasa). The daily global solar radiation as typical data obtained from the TMYs are presented in the Table. (2) Based on the recorded global radiation data from at least 10 years, a new daily global solar radiation model is developed with a sine and cosine wave (SCW) equation. The results of the proposed model and other empirical regression models are compared with measured data using different statistical indicators. It is found that solar radiation data, calculated by the new model, are superior to these from other empirical models at six typical climatic zones. In addition, the novel SCW model is tested and applied for 35 stations in China. -- Highlights: ► Both TMY method and synthetic generation are used to generate solar radiation data. ► The latest and accurate long term weather data in six different climates are applied. ► TMYs using new weighting factors of 8 weather indices for 35 regions are obtained. ► A new sine and cosine wave model is proposed and utilized for 35 major stations. ► Both TMY method and the proposed regression model perform well on monthly bases.

  7. 关于住宅建筑太阳能热水系统设计的探讨%Design of Solar Water Heating System in Residential Buildings

    Institute of Scientific and Technical Information of China (English)

    王彬

    2015-01-01

    太阳能系统建筑一体化设计,在住宅建筑实践中已被广泛应用,且收效良好。结合本刊刊发的某篇关于太阳能热水系统设计的论述,对其重点提出的“集中集热-分户使用的热水系统”加以再分析。本着严谨的技术适用性分析态度,现提出住宅建筑太阳能热水系统在一般条件下的首选方案,即采取独立分户系统;以及在不同建筑高度、建筑朝向、日照条件等情况下,综合利用建筑平、立面进行立体布局;特殊情况下,甚至可利用太阳能光伏系统进行补充,从而促进和鼓励系统使用效率,实现系统最大化节能减排作用。%Building integrated solar system has been widely used in residential construction with good effect. A paper was issued in this Journal about solar hot water system, and the related analysis on centralized heat water systems for household use is reviewed. In a rigorous analysis of the technical suitability, the preferred solution is proposed for the residential building’s solar hot water systems in general terms, which is the independent household system; three-dimensional layout of the facade shall be utilized in the case of different building heights, building orientation and sunshine conditions; the solar photovoltaic system even shall be supplemented in special circumstances, to promote system using efficiency and achieve the maximized energy efficiency and emission reduction effect.

  8. Solar electricity: An effective asset to supply urban loads in hot climates

    Science.gov (United States)

    Robert, Fabien Chidanand; Gopalan, Sundararaman

    2018-04-01

    While human population has been multiplied by four in the last hundred years, the world energy consumption was multiplied by ten. The common method of using fossil fuels to provide energy and electricity has dangerously disturbed nature's and climate's balance. It has become urgent and crucial to find sustainable and eco-friendly alternatives to preserve a livable environment with unpolluted air and water. Renewable energy is the unique eco-friendly opportunity known today. The main challenge of using renewable energy is to ensure the constant balance of electricity demand and generation on the electrical grid. This paper investigates whether the solar electricity generation is correlated with the urban electricity consumption in hot climates. The solar generation and total consumption have been compared for three cities in Florida. The hourly solar generation has been found to be highly correlated with the consumption that occurs 6 h later, while the monthly solar generation is correlated with the monthly energy consumption. Producing 30% of the electricity using solar energy has been found to compensate partly for the monthly variation in the urban electricity demand. In addition, if 30% of the world electricity is produced using solar, global CO2 emissions would be reduced by 11.7% (14.6% for India). Thus, generating 30% solar electricity represents a valuable asset for urban areas situated in hot climates, reducing the need for electrical operating reserve, providing local supply with minimal transmission losses, but above all reducing the need for fossil fuel electricity and reducing global CO2 emission.

  9. Solar Irradiance Variability and Its Impacts on the Earth Climate System

    Science.gov (United States)

    Harder, J. W.; Woods, T. N.

    The Sun plays a vital role in the evolution of the climates of terrestrial planets. Observations of the solar spectrum are now routinely made that span the wavelength range from the X-ray portion of the spectrum (5 nm) into the infrared to about 2400 nm. Over this very broad wavelength range, accounting for about 97% of the total solar irradiance, the intensity varies by more than 6 orders of magnitude, requiring a suite of very different and innovative instruments to determine both the spectral irradiance and its variability. The origins of solar variability are strongly linked to surface magnetic field changes, and analysis of solar images and magnetograms show that the intensity of emitted radiation from solar surface features in active regions has a very strong wavelength and magnetic field strength dependence. These magnetic fields produce observable solar surface features such as sunspots, faculae, and network structures that contribute in different ways to the radiated output. Semi-empirical models of solar spectral irradiance are able to capture much of the Sun's output, but this topic remains an active area of research. Studies of solar structures in both high spectral and spatial resolution are refining this understanding. Advances in Earth observation systems and high-quality three-dimensional chemical climate models provide a sound methodology to study the mechanisms of the interaction between Earth's atmosphere and the incoming solar radiation. Energetic photons have a profound effect on the chemistry and dynamics of the thermosphere and ionosphere, and these processes are now well represented in upper atmospheric models. In the middle and lower atmosphere the effects of solar variability enter the climate system through two nonexclusive pathways referred to as the top-down and bottom-up mechanisms. The top-down mechanism proceeds through the alteration of the photochemical rates that establish the middle atmospheric temperature structure and

  10. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel (Germany); Vichi, Marcello; Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia (INGV), Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2012-10-15

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall {approx}0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  11. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    International Nuclear Information System (INIS)

    Patara, Lavinia; Vichi, Marcello; Masina, Simona; Fogli, Pier Giuseppe; Manzini, Elisa

    2012-01-01

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall ∼0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  12. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  13. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, a. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  14. Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

    2013-08-01

    The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

  15. Global map of solar power production efficiency, considering micro climate factors

    Science.gov (United States)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  16. Solar thermal space heating combined with swimming pool heating: A promising solution for southern Europe climates

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.J.; Neves, Ana [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The system concept evaluation performed focused on systems that can provide hot water, space heating and swimming-pool heating, and are designed for application in southern climates specifically for single-family houses. Due to the climate characteristics of southern Europe, space heating is required only for a few months in the year. In this evaluation it was considered a six month period for space heating and, on the other six months, swimming pool heating was considered. This type of systems are applicable to a niche market of people who are building their houses as single-family houses and want also to take profit of the good climate conditions for the use of solar energy. It is common that the construction of a swimming pool is also planned and constructed. The evaluation is made considering as reference system a factory made with 4m{sup 2} collector area and 300 l storage tank. The system in evaluation offers extra service - space heating and swimming pool heating and is formed by a collector field and a combistore providing solar hot water preparation and space heating in the winter period and providing also swimming pool heating in the summer period. The evaluation made shows that in southern Europe climates this system will give extra service in comparison to the traditional solar systems used and can be economically interesting.

  17. Understanding the origin of the solar cyclic activity for an improved earth climate prediction

    Science.gov (United States)

    Turck-Chièze, Sylvaine; Lambert, Pascal

    This review is dedicated to the processes which could explain the origin of the great extrema of the solar activity. We would like to reach a more suitable estimate and prediction of the temporal solar variability and its real impact on the Earth climatic models. The development of this new field is stimulated by the SoHO helioseismic measurements and by some recent solar modelling improvement which aims to describe the dynamical processes from the core to the surface. We first recall assumptions on the potential different solar variabilities. Then, we introduce stellar seismology and summarize the main SOHO results which are relevant for this field. Finally we mention the dynamical processes which are presently introduced in new solar models. We believe that the knowledge of two important elements: (1) the magnetic field interplay between the radiative zone and the convective zone and (2) the role of the gravity waves, would allow to understand the origin of the grand minima and maxima observed during the last millennium. Complementary observables like acoustic and gravity modes, radius and spectral irradiance from far UV to visible in parallel to the development of 1D-2D-3D simulations will improve this field. PICARD, SDO, DynaMICCS are key projects for a prediction of the next century variability. Some helioseismic indicators constitute the first necessary information to properly describe the Sun-Earth climatic connection.

  18. The climate and air-quality benefits of wind and solar power in the United States

    Science.gov (United States)

    Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    2017-09-01

    Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).

  19. Architectural integration of energy solar collectors made with ceramic materials and suitable for the Mediterranean climate

    Directory of Open Access Journals (Sweden)

    J. Roviras

    2016-12-01

    Full Text Available The work presented here aims to demonstrate the technical, architectural and energy viability of solar thermal collectors made with ceramic materials and the Mediterranean climate suitable for the production of domestic hot water (DHW and for heating systems in buildings. The design of a ceramic shell formed by panels collectors and panels no sensors, which are part of the same building system that is capable of responding to the basic requirements of a building envelope and capture solar energy is proposed. Ceramics considerably reduced the final cost of the sensor system and offers the new system a variety of compositional and chromatic since, with reduced performance compared to a conventional metallic collector, can occupy the entire surface of front and get a high degree of architectural integration. A tool for assessing the new ceramic solar collector has been defined from a multi-criteria perspective: economic, environmental and social. The tool enables the comparison of the ceramic solar collector with solar collectors on the market under different climatic and demand conditions.

  20. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    International Nuclear Information System (INIS)

    Kavousian, Amir; Rajagopal, Ram; Fischer, Martin

    2013-01-01

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. - Highlights: • Weather, location and floor area are the most important determinants of residential electricity use. • Daily minimum and maximum are explained by different factors. • Number of refrigerators and entertainment devices explain daily minimum the best. • Number of occupants and high-consumption appliances explain daily maximum the best. • Other factors such as energy efficient features and household's socioeconomic status are examined

  1. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  2. Tribal Renewable Energy Report - Final Report: Bishop Paiute Tribe Residential Solar Program. Phase 1 (DOE Award # DE-EE0006949)

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Brian [Bishop Paiute Tribe; Castilone, Lisa

    2018-03-30

    The objective of the project was to provide affordable renewable energy to 22 low income reservation homeowners; provide job training to tribal members and reduce air pollution by equivalent carbon offsets. The project exceeded grant objectives installing 66kW of rooftop solar on 22 low income single family homes and providing hands-on PV rooftop solar installation training to 24 tribal individuals (four more than planned). The project was a phased installment of an on-going partnership between the Tribe and GRID that was initiated in 2013 whereby 62 rooftop solar units were installed prior to this funded effort. The reported work in this report describes the funded effort where US Department of Energy provided partial funding through grant award IE0006949 and marks the first phase of an effort matching California Solar SASH Initiative funding with DOE Office of Indian Energy Funding and brings the total for the program to 84 installed systems (running total of 271 Kw installed) and the end of the project. Tribal workforce development was a key aspect of the project and trained 24tribal members for a total 1168 cumulative on-job training hours. The solar installations and training efforts were fully completed by September of 2016 with 66.6 kW installed - 8 kW more than the original estimate stated in the grant application.

  3. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  4. Space Solar Patrol data and changes in weather and climate, including global warming

    International Nuclear Information System (INIS)

    Avakyan, S V; Leonov, N B; Voronin, N A; Baranova, L A; Savinov, E P

    2010-01-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8–115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996–2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878)

  5. Guide for a building energy label. Promoting bio-climatic and solar construction and renovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Technically speaking, building experts have the knowledge to deal with thermal inertia of buildings, solar gains, insulation, efficient ventilation, and daylighting... to get low energy buildings that provide comfort for the users. Buildings should always be designed according to the specificities of the local climate, according to a ''solar and bio-climatic construction'' approach. It is not always possible to fully apply these principles, particularly in urban areas with high density. However, this is unacceptable to keep building with such errors as insufficient insulation and direct electrical heating, single glazing, thermal bridges, low efficiency heating systems. This guide aims at encouraging the building experts to take into account the energy efficiency. Implementing a building energy label will allow general public to be aware of this issue and then, and will then lead to develop better practices. (author)

  6. Solar Evolution and Climate on the Terrestrial Planets

    Science.gov (United States)

    Kasting, J. F.

    2008-12-01

    Venus, Earth, and Mars followed different evolutionary paths, partly because of their relative distance from the Sun, and partly because of the differences in their masses. Venus was too close to the Sun to retain its water, despite reduced solar luminosity early in Solar System history (1). The loss of water, followed by the buildup of CO2 in its atmosphere, led to the atmosphere that we see today. Earth was within the liquid water regime throughout its history. However, it must have had a larger greenhouse effect in the past in order to compensate for the faint young Sun. A combination of CO2, H2O, CH4, and C2H6 may have helped keep it warm (2,3). Mars' surface appears to have been wet early in its history, although opinions differ on how warm it must have been (4-6). CO2 and H2O alone could not have kept Mars' surface above freezing during Mars' early history when most of the large-scale fluvial features are thought to have formed (7). SO2 has been suggested as an additional greenhouse gas (8), but new calculations show that it would likely have been insufficient. Other mechanisms for warming early Mars may exist, however. Mars' albedo could have been significantly lowered by the presence of trace gases that absorb visible sunlight. NO2, which has a broad absorption peak centered at 400 nm, is a good candidate. A 3- bar CO2 atmosphere containing 30 ppm of NO2 could have kept Mars' mean surface temperature well above the freezing point of water at 3.8 Ga. Plausible sources of nitrogen oxides on early Mars include lightning and impacts. Other visible/UV-absorbing trace gases may have added to this warming. Thus, a complex mixture of gases could have helped keep early Mars warm. References: 1. J.F. Kasting, Icarus 74, 472 (1988). 2. A.A. Pavlov et al., J. Geophys. Res. 105, 11 (2000). 3. J.D. Haqq-Misra et al., Astrobiol. (in press). 4. J.B. Pollack et al., Icarus 71, 203 (1987). 5. T.L. Segura, O.B. Toon, A. Colaprete et al., Science 298, 1977 (2002). 6. C.P. Mc

  7. Solar Tyrol project: using climate data for energy production estimation. The good practice of Tyrol in conceptualizing climate services.

    Science.gov (United States)

    Petitta, Marcello; Wagner, Jochen; Costa, Armin; Monsorno, Roberto; Innerebner, Markus; Moser, David; Zebisch, Marc

    2014-05-01

    The scientific community in the last years is largely discussing the concept of "Climate services". Several definitions have been used, but it still remains a rather open concept. We used climate data from analysis and reanalysis to create a daily and hourly model of atmospheric turbidity in order to account the effect of the atmosphere on incoming solar radiation with the final aim of estimating electric production from Photovoltaic (PV) Modules in the Alps. Renewable Energy production in the Alpine Region is dominated by hydroelectricity, but the potential for photovoltaic energy production is gaining momentum. Especially the southern part of the Alps and inner Alpine regions offer good conditions for PV energy production. The combination of high irradiance values and cold air temperature in mountainous regions is well suited for solar cells. To enable more widespread currency of PV plants, PV has to become an important part in regional planning. To provide regional authorities and also private stakeholders with high quality PV energy yield climatology in the provinces of Bolzano/Bozen South Tirol (Italy) and Tyrol (Austria), the research project Solar Tyrol was inaugurated in 2012. Several methods are used to calculate very high resolution maps of solar radiation. Most of these approaches use climatological values. In this project we reconstructed the last 10 years of atmospheric turbidity using reanalysis and operational data in order to better estimate incoming solar radiation in the alpine region. Our method is divided into three steps: i) clear sky radiation: to estimate the atmospheric effect on solar radiation we calculated Linke Turbidity factor using aerosols optical depth (AOD), surface albedo, atmospheric pressure, and total water content from ECMWF and MACC analysis. ii) shadows: we calculated shadows of mountains and buildings using a 2 meter-resolution digital elevation model of the area and GIS module r.sun modified to fit our specific needs. iii

  8. Temporal derivative of Total Solar Irradiance and anomalous Indian summer monsoon: An empirical evidence for a Sun–climate connection

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Dutta, K.; Soon, W.

    and Solar-Terrestrial Physics 73 (2011) 1980–1987 1985 a factor of 5–10 times larger than the top of the atmosphere forcing. Several other researchers have also carefully evaluated and highlighted the complex pathways and processes that may be involved... irradiance and the variance of ENSO variability. Hence, a meaningful study of Sun– climate relation must involve not only careful consideration of the solar forcing factors, but also the proper measures for the local and regional climatic responses...

  9. Performance Investigation of a Solar Heat Driven Adsorption Chiller under Two Different Climatic Conditions

    Science.gov (United States)

    Choudhury, Biplab; Chatterjee, Pradip Kumar; Habib, Khairul; Saha, Bidyut Baran

    2018-06-01

    The demand for cooling, especially in the developing economies, is rising at a fast rate. Fast-depleting sources of fossil fuel and environmental concerns necessitate looking for alternative cooling solutions. Solar heat driven adsorption based cooling cycles are environmentally friendly due to their use of natural refrigerants and the thermal compression process. In this paper, a performance simulation study of a basic two-bed solar adsorption chiller has been performed through a transient model for two different climatic locations in India. Effect of operating temperatures and cycle time on the chiller performance has been studied. It is observed that the solar hot water temperature obtained in the composite climate of Delhi (28.65°N, 77.25°E) can run the basic adsorption cooling cycle efficiently throughout the year. Whereas, the monsoon months of July and August in the warm and humid climate of Durgapur (23.48°N, 87.32°E) are unable to supply the required driving heat.

  10. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and

  11. Regional variations in the health, environmental, and climate benefits of wind and solar generation

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay

    2013-01-01

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region. PMID:23798431

  12. Energy efficient of the residential buildings based climatic condition using experimental design: a case study in malaysia

    Directory of Open Access Journals (Sweden)

    Zahraee Seyed Mojib

    2017-01-01

    Full Text Available In recent years, energy consumption has become a critical issue in the developed and developing countries. Residential buildings are one of the most users of energy in the construction sector that use the highest share of energy. This paper aims at evaluating the effect of four factors that are temperature, humidity, airflow and pressure on the cooling load in the residential buildings. To achieve this goal, statistical experimental design is used to determine the optimum setting of factors that result in optimum energy usage. Simulation software and energy analysis is used to simulate a two-storey building in Malaysia as the case of study. Final results showed that the temperature, humidity and interaction between them have the most significant effect on the energy cooling load. Moreover, to obtain the minimum value of cooling load the temperature and humidity should be equal to A=20 Celsius degree and B=60% respectively. In addition, the other two insignificant factors, airflow and pressure should be placed at the high level which are equal to C=3 cubic meters per hour, and D=6 Pascal (P respectively.

  13. Long-term solar activity and its implications to the heliosphere, geomagnetic activity, and the Earth’s climate

    Directory of Open Access Journals (Sweden)

    Tanskanen Eija

    2013-06-01

    Full Text Available The Sun’s long-term magnetic variability is the primary driver of space climate. This variability is manifested not only in the long-observed and dramatic change of magnetic fields on the solar surface, but also in the changing solar radiative output across all wavelengths. The Sun’s magnetic variability also modulates the particulate and magnetic fluxes in the heliosphere, which determine the interplanetary conditions and impose significant electromagnetic forces and effects upon planetary atmospheres. All these effects due to the changing solar magnetic fields are also relevant for planetary climates, including the climate of the Earth. The ultimate cause of solar variability, at time scales much shorter than stellar evolutionary time scales, i.e., at decadal to centennial and, maybe, even millennial or longer scales, has its origin in the solar dynamo mechanism. Therefore, in order to better understand the origin of space climate, one must analyze different proxies of solar magnetic variability and develop models of the solar dynamo mechanism that correctly produce the observed properties of the magnetic fields. This Preface summarizes the most important findings of the papers of this Special Issue, most of which were presented in the Space Climate-4 Symposium organized in 2011 in Goa, India.

  14. Searching for public benefits in solar subsidies: A case study on the Australian government's residential photovoltaic rebate program

    International Nuclear Information System (INIS)

    Macintosh, Andrew; Wilkinson, Deb

    2011-01-01

    The Australian Government ran a renewable energy program in the 2000s that provided rebates to householders who acquired solar Photovoltaic (PV) energy systems. Originally called the Photovoltaic Rebate Program (PVRP), it was rebranded the Solar Homes and Communities Plan (SHCP) in November 2007. This paper evaluates both the PVRP and SHCP using measures of cost-effectiveness and fairness. It finds that the program was a major driver of a more than six-fold increase in PV generation capacity in the 2000s, albeit off a low base. In 2010, solar PV's share of the Australian electricity market was still only 0.1%. The program was also environmentally ineffective and costly, reducing emissions by 0.09 MtCO 2 -e/yr over the life of the rebated PV systems at an average cost of between AU$238 and AU$282/tCO 2 -e. In addition, the data suggest there were equity issues associated with the program, with 66% of all successful applicants residing in postal areas that were rated as medium-high or high on a Socio-economic Status (SES) scale. - Research highlights: → We evaluated a solar photovoltaic (PV) rebate program. → The program was ineffective, reducing emissions by 0.09 MtCO 2 -e/yr. → The average abatement cost was ∼AU$250/tCO 2 -e. → The program had a relatively minor impact as an industry assistance measure. → The distribution of rebates was skewed toward higher SES areas.

  15. Analysis of Solar Chimneys in Different Climate Zones - Case of Social Housing in Ecuador

    Science.gov (United States)

    Godoy-Vaca, Luis; Almaguer, Manuel; Martínez-Gómez, Javier; Lobato, Andrea; Palme, Massimo

    2017-10-01

    The aim of this research is to simulate the performance of a solar chimney located in different macro-zones in Ecuador. The proposed solar chimney model was simulated using a python script in order to predict the temperature distribution and the mass flow over time. The results obtained were firstly compared with experimental data for dry-warm climate. Then, the model was evaluated and tested in real weather conditions: dry-warm, moist-warm and rainy-cold. In addition, the assumed chimney dimensions were chosen according to the literature for the studied conditions. In spite of evaluating the best nightly ventilation, different chimney wall materials were tested: solid brick, common brick and reinforced concrete. The results showed that concrete in a dry-warm climate, a metallic layer on the gap with solid brick in a moist-warm climate and reinforced concrete in a rainy cold climate used for the absorbent wall improve the thermal inertia of the social housing.

  16. Design and Analysis of an Optical Coupler for Concentrated Solar Light Using Optical Fibers in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Afshin Aslian

    2016-01-01

    Full Text Available Concentrated sunlight that is transmitted by fiber optics has been used for generating electricity, heat, and daylight. On the other hand, multijunction photovoltaic cells provide high efficiency for generating electricity from highly concentrated sunlight. This study deals with designing and simulating a high-efficiency coupler, employing a mathematical model to connect sunlight with fiber optics for multiple applications. The coupler concentrates and distributes irradiated light from a primary concentrator. In this study, a parabolic dish was used as the primary concentrator, a coupler that contains nine components called a compound truncated pyramid and a cone (CTPC, all of which were mounted on a plate. The material of both the CTPC and the plate was BK7 optical glass. Fiber optics cables and multijunction photovoltaic cells were connected to the cylindrical part of the CTPC. The fibers would transmit the light to the building to provide heat and daylight, whereas multijunction photovoltaic cells generate electricity. Theoretical and simulation results showed high performance of the designed coupler. The efficiency of the coupler was as high as 92%, whereas the rim angle of the dish increased to an optimum angle. Distributed sunlight in the coupler increased the flexibility and simplicity of the design, resulting in a system that provided concentrated electricity, heat, and lighting for residential buildings.

  17. Experimental investigation on a coupled solar still under desert climatic conditions

    International Nuclear Information System (INIS)

    Boukar, M.; Harmim, A.

    2000-01-01

    Distillation of water is energy intensive, and the use of solar energy for this purpose has been quite well developed and applied in many places. The performance of a simple basin greenhouse-type solar still coupled to a flat plate collector is experimentally investigated. The Saharan sites of Algeria enjoys bright sunshine and dry weather during most part of year. The objective of the work is to improve the performances of a simple single basin solar still, we test the distillation system in winter, under desert climatic conditions, to improve the quality and increase the quantity of distilled water, by using a solar collector for increasing the brine temperature, enhancing the evaporation process of a simple solar still and improving distillate collection process. Experiments have been conducted in Adrar, Algerian desert town (27 degree 18' N, latitude, 0 degree 17' W longitude). The daily still productivity in winter period varies from 4.5 l/m 2 /day to 5.3 l/m 2 /day with variation of water level from 1.5 cm to 3.5 cm. (Author)

  18. Climate and land-use change impacts on potential solar photovoltaic power generation in the Black Sea region

    International Nuclear Information System (INIS)

    Gunderson, I.; Goyette, S.; Gago-Silva, A.; Quiquerez, L.; Lehmann, A.

    2015-01-01

    Highlights: • The solar resource is sufficient to provide PV power at suitable locations within the Black Sea catchment. • Climate change will not significantly impact the solar resource, although uncertainty exists. • Land-use change will significantly impact potential PV power, although socio-economic factors will have more importance. • It is important to strengthen regional cooperation for the integration of renewable energy resources. - Abstract: Climate change is a naturally occurring phenomenon that has recently been greatly impacted by anthropogenic greenhouse gas (GHG) emissions. One of the main contributing sectors to GHG emissions is the energy sector, due to its high dependency on fossil fuels. Renewable energy systems, notably solar energy, can be an effective climate change mitigation alternative. Photovoltaic (PV) technology provides an interesting method to produce electricity through a virtually infinite renewable resource at the human time scale: solar radiation. This study evaluates the current and future solar energy potential through the use of grid-connected PV power plants at the scale of countries within the Black Sea catchment. Simulated data are used to determine potential change in climate and land-use according to two different development scenarios. Incident solar radiation flux from re-analyses, spatial interpolation, and the application of the Delta change method are used to assess the current and future solar resource potential within this catchment. Potential sites suitable for PV power plants are selected following a Fuzzy logic approach, and thus the total potential solar energy through PV power generation can be determined. Results show that climate change will have little impact on the solar radiation resource, while land-use change induces more variability. However, regardless of the scenario followed, the solar energy potential is sufficient to provide an interesting contribution to the electricity generation mix of

  19. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  20. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  1. Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks

    International Nuclear Information System (INIS)

    Cao Long; Bala, Govindasamy; Caldeira, Ken

    2012-01-01

    Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO 2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO 2 content and solar irradiance. Over ocean, increased atmospheric CO 2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO 2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO 2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO 2 versus solar forcing are manifested within days after the forcing is imposed. (letter)

  2. Residential Care

    Science.gov (United States)

    ... Kids For Teens For Parents & Teachers Resolving Family Conflicts The Holidays and Alzheimer's Glossary Virtual Library Online ... longer an option Costs Choosing a care setting Types of residential care A good long-term care ...

  3. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  4. Space Solar Patrol data and changes in weather and climate, including global warming

    Science.gov (United States)

    Avakyan, S. V.; Baranova, L. A.; Leonov, N. B.; Savinov, E. P.; Voronin, N. A.

    2010-08-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8-115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996-2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878). This article was originally submitted for inclusion with the papers from the 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009), published in the May 2010 issue.

  5. Experimental investigation of simple solar radiation spectral model performances under a Mediterranean Algerian's climate

    International Nuclear Information System (INIS)

    Koussa, Mustapha; Saheb-Koussa, Djohra; Hadji, Seddik

    2017-01-01

    In this work, models are presented that, under cloudless atmosphere conditions, calculate solar spectral normal direct and horizontal diffuse irradiance. Based on different monochromatic transmission factors related to the main constituents of the atmosphere, the models evaluate the spectral irradiance between 0.29 and 4.0 μm. Absorption by water vapor, uniformly mixed gas, and ozone are considered as well as scattering by the atmospheric aerosols. Based on the equations relative to each one of the two retained models, a MATLAB program is developed to evaluate the spectral distribution of each solar irradiance component. Hence, the geographical coordinates of the site, and the monochromatic distribution of the extraterrestrial irradiance are used as input data. From three-year data measurement records made in Bouzareah site (temperate climate), thirty eight days characterized by a clear sky state have been selected from over different months of the year and the corresponding main meteorological parameters used as input parameters. So, because only the five-minute broadband data measurements are available, the modified numerical trapeze method is used to integrate the monochromatic curve values related to each solar irradiance component. Consequently, the precipitable water vapor amount, the Angstrom and Linke turbidity factors are evaluated and a multi-linear correlation relating the Linke turbidity factor to the precipitable water vapor and the Angstrom turbidity coefficient is established. Hence, according to the mean values of Linke and Angstrom turbidity factors and those of the precipitable water vapor, the site of Bouzareah is classified as a rural site. So, the effect of the main constituents of the atmosphere on the spectral distribution of solar irradiance is discussed and, it is also observed that the aerosol amount contained in the atmosphere affects most both of the diffuse and direct solar irradiance amount than that of the horizontal and inclined

  6. Climate, weather, socio-economic and electricity usage data for the residential and commercial sectors in FL, U.S

    Directory of Open Access Journals (Sweden)

    Sayanti Mukherjee

    2017-08-01

    Full Text Available This paper presents the data that is used in the article entitled “Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States” (Mukhopadhyay and Nateghi, 2017 [1]. The data described in this paper pertains to the state of Florida (during the period of January 1990 to November 2015. It can be classified into four categories of (i state-level electricity consumption data; (ii climate data; (iii weather data; and (iv socio-economic data. While, electricity consumption data and climate data are obtained at monthly scale directly from the source, the weather data was initially obtained at daily-level, and then aggregated to monthly level for the purpose of analysis. The time scale of socio-economic data varies from monthly-level to yearly-level. This dataset can be used to analyze the influence of climate and weather on the electricity demand as described in Mukhopadhyay and Nateghi (2017 [1].

  7. Mitigating Climate Change by the Development and Deployment of Solar Water Heating Systems

    Directory of Open Access Journals (Sweden)

    S. T. Wara

    2013-01-01

    Full Text Available Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in Water Heating Systems. Ogun State in Nigeria was used as a case study. The solar radiation for the state was explored with an annual average of 4.775 kWh/m2 recorded. The designed system comprised storage tanks and the collector unit which comprises wooden casing, copper tube, and aluminium foil. Test results for the unlagged and lagged storage tanks for water temperature at various angles of inclination (2.500°–20.000° were on the average 27.800°C and 28.300°C, respectively, for the inlet temperature and 60.100°C and 63.000°C for the outlet temperature, respectively. The efficiency of the Solar Water Heating System was 72.500% and the power saved 2.798 kW. The cost of the unit is put at 1121,400 ($145 as at August 2012. The unit developed can be applied for the purpose of reducing the cost of energy, dealing with environmental challenges, and improving the use of energy, hence serving as a climate mitigation process as this can be extended for water heating for domestic and other industrial purposes.

  8. Decrease in Hysteresis of Planetary Climate for Planets with Long Solar Days

    Science.gov (United States)

    Abbot, Dorian S.; Bloch-Johnson, Jonah; Checlair, Jade; Farahat, Navah X.; Graham, R. J.; Plotkin, David; Popovic, Predrag; Spaulding-Astudillo, Francisco

    2018-02-01

    The ice-albedo feedback on rapidly rotating terrestrial planets in the habitable zone can lead to abrupt transitions (bifurcations) between a warm and a snowball (ice-covered) state, bistability between these states, and hysteresis in planetary climate. This is important for planetary habitability because snowball events may trigger rises in the complexity of life, but could also endanger complex life that already exists. Recent work has shown that planets tidally locked in synchronous rotation states will transition smoothly into the snowball state rather than experiencing bifurcations. Here we investigate the structure of snowball bifurcations on planets that are tidally influenced, but not synchronously rotating, so that they experience long solar days. We use PlaSIM, an intermediate-complexity global climate model, with a thermodynamic mixed layer ocean and the Sun’s spectrum. We find that the amount of hysteresis (the range in stellar flux for which there is bistability in climate) is significantly reduced for solar days with lengths of tens of Earth days, and disappears for solar days of hundreds of Earth days. These results suggest that tidally influenced planets orbiting M and K stars that are not synchronously rotating could have much less hysteresis associated with the snowball bifurcations than they would if they were rapidly rotating. This implies that the amount of time it takes them to escape a snowball state via CO2 outgassing would be greatly reduced, as would the period of cycling between the warm and snowball state if they have low CO2 outgassing rates.

  9. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  10. Assessing the effects of customer innovativeness, environmental value and ecological lifestyles on residential solar power systems install intention

    International Nuclear Information System (INIS)

    Chen, Kee Kuo

    2014-01-01

    To understand the impact of environmental value, ecological lifestyle, customer innovativeness on customer intention to install solar power system (SPS) in their private houses, an empirical model was proposed. Customer innovativeness was treated as a second-order construct with two first-order dimensions, with each of the latter being measured by means of reflective indicators. Using structural equation modeling, data collected from 203 college students and faculties at a University of Taiwan were tested against the model. We found that environmental value has a positive impact on ecological lifestyle and SPS install intention. Although ecological lifestyle associates positively with SPS install intention, the effect disappears when environmental value is included in the model. The effect of customer innovativeness on SPS install intention results from the tendency of customer novelty seeking, while the impact of customer independent judgment-making on SPS install intention is insignificant. The model explained 76% of the total variations within SPS install intention. Managerial implications for promoting of SPS are considered, and suggestions for further research provided. - Highlights: • We integrate customer innovativeness into an environmental behavior model. • The impact of customer innovativeness on SPS install intention was confirmed. • The impact of novelty seeking on SPS install intention has been found. • Environmental value is the most important factor for SPS install intention. • The model explained 76% of the total variations within SPS install intention

  11. The Solar Constant, Climate, and Some Tests of the Storage Hypothesis

    Science.gov (United States)

    Eddy, J. A.

    1984-01-01

    Activity related modulation of the solar constant can have practical consequences for climate only if storage is involved, as opposed to a detailed balance between sunspot blocking and facular reemission. Four empirical tests are considered that might distinguish between these opposing interpretations: monochromatic measurements of positive and negative flux; comparison of modelled and measured irradiance variations; the interpretation of secular trends in irradiance data; and the direct test of an anticipated signal in climate records of surface air temperature. The yet unanswered question of the role of faculae as possible reemitters of blocked radiation precludes a definitive answer, although other tests suggest their role to be minor, and that storage and an 11 year modulation is implicated. A crucial test is the behavior of the secular trend in irradiance in the declining years of the present activity cycle.

  12. Araucaria growth response to solar and climate variability in South Brazil

    Science.gov (United States)

    Prestes, Alan; Klausner, Virginia; Rojahn da Silva, Iuri; Ojeda-González, Arian; Lorensi, Caren

    2018-05-01

    In this work, the Sun-Earth-climate relationship is studied using tree growth rings of Araucaria angustifolia (Bertol.) O. Kuntze collected in the city of Passo Fundo, located in the state of Rio Grande do Sul (RS), Brazil. These samples were previously studied by Rigozo et al. (2008); however, their main interest was to search for the solar periodicities in the tree-ring width mean time series without interpreting the rest of the periodicities found. The question arises as to what are the drivers related to those periodicities. For this reason, the classical method of spectral analysis by iterative regression and wavelet methods are applied to find periodicities and trends present in each tree-ring growth, in Southern Oscillation Index (SOI), and in annual mean temperature anomaly between the 24 and 44° S. In order to address the aforementioned question, this paper discusses the correlation between the growth rate of the tree rings with temperature and SOI. In each tree-ring growth series, periods between 2 and 7 years were found, possibly related to the El Niño/La Niña phenomena, and a ˜ 23-year period was found, which may be related to temperature variation. These novel results might represent the tree-ring growth response to local climate conditions during its lifetime, and to nonlinear coupling between the Sun and the local climate variability responsible to the regional climate variations.

  13. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    Science.gov (United States)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  14. Prediction of Daily Global Solar Radiation by Daily Temperatures and Artificial Neural Networks in Different Climates

    Directory of Open Access Journals (Sweden)

    S. I Saedi

    2018-03-01

    Full Text Available Introduction Global solar radiation is the sum of direct, diffuse, and reflected solar radiation. Weather forecasts, agricultural practices, and solar equipment development are three major fields that need proper information about solar radiation. Furthermore, sun in regarded as a huge source of renewable and clean energy which can be used in numerous applications to get rid of environmental impacts of non-renewable fossil fuels. Therefore, easy and fast estimation of daily global solar radiation would play an effective role is these affairs. Materials and Methods This study aimed at predicting the daily global solar radiation by means of artificial neural network (ANN method, based on easy-to-gain weather data i.e. daily mean, minimum and maximum temperatures. Having a variety of climates with long-term valid weather data, Washington State, located at the northwestern part of USA was chosen for this purpose. It has a total number of 19 weather stations to cover all the State climates. First, a station with the largest number of valid historical weather data (Lind was chosen to develop, validate, and test different ANN models. Three training algorithms i.e. Levenberg – Marquardt (LM, Scaled Conjugate Gradient (SCG, and Bayesian regularization (BR were tested in one and two hidden layer networks each with up to 20 neurons to derive six best architectures. R, RMSE, MAPE, and scatter plots were considered to evaluate each network in all steps. In order to investigate the generalizability of the best six models, they were tested in other Washington State weather stations. The most accurate and general models was evaluated in an Iran sample weather station which was chosen to be Mashhad. Results and Discussion The variation of MSE for the three training functions in one hidden layer models for Lind station indicated that SCG converged weights and biases in shorter time than LM, and LM did that faster than BR. It means that SCG provided the fastest

  15. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  16. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations

    Energy Technology Data Exchange (ETDEWEB)

    Indraganti, Madhavi; Rao, Kavita Daryani [Architecture Department, Jawaharlal Nehru Architecture and Fine Arts University, Hyderabad (India)

    2010-03-15

    Energy consumption in Indian residential buildings is one of the highest and is increasing phenomenally. Indian standards specify comfort temperatures between 23 and 26 C for all types of buildings across the nation. However, thermal comfort research in India is very limited. A field study in naturally ventilated apartments was done in 2008, during the summer and monsoon seasons in Hyderabad in composite climate. This survey involved over 100 subjects, giving 3962 datasets. They were analysed under different groups: age, gender, economic group and tenure. Age, gender and tenure correlated weakly with thermal comfort. However, thermal acceptance of women, older subjects and owner-subjects was higher. Economic level of the subjects showed significant effect on the thermal sensation, preference, acceptance and neutrality. The comfort band for lowest economic group was found to be 27.3-33.1 C with the neutral temperature at 30.2 C. This is way above the standard. This finding has far reaching energy implications on building and HVAC systems design and practice. Occupants' responses for other environmental parameters often depended on their thermal sensation, often resulting in a near normal distribution. The subjects displayed acoustic and olfactory obliviousness due to habituation, resulting in higher satisfaction and acceptance. (author)

  17. Sun, Solar Analogs and the Climate Saas-Fee Advanced Course 34 2004 Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Haigh, Joanna Dorothy; Güdel, Lockwood Michael Manuel; Schmutz, Giampapa Mark; Werner, S

    2005-01-01

    This book presents the lectures notes of the 34th Saas-Fee Advanced Course "The Sun, Solar Analogs and the Climate" given by leading scientists in the field. Emphasis is on the observed variability of the Sun and the present understanding of the variability’s origin as well as its impact on the Earth's climate. The solar variability is then studied in the broader context of solar-type stars, allowing for better understanding of the solar-activity cycle and the magnetic activity in general. This book provides an accessible and up-to-date introduction to the field for graduate students and serves as modern source of reference for active researchers in this field.

  18. Integration of photovoltaic solar panels in residential buildings and its contribution in a power feeder of a mixed urban region; Integracao de paineis solares fotovoltaicos em edificacoes residenciais e sua contribuicao em um alimentador de energia de zona urbana mista

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isis Portolan dos

    2009-02-15

    Energy generation is one of the main pollution sources in the world. Photovoltaic solar energy is a way to guarantee the electric energy generation using a clean and renewable source, the sun. With the photovoltaic modules integration in buildings, it is possible to generate energy in urban areas, using areas already constructed and also minimizing the energy loss with transmission and distribution. Direct connection of a photovoltaic system to the electric grid avoids the necessity of a storage system, and allows the generated energy to be used by any consumer connected to the grid. This thesis proposes the creation and propagation of predefined kits including photovoltaic modules and other equipment, in order to complete installation and connection of photovoltaic generator, resulting in solar roofs in urban houses. The kits could be installed on roofs of existent residences or in new ones, making the installation easier and minimizing the necessity and the costs of a specific project for each case. With the definition of standard components, like the modules, inverters, and others equipment, there would be an industrial production scale, minimizing costs. In addition, the kits also make the training of the installers easier. The simulation of this concept in a residential area in Florianopolis, demonstrates that there is enough area in the roofs to locate one kit in all residences, and that this generation is able to contribute to the energy demand of the area. So all energy generated by the kits will be immediately consumed inside the area, relieving the concessionaire load. His argue that kits can be an interesting way of bringing this energy generation technology to mainstream. (author)

  19. Detailed performance analysis of realistic solar photovoltaic systems at extensive climatic conditions

    International Nuclear Information System (INIS)

    Gupta, Ankit; Chauhan, Yogesh K.

    2016-01-01

    In recent years, solar energy has been considered as one of the principle renewable energy source for electric power generation. In this paper, single diode photovoltaic (PV) system and double/bypass diode based PV system are designed in MATLAB/Simulink environment based on their mathematical modeling and are validated with a commercially available solar panel. The novelty of the paper is to include the effect of climatic conditions i.e. variable irradiation level, wind speed, temperature, humidity level and dust accumulation in the modeling of both the PV systems to represent a realistic PV system. The comprehensive investigations are made on both the modeled PV systems. The obtained results show the satisfactory performance for realistic models of the PV system. Furthermore, an in depth comparative analysis is carried out for both PV systems. - Highlights: • Modeling of Single diode and Double diode PV systems in MATLAB/Simulink software. • Validation of designed PV systems with a commercially available PV panel. • Acquisition and employment of key climatic factors in modeling of the PV systems. • Evaluation of main model parameters of both the PV systems. • Detailed comparative assessment of both the modeled PV system parameters.

  20. Financialization impedes climate change mitigation: Evidence from the early American solar industry.

    Science.gov (United States)

    Jerneck, Max

    2017-03-01

    The article investigates how financialization impedes climate change mitigation by examining its effects on the early history of one low-carbon industry, solar photovoltaics in the United States. The industry grew rapidly in the 1970s, as large financial conglomerates acquired independent firms. While providing needed financial support, conglomerates changed the focus from existing markets in consumer applications toward a future utility market that never materialized. Concentration of the industry also left it vulnerable to the corporate restructuring of the 1980s, when the conglomerates were dismantled and solar divisions were pared back or sold off to foreign firms. Both the move toward conglomeration, when corporations became managed as stock portfolios, and its subsequent reversal were the result of increased financial dominance over corporate governance. The American case is contrasted with the more successful case of Japan, where these changes to corporate governance did not occur. Insulated from shareholder pressure and financial turbulence, Japanese photovoltaics manufacturers continued to expand investment throughout the 1980s when their American rivals were cutting back. The study is informed by Joseph Schumpeter's theory of creative destruction and Hyman Minsky's theory of financialization, along with economic sociology. By highlighting the tenuous and conflicting relation between finance and production that shaped the early history of the photovoltaics industry, the article raises doubts about the prevailing approach to mitigate climate change through carbon pricing. Given the uncertainty of innovation and the ease of speculation, it will do little to spur low-carbon technology development without financial structures supporting patient capital.

  1. Local Energy Matters: Solar Development in Duluth, Minnesota Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slick, Jodi Lyn [Ecolibrium3

    2018-03-30

    The Local Energy Matters project advanced solar deployment in the City of Duluth, MN- a cold-climate community of 86,000. At the beginning of the project, Duluth had 254.57 kW installed solar capacity with an average cost of $5.04/watt installed in 2014. The project worked with cross-sector stakeholders to benchmark the current market, implement best practices for solar deployment and soft cost reduction, develop pilot deployment programs in residential rooftop, community solar, and commercial/industrial sectors, work with the City of Duluth to determine appropriate sites for utility scale developments, and demonstrate solar pus storage. Over the three years of the project, Duluth’s installed residential and commercial solar capacity grew by 344% to 875.9 kW with an additional 702 kW solar garden capacity subscribed by Duluth residents, businesses, and institutions. Installation costs dropped 48% over this timeframe to $4.08/watt installed (exclusive of solar garden construction). This report documents the process used to identify levers for increased solar installation and cost reductions in a nascent cold-climate solar market.

  2. Moderate solar geoengineering greatly reduces the largest changes in climate whilst modestly increasing the changes in climate over a small fraction of the Earth

    Science.gov (United States)

    Irvine, P. J.; Keith, D.; He, J.; Vecchi, G.; Horowitz, L. W.

    2017-12-01

    Whilst solar geoengineering reduces global temperature it cannot perfectly offset the climate effects of elevated CO2 concentrations. Solar geoengineering has been shown to have a greater effect on the global hydrological cycle than CO2 and substantial differences in regional precipitation relative to a scenario without elevated CO2­ concentrations have been noted. In this study we evaluate a moderate scenario of solar geoengineering, one which offsets 50% of the forcing from elevated CO2 concentrations, using a 25 Km resolution global climate model and verify these results using the Geoengineering model Intercomparison project ensemble. We calculate the fraction of regions that would be better or worse off after solar geoengineering deployment, defining those which see greater absolute change as worse off and vice versa. We find that 51% of the land area would be statistically significantly better off for precipitation, 33% for Precipitation minus evaporation (P-E), and that less than 3% would be worse off for precipitation, and 1% for P-E. We find that the fraction of the land area experiencing the largest changes in climate, defined as the upper quartile of the CO2 minus control anomaly, is greatly reduced for precipitation, P-E and 5-day maximum precipitation, and eliminated for mean and max annual temperature. The regions which are made worse off in precipitation or P-E by solar geoengineering typically saw relatively little to no CO2 induced climate change and see relatively little to moderate change in the solar geoengineering scenario. There is little overlap between the regions made worse off in terms of precipitation and P-E. In fact, whilst precipitation is reduced in almost all regions made worse off by solar geoengineering, P-E is increased in the majority of regions made worse off. Overall, we find that for each variable considered solar geoengineering greatly reduces the fraction of the world experiencing relatively large change and that those

  3. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  4. Coastal climate is associated with elevated solar irradiance and higher 25(OH)D level.

    Science.gov (United States)

    Cherrie, M P C; Wheeler, B W; White, M P; Sarran, C E; Osborne, N J

    2015-04-01

    There is evidence that populations living close to the coast have improved health and wellbeing. Coastal environments are linked to promotion of physical activity through provision of safe, opportune, aesthetic and accessible spaces for recreation. Exposure to coastal environments may also reduce stress and induce positive mood. We hypothesised that coastal climate may influence the vitamin D status of residents and thus partly explain benefits to health. Ecological and cross-sectional analyses were designed to elucidate the connection between coastal residence and vitamin D status. We divided residential data, from developed land use areas and the Lower Super Output Areas or Data Zones (Scotland) of the 1958 Birth Cohort participants, into the following coastal bands: 50 km. This relationship was modified by latitude with settlements at a lower latitude exhibiting a greater effect. Individuals living closer to the coast in England had higher vitamin D levels than those inland, particularly in autumn. Geographic location may influence biochemistry and health outcomes due to environmental factors. This can provide benefits in terms of vitamin D status but may also pose a risk due to higher skin cancer risk. We provide further evidence in support of the claim that coastal environments can provide opportunities for health and wellbeing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Potential solar radiation and land cover contributions to digital climate surface modeling

    Science.gov (United States)

    Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel

    2016-04-01

    Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land

  6. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  7. Assessing climate change impact on complementarity between solar and hydro power in areas affected by glacier shrinkage

    Science.gov (United States)

    Diah Puspitarini, Handriyanti; François, Baptiste; Zoccatelli, Davide; Brown, Casey; Creutin, Jean-Dominique; Zaramella, Mattia; Borga, Marco

    2017-04-01

    Variable Renewable Energy (VRE) sources such as wind, solar and runoff sources are variable in time and space, following their driving weather variables. In this work we aim to analyse optimal mixes of energy sources, i.e. mixes of sources which minimize the deviation between energy load and generation, for a region in the Upper Adige river basin (Eastern Italian Alps) affected by glacier shrinking. The study focuses on hydropower (run of the river - RoR) and solar energy, and analyses the current situation as well different climate change scenarios. Changes in glacier extent in response to climate warming and/or altered precipitation regimes have the potential to substantially alter the magnitude and timing, as well as the spatial variation of watershed-scale hydrologic fluxes. This may change the complementarity with solar power as well. In this study, we analyse the climate change impact on complementarity between RoR and solar using the Decision Scaling approach (Brown et al. 2012). With this approach, the system vulnerability is separated from the climatic hazard that can come from any set of past or future climate conditions. It departs from conventional top-down impact studies because it explores the sensitivity of the system response to a plausible range of climate variations rather than its sensitivity to the time-varying outcome of individual GCM projections. It mainly relies on the development of Climate Response Functions that bring together i) the sensitivity of some system success and/or failure indicators to key external drivers (i.e. mean features of regional climate) and ii) the future values of these drivers as simulated from climate simulation chains. The main VRE sources used in the study region are solar- and hydro-power (with an important fraction of run-of-the river hydropower). The considered indicator of success is the 'energy penetration' coefficient, defined as the long-run percentage of energy demand naturally met by the VRE on an hourly

  8. Financialization impedes climate change mitigation: Evidence from the early American solar industry

    Science.gov (United States)

    Jerneck, Max

    2017-01-01

    The article investigates how financialization impedes climate change mitigation by examining its effects on the early history of one low-carbon industry, solar photovoltaics in the United States. The industry grew rapidly in the 1970s, as large financial conglomerates acquired independent firms. While providing needed financial support, conglomerates changed the focus from existing markets in consumer applications toward a future utility market that never materialized. Concentration of the industry also left it vulnerable to the corporate restructuring of the 1980s, when the conglomerates were dismantled and solar divisions were pared back or sold off to foreign firms. Both the move toward conglomeration, when corporations became managed as stock portfolios, and its subsequent reversal were the result of increased financial dominance over corporate governance. The American case is contrasted with the more successful case of Japan, where these changes to corporate governance did not occur. Insulated from shareholder pressure and financial turbulence, Japanese photovoltaics manufacturers continued to expand investment throughout the 1980s when their American rivals were cutting back. The study is informed by Joseph Schumpeter’s theory of creative destruction and Hyman Minsky’s theory of financialization, along with economic sociology. By highlighting the tenuous and conflicting relation between finance and production that shaped the early history of the photovoltaics industry, the article raises doubts about the prevailing approach to mitigate climate change through carbon pricing. Given the uncertainty of innovation and the ease of speculation, it will do little to spur low-carbon technology development without financial structures supporting patient capital. PMID:28435862

  9. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    Science.gov (United States)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is

  10. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  11. Testing the Millennial-Scale Holocene Solar-Climate Connection in the Indo-Pacific Warm Pool

    Science.gov (United States)

    Khider, D.; Emile-Geay, J.; McKay, N.; Jackson, C. S.; Routson, C.

    2016-12-01

    The existence of 1000 and 2500-year periodicities found in reconstructions of total solar irradiance (TSI) and a number of Holocene climate records has led to the hypothesis of a causal relationship. However, attributing Holocene millennial-scale variability to solar forcing requires a mechanism by which small changes in total irradiance can influence a global climate response. One possible amplifier within the climate system is the ocean. If this is the case, then we need to know more about where and how this may be occurring. On the other hand, the similarity in spectral peaks could be merely coincidental, and this should be made apparent by a lack of coherence in how that power and phasing are distributed in time and space. The plausibility of the solar forcing hypothesis is assessed through a Bayesian model of the age uncertainties affecting marine sedimentary records that is propagated through spectral analysis of the climate and forcing signals at key frequencies. Preliminary work on Mg/Ca and alkenone records from the Indo-Pacific Warm Pool suggests that despite large uncertainties in the location of the spectral peaks within each individual record arising from age model uncertainty, sea surface variability on timescales of 1025±36 years and 2427±133 years (±standard error of the mean of the median periodicity in each record) are present in at least 95% and 70% of the ensemble spectra, respectively. However, we find a long phase delay between the peak in forcing and the maximum response in at least one of the records, challenging the solar forcing hypothesis and requiring further investigation between low- and high-latitude signals. Remarkably, all records suggest a periodicity near 1470±85 years, reminiscent of the cycles characteristic of Marine Isotope Stage 3; these cycles are absent from existing records of TSI, further questioning the millennial solar-climate connection.

  12. Calculation of the thermal solar contribution in facilities of ACS in buildings. Comparison between the method of strong simulation and F-Chart considering lost in the circuits; Calculo de la contribucion solar termica en instalaciones de ACS en edificios. Comparacion entre el metodo de simulacion dinamica y F-Chart considerando perdidas en los circuitos

    Energy Technology Data Exchange (ETDEWEB)

    Guillo, J. F.; Lucas, M.; Lucas, R.; Vicente, P. G.

    2008-07-01

    It has analyzed the impact of distribution losses in the size of solar installations by comparing two methods commonly used in calculating the contribution of solar residential building: f-chart and dynamic simulation. 3 schemes have been analysed in a building 22 houses and 70 occupants located in the IV and climate in the province of Alicante. For comparison between the two methodologies have been used for calculating the same values input from climate data as consumption of ACS. (Author)

  13. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    Directory of Open Access Journals (Sweden)

    Wen Guoyong

    2017-01-01

    Full Text Available We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor based, the other the SATIRE (Spectral And Total Irradiance REconstruction modeled, as inputs to the GISS (Goddard Institute for Space Studies GCMAM (Global Climate Middle Atmosphere Model to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm and total solar irradiance (TSI. From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of ~0.1 °C to SATIRE solar forcing compared to ~0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  14. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  15. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain.

    Science.gov (United States)

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-05-24

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion.

  16. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  17. Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio

    KAUST Repository

    Sabry, Hanan; Sherif, Ahmed; Gadelhak, Mahmoud; Aly, Mohamed

    2014-01-01

    Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance

  18. Numerical simulation of a heat pump assisted regenerative solar still with PCM heat storage for cold climates of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Shakir Yessen

    2017-01-01

    Full Text Available A numerical model has been proposed in this work for predicting the energy performances of the heat pump assisted regenerative solar still with phase changing material heat storage under Kazakhstan climates. The numerical model is based on energy and mass balance. A new regenerative heat pump configuration with phase changing material heat storage is proposed to improve the performance. A comparison of results has been made between the conventional solar still and heat pump assisted regenerative solar still with phase changing material. The numerical simulation was performed for wide range of ambient temperatures between -30 and 30°C with wide range of solar intensities between 100 and 900 W/m2. The numerical simulation results showed that heat pump assisted regenerative solar still is more energy efficient and produce better yield when compared to the conventional simple solar still. The influences of solar intensity, ambient temperature, different phase changing materials, heat pump operating temperatures are discussed. The predicted values were found to be in good agreement with experimental results reported in literature.

  19. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    Science.gov (United States)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  20. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  1. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  2. Regulatory applications of the relationships between natural gas usage and weather; Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    Gray, J.A.; Patterson, D.L.; Proctor, M.S.; Warren, H.E.; Robles-Gil, S.

    1997-05-01

    This books includes two articles, each with an abstract dealing with the economic aspects of natural gas usage and solar energy usage both depending on the data about weather forecasting. The demand of natural gas depends on weather and the analysis of gas usage is required in a rate case in order to properly estimate the volumes and revenues that would be recovered from current rate under conditions of normal weather. The actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context are needed for future estimation concerning this energy sources which would have a more significant role in the future

  3. High temperature solar heating and cooling systems for different Mediterranean climates: Dynamic simulation and economic assessment

    International Nuclear Information System (INIS)

    Calise, Francesco

    2012-01-01

    The paper presents a dynamic model of an innovative solar heating and cooling system (SHC) based on the coupling of Parabolic Trough Collectors (PTC) with a double-stage LiBr-H 2 O absorption chiller; auxiliary energy for both heating and cooling is supplied by a biomass-fired heater. The system layout also includes a number of additional components such as: cooling tower, pumps, heat exchangers, etc. The consumption of non-renewable energy resources is only due to the small amount of electrical energy consumed by some auxiliary device. A case study is presented, in which the SHC provides space heating and cooling and domestic hot water for a small university hall, all year long. Both the SHC system and the building were dynamically simulated in TRNSYS. In order to evaluate the performance of the investigated system in various climatic conditions, the analyses were performed for seven Mediterranean cities in Italy, Spain, Egypt, France, Greece and Turkey. The analysis was also performed for a similar SHC in which the biomass heater was replaced by a gas-fired heater, in order to evaluate the influence of biomass to the overall system economic and energetic performance. In addition, a parametric analysis was performed in order to evaluate the sensitivity of the results, when varying some of the main design and operating parameters, such as: collector field area, tank volume and set-point temperatures. The results showed that the SHC system layout investigated can be competitive for the majority of the locations analysed, although the economic profitability is higher for the hottest climates. - Highlights: → In the high temperature SHC system the auxiliary heat is provided by biomass. → The energetic performance of the system is excellent during the summer. → In the winter the system suffers of the low beam radiation incident on the PTC. → The Simple Pay Back Period is encouraging, particularly in case of public funding. → An increase of the solar field

  4. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    international collaboration by describing the globalisation of the economy and current efforts of technology collaboration and transfer. Finally, it considers various ways to strengthen international energy technology collaboration. This paper is one of six case-studies designed in an effort to provide practical insights on the role international technology collaboration could play to achieve the objectives of the UNFCCC. They will all consider the past achievements of international technology collaboration, and the role it could play in helping to develop and disseminate new technologies in the future: what worked, what did not work and why, and what lessons might be drawn from past experiences. Most case studies consider energy technologies that could help mitigate greenhouse gas emissions. A few others consider areas not directly related to greenhouse gas emissions but where international technology collaboration has proven particularly successful in the past. This case study reviews past and current experience in international collaboration in the field of concentrating solar technologies in order to identify lessons that may be relevant for more general climate-friendly technology collaboration. It presents concentrating solar technologies in their current status, recent achievements and development prospects. It analyses the present successes and failures of different forms of international collaboration in this field, and draws lessons for further elaboration of international technology collaboration in addressing climate change.

  5. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    Science.gov (United States)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  6. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle

    Science.gov (United States)

    Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang

    2018-03-01

    Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.

  7. Simulation with an O-AGCM of the influence of variations of the solar constant on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Cubasch, U. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Waszkewitz, J. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Crowley, T.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography

    1996-07-01

    Two simulations have been carried out with a global coupled ocean-atmosphere circulation model to study the potential impact of solar variability on climate. The Hoyt and Schatten estimate of solar variability from 1700 to 1992 has been used to force the model. Results indicate that the near-surface temperature simulated by the model is dominated by the long periodic solar fluctuations (Gleissberg cycle), with global mean temperatures varying by about 0.5 K. Further results indicate that solar variability induces a similar pattern of surface temperature change as the increase of greenhouse gases, i.e. an increase of the land-sea contrast. However, the solarinduced warming pattern over the ocean during northern hemispheric summer is more centered over the northern hemisphere subtropics, compared to a more uniform warming associated with the increase in greenhouse gases. Finally, the magnitude of the estimated solar warming during the 20th century is not sufficient to explain the observed warming. The recent observed 30-year trends are inconsistent with the solar forcing simulation at an estimated 90% significance level. Also, the observed trend pattern agrees better with the greenhouse warming pattern. (orig.)

  8. Integrating net-zero energy and high-performance green building technologies into contemporary housing in a cold climate

    Science.gov (United States)

    Martin Yoklic; Mark Knaebe; Karen Martinson

    2010-01-01

    The objectives of this research project are (1) to show how the sustainable resources of forest biomass, solar energy, harvested rainwater, and small-diameter logs can be integrated to a system that provides most or all of the energy and water needs of a typical cold climate residential household, and (2) to effectively interpret the results and convey the sustainable...

  9. (Tele)Connectivity in climate variability at different spatial/temporal scales in relation to solar and geomagnetic activity

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Hartman, David; Vejmelka, Martin; Novotná, Dagmar

    2011-01-01

    Roč. 13, - (2011), s. 9579 ISSN 1607-7962. [European Geosciences Union General Assembly 2011. 03.04.2011-08.04.2011, Vienna] R&D Projects: GA AV ČR IAA300420805 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z30420517 Keywords : climate variability * phase coherence * synchronization * North Atlantic Oscillation * solar activity Subject RIV: BB - Applied Statistics, Operational Research

  10. Performance optimization of evacuated tube collector for solar cooling of a house in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.

    2018-02-01

    Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.

  11. A solar cooling system for greenhouse food production in hot climates

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P.A. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2005-12-01

    This study is motivated by the difficulty of cultivating crops in very hot countries and by the tendency for some such countries to become dependent on imported food. Liquid desiccation with solar regeneration is considered as maintained at or above room temperature, and this was confirgreenhouses. Previous studies demonstrated the technical feasibility of the desiccation-evaporation process, but mainly in the context of human dwellings. In the proposed cycle, the air is dried prior to entering the evaporative cooler. This lowers the wet-bulb temperature of the air. The cooling is assisted by using the regenerator to partially shade the greenhouse. The heat of desiccation is transferred and rejected at the outlet of the greenhouse. The cycle is analysed and results given for the climate of the The Gulf, based on weather data from Abu Dhabi. Taking examples of a temperate crop (lettuce), a tropical crop (tomato) and a tropical crop resistant to high temperatures (cucumber) we estimate the extension in growing seasons relative to (i) a greenhouse with simple fan ventilation (ii) a greenhouse with conventional evaporative cooling. Compared to option (ii), the proposed system lowers summers maximum temperatures by 5{sup o}C. This will extend the optimum season for lettuce cultivation from 3 to 6 months of the year and, for tomato and cucumber, from 7 months to the whole year. (author)

  12. Residential Energy Performance Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Wright

    2010-06-01

    Full Text Available Techniques for residential energy monitoring are an emerging field that is currently drawing significant attention. This paper is a description of the current efforts to monitor and compare the performance of three solar powered homes built at Missouri University of Science and Technology. The homes are outfitted with an array of sensors and a data logger system to measure and record electricity production, system energy use, internal home temperature and humidity, hot water production, and exterior ambient conditions the houses are experiencing. Data is being collected to measure the performance of the houses, compare to energy modeling programs, design and develop cost effective sensor systems for energy monitoring, and produce a cost effective home control system.

  13. Solar radiation observation stations with complete listing of data archived by the National Climatic Center, Asheville, North Carolina and initial listing of data not currently archived

    Science.gov (United States)

    Carter, E. A.; Wells, R. E.; Williams, B. B.; Christensen, D. L.

    1976-01-01

    A listing is provided of organizations taking solar radiation data, the 166 stations where observations are made, the type of equipment used, the form of the recorded data, and the period of operation of each station. Included is a listing of the data from 150 solar radiation stations collected over the past 25 years and stored by the National Climatic Center.

  14. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in South Carolina. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in South Carolina.

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Nebraska. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Nebraska.

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wisconsin. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Wisconsin.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Pennsylvania. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Pennsylvania.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Nevada. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Nevada.

  19. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Texas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Texas.

  20. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Oklahoma. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Oklahoma.

  1. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Missouri. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Missouri.

  2. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Rhode Island. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Rhode Island.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New Mexico. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in New Mexico.

  4. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in North Dakota. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in North Dakota.

  5. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Ohio. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Ohio.

  6. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Massachusetts. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Massachusetts.

  7. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Vermont. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Vermont.

  8. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Mississippi. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Mississippi.

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Virginia. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Virginia.

  10. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wyoming. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Wyoming.

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in West Virginia. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in West Virginia.

  12. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Utah

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Utah. Moving to the 2015 IECC from the 2012 Utah State Code base code is cost-effective for residential buildings in all climate zones in Utah.

  13. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Tennessee. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Tennessee.

  14. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in South Dakota. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in South Dakota.

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Michigan. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Michigan.

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Minnesota. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Minnesota.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Montana

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Montana. Moving to the 2015 IECC from the 2014 Montana State Code base code is cost-effective for residential buildings in all climate zones in Montana.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New York

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New York. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in New York.

  19. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Alabama. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Alabama.

  20. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Louisiana. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Louisiana.

  1. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Delaware. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Delaware.

  2. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Arizona. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Arizona.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Idaho. Moving to the 2015 IECC from the 2015 Idaho State Code base code is cost-effective for residential buildings in all climate zones in Idaho.

  4. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Georgia. Moving to the 2015 IECC from the 2011 Georgia State Code base code is cost-effective for residential buildings in all climate zones in Georgia.

  5. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Kansas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Kansas.

  6. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Arkansas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Arkansas.

  7. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Florida

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Florida. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Florida.

  8. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Connecticut. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Connecticut.

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Colorado. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Colorado.

  10. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Hawaii. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Hawaii.

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Indiana. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Indiana.

  12. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Illinois. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Illinois.

  13. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Maine

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Maine. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Maine.

  14. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Maryland. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Maryland.

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Iowa. Moving to the 2015 IECC from the 2014 Iowa State Code base code is cost-effective for residential buildings in all climate zones in Iowa.

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Alaska. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Alaska.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Kentucky. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Kentucky.

  18. Application of solar roof shallow pool at individual residental buildings

    OpenAIRE

    Gavrilović Dragan J.

    2011-01-01

    The paper discusses the possibility of applying shallow roof pools of water on the basis of passive solar water capture functioning as thermal batteries and thermal "regulators" in a "hot - cold" mode with individual residential buildings. With this application, the utilization of the existing functionality of the building roof area would improve and open up the possibility of achieving better overall bio-climate individual object. By using this system, a flat roof impassable "terrace" ...

  19. Assessing Climate to Improve Solar Design. Energy Efficiency and Renewable Energy Clearinghouse (EREC) Brochure

    International Nuclear Information System (INIS)

    Phillips, J.J.A.

    2001-01-01

    This fact sheet complements the fact sheet on passive solar design, and provides information on how sunlight, weather patterns, and microclimates affect the performance of solar energy systems and designs

  20. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, Alea [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI); Hoeschele, Marc [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI)

    2014-12-01

    Residential air conditioning (AC) represents a challenging load for many electric utilities with poor load factors. Mechanical precooling improves the load factor by shifting cooling operation from on-peak to off-peak hours. This provides benefits to utilities and the electricity grid, as well as to occupants who can take advantage of time-of-use (TOU) electricity rates. Performance benefits stem from reduced compressor cycling, and shifting condensing unit operation to earlier periods of the day when outdoor temperatures are more favorable to operational efficiency. Finding solutions that save energy and reduce demand on the electricity grid is an important national objective and supports key Building America goals. The Alliance for Residential Building Innovation team evaluated mechanical AC precooling strategies in homes throughout the United States. EnergyPlus modeling was used to evaluate two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes. A successful off-peak AC strategy offers the potential for increased efficiency and improved occupant comfort, and promotes a more reliable and robust electricity grid. Demand response capabilities and further integration with photovoltaic TOU generation patterns provide additional opportunities to flatten loads and optimize grid impacts.

  1. Applicability research on passive design of residential buildings in hot summer and cold winter zone in China

    Science.gov (United States)

    Zhang, Hui; Wang, Huihui; Zhou, Xuan

    2017-04-01

    Passive design has long been a concern as an effective way of building energy efficiency. However, different urban climate characteristics determine the time-effectiveness of passive design. According to the climate characteristics of hot summer and cold winter zone in China, this research chose five cities, Shanghai, Wuhan, Chongqing, Nanjing and Changsha, to analyze their residential building energy consumption and thermal environment conditions. Based on Weather Tool calculation and analysis, the purpose of this research is to put forward the concept of Suitable Degree (SD), namely the applicability of the passive design. In addition, five cities’ SD of passive design technology had been analyzed from aspect of ventilation, temperature, solar radiation and envelope, then passive design strategies and methods of five cities’ residential building were discussed.

  2. A Dual-Responsive Nanocomposite toward Climate-Adaptable Solar Modulation for Energy-Saving Smart Windows.

    Science.gov (United States)

    Lee, Heng Yeong; Cai, Yufeng; Bi, Shuguang; Liang, Yen Nan; Song, Yujie; Hu, Xiao Matthew

    2017-02-22

    In this work, a novel fully autonomous photothermotropic material made by hybridization of the poly(N-isopropylacrylamide) (PNIPAM) hydrogel and antimony-tin oxide (ATO) is presented. In this photothermotropic system, the near-infrared (NIR)-absorbing ATO acts as nanoheater to induce the optical switching of the hydrogel. Such a new passive smart window is characterized by excellent NIR shielding, a photothermally activated switching mechanism, enhanced response speed, and solar modulation ability. Systems with 0, 5, 10, and 15 atom % Sb-doped ATO in PNIPAM were investigated, and it was found that a PNIPAM/ATO nanocomposite is able to be photothermally activated. The 10 atom % Sb-doped PNIPAM/ATO exhibits the best response speed and solar modulation ability. Different film thicknesses and ATO contents will affect the response rate and solar modulation ability. Structural stability tests at 15 cycles under continuous exposure to solar irradiation at 1 sun intensity demonstrated the performance stability of such a photothermotropic system. We conclude that such a novel photothermotropic hybrid can be used as a new generation of autonomous passive smart windows for climate-adaptable solar modulation.

  3. Thermal performance of a double pane window with a solar control coating for warm climate of Mexico

    International Nuclear Information System (INIS)

    Xamán, J.; Jiménez-Xamán, C.; Álvarez, G.; Zavala-Guillén, I.; Hernández-Pérez, I.; Aguilar, J.O.

    2016-01-01

    Highlights: • Pseudo-transient thermal performance of a double pane window (DPW) was determined. • The DPW was analyzed each 5 s by a period from 8:00 to 18:00 h. • 57,600 computational runs were necessary and the additive correction multigrid was implemented. • Solar control coating (SCC) in a DPW reduces 1073.79 W/m 2 with respect to the DPW without SCC. • SCC is highly recommended in a DPW because it reduces a 53.88% of the amount of energy gained. - Abstract: The pseudo-transient thermal performance (each 5 s) of a double pane window without and with a solar control coating was determined numerically. The study considers warm climatic conditions (Mexico) and a period from 8:00 to 18:00 h. The effect of varying the indoor air temperature (15–30 °C); and the incident solar radiation and the outdoor air temperature as functions of time is analyzed. The simulations were done with a self-developed ForTran program and it was verified with results from the literature. To obtain the results, 57,600 computational runs were necessary. From the results, the double pane window with a solar control coating allows a smaller heat flux to enter into a room than the corresponding without a solar control coating. The solar control coating in double glass window reduces the amount of 1073.79 W h/m 2 with respect to the case without a solar control coating, which represents a reduction of 53.88% of the heat gain.

  4. a Study of the Impact of Doubling Carbon Dioxide and Solar Radiation Variations on the Climate System.

    Science.gov (United States)

    Chu, Shaoping

    The exchange of moisture and heat between the atmosphere and the Earth's surface fundamentally affect the dynamics and thermodynamics of the climate system. In order to trace moisture flow through the climate system and examine its impact on climate, a hydrologic cycle and a land energy balance have been developed and incorporated into a coupled climate-thermodynamic sea ice (CCSI) model. The expanded CCSI model has been tested by comparing computed climate parameters with available observations and GCM modeling results. In general, the expanded model does a good job in simulating the large scale features of the atmospheric circulation and precipitation in both space and time. The expanded model has been used to examine the possibility that increased levels of CO_2 in the atmosphere may induce the growth of Northern Hemisphere ice sheets. Results of the study indicate that if summer ice albedo is high enough, and there is some mechanism for initially maintaining ice through the summer season, then it may be possible to have ice sheet growth under the conditions CO_2 induced warming, mainly the result of decreased summer ice melt in response to the higher land ice albedo, and not an increase in precipitation. The expanded model has also been used to examine the impact of Milankovitch solar radiation variations on the climate system, to study the mechanisms that produce glacial-interglacial cycles, especially with respect to the initiation of ice sheets. The results show the Milankovitch solar radiation variations affect the climate system most in the polar regions with the mean annual surface air temperature varying directly in response to changes in the annually averaged incoming solar radiation. However, the seasonal variations in the surface air temperatures are much more complex with large magnitude variations for brief times during the year. The study indicates that ice sheets may start to grow under the conditions of low insolation that occurred at 25, 70, and

  5. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  6. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    Science.gov (United States)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  7. An intervention targeting fundamental values among caregivers at residential facilities: effects of a cluster-randomized controlled trial on residents' self-reported empowerment, person-centered climate and life satisfaction.

    Science.gov (United States)

    Roos, Charlotte; Silén, Marit; Skytt, Bernice; Engström, Maria

    2016-07-07

    In Sweden the national fundamental values for care of older people state that care should ensure that they can live in dignity and with a sense of well-being. Our hypothesis was that a caregiver intervention targeting the national fundamental values would improve perceived empowerment, person-centered climate and life satisfaction among older people living in residential facilities. The study was a cluster-randomized controlled trial with a pre- and one post-test design, conducted in 27 units (17 study units) at 12 residential facilities for older people in five municipalities in central Sweden. The units in each municipality were randomly assigned to intervention or control group. The caregiver intervention was carried out using an interpretative approach with eight guided face-to-face seminars, where self-reflection and dialogue were used. Data were collected using questionnaires. The number of residents was 43 (78 %) in the intervention group and 37 (71 %) in the control group. The Chi-square test and Mann-Whitney U-tests were performed to detect differences between groups and Wilcoxon signed rank tests to explore differences in change over time within groups. Furthermore, generalized estimating equation (GEE) models were used to study effects of the intervention controlling for clustering effects. Primary outcome measures were empowerment, person-centered climate and life satisfaction. In the intervention group, improvements at follow-up were found in residents' self-reported empowerment (n = 42; p = 0.001, Median difference 4.0, 95 % CI 1.5;6.0), person-centered climate (n = 42; p ≤0.001, Median difference 8.0, 95 % CI 4.5;11.4) and life satisfaction regarding the factor quality of everyday activities (n = 40; p = 0.033, Median difference 9.7, 95 % CI 1.0;21.9) while disempowerment decreased (n = 43; p = 0.018, Median difference -1.3, 95 % CI -2.0;0.0). In the control group person-centered climate decreased (n = 37; p

  8. Climate, Air Quality, and Human Health Benefits of Various Solar Photovoltaic Development Scenarios in China in 2030

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.; Wagner, F.; Li, X.

    2016-12-01

    Solar photovoltaic (PV) technology can greatly reduce both air pollution and GHG emissions from the power sector. The Chinese government has plans to scale up solar PV installation between now and 2030. However, there is little analysis of how deployment strategies will influence the range of benefits. Here we conduct the first integrated assessment study that quantifies the climate, air quality, and related human health benefits of various solar PV development strategies in 2030 China. Our results indicate that both the location of PV deployment, which coal power plants are replaced, and the extent of inter-provincial transmission greatly influence the co-benefits. We compare CO2 and PM2.5 reductions from two PV installation scenarios both with the 2030 government target of 400 GW national installed capacity. First, we assume all solar PV is utilized within the province in which it is generated and that it can not exceed 30% of total provincial electricity generation. We find that deploying more solar PV in locations near load centers via distributed PV systems has larger benefits and could lead to approximately 20,500 (between 8000 - 32,400, high and low bounds) annual avoided premature deaths, 15% more than building utility-scale solar PV plants in the sunny, yet sparsely populated northwest. The difference occurs because in the northwest a lower population and cleaner air leads to smaller reductions in air pollution related premature mortalities. Also greater potential for PV curtailment exists in the west. In terms of CO2 reduction, deploying PV near load centers leads to 12% greater reductions in CO2 emissions from the power sector - approximately 5% of China's total CO2 emission in 2030. Second, we enable inter-provincial transmission of PV electricity within each of China's six regional grids which allows greater use of abundant sunlight in the northwest. Our results for 2030 show that by expanding to the regional grid, curtailment rates in the northwest

  9. Regional variations in the health, environmental, and climate benefits of wind and solar generation

    OpenAIRE

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay

    2013-01-01

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. De...

  10. Solar and Lighting Transmission through Complex Fenestration Systems of Office Buildings in a Warm and Dry Climate of Chile

    Directory of Open Access Journals (Sweden)

    Waldo Bustamante

    2014-05-01

    Full Text Available Overheating, glare, and high-energy demand are recurrent problems in office buildings in Santiago, Chile (33°27'S; 70°42'W during cooling periods. Santiago climate is warm and dry, with high solar radiation and temperature during most of the year. The objective of this paper is to evaluate the thermal and daylighting performance of office buildings transparent façades composed of three different complex fenestration systems (CFS. Each CFS contains a different external shading device (ESD: (1 external roller, (2 vertical undulated and perforated screens, and (3 tilted undulated and perforated screens. The study was carried out by in situ monitoring in three office buildings in Santiago, Chile. Buildings were selected from a database of 103 buildings, representing those constructed between 2005 and 2011 in the city. The monitoring consisted of measuring the short wave solar and daylighting transmission through fenestration systemsby means of pyranometers and luxometers, respectively. This paper shows measurements that were carried out during summer period. A good performance is observed in a building with the external roller system. This system—applied to a northwest façade—shows a regular and high solar and daylighting control of incoming solar radiation. The other two ESD systems evidence a general good performance. However, some deficiencies at certain times of the day were detected, suggesting a non-appropriated design.

  11. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

    KAUST Repository

    Haschke, Jan

    2017-03-23

    Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.

  12. Generalized indices of a typical individual water-heating solar plant in the climatic conditions of Russia different regions

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.

    2003-01-01

    By the example of the typical solar water-heating plant (SWP), designed for daily consumption of 100 l of heated water the calculation of the number of days in the year is accomplished, during which such a plant could provide for heating the water not below the assigned control level of 37, 45 and 55 deg C for various ratios between the solar collector square and tank-accumulator volume. The generalized dependences are obtained on the basis of processing the results of the SWP dynamic modeling with application of the typical meteoyears, generated for the climatic conditions of more than 40 populated localities in Russia both in its European and Asian part. The efficiency of the SWP operation in different regions of the country may be determined through their application [ru

  13. Evidence for a possible modern and mid-Holocene solar influence on climate from Lake Titicaca, South America

    Science.gov (United States)

    Theissen, K. M.; Dunbar, R. B.

    2005-12-01

    In tropical regions, there are few paleoclimate archives with the necessary resolution to investigate climate variability at interannual-to-decadal timescales prior to the onset of the instrumental record. Interannual variability associated with the El Niño Southern Oscillation (ENSO) is well documented in the instrumental record and the importance of the precessional forcing of millennial variability has been established in studies of tropical paleoclimate records. In contrast, decade-to-century variability is still poorly understood. Here, we examine interannual to decadal variability in the northern Altiplano of South America using digital image analysis of a floating interval of varved sediments of middle Holocene age (~6160-6310 yr BP) from Lake Titicaca. Multi-taper method (MTM) and wavelet frequency-domain analyses were performed on a time series generated from a gray-scaled digital image of the mm-thick laminations. Our results indicate significant power at a decadal periodicity (10-12 years) associated with the Schwabe cycle of solar activity. Frequency-domain analysis also indicates power at 2-2.5 year periodicities associated with ENSO. Similarly, spectral analysis of a 75 year instrumental record of Titicaca lake level shows significant power at both solar and ENSO periodicities. Although both of the examined records are short, our results imply that during both the mid-Holocene and modern times, solar and ENSO variability may have contributed to high frequency climate fluctuations over the northern Altiplano. We suspect that solar influence on large-scale atmospheric circulation features may account for the decadal variability in the mid-Holocene and present-day water balance of the Altiplano.

  14. Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Wardah Fatimah Mohammad; Salleh, Elias [Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Adam, Nor Mariah [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapian, Abdul Razak [Department of Architecture, Kulliyyah of Architecture and Environmental Design, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur (Malaysia); Yusof Sulaiman, Mohamad [Solar Energy Research Institute, 3rd Floor, Tun Sri Lanang Library Building, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2010-10-15

    In the hot and humid climate, stack ventilation is inefficient due to small temperature difference between the inside and outside of naturally ventilated buildings. Hence, solar induced ventilation is a feasible alternative in enhancing the stack ventilation. This paper aims to investigate the effectiveness of a proposed solar induced ventilation strategy, which combines a roof solar collector and a vertical stack, in enhancing the stack ventilation performance in the hot and humid climate. The methodology selected for the investigation is physical experimental modelling which was carried out in the actual environment. The results are presented and discussed in terms of two performance variables: air temperature and air velocity. The findings indicate that the proposed strategy is able to enhance the stack ventilation, both in semi-clear sky and overcast sky conditions. The highest air temperature difference between the air inside the stack and the ambient air (T{sub i}-T{sub o}) is achieved in the semi-clear sky condition, which is about 9.9 C (45.8 C-35.9 C). Meanwhile, in the overcast sky condition, the highest air temperature difference (T{sub i}-T{sub o}) is 6.2 C (39.3 C-33.1 C). The experimental results also indicate good agreement with the theoretical results for the glass temperature, the air temperature in the roof solar collector's channel and the absorber temperature. The findings also show that wind has significant effect to the induced air velocity by the proposed strategy. (author)

  15. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2014-01-01

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  16. Transmission components of solar radiation in pine stands in relation to climatic and stand variables

    Science.gov (United States)

    Robert A. Muller

    1971-01-01

    In a new approach, transmission was studied by relating to stand biomass the ratio of incoming solar radiation beneath tree crowns to that within the atmosphere. Several assumptions were used to estimate analytically the various ways in which solar radiation penetrates through crowns of three pine species in northern California. Sunflecks accounted for much of the...

  17. DESIGN EXPERIMENT WITH SOLAR ENERGY IN THE ELABORATION OF 25-STOREY RESIDENTIAL COMPLEX FOR THE CRIMEA DISTRICT OF THE SEVASTOPOL CITY

    Directory of Open Access Journals (Sweden)

    Kovaleva Alesya Sergeevna

    2016-09-01

    Full Text Available The scientific project examines the issues of energy efficiency, renewable energy sources, as well as ecology. In today's world the ecological issues are more current than ever. Some of them are ozone holes, disappearance of many species of animals and plants, exhaustible fuel reserves. Ecology is a huge problem of our civilization, which may be solved by paying more attention to energy efficiency in the process of urban development. In the implementation of energy efficiency experiments it is necessary to involve the efforts of scientists, politicians, non-governmental organizations, but first and foremost — of inventors, architects and designers. Energy efficiency in civil construction is presented in the article as an area allowing us to find design solutions basing on renewable energy sources, in particular photocell energy. Project experiment data on a residential high-rise complex in the city of Sevastopol is considered. The author presents design calculations and the comparison of the variants of design decisions on the use of photovoltaic cells producing energy to illuminate the underground car park of a residential high-rise complex. In the future, the use of photovoltaic cells as cladding structures may change the energy characteristics of buildings in case of transition to production scale implementation of the technology. This makes it possible to consider the prospects of urban development growth and improvement of the economy of the construction of expensive facilities. However, subsequent design experiments should be based mostly on other types of facilities and should take into account the impact of wind and aerodynamic performance of buildings in case of application of photovoltaic cells on roofs and facades. The results of the design experiment allow initially investigating the regularities of urban conditions and the amount of energy produced by building surfaces. Thus, the provided concept and the design experiment can be

  18. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  19. Exploring Earth and the Solar System: Educational Outreach Through NASA's Space Place, SciJinks, and Climate Kids Websites

    Science.gov (United States)

    Meneses, Joseph Chistopher

    2012-01-01

    NASA's Space Place team publishes engaging content and creates an effective environment to inspire a young audience to dare mighty things. NASA uses the Space Place, Climate Kids, and SciJinks websites to cultivate interest among elementary-school-aged children in both science and technology. During my summer internship at Jet Propulsion Laboratory I used Adobe Flash and ActionScript 3 to develop content for the Space Place, Climate Kids, and SciJinks sites. In addition, I was involved in the development process for ongoing and new projects during my internship. My involvement allowed me to follow a project from concept to design, implementation, and release. I personally worked on three projects this summer, two of which are currently in deployment. The first is a scrambled letter-tile guessing game titled Solar System Scramble. The second, Butterfrog Mix-Up, is a rotating-tile puzzle game. The third project is a unfinished prototype for a maze game.

  20. A comparison of methods to estimate daily global solar irradiation from other climatic variables on the Canadian prairies

    International Nuclear Information System (INIS)

    Barr, A.G.; McGinn, S.M.; Cheng, S.B.

    1996-01-01

    Historic estimates of daily global solar irradiation are often required for climatic impact studies. Regression equations with daily global solar irradiation, H, as the dependent variable and other climatic variables as the independent variables provide a practical way to estimate H at locations where it is not measured. They may also have potential to estimate H before 1953, the year of the first routine H measurements in Canada. This study compares several regression equations for calculating H on the Canadian prairies. Simple linear regression with daily bright sunshine duration as the dependent variable accounted for 90% of the variation of H in summer and 75% of the variation of H in winter. Linear regression with the daily air temperature range as the dependent variable accounted for 45% of the variation of H in summer and only 6% of the variation of H in winter. Linear regression with precipitation status (wet or dry) as the dependent variable accounted for only 35% of the summer-time variation in H, but stratifying other regression analyses into wet and dry days reduced their root-mean-squared errors. For periods with sufficiently dense bright sunshine observations (i.e. after 1960), however, H was more accurately estimated from spatially interpolated bright sunshine duration than from locally observed air temperature range or precipitation status. The daily air temperature range and precipitation status may have utility for estimating H for periods before 1953, when they are the only widely available climatic data on the Canadian prairies. Between 1953 and 1989, a period of large climatic variation, the regression coefficients did not vary significantly between contrasting years with cool-wet, intermediate and warm-dry summers. They should apply equally well earlier in the century. (author)

  1. Mechanism of the relations between the changes of the geomagnetic field, solar corpuscular radiation, atmospheric circulation, and climate

    International Nuclear Information System (INIS)

    Bucha, Vaclav

    1980-01-01

    The correlations between geomagnetic, climatic, and meteorological phenomena were investigated with the object of demonstrating the function of the geomagnetic pole and changes of its position in controlling the climate and weather. A tentative model has been proposed to enable one to understand the causes of the generation of glacial and interglacial periods, as well as the causes which effect changes of climate (Bucha, 1976a). The analyses of various types of geomagnetic and atmospheric manifestations have disclosed certain associations. The coincidence in the occurrence of increased spectral densities with regard to geomagnetic activity and the variations of atmospheric pressure over the geomagnetic pole shows the relation between their periodicities. The results imply that the changes in the intensity of corpuscular radiation, indicated by geomagnetic activity, affect the temperature and pressure patterns over the geomagnetic pole and polar region significantly, so that a pronounced modification of the general circulation may take place, as shown schematically (Bucha, 1976b). As a result of investigating the relations between the variations of geomagnetic activity and meteorological factors a mechanism of solar-terrestrial relationships and a model of the changes of atmospheric circulation in the Northern Hemisphere are proposed; this provides a probable explanation of the causes of the fluctuation of the climate, of dry and cold periods and of differing vegetation conditions in various years in dependence on the intensity of geomagnetic activity (Bucha, 1976b, 1977a). (author)

  2. Calculations of efficiency and economy of solar heating systems in Scandinavian climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, Ingemar; Girdo, Valdis

    1978-10-15

    Conceivable fields of application and saving possibilities up to the year 1995 are discussed - starting from energy and power requirements for different kinds of buildings and from the efficiency and distribution of solar radiation in the northern country. Since hardly any calculations of energy costs for solar heating systems in Sweden are available, calculations of efficiency and economy of different solar heating systems are made for several places in this country. The calculations are performed with a computer program, which has been developed at the Division of Building Technology at the Royal Institute of Technology, Sweden.

  3. Effect of different absorbing materials on the performance of basin solar still under Libyan climate conditions

    International Nuclear Information System (INIS)

    Shuia, Essaied M.; El-Agouz, Elsayed A.

    2013-01-01

    This experimental study deals with a single-basin solar still using various absorbing materials with and without black painting. Different types of absorbing materials with and without black painting were used to enhance the solar still productivity through improvement in absorptivity. These materials are steel and aluminum with and without black painting and rubber. Two identical solar stills were manufactured using locally available materials. All the results were compared together to reach the best absorbing materials with and without painting that can be used for solar still. it was found that the rubber absorber has the highest water collection during daytime, followed by the black painted steel absorber, then by black painted aluminum absorber and steel without painting absorber. The average enhancement in the daily productivity was about 50% for the rubber absorber compared with the black painted aluminum absorber and about 43% for the rubber absorber compared with the black painted steel absorber.(author)

  4. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  5. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  6. STAR Measurements and Modeling for Quantifying Air Quality and Climatic Impacts of Residential Biomass or Coal Combustion for Cooking, Heating and Lighting Kick-off Meeting

    Science.gov (United States)

    STAR grantees and EPA scientists will discuss progress on their projects which aim to quantify the extent to which interventions for cleaner cooking, heating, or lighting can impact air quality and climate, which in turn affect human health and welfare

  7. Holocene climate change and the evidence for solar and other forcings

    NARCIS (Netherlands)

    Beer, J.; van Geel, B.; Battarbee, R.W.; Binney, H.A.

    2008-01-01

    Future climate change may have considerable effects on the hydrologic cycle and temperature, with significant consequences for sea level, food production, world economy, health, and biodiversity. How and why does the natural climate system vary on decadal to millennial time-scales? Do we

  8. Potential use of solar water heating systems in residential areas of the city of Piracicaba; Potencial da utilizacao de coletores solares no aquecimento de agua residencial na cidade de Piracicaba

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rafel Deleo e; Vieira Junior, Jose Carlos de Melo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], Emails: rafael.deleo.oliveira@usp.br, jcarlos@sc.usp.br

    2010-10-15

    Solar collector is a device that uses solar energy for heating fluid (both liquid and gaseous) which can then be used to generate energy. This study is based on the method of calculating the global solar radiation incident on the inclined plane using data from the city of Piracicaba, state of Sao Paulo. As a result of the study it can be seen that for the city of Piracicaba the collecting area of 4.62 M{sup 2} presents solar fraction varying between 87.27% and 97.79% for heating 300 liters of water and 200 liters of water daily, respectively. Based on the results one can conclude that the savings would be about 47.74 GWh, if a collection area of 360 thousand m{sup 2} (0.36 km{sup 2}) were fully exploited, which represents savings of approximately R$ 15.86 million per year for the municipality. (author)

  9. Understanding climate

    International Nuclear Information System (INIS)

    1995-01-01

    In this article the following question is answered. What is the climate? What factors do determine our climate? What is solar radiation? How does solar radiation relate to the earth's energy? What is greenhouse effect? What role does the greenhouse effect play in the global ecosystem? How does the water cycle affect climate? What is drought? What role do oceans play in influencing climate. (author)

  10. Criteria of choice in the planning of a solar radiation lamp arrangement, in climatic chambers for plant physiology studies

    International Nuclear Information System (INIS)

    Materassi, A.; Fasano, G.; Vincenzi, M. De

    2006-01-01

    This technical note is an integration of the previous study: Climatic chambers for plant physiology: a new project concept. This note gives details regarding the planning of the lamp arrangement and demonstrates how mixing, in appropriate quantities, the radiative range of various types of lamps can give apparently contrasting results: to maximize radiation in maximum absorption range of chlorophylls and carotenoids; to minimize heat emission in the climatic chamber. With nine daylight fluorescent tubes, four sunlight metallic halide spotlights and nine red-blue fluorescent tubes, for a total of 562 W mE-2 (electric), mounted on the ceiling of a 2 m high chamber with a 4 square m surface area, on the chamber floor about 130 W mE-2 total solar radiation equivalent was obtained. This means a power emitted, in the bands of chlorophylls and carotenoids absorption, from a total solar radiation (black body of 5,500 K) of about 130 W mE-2. This radiation is sufficient to grow a large number of plant species. In the lamp arrangement there are seven other light fixtures, for fluorescent tubes, defined as auxiliary because tubes can be inserted which either integrate active radiation on the photoreceptors or produce particular spectral ranges. In the above cited work, fluorescent tubes producing in the ultraviolet B range were mounted in these auxiliary fixtures. Less thermal energy emitted in the climatic chamber means that it is possible to use a less powerful conditioning system and, thus, have lower costs of set-up and management. The efficiency of the lighting system is demonstrated by the fact that during 15 days of experimentation on 18-month-old, potted poplar plants (Populus alba), symptoms of insufficient light were not detected [it

  11. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    Science.gov (United States)

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    as growth, DNA damage, oxidative damage and induction of changes in secondary chemicals. Thus, use of a single BSWF for plant or ecosystem response is not appropriate. This brief review emphasizes progress since the previous report toward the understanding of solar ultraviolet radiation effects on terrestrial systems as it relates to ozone column reduction and the interaction of climate change factors.

  12. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  13. Study of the temporal and spatial variation of climate and solar radiation in th metropolitan Phoenix area. Final technical progress report, July 1, 1977-June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Durrenberger, R.W.

    1978-09-29

    The research performed was designed to identify spatial or temporal variation of any atmospheric parameters that might affect the operation of devices utilizing solar energy in the metropolitan Phoenix area. The first part of the research involved the analysis of all available solar and climatic data to determine their validity and comparability. For the standard climatic parameters, few difficulties were encountered, but the task of determining comparability of solar radiation data involved many pitfalls. It was concluded that most of the solar data acquired before January 1977 could not be used for purposes of identifying spatial variability. And, a year and a half of data does not represent a long enough period of time upon which to base sound conclusions about spatial and temporal variability of solar radiation in the metropolitan Phoenix region. The data currently available to us do not indicate any great variation of solar radiation in the metropolitan Phoenix area. However, any meaningful statements about spatial and temporal variability of solar radiation in the metropolitan Phoenix area must await the acquisition of additional data from well-calibrated equipment.

  14. Solar Flare Five-Day Predictions from Quantum Detectors of Dynamical Space Fractal Flow Turbulence: Gravitational Wave Diminution and Earth Climate Cooling

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2014-10-01

    Full Text Available Space speed fluctuations, which have a 1 / f spectrum, are shown to be the cause of solar flares. The direction and magnitude of the space flow has been detected from numer- ous different experimental techniques, and is close to the normal to the plane of the ecliptic. Zener diode data shows that the fluctuations in the space speed closely match the Sun Solar Cycle 23 flare count, and reveal that major solar flares follow major space speed fluctuations by some 6 days. This implies that a warning period of some 5 days in predicting major solar flares is possible using such detectors. This has significant conse- quences in being able to protect various spacecraft and Earth located electrical systems from the subsequent arrival of ejected plasma from a solar flare. These space speed fluctuations are the actual gravitational waves, and have a significant magnitude. This discovery is a significant application of the dynamical space phenomenon and theory. We also show that space flow turbulence impacts on the Earth’s climate, as such tur- bulence can input energy into systems, which is the basis of the Zener Diode Quantum Detector. Large scale space fluctuations impact on both the sun and the Earth, and as well explain temperature correlations with solar activity, but that the Earth temperatures are not caused by such solar activity. This implies that the Earth climate debate has been missing a key physical process. Observed diminishing gravitational waves imply a cooling epoch for the Earth for the next 30 years.

  15. Year-round performance assessment of a solar parabolic trough collector under climatic condition of Bhiwani, India: A case study

    International Nuclear Information System (INIS)

    Kumar, Devander; Kumar, Sudhir

    2015-01-01

    Highlights: • Year-round performance of SPTC under the various climatic conditions is presented. • A detailed thermo-optical model for PTC system is developed. • A comparison of developed thermal model is done with experimental data of SNL. • Developed model is very helpful and effective tool in analyzing the PTC system. • Enlightens the importance of mini-level SPTC as a promising system to fulfill the energy demands. - Abstract: Solar parabolic trough collector (SPTC) is a well-known solar thermal system applied for solar electric generation. Nowadays, major attention is directed toward improving the performance of solar thermal systems with optimization of solar field production. In this research work, a comprehensive thermo-optical modeling has been proposed to evaluate the performance of a mini-level SPTC considering various heat equilibriums with the environment. Here, receiver wall temperature is considered as the base for modeling. Collector consists of a non-evacuated receiver tube with black paint coating and enveloped with glass cover. Available meteorological data in terms of global and diffuse solar insolations, air temperatures and wind speeds have been used as inputs for performance evaluation of SPTC with horizontal and inclined aperture planes. The validation of the proposed analytical model is justified with existing experimental results and yielded a close agreement. The developed model is successfully applied to a SPTC in order to estimate the through-out year performance characteristics in terms of water temperature rise, heat energy generation, optical and thermal efficiency for the climactic conditions of Bhiwani. The results enlighten that using 0.010 kg/s mass flow rate of water and aperture area of around 1.34 m"2, collector achieved maximum rise in water temperature 11.1 °C and 12.2 °C on horizontal and inclined planes, respectively in the month of April. The uppermost heat energy generation is found to be 2.38 kW h/day in May

  16. Cost-Risk Trade-off of Solar Radiation Management and Mitigation under Probabilistic Information on Climate Sensitivity

    Science.gov (United States)

    Khabbazan, Mohammad Mohammadi; Roshan, Elnaz; Held, Hermann

    2017-04-01

    In principle solar radiation management (SRM) offers an option to ameliorate anthropogenic temperature rise. However we cannot expect it to simultaneously compensate for anthropogenic changes in further climate variables in a perfect manner. Here, we ask to what extent a proponent of the 2°C-temperature target would apply SRM in conjunction with mitigation in view of global or regional disparities in precipitation changes. We apply cost-risk analysis (CRA), which is a decision analytic framework that makes a trade-off between the expected welfare-loss from climate policy costs and the climate risks from transgressing a climate target. Here, in both global-scale and 'Giorgi'-regional-scale analyses, we evaluate the optimal mixture of SRM and mitigation under probabilistic information about climate sensitivity. To do so, we generalize CRA for the sake of including not only temperature risk, but also globally aggregated and regionally disaggregated precipitation risks. Social welfare is maximized for the following three valuation scenarios: temperature-risk-only, precipitation-risk-only, and equally weighted both-risks. For now, the Giorgi regions are treated by equal weight. We find that for regionally differentiated precipitation targets, the usage of SRM will be comparably more restricted. In the course of time, a cooling of up to 1.3°C can be attributed to SRM for the latter scenario and for a median climate sensitivity of 3°C (for a global target only, this number reduces by 0.5°C). Our results indicate that although SRM would almost completely substitute for mitigation in the globally aggregated analysis, it only saves 70% to 75% of the welfare-loss compared to a purely mitigation-based analysis (from economic costs and climate risks, approximately 4% in terms of BGE) when considering regional precipitation risks in precipitation-risk-only and both-risks scenarios. It remains to be shown how the inclusion of further risks or different regional weights would

  17. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...... demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria...

  18. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  19. Decadal Cycles of Earth Rotation, Mean Sea Level and Climate, Excited by Solar Activity

    Czech Academy of Sciences Publication Activity Database

    Chapanov, Y.; Ron, Cyril; Vondrák, Jan

    2017-01-01

    Roč. 14, č. 2 (2017), s. 241-250 ISSN 1214-9705 R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : Earth rotation * solar activity * mean sea level Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.699, year: 2016

  20. Energetic, exergetic and economic analysis of an innovative Solar CombiSystem (SCS) producing thermal and electric energies: Application in residential and tertiary households

    International Nuclear Information System (INIS)

    Hazami, Majdi; Mehdaoui, Farah; Naili, Nabiha; Noro, Marco; Lazzarin, Renato; Guizani, AmenAllah

    2017-01-01

    Highlights: • The present work studies the potential of using innovative SCS in Tunisia. • In cold months the SCS provide about 50–75% of the total exergy provides. • The SCS produces between 70–150% of electric energy needs. • The SCS payback period (Pb) based on electric water heater was 10.2 years. • The SCS payback period (Pb) based on gas/gas town was about and 8.7 years. - Abstract: The endeavor of this paper is to study of the potential offered by the expenditure of an innovative Solar CombiSystem, SCS, used for the space heating load, the domestic hot water supply and the electric energy production. The investigation achieved in this work was based on an experimental and a simulation studies. A TRNSYS simulation program was achieved in order to evaluate the SCS monthly/annual thermal and electric performances. It was found that the proposed SCS covered between 20 and 45% of the SH energy needs by considering only solar energy. The result shows also that the SCS provided from 40 to 70% of the total DHW needs. It was also found that the SCS electric production ranged between 32 and 225 MJ/m 2 with a gain factor varying between 49 and 125%. An economic appraisal was also achieved to appraise the SCS feasibility. The results of the economic analysis show that the annual energy saved (ARE) and the payback period (Pb) based on electric water heater were respectively equal to 7618.3 kW h/year and 10.2 years. It was found that ARE and Pb based on gas/gas town were about 5825 m 3 and 8.7 years, respectively. The results of the economic analysis shows that the adoption of the SCS saves about 48% of electric energy and about 46% of gas/gas town kept back by the conventional system.

  1. Long-term energy storage tanks for dwellings and solar house architecture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The design and installation of hot water storage tanks as accumulators of solar energy is presented. Solar house architecture which maximizes roof, solar collector energy absorption potential is then considered. Proposals for residential areas which include solar houses are made.

  2. Thermal study of a residential water solar heating system with two different absorbing surface configurations; Estudo termico de um sistema solar de aquecimento de agua residencial para duas configuracoes de superficie absorvedora

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Rivaldo Ferreira

    2009-10-15

    A solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly is presented. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, it is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint fiat black for better absorption of sunlight. The system worked on a thermosyphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. The most efficient configuration for the connect purpose was determined. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied. (author)

  3. Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030

    Science.gov (United States)

    Yang, Junnan; Li, Xiaoyuan; Peng, Wei; Wagner, Fabian; Mauzerall, Denise L.

    2018-06-01

    Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.

  4. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  5. Study on reduction of consumption and peak demand of electric power used in residential houses with solar heating and PV systems; Solar house no fuka heijunka to energy sakugen koka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M.; Endo, T. [Kogakuin University, Tokyo (Japan)

    1994-12-08

    A model house was simulated to reduce the consumption and peak demand for the photovoltaic power generation system, and solar heat air heating and hot water supply system in the solar house. As a type of construction, both wooden construction and reinforced concrete (RC) construction were selected with a total floor area of 125m{sup 2}. All the rooms were equipped with an air conditioner by heat pump from the air thermal source. A solar heat floor heater was simultaneously installed on the first floor. The hot water supply load was 4.8MWh per year. A commercial grid-connected on-site system was applied to the photovoltaic power generation with a 20m{sup 2} wide monocrystalline Si solar cell panel. As for the fluctuation in power load, the peak at the time of rising is more reduced in the RC house than in the wooden house, because the former is smaller in temperature fluctuation than the latter during the intermittence of air conditioning (as per the specified operational schedule). Therefore, the power is more leveled off in the former than in the latter. Between both, difference was hardly made in energy consumption per year. The ratio of dependency was 47% upon the photovoltaic power generation system, while it was 50% and 77%, under the air heating power load and hot water supply power load, respectively, upon the solar heat air heating and hot water supply system, so that both systems were considerably effective in saving the energy. 5 refs., 7 figs., 1 tab.

  6. Assessing the solar potential of low-density urban environments in Andean cities with desert climates: The case of the city of Mendoza, in Argentina. 2nd. Part

    Energy Technology Data Exchange (ETDEWEB)

    Arboit, M.; Mesa, A.; Fernandez Llano, J.C.; de Rosa, C. [Instituto de Ciencias Humanas, Sociales y Ambientales. (INCIHUSA - CONICET), R+D Unit: Laboratorio de Ambiente Humano y Vivienda, Adrian Ruiz Leal s/n. Parque General San Martin. (5500) Mendoza (Argentina); Diblasi, A. [Facultad de Ciencias Economicas, UNCuyo. Area Ciencias Exactas,(CRICYT - CONICET), Adrian Ruiz Leal s/n. Parque General San Martin. (5500) Mendoza (Argentina)

    2010-07-15

    Energy use in the built environment is globally recognized as a key issue for sustainable urban development. In temperate-cold arid regions with a generous solar resource, such as those of western Argentina, adequate design and technology can substantially reduce the energy demand for space and water heating in urban buildings. The solar potential of low-density residential urban areas in the city of Mendoza's Metropolitan Area (MMA), has been studied earlier in this research. Several indicators of the solar potential were elaborated. They provide necessary information when planning and designing new urban structures or refurbishing existing ones. However, a more direct indicator, relating the available solar radiation during a heating season to the space volume to be heated, the Volumetric Insolation Factor (VIF), seems to be of most practical use as far as contributing a helpful evaluation indicator, to the above mentioned design processes. The present study follows the methodological steps used in the former research, evaluating comparatively the results of a Graphic-Computational Model and a Multiple Linear Regression Statistical Model. As in the earlier study, the good fit of both models' results clearly point at the reliability of the statistical procedure and its valuable contribution of a simplified calculation tool as its by-product. (author)

  7. 10Be and δ2H in polar ice cores as a probe of the solar variability's influence on climate

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Yiou, F.; Jouzel, J.; Domaine Univ., 38 - St-Martin-d'Heres; Petit, J.R.

    1990-01-01

    By using the technique of accelerator mass spectrometry, it is now possible to measure detailed profiles of cosmogenic (cosmic ray produced) 10 Be in polar ice cores. Recent work has demonstrated that these profiles contain information on solar activity, via its influence on the intensity of galactic cosmic rays arriving in the Earth's atmosphere. It has been known for some time that, as a result of temperature-dependent fractionation effects, the stable isotope profiles δ 2 O and δ 2 H in polar ice cores contain palaeoclimate information. Thus by comparing the 10 Be and stable isotope profiles in the same ice core, one can test the influence of solar variability on climate, and this independent of possible uncertainties in the absolute chronology of the records. We present here the results of such a comparison for two Antarctic ice cores; one from the South Pole, covering the past ca. 1000 years, and one from Dome C, covering the past ca. 3000 years. (author)

  8. The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (LHP-STF) heat pump water heating system: Techno-economic analysis in three European climates

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Shen, Jingchun; Adkins, Deborah; Yang, Tong; Tang, Llewellyn; Zhao, Xudong; He, Wei; Xu, Peng; Liu, Chenchen; Luo, Huizhong

    2015-01-01

    Highlights: • LHP-STF was evaluated from both technical and economic aspects for three EU climates. • The impact of LHP-STF on the overall building socio-energy performance was explored. • A dedicated business model was developed to study the economic feasibility of LHP-STF. • Three fundamental methods for financial measurement of LHP-STF were analysed. • Four investment options were considered in this business model. - Abstract: Most of the building renovation plans are usually decided in the early design stage. This delicate phase contains the greatest opportunity to achieve the high energy performance buildings after refurbishment. It is therefore important to provide the pertinent energy performance information for the designers or decision-makers from multidisciplinary and comparative points of view. This paper investigates the renovation concept of a novel loop-heat-pipe based solar thermal facade (LHP-STF) installed on a reference residential building by technical evaluation and economic analysis in three typical European climates, including North Europe (represented by Stockholm), West Europe (represented by London) and South Europe (represented by Madrid). The aim of this paper is firstly to explore the LHP-STF’s sensitivity with regards to the overall building socio-energy performance and secondly to study the LHP-STF’s economic feasibility by developing a dedicated business model. The reference building model was derived from the U.S. Department of Energy (DOE) commercial buildings research, in which the energy data for the building models were from the ASHRAE codes and other standard practices. The financial data were collected from the European statistic institute and the cost of system was based on the manufactured prototype. Several critical financial indexes were applied to evaluate the investment feasibility of the LHP-STF system in building renovation, such as Payback Period (PP), Net Present Value (NPV), and the modified internal

  9. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  10. Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils

    International Nuclear Information System (INIS)

    Ouagued, Malika; Khellaf, Abdallah; Loukarfi, Larbi

    2013-01-01

    Highlights: • Estimation of direct solar radiations for different tracking systems at six typical locations in Algeria. • PTC thermal model uses energy balances from the HTF to the atmosphere. • The model depends on the collector type, nature of HTF, optical properties, and ambient conditions. • Estimation of temperature, heat gain and energy cost of thermal oils used in the model. • Comparison between monthly mean heat gain of the various thermal oils for six Algerian locations. - Abstract: Algeria is blessed with a very important renewable, and more particularly solar, energy potential. This potential opens for Algeria reel opportunities to cope with the increasing energy demand and the growing environmental problems link to the use of fossil fuel. In order to develop and to promote concrete actions in the areas of renewable energy and energy efficiency, Algeria has introduced a national daring program for the period 2011–2030. In this program, solar energy, and more particularly solar thermal energy plays an important role. In this paper, the potential of direct solar irradiance in Algeria and the performance of solar parabolic trough collector (PTC) are estimated under the climate conditions of the country. These two factors are treated as they play an important role in the design of solar thermal plant. In order to determine the most promising solar sites in Algeria, monthly mean daily direct solar radiation have been estimated and compared for different locations corresponding to different climatic region. Different tilted and tracking collectors are considered so as to determine the most efficient system for the PTC. In order to evaluate the performance of a tracking solar parabolic trough collector, a heat transfer model is developed. The receiver, heat collector element (HCE), is divided into several segments and heat balance is applied in each segment over a section of the solar receiver. Different oils are considered to determine the thermal

  11. Lunar fingerprints in the modulated incoming solar radiation: In situ insolation and latitudinal insolation gradients as two important interpretative metrics for paleoclimatic data records and theoretical climate modeling

    Science.gov (United States)

    Cionco, Rodolfo Gustavo; Valentini, José Ernesto; Quaranta, Nancy Esther; Soon, Willie W.-H.

    2018-01-01

    We present a new set of solar radiation forcing that now incorporated not only the gravitational perturbation of the Sun-Earth-Moon geometrical orbits but also the intrinsic solar magnetic modulation of the total solar irradiance (TSI). This new dataset, covering the past 2000 years as well as a forward projection for about 100 years based on recent result by Velasco-Herrera et al. (2015), should provide a realistic basis to examine and evaluate the role of external solar forcing on Earth climate on decadal, multidecadal to multicentennial timescales. A second goal of this paper is to propose both in situ insolation forcing variable and the latitudinal insolation gradients (LIG) as two key metrics that are subjected to a deterministic modulation by lunar nodal cycle which are often confused with tidal forcing impacts as assumed and interpreted in previous studies of instrumental and paleoclimatic records. Our new results and datasets are made publicly available for all at PANGAEA site.

  12. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  13. Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models

    Science.gov (United States)

    Tang, Chao; Morel, Béatrice; Wild, Martin; Pohl, Benjamin; Abiodun, Babatunde; Bessafi, Miloud

    2018-02-01

    This study evaluates the performance of climate models in reproducing surface solar radiation (SSR) over Southern Africa (SA) by validating five Regional Climate Models (RCM, including CCLM4, HIRHAM5, RACMO22T, RCA4 and REMO2009) that participated in the Coordinated Regional Downscaling Experiment program over Africa (CORDEX-Africa) along with their ten driving General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 over SA. The model simulated SSR was thereby compared to reference data from ground-based measurements, satellite-derived products and reanalyses over the period 1990-2005. Results show that (1) the references obtained from satellite retrievals and reanalyses overall overestimate SSR by up to 10 W/m2 on average when compared to ground-based measurements from the Global Energy Balance Archive, which are located mainly over the eastern part of the southern African continent. (2) Compared to one of the satellite products (Surface Solar Radiation Data Set—Heliosat Edition 2; SARAH-2): GCMs overestimate SSR over SA in terms of their multi-model mean by about 1 W/m2 (compensation of opposite biases over sub-regions) and 7.5 W/m2 in austral summer and winter respectively; RCMs driven by GCMs show in their multimodel mean underestimations of SSR in both seasons with Mean Bias Errors (MBEs) of about - 30 W/m2 in austral summer and about - 14 W/m2 in winter compared to SARAH-2. This multi-model mean low bias is dominated by the simulations of the CCLM4, with negative biases up to - 76 W/m2 in summer and - 32 W/m2 in winter. (3) The discrepancies in the simulated SSR over SA are larger in the RCMs than in the GCMs. (4) In terms of trend during the "brightening" period 1990-2005, both GCMs and RCMs (driven by European Centre for Medium-Range Weather Forecasts Reanalysis ERA-Interim, short as ERAINT and GCMs) simulate an SSR trend of less than 1 W/m2 per decade. However, variations of SSR trend exist among different references data

  14. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  15. Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |

    Science.gov (United States)

    NREL Studies Webinars Solar Energy Evolution and Diffusion Studies Webinars These webinars . Department of Energy's Solar Energy Evolution and Diffusion Studies (SEEDS) program. SEEDS 2017-2019 Study Residential Solar July 20, 2017 Presenters: Kiran Lakkaraju, Sandia National Laboratories Yevgeniy Vorobeychik

  16. Modeling and Simulation of Thermal Performance of Solar-Assisted Air Conditioning System under Iraq Climate

    Directory of Open Access Journals (Sweden)

    Najim Abid Jassim

    2016-08-01

    Full Text Available In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of compressor and the performance of system. The results show that refrigeration capacity is increased from 2.7 kW to 4.4kW, as the evaporating temperature increased from 3 to 18 ºC. Also the power consumption is increased from 0.89 kW to 1.08 kW. So the COP of the system is increased from 3.068 to 4.117. The power consumption is increased from 0.897 kW to 1.031 kW as the condensing temperature increased from 35 ºC to 45 ºC. While the COP is decreased from 3.89 to 3.1. The power consumption is decreased from 1.05 kW to 0.7kW as the solar radiation intensity increased from 300 W/m2 to 1000 W/m2, while the COP is increased from 3.15 to 4.8. A comparison between the simulation and available experimental data showed acceptable agreement.

  17. A Combined Ethical and Scientific Analysis of Large-scale Tests of Solar Climate Engineering

    Science.gov (United States)

    Ackerman, T. P.

    2017-12-01

    Our research group recently published an analysis of the combined ethical and scientific issues surrounding large-scale testing of stratospheric aerosol injection (SAI; Lenferna et al., 2017, Earth's Future). We are expanding this study in two directions. The first is extending this same analysis to other geoengineering techniques, particularly marine cloud brightening (MCB). MCB has substantial differences to SAI in this context because MCB can be tested over significantly smaller areas of the planet and, following injection, has a much shorter lifetime of weeks as opposed to years for SAI. We examine issues such as the role of intent, the lesser of two evils, and the nature of consent. In addition, several groups are currently considering climate engineering governance tools such as a code of ethics and a registry. We examine how these tools might influence climate engineering research programs and, specifically, large-scale testing. The second direction of expansion is asking whether ethical and scientific issues associated with large-scale testing are so significant that they effectively preclude moving ahead with climate engineering research and testing. Some previous authors have suggested that no research should take place until these issues are resolved. We think this position is too draconian and consider a more nuanced version of this argument. We note, however, that there are serious questions regarding the ability of the scientific research community to move to the point of carrying out large-scale tests.

  18. Solar Process Heat Basics | NREL

    Science.gov (United States)

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be

  19. The solar energy in Israel

    International Nuclear Information System (INIS)

    Bocquet, L.

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  20. 10Be in late deglacial climate simulated by ECHAM5-HAM - Part 2: Isolating the solar signal from 10Be deposition

    Science.gov (United States)

    Heikkilä, U.; Shi, X.; Phipps, S. J.; Smith, A. M.

    2014-04-01

    This study investigates the effect of deglacial climate on the deposition of the solar proxy 10Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 year time slice simulations of 10 000 BP (years before present = 1950 CE), 11 000 and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol-climate model, driven with sea-surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10Be production signal, driven by solar variability, from the weather- or climate-driven noise in the 10Be deposition flux during different stages of climate. The production signal varies at lower frequencies, dominated by the 11 year solar cycle within the 30 year timescale of these experiments. The climatic noise is of higher frequencies than 11 years during the 30 year period studied. We first apply empirical orthogonal function (EOF) analysis to global 10Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD) analysis to the time series of 10Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low-frequency components and the long-term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high-frequency components represent climate-driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that

  1. Providing Consistent (A)ATSR Solar Channel Radiometry for Climate Studies

    Science.gov (United States)

    Smith, D.; Latter, B. G.; Poulsen, C.

    2012-04-01

    Data from the solar reflectance channels of the Along Track Scanning Radiometer (ATSR) series of instruments are being used in applications for monitoring trends in clouds and aerosols. In order to provide quantitative information, the radiometric calibrations of the sensors must be consistent, stable and ideally traced to international standards. This paper describes the methods used to monitor the calibrations of the ATSR instruments to provide consistent Level 1b radiometric data sets. Comparisons of the in-orbit calibrations are made by reference to data from quasi stable sites such as DOME-C in Antarctica or Saharan Desert sites. Comparisons are performed either by time coincident match-ups of the radiometric data for sensors having similar spectral bands and view/solar geometry and overpass times as for AATSR and MERIS; or via a reference BRDF model derived from averages of measurements over the site from a reference sensor where there is limited or no temporal overlap (e.g. MODIS-Aqua, ATSR-1 and ATSR-2). The results of the intercomparisons provide values of the long term calibration drift and systematic biases between the sensors. Look-up tables based on smoothed averages of the drift measurements are used to provide the corrections to Level 1b data. The uncertainty budgets for the comparisons are provided. It is also possible to perform comparisons of measurements against high spectral resolution instruments that are co-located on the same platform, i.e. AATSR/SCIA on ENVISAT and ATSR-2/GOME on ERS-2. The comparisons are performed by averaging the spectrometer data to the spectral response of the filter radiometer, and averaging the radiometer data to the spatial resolution of the spectrometer. In this paper, the authors present the results of the inter-comparisons to achieve a consistent calibration for the solar channels of the complete ATSR dataset. An assessment of the uncertainties associated with the techniques will be discussed. The impacts of the

  2. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  3. Short-term solar irradiance forecasting and photovoltaic systems performance in a tropical climate in Singapore

    OpenAIRE

    Nobre, André Maia

    2015-01-01

    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Civil, Florianópolis, 2015. A humanidade usou e continua consumindo em grande quantidade os recursos não-renováveis do planeta como petróleo, gás natural e carvão mineral para suprir suas necessidades energéticas. Somente nas últimas duas décadas que outras fontes de energia renováveis, como a solar fotovoltaica e a eólica, passaram a se tornar relevantes na...

  4. Performance Evaluation of a Solar-Powered Regenerative Organic Rankine Cycle in Different Climate Conditions

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2017-01-01

    Full Text Available A model to evaluate the performance of a solar powered regenerative Organic Rankine Cycle (R-ORC using five dry organic fluids: RC318, R227ea, R236ea, R236fa, and R218, is presented in this paper. The system is evaluated in two locations in the U.S.: Jackson, MS and Tucson, AZ. The weather data for each location is used to determine the heat available from the solar collector that could be used by the R-ORC to generate power. Results from the R-ORC performance are compared with a basic ORC using first and second law criteria as well as primary energy consumption (PEC and carbon dioxide emission (CDE savings for both locations. An economic analysis to determine the maximum capital cost for a desired payback period is presented in this paper. A parametric analysis is also performed to study the effect of the turbine efficiency as well as the open feed organic fluid heater intermediate pressure on the system performance. Results indicate that the R-ORC is able to generate more power than the basic ORC for some of the selected working fluids. For the R-ORC, R236ea is the working fluid that show the best performance among the evaluated fluids under the modeled conditions. On the other hand, the basic ORC with R236ea as the working fluid outperformed three of the fluids in the R-ORC. Also, the R-ORC evaluated in Tucson, AZ is able to generate more power, to provide more PEC and CDE savings, and had a higher available capital cost than the R-ORC evaluated in in Jackson, MS.

  5. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  6. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  7. Residential Electricity Consumption in Poland

    Directory of Open Access Journals (Sweden)

    Edyta Ropuszyńska-Surma

    2016-01-01

    Full Text Available Key factors influencing electricity consumption in the residential sector in Poland have been identified. A fixed-effects model was used, which includes time effects, and a set of covariates, based on the model developed by Houthakker et al. This model estimates electricity demand by using lagged values of the dependent variable along with current and lagged values of electricity prices, and other variables that affect electricity demand such as: population, economic growth, income per capita, price of related goods, etc. The model has been identified according to the research results of the authors and those obtained by Bentzen and Engsted. The set of covariates was extended to the lagged electricity price given by a tariff (taken from two years previous to the time of interest and heating degree days index, a very important factor in European Union countries, where the climate is temperate. The authors propose four models of residential electricity demand, for which a confidence interval of 95% has been assumed. Estimation was based on Polish quarterly data for the years 2003-2013. (original abstract

  8. Chemical effects in 11-year solar cycle simulations with the Freie Universität Berlin Climate Middle Atmosphere Model with online chemistry (FUB-CMAM-CHEM)

    OpenAIRE

    U. Langematz; J. Grenfell; K. Matthes; P. Mieth; M. Kunze; B. Steil; C. Brühl;  

    2005-01-01

    The impact of 11-year solar cycle variations on stratospheric ozone (O3) is studied with the Freie Universität Berlin Climate Middle Atmosphere Model with interactive chemistry (FUB-CMAM-CHEM). To consider the effect of variations in charged particle precipitation we included an idealized NO x source in the upper mesosphere representing relativistic electron precipitation (REP). Our results suggest that the NO x source by particles and its transport from the mesosphere to the stratosphe...

  9. Residential electricity demand in Singapore

    International Nuclear Information System (INIS)

    Ang, B.W.; Goh, T.N.; Liu, X.Q.

    1992-01-01

    Residential electricity consumption in Singapore increased at a rate of 8.8% per year between 1972 and 1990. Estimates of the long-run income and price elasticities are 1.0 and -0.35, respectively. The energy-conservation campaigns that have been launched are found to have marginal effects on consumption. A statistical analysis shows that the consumption is sensitive to small changes in climatic variables, particularly the temperature, which is closely linked to the growing diffusion of electric appliances for environmental controls. There has been a temporal increase in the ownership levels of appliances associated with increasing household incomes. However, other factors were involved since the ownership levels would also increase over time after the elimination of the income effect. A large part of the future growth in electricity demand will arise from the growing need for air-conditioning, which will lead to increasingly large seasonal variations in electricity use. (author)

  10. THE EVALUATION OF THE SOLAR ORIENTED ENERGY EFFECTIVE BUILDING DESIGN UNDER THE MEDITERRANEAN CLIMATE CONDITIONS IN TERMS OF WATER HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Gizem TETİK

    2014-01-01

    Full Text Available Within the acknowledging of the fact that the half of the resources of the earth is being utilized for construction purposes; in this dissertation, which aims to lower this rate for our country by raising the awareness of the society, it is asserted that the utilization of the solar energy, unlike the common belief, should be considered as a passive manner during the design phase, before utilizing it in an active manner and the types of utilization, in which the solar energy can be benefitted at its full, is further demonstrated. Within this context, the analyses of the solar energy systems were conducted, the variables according to the climate and building types were discussed and the current suggestions for the improvement were presented along with the relevant literature reviews and case studies.

  11. Performance Characterisation of a Hybrid Flat-Plate Vacuum Insulated Photovoltaic/Thermal Solar Power Module in Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Andrew Y. A. Oyieke

    2016-01-01

    Full Text Available A flat-plate Vacuum Insulated Photovoltaic and Thermal (VIPV/T system has been thermodynamically simulated and experimentally evaluated to assess the thermal and electrical performance as well as energy conversion efficiencies under a subtropical climate. A simulation model made of specified components is developed in Transient Systems (TRNSYS environment into which numerical energy balance equations are implemented. The influence of vacuum insulation on the system’s electrical and thermal yields has been evaluated using temperatures, current, voltage, and power flows over daily and annual cycles under local meteorological conditions. The results from an experiment conducted under steady-state conditions in Durban, South Africa, are compared with the simulation based on the actual daily weather data. The VIPV/T has shown improved overall and thermal efficiencies of 9.5% and 16.8%, respectively, while electrical efficiency marginally reduced by 0.02% compared to the conventional PV/T. The simulated annual overall efficiency of 29% (i.e., 18% thermal and 11% electrical has been realised, in addition to the solar fraction, overall exergy, and primary energy saving efficiencies of 39%, 29%, and 27%, respectively.

  12. Emerging economic viability of grid defection in a northern climate using solar hybrid systems

    International Nuclear Information System (INIS)

    Kantamneni, Abhilash; Winkler, Richelle; Gauchia, Lucia; Pearce, Joshua M.

    2016-01-01

    High demand for photovoltaic (PV), battery, and small-scale combined heat and power (CHP) technologies are driving a virtuous cycle of technological improvements and cost reductions in off-grid electric systems that increasingly compete with the grid market. Using a case study in the Upper Peninsula of Michigan, this paper quantifies the economic viability of off-grid PV+battery+CHP adoption and evaluates potential implications for grid-based utility models. The analysis shows that already some households could save money by switching to a solar hybrid off-grid system in comparison to the effective electric rates they are currently paying. Across the region by 2020, 92% of seasonal households and ~75% of year-round households are projected to meet electricity demands with lower costs. Furthermore, ~65% of all Upper Peninsula single-family owner-occupied households will both meet grid parity and be able to afford the systems by 2020. The results imply that economic circumstances could spur a positive feedback loop whereby grid electricity prices continue to rise and increasing numbers of customers choose alternatives (sometimes referred to as a “utility death spiral”), particularly in areas with relatively high electric utility rates. Utility companies and policy makers must take the potential for grid defection seriously when evaluating energy supply strategies. - Highlights: •Quantifies the economic viability of off-grid hybrid photovoltaic (PV) systems. •PV is backed up with batteries and combined heat and power (CHP). •Case study in Michigan by household size (energy demand) and income. •By 2020, majority of single-family owner-occupied households can defect. •To prevent mass-scale grid defection policies needed for grid-tied PV systems.

  13. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra.

    Science.gov (United States)

    Hogewoning, Sander W; Douwstra, Peter; Trouwborst, Govert; van Ieperen, Wim; Harbinson, Jeremy

    2010-03-01

    Plant responses to the light spectrum under which plants are grown affect their developmental characteristics in a complicated manner. Lamps widely used to provide growth irradiance emit spectra which are very different from natural daylight spectra. Whereas specific responses of plants to a spectrum differing from natural daylight may sometimes be predictable, the overall plant response is generally difficult to predict due to the complicated interaction of the many different responses. So far studies on plant responses to spectra either use no daylight control or, if a natural daylight control is used, it will fluctuate in intensity and spectrum. An artificial solar (AS) spectrum which closely resembles a sunlight spectrum has been engineered, and growth, morphogenesis, and photosynthetic characteristics of cucumber plants grown for 13 d under this spectrum have been compared with their performance under fluorescent tubes (FTs) and a high pressure sodium lamp (HPS). The total dry weight of the AS-grown plants was 2.3 and 1.6 times greater than that of the FT and HPS plants, respectively, and the height of the AS plants was 4-5 times greater. This striking difference appeared to be related to a more efficient light interception by the AS plants, characterized by longer petioles, a greater leaf unfolding rate, and a lower investment in leaf mass relative to leaf area. Photosynthesis per leaf area was not greater for the AS plants. The extreme differences in plant response to the AS spectrum compared with the widely used protected cultivation light sources tested highlights the importance of a more natural spectrum, such as the AS spectrum, if the aim is to produce plants representative of field conditions.

  14. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

  15. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    Science.gov (United States)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  16. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for existing residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-05-31

    As part of the research and development of the solar energy systems for air conditioning and hot water supply for existing residential buildings, the following efforts are made: (1) system analysis, (2) studies on devices and materials, and (3) installation and operation of the facilities in test buildings, and collection of the data. For the item (1), the sensible heat type heat-accumulating tank is replaced by the latent heat type to reduce heat losses and auxiliary power requirements by improving heat-accumulating tank efficiency and revising the control procedure. For the item (2), the devices installed in the test buildings are tested to improve their performance and reliability, in which, e.g., results of operation, under commercial conditions, of the Rankine cycle refrigerator installed in the test building are taken into consideration. The empirical correlation {eta} 0.66 - 1.7{delta}T/I is obtained for instantaneous heat-collecting efficiency of a vacuum collector, made on a trial basis. Its heat loss is sufficiently small, which is in agreement with the results of the nighttime heat release tests. For the latent heat type heat-accumulating tank, stability of the materials therefor are investigated. For the Rankine cycle refrigerator, development of its parts is continued. For the item (3), the facilities are tested for around 7 months, and problems involved in each device are clarified. (NEDO)

  17. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing

    Directory of Open Access Journals (Sweden)

    A. Hind

    2012-08-01

    Full Text Available The statistical framework of Part 1 (Sundberg et al., 2012, for comparing ensemble simulation surface temperature output with temperature proxy and instrumental records, is implemented in a pseudo-proxy experiment. A set of previously published millennial forced simulations (Max Planck Institute – COSMOS, including both "low" and "high" solar radiative forcing histories together with other important forcings, was used to define "true" target temperatures as well as pseudo-proxy and pseudo-instrumental series. In a global land-only experiment, using annual mean temperatures at a 30-yr time resolution with realistic proxy noise levels, it was found that the low and high solar full-forcing simulations could be distinguished. In an additional experiment, where pseudo-proxies were created to reflect a current set of proxy locations and noise levels, the low and high solar forcing simulations could only be distinguished when the latter served as targets. To improve detectability of the low solar simulations, increasing the signal-to-noise ratio in local temperature proxies was more efficient than increasing the spatial coverage of the proxy network. The experiences gained here will be of guidance when these methods are applied to real proxy and instrumental data, for example when the aim is to distinguish which of the alternative solar forcing histories is most compatible with the observed/reconstructed climate.

  18. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  19. The impact of climate change on the European energy system

    International Nuclear Information System (INIS)

    Dowling, Paul

    2013-01-01

    Climate change can affect the economy via many different channels in many different sectors. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling demand in the residential and services sector, changes in the efficiency of thermal power plants, and changes in hydro, wind (both on- and off-shore) and solar PV electricity output. Results of the impacts of six scenarios on the European energy system are presented, and the implications for European energy security and energy imports are presented. Main findings include: demand side impacts (heating and cooling in the residential and services sector) are larger than supply side impacts; power generation from fossil-fuel and nuclear sources decreases and renewable energy increases; and impacts are larger in Southern Europe than in Northern Europe. There remain many more climate change impacts on the energy sector that cannot currently be captured due to a variety of issues including: lack of climate data, difficulties translating climate data into energy-system-relevant data, lack of detail in energy system models where climate impacts act. This paper does not attempt to provide an exhaustive analysis of climate change impacts in the energy sector, it is rather another step towards an increasing coverage of possible impacts. - Highlights: • Expanded coverage of climate change impacts on European energy system. • Demand side impacts are larger than supply side impacts. • Power from fossil and nuclear sources decreases, renewable energy increases. • Impacts are larger in Southern Europe than in Northern Europe. • Synergies exist between climate change mitigation and climate change adaptation

  20. Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2015-01-01

    Highlights: • Operation conditions significantly affect energy & economic performance of SLDCS. • Control parameters in three areas were optimized by Multi-Population Genetic Algorithm. • Solar collector area showed the greatest effect on system performance for humid areas. • Desiccant concentration showed greatest effect on system performance for dry areas. • Requirement of collector area, heating water and desiccant flow rates for humid areas is highest. - Abstract: Operation conditions significantly affect the energy and economic performance of solar-assisted liquid desiccant cooling systems. This study optimized the system control parameters for buildings in different climates, i.e., Singapore (hot and humid), Beijing (moderate) and Boulder (hot and dry), with a multi-parameter optimization based on the Multi-Population Genetic Algorithm to obtain optimal system performance in terms of relatively maximum electricity saving rate with a minimum cost payback period. The results indicated that the selection of operation parameters is significantly influenced by climatic conditions. The solar collector installation area exhibited the greatest effect on both energy and economic performance in humid areas, and the heating water flow rate was also important. For dry areas, a change in desiccant concentration had the largest effect on system performance. Although the effect of the desiccant flow rate was significant in humid cities, it appeared to have little influence over buildings in dry areas. Furthermore, the requirements of the solar collector installation area in humid areas were much higher. The optimized area was up to 70 m"2 in Singapore compared with 27.5 m"2 in Boulder. Similar results were found for the flow rates of heating water and the desiccant solution. Applying the optimization, humid cities could achieve an electricity saving of more than 40% with a six-year payback period. The optimal performance for hot and dry areas of a 38% electricity

  1. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  2. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  3. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Science.gov (United States)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex

    2017-07-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and

  4. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Directory of Open Access Journals (Sweden)

    J. Hsu

    2017-07-01

    Full Text Available Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM applications (RRTMG-SW. Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  5. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  6. Family ties and residential locations

    NARCIS (Netherlands)

    Mulder, C.H.; Cooke, T.J.

    2009-01-01

    In this paper, and in the Special Issue it introduces, the focus is on the role of family ties in residential location choice and, conversely, the role of residential locations in maintaining family ties. Not only do events in the nuclear family trigger residential relocations, but nearby family

  7. GREEN RETROFITTING RESIDENTIAL BUILDINGS

    Science.gov (United States)

    When compared with the rest of the world, the United States consumes a disproportionately large amount of energy and is a major source of greenhouse gases from fossil fuel combustion. As much as two thirds of U.S. electricity production is consumed by residential and commerci...

  8. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New Jersey. Moving to the 2015 IECC from the 2015 New Jersey State Code base code is cost-effective for residential buildings in all climate zones in New Jersey.

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New Hampshire. Moving to the 2015 IECC from the 2010 New Hampshire State Code base code is cost-effective for residential buildings in all climate zones in New Hampshire.

  10. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in North Carolina. Moving to the 2015 IECC from the 2012 North Carolina State Code base code is cost-effective for residential buildings in all climate zones in North Carolina.

  11. Modeling temporal variations in global residential energy consumption and pollutant emissions

    International Nuclear Information System (INIS)

    Chen, Han; Huang, Ye; Shen, Huizhong; Chen, Yilin; Ru, Muye; Chen, Yuanchen; Lin, Nan; Su, Shu; Zhuo, Shaojie; Zhong, Qirui; Wang, Xilong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2016-01-01

    Highlights: • Space-for-time substitution was tested for seasonality of residential energy. • Regression models were developed to simulate global residential energy consumption. • Factors affecting the temporal trend in residential energy use were identified. • Climate warming will induce changes in residential energy use and emissions. - Abstract: Energy data are often reported on an annual basis. To address the climate and health impacts of greenhouse gases and air pollutants, seasonally resolved emissions inventories are needed. The seasonality of energy consumption is most affected by consumption in the residential sector. In this study, a set of regression models were developed based on temperature-related variables and a series of socioeconomic parameters to quantify global electricity and fuel consumption for the residential sector. The models were evaluated against observations and applied to simulate monthly changes in residential energy consumption and the resultant emissions of air pollutants. Changes in energy consumption are strongly affected by economic prosperity and population growth. Climate change, electricity prices, and urbanization also affect energy use. Climate warming will cause a net increase in electricity consumption and a decrease in fuel consumption by the residential sector. Consequently, emissions of CO_2, SO_2, and Hg are predicted to decrease, while emissions of incomplete combustion products are expected to increase. These changes vary regionally.

  12. 77 FR 28673 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans

    Science.gov (United States)

    2012-05-15

    ... multipliers based on climate, consumer behavior assumptions, and product characteristics (e.g., multi-stage or... Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans; Proposed Rule #0;#0... Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans AGENCY: Office of...

  13. What is stopping you from installing solar systems? Contrasting Chilean with German homes.

    Science.gov (United States)

    Haas, J.; Caro Castro, C. P.

    2017-12-01

    Towards meeting Paris` climate change goals, a rapid shift towards clean energy sources is needed. While the deployment of centralized solar photovoltaic (PV) power plants has been remarkable in Germany and -in the last years- also in Chile, the residential PV installations in Chile lag greatly in contrast to Germany. In fact, Chile's largest PV system until 2012 was smaller than 25 kW. And, although the recently implemented net-billing scheme has brightened this scenario, most of Chile's roofs keep being bald. Beyond the evident economic contrasts among both countries, there are many other underlying differences in public acceptance of renewable technologies. Understanding them is of both conceptual and practical importance. Here, we study the variables that determine the public acceptance of residential PV systems in Germany and Chile. We survey the positions of laypersons on the support of climate change goals, on the necessity of renewable technologies, on their auto-sustainability (how much I identify myself with being sustainable), and on their auto-effectiveness (do I believe that my behavior has impact on global targets). The sample is further characterized by socioeconomic status, knowledge and experience and proximity to solar systems, esthetic perception of the systems, security of the neighborhood and house ownership, willingness of installing solar systems, and trust in the technology. We identify the main factors via data correlation analysis. From our findings, actions to improve the acceptance and literacy of solar technologies in Chile can be derived.

  14. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions

    International Nuclear Information System (INIS)

    Hazami, Majdi; Riahi, Ali; Mehdaoui, Farah; Nouicer, Omeima; Farhat, Abdelhamid

    2016-01-01

    The endeavor of this paper is to study the potential offered by the expenditure of a PV/T (photovoltaic thermal) solar system in Tunisian households. This investigation is performed according to two-folded approaches. Firstly, outdoor experiments were carried out during July 2014 for both passive and active mode. An exhaustive energy and exergy analysis was then performed to evaluate the instantaneous thermal and the electrical exergy outputs of the PV/T solar system. The results showed that the maximum instantaneous thermal and electric energy efficiency in active mode are about 50 and 15%, respectively. It was found also that the maximum thermal and electric exergy efficiencies were about 50 and 14.8%, respectively. The second approach is the evaluation of the monthly/annual performances of the PV/T solar system under typical climate area of Tunisia by using TRNSYS program. The results showed that the active mode enhances the electric efficiency and the exergy of the PV/T system by 3 and 2.5% points, respectively. The results showed that the optimized PV/T solar system covert the major part of the hot water and the electric needs of Tunisian household's with an expected annual average gain of about 14.60 and 5.33%, respectively. An economic appraisal was performed. - Highlights: • The present work studies the potential of using PV/T solar collector in Tunisian. • The maximum thermal and electric efficiencies are 50 and 15%, respectively. • The maximum thermal and electric exergy efficiencies were 50 and 14.8%. • The results showed that the expected annual gain are 14.60 and 5.33%. • The PV/T is compared to a high quality commercial solar collectors and a PV panel.

  15. Solar Market Research and Analysis Publications | Solar Research | NREL

    Science.gov (United States)

    Market Research and Analysis Publications Solar Market Research and Analysis Publications NREL researchers and analysts publish a variety of documents related to solar market research and analysis achieving the SETO 2030 residential PV cost target of $0.05 /kWh by identifying and quantifying cost

  16. Learning-Based Research: The Re-Integration of Learning Styles into STEM Research Through the Context of Solar Energy and Climate Literacy

    Science.gov (United States)

    Bosman, L.

    2014-12-01

    This presentation will provide an overview of a NASA NICE-T funded research project at the College of Menominee Nation, a small federally recognized Tribal College located in northern Wisconsin. One main objective of the research project is to provide an experiential learning opportunity for 4-6 STEM students to construct a user friendly solar energy system evaluation tool, incorporating the real-world performance of different solar modules at Argonne National Laboratory, NASA weather and solar irradiation data, and detailed cost analysis and investment payback period. A natural connection exists between Native Americans and renewable energy. The generally clean character of renewable energies provides a great synergy and complimentary attribute for Native Americans' respect and pride for the environment and the overarching concern for future generations (Council, Pierce et al. 2000). Furthermore, Native American cultures have a strong creative and artistic focus, often motivated by their respect and appreciation for nature. The purpose of this learning-based research is to apply a cross-disciplinary approach to integrate the humanities with STEM research within the context of solar energy and climate literacy. Using 7 different learning styles (visual, aural, verbal, physical, logical, social, and solitary), students have the opportunity to showcase their research efforts through a variety of modes and artifacts including graphic novel development (Visual), spoken word poetry (Aural), conference presentation (Verbal), experiential display and demonstration (Physical), debate (Logical), social media and viral messaging (Social), and article submission (Solitary).

  17. An engineering economic assessment of whole-house residential wood heating in New York

    Science.gov (United States)

    Wood devices are being selected increasingly for residential space heating by households in New York State. Motivations for their use include energy independence, mitigating climate change, stimulating local economic development, and reducing exposure to high and variable fuel c...

  18. A Dynamic Evaluation Of A Model And An Estimate Of The Air Quality And Regional Climate Impacts Of Enhanced Solar Power Generation

    Science.gov (United States)

    Millstein, D.; Brown, N. J.; Zhai, P.; Menon, S.

    2012-12-01

    We use the WRF/Chem model (Weather Research and Forecasting model with chemistry) and pollutant emissions based on the EPA National Emission Inventories from 2005 and 2008 to model regional climate and air quality over the continental United States. Additionally, 2030 emission scenarios are developed to investigate the effects of future enhancements to solar power generation. Modeling covered 6 summer and 6 winter weeks each year. We model feedback between aerosols and meteorology and thus capture direct and indirect aerosol effects. The grid resolution is 25 km and includes no nesting. Between 2005 and 2008 significant emission reductions were reported in the National Emission Inventory. The 2008 weekday emissions over the continental U.S. of SO2 and NO were reduced from 2005 values by 28% and 16%, respectively. Emission reductions of this magnitude are similar in scale to the potential emission reductions from various energy policy initiatives. By evaluating modeled and observed air quality changes from 2005 to 2008, we analyze how well the model represents the effects of historical emission changes. We also gain insight into how well the model might predict the effects of future emission changes. In addition to direct comparisons of model outputs to ground and satellite observations, we compare observed differences betw